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ABSTRACT

The Stokesian dynamics simulation method is applied to study the behavior of concen-
trated suspensions of hydrodynamically interacting colloidal particles in a shear flow.
The aim of this study is the prediction of suspension macroscopic properties from the
microstructure - the temporal and spatial distribution of suspended particles. The macro-
scopic properties includes the shear viscosity, normal stress differences, short- and long-
time self-diffusivities. Suspension macroscopic properties and the microstructure are
modeled as functions of two parameters: particle volume fraction, ¢, and the Péclet
number, Pe, which measures the relative importance of the imposed shear and Brow-
nian forces. Stokesian dynamics accurately accounts for both the hydrodynamic and
Brownian forces of a colloidal dispersion. The method, which is very general and com-
putationally efficient, imposes no restriction on the particle displacements and allows
simulation of flowing suspension with particle volume fractions from infinite dilution to
dense packing and a continuous range of the Péclet number from pure Brownian motion

(Pe — 0) to pure hydrodynamics (Pe — o0).

The method is first employed for the pure Brownian suspensions (Pe=0) at a volume
fraction ¢=0.45. The accuracy of Stokesian dynamics is demonstrated by an excellent
comparison of the radial pair-distribution function obtained from dynamic simulation
which captures the same isotropic hard-sphere distribution computed by the random
Monte-Carlo method. The simulation method is then applied to study the dynamics of
sheared SCC, BCC, and FCC periodic lattices of non-colloidal spheres (Pe — oo) with

particle volume fraction ranging from dilution to maximum close packing. Results of the
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resistivity and the shear viscosity of sheared periodic lattices are successfully determined

as a function of the volume fraction.

The Stokesian dynamics simulation method is finally applied to the dynamic simula-
tion of unbounded concentrated suspensions of force- and torque-free colloidal parti-
cles. The particle volume fractions are varied from 0.316 to 0.6 and the Péclet numbers
are ranged from the strong Brownian limit (Pe=0.01) to the hydrodynamic dominated
regime (Pe= 10° ). Comparisons of simulation results for the steady shear viscosities, self-
diffusivities, and the structure factors with experiments are remarkably good. For the
first time, the flow of particles are probed with detail to illustrate the shearing deforma-
tion to suspension microstructure. This information provides a physical understanding
of the fundamental mechanisms causing interesting shear thinning and shear thickening
behavior and its important relation to the shear-induced microstructure. The simu-
lation results reveal three distinct behaviors of hard-sphere suspensions in the regions
of strong Brownian motion, balance of Brownian and hydrodynamic interactions, and

hydrodynamic domination.

In the region of strong Brownian motion with small Péclet numbers (Pe < 1), the sus-
pension shear thins due to a decrease of Brownian contribution to particle stress. The
isotropic microstructure is slightly deformed, but the particles are very well dispersed.
More importantly, simulation results do not reveal ordered microstructure in the shear
thinning region. For the special plateau region with Pe =~ 10, the suspension no longer
shear thins and the shear viscosity is minimized. The balance of hydrodynamic and

Brownian forces induce a strongly ordered flowing suspension with hexagonally packed
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strings of particles flowing with the bulk flow. The string formation is due to the Brown-
ian forces which act as short-range springlike repulsive and random forces to counter the
shearing deformation to the suspension by the imposed shear; the string formation does
not relate to the shear thinning. In the region of hydrodynamic domination (Pe > 102),
the suspension shear thickens due to formation of large, elongated clusters of particles.
In this region, the hydrodynamics contribute all particle stress as the direct Brownian
contribution has essentially vanished, but weak Brownian forces are seen to perturb and
induce a local anisotropic microstructure. The complete relation of the steady shear vis-
cosity to particle volume fraction and the Péclet number for concentrated hard-sphere

suspensions is also given.
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Chapter 1

INTRODUCTION



The two goals of this thesis are to study the behavior of colloidal dispersions and to
develop very general, fast Stokesian dynamics simulation programs which can be used for
modeling a wide variety of particulate flows. The first goal centralizes on the prediction of
macroscopic equilibrium and transport properties of concentrated colloidal suspensions
from their microstructural mechanics. While applications of Stokesian dynamics for
studying of suspension macroscopic properties have appeared in the past (Brady and
Bossis (1988), Brady (1990), Bonnecaze and Brady (1992)), here we shall focus on the
“rheological” behavior, which includes the shear viscosity and normal stress differences,
short- and long-time self-diffusion coefficients. The microstructural mechanics governing
suspensions include hydrodynamic forces, stochastic forces which give rise to Brownian
motion, internal and external forces acting on particles, as well as their temporal and
spatial distribution which is commonly referred to as the suspension microstructure.
In flowing, nonequilibrium suspensions, the suspension microstructure is not given but
must be determined as part of the solution; it determines and is determined by the
macroscopic flow behavior. The second goal concerns the science of programming and

the development of accurate, fast and general Stokesian dynamics codes.

Particles suspended or dispersed in a fluid medium are very common in nature and
in many engineering fields, e.g., the mixing and spray application of emulsion polymers
and latexes, dispersions of pigments in coating and paint industries, flows of coal slur-
ries, polymer processing, and the manufacture of ceramics and composite materials. For
dispersions of submicronsized particles, there is a large body of literature and technical
reports on the non-Newtonian rheological behavior of these multiphase materials (Rut-

gers (1962), Krieger (1972), Jeffrey and Acrivos (1976), Gadala-Maria (1979), Pitzold



(1980), Hoffman (1972, 1974 and 1982), Krieger and Choi (1986), Barne (1989), van der
Werfl and de Kruif (1989), Boersma et al. (1990), Ericksson et al. (1990), Ferrini et al.
(1990)). The general observations for dense suspensions can be summarized as follows:
As the shear rate increases, it is observed that at first the shear viscosity decreases, i.e.,
the suspension shear thins. At higher shear rates, the shear viscosity goes to a minimum
and then may increase to a much higher value if the suspension is shear thickening or
dilatant. (In contrast to dilatancy, in some suspensions the shear viscosity is observed to
increase with shear time at a constant shear rate, and this time-dependent shear thick-
ening is usually referred to as rheopexy.) As the particle volume fraction increases, these
rheological responses are intensified. In addition to shear thinning and shear thickening,
discontinuing in shear viscosity, normal stress differences, and yield stresses have also
been reported. While these experimental findings are not new and have been known
for a long time, there is still no clear physical understanding and explanation for these
nonideal rheological response of flowing suspensions. This is partly because in many
experiments the characterization for both the chemistry and transport mechanisms op-
erating in the suspensions is often difficult and incomplete. Therefore, it is impossible

to link the influence of specific colloidal forces and macroscopic properties.

Predicting the rheological behavior of concentrated suspensions is a difficult and
challenging theoretical problem. Theories must be able to address the physics of many-
body hydrodynamic interactions and the important near-field lubrication forces in dense
suspensions. Also, exact knowledge of particle forces and stresses for a particular config-
uration is insufficient to determine the rheology. A large number of different configura-

tions sampled by particles is needed for the statistical average of suspension macroscopic



properties. These configurations are themselves the results of the interplay between the
imposed shear flow and the internal hydrodynamic, interparticle and Brownian forces.
The microstructure of a flowing suspension is a dynamic entity which cannot be set a
priori but must be determined as part of the problem. Stokesian dynamics is capable of

addressing these aspects.

Molecular-dynamics-like computer simulations are a promising tool for studying con-
centrated colloidal suspensions. Simulation, together with experiments, can provide the
physical understanding which is necessary for theoretical development. Among the simu-
lation methods, Stokesian dynamics is an excellent choice because it is capable of treating
dense flowing suspensions and the computational algorithm is efficient. The method is
very general, allows simulation of flowing suspension with particle volume fractions, ¢,
from infinite dilution to dense packing and a continuous range of the Péclet number, Pe.

The Péclet number measures the relative importance of shear and Brownian forces.

We shall study the rheology of concentrated suspensions of hydrodynamically inter-
acting colloidal particles in a simple shear flow by Stokesian dynamics simulation. The
simulation accurately accounts for both the hydrodynamic and Brownian forces of a col-
loidal dispersion. From the time evolution of particle configurations, we can determine
the microstructure and its relation to the bulk properties. Furthermore, the simulations
can provide detailed results to test theories and constitutive models, as well as other
simulation methods. Our success in developing efficient and accurate Stokesian dynam-
ics computer programs allows a detailed study of dense hard-sphere suspensions. The

majority of our simulations are in three dimensions. Dynamic simulations with a large



number of particles (N=123 and 126), which were once prohibitively costly to run on a
Supercomputer such as the Cray Y-MP are now routinely simulated on IBM RiSC/6000
workstations. At the present level of efficiency and cost effectiveness, Stokesian dynamics
is considered not only a research but also a valuable production tool for the study of
more complex physical models. Bossis and Brady (1987, 1989) developed and pioneered
the application of Stokesian dynamics to study the rheology and self-diffusivities of hard-
sphere suspensions in simple shear flow. Their results for the steady shear viscosities
compare favorably with experiments and more importantly they were able to explain the
rheological behavior of dense suspensions from the shear-induced microstructures. The
simulations were restricted to a monolayer of 25 particles with particle areal fraction
¢ ,= 0.452 which is comparable to $=0.301 in three dimensions. We follow their success
and study more dense suspensions with emphasis on 3D simulations. The 3D simula-
tions provide more details of the microstructure and we can compare them directly with
experiment. For the shear viscosity, both 3D and monolayer simulations at comparable
areal and volume fraction (¢~3/2¢,) give similar results, indicating the correct physics

in monolayer simulations; our results strongly reinforce this point.

The hard-sphere suspension is a well-characterized model and has been extensively
used in statistical mechanics. A hard-sphere fluid is one which the interparticle potential
is zero except if the particles come in contact where the potential is infinite. The only pa-
rameter in the equilibrium hard-sphere fluid is the particle volume fraction, ¢. The hard-
sphere model is fundamental and simple, yet it has a phase transition at high particle
volume fraction. Under equilibrium conditions, the existence of a freezing phase transi-

tion of hard spheres has been observed and studied both by experiments (Pusey and van



Megen (1986, 1987) and simulation method (Hoover and Ree (1968), Kose and Hachisu
(1974)). At freezing, colloidal fluid and colloidal crystals coexist and the particle volume
fractions were found to be ¢,= 0.494+0.002 for the fluid phase and ¢,,= 0.545+0.002
for the crystalline phase. At even higher volume fractions, the computer simulations
of Woodcock (1981) identify a glass transition with ¢ = 0.58. Pusey and van Megen
have reported a detailed study for colloidal hard spheres using the PMMA /decalin/CS2
system, where PMMA stands for polymethyl methacrylate particles and CS2 denotes
carbon disulfide solvent. They were able to determine the remarkable phase diagram for
the hard-sphere model. A great challenge and motivation for engineers and scientists
is to predict the rheological behavior of not just the equilibrium Brownian suspensions
but also the more practical flowing hard spheres. This is indeed the central theme of
this research work, which focuses on the understanding of the behavior of dense colloidal
dispersions in shear flow. The choice of a hard-sphere model allows direct comparisons of
our results for the rheology and the dynamics of shear-induced microstructures with that
from experiments. We can study the specific influence of hydrodynamic and Brownian
forces on suspension macroscopic properties. The simple model has only two parameters
¢ and Pe, the Péclet number, and this thesis is devoted to understanding the rheological

behavior as a function of these two parameters.

The outline of this thesis is the following: In chapter I, we present Stokesian dynam-
ics, a molecular-dynamics-like simulation method for colloidal dispersions and define the
method to determine macroscopic properties: the shear viscosity and normal stress dif-
ferences, and the short- and long-time self-diffusion coefficients. A computing flowchart

of Stokesian dynamics is provided in chapter III to show how the process of dynamic



simulation proceeds. In addition, the sampling method for simulation results and its

statistics are illustrated with samples obtained by Stokesian dynamics.

In chapter IV, we illustrate the correctness and accuracy of Stokesian dynamics by
comparing simulation results of the angularly averaged pair-distribution function g(r)
for the purely Brownian limit (Pe=0) with that for a system of hard spheres at identical
volume fraction ¢=0.45 obtained by a Monte-Carlo calculation. In addition, we present
dynamic simulations for the resistivity and rheology of spatially periodic arrays of non-
colloidal spheres in shear flow from the dilute limit up to maximum packing. Simple
cubic (SCC), face-centered cubic (FCC) and body-centered cubic (BCC) lattices are

sheared at Pe — oc.

Chapter V is an introduction to the main topic of the thesis: sheared hard-sphere
suspensions as a function of ¢ and Pe. In our simulations, ¢ is varied from 0.316 to
as high as 0.6; this range of volume fraction spans from the colloidal fluid phase to
the fluid-crystalline phase and the glass transition. Different numbers of particles are
studied for a three dimensional model (N = 27, 28, 63, 64, 81, 123 and 126) and for a
monolayer (N = 25, 80 and 120). The Péclet number ranges from the strong Brownian
limit, Pe ~ 0.01, to the pure hydrodynamic limit, Pe — oc. In our study, hard-sphere
suspensions are grouped into three systems: the moderately dense suspensions with
¢ ranging from 0.316 to 0.419, a very complete study at ¢=0.45 and the very dense

suspensions with ¢ varying from 0.47 to 0.6.

Hard-sphere suspensions at ¢=0.45 are presented in chapter VI, followed by the

moderately dense suspensions in chapter VII and the very dense suspensions in chapter



VIIIL. Chapters VI to VIII have three main sections: the rheology, the shear-induced
microstructure and the self-diffusivities. The final results of the complete dense hard-
sphere suspensions are summarized in chapter IX. Comparison of our simulation results
with theories and other simulation methods are presented in this chapter. Suspension
temperatures, which are computed from the mean square of particle fluctuation velocities
and the time-correlation function for the particle velocities are also included in chapter

IX.

The simulation results for the steady shear viscosity show the shear thinning and
shear thickening region and compare very well with experiments. We successfully de-
termine the relation of shear viscosity as a function of Pe and ¢ and examine the shear
thinning and shear thickening mechanisms in detail. As Pe increases, the microstructure
changes from an isotropic structure at rest to a slightly deformed structure in the strong
Brownian limit (Pe — 0) and the suspension shear thins. In the region of balance of
the hydrodynamic and Brownian forces (Pe ~ 10), the shear viscosity remains relatively
unchanged and is minimum and the flowing suspension is strongly ordered with distinct
hexagonally packed particles flowing as strings along the flow direction. In the limit of
hydrodynamic domination (Pe > 102), strong shear rates destroy the ordered structures;
the string phase melts. Particles formed large, elongated clusters in this region of large
Péclet number and the suspension shear thickens. Comparison of our structure factors
S(k) and light scattering or small angle neutron scattering (SANS) results are good. We
also investigate the relaxation time of a string-ordered microstructure when the imposed
shear is terminated and the suspension returns to the equilibrium structure at a rest

state.



The results of self-diffusivities also show a clear transition from a strong Brownian
motion limit (Pe < 1) to a hydrodynamic dominated regime ( Pe > 10) with a remarkable
change in short- and long-time self-diffusion coefficients. By examining the rheology,
the shear-induced microstructures and the self-diffusivities, we are able to provide our
interpretation of the connection between the microstructures and the shear thinning and

shear thickening phenomena.

We present our most recent simulation results for the sedimentation of Brownian
particles in concentrated suspensions in chapter X. While the sedimentation of non-
Brownian particles (Pe — 00) have been examined by experiments (Mirza and Richard-
son (1979), Acrivos and Herbolzheimer (1979), Herbolzheimer and Acrivos (1981)), sim-
ulations (Ansell and Dickinson (1986), Lester (1987), Ladd (1988, 1990, 1992)) and
theories (Batchelor (1972, 1982), Batchelor and Wen (1982), Kock and Brady (1985,
1987), Kock and Shagfeh (1989, 1991)), the sedimentation of colloidal particles have not
been investigated. For particles with uniform density which is greater than the fluid, we
discover an ordered structure of settling particles similar to that of sheared suspension.
The ordering is seen for ¢=0.419 and Pe =~ 10, where Pe measures the relative impor-
tance of of sedimentation and Brownian forces. For bi-dense particles (particles with
two different densities dispersed in a less dense fluid) at the same ¢ and Pe, the ordered

structure is destroyed.

Details of the calculation and numerical optimizations for Brownian motion and
Brownian stress are presented in appendix A. Appendix B shows complete details on

the procedure of starting and executing a simulation. In appendix C, we present and
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discuss the speed and timing of Stokesian dynamics on both the workstations and the
super computer Cray Y-MP. We shall present our implementation techniques to avoid
the poor scalability and significantly increase the speed of a workstation with high-speed
computing CPU but relatively small memory CACHE like the IBM RiSC models. The
central computing tasks of most numerical methods will be the operations of matrix-
matrix and matrix-vector, and the Stokesian dynamics simulation method is a good
example. Here in this section, we present the numerical algorithms of blocking and
rolling a matrix and a vector to speed-up the computations. We successfully obtain
an average speed from 20 to 40 MFLOPS (millions floating operations per second) on
the the IBM RiSC/6000 530 model, which is designed and rated at 10 MFLOPS for
LINPACK with matrix of dimension (100x100). With fast vectorization of the Ewald
summation and inversion for the mobility tensor, the average speed of our simulation
programs with V=123 (matrix size of 1353x1353) on the Cray Y-MP is marked at 230
MFLOPS, a speed up of nearly 10-fold compared to older versions of Stokesian dynamics

and about 76.0 % of the rated speed per CPU on the Cray Y-MP.



11

Chapter 11

THE STOKESIAN DYNAMICS SIMULATION METHOD
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II.1 Stokesian Dynamics Simulation of Colloidal Suspensions

In this section, we will present the Stokesian dynamics method with an emphasis
on the formulation and the actual procedure used in carrying out the simulations. For
a more complete derivation of Stokesian dynamics, please see Brady and Bossis (1985,
1988) and Bossis and Brady (1984, 1987,1989). The dynamic simulation starts with the

N-body Langevin equation for the particle motion:

m-—dEItj-:FH+FB+FP. (2.1)

Equation (2.1) simply states the mass x acceleration equals the sum of the forces. Here,
m is the generalized mass/moment of inertia matrix of dimension (6 Nx6N), where N
is the number of particles, U is the particle translational/rotational velocity vector of
dimension (6N) and the force/torque vectors of dimension (6N) on the right hand side
of (2.1) describe three different types of forces. F" is the hydrodynamic forces exerted
on particles due to their motion relative to fluid. The stochastic force F~ gives rise to
Brownian motion, the force which tends to restore the equilibrium structure from any
deformation. F' is the deterministic non-hydrodynamic forces, which may be of many
forms, for example: London-van der waals dispersion, screened electrostatic, Derjaguin-
Landau-Verwey-Overbeek (DVLO), etc. Furthermore, F may be repulsive or attractive,
short-ranged or long-ranged, interparticle (pairwise or many-body) or external. Our
intention here is not to characterize FP, but to focus on the effects of each specific force
in (2.1) on the rheological behavior of colloidal dispersions. The classification of the

interparticle/external force F belongs to the field of Colloidal Sciences (van de Ven
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(1989), Russel, Saville and Scholwalter (1989)).

The Langevin equation can be viewed as a coarse grain model of suspensions, a model
which treats the suspending fluid as a continuum and gives rise to the hydrodynamic
drag forces, FH, and the random thermal forces, F°. For N rigid particles suspended in
an incompressible Newtonian fluid of viscosity n and density p, the motion of the fluid is
governed by the Navier-Stokes equations. When the motion on particle scale is such that
the particle Reynolds number, Re, is small (Re = pazf‘y/ 1 K1, with a the characteristic
particle size and ¥ the shear rate), the inertial terms can be neglected and we solve
the simpler inertialess Stokes equation. For suspensions of spheres with a ~ 1um, in
water, under a shear rate of 4 ~ 1sec ' , we have Re ~ 0(10~5) while the Péclet number,
Pe = 0(102). Here Pe = A'/az /Dy = 67rna3"y/ kT is the ratio of the shear and Brownian

forces. Neglecting inertia, equation (2.1) becomes:

0 =F +F + F . (2.2)

Equation (2.2) states that any deformation to the microstructure by the the shear and/or
by the interparticle/external forces is balanced by the Brownian motion which restores

the structure to an isotropic random state.

For Stokes’ flow, the hydrodynamic force F" exerted on the particles in suspension

undergoing a bulk linear flow is:

o0

F'=-R - (U-U")+R,,: E (2.3)
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Here, U” is the imposed flow at infinity evaluated at the particle center x,, E” is the
symmetric part of the velocity gradient tensor and is constant in space, although it may
be an arbitrary function of time, for example in an oscillatory flow. The resistance tensors
R, (x) of dimension (6N x6N) and R (x) of dimension (6N x5N) depend-only on the
instantaneous particle configuration and the particle shapes and sizes. They are purely
geometric quantities and independent of the flow field. R, (x) is the coupling between
the hydrodynamic force/torque on the particles and their motion relative to the fluid.
R, .(x) is the coupling between the hydrodynamic force/torque on the particles and
their motion due to an imposed shear flow. The vector x of dimension (6N) represents
the generalized configuration vector specifying the location and orientation of all N
particles. The inverse of the resistance tensor R, is known as the mobility matrix
M (:R;:,) and is the central element describing the hydrodynamic interactions among
N particles. Stokesian dynamics, with its hydrodynamic origin, offers an accurate and

efficient method for computing these hydrodynamic tensors.

