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ABSTRACT

The catalytic enantioselective preparation of all-carbon quaternary stereocenters within rings via
alkylation is a major challenge in synthetic organic chemistry. Many important natural products and
biologically active pharmaceuticals contain this motif. We have developed palladium-catalyzed
decarboxylative alkylations capable of generating all-carbon quaternary stereocenters in good yield with
high enantioselectivity.

Alkylated products are readily elaborated to synthetically useful cyclic scaffolds. The
enantioselective decarboxylative alkylation is thus utilized to prepare intermediates previously reported in
the total syntheses of classic natural products. Herein, we disclose modern formal syntheses of (-)-
Thujopsene, (—)-Dysidiolide, and (-)-Aspidospermine.

The longer-term goal was to apply this new enantioselective catalysis to the total syntheses of
natural products with novel carbocyclic architectures. Our methodology is demonstrated during the first
protecting group-free enantioselective total synthesis of (+)-dichroanone, a 4a-methyltetrahydrofluorene.
The [6-5-6] tricyclic natural products family has members with important biological activity, and our route
to (+)-dichroanone may provide general access to related compounds. During our synthetic endeavors, a
novel Kumada-benzannulation approach to the aromatic portion of (+)-dichroanone was developed, along
with a unique synthesis of a hydroxy-p-benzoquinone from a phenol. The absolute stereochemistry of the
natural product was verified for the first time during our total synthesis.

Significant progress has been made toward the total synthesis of the marine meroterpenoid
liphagal, a potent and selective phosphatidylinositol 3-kinase o inhibitor. The enantioselective
decarboxylative alkylation has been employed, and an acetylene [2 + 2] photoaddition / ring-opening
sequence is used to construct the 7-membered ring. New understanding about the reactivity of [6-7]
bicyclic scaffolds has been gathered, and the information applied during preparation of liphagal’s
benzofuran motif. Our efforts have led to a functionally diverse array of liphagal analogues, which may be

used for structure-activity-relationship studies with phosphatidylinositol 3-kinases.
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pyridinium chlorochromate

Pd’ supported on activated carbon

poly(methyl hydrosiloxane), trimethylsilyl terminated
pentafluorothiophenol

phenyl
2-(triphenylphosphin-2'-yl)-oxazoline-derived ligand
phosphatidylinositol-3-kinase
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RAMP
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TBAT
TBDPS
Tf

THF

XXXVil

pyridinium para-toluene sulfonate

propyl

iso-propyl

pyridine

quartet

substituent group

retention factor

rectus chiral configuration
(R)-1-amino-2-(methoxymethyl)pyrrolidine
sodium bis(2-methoxyethoxo)-dihydridoaluminate
Reference

relative

singlet

sinister chiral configuration

secondary
(8)-1-amino-2-(methoxymethyl)pyrrolidine
N,N'-bis(salicylidene)-1,2-diaminoethane-derived ligand
saturated

sublimation point
tetra-n-butylammoniumdifluorotriphenylsilicate
tert-butyl diphenyl silyl
trifluoromethanesulfonyl

tetrahydrofuran
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yr

thin-layer chromatography
N,N,N’,N -tetramethyl 1,2-diaminoethane
trimethylsilyl

triethylsilyl

tert-butyl dimethylsilyl
tetramethyl guanidine
para-toluenesulfonyl
triplet
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ultraviolet
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year(s)
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