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ABSTRACT

The catalytic enantioselective preparation of all-carbon quaternary stereocenters within rings via

alkylation is a major challenge in synthetic organic chemistry. Many important natural products and

biologically active pharmaceuticals contain this motif. We have developed palladium-catalyzed

decarboxylative alkylations capable of generating all-carbon quaternary stereocenters in good yield with

high enantioselectivity.

Alkylated products are readily elaborated to synthetically useful cyclic scaffolds. The

enantioselective decarboxylative alkylation is thus utilized to prepare intermediates previously reported in

the total syntheses of classic natural products.  Herein, we disclose modern formal syntheses of (–)-

Thujopsene, (–)-Dysidiolide, and (–)-Aspidospermine.

The longer-term goal was to apply this new enantioselective catalysis to the total syntheses of

natural products with novel carbocyclic architectures. Our methodology is demonstrated during the first

protecting group-free enantioselective total synthesis of (+)-dichroanone, a 4a-methyltetrahydrofluorene.

The [6-5-6] tricyclic natural products family has members with important biological activity, and our route

to (+)-dichroanone may provide general access to related compounds. During our synthetic endeavors, a

novel Kumada-benzannulation approach to the aromatic portion of (+)-dichroanone was developed, along

with a unique synthesis of a hydroxy-p-benzoquinone from a phenol. The absolute stereochemistry of the

natural product was verified for the first time during our total synthesis.

Significant progress has been made toward the total synthesis of the marine meroterpenoid

liphagal, a potent and selective phosphatidylinositol 3-kinase α  inhibitor. The enantioselective

decarboxylative alkylation has been employed, and an acetylene [2 + 2]  photoaddition / ring-opening

sequence is used to construct the 7-membered ring. New understanding about the reactivity of [6-7]

bicyclic scaffolds has been gathered, and the information applied during preparation of liphagal’s

benzofuran motif. Our efforts have led to a functionally diverse array of liphagal analogues, which may be

used for structure-activity-relationship studies with phosphatidylinositol 3-kinases.
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ppm parts per million
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PPTS pyridinium para-toluene sulfonate

Pr propyl

i-Pr iso-propyl

Pyr pyridine

q quartet

R substituent group

Rf retention factor

R rectus chiral configuration

RAMP (R)-1-amino-2-(methoxymethyl)pyrrolidine

REDAL sodium bis(2-methoxyethoxo)-dihydridoaluminate

ref. Reference

rel. relative

s singlet

S sinister chiral configuration

s secondary

SAMP (S)-1-amino-2-(methoxymethyl)pyrrolidine

salen N,N′-bis(salicylidene)-1,2-diaminoethane-derived ligand

sat. saturated

sp sublimation point

TBAT tetra-n-butylammoniumdifluorotriphenylsilicate

TBDPS tert-butyl diphenyl silyl

Tf trifluoromethanesulfonyl

THF tetrahydrofuran
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TLC thin-layer chromatography

TMEDA N,N,N′,N′-tetramethyl 1,2-diaminoethane

TMS trimethylsilyl

TES triethylsilyl

TBS tert-butyl dimethylsilyl

TMG tetramethyl guanidine

Ts para-toluenesulfonyl

t triplet

t tertiary

tert tertiary

UV ultraviolet

Vis visible

w/w weight per weight

yr year(s)

Z zusammen olefin geometry