The stochastic or Brownian force FB arises from the thermal fluctuations in the fluid

and is characterized by

(F°(0)F () = 2kT R, 6(¢) . (2.4.b)

In (2.4) the angle brackets denote an ensemble average, k is Boltzmann’s constant, T is
the absolute temperature and 4(t) is the delta function. The amplitude of the correla-

tion between the Brownian forces at time 0 and at time t results from the fluctuation-
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dissipation theorem for the N-body system.

The evolution equation for the particles is obtained by integrating the stochastic dif-
ferential equation (2.2) over a time step At that is large compared with the Brownian
relaxation time 7 (7=m/6nna, where m is the mass of a particle), and small compared
with the time over which the configuration changes. A second integration in time pro-

duces the evolution equation for the particle positions with an error of O(Atz):
Ax={U"+ R, [R.p: E"+F |} At + kTV-R, At + X(At) . (2.5)

Here Ax is the change in particle position during the time step At and X(At) is a
random displacement due to Brownian motion that has zero mean and its corvariance

given by the inverse of the resistance R, tensor.

(X )=0, (2.6.a)

( X(At) X(At) ) = 2kT R, 6(t) . (2.6.b)

As seen in (2.5), there are three main contributions to the motion of a particle, each
resulting from the basic forces in equation (2.2). There is a deterministic contribution
due to the hydrodynamic shear forces: [U” + R;:,~ RFE:E°°] At, a deterministic contri-
bution from the interparticle/external forces: [R;[l] -FP] At and finally the contribution
from the Brownian forces are included in the last two terms: the first is a determinis-
tic displacement from the configurational-space divergence of the N-particle diffusivity
kT V-R;;] At, and the second is a random step X (At) whose properties are such that

the fluctuation-dissipation theorem is satisfied.
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Nondimensionalizing x by the characteristic particle size a; the time by the diffusive
time scale a’ /Do, where D, is the diffusion coefficient of a particle at infinite dilution and
from the Stokes-Einstein relation is given by D,=kT/67na; the shear force by 6m7a2”y,
where 4=|E" | is the magnitude of the shear rate; the interparticle/external forces by
their magnitude IFPI; the hydrodynamic resistance tensors R, by 6mna and R, by

67r77a2, the evolution equation (2.5) and (2.6) become:
Ax =Pe { U™+ R, - R, E"+ 41 F | JAt + V-R,, At + X(At) , (2.7)

(X(At) X(At)) =2 R, At . (2.8.b)

Here, the Péclet number, Pe = q'/a2 /D :67rna3"7/ kT, measures the relative importance
of the shear and Brownian forces. The Péclet number can also be considered as the ratio
of two time scales, the time for the Brownian motion to restore the equilibrium state over
the time which the shearing motion deforms the suspensibn. The nondimensional shear
rate ¥* = 67rna2f'y/ IFP[ is defined as the ratio of the shear and interparticle/external
forces. As shown here, Pe is scaled with a’ and 4. For submicronsized particles and
even particles with a ~ 0(10_3m) and ¥ = 0(1023ec"1), Pe is large but not infinite
and Brownian motion always plays a role. As we shall illustrate in chapter VI, the
minute amount of Brownian motion is sufficient to destroy large clusters of particles,
which reduces the shear viscosity and contributes to the diffusive behavior in the dense
suspensions. In contrast, when Pe — oo the large clusters persist resulting in very high

viscosities.
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If Brownian motion is less important than the shear force (Pe > 1), it is appropriate
to scale time by the convective time given by the shear rate 4~ rather than the diffusive

time a’ /Do. Equation (2.5) then becomes:
oo — [« =] 1 -—
Ax = {UT+R,, - [Ryp:E™+ 4" 1F | JAt + 75 (V- R, At+X(A) . (2.9)

The evolution equation (2.7) is applied for Pe < 1 and equation (2.9) is used when
Pe > 1 with Pe = 1 being the special case when both equations work equally well. Ei-
ther equation, which are an exact description for N particles, show quite clearly that
the behavior of the suspension depends on the dimensionless parameters: Pe, ¥* and
¢. These equations are the central part of the dynamic simulation. Given an initial
configuration of NV particles at time ¢ = 0, we simply integrate (2.7) or (2.9) in time to
follow the dynamic evolution of the suspension microstructure and compute suspension
macroscopic properties at each time step. One sees the fundamental role of the hydro-
dynamic interactions, as the resistance tensors R, ( or its invert the mobility matrix
M) and R, ., along with interparticle/external forces corﬁpletely specifies the dynamics.

We next turn our attention to the hydrodynamic interactions.
I11.2 Hydrodynamic Interactions

As seen in the evolution equation (2.7), Stokesian dynamics places no restriction
of particle volume fraction ¢, the Péclet number, or any specific configuration for the
particles. There are no restriction on how particles should move in a flow. The method

is very robust and allows simulation over the entire range of particle volume fraction
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¢, from dilution up to maximum packing, and continuous values of Pe, passing the two

limits: pure Brownian motion Pe — 0 and pure hydrodynamic Pe — oc.

The resistance tensors R, and R, are part of the grand resistance tensor R, which
relates the force/torque (F) and stresslet (S) exerted by the fluid on the particles to the

particle velocities and the rate of strain:

=-R , (2.10)

where the “grand resistance”tensor R is defined in the resistance formulation as:

RFU RFE

R = . (2.11)

SU RSE

The invert of R, “the grand tensor” M, is expressed in the mobility formulation as:

U-U M,, M., . F
= : . (2.12)

-E Mys Mg, S
For two spherical particles, R and M are known exactly for all sphere-sphere separations.
For N particles, solving full N-body problem requires some approximations. The details
of the methodology can be found in Brady and Bossis and Bossis and Brady. Here,
we briefly summarize the procedure for obtaining M. Stokesian dynamics exploits the
fact that the many-body hydrodynamic interactions are most easily computed in the
mobility formulation, while the near-field lubrication interactions are more conveniently

incorporated into the resistance formulation.
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Starting with the integral solution for Stokes’ flow for NV rigid spheres, with the aid
of Faxén laws for particle velocities, we form M by expanding the force density on
the surface of each particle in a series of moments. The zeroth moment is the total
force F. The first moment has two parts: the anti-symmetric part is the total torque L
and the symmetric part is the particle stresslet S. Brady et al. (1988) truncate higher
moments since their contributions are marginally necessary compared to the increased
computational costs. Only the induced mean-field quadrupole term for the coupling
between the particle translational velocities and forces is needed to be added to improve
the accuracy of the method. Thus we represent each particle by its first few multipoles.
While M is pairwise additive, Durlofsky et al. (1987) have shown that inverting it
solves the many-body problem at the level of forces, torques and stresslets. M still
lacks the important lubrication interactions which can be reproduced only when all
of the multipole moments are included. Lubrication forces are essentially two-body
interactions, as they give the singular force required to push two particles together at
constant relative velocity. The nature of this singularity is completely determined by the
interactions between the two particles, thus they can be combined in pairwise fashion in
the grand resistance tensor. The final version of R that includes the far-field many-body

interaction ./\/1—1 and the near-field lubrications R, is:
R=M"+R,, . (2.13)

Both M and R are symmetric and positive definite. For unbounded suspension, the long
range M, . ~ (%) nature of the hydrodynamic interactions must be properly handled and

this can be done with the method of O’Brien (1979) to evaluate the effect of the infinite



20

suspension and “renormalize” the interactions. Thus we can investigate the “thermody-
namic limit”, N — 0o, V — o0, with n = N/V fixed. We can then form a unit cell with
N particles and apply periodic boundary condition to eliminate the boundary effects as
is commonly done in molecular dynamics. With the use of periodic boundary condition,
O’Brien’s method renormalizes all divergent and conditionally convergent interactions.
We then applyA the Ewald summation technique to accelerate the convergence of the
interactions of the lattice sums. The Ewald-summed mobility tensor is denoted by M™*.
Once all mobility matrices M,,., M, M, and M, are computed, M* is formed
and inverted. The resistance tensor R including lubrication is partitioned according to
equation (2.12) and used in the evolution equation (2.7). The resistance tensors are also
needed for the calculation of suspension macroscopic properties and described next. It
should be noted that Stokesian dynamics is well capable of treating particulate flows
with boundaries; for example, the pressure driven flow between parallel plates (Brady

(1991)).
I1.3 Suspension Macroscopic Properties
I1.3.1 Suspension Rheology

The suspension bulk stress (3°) provides information of the rheology and can be
directly computed by Stokesian dynamics. Batchelor (1970, 1977) derived the following

formula for calculating the average stress in a homogeneous suspension:

N N

r,F, . (2.14)
=1

<|=
<|=

Q") = LT.+2n(E) + S, -

a=]1 «
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Here (3°) and (E) are the macroscopic averages of the stress and the rate of strain
tensors, respectively. I T. stands for the isotropic part of the stress or pressure which is
of no importance for homogeneous suspensions. The stresslet S, exerted by the fluid on
the rigid particle o located at the position r,, is the symmetric and traceless part of the
first moment of the force distribution integrated over the particle surface A4 _:

S, = % La (r=r)oc+o0(r—r,))n — %I ((r—r,)-0-n)] dA . (2.15)

Here n is the unit normal vector pointing into the fluid and o is the stress tensor in the

fluid:
o=-pl+2n[Vut(Vu)], (2.16)
with p is the local fluid pressure and Vu the local fluid velocity gradient. The t symbol

denotes the transpose operation.

The linearity of the governing Stokes’ equations allows us to write:

F RFU RFE

= - . + , (2.17)
S R, R, -BE —rF

where r is the particle-particle separation vector and the stresslets S of the NV particles

are:

oo P

S=-Rg, -(UU")+ Ry, : E"-rF . (2.18)
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The column vector for the particle stresslet S is of dimension 5/V; each particle has five
independent stresslets due to the symmetric and traceless properties given by Stokes’
flow. Equation (2.18) still does not give the complete (3°) because the contribution
from Brownian motions has not yet been included. The complete set of stresslets can be

obtained by following the derivation of Bossis and Brady (1989):

S =s5" +8" +8°, (2.19)
H - oo

5" =- (R R, R, -Ry): E” , (2.20.a)
P -1 P

S  =-(I+Rgy R, F (2.20.b)

S° =-kTV-(Rg-R,)) - (2.20.c)

In (2.20), S” is the hydrodynamic, S” is the interparticle/external force and S” is the

Brownian contribution to the bulk stress S, respectively.

For simple shear flow, the relative viscosity of the suspension is defined by the ratio
of the xy component of the bulk stress (3"r,) to the zy component of the rate of strain

(Ezy), with (u_)=%y. In the dimensionless form, the relative viscosity becomes:

(Cy) H P B
nr"m_l-I'nr-"nr'*‘nr , (2.21)
with
N
H 9 1
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p 9 11 &

o= =3¢ N Z F.).y » (2.22.b)
B 9 1 1 &Y _

T = 39BN — [VQ(RF:J ‘RFE)],,y . (2.22.c)

We have nondimensionalized R, with 671'1)0,2z and Ry, with 67rna3. R, is of dimension
(5N x6N) and Ry, if of dimension (5N x5N). The over bar is to imply a time average

over the course of the dynamic simulation.

Here we observe the same fundamental importance of the parameters - the particle
volume fraction ¢ and the Péclet number, Pe - on the rheology, as well as on the mi-
crostructure through the evolution equation. Each contribution to the relative viscosity
in (2.21) can be understood as follows: First particles, which are rigid and finite in size,
cannot deform as the pointwise fluid in a shear flow. Therefore, the fluid must spend
extra energy to overcome the resistance of the particles due to the local deformation by
the fluid and nrH measures the extra work due to the presence of particles. nf can be
viewed the elastic stress which acts as a spring-like restoring force associated with the
suspension with particles having an interparticle/external force F . Finally any depar-
ture from the equilibrium isotropic structure either by the shear force and/or by the
non-hydrodynamic force is balanced by the stochastic Brownian motion. The energy
which the suspension uses to restore the equilibrium structure from any deformation is

reflected in the term nf.

In addition to relative viscosity, Stokesian dynamics simulation gives the normal

stress differences x, and x,; together they form the complete set of rheological function
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for colloidal suspensions. The definitions of x, and x, are:

v X =- (sz - E’yy) ’ (223)

;7 X2 =- (Eyy - Ezz) . (224)

In appendix A, we provide the details for the numerical operations of V-R;,; which

is important for Brownian motion, and V-(Rg, ‘R :,) which is used to compute the

F
Brownian stress S_. The development of the Brownian contribution to the particle

displacement and to particle stresses was a join effort with our colleague Bauer (1992).
I1.3.2 Self-Diffusivities

Self-diffusion is the very basic properties of colloidal suspensions. The short-time
self-diffusion coefficient D, conveys the information on the local structure and the in-
stantaneous mobility of the suspended particles. The long-time self-diffusivity, D:x,, con-
veys information on the dynamics of the suspension on much longer time scales which
allow the particles to move far from their starting poin;cs, deform the local structure
and exchange places with their neighbors. Light scattering techniques can be used to
measure both these self-diffusion coefficients and the information can be linked to the
particle size, shape and also the interparticle forces (Berne and Pecora (1976), Eckstein
and Shapiro (1977), Leighton and Acrivos (1987), Laun (1992)). Theories have been
developed to predict the self-diffusion coefficients and its dependency on the particle
volume fraction ¢, but they can only treat the equilibrium structure (Pe — 0) for the
short-time self-diffusivities, or are limited to dilute suspensions. There are still open

questions on the behavior of D, and D both theoretically and experimentally. It is
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of our interest to provide simulation results, and hopefully an understanding of the self-
diffusivities of colloidal dispersions. Stokesian dynamics can compute both D; and D';o

and their dependence on ¢ and Pe.

The short-time self-diffusion coefficient D, is given by instantaneous averages over

all configurations and over all identical particles:

. 1
Do = ﬁ <t7‘ D) . (225)
Here tr stands for the trace of the diagonal elements of the diffusion tensor D related to

the resistance resistance matrix by the Stokes-Einstein relation:
-1
D=kTR,, . (2.26)

It should be noted that D, is only true diffusivity in the limit of Pe — 0, but it does
measure the local average mobility of a particle irrespective of the Péclet number and
will be used as such. The long-time self-diffusivities D;o, which measures the ability of
a particle moving far from its initial placement, is defined as:

. 1 d 9
Dy = Jlim o S (e — () (227
Both self-diffusion coefficients are accessible by light scattering techniques in tracer dif-

fusion experiments; the long-wavelength limit obtains D, while the short-wavelength

limit gives D, (Rallison and Hinch (1986), van Megen, Underwood and Snook (1986)).

In chapter III, we explain the details of the dynamic simulation process and the
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sampling statistics of simulation results. A computing flowchart of Stokesian dynamics

is presented to show step-by-step the computing aspect of Stokesian dynamics method.
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Chapter III

THE DYNAMIC SIMULATION PROCESS
AND

THE SAMPLING STATISTIC OF SIMULATION RESULTS
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II1.1 The Dynamic Simulation Process

II1.1.1 The Computer Unit Cell Model

Figure 3.1 illustrates a computer model for Stokesian dynamics simulations. A simple
cubic unit cell is employed containing N suspended particles. The length of the cubic

cell H relates to the volume fraction ¢ by:

(3.1)

The particle Reynolds number, Re, is assumed to be small, i.e., Re = pa2 4/n <1, where
4 is the shear rate. Particles are rigid spheres. Periodic boundary condition is applied
to model an unbounded colloidal dispersion. The simple cubic cell is also used in the

Ewald summation to form the grand mobility tensor M*.

Figure 3.1 also shows the orthogonal reference coordinates with a simple shear flow
in the z-axis, the velocity gradient in the y-axis and the vorticity in the z-axis. This
reference coordinate system is used throughout the thesis. By changing the Péclet num-
ber, we can model the shear flow with different shear rates. Particle volume fraction ¢

is also varied.
I11.1.2 Flowchart of Stokesian Dynamics

Figure 3.2 presents a computing flowchart of the Stokesian dynamics simulation
method and gives important information on the process of a dynamic simulation. The

dynamic simulation proceeds according to the following steps:
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Step 1: An initial placement of N particles is selected. It can be from a random selection
using the Monte-Carlo method, or a periodic lattice, or any particular configuration
obtained for example from another simulation for the purpose of testing the influence of
initial particle configurations on suspension macroscopic properties. It should be clear
that the Stokesian dynamics method is capable of simulating any particular particle

configuration, static or dynamic.

Step 2: The grand mobility tensor M* is computed using The Ewald summation tech-
nique with periodic boundary condition an unbounded suspension. M?* is then inverted
using the Cholesky inversion method for a symmetric, positive definite matrix. It is
important to note here that to save computing time we do not need to form and invert
M* at every time step since changes in M* will be small provided that particles do
not move a length comparable to their characteristic size a. In the simulation, we form
and invert M* once every time unit of ¢t ~ 0.1, which is typically every 100 time steps
(At=10_3), and during this time particles in a simple shear flow move a distance less
than one particle radius. Comparisons for simulations with M* and M"™ computed at
every time step and with M* and M formed once every t =~ 0.1 show very small and
negligible differences in macroscopic properties. The near-field lubrication is computed

at every time step and then added to M to form the grand resistance tensor R.

Step 3: From the partition of R, R, is obtained and inverted using the same Cholesky

method. During the inversion of R, we save A= /Ry, for the random step X(At).

-1
FU?

Step 4: Using R __, the particle velocities U are computed according to:
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U=U"+R, - [RE°+F | . (3.2)
If there is the interparticle/external force F' then it is straight forward to compute it

from the specified input form.

Step 5: The Brownian motion term V-R;:, is computed. Appendix A shows the numer-
ical optimization and step-by-step computation for this Brownian contribution to the

particle positions and particle stresslets.

Step 6: New particle trajectories are computed from particle velocities U and from

Brownian motion. The 4th

order Adam-Basthforth integrating scheme is employed to
update new particle positions from U of step 4. To complete particle motion, the two
contributions from Brownian motion: V-R;:, At from step 5 and X(At) from step 3 are

added to particle displacements. The Euler integration scheme is used for both Brownian

motion terms.

Step T: S” and S” are computed according to equations (2.20.a) and (2.20.b), respec-
tively. S” is the hydrodynamic contribution to particle stresslets and S” is the stress

resulting from the interparticle/external force acted on the particle.

Step 8: Brownian stresses, SB, are computed (see appendix A). Together with s” and 8"
in step 7, we have the complete set of contributions to the bulk stress (3_) to determine

the rheology.

Step 9: The final step of the simulation process is designated for computing the number-

averaged mean and statistics of suspension bulk properties: shear viscosity from (}°),
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short-time self-diffusion coefficients defined in equation (2.26) with R;:] is saved from

step 3. Output results for final analysis are saved at the desired frequency.

The dynamic simulation returns to step 2 until the final time tfinq; is reached and
the execution is terminated. As presented here, Stokesian dynamics requires an 0(/\/'3 )
operations mainly from the inversion of M* and R,,. NV is the size of the grand mobility
tensor M*. We do not invert M* of dimension (11N x11N) at every time step, resulting
in a substantial saving in computer time. R, with smaller dimension (6N x6N) needs
to be inverted at every time step. Once R;; is obtained, we have the full benefit of de-
termining Brownian contribution to particle motion and to particle stresslets in addition
to just solving for U from equation (3.2). It is important to note that we do not need
to assemble the operation VR™? VAM* and VR™?® into matrices. These operations
are analytically computed in pairwise fashion, multiplied to the proper right-hand side
matrix and then summed for all pairs of particles (see appendix A). This technique saves
a significant amount of computer memory and enables simulations to be run on work-
stations. Had we formed all of these matrices, then their 'sizes would be (11N x11Nx3)
for VM, (6N x5N x3) for VR™> and (5N x5Nx3) for VR!*®. For simulation with 123
particles, the matrix with a size of (11N x11N x3) will need ~ 20 Megabytes in double

precision and it is a substantial block of CPU memory on a workstation. The following

section emphasizes on the sampling method of simulation results.
II1.2 Data Collection and The Sampling Statistics

In this section, we present our method of collecting simulation output, computing

the results and statistical variation.
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I11.2.1 Data Collection

Computer simulations have been run on a Sun SPARC 4/360, several IBM RiSC/6000
workstation models 530, 530H, 560 and a Stardent Vistra 800. In addition, The Cray Y-
MP at San Diego Super Computer was also used with vectorized codes for large system
sizes (N=123). All numerical calculations are in double precision. The majority of our

simulations were run on IBM RiSC/6000 workstation models 530 and 560.

The dynamic simulations starts with the selection of important parameters: ¢, N
(by setting ¢ and N, the length of the simple cubic cell H is fixed), Pe and an initial
particle configuration. In general, simulation run times range from dimensionless time of
60 to 400, with 100 being the average. The run time is dimensionless, as it is scaled with
either the convective time from the shear flow, 4~! for Pe > 1 or with diffusive time,
az/ D, for Pe < 1. The time step, Atge¢, ranges from 10" to 10", A time step of 10~
or smaller is needed for the simulations with very small or with large Pe and large ¢ to
avoid severe particle overlapping. The average number of steps for each run, NSTEPS,
is 100,000 for At=10" and a run time of 100. For Pe < 1, longer runs with time of
200 to 400 are required for the suspension macroscopic properties to have sufficient time
at steady state to form the averages. The first 5,000 to 10,000 time steps are discarded

before we compute any macroscopic properties.

The complete set of suspension rheology: shear viscosity 7, and normal stress dif-
ferences x, and x, are averaged for all N particles and saved at each time step. The
contribution to the bulk stress from each particle is saved less frequently than the number-

averaged stress; it is collected at every unit time ¢t ~ 0.1. After the simulation is complete,



33

instantaneous particle-averaged data is used to compute the time-averaged 7,, x, and ¥, .
To improve Athe statistic of these time-averaged values, we sample data over a number of
different time intervals for the entire simulation and then compute the final mean and
standard deviation. Each time interval has the same length of time, which we call ¢4if¢,
sufficient for the macroscopic properties to equilibrate. It is important to note here that
there are two types of fluctuation statistics associated with macroscopic properties. The
first type describes the time fluctuation of instantaneous values about the mean dur-
ing the course of a simulation. The second type is the fluctuation of the means which
are computed from different samples and/or different time intervals when the sample is
taken. While we are able to compute both of these two statistics, it is the second type of
statistic which is more important and relevant to our studies. It shows the certainty of
the reproducibility for macroscopic properties obtained from the simulations. In the next
section, we illustrate with samples from simulations to show the process of computing

these various means and statistics.

Data for particle locations and orientations are saved at times ¢t ~ 0.05 to 0.1. The
long-time self-diffusion coefficients which are defined in (2.27) are computed by following
the particle in time and in space. The suspension microstructure is determined from
particle positions. We compute the angularly averaged pair-distribution function g(r)
and the structure factor S(k) which is the Fourier transform of g(r). Our aim is the
determination of the relative arrangement among N particles under the influence of the
shear flow, the hydrodynamic interactions and interparticle/external particle forces and

its link to the suspension macroscopic properties.
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Particle translational /rotational velocities are saved at every time unit ¢t ~ 0.1. We
compute the mean square of the particle velocity fluctuations and define the suspension
temperature according to (U'U') and (Q'ﬂ/) with the prime denoting the fluctuation
and € denoting the particle rotational velocities. The time-correlation for particle ve-
locities are computed and they can be related to the long-time self-diffusion coefficients

as another consistency check for equation (2.27).

In addition, from R;:, the short-time self-diffusion coefficients are computed accord-
ing to equation (2.25). Both the translational and rotational self-diffusion coefficients

are saved every unit time ¢ ~ 0.05.
II1.2.2 The Sampling Statistics

As we proceed through this thesis, tables of results and statistics for suspension
macroscopic properties are presented, and we need to specify and explain our method of
computing the mean and the standard deviation for suspension macroscopic properties.
The method of averaging for a macroscopic property is best illustrated by the following

mathematical relation:

1N
[(F 2 W) 1. (3.3)

1 i=1

(W) =

ol

1P
3=

In (3.3) W; denotes a macroscopic quantity of which we compute for each particle at
every time step and (W) is the mean value which we seek. W, is first averaged over
all N particles at every time step. It is then averaged again with running time during

the simulation as indicated with the over bar. This gives the time-traced mean of W;,
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W. From a number P of different initial samples, the final mean, (W) and its statistics
can be computed. We have to determine the number of samples, P so that the statistics
are good and P is relatively small. For every case of study for the suspensions (with
a particular set of parameters N, Pe, ¢, FP, etc...), we then have to simulate with P
samples before a suspension macroscopic property can be determined with certainty. As
predicted, the demand of computer time for a complete study of the fundamental hard-
sphere suspensions model will be undoubtedly large and possibly beyond the reach of

our present computing power.

Of course this is an ideal method to obtain the most accurate results. Our simulation
results with different initial samples show that we may not need to have a number of
P runs for each case. We may substitute the P samples by a number of different time
intervals of equal length of time ¢4 rr and average a macroscopic property over these
intervals. tqifs is chosen to be sufficient for a macroscopic property to equilibrate and
converge to a steady value. With this substitution, we can modify the relation given by

(3.3) to:

1 X 1 Y
Wy=zX (32X W)l, (3.9

where the sum over index k=1,K indicates an average over K time intervals.

We shall show that this substitution is rather good and gives accurate macroscopic
results by examining two sets of figures. The set of figures 3.3.a-f is for suspensions with

¢=0.316, and the set of figures 3.4.a-k is for suspensions with ¢=0.51. These are the
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simulation results of a hard-sphere suspension model with no interparticle/external force
(FP: 0) and the particles are neutrally buoyant and rigid spheres. We shall focus on
the variation of macroscopic properties with different initial samples and will discuss the
relevant importance of their values in later chapters. The macroscopic properties which
we present in these figures are the shear viscosity 7,, the normal stress differences yx,
and x, and the short-time translational and rotational self-diffusion coefficient D and

D:. Initial particle configurations are randomly chosen by the Monte-Carlo method.

Figures 3.3.a-c show the plot of time-averaged shear viscosity 7, versus shear time for
two initial samples of 27 particles at volume fraction ¢=0.316 and Pe=0.1, 1.0 and 105,
respectively. The convergence of 7, for two different particle configurations, denoted on
these plots as run #1 (O) and run #2 (A), is seen to be very good for all three Pe cases
and the difference in the final value of 7, for two runs is small. As shown in Fig.3.3.a, the
simulation for Pe=0.1 requires a longer run time for 7, to reach a steady value. There
is a difference of about 1 unit in value of 5, for run #1 and run #2 for time t < 130.
The two curves then converge to the same steady value for ¢ ~ 150. For Pe=1.0 and
105, n, for two runs converges much sooner after time ¢t ~ 50 and this is clearly seen in
Figures 3.3.b and 3.3.c. Among these Pe values, only in the case Pe=0.1 do we observe
some fluctuations in the shear viscosity which is expected from a Brownian dominated

suspension.

Figures 3.3.d-e show the plot of time-averaged normal stress differences, x, and ¥,
versus shear time for Pe=0.1. There is approximately one unit difference in y, for two

samples. The convergence of y, for two both runs is very good and the uncertainty is
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smaller than that of y;,.

Figures 3.3.f-g show the plot of time-averaged self-diffusion coefficients D, and D,
against shear time for Pe=0.1. Both figures give excellent convergence of both D and

D, for two samples and the difference in these values is very small.

As illustrated from the set of figures 3.3.a-f, the convergence of macroscopic properties
is good. There is a noticeably small fluctuation in steady state values sampled from
different particle configurations for Brownian dominated suspensions (Pe < 1). The
next set of figures 3.4.a-k is for a more dense suspension with ¢=0.51 and shows the
fluctuation of 7, with time during the course of a simulation and the fluctuation of 7,

for several initial samples of 27 particles.

Figures 3.4.a-c present the plots of both the instantaneous (solid curve) and the time-
averaged (A) 7, versus shear time for suspensions at ¢=0.51 and Pe=0.1, 1.0 and 105,
respectively. Figure 3.4.a for the run with Pe=0.1 shows large and rapid fluctuations in
7, for the entire shear time. The fluctuation is seen to be symmetric about the time-
averaged mean value (A). The time-averaged 7, converges steadily to a value of ~ 35
after a shear time of t ~ 60. Figures 3.4.b for Pe=1.0 illustrates a similar behavior of
n,. The fluctuations of 7, with shear time are smaller in magnitude but as frequent
as we observed in Fig.3.4.a. Good convergence of the time-averaged 7, to a value of
& 15 is seen from this plot. Figure 3.4.c shows the relation of 7. versus shear time
for Pe=10". Sharp peaks with large increases in the value of 7, are seen in this plot,
but the spikes occur less frequently than the fluctuations observed for the runs with

Pe=0.1 and 1.0. After a shear time of ¢ ~ 20, the suspension equilibrates and the
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sharp spikes are now three or four times smaller in magnitude and occur less frequently.
The time-averaged 7, converges to a value of ~ 50 after a shear time of t ~ 50. We
see two behaviors of the shear viscosity 7, for dense suspensions: Figures 3.4.a-b show
the general behavior of 1, with large, symmetric and rapid fluctuations for Brownian
dominated suspensions (Pe < 1), and Fig.3.4.c shows the behavior of the shear viscosity
in hydrodynamic dominated suspensions (Pe:105); occasionally there are intense spikes
as large clusters of particles are formed and broken. For both cases, the fluctuation of 7,
in time about a time-averaged steady value is large. Next we will examine the certainty
of obtaining the final values for macroscopic properties of dense suspensions from several

initial samples.

Figures 3.4.d-f show the plots of time-averaged shear viscosity 7, versus shear time
with different initial particle configurations for ¢=0.51 and Pe=0.1, 1.0 and 105, respec-
tively. Figure 3.4.d illustrates a small fluctuation of the steady state 5, for three different
sample runs for Pe=0.1 and the uncertainty is ~ 3 units in value of 7. with the mean
.~ 35. Sample run #3 (©) is taken from the run #1 (0O) but at a different time interval
of taify= 100 at 20 time units apart. The small difference in 7, obtained from sample
#1 and sample #3 is about 9% and is within the uncertainty of the simulation. The
fluctuations for Pe=1.0 and Pe=105, which is shown in Figures 3.4.e and 3.4.f, are small

for two sample runs.

The plots of both time-averaged x, and x, versus shear time for small Pe cases Pe=0.1
and Pe=1.0 are presented in Figures 3.4.g and 3.4.h, respectively. The convergence of

X: and x, for two sample runs is seen to be excellent. The same good accuracy is seen
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from the plots of D) and D,, which are shown in Figures 3.4.i and 3.4j.

It is evident from these two sets of figures that the suspensions macroscopic properties
will equilibrate with sufficient run time independent of initial particle configurations.
Their convergence is remarkably good and the uncertainty is small. It requires a longer
run time for simulation with small Pe (Pe < 1) and for Pe > 1, the convergence is much
faster and the run time is ¢ &~ 40. In our simulations, we allow the run time to be two
or three times longer than the time which suspension macroscopic properties require to
come to a steady-state value. The long run time can be divided into equal time intervals.
Samples of data can be obtained from these time intervals and results are computed using
the relation defined in equation (3.4). This is our method of reporting results and it is

the method which gives good certainty and confidence for our simulation results.

As we show in the next chapter that only when the Brownian motion is computed
with great accuracy then will the hard-sphere microstructure given by a dynamic simu-
lation for the pure Brownian case (Pe — 0) be identical to that from a random structure
calculated by the Metropolis Monte-Carlo method (Chae, Ree and Ree (1969)). Stoke-
sian dynamics with its hydrodynamic origins, offers an efficient and accurate method to
compute M* and R which play the important role in dynamic simulations. More im-
portantly, the simulation is capable of treating a continuous range of the Péclet number
and particle volume fraction and it places no restriction on the particle positions. In this
aspect, Stokesian dynamics is not only a very powerful method but possibly the only one
which can deliver computing efficiency. In chapter IV, we present our simulation results

for a pure Brownian hard-sphere model (Pe=0) and for the periodic arrays of spheres.
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in the z-axis. ¥ is the shear rate.
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Figure 3.3.a-c: Plots of time-averaged shear viscosity 7], versus shear time

for Pe=0.1, 1 and 10° and two initial random samples of 27 particles at volume

fraction ¢=0.316. These plots show good convergence of 1), for different
initial particle configurations. For Pe=0.1, it requires a relative long shearing

time (time=120) to obtain a steady value for the shear viscosity.
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Figure 3.3.d: Plot of time-averaged first normal stress difference ;1 versus shear time.
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Figure 3.3.e: Plot of time-averaged second normal stress difference y,; versus shear time.

Figure 3.3.d-e: Plot of the time-averaged first and second normal stress
differences ;1 and Y,t versus shear time for two initial random samples

of 27 particles at Pe=0.1 and ¢=0.316. Both normal stress differences
converge to within a small uncertainty for different particle configurations.
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Figure 3.3.g : Plot of the short-time rotational self-diffusion coefficient versus shear time.

Figure 3.3.f-g: Plot of the steady short-time translational and rotational self-diffusion
coefficients versus shear time for two initial random samples of 27 particles at a volume
fraction ¢=0.316 and Pe=0.1. The convergence of both self-diffusion coefficients
with different initial particle configurations is excellent.
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Figure 3.4.a: The instantaneous (solid curve) and (A) steady shear viscosity for
hard-sphere suspensions at a volume fraction ¢=0.51, Pe=0.1 and 27 particles.
It is seen from the figure that there are large and rapid fluctuations of 7, with the
entire shear history. The fluctuations are symmetric about the steady shear
viscosity. After a shear time of t=160, the steady shear viscosity equilibrates
steadily to a value of 35.
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Figure 3.4.b: The instantaneous (solid curve) and (A) steady shear viscosity for
hard-sphere suspensions at a volume fraction ¢=0.51, Pe=1 and 27 particles. It is
seen from the figure that there are large and rapid fluctuations of 7), over the

entire shear history. The fluctuations are symmetric about the steady shear viscosity.
After a shear time of t=160, the steady shear viscosity equilibrates steadily to a

value of 15. Compared to the fluctuations in Fig.3.4.a for Pe=0.1, the fluctuations
in this figure are about five-times smaller.
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Figure 3.4.c: The (solid curve) instantaneous and (A) steady shear viscosity for

hard-sphere suspensions at a volume fraction ¢=0.51, Pe= 10° and 27 particles.

The figure shows very sharp and intense peaks with large increase in the shear
viscosity. The sudden changes in the shear viscosity are attributed to the formation
and breaking of large clusters of particles. These changes in the shear viscosity
occur much less frequently than the rapid fluctuations which are seen for suspensions
with strong Brownian motion (Pe=0.1 and 1) shown in Figures 3.4.a and 3.4.b.
Good convergence for the steady shear viscosity is seen from the figure after

a shear time of 40.
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Figure 3.4.d: The steady shear viscosity for hard-sphere suspensions at a volume
fraction ¢=0.51, Pe=0.1 and two initial random samples of 27 particles. Run #3 is
obtained from run #1 with the same length of 100 time units. There are 20 time units
apart between the sample for run #1 () and for run #3 (O). The figure shows good
convergence for the steady shear viscosity with different initial samples of initial
particle configurations (run #1 (O) and run #2 (A)) and different time intervals when
the samples are taken from one simulation (run #1 and run #3).



49

20 ¥ L 1 l 1 ¥ 1 I 1 L I ¥ 1 T I T L |
- 0=051,Pe=1,N=27 -
o run#1 & run#2
nr i u"”‘é’”e a 'nnnn )
o
s ecfe % %R Rag onch s
8 ]
EDD
e A -
10 1 i 1 ' 1 [ 1 l 1 $ ] l 1 L 1 I 1 [ ] }
0 20 40 60 80 100
time

Figure 3.4.e: The shear viscosity n, of hard spheres at $=0.51 and Pe=1.
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Figure 3.4.f : The shear viscosity 7, of hard spheres at ¢=0.51 and Pe= 10°.

Figure 3.4.e-f : The shear viscosity 7, of hard-sphere suspensions at ¢=0.51 with

Pe=0.1 (Fig.3.4.¢) and 10° (Fig.3.4.f) with two initial random samples of 27
particles (run #1 (OJ) and run #2 (A)). Both figures show good convergence for
the steady shear viscosity with different initial particle configurations.
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Figure 3.4.g : Plot of the time-averaged first and second normal stress differences
X1t and X, versus shear time for hard-sphere suspensions at ¢=0.51 and Pe=0.1
with two initial random samples of 27 particles. The convergence for both normal
stress differences for different initial particle configurations is excellent.
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Figure 3.4.h : Plot of the time-averaged first and second normal stress differences
Xt and x,r versus shear time for hard-sphere suspensions at $=0.51 and Pe=1

with two initial random samples of 27 particles. The convergence for both normal
stress differences for different initial particle configurations is excellent.
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Figure 3.4.i : The short-time translational self-diffusion coefficient of
hard-sphere suspensions at volume fraction ¢=0.51 and Pe=0.1 and 1.0.

0'50 i ¥ 1 T l 1 1] L ' L 1 1 l 1 ] 1 I 1] L 1 i
5 . -
0.48 p= L] -
-9 ., aadffpprEilyOC®
- a A -
046l _
Ds B °8 - ry ABA I
r - o apapfibe anmel
0.44 - -
L, N rn#l, Pe=0.1]
L A run#2, Pe=0.1 -
042 -
L 0O run#l, Pe=1 4
- A nun #2, Pe=1 -
0.40 [ L 1 1 l 1 1 ] I 1 1 1 l L 1 L l L 1 ] ]
0 20 40 60 80 100
time

Figure 3.4.j : The short-time rotational self-diffusion coefficient of
hard-sphere suspensions at volume fraction ¢=0.51 and Pe=0.1 and 1.0.

Figure 3.4.i-j: The steady short-time translational (Fig.3.4.i) and rotational (Fig.3.4.j)
self-diffusion coefficients of hard-sphere suspensions at ¢=0.51 and Pe=0.1 and 1.0

with two initial random samples of 27 particles. Both figures show that there is negligible
difference in the steady values of both self-diffusion coefficients obtained from

different initial particle configurations.
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Chapter IV

1. THE EQUILIBRIUM PAIR-DISTRIBUTION FUNCTION
OF HARD SPHERES
AND

2. THE DYNAMIC SIMULATION OF PERIODIC LATTICES
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In this chapter the accuracy of Stokesian dynamics is demonstrated by comparing
simulation results with known theories and exact calculations, which generally exist in
the limit of infinite dilution or certain restrictive particle configurations such as periodic
arrays or an equilibrium distribution of hard spheres. Among critical tests which Brady
et al. (1988) and Bossis and Brady (1987, 1989) illustrated for the Stokesian dynamics
method, the pair-distribution function, g(r), of pure Brownian suspensions (Pe — 0) and
macroscopic properties of periodic arrays of non-colloidal spheres (Pe — 00) in a simple
shear flow are important and can be used to calibrate the accuracy of the simulation
method. In section IV.1, the equilibrium pair-distribution function of pure Brownian
suspension is presented, and in section VI.2 dynamic simulation results for the rheology
of three sheared periodic lattices: SCC, BCC and FCC, are presented. The transport
properties of unsheared periodic lattices and hard-sphere distribution generated by a
Monte-Carlo method (i.e., no dynamics were performed) can be found in Phillips et al.

(1988).
IV.1 The Equilibrium Pair-Distribution Function of Hard Spheres

In a hard-sphere colloidal suspension, particles are subjected only to an excluded
volume force: there exists a hard core region which prevents particles from overlapping.
The distribution function for this equilibrium structure is the well-known hard-sphere
distribution (Chae, Ree and Ree (1969), McQuarrie (1976), Pusey (1991)). With the in-
clusion of the proper many-body hydrodynamic interactions, particularly the lubrication
interactions, as discussed in chapter II, this hard-sphere repulsive force plays no direct

role and we may set the interparticle/external force F '=0in equation (2.1). The par-
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ticles are still subject to the thermal Brownian force which is modeled in the Stokesian
dynamics method. In the absence of a shear flow (Pe — 0), the evolution equation (2.7)

becomes simply:

Ax = VR, At + X(At) , (4.1)

(X)=0, (XX)=2R_ At . (4.2)

Equation (4.1) gives the evolution of the suspension microstructure over time. From
the particle positions, the angularly averaged pair-distribution function, g(r), can be
computed and averaged over the course of the simulation. g(r) describes the probability
density of finding a particle at a particle center-center spacing r provided that there is
a particle at the origin. In general, g(r) depends on the separation vector r, i.e., g(r),
but the equilibrium hard-sphere distribution is isotropic; therefore, the pair-distribution
function is independent of r and a function only of the radial distance r. We can generate
the hard-sphere g(r) by a simple Monte-Carlo scheme and compare this to the results of

actually integrating (4.1) in time.

Figure 4.1 shows a comparison of g(r) obtained by Stokesian dynamics for a pure
hard-sphere suspension at volume fraction ¢=0.45 for different numbers of particle in the
unit cell: N = 27 (4), 81 (O), 123 (o) with the hard-sphere g(r) (solid curve) obtained
by a Monte-Carlo calculation at identical volume fraction. In the simulation a time step
At=5x10"" was used and there are 50,000 time steps for the run with 27 and 81 particles
and 10,000 time steps for the run with 123 particles. As seen in this figure, g(r) for even

the smallest size compares very well with that of hard spheres. There is a small difference
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in g(r) at contact r=2 about 8%, and near the second nearest neighbor peak at r ~ 4
which is near the edge of the unit cell for 27 particles. When N is raised to 81 and 123,
the comparison of g(r) from simulation and the hard sphere distribution is excellent for
all particle center-center spacing. At r=2, g(r) for hard spheres is 4.66, while it is 4.57,
4.58 and 4.60 for N=27, 81 and 123, respectively. The very small difference for g(r) at

r=2 falls within the statistical uncertainty associated with simulations.

This important test demonstrates the correctness of our calculation for Brownian
motion and the precise treatment of both terms: V-R;Z] At and X(At). For a hard-
sphere suspension in the absence of a shear flow, the only interactions are hydrodynamic.
A correct g(r) can be obtained by simulation only when the model captures correctly
the many-body hydrodynamics and the near-field lubrication interactions among the
particles. Simulation methods which approximate the hydrodynamic interactions as the
pairwise constant forces and attempt to substitute the grand resistance tensor R by
the identity or the pairwise Rotne-Prager tensor (Rotne and Prager (1969), Ermak and
McCammon (1978)) will fail to yield correct microstructure of hard-sphere Brownian
suspensions, unless a repulsive force is explicitly included (pré 0). It is the balance
of the two terms: V-R;:J and X that produces the proper hard-sphere distribution.
V-R;:J acts like a repulsive interparticle force and allows the particles that would be
stuck together by the strong lubrication force to sample all configurational spaces. It
is important and necessary for a simulation method to capture the physics in the limit
Pe — 0 before it can be used to model the Brownian motion for a perturbed suspension

with non-zero Péclet number.
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IV.2 The Dynamic Simulation of Periodic Lattices

Among theoretical developments for suspensions, the model of regular arrays of
spheres has always been the most popular one since exact solutions exist and can be
derived in a close form or numerically computed (Hasimoto (1958), Chwang and Wu
(1974), Zick and Homsy (1981), Zuzovsky and Brenner (1983), and Nunan and Keller
(1984)). The perfectly symmetric and periodic structures of the lattices enable an ana-
lytical solution to Stokes flow and greatly simplify the mathematical details. Brady et
al. (1988) have successfully pioneered the application of the Stokesian dynamics method
for simulating periodic lattices and determined the sedimentation velocity and viscosity
for these specific arrangements of the particles. The comparison between simulation re-
sults and exact calculations was very good and demonstrated the accuracy of Stokesian

dynamics.

Dynamic simulations of periodic lattices of spheres in a simple shear flow is straight
forward and relatively simple for Stokesian dynamics and served as an additional bench
mark of understanding on the transport properties of microstructured materials, even
though there are no other independent calculation with which to compare our results. In
this section we report results for the following suspension properties of periodic lattices:

the resistivity, K, and the steady shear viscosity, 1,.

Simulation results are presented for three lattices: simple cubic (SCC), body-centered
cubic (BCC) and faced-center cubic (FCC) in a simple shear flow. There is no Brownian
motion and we examine the other limit of Stokesian dynamics (Pe — oo). For a periodic

lattice, only one particle is needed in the unit cell and its images can be replicated to
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fill the space. The dimension of the system matrix needed is greatly reduced to the
size of (11x11). The simulation is extremely fast and marked at ~ 30 seconds for 100
time steps of At=10"" on a 2-MFLOPS Sun workstation. For periodic lattice models,

Stokesian dynamic offers a speed which is far superior over other numerical methods.

The set of basis vectors for the unit cell of each lattice type (e,, e,, €,) is defined as

the following:

For SCC:
e, =(H00) ; e =(0H0) ; e, =(0,0H), (4.3.a)
T = H3 ) (4.3.b)
For BCC:
€, = (%,'12'{':"}2—{) 3 €, = ('%7_}21’521—) ’ € = (%7'%’%) ’ (4'4’8‘)
3
To = —%—H (4.4.b>
For FCC:
€ = (_}2!':!2!70) 7 € = (07%’!21) 3 e, = (%70’%) ’ (4'5'3')
3
7‘0 = ::;—H . (4.5.b)

Here H is the length and 7, is the volume of the unit cell. Spheres are periodically
replicated to fill the infinite space by using the set of basic vectors defined in (4.3) to

(4.5) and a set of integers according to the following relation:
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r,=n, € +n,e +ne , (4.6)

n

where n,,n,,n, = 0,£1,£2,... The set of the basis vectors (e,, e,, e,) of the unit cell
is used as the reference coordinate system. The flow and the velocity gradient direction
are defined by the first and second basis vectors e, and e,, respectively. For example
with a SCC lattice, the flow direction is the z-axis and the velocity gradient direction
is the y-axis. With this shear direction, the lattice will repeat itself periodically in time
and the maximum volume fraction which the lattice can still flow along the direction of
the basis vector e, is 0.5236 for SCC, 0.6802 for BCC and 0.7405 for FCC. If the shear
direction is along an arbitrary direction, the lattice will not necessarily repeat itself and
the maximum volume fraction at which the lattice can flow will also be different. For
a discussion of shear direction and maximum volume fractions, please see Adler and

Brenner (1984) and Claeys and Kraynik (1991).
1V.2.1 The Resistivity of Periodic Arrays of Spheres in a Simple Shear Flow

For a porous medium or a fixed bed of particles, Darcy’s law relates the mean pressure

gradient and the average fluid velocity (U) according to:

Vip)=-K - (U) , (4.7)

where p is the pressure, K is the permeability tensor of the medium and its inverse is
referred to as the resistivity, which measures the added resistance to the bulk flow due
to the presence of the rigid particles. For Stokes flow, the linear momentum balance

requires that the pressure gradient equal the average force which the particles exert on
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the fluid:
Vip) =n(F )= -n(Rgy)(U) , (4.8)

where we have used equation (2.3). Here n is the number density of the particles. From

(4.7) and (4.8), we have:
K =(Rgy). (4.9)

For a spatially periodic lattice, the resistivity is identical to the drag coefficient for arrays
of spheres which in turn is inversely proportional to the sedimentation velocity. The two
problems can be identically treated only when the particles are identical and arranged

in a periodic lattice.

Exact results of the resistivity K ™ for the static, unsheared periodic lattices can
be found from Zick and Homsy (1981). In our simulations, we study the dynamics by
shearing the lattice and compute the resistivity K - by first averaging the principle
diagonal terms of R, and then averaging it over one unit time cycle defined as the time
when the periodic cell repeats its starting undeformed configuration. Results for the
translational resistivity K ™ obtained by Stokesian dynamics are summarized in Table

4.1. Particle volume fraction ¢ varies from dilution to close packing. Simulation results

-1

nops for all three types of lattices are also reported in

for the rotational resistivity, K
this table. Data from Table 4.1 is plotted in Fig.4.2 to illustrate the relation of the
time-averaged translational resistivity K ~ and ¢ for SCC (®), BCC (A) and FCC (O).

The figure shows an exponential decay of the resistivity with increasing volume fraction
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for all three lattices. We noted that the resistivity computed along the flow direction
(along the basis vector e,) is about 10% higher than the resistivities computed along
the direction of the velocity gradient and vorticity. K ™ for BCC and FCC lattice are

similar while it is higher for SCC lattice.

Figure 4.3 shows the plot of time-averaged rotational resistivity, K ; ;T, versus ¢ for

all lattices. K ;; is seen to decrease linearly with a slope of 1.25 for small values of ¢

T

and then decays rapidly at the maximum packing, ¢, ... While K ;;T is 0.1451 for SCC
-1

at close packing, K, . is very close for BCC and FCC lattice, with 0.0787 for BCC and

0.0824 for FCC.
IV.2.2 The Shear Viscosity of Periodic Arrays of Spheres

Equation (2.18) can be used to compute the particle stresslets, S, and is repeated

here for convenience:

S=-R,, - (U-U°)+ Ry, : E*-rF . (4.10)
For a periodic lattice with force/torque free particles, i.e., F = 0, U-U = 0 as the
particles move with the fluid velocity due to a simple shear flow. The only contribution
to the rheology of the periodic lattice is from the resistance matrix R, which relates
the particle stresslets to the rate of strain E” imposed by the shear flow on the rigid

spheres. Equation (4.10) simplifies to:

S=R, :E" . (4.11)
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Using the reference coordinates based on the set of basis vectors (e,, e,, e,) of the unit

cell, the time-averaged shear viscosity 7, is computed according to:
n=1+5¢Sh . (4.12)

The subscripts 1 and 2 denote the direction taken from the set of basis vectors e, and
e, and again we shear the unit cell along e, with the velocity gradient along the e,

direction.

The shear viscosity defined in (4.12) is computed by averaging the particle stress
in the 1-2 direction, SfQ, over one unit time cycle when the lattice repeats its starting
configuration. Results for 1, are summarized in Table 4.2. The first column is the volume
fraction ¢, followed by 7, for each lattice type. ¢ varies from dilution to maximum
packing ¢,.... We present first the steady rheology in Figures 4.4 and 4.5, followed by

the instantaneous rheology in Figures 4.6 to 4.8.

As shown in Fig.4.4, the time-averaged n, for SCC (o), BCC (0O), FCC (A) and
random hard-sphere (Monte-Carlo) distributions (©) sampled with 27 particles are plot-
ted against the volume fraction. For random hard spheres, the Monte-Carlo method is
used to generate 25 to 50 random samples of 27 particles at each ¢ value and then 7, is

computed by following the method presented by Phillips et al. (1988):

o [o o]

S)=-A:E" = - (Ry, R, R,,-Rg,):E (4.13)

For the isotropic hard-sphere distribution, the symmetric and traceless fourth rank order

tensor A must be of the form:
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A= 'g (A 6, + 6,6, — % b, 8) - (4.14)

From the resistance tensors Rg,, R, and Rg., we can compute 3 for each random
configuration and average it over the total number of samples. In dimensionless form,

n, for a hard-sphere model is given by:

n=1+35¢8. (4.15)

In Fig.4.4, the vertical lines denote the value of ¢,,,, at maximum packing for each

lattice type with ¢__ = 0.5236, 0.6802, 0.7405 for SCC, BCC and FCC lattices, respec-

tively. We notice that 7, is largest for random hard spheres, followed by FCC, BCC and

smallest for SCC for ¢ < 0.5236. At ¢, . as spheres come in contact, 7, for the periodic

lattices diverges. The differences in the shear viscosity among these four models are a
direct result of the hydrodynamic interactions which depend on the number of nearest
neighbors as well as the relative separation distance among the particles. To illustrate
this variation in the shear viscosity, we plot 7, in a linear scale against a smaller range
for ¢ from 0 to 0.55 in Fig.4.5. The figure shows the largest variation in 7. for the

hard-sphere suspension compared to the SCC lattice. Noticeable differences in 7, are

also seen for the three lattices, especially in the region of high ¢ value.

Although the general behavior of 7. which shows shear thickening with increasing
volume fraction is seen to be in qualitative agreement with experimental observations,
these models cannot be used to represent colloidal dispersions. The highly-restrictive
periodic lattice models (Pe — oo) and the random hard-sphere model (Pe — 0) will

definitely fail to capture the correct shear-induced microstructure which is a function of
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both Pe and ¢. Suspension macroscopic properties can only be predicted with accuracy
when the model does not impose any restriction on the motion of particles and this can be
seen from our simulation results for rheology of dense hard-sphere Brownian dispersions

presented in chapters VI to IX.

The instantaneous rheology of the lattice models at or near close packing versus the
strain are shown in Figures 4.6 to 4.8 for SCC, BCC and FCC lattices, respectively The
instantaneous 7, is plotted on a logarithmic scale with two strain units. 7, is periodic
with shear time at a strain unit of one as a result of the repeat of the lattice every strain
unit. While the two lattices SCC and BCC flow at their maximum packing, the highest
volume fraction for a flowing FCC lattice is 0.728 which is below its maximum packing
at 0.7405. ), diverges quickly as ¢ approaches ¢, .. We also find that the normal
stress differences which are defined in (2.23) and (2.34) are statistically zero for sheared

periodic lattices and it is expected for flowing lattices with highly symmetry.

In this chapter, we have provided the quantitative results with which theories and
other simulation methods can be tested. The periodic lattice model is simple and can
give reasonable quantitative results. Next we turn our attention to disordered Brownian

suspensions where the microstructure is induced by the flow.
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Table 4.1: Results for the time-averaged translation and rotational resistivities, K—! and
K H‘OIT, for sheared periodic lattices: SCC, BCC and FCC obtained by Stokesian dynamics
for different particle volume fraction ¢. Column (1) is ¢. Columns (2) to (4) are the
translational and columns (5) to (7) are the rotational resistivities for SCC, BCC and FCC
lattices, respectively. The resistivities are computed from the mean of the diagonal elements
of the resistance tensor R, the pressure terms, and averaged over a unit time cycle defined

as the time when the lattice repeats its starting configuration in a simple shear flow.

K1 K}

ROT

¢ SCC | BCC | FCC | SCC | BCC | FCC

0.0010 | 0.8249 | 0.8218 | 0.8218 | 0.9999 | 0.9999 | 0.9999
0.0270 | 0.4988 | 0.4893 | 0.4893 | 0.9730 | 0.9730 | 0.9730
0.0640 | 0.3591 | 0.3464 | 0.3465 | 0.9360 | 0.9360 | 0.9360
0.1250 | 0.2415 | 0.2257 | 0.2257 | 0.8716 | 0.8728 | 0.8724
0.2160 | 0.1503 | 0.1313 | 0.1314 | 0.7687 | 0.7738 | 0.7742
0.3430 | 0.0872 | 0.0651 | 0.0651 | 0.6051 | 0.6275 | 0.6284
0.4500 | 0.0606 | 0.0363 | 0.0364 | 0.4272 | 0.4963 | 0.4997
0.5236 | 0.0500 | 0.0245 [ 0.0246 | 0.1451 | 0.4006 | 0.4087

0.6000 0.0167 | 0.0167 0.2970 | 0.3122
0.6802 0.0112 | 0.0134 0.0787 | 0.2490
0.7200 0.0111 0.1786

0.7405 0.00533 : 0.0824
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Table 4.2: Results of the time-averaged shear viscosity 1, for sheared periodic lat-
tices: SCC, BCC and FCC obtained by Stokesian dynamics simulations with differ-
ent volume fractions. Particle volume fraction ¢ is shown in the first column with
value ranging from dilution to close packing, followed by 7, for SCC, BCC and FCC
lattice in column (2), (3) and (4), respectively. The set of basis vectors for the unit
cell (e,, e,, e,) of each lattice is used as the reference coordinates. The flow and
the velocity gradient directions are defined by the first and second basis vectors e,
and e, of the unit cell, respectively. The shear viscosity 7, is averaged over a unit
time cycle defined as the time when the lattice returns to its starting configuration
in a simple shear flow.

scc BCC FCC

¢ m, n, m,

0.0010 | 1.0025 | 1.0025 1.0025
0.0270 | 1.0674 | 1.0701 1.0699
0.0640 | 1.1609 | 1.1754 1.1743
0.1250 | 1.3259 | 1.3820 1.3765
0.2160 | 1.6256 | 1.8095 1.7840
0.3430 | 2.2927 | 2.9107 2.7873
0.4500 | 3.5256 | 5.0692 4.7392
0.5000 | 4.9190 | 7.2236 6.4015
0.5236 | 9.6285 | 8.9091 7.1369

0.6000 25.0330 { 11.0490
0.6500 54.6890 | 17.4450
0.6802 9425.0 25.5100
0.7000 36.7670
0.7250 87.9800

0.7280 151.1500
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Figure 4.1: Comparison of the radial pair-distribution function for hard-sphere
Brownian suspensions at volume fraction ¢=0.45: (solid curve) hard-sphere
distribution computed by the Monte-Carlo method and results obtained by Stokesian
dynamics simulation at Pe=0 and different number of particles N = 27 (A), 81 (O0)
and 123 (Q) in the unit cell. It is seen from the figure that simulation results for g(r)
compare very well with that for hard spheres. At the smallest number of particles

N = 27, the influence of the periodicity can be seen in the shift in the location near
the second nearest neighbor peak.
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Figure 4.2: The time-averaged translational resistivity of sheared periodic lattices:
(®) SCC, (A) BCC and (OO0) FCC obtained by Stokesian dynamics as a function of

the volume fraction. The resistivity is averaged for one unit time cycle when the lattice
repeats its starting configuration in a simple shear flow. The flow and the velocity
gradient directions are defined by the first and second basis vector e; and e, of the
unit cell, respectively. The figure shows a rapid decay of the resistivity with

increasing volume fraction.
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Figure 4.3: The time-averaged rotational resistivity obtained for sheared periodic lattices:
(®) SCC, (A) BCC and ({J) FCC obtained by Stokesian dynamic as a function of the
volume fraction. The resistivity is averaged for a unit time cycle when the lattice repeats its
starting configuration in a simple shear flow. The flow and the velocity gradient directions
are defined by the first and second basis vectors e, and e, of the unit cell, respectively.
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Figure 4.4: The time-averaged shear viscosity for different sheared lattices: SCC (@),
BCC (A), FCC (O) and a hard-sphere model (MC) (Q). The steady shear viscosity

for the lattices is averaged over a unit time cycle when the lattice repeats its initial
configuration. The flow and the velocity gradient directions are defined by the first
and second basis vectors e; and e, of the unit cell, respectively. It is seen from this
figure that for $<0.5, n, is smallest for SCC, followed by FCC, then BCC and largest
for random hard spheres. At ¢=0.5 the difference in the steady shear viscosity for
these models is small. Random particle configurations for hard spheres are computed
by the Monte-Carlo method (MC). Results for the sheared lattices are obtained by

Stokesian dynamics simulations.
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Figure 4.5: The steady shear viscosity for different sheared lattices: SCC (@),
BCC (A), FCC (0), and a hard-sphere model (MC) (O). The shear viscosity
is plotted on a linear scale and with smaller range of particle volume fraction.
It can be seen from this plot that the shear viscosity of a hard-sphere model is
larger than that of the lattices as ¢ increases. There are noticeable differences
in 1, among these models, especially at large particle volume fractions.
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Figure 4.6: Plot of instantaneous shear viscosity versus strain for a sheared SCC
lattice with ¢ = 0.45 (dashed curve), 0.5 (dotted curve) and 0.5236 (close packing)
(solid curve). The shear viscosity is periodic at a strain of unity as expected from
symmetry. The flow and the velocity gradient directions are defined by the first
and the second basis vectors €, and e, of the unit cell, respectively.
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Figure 4.7: Plot of instantaneous shear viscosity versus strain for a sheared BCC
lattice with particle volume fraction ¢ = 0.6 (dashed curve), 0.65 (dotted curve),
and 0.68 (close packing) (solid curve). The shear viscosity is periodic at a strain
of unity. At close packing (¢=0.68), the shear viscosity is three orders of
magnitude larger than that of a lattice with ¢=0.65. The flow and the velocity
gradient directions are defined by the first and the second basis vectors e; and e,

of the unit cell, respectively.
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Figure 4.8: Plot of instantaneous shear viscosity versus strain for a sheared FCC lattice
with different particle volume fractions: ¢ = 0.68, 0.7, 0.725, 0.728, and 0.73 (close
to maximum packing which equals to 0.7405 for FCC lattice). Results are obtained
by Stokesian dynamics simulations. The shear viscosity is periodic with a unity strain
and diverges at ¢=0.73. The flow and the velocity gradient directions are defined

by the first and the second basis vectors e; and e, of the unit cell, respectively.



75

Chapter V

SIMULATION OF DENSE HARD-SPHERE SUSPENSIONS:

INTRODUCTION
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The purpose of this chapter is to explain our method of presenting results obtained
by Stokesian dynamics simulations for dense hard-sphere suspensions in the following
chapters, VI to IX. In chapter II, we introduced the two fundamental parameters: the
particle volume fraction, ¢, and the Péclet number, Pe = 67r77a3"y/ kT, which measures
the relative importance of the shear and Brownian forces. For hard-sphere suspensions,
the particles are force- and torque-free, i.e., F = 0, and they interact uniquely through
hydrodynamic and Brownian forces. In our simulations, the particle volume fraction ¢
is varied from 0.316 to 0.6; the specific value studied are: 0.316, 0.37, 0.4, 0.419, 0.45,
0.47, 0.48, 0.49, 0.51, 0.55, 0.58, 0.59 and 0.6. This range of volume fractions spans
moderately concentrated regime through the colloidal fluid-colloidal crystalline phase
transition at ¢=0.5. For each ¢, the Péclet number is varied from the strong Brownian

limit (Pe=0.01) to the pure hydrodynamic limit (Pe — 00).

The generally observed rheological behavior of dense hard-sphere suspensions is
shown schematically in Fig.5.1 to illustrate the dependence of the steady shear vis-
cosity on Pe and ¢. The nonequilibrium phase diagrarh is also sketched to show the
phase behavior of dense hard-sphere suspensions. For the region of small Péclet num-
ber and volume fraction below the “phase transition” (region I}, the isotropic colloidal
fluid structure is slightly deformed. In this region shear thinning has generally been
observed. As the shear rate increases into region II, experimental results have shown
that the microstructure changes from an isotropic state at equilibrium to a shear-induced
phase where colloidal fluid and colloidal crystals may coexist. Region III encompasses
hard-sphere suspension with particle volume fractions above the colloidal fluid-colloidal

crystalline phase transition. The strongly ordered crystalline phase has been seen to be
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destroyed by a large shearing deformation accompanied with a large increase in the shear

viscosity.

We shall present simulation results at a fixed volume fraction with varying Péclet
numbers. This is done by traveling along with constant ¢ in Fig.5.1 and we present the
change of suspension macroscopic properties with varying Péclet numbers. The hard-
sphere suspensions in our studies are divided into three groups according to particle
volume fraction: moderately dense, dense and very dense suspensions. The dense sus-
pension with ¢=0.45 is presented first in chapter VI, followed by the moderately dense
suspensions with ¢ from 0.316 to 0.419 in chapter VII, then the very dense suspensions
with ¢ ranging from 0.47 to 0.6 in chapter VIII, and finally the summary for the entire

dense suspensions in chapter IX.

The suspension at ¢=0.45 was selected to start our thesis research for three reasons:
First, a suspension at ¢=0.45 is dense and that is important to our interest in investigat-
ing and studying behavior of dense hard-sphere suspensions. Second, the volume fraction
at 0.45 fits well with the range of particle volume fractions in the experiments of van
der Werff and de Kruif (1989) for silica hard spheres. We can compare our results with
their results and test the accuracy of Stokesian dynamics. Third, a suspension at ¢=0.45
is dense and not far below ¢, = 0.49410.002 of the colloidal fluid - colloidal crystalline
phase transition at equilibrium. In addition to studying the macroscopic behavior of
dense hard-sphere suspensions, we can investigate the influence of the imposed shear on
the equilibrium phase transition. These are the reasons that suspension at ¢=0.45 is a

good choice to start our studies and it is discussed first.
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In chapters VI to VIII, there are three main sections which contain results for the rhe-
ology, microstructure and self-diffusivities. The full set of particle stresses, which include
the steady shear viscosities and normal stress differences, are discussed in the rheology
section. The shear-induced microstructure section includes the pair-distribution function
and the probability density. They are used to probe the flow of particles in detail. By
examining the microstructure, we can relate its deformation to suspension macroscopic
properties and understand the mechanisms which cause interesting rheological behavior.
In this section, results for the structure factors and their comparisons with experimental
results are also discussed. With the advancement in optical engineering, spectroscopic
techniques such as light scattering and small angle neutron scattering (SANS) are applied
to measure the structure factor. This is an opportunity for us to relate our simulation
results to experimental measurements. The results for both the short- and the long-time

self-diffusion coefficients are presented in the self-diffusivities section.

In chapter IX, results are summarized for the entire range of concentrations. Com-
parison of simulation results for the steady shear viscosity and self-diffusivities with ex-
periments is shown. Chapter IX is concluded with the results of suspension temperature

and the time-correlation function for the particle velocity fluctuations.
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Figure 5.1: The generally observed relation of the steady shear viscosity as a function
of the two important dimensionless parameters: particle volume fraction, ¢, and the
Péclet number, Pe, which measures the relative importance of the imposed shear and
Brownian forces. The nonequilibrium phase diagram for hard-sphere suspensions is
sketched with three regions: colloidal fluid (region I), coexisting phase of colloidal
fluid and colloidal crystals (region II), and an ordered crystalline phase (region III).
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Chapter VI

STOKESIAN DYNAMICS SIMULATION
OF

HARD-SPHERE SUSPENSIONS: ¢ = 0.45
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The model of hard-sphere suspensions in our simulations implies that the suspended
particles are force- and torque-free, i.e., F = 0. The particles interact solely by the
hydrodynamic and Brownian forces. Details on the unit cell model and the reference
coordinates are shown in Fig.3.1 with the flow direction the z-axis, the velocity gradient
direction y and the vorticity direction z. These reference coordinates apply to all the
runs except one special case in which a different flow direction is tested and it will be
clearly stated when its results are reported. For the Brownian dominated limit (Pe < 1),
the time is scaled with the diffusive time a2 /D, where D, is the diffusion coefficient of
a sphere at infinite dilution. When the hydrodynamics dominate (Pe > 1), the time
is scaled with the shear rate, 4=, Both nondimensionalizations are applicable for the
special case of Pe=1. The evolution and the simulation methodology were discussed in
chapter II. Here, we discuss the results in detail for hard-sphere suspension at volume

fraction ¢=0.45 only.

Specifications of the runs and the sampling method for hard-sphere suspensions at
a particle volume fraction ¢=0.45 are summarized in Table 6.1.a for 27 particles and in
Table 6.1.b for larger numbers of particles with N = 63, 64, 81, 123 and a monolayer
model with 25 particles. Column (1) is the Péclet number, Pe, and column (2) is the
number of particle, N. Columns (3) and (4) are the starting time, ¢, ,, and the ending
time, ¢, ,, of each run, respectively. Except the two special runs which are denoted
by Pe ="10 at the end of Table 6.1.a and a monolayer with 25 particles at the end of
Table 6.1.b, all simulations start with a random particle placement and have t,,,,= 0.
Initial random samples of N particles are computed by first placing all N spheres in a

regular lattice and then each sphere is randomized about 50,000 to 100,000 times using
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the Monte-Carlo random method. We compute the angularly averaged pair-distribution
function g(r) for these initial samples and compare with that from the hard-sphere
distribution to verify that the structure was isotropic. For the runs with 27 and 64
particles, we pick simple cubic (SCC) arrays of spheres and then randomize the particles.
Other values of N are also tested to prevent the possible influence of the starting regular
arrays or the evenness of number of particles that may fit exactly into periodic lattices
in the simulation on suspension macroscopic properties and on the microstructure. The
random sample with 81 particles starts with a body-centered cubic (BCC) packing and it
is then randomized. For the runs with 123 particles, we first set 125 particles into 5x5x5
simple cubic arrays of spheres in the unit cell at $=0.45. Two particles are randomly
removed from 125 particles and the length of the unit cell is reduced to adjust particle
volume fraction to ¢=0.45 for 123 particles. Finally the 123 particle configuration is
randomized and used as the initial sample for the subsequent simulations. A similar

method is applied for the selection of 63 particles.

The special run which is denoted as Pe =10 and t;,mz 100 in the end of Table
6.1.a starts with a particle configuration obtained from the end of a regular run with
Pe=10 and ¢, ,= 100. The (*) symbol implies a new flow direction is tested along the
y-axis. Note that the reported run time is dimensionless as it is scaled properly by the
method mentioned earlier. The monolayer runs shown in the end of Table 6.1.b are
continuing simulations with the order of the runs specified by the bracketed numbers:
Pe = 0.1[1] — 10]2] — 103[3] —10[4]. From a random sample of 25 particles for a
monolayer (2D) with an areal fraction ¢,= 0.675 which is comparable to a volume

fraction ¢=0.45 in three dimensions (3D) using the 2/3 rule, the suspension is sheared
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for 350 time units (¢, ,= 350) at Pe=0.1 for the first of a four-run series. At the end of
the first run, Pe is raised from 0.1 to 10 and the suspension is sheared for another 350
time units (t,,,= 700) to complete the second run. The third run is started by increasing
Pe from 10 to 10° and continued for 240 time units (t...= 940). Pe is finally reduced
from 10° to 10 for the fourth run and the suspension is sheared for the last 300 time units
(t...= 1240) to complete this four-run series. This series of runs follows the practice in
experiments where the shear rate is step increased and the sample is sheared and then
the steady shear viscosity is measured. The aim of these special runs is to investigate the
influence of the flow direction and initial particle placements as well as the possibility of
hysteresis effects on suspension properties. By raising Pe from 0.1 to 10 in run [2] and
lowering Pe from 10° to 10 in run [4], we can analyze the results from these two runs
to determine if there is hysteresis effect. Column (5) in Tables 6.1.a and 6.1.b is the
time step, Atget, and column (6) is the number of time steps, NSTEPS, for each run. In
general, the run time for 27 particles ranges from 50 to 100 time units and is relatively
longer than the run time average of 40 time units for the runs with a large number of
particles. For Pe=0.1 and 0.01, the suspensions are sheared for 500 time units to allow
equilibration for both the shear viscosity and the normal stress differences. The purpose
of columns (7), (8) and (9) are best illustrated by the following example. From the 100
time units of the run with Pe=10" and N=27 in Table 6.1.a, we discard the first 10
time units and then sample data over 16 time intervals (# trials shown in column (8)).

Each trial has 60 time units (tq; s shown in column (6)) and is successively sampled by

shifting in time (¢snif¢ shown in column (7)) 2 time units or 2000 time steps.

The 40 dimensionless time units for the runs with 123 particles are relative short and



84

we are able to sample the results only one time from each run. This explains why tspi s
is zero for all runs and # trials = 1 in Table 6.1.b and the standard deviations for the
shear viscosity and normal stress differences are not listed. A dynamic simulation with
40 time units (40 000 time steps with a time step Atmzm‘a) requires 4.3 hours for 27
particles and 334 hours (~ 2 weeks) for 123 particles on an IBM RiSC/6000 model 530
(rated at 10 MFLOPS). The fast speed of our Stokesian dynamics simulations enables
the study of dense hard-sphere suspensions, yet it is still relatively slow for dynamic

simulations with N &~ O(100). This is the only reason why runs are shorter for large N.

Monolayer simulations were pioneered and studied in detail by Brady and Bossis
(1985), Bossis and Brady (1984, 1987, 1989), Lester (1988) and Bonnecaze and Brady
(1992). Their motivation was to save significant computer time with monolayer models,
yet obtain appropriate qualitative results. The matrix size for a 2D model is (6N x6N)
while it is (11N x11N) for 3D. Stokesian dynamics method requires an O(N'3 ) compu-
tations where A is the size of the matrix. It is a saving of nearly a factor of 6.2 by
using a monolayer with the same number of particles as i‘n a 3D model. Our monolayer
simulations were done for three reasons: First, 2D models offer a very effective means to
graphically visualize the evolution of particle positions. Second, for the same number of
particles a larger unit cell is used in 2D than in 3D, which allows meaningful computation
of the structure factor at large distance. Note that a monolayer with 100 particles is
equivalent to a three dimensional system with 1000 particles in terms of the number of
neighboring particles. Third, we will show our simulation results for shear viscosity using
both 2D and 3D models at the same volume fraction. These results compare very well,

qualitatively and quantitatively indicating that the correct physics is captured in mono-
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layer simulations. Using a monolayer for saving computer time is no longer a necessity

with the fast speed of our Stokesian dynamics computer programs.
VI.1 Suspension Rheology
VI.1.1 The Steady Shear Viscosity

The results for the steady shear viscosities of hard-sphere suspensions at ¢=0.45 as
a function of Pe are summarized in Table 6.2.a for 27 particles and in Table 6.2.b for
N = 63, 64, 81, 123 and a monolayer with 25 particles. Columns (3) to (8) give the
mean of the steady shear viscosity and its standard deviation for the hydrodynamic,
the Brownian, and total contribution, respectively. For a simple shear flow in the z—y
plane the relative viscosity 7, the viscosity of the suspension normalized by the fluid
viscosity, is the relation between the z—y component of the bulk stress (3°) and the z—y
component of the bulk rate of strain (E). The viscosity of a suspension is defined with

the aid of equation (2.21),
17,=1+17f1+17f3 - (6.1)

17:1 and nf are given in equation (2.22.a) and (2.22.c), respectively.

Results for the shear viscosities from Table 6.2.a are plotted in Fig.6.1 to show the
variation of the hydrodynamic and Brownian contribution to the total shear viscosity as a
function of the Péclet number. The total shear viscosity curve resembles quite strikingly
experimental curves: shear thinning at low Péclet numbers (Pe < 1), a plateau region,

1< Pe< 102, where the change of the total shear viscosity is small and finally a shear-
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thickening region at large Péclet numbers (Pe > 102). In the plateau region, both the
hydrodynamic viscosity 77:! (A) and the Brownian viscosity nf (3) vary noticeably, but
their changes are seen to compensate each other to yield a relatively constant total shear
viscosity 7, (®). The Brownian viscosity decreases quickly as Pe increases from 0.01 to
10 and it has essentially vanished for Pe > 10°. The hydrodynamic viscosity shows an
opposite trend: 17:] remains relatively constant with a value of 4.5540.15 as shown in
Table 6.2.a from Pe=0.01 to Pe ~ 10 and then continuously increases with increasing Pe.
The increase in nrH for Pe > 10 is due to the formation of large clusters whose size grows
with the Péclet number. In the absence of Brownian motion (Pe — o), experiments
(Hoffman (1972), Graham and Bird (1984)) and simulations (Bossis and Brady) on a
monolayer have shown similar evidence of clusters. Graham and Bird (1984) observed
the constant formation and destruction of clusters of particles in sheared concentrated
suspensions of large polymethyl methacrylate (PMMA) spheres with radius a =~ 0.635
mm. The spheres were neutrally dispersed in oil/tetrabromoethane solution. The large
size of the spheres was designed to study the effect of hydrodynamic forces on particle
clusters. They also discovered that even in the dilution suspensions with ¢ = 0.1, over
25 % of the spheres were observed in clusters of two or more members. Simulation
results from Bossis and Brady displayed large and elongated clusters of particles spanning
the entire unit cell in the limit of high Péclet numbers. The graphic video animation
of the particle positions from our simulations for monolayer with 25 spheres clearly
demonstrates the existence of large clusters of particles at high shear rate, Pe=10" (run
[3]). In section VI.2.3, we present snap shots of particle positions (cf. Figures 6.12 t0 6.17)

which are obtained from the four-run series of a monolayer model for the three structures
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of hard spheres: randomly dispersed particles for slightly deformed suspensions (Pe=0.01
in run [1]), strong ordering of well separated particles for suspensions with a balance of the
Brownian and hydrodynamic forces (Pe=10 in run|2] and run [4]) and clusters of particles

for hydrodynamically driven suspensions in the shear thickening regime (Pezl()s in run

(3])-

Figure 6.1 also shows an unique Péclet number in the shear thinning region where the
hydrodynamic and the Brownian contribution to the total viscosity is exactly the same.
We denote this unique Péclet number as Pe* and from Fig.6.1, it is seen that Pe*= 0.6
and 17:1 and 17:3 are equal to &~ 4.55. The relation of Pe* on particle volume fraction is
presented in chapter IX, where we finalize the entire dense hard-sphere suspensions. Pe*
is seen to be shifted to a higher value with increasing ¢. At lower ¢, Pe* does not exist as
the hydrodynamic viscosity is always greater than the Brownian viscosity for the range
of Pe from 0.01 to oo in our study. Pe* thus can be viewed as a rheological signal when

the flowing suspension starts to order and the suspension begins to shear thin.

Information from Table 6.2.a and Fig.6.1 offer two conclusive evidences on the shear
thinning and shear thickening. First, the shear thinning in the region of Pe < 1 is due
only to the decrease in the Brownian viscosity since the hydrodynamic viscosity does not
change appreciably. Second, the shear thickening at large Péclet number (Pe > 102) is
due to the increase in the hydrodynamic viscosity as the Brownian viscosity decays to
zero. The stochastic Brownian motion acts to restore the suspension to an equilibrium
state from shearing deformation. As the Péclet number increases, the time scale due

to the imposed shear is much smaller than the diffusive time and the Brownian motion
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simply does not have sufficient time to counter an increasing deformation to the structure
due to the imposed shear. The Brownian motion becomes less and less important relative
to the shear and this causes a significant decrease from Brownian contribution to the

shear viscosity and to suspension macroscopic properties in general.

In the region with large Péclet number, nrH contributes essentially all the total shear
viscosity n,. The increase in r]rH is associated with clusters of particles at large Péclet
number and the particle configuration becomes increasingly anisotropic. Clusters of
particles are more resistant to the shearing deformation than particles that are separated
in a fluid since in a cluster, a particle cannot translate and/or rotate without first moving
and/or rotating with the entire cluster. The existence of these clusters is the cause of
the shear thickening as they disrupt the bulk flow. A larger shear force is required to
deform the clusters and to shear the clustered suspension; This is reflected as an increase
in hydrodynamic viscosity, nf!. Even though the direction contribution from Brownian
motion to suspension macroscopic properties has vanished in the shear thickening region,
the presence of weak Brownian forces perturb and cause.the distribution of particles to
be anisotropic (see section VI.2.3). More importantly, its random motion destroys large
clusters of particles, which reduces the shear viscosity and maintains to the diffusive

behavior in the dense suspensions.

Figure 6.2 presents a comparison for the steady total shear viscosity 7, from Fig.6.1
with the experimental results from van der Werff and de Kruif (1989) and van der Werff
(1990) for sterically stabilized monodispersed silica particles suspended in cyclohexane.

The particle volume fractions in the experiments are ¢ = (+) 0.41940.01, (1) 0.443+0.01
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and (A) 0.47+0.01. The range of the Péclet numbers in the experiments is from 0.01
to 10. The curves for ¢=0.419 and 0.47 show the measurements for the viscosity in
a forward and a reverse flow direction. The reproducibility of experimental results is
excellent indicating the independence of the steady shear viscosity on the direction of the
shear at steady state. The (®) symbols are Stokesian dynamics simulations at ¢ = 0.45
for N=27. Data from Table 6.2.b are plotted in the same figure for N = (O) 63 and 64,
(a) 81, (0) 123, monolayer with N = (0) 25 and N = 27 at Pe = 10 with a shear flow
in the y-axis (x). Our results for ¢=0.45 compare remarkably well with the experiments
for $=0.443 and 0.47. The simulation results for different number of particles from 27 to
123 particles in the unit cell show very little change in the shear viscosity indicating that
a system size as small as 27 particles is sufficient to model unbounded suspensions for
this property. At Pe=10, we observe no difference in 7. for different flow directions as
the shear viscosities are similar for run [2] and run [4] with a monolayer of 25 particles.
The hysteresis influence on 7, is insignificant at Pe=10 and this is also seen in the
experiments of van der Werff and de Kruif with forward and reverse shear directions for
samples at ¢=0.419 and 0.47. The monolayer simulation results compare remarkably
well with 3D results as seen in the figure. A dimensionless run time of 40 to 60 allows
good equilibration for . and standard deviations are small as reported in Tables 6.2.a
and 6.2.b. van der Werff and de Kruif reported 2% uncertainty for the measurements
of volume fraction and 10% uncertainty for the measurements of the shear viscosity at
high ¢. A 2% uncertainty in measurements for the volume fraction may lead to large
uncertainty in the shear viscosity at high ¢ due to extreme sensitivity of the viscosity

on the volume fraction, which can be seen in this figure by comparing the narrow gap
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between the experimental results for shear viscosity of $=0.419 and 0.443 and the wide

spread between the shear viscosities of ¢=0.443 and 0.47.

Both the experiments and the simulation show the suspension shear thins, and this is
seen from our dynamic simulations to be due to the decrease of Brownian contribution to
the stress. Our simulations show a shear thickening region for Pe > 10" and this was not
seen in the experiments of van der Werff and de Kruif because experimental limitations
did not allow them to continue with high enough shear rates. Shear thickening have been
observed in many other systems (Hoffman (1972), Laun (1988), Barne (1989), Boersma
et al. 1990), however. Shear thickening in Brownian suspensions is due to the formation
of large clusters as the Péclet number increases. The necessity for the suspension to shear
thicken can also be seen from the viscosity measurement for large spheres (Pe — o)
by Jeffery and Acrivos (1976), Gadala-Maria (1979) and Pitzold (1980), which show
a viscosity larger than the minimum in the shear thinning viscosity of the Brownian

suspensions shown in Fig.6.2; therefore, the suspension must shear thicken.
VI.1.2 The Steady Normal Stress Differences

We discuss next the normal stress differences for hard-sphere suspensions. The nor-
mal stress differences are important to the field of rheology as they help to characterize
the non-Newtonian behavior due to the anisotropic deformation of the microstructure.
Tables 6.3.a and 6.3.b summarize the simulation results for the mean of the time-averaged
first and the second normal stress differences along with their statistics. Columns (3) to
(8) give the first normal stress difference, x,, and columns (9) to (14) give the second

normal stress difference, x,. The hydrodynamic contribution is presented first, followed
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by the Brownian contribution and the total contribution last. The standard deviation
denoted as ¢ are computed from a number of samples and shown in Tables 6.1.a and
6.1.b. For a monolayer model, the forces in the 2z direction are not needed for dynamic
simulations, so the second normal stress differences are not known and they are not com-
puted. The first and second normal stress differences, x, and x,, are defined according

to equation (2.23) and (2.24) and they both are normalized by 7.

Results in Table 6.3.a are plotted in Figures 6.3.a and 6.3.b to show the change of
the hydrodynamic and Brownian contribution to the steady normal stress differences ¥,
and Y,, respectively. In the region of small Péclet number (Pe < 1), the deformation of
the equilibrium structure is so small that there is a large degree of statistical uncertainty
in the Brownian contribution to the stress and it can be seen in Table 6.3.a that the
standard deviation for the Brownian contribution to the normal stress difference o, in
column (6) and oy,, in column (12) are as large as the mean themselves. These mean
values reflect the simulation fluctuations at low Pe. For a hard-sphere suspension of
force-free particles, it is expected that there are no normél stress differences in the limit
of Pe — 0. Similarly for the hydrodynamic limit Pe — oo, the normal stress differences
must be identically zero, a consequence of the flow reversal symmetry. Our simulations
at Pe=oc for dense suspensions are not long enough to allow us to verify this as the time

step must be set extremely small to avoid severe particle overlapping.

It is seen from Figures 6.3.a and 6.3.b that the hydrodynamic contribution to normal
stress differences (A), x,, and x,, are practically zero for small Pe (Pe < 1) and then

increase to an asymptotic value ~ 2 with increasing Pe. Both x,, and x,, are positive
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for all Péclet numbers. The Brownian contribution to normal stress differences (O), x,
and Yy, decays rapidly in absolute values with increasing Pe and they are opposite in
sign. For Pe < 1, the total normal stress differences (®), x,, and Xx,, are essentially the
same as X, and X,;, respectively. For large Pe (Pe > 102), X,x and X,y contribute all to
X:r and X, as the Brownian contribution has vanished. Similar to the plot of viscosity
in Fig.6.1, Figures 6.3.a and 6.3.b show a plateau region with Pe in the range of 1 to
10" where both Xz and Xx,, remain unchanged and are minimum in absolute values. In
this region, the decrease from the Brownian contribution is compensated by an increase

from the hydrodynamic contribution.

Figure 6.4 presents the relation of x,, and x,, with different Péclet numbers and
shows the range of Pe from 1 to 10" where both are minimum in absolute value. As
seen in this figure, the normal stress differences are small for hard-sphere suspensions
without interparticle and/or external forces. Johnson, de Kruif and May (1988) reported
their finding of small normal stress differences for silica hard spheres in a steady shear
flow with a range of volume fraction from 0.36 to 0.52 aﬁd attributed the small normal
stress differences to the local anisotropy of distribution of the particle number density.
Unfortunately, they did not report any data, so we could not compare and verify our
results with their findings. It is easy to see from a consideration of small departure
from equilibrium that the Brownian forces are directly responsible for the normal stress
differences, i.e., coming from the term S®. At high Péclet numbers the Brownian forces
are indirectly responsible for the normal stress differences by causing the microstructure

to be anisotropic.
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Our results as well as experiments show very interesting shear thinning and shear
thickening behavior of dense hard-sphere suspensions in a simple shear flow. The im-
portant task is to determine and to understand the mechanisms which produce these
rheological behaviors. In our dynamic simulations, we can trace the particle positions in
space and in time to investigate their relative arrangements in a shear flow, the shear-

induced microstructure, and this is presented next.
V1.2 The Shear-Induced Microstructure

The method of examining the microstructure is through the pair-distribution func-
tion, which gives the probability density for finding a particle at an assigned position
provided that there is a particle at the origin. We will focus on the following two forms
of the pair-distribution function: the radial pair-distribution function g(r) and the pro-
jection of the pair-distribution on a plane. The radial pair-distribution function, g(r),
is the angularly averaged g(r), i.e., g(r) = [ g(r)dQ, which depends only on the parti-
cle center-center radial distance. The plane projection distribution function is obtained
from the probability of finding a particle at a position in a plane of interest provided
that there is a particle at the center of the unit cell. The periodic images of particles
from the neighboring cells are excluded to avoid multiple counts for g(r). From the unit
cell, the valid range of the particle center-center spacing r is from a value of 2 (when two
particles come in contact) to the edge of the unit cell measured diagonally from the cen-
ter. We will start with the angularly averaged pair-distribution function and follow with
the plane projection distribution function and the static structure factor last. The static

structure factor, S(k), is the Fourier transform of the radial pair-distribution function
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or the plane projection distribution function. We have chosen these two representations

because they convey the most information.
VI1.2.1 The Angularly Averaged Pair-Distribution Function g(r)

The pair-distribution function g(r) is important to the theoretical development of
suspension microstructure and properties. Batchelor (1977) has derived a rigorous theory
for the pair-distribution function as a perturbation expansion in shear rate about the
equilibrium structure employing an exact two-body expression for the hydrodynamic
interactions. The theory is exact in the limit of dilution and small shear rates. Russel
and Gast (1986) and Wagner and Russel (1989) have extended Batchelor’s results to
finite volume fractions by introducing the potential of a mean force but still truncate
the hydrodynamic interactions at the pair-level. The determination of weakly-perturbed
g(r) has been used with success to derive expressions for predicting rheological properties
of a suspension in the limit of vanishing small shear rates (Felderhof (1989)). Bossis and
Brady (1987) have reported results for the angular dependence of g(r) for a monolayer
of hard spheres at an areal fraction ¢, = 0.453. The shear rate was varied from strong
Brownian limit (Pe — 0) to pure hydrodynamic regime (Pe — oco). The pair-distribution
function g(r) obtained from their simulations show that the random equilibrium structure
is first perturbed slightly (Pe < 1) and then deformed to a hydrodynamically driven
structure, which shows large clusters formed along the compression axis of the flow at

high shear rates (Pe > 10). The distortion was seen to be linear in the range of small

Péclet number (Pe < 1).

We are interested in finding the shear-induced microstructure of dense hard-sphere
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suspensions at all shear rates. At equilibrium, the structure of the hard-sphere suspension
at a volume fraction ¢=0.45 is amorphous (liquid-like) and the pair-distribution function
g(r) depends only on the relative radial center-center distance between two particles, i.e.,
g(r) — g(r). When the suspension is sheared, the particle structure is deformed and the
pair-distribution function develops angular dependence. The radial pair-distribution
function g(r) does not contain important information of angular distribution of the

particles, but we can extract useful information on the relative separation of the particles.

We can evaluate g(r) from the particle positions obtained during the course of dy-
namic simulation and examine the suspension microstructure from a close particle center-
center spacing r=2 to a distance comparable with several layers of neighboring particles
for the runs with 123 particles. Figure 6.5 shows the plot of g(r) for hard spheres at a
volume fraction ¢=0.45 with different Péclet numbers: (dotted curve) 0, (dotted-dash
curve) 0.43 , (solid curve) 10 and (dashed curve) 10°. After the first spike at r = 2,
g(r) shows several smaller peaks at large values of r. The insert figure in the upper left
of Fig.6.5 is a plot of g(r) on a logarithmic scale with al much smaller range of r from
2 to 2.2 to illustrate the value of g(r) at contact. Results for the angularly averaged
pair-distribution function evaluated at r=2, g(2), are summarized in Table 6.4.a for the
runs with 27 particles and in Table 6.4.b for the runs with 63, 64, 81 and 123 particles.
It is seen from this figure that g(2) for the equilibrium isotropic structure (Pe=0) and
for suspensions with small deformation (Pe=0.43) are similar as the Brownian motion is
still the dominant force in both cases. From Table 6.4.b, our simulation results for g(2)
with 123 particles are 4.59 for the pure Brownian limit (Pe=0) and 4.94 for Pe=0.43, a

slight increase from that for hard spheres at equilibrium. The Monte-Carlo method gives
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4.65 for g(2) compared to our 4.59 at Pe=0 showing the accuracy of Stokesian dynamics.
The striking difference in g(2) can be seen for the runs with Pe=10 and with Pe=10":
g(2) for Pe=10 is 0.84, a significant five-fold decrease from g(2) at Pe=0. At Pe=10,
near particles do not contact and there exists a small fluid gap between the particles.
This can be clearly seen from the insert figure where the first peak of g(r) at Pe=10
is shifted from r=2 to r ~ 2.025. As Pe increases to 10, g(2) increases to a value of
~ 48, a nearly fifty-fold increase compared to g(2)=0.89 for Pe=10. Large values of g(2)
indicate the existence of clusters of particles as seen for the case of strong hydrodynamic

interactions.

Figure 6.6 plots the radial dependence of g(r) with a smaller, linear scale from 0.5 to
1.5 for the entire range of r in the unit cell with 123 particles. Similar to Fig.6.5, Fig.6.6
shows a relatively small difference in g(r) between the equilibrium isotropic distribu-
tion (Pe=0) (dotted curve (a)) and the suspension with a small deformation (Pe=0.43)
(dotted-dash curve (b)). g(r) for Pe=10 (solid curve (c)) follow curves (a) and (b) over
this range of r, with the exception of two small peaks th r =~ 7.2 and 8.2. One should
note that g(r) for Pe = 0 (a), 0.43 (b) and 10 (c) show the second nearest neighbor peak
at r = 4.1 in contrast to r=4 for Pe=10" (dashed curve (d)). This implies that there is
still a small fluid gap between the first and second neighbors with r=4.1. For Pe=10"
g(r) shows a narrower peak at r=4, which suggests that the flowing particles are more

closely packed at high Péclet numbers - a harbinger of cluster formation.

Figures 6.5 and 6.6 provide important information on the suspension microstruc-

ture. Suspensions at equilibrium or with small deformations (Pe < 1) show a particle



97

arrangement with small value of g(2) and the broad second peak at r ~ 4.1. At Pe=10,
particles are relatively well separated as indicated by the smallness of g(2). Finally for
suspensions with strong hydrodynamic interaction (Pe:103), the probability of having
clusters of two or more particles is seen to be high as g(r) shows an intense first nearest
neighbor peak at r=2 and the second sharp peak at r=4. We will now examine the
pair-distribution function g(r) as particles come in contact with finer increments in the

Péclet number.

Results of g(2) from Table 6.4.a for the runs with 27 particles and in Table 6.4.b for
the runs with N = 63, 64, 81 and 123 are plotted in Fig.6.7. Note that g(2) is plotted
on a logarithmic scale. The figure shows a very small variation in g(2) with a different
number of particles in the unit cell at the same Péclet number. g(2) is relatively constant
for small Pe (Pe < 1), decreases to a minimum value at Pe ~ 3 and then increases with
increasing Pe. The relation of g(2) and the Péclet number resembles closely the behavior
of the steady shear viscosity shown in Fig.6.2. As seen from Fig.6.7 the smallness of g(2)
at Pe =~ 3, which is the region of minimum shear viscoéity, implies that particles are
relatively well separated and not in contact with their neighbors. The large value of g(2)
for Pe > 10° indicates on the average we would be able to find two or more particles in
contact. Large values of g(2) at high Péclet numbers are consistent with the high shear
viscosity observed in the shear thickening region, which we attribute to the existence of
clusters. Note that over much of the shear thinning region in Fig.6.1 (0.01 <Pe < 1),
g(2) is virtually unchanged. Next, we present complete details of the shear-induced

microstructure by examining the plane projection of the probability density functions.
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V1.2.2 The Probability Density Functions g(z,y), g(z, z) and g{z,y)

Recalling the shear thinning and shear thickening behavior of dense hard-sphere
suspensions presented in Figures 6.1 and 6.2, we now want to travel along the curve for the
steady shear viscosity at each particular Péclet number, and probe the relative particle
arrangements and examine the shear-induced microstructure. An effective method to
view the flow of particles in the unit cell is to focus our vision separately on each of the
three faces of the cubic unit cell: z—y, r—2 and z—y relative to the reference coordinates.
The directions of the flow, velocity gradient and vorticity are the z-, y- and z-axis,
respectively. In our simulations, we divide the planes of the unit cell by small squares with
dimension of (0.1,0.1) in length. The particle positions are projected onto these squares
and the probability density function of finding a particle at a position in a particular
square relative to the particle at the origin is computed. To plot the plane projection

distribution function, we employ the density plot feature from the Mathematica program.

We focus first on the runs with 27 particles. Figure 6.8.a shows the plot of the plane
projection distribution function computed on the z—y plane, g(z, y), with different Péclet
numbers. Regions of light color represent high probability and regions of dark color
represent low probability. The reference axes are shown on the right of the figure. The
flow direction is the horizontal z-axis and the velocity gradient is the vertical y-axis. We
have the frontal view of the unit cell as the flow direction is from left to right. g(z,y) is
shown with increasing Péclet numbers from left to right and from top to bottom. Starting
with Pe=0.01 from the top left corner, g(z,y) displays symmetrical bright spots forming

a circle. It is equally probable to find a nearest neighbor at one of these sites around
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the centered particle and the density plot describes the isotropic structure of a strong
Brownian suspension. As the Péclet number increases, the symmetric ring is increasingly
distorted and then is opened at Pe=1. At Pe=3, the first sign of horizontal bands with
light color is seen and the ring is broken. As Pe increases from 3 to 10, g(z,y) shows
clearly the formation of “strings” of flowing particles along the flow direction. The string
formation becomes weaker at Pe=100 as fluctuations in g(z, y) are seen near these bands
and it is destroyed as Pe increases to 10°. Here we observe the shear melting process as
we approach the hydrodynamic domination limit. There is a significant difference in the
density plot of Pe=0.01 and 10°. Regions outside the symmetric ring from g(x,y) for
Pe=0.01 are shown with low probability as a dark color and this implies that particles are
random and not in contact. In contrast, regions outside the distorted ring from g(z, y)
for Pe=10" are marked with high probability as a light color. It is highly probable
that particles can be found at every site in this region and it is the signal of clusters
of particles. The ring is also thinner for Pe=103, which is another evidence of closely

spaced or touching particles, compared to the thick and symmetric ring at Pe=0.01.

The most revealing microstructure is a plot of the plane projection distribution func-
tion computed on the z—y plane, g(z,y), which is shown in Fig.6.8.b. The vorticity
direction is the horizontal z-axis and the velocity gradient direction is the vertical y-
axis. The flow direction is perpendicular to the z—y plane and we view the flow of
particles directly toward our eyes. The density plots are shown with the same light-high
and dark-low scale of the probability and the order of the Péclet number as illustrated
in Fig.6.8.a for g(z,y). At Pe=0.01, g(z,y) shows the same symmetric ring pattern

seen in Fig.6.8.a, as expected for an essentially equilibrium suspension. The isotropic
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structure should not have a preferred orientation and it is correctly shown by Stokesian
dynamics. There is very small variation in the plot of g(z,y) as Pe increases from 0.01
to 1. g(z,y) starts to show the high probability light spots at Pe=3. As Pe increases
to 10, g(z,y) shows a very striking pattern of bright spots which form a “hexagonal”
packing of particles flowing directly out of the z—y plane. At large Pe, the hexagonal
packing is weakened and has disappeared completely at Pe=10". Again we observe the
shear melting effect for suspensions with strong hydrodynamic forces. It is important
to note that the plot of g(z,y) at Pe=10 shows a bright spot at the center of the unit
cell. This centered bright spot is not from the centered particle at the origin. It is rather
from the two nearest neighbors of the centered particle and these two neighbors have
the same height y and depth z, but different horizontal z value defined in the unit cell;
one neighbor is in the front and the other is behind the centered particle, and all three
particles flow as a string along the flow direction, the z-axis which is perpendicular to
the 2—y plane. The formation of strings of particles is also shown in the plot of g(z,y)
in Fig.6.8.a. This centered bright spot can only be seen with the distinct “hexagonal”

packing from a plot of g(z,y).

A similar plot for the plane projection distribution function on the z—z plane, g(z, z),
is shown in Fig.6.8.c. We view the particles from the top of the unit cell with the flow
of particles from left to right. g(z, z) resembles closely g(z,y), showing the random
structure at Pe=0.01. As the suspension is sheared the strings form along the flow
direction at Pe=10 and 20, and finally the strings are melted at high shear rates, Pe=10".
At Pe=10, the density plot of the steady g(z,y) g(z,z) and g(z,y) reveal the formation

of strongly ordered suspensions. Particles line up in “strings”, with “hexagonal” packing
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along the flow direction. It is of interest to find the Péclet number which signals the onset
and destruction of ordered packing, as well as the range of volume fractions over which
the suspensions can be sheared into ordered microstructures. Figure 6.8.d shows the
relation of g(z,y) with a finer increment of the Péclet number. The ordered hexagonal
packing is first detected at Pe=5, but not as clear as that for the run with Pe=10. The
shearing melts and destroys the ordered structure at Pe=200. The transitional Péclet
number, where the particle configurations change from a random orientation to a strong

ordering, is seen at Pe=3.

Figure 6.8.e displays the evolution of the probability density g(z, z) for the special run
with 27 particles and a new flow direction along the y-axis. The sample of 27 particles
was first sheared in the normal z-direction for 100 dimensionless time units at Pe=10.
The shear direction is then changed from the z- to the y-axis and the strongly ordered
suspension is sheared with a new shear direction for another 100 time units at the same
Péclet number. For this special run the new flow direction, the y-axis, is perpendicular
the z—2 plane. For the first fifty time units, g(z, z) shows ﬁhat particles are in a transition
to arrange and position themselves to order along the new flow direction. The steady
g(z, z), which is averaged‘ for the last fifty time units is shown in the right most figure
with a clear hexagonal packing. Our results show that there is no influence of the flow
direction as well as the starting particle configurations on the microstructure and the

rheology given that there is sufficient time allowing the structure to equilibrate.

The microstructure obtained from dynamic simulations with a large number of par-

ticles is presented next. Figures 6.9.a and 6.9.b show g(z,y) and g(z,y) for different
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Péclet numbers: 0.01 (upper left), 0.43 (upper right), 10 (lower left) and 10* (lower
right), respectively. There are 63 or 64 particles in the unit cell. At Pe=10, the string

formation and hexagonal packing of particles are again observed.

The time evolution of g(z,y) for 123 particles is plotted in Fig.6.10.a. The flow
direction is from left to right along the horizontal z-axis and the velocity gradient is the
vertical y-axis. For the first twenty time units, g(z,y) shows fluctuations and a weak
string formation as the particles are sheared from a random initial configuration (left and
central figure). The steady g(x,y) (right figure) is averaged for the last thirty time units
and shows a distinct formation of strings of particles along the flow direction. Figure
6.10.b plots the dynamics of g(z,y) with different shear times. The flow direction is now
perpendicular to the z—y plane, with the vorticity the horizontal z-axis and the velocity
gradient the vertical y-axis. From left to right, the density plots of g(z,y) show the
transition of particle relative arrangement with time under shear. The random structure
is sheared into a final strongly ordered structure. The remarkable hexagonal packing
of particles along the flow direction is seen quite clearly from the density plot of the
steady g(z,y) (right figure) after fifty shear time units. Figure 6.10.c shows the change
of g(z, z) with different shear time. For the 2—2z plane, we view the flow of particles from
the top of the unit cell with the flow direction in the horizontal z-axis, and the vorticity
direction in the vertical z-axis and the particles flow from left to right. Starting from an
isotropic structure, the shear produces a change in the particle relative arrangements to
strings of particles flowing along the flow direction. The string formation can be observed

from g(z,y) in Fig.6.10.a and from g(z, z) in Fig.6.10.c. Note that there are five strings
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of particles shown by g(z,y) but ten strings are counted from a plot of g(zx,z). The

difference in number of strings is due to the plane with which we view the particles.

The particle arrangement in all three directions is plotted in Fig.6.10.d where the
particles are positioned according to the probability information from Figures 6.10.a to
6.10.c. From top to bottom of Fig.6.10.d, the left column shows a density plot of the
steady probability densities g(z,y), g(z,y) and g(z, z), respectively; the right column
shows the corresponding particle positions determined from these density plots. The
upper figures are g(z,y) on the left, and on the right the formation of “hexagonal”
packing of particles flowing along the flow direction which is perpendicular to the z—y
plane. The hexagonally packed particles flow out of the plane and directly toward the
viewer. The hexagonal packing has a perfect six-fold symmetry, allowing the particles
to flow with ease relative to one another following the imposed shear flow. The particles
do not have to move around one another in this arrangement. This structure can also be
rotated by any amount without affecting the smooth flow of particles. There are several
hexagons in the unit cell as the ordering is seen to be loﬁg ranged. The particle center-
center distance from the central particle to its first six hexagonal neighbors is ~ 2.025
and to its second twelve dodecahedral neighbors is & 4.1, which can also be obtained
from g(z,y) and from the pair-distribution g(r) shown in Figures 6.5 and 6.6. The
central figures are the density plot of g(z,y) on the left and on the right the formation
of “strings” or “bands” of particles along the z-axis. The five strings correspond to the
five horizontal layers of particles in the hexagonal packing seen in g(z,y). The lower
figures are the density plot g(z, 2) on the left and on the right the “strings” of particles

flowing along the z-axis. There are 10 strings, corresponding to the ten vertical layers



104

of particles in the hexagonal packing from g(z,y). The ten strings of particles are drawn

to show the staggered position of the strings.

A comparison of the steady plane projection distribution functions g(z,y), g(z, 2)
and g(z,y) for different Péclet numbers is illustrated in Figures 6.10.e, 6.10.f and 6.10.g,
respectively. In these three figures, density plots are shown for three different Péclet
numbers: Pe = 0.43 (left figure), 10 (central figure) and 10° (right figure). There are 123
particles in the unit cell. These figures display a random microstructure with symmetric
ring for suspensions with a small deformation (Pe=0.43), the shear-induced ordered
microstructure with well separated particles and distinctive “strings” and “hexagonal”
packing of flowing particles (Pe=10), and the microstructure with clusters of particles as
shown by the sharpening of the first nearest neighbor ring for suspensions at high shear

rate (Pe=103).

The density plot g(z,y) with 81 particles in Fig.6.11.a shows an interesting feature of
the shear-induced microstructure. g(z,y) shows a random structure for Pe = 0.01 (upper
left) and 0.43 (upper right), shear-ordered packing at Pe=10 (lower left) and structure
with regions of clusters at Pe=10" (lower right). At Pe=10, we see the hexagonal packing
but the pattern is rotated with a small angle relative to the horizontal z-axis and this is
illustrated in Fig.6.11, which shows the plot of particle positions according to the density
plot of g(z,y). Particles are sheared into order at Pe=10, but 81 particles cannot fit into
a hexagonal packing without rotating by a small angle. Ensemble of 81 particles is
small to fit into 5x5x5 arrays of spheres in a unit cell and too large for 4x4x4 string

arrangement, so it can only fit into a 4x4x5, which precisely what is seen from the
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density plot of g(z,y). The rotational angle is made more clear in the section VI.2.4.1

for the structure factor S(k).

V1.2.3 Suspension Microstructure of a Monolayer with 25 Particles

Dynamic simulations of a monolayer offer an effective means to graphically visualize
the evolution of the particle positions and can help us to understand the rheological
behavior of dense hard-sphere suspensions. In section V1.1, we provided the same results
for the steady shear viscosities of monolayers as the three dimensional simulations. The
only restriction imposed on a monolayer is that the particles cannot be displaced in the
vorticity direction, the z-axis; the computation is kept fully three dimensional. From the
dynamic simulations of a monolayer, the particle positions are recorded and animated
on a video tape to present the dynamics and evolution of the suspension microstructure.

Actual snap shots of the particle positions are presented in Figures 6.12 to 6.17.

Figure 6.12 presents the starting particle configuration of 25 particles in a monolayer
model with an areal fraction ¢, = 0.675 which is comparable to a volume fraction ¢=0.45
if one uses the 2/3 rule. The center square is the unit cell and particles outside the cell
are periodic images which are replicated to fill the unbounded space. The isotropic
equilibrium structure is slightly deformed with a small shear rate at Pe=0.01 (run [1]
in Table 6.1.b) and the particle positions are plotted in Fig.6.13.a at time =100 time
units and in 6.13.b at time t=350. Both figures show only small departure from isotropic
equilibrium structure. As the suspensions are sheared into the region of minimum vis-
cosity with a balance of Brownian and hydrodynamic forces at Pe=10 (run [2]), snap

shots of the particle positions in Figures 6.14.a to Fig.6.14.c clearly demonstrate very
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strong ordering structures with “string” formation of flowing particles along the flow di-
rection, the x-axis. Particles are well separated from each other and flow as strings and
rotate with the imposed shear. Figures 6.15.a to 6.15.c show the microstructure of hard
spheres in the limit of strong hydrodynamic forces (Pele3 in run[3]). It is clear that
particles form large clusters which span the entire unit cell along the compression axis.
This creates a temporal and spatial local anisotropy in the distribution of the particle
number density in which more particles are found in the cluster along the compression
axis. These clusters disrupt the shear flow and are the cause of shear thickening. As
the Péclet number decreases from 10° to 10 (run [4]), we again observe the string for-
mation of flowing particles as illustrated by snap shots of particle positions in Figures
6.16.a and 6.16.b. Hysteresis is not seen in our simulations as we are able to capture
similar shear-induced structures independent of the starting particle configurations. We
also return to the same viscosity at Pe=10, which agrees well with the 3D simulation
at the comparable volume fraction as shown in Fig.6.2. Finally, we present snap shots
of particle positions for three distinct microstructures in Fig.6.17: randomly dispersed
particles for slightly deformed suspensions (left figure), alignment of flowing particles as
strings for suspensions with a balance of Brownian and hydrodynamic forces (central

figure) and clusters of particles for hydrodynamically driven suspensions (right figure).

Before we determine the important relation of suspension rheological behavior to
the microstructure and explain the shear thinning and thickening phenomena of hard
spheres, a final connection of our findings of the shear-induced structures and that from
experiments is necessary to verify that the dynamic simulation results agree with exper-

iments under similar conditions. The static structure factors which can be measured by
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optical techniques are used to compare with our calculations and are presented in the

following section.
VI1.2.4 The Structure Factor S(k)

As we discussed in sections VI.2.1 and V1.2.2, the pair-distribution function and the
plane projection of the probability density contain valuable information on the deforma-
tion of the microstructure in a shear flow. Additional information on the microstructure
can also be obtained from the Fourier transform of g(r), the static structure factor S(k).
The static structure factor is important for two main reasons. First, S(k) can be directly
measured by optical techniques such as the scattering of light, X-rays or neutrons, and
its distortion can be related to the deformation of a flowing suspension. Being able to
observe and to measure the distortion of S(k), we can understand suspension behavior
and improve the predictal;ility of the theories and computer models. Results of the static
structure factor from experiments can be used to rigorously test existing and new theo-
ries, as well as simulation methods. Second, S(k) is itself a direct result of an analytical
solution of the Fourier transform pair-distribution correlation g(r) and the pair-particle
convection-diffusion equation of the pair probability density. For these reasons, the static

structure factor is of fundamental interest.

Existing theories have focused on the prediction of deformation of the nonequilibrium
static structure factdr, S(k), and its relation to suspension macroscopic properties. These
theories centralize on the perturbation about the equilibrium structure factor S(k). They
are applicable to dilute suspensions and to the limit of small shear rates since the models

take rigorous account only of the pairwise thermodynamic interactions between particles



108

and either neglect completely or include only the pairwise hydrodynamic interactions.
Johnson et al. (1988) and Ackerson (1989) have reported a short review of the theories
for the nonequilibrium static structure factor S(k) by Ronis (1984, 1984, 1986), Schwarzl
and Hess (1986) and Dhont (1987, 1989). Results of small-wave-vector static structure
factor measurements from Ackerson have shown large disagreements with these theories

as the volume fraction of the suspension subjected to small shear rates increases.

Since these theories are referenced to the equilibrium state, the general solution of

the static structure factor can be expected in the following form:
S(k, Pe) = S(k) + Pe S (k) + Pe’ 8 (k) + ... (6.2)

Equation (6.2) is truncated after the term with O(Pez) and is valid for Pe <« 1. Sl(k)
and Sz(k) are the first- and second-order nonequilibrium static structure factors, re-
spectively and predictions of them vary among theories. Dhont has employed a singular
perturbation analysis method to show that in the limit of small shear rates the explicit
Fourier transform of the Smoluchowski equation yields a k-space boundary layer near
k = 0 whose width scales as Pe%. In real space this corresponds to the usual, well under-
stood, problem of a singular perturbation for large r ~ O(Pe~1/2) when the convective
shear motion balances the diffusive motion. Dhont’s result predicts that the expansion

for S(k,Pe) proceeds as:
S(k,Pe) = So(k) + Pe’" S (k,Pe) + ... (6.3)

However, Brady (unpublished work) has shown that although the expansion is singular
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with an outer region scaling as Pe"w, because the inner boundary condition on the pair-
distribution function at contact is of a quadrupole character, this causes the singular

nature to appear at higher order, specifically,

S(k,Pe) = S,(k) + Pe S'(k) + Pe’* S (k) + ... (6.4)

Our purposes in this section are to determine the nonequilibrium structure factor for
dense hard-sphere suspensions at all shear rates and provide a direct comparison of our
calculations with experiments. This comparison will verify the microstructure which is
obtained by Stokesian dynamics in agreement with experimental results. For spherical
particles, the equilibrium static structure factor, S(k) can be computed according to:

sin(kr)

o dr , (6.5)

Sk)=1+ 47rn/000 r? [g(r) — 1]

where k is the scattered wave number and n is the particle number density, i.e., nz—l‘}’-
with V the volume of the unit cell which contains N particles. The scattered wave

number is given by:

k=|k|f§smg, (6.6)

where k is the wave vector, A is the wavelength of the incident radiation and @ is the

scattering angle.

Similar to the calculation of the pair-distribution function and the plane projection

distribution which is presented in sections V1.2.1 and VI.2.2, we compute the nonequi-
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librium static line and plane structure factors. During the course of the dynamic sim-
ulations, the particle positions are used to compute the nonequilibrium static structure

factor from the following discrete Fourier transform relation:

\ 1 NN
S(k,Pe)E—N-ZZe:L'p ikr,]), (6.7)

J=1 =1

where r,, = r, —r, is the separation distance between particle j and particle /, i inside
the bracket the denotes an imaginary number, ( ) implies an ensemble average over all
particle configurations and the wave number is nondimensionalized with the particle
radius a. From each particle configuration, the structure factors are computed with
a selected range of the wave numbers. Small- and large-wave-number structure factors
measure the long- and short-range correlation of the particle configurations, respectively.
The dynamic simulations with 123 and 126 particles offer correlations of different particle

positions up to three particle diameters and they are used to compute S(k).
VI1.2.4.1 The Line Structure Factors S(k.), S(k,) and S(k,)

The line structure factors S(k.), S(ky) and S(k.) are computed by choosing the wave
vector k parallel to the k.-, ky- and k-axis, respectively. Recall that the flow direction
is the z-axis, the velocity gradient y and the vorticity z. To compute S(k;) for example,
we fix the dimensionless wave numbers ky,=k,=0 and vary only the wave number k.
The Cosine Fourier transform is applied in equation (6.7) to compute these line structure

factors and they are averaged over time during the course of dynamic simulations.

Figure 6.18 shows a plot of the equilibrium structure factor S(k) for hard-sphere
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suspensions at a volume fraction ¢=0.45 with 81 particles at Pe=0. The dynamic simu-
lations give 500 samples of the particle positions from which we computed the equilibrium
structure factor along the k.-, ky- and k.-axis. The three curves S(k.), S(ky) and S(k.)
for undeformed hard spheres show small variation for an isotropic random structure of a
hard-sphere distribution, which is not expected since 500 samples for 81 particles show
a good comparison for the angularly averaged pair-distribution function g(r) with that
of a hard-sphere distribution as shown in Fig.4.1. The small variation in the equilibrium
structure factor is likely due to the small number of samples of particle positions and
small number of particles in the simulation. The first intensity maximum is observed at
the dimensionless wave numbers k;, ky, k.~ 3.5 which is commonly known and labeled
as the Debye-Scherrer ring. The peaks at the wave number kp,qr &~ 3.5 can be used to

compute the particle center-center spacing according to the relation (Laun et al. (1992)):

4

d=_"T 6.8
73 s (68)

with kmaez = 3.5, d = 2.07 which is in agreement with the value of 2.025 obtained from
the distribution function g(r) for hard spheres with Pe=0 and 123 particles reported in

section VI.2.1.

Recall that Fig.6.11.b shows the hexagonal packing of strings of particles which are
constructed from the plane projection distribution function g(z,y) for 81 particles at
Pe=10. The packing pattern is rotated with a small angle §=-15". The value of the
angle 6 is determined by varying the angle shown in equation (6.6) for the incident

wave vector and then computing the line structure factor with wave numbers parallel to
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these lines. Results are plotted in Fig.6.19 for the nonequilibrium structure factor with
different angles: 6 (A) -15°, (=) 0° (which is S(k.)), (0) 45  and (...) 90" (which is
S(ky)). The upper right figure shows angle 0 relative to the k.-axis and is defined in the
kz-ky plane. The figure shows clearly that the structure factors which are computed with
the wave numbers parallel to the -15° and 45° lines give strong scattering light intensity
patterns. The strings of particles with their axes on the -15" and 45° lines give the high
intensity peaks seen at the wave numbers k ~ 3.6, 6.6, and 7.6. As expected for the
rotated hexagonal packing, S(ky) and S(k.) show negligible scattered intensity. Note that
a dimensionless wave number k ~ 6 comes from light with a wavelength A = %:% of the
particle radius. Therefore, the structure factors with intensity peaks computed at these
large wave numbers (short wavelengths) can capture only the short-range correlation of
particles in the string formation and not the hexagonal packing. To probe the long-range
order of the hexagonally packed particles which extends to several particle diameters,
dimensionless wave numbers of O(2a) or smaller must be used to compute the structure
factor and this is the main reason why simulations with a large number of particles are

necessary as we now show with 123 and 126 particles.

Figures 6.20, 6.21, and 6.22 show a comparison of the nonequilibrium line structure
factors S(kz), S(ky), and S(k;) with 123 particles and three different Péclet numbers:
(0) 0.43, (@) 10 and (A) 103, respectively. Figure 6.20 shows a small difference for S(k,)
with different Péclet numbers. This is expected due to large and constant changes of the
particle positions in the flow direction, the z-axis. S(k;) for the runs with Pe=10 shows
four peaks at regular spacing of the dimensionless wave number k,, but the intensities

of these peaks are relatively small to be attributed to an ordering of particles along the
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kr-axis.

Figure 6.21 illustrates a comparison of S(k,) for different Péclet numbers. While
S(ky) for Pe = 0.43 and 10° shows insignificant scattered intensity, S(ky) of Pe=10
displays clearly two peaks with intensity maxima: one peak at the wave number k, ~ 3.6
(the Debye-Scherrer ring) with scattered intensity of O(N) and one smaller and less
intense peak at larger wave number k, =~ 7.4. It is evident that the two high scattered
intensity peaks reflect a strong ordering of the suspensions. The peak at longer wave
number ky ~ 7.4 (shorter wave length) must reflect the string formation of the particles.
Before the primary intensity maxima can be labeled as the signature of the long-range
hexagonal packing, we need to examine and cross check with other evidences, especially
to compare with experiments. One concrete piece of information is that S(k,) with

Pe=10 displays the strong ordering of the particles along the ky-axis.

A similar comparison for S(k.) can be seen from Fig.6.22 which shows only one
intense peak for Pe=10 and very small scattered intensity for Pe = 0.43 and 10°. The
intense peak of S(k;) with Pe=10 shows up at a larger wave number, k, ~ 6, compared
to ky =~ 3.6 for S(k,) in Fig.6.21. At this large wave number, the line structure factor
S(k-) probes a strong correlation of the stringed particles. S(k,) and S(k,) show strong
ordering of the particle positions in the k,- and k.-direction for hard spheres at Pe=10
and it is consistent with the information obtained from the plane projection distribution

function in section VI.2.

Xue and Grest (1990) have reported a similar finding of the layering order of the

particles in the presence of an oscillating shear flow. Their results for the anisotropic
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structure factors were obtained by Brownian dynamics simulation method which is Stoke-
sian dynamics without hydrodynamic interactions. Because there are no hydrodynamic
interactions, short-range repulsive interparticle forces are needed to prevent particle over-
lap and set the volume fraction. A repulsive Yukawa potential (Robbins et al. (1988))
was used in their model. From the ratio of the lengths of a rectangular unit cell which
contains 504 particles, it is estimated that the volume fraction of the suspension in their
model is ¢ ~ 0.52 (the interparticle spacing a in their model is equivalent to our particle
diameter). The suspension is close packed at rest and the oscillatory shear is applied
to melt the equilibrium crystalline structure and randomize it to the string phase. As
the suspension changes to a string ordering phase, their results for the structure factor
displayed two intense péaks for the velocity gradient direction and one less intense peak
for the vorticity direction. In addition, the structure factors show peaks with different in-
tensities for various shear rates at identical wave numbers. Their suspensions are seen to
be ordered in an oscillatory shear independent of shear rates which the ordering fashions
may not be the same . Their results further show that the string order is independent of
the amplitude and the frequency of the oscillatory shear flow, but depends only on the

product of the two in the range of dimensionless amplitude from 1 to 6.

To examine the long-range correlation of the hexagonal packing observed for the runs
at Pe=10, we compute S(ky) and S(k,) with a smaller range of the wave numbers, k,
and k., from 0.5 to 2.5 and plot these line structure factors in Figures 6.23.a and 6.23.b,
respectively. It is clear from these figures that at Pe=10, particle positions are correlated
in a distinct pattern and the correlation is long ranged, as the line structure factors at

small wave numbers show broad peaks with high scattered intensity compared to those
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for Pe=0.43 and 103, which show minimum scattered intensity.

The anisotropic line strﬁcture factors can only probe the discrete spacings of the
particle positions which are projected on the same axis with the incident wave vectors.
To capture the details on the two-dimensional packing pattern, the static plane structure
factors can be examined and those are discussed next. The static plane structure factors
are computed in the velocity-velocity gradient plane, S(k:, ky), in the velocity-vorticity

plane, S(kz, k.) and in the vorticity-velocity gradient plane, S(k., ky).
VI1.2.4.2 The Plane Structure Factors S(kz, ky), S(kz,k,) and S(k,, ky)

The plane structure factors S(kg, ky), S(kz, k) and S(k., ky) are computed by choos-
ing the wave vector parallel to each of the plane of interest. To compute S(k., ky) for
example, we fix the wave number k,=0 and vary k. and k,. The Cosine Fourier trans-
form is again applied in equation (6.7) to compute and average these plane structure
factors over time during the course of dynamic simulations. The dimensionless wave
numbers k;, ky and k. are varied from 0.5 to +4.0. The plane structure factors are
plotted in a contour plot with four symmetrical quadrants similar to the topographical
plots of the small angle neutron scattering (SANS) measurements of the static plane
structure factors reported by Johnson et al. (1988), van der Werff (1990) and Laun et
al. (1992). This allows a comparison of our calculations and the experiments. In the
first quadrant, both the wave numbers parallel to the horizontal and vertical axis are
positive and vary from 0.5 to 4.0. For the second quadrant, the wave number parallel
to the vertical axis is unchanged and the wave number parallel to the horizontal axis is

now negative and ranges from -4.0 to -0.5. The third and fourth quadrants are mirror
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images of the first and the second quadrant, respectively.

Figure 6.24 illustrates a comparison of the plane structure factor computed in the z—y
plane (the velocity-velocity gradient plane), S(k;, ky), with 123 particles and different
Péclet numbers: Pe = 0 (upper left), 0.43 (upper right), 10 (lower left) and 10° (lower
right) obtained by Stokesian dynamics. Regions of light color represent high scattering
light intensity and regiong of dark color represent low scattering light intensity. Starting
from the upper left, S(ks,k,) shows the primary intensity of the symmetric Debye-
Scherrer ring for hard spheres at equilibrium (Pe=0). The dynamic simulations for 123
particles at Pe=0 give 100 particle configurations for run with 10,000 time steps and these
samples are used to compute S(kz, ky). The symmetric ring reflects the random structure
at rest for hard-sphere suspensions at a volume fraction ¢=0.45. S(k:,k,) shows the
slight distortion of the Debye-Scherrer ring to an elliptical shape for suspensions with
a small deformation at Pe=0.43 (upper right). In the k-space, the deformation is seen
as a mirror image of the real r-space. Small-wave-vector measurements of the structure
factors for hard-sphere colloidal dispersions in a weak sheér flow by Johnson et al. (1988),
Ackerson (1989) and Ronis (1984) have shown similar distortion of the structure factor

in the region of small shear rate.

As Pe increases into the string ordered phase (Pe =~ iO), S(kz, ky) changes from the
elliptical formation into circular regions of high scattered intensity along the horizontal
line with wave numbers ky~ +4 and two “bands” of strong intensity along the vertical
lime with wave numbers kr~ #3. Recall that in Fig.6.10.d we present the striking

evidence of the particle positions which are constructed with the information obtained
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from the plane projection distribution function g(z,y), g(z,y) and g(z, z). Indeed if
we compare the particle positions for the z—y plane in Fig.6.10.d and this figure for
a contour plot of S(kz,ky) with Pe=10, then the “bands” of high scattered intensity
are the spectroscopic signature of the horizontal strings of particles (the middle right
figure in Fig.6.10.d) and the circular regions of intensity maxima are the spectroscopic
signature of the vertical strings of particles (the upper right and middle right figure
in Fig.6.10.d). The horizontal and vertical strings of flowing particles are combined to
assemble the complete hexagonal packing as seen in Fig.6.10.d in the real r-space. There
are also several narrow regions with strong scattered intensity at smaller wave numbers

inside the primary ring. Their presence implies the strong ordering is long ranged.

At much higher shear rate (Pe:lOs), the hydrodynamic interactions are dominant
over the Brownian forces and destroy the particle order. A contour plot of S(k,k,)
with Pe=10" (lower right) shows large distortion of the Debye-Scherrer ring in the kz-ky
space. In contrast to S(ky) for Pe=0 which shows regions of minimum scattered intensity
outside the Debye-Scherrer ring (dark color regions), S(kz, ky) for 10° shows scattered
intensity everywhere in this.region and reflects the presence of clustered particles in a
hydrodynamic dominated suspension. Note that the region inside the Debye-Scherrer
ring with small wave numbers shows insignificant scattered intensity, which is expected
as this region probes the long range correlation of the particle positions. Our largest
simulation size of 123 or 126 particles is limited to a three-particle-diameter correlation.
Only when the strong ordering persists during the entire time of dynamic simulations

such as seen at Pe=10, the plane structure factors show some long-range packing of the

particles.
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Contour plots of the static plane structure factors in the z—y plane (the vorticity-
velocity gradient plane) with different Péclet numbers are presented in Fig.6.25. The
light-high and dark-low color scale for scattering light intensity and the range of wave
numbers are the same as shown in Fig.6.24. k. is the horizontal axis and k&, is the vertical
axis. Again starting from the upper left, S(k., k,) shows primary scattered intensity of
the Debye-Scherrer ring for suspensions at a rest state (Pe=0) and for suspensions with
a small deformation, Pe=0.43 (upper right). As Pe increases to 10, S(k., k,) shows a
distinct “hexagonal” pattern of scattered intensity maxima which is superimposed on the
halo ring (lower left). Another six smaller intensity maxima in the region of smaller wave
numbers indicates that the strong ordering is indeed long ranged. In reference to the par-
ticle positions in the z—y plane shown in the upper right figure of Fig.6.10.d, we observe a
clear evidence that the nonequilibrium structure factor S(k., k) probes the “hexagonal”
packing of strings of particles flowing directly out of the z—y plane. The halo pattern
is destroyed at strong shear rates, as seen in a contour plot of S(k;, ky) with Pe=10
(lower right). The most recent SANS measurements for. the plane structure factors by
Laun et al. (1992) for suspensions of electrostatically stabilized styrene-ethylacrylate-
copolymer spheres in glycol and in water at a similar volume fraction ¢=0.434 (labeled
as system “A4G” in their experiments) in both Poiseuille and Couette flows have shown
the same halo ring of intensity maxima patterns for strongly ordered structures in the
shear thinning region. However, in the plateau region where the viscosity is minimum,
the halo ring was destroyed (Figures 9, 23, and 24 from Laun et al. are copied and
shown in Figures 6.34 and 6.35 for comparison.) This is different to our findings which

display a strongly ordered structure in the region of minimum viscosity and not in the
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shear thinning region. However, the important goal is to find the SANS pattern of the
structure factor relating to the microstructural order. From their experiments, the halo
ring pattern is the spectroscopic signature of an ordered suspension and our results for
the structure factors at Pe=10 show an identical pattern of scattering light intensity.
The shift of the region where the shear viscosity is minimum is likely due to that the
particles in the experiments may not be completely force-free, i.e., not a true hard-sphere
suspension, and this can clearly be seen by examining the experimental results for the
shear viscosity. In the region of minimum viscosity, Laun et al. obtained a dimensional
viscosity n = 1 Pa s‘ (cf. Fig.6.34) (or a dimensionless viscosity 1~ 50 using 20 mPa s
glycol solvent at 20 °C ) at a shear rate ¥ = 100 sec (or equivalent to our dimensionless
Péclet number of ~ 50). Their minimum shear viscosity is about seven times higher
than our simulation results and experimental results from van der Werff and de Kruif

for hard spheres.

The microstructure is very special at Pe ~ 10 as the influences of the shear and the
Brownian force balance and induce the flowing particleé into strong ordering. Figure
6.26 shows a comparison of the static plane structure factors computed on three planes:
S(kz, ky) (left figure), S(kz, k) (central figure) and S(k.,k,) (right figure). This figure
is the the k-space spectroscopic microstructure (the Fourier transform) of the particle
positions shown in Fig.6.10.d. We have already discussed S(k:,k,) and S(k.,k,) in
Figures 6.24 and 6.25, respectively. With Fig.6.26, it is made more clear that the circular
regions of intensity maxima from a contour plot of S(kz,ky) is the scattered intensity
obtained from the “hexagonal” packing. By comparing S(k;, ky) with S(k., k), it is seen

that S(kz, k:) shows two “bands” of high scattered intensity along the wave numbers
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ky~ x4 which ar.e very similar to the two bands seen from S(kz, k,). What is absent
from S(k;, k.) are the regions of primary maxima intensity. Horizontal strings of flowing
particles are staggered into a body-centered fashion in the z—z plane as constructed in
the lower right ﬁéure of Fig.6.10.d and this pattern enables the “hexagonal” packing of
strings of particles to be seen in the z—y plane. The two vertical bands of high scattered
intensity from S(k., k.) probe the correlation of horizontal strings of particles and so do
the two vertical bands from S(k,,ky). The circular regions of intensity maxima from
S(kz, ky) probe the hexagonal packing and in the z—y plane the hexagonal packing is
mapped into the horizontal lines-in k-space. The halo ring with intensity maxima is

clearly seen from a contour plot of S(k;, ky).

To examine only the contribution from the shear-induced ordering, we compute and
plot the perturbed structure factors, § (k,Pe), which is defined as S (k, Pe) = S(k, Pe)—
S(k) for hard spheres at Pe=10 in Fig.6.27. The left column shows the unperturbed static
S(k, Pe) and the right column shows the perturbed static structure factors S (k, Pe).
The first row displays the structure factors computed in ﬁhe z—2 plane, followed by the
the structure factors computed in the z—y plane on the second row. It is clear that
the ordering spectroscopic signatures are not disturbed by the pure random Brownian
contribution as the perturbed structure factors display similar scattered intensity pattern
as the unperturbed structure factors. This is expected since our spheres are identical and
there is no back scattering due to polydispersity as is commonly observed in experiments
(Pusey (1987), van Veluwen et al. (1988)). Both the vertical bands from S(k;,k.) and

the halo intensity maxima are seen from their corresponding perturbed structure factors.
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The static structure factors show clearly three different spectroscopic signatures of
the hard spheres and these signals can be mapped to the real space and related to the
deformation of the suspension. The equilibrium structure which is amorphous at rest
for ¢=0.45 is slightly distorted at small shear rates. As the hard spheres are sheared
past the shear thinning region, the microstructure is strongly ordered and the flowing
particles are packed into strings in a “hexagonal” pattern. At stronger shear rates in
the shear thickening region, the hydrodynamic influence is dominant, the shear-induced
ordering is completely destroyed, and the microstructure shows clustering of particles.
The microstructure obtained by the spectroscopic static structure factors in k-space
is very consistent with the information obtained by the plane projection distribution
function in the real r-space. It is important to note that our static structure factors
for the microstructure is confirmed by the SANS measurements. Before we address the
important question of the relation of the shear thinning and shear thickening to the
microstructure, there is one more fundamental property of the suspensions, the self-
diffusion of the suspended particles, that we need to examine, and it is discussed in the

next section.
V1.3 The Self-Diffusivities

In this section we focus on the particle motions by examining the short- and long-
time self-diffusion coefficients of Brownian particles in dense suspensions. Theoretical
predictions and experimental measurements of self-diffusivity have been a concern to
scientists for years (Eckstein, Bailey and Shapiro (1977), Kops-Werkhoven et al. (1981,

1982), Snook et al. (1983), van Megen et al. (1986), Rallison and Hinch (1986), Leighton
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and Acrivos (1987), Qiu et al. (1988), Cichoki and Felderhof (1988), Phan and Leighton
(1992) ). The short-time self-diffusivity measures the instantaneous mobility of the
particles in the suspension: the time scale is so short that the particles do not have
time to move a distance comparable to their own size or to the interparticle spacing.
It conveys the static information of the local structure and mobility of the suspension.
In contrast to the short-time self-diffusivity, the long-time self-diffusivity measures the
dynamic behavior of the suspension as particles must travel a distance far from its
starting location, deform the local structure and exchange places with neighbors. The

long-time self-diffusivity also describes the internal mixing at the particle level.
V1.3.1 The Short-Time Self-Diffusion Coefficients

We denote the short-time translational and rotational self-diffusion coefficient as D),
and D), respectively. D; is normalized by the infinite dilution diffusion coefficient of
a sphere D= kT/(6wna) and D, is normalized by D,= kT/ (87rna3). The short-time
self-diffusion coefficients D, and D, are reported in Table 6.5.a for the runs with 27
particles and Table 6.5.b for the runs with 63, 64, 81 and 123 particles and also for a
monolayer with 25 particles. Columns (3) to (6) are the steady short-time translational
self-diffusion coefficients computed in the z-direction, D:,n, in the y-direction, D:,w, in

the z-direction, D;u, the mean, i.e., D, = %(D;"+D;W+D;") and its standard deviation.

Similarly, columns (8) to (12) are the short-time rotational self-diffusion coefficients D:",

5

D D:", the mean D, and its standard deviation. For the monolayer model, the 2-

Tyy 3

component of the short-time self-diffusivities are not computed and the mean is simply

the z and y average, i.e., D,= ':IE(D;,, +D;w). The short-time self-diffusion coefficient
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is defined in equations (2.25) and (2.26). Note that D) is not a true diffusivity in the
sense of the mean-square displacement growing linearly with time, except at Pe = 0. At
finite Pe, the instantaneous motion is not necessarily diffusive, but nevertheless D; gives

a measure of the local mobility of a particle.

Results of the steady D, from Table 6.5.a are plotted in Fig.6.28.a as a function
of the Péclet number. The short-time translational self-diffusion coefficient is relatively
constant for Pe < 1, decreases slightly as Pe increases to 1, increases to a maximum
at Pe ~ 10 and then decreases with increasing Péclet number. The behavior of the
short-gime self-diffusion coefficient D) can be explained by relating it to the deformation
of the suspension. The structure of hard spheres which is liquid-like at rest, is slightly
deformed at small shear rates (Pe < 1). In this strong Brownian region, Brownian
motion is still the dominating force and capable of restoring the isotropic structure from
a small departure from equilibrium. The result is a relatively constant D). The region
with Pe ~ 10 is very special; recall that it is the ordered region. In this region, D,
increases to a maximum value, which implies that the pafticles are most mobile and are
relatively well dispersed. This is consistent with the microstructure which we described
in section VI.2. The balance of Brownian and hydrodynamic forces induces a strongly
ordered suspension with strings of flowing hexagonally packed particles. The particles
are not only very well separated relative to each others but uniformly spaced in strings.
As a consequence, the mobility of particles in the packing is greatly enhanced and as a

result, we observe the maximum of the short-time self-diffusion coefficient.

As the shear rate increases (Pe > 10), the hydrodynamic influence becomes increas-
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ingly important_and dominates over the diminishing Brownian force. Large deforma-
tions of the suspensions in this region are seen due to the formations of particle clusters
whose size grows with the Péclet number. Owing to the formation of close pairs and
larger aggregates (cf. Figures 6.15.a-c), the short-time self-diffusion coefficient decreases
with increasing Pe. Because of lubrication forces, clbsely spaced or touching particles
should move as if they were a single larger particle on a short time scale, and there is
a corresponding decrease in the mobility of the suspension, and hence in the short-time
self-diffusivities. Note that since the mobility scales with the inverse of particle size, the

drop from 0.217 to 0.021 would indicate a characteristic size of 10 particles.

In Fig.6.28.a, the two asymptotes of I, in the limit of pure Brownian motion (Pe— 0)
and pure hydrodynamics (Pe — oo) are plotted. At Pe=0.01, D, equals to 0.17 and is
well below the limit of D;-_—O.217 at Pe — 0. Even a negligibly small contribution from
the convective shear at Pe=0.01 seems to influence and disturb the random structure
of hard spheres. Similarly, D, equals to 0.07 at Pe=10" and is well above the limit of
D,=0.021 at Pe — co. A minute Brownian contribution af Pe=10" still strongly dictates
by rupturing the large clusters giving an enhanced local mobility. The relation of D, as
a function of the Péclet number is plotted in Fig.6.28.b, and we observe a behavior of the
short-time rotational self-diffusion coefficient which is very similar with the short-time
translational self-diffusion coefficient. D, is seen to decrease with increasing Pe except

in the region of Pe ~ 10 at which it is maximum.

Table 6.5.b shows small variations in D, and D, with an increasing number of parti-

cles. The only noticeable variation is in the short-time translational self-diffusion coeffi-
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cients computed in different directions and shown in Fig.6.29. D:,n is seen consistently
slightly larger (= 2 to 5%) than D:,w and D:,”. The flow direction is the z-axis and we
see here the advective effect which increases the mobility of the particles along the flow
direction. This trend is not seen for the rotational mode of the self-diffusivities as shown

in Fig.6.30.

The most noticeable difference in the short-time self-diffusivities is that results of D,
obtained from a monolayer are as much as two times larger than that of a three-dimension
model and this is shown in Table 6.5.b for the monolayer runs with 25 particles. There
is no difference in D, obtained by both models. For a monolayer, particles are restricted
to movements only in the z- and the y-axis and can-only rotate in the z-axis. These
restrictions are likely to enhance the instantaneous mobility of the particles in the x
and y-directions to compensate for zero mobility in the z2-direction. Next, we examine
the dynamics of particle diffusive behavior in a simple shear flow by focusing on the

long-time self-diffusivity.
VI1.3.2 The Long-Time Self-Diffusion Coefficients

The long-time self-diffusion coefficients are reported in Table 6.6 for the runs with
27 particles. Column (1) is the Péclet number. As seen from this table, 80 to 100 time
units are required for the sampling of particle positions for the computing of long-time
self-diffusivities. Simulations with larger number of particles (N = 63, 64 ,81 and 123)
are relatively short and do not provide sufficient numbers of particle configurations, and
this is the reason why we can only compute the long-time self-diffusivities with runs

of 27 particles. In Table 6.6, columns (2) to (5) are the steady long-time self-diffusion
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coefficients computed in the velocity gradient direction, D;o,yy, its standard deviation,
the steady long-time self-diffusion coefficient computed in the vorticity direction, D;o,zz
and its standard deviation, respectively. These coefficients are normalized by the infinite
dilution diffusion coefficient D,= kT /(67rna). The long-time self-diffusion coefficients
are defined in equation (2.27) and computed from the mean-square displacements of
the particle positions obtained by dynamic simulation. The final mean value of these
coefficients are sampled from a number of time intervals shown in column (7) and the

length of time for each sample is displayed in column (6). Note that the reported values

for the normalized D;o’yy and D;o,zz in Table 6.6 are scaled with the diffusive time.

The mean-square displacements have the following long-time behavior:
< (y(t) - y(trcf))z > = 2 D;o,yy (t —trcf) ’ (69)

((2(t) = 2(t,,))*) = 2D ., (t—t,.,) - (6.10)

D;o,yy and D;O’zz are computed by first plotting the mean-square displacements
of the particles against the elapsed time. The asymptotic value is obtained and then
averaged over a number of samples to improve the statistics of these coefficients. The
particle trajectories are followed during the course of dynamic simulations and the sudden
jumps in positions associated with periodic boundary conditions are removed by mapping
the particle trajectories as those would occur in the unbounded fluid. Bossis and Brady
(1987) have reported details of the self-diffusivities of Brownian particles for a monolayer

model at an areal fraction ¢,= 0.453 which is comparable to ¢$=0.302. Their results
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show a remarkable transition from a Brownian motion dominated regime (Pe < 1) to a
hydrodynamic dominated regime (Pe > 10) with a significant change in the behavior of

the long-time self-diffusion coefficient computed in the velocity gradient direction.

Figure 6.31 is a log-log plot of the simulation results for D;o,yy /D, as a function of
the Péclet number. For Pe > 1, the time should scale with 4~ and this is equivalent

£

to multiplying D, ,, and D;o,zz reported in Table 6.6 with Pe. Recall that the velocity
gradient of the shear flow is in the y-direction. For Pe < 1, the suspension is essentially
all Brownian and the dimensionless diffusion coefficient is relatively constant as shown
with the limit of D;o,yy/Do ~ 0.06 as Pe — 0. It is seen from Table 6.6 that D;o,yy is
smaller than the short-time D), which equals to 0.217 at Pe=0 (cf. Table 6.5.a). This
is expected because the diffusing particle must move a distance away from its starting
position, deform the local structure and exchange places with near neighbors. Such
behavior has recently been measured by van Megen, Underwood and Snook (1986) in
concentrated hard-sphere colloidal dispersions. Their values for the dimensionless short-
and long-time self-diffusion coefficient of unperturbed suspensions at an effective volume
fraction ¢,= 0.444 are 0.22 and 0.07, respectively. We obtained 0.217 for the short-time

and 0.06 for the long-time self-diffusivities for hard spheres at ¢$=0.45. The comparison

is clearly excellent.

At much higher Péclet number (Pe > 102), Fig.6.31 shows a very different relation of
D;o’yy /D, which grows linearly with increasing Pe. This is expected based on the purely

dimensional analysis: as Pe — oo, the only proper scale for diffusion is 'yaz; therefore,

2

Dy 4y Which is nondimensionalized by Do, should scale with Pe as Pe — oo. Our
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results indeed show this behavior remarkably well with D;o,yy /Do = 0.065 for Pe — oc.
Experiments by Eckstein et al. (1977) and by Leighton and Acrivos (1987) have quantified
the hydrodynamic dispersion of non-Brownian particles in a shear flow. This shear-
induced diffusive motion arises from the deterministic chaos displayed by the highly
nonlinear evolution equation for the particle positions (equation (2.7) as Pe — 00). The
two sets of experiments agree only at low volume faction (¢ < 0.2), but at higher ¢,
while the results from Eckstein et al. show an asymptotic value D;o ~ 0.03 for ¢ > 0.2,
Leighton and Acrivos obtain increasing D;o with large ¢. The most recent experiment
from Phan and Leighton (1992) shows the long-time self-diffusivity saturated at a value
of 0.09 for $=0.3. Our result, 0.065 lies between the results of these two groups and

agrees reasonably well with the new experiments of Phan and Leighton.

Figure 6.31 also shows clearly the transitional Péclet number ~ 10, where the be-
havior of the long-time self-diffusion coefficient changes from a strong Brownian regime
to a hydrodynamic dominated regime. At Pe=10, D;o,yy decreases to a minimum value
which is two orders of magnitude less than that of Pe < 1. It is again the special region
where the suspension strongly orders. Because of the order, the long-time self-diffusivity
drops dramatically as the particles cannot break out of their strings. Results of Brow-
nian dynamic simulations by Xue and Grest have also shown the similar minimum of

long-time self-diffusivities of ordered suspensions in an oscillating shear flow.

The long-time self-diffusion coefficient computed in the vorticity direction, the z-axis,

is plotted in Fig.6.32 as a function of the Péclet number. We observe a behavior similar

to that of D;o,yy/Do in Fig.6.31. For slightly deformed hard spheres (Pe < 1), Dy .. is
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relatively constant and for hydrodynamic dominated suspensions, the dimensional D;o’zz
scales with Pe. The two asymptotic values of D;Lzz at Pe — 0 and at Pe — oo are
similar to that of D;o’yy. Our results for D;O,ZZ/DO ~ 0.057 in the limit of Pe — oo
compared well to 0.067 from most recent measurements of Phan and Leighton. In the
special region of Pe &~ 10, D;o’zz decreased to a minimum value, but it remains close to

that of Pe < 1 in contrast to a more pronounced decrease of D;o,yy in this region.

Our study of self-diffusion for dense hard-sphere suspensions shows a clear distinction
between the diffusive regime (Pe — 0) and a lirr;it of strong hydrodynamics (Pe — 00)
with a transition region with Pe ~ 10. The long-time self-diffusion coefficients D, which
are constant at small Péclet numbers, decrease to minimum value at the transitional
region where the structure is strongly ordered and then grow linearly with increasing
Pe. In this special transitional region, the short-time self-diffusion is maximum as the
particles are relatively well separated and evenly spaced from each other. At high Pe,
the reduction of the short-time self-diffusion coefficient is seen as a direct result of large
particle clusters: particles cannot move without moving all members of the compact

cluster even on the short time scale.

V1.4 Conclusions

We have seen the shear thinning and shear thickening behavior in dense suspensions,
evidenced by the change of the steady shear viscosity with the Péclet numbers shown
in section VI.1. In section VI.2 the dynamics of the shearing deformation to suspen-
sion microstructure was presented with details of the flowing particles in the real and

Fourier space. In section VI.3 the diffusive motion of particles in a simple shear flow
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was illustrated by examining the self-diffusivities. We can now combine all valuable in-
formation and address the important question of the relation of suspension macroscopic
properties to the shear-induced microstructure. Recall that the suspension shear thins
well before the ordering takes place at Pe = 10. The hexagonally packed particles slide
relative to one another and flow with the bulk shear flow. This string formation has been
observed experimentally ir oscillatory shear (Ackerson and Pusey (1988) and Ackerson
(1988, 1990)). Nonequilibrium molecular dynamic (NEMD) simulations of atomic liquids
(Erpenbeck (1984), Heyes (1988), Weider et al. (1991), Laun et al. (1992)) and Brown-
ian dynamic simulations (Xue and Grest (1990), Wilemski (1991), Rigors and Wilemski
(1992), Cook aﬁd Wilemski (1992)) for hard spheres have also shown the ordered struc-
tures, but the string-like formation occurs in the shear thinning region compared to ours
which can be seen only after termination of shear thinning. Furthermore, the results from
these simulation methods, which neglect the many-body hydrodynamic interactions and
must rely on some form of the repulsive force to avoid the particle overlap, tend to show
structural order for a wider range of volume fraction. As we shall see in the next chap-
ter where we discuss the rheological and microstructural behavior for moderately dense
suspensions with a range of volume fraction from 0.316 to 0.419, the string formation
could not be seen for hard spheres with volume fraction below 0.419 for a similar range

of Péclet numbers from 0.01 to 105.

The tendency of the particles to flow as strings has been used to explain the shear
thinning phenomenon observed in NEMD and Brownian dynamics. Although the Brow-
nian suspensions in our study appear to form string-like order, the shear thinning is not

due to this structural packing. It is rather due to the decrease of the direct Brownian



131

contribution to the stress since the hydrodynamic contribution to the stress is virtually
unchanged from its zero Péclet number value even though the microstructure is signif-
icantly different (cf. Fig.6.1). This argument is made more clear with a plot of both
the steady shear viscosity 7, and the long-time self-diffusion coefficient D;o,yy /Do as a
function of the Péclet number in Fig.6.33. The left axis is for the steady shear viscos-
ity (®) and the right axis is for the long-time self-diffusion coefficient (A). The figure
shows clearly that the suspension has essentially completed the shear thinning process at
Pe=3, while the long-time self-diffusion coefficient starts to decrease at Pe=3 and attains
a minimum value at Pe=10. Strongly ordered structure occurs at Pe=10 as shown by
the minimum D;o,yy /D, and in Fig.6.8.c but this shear-induced order does not cause the
suspension to further shear thin. At Pe=3, we do not observe any ordered structure (cf.
Fig.6.8.c) yet the steady shear viscosity is as small as that of Pe=10, where the string-
like formation is found. This can also be seen from the results of Laun et al. which are
shown in Figures 6.34 and 6.35. In Fig. 6.34, the upper figure is a plot of the shear vis-
cosity obtained with different flow devices and the bottom figure is SANS measurements
for the structure factor on the plane normal to the flow with different shear rates for
Couette flow and in Fig.6.35 the structure factors measured in a Poiseuille flow. Their
“A4G” system, which is a suspension of electrostatically stabilized styrene-ethylacrylate-
copolymer at ¢=0.434, is close to the volume fraction ¢=0.45 in this study. The figures
show clearly that strongly ordered structure, which were seen with halo rings of intensity
maxima (at shear rates of ¥ = 0.6 sec  and 1 sec  for Couette flow, and ¥ = 0.1 sec
for Poiseuille flow) in the shear thinning region, completely disappeared in the plateau

region of minimum shear viscosity (at 4 = 50 sec = for Couette flow, and ¥ = 83 sec
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for Poiseuille flow). The minimum shear viscosity does not necessarily reflect an ordered

structure as seen in their experiments.

The shear thickening phenomenon can be explained by relating the high steady shear
viscosity to the formation of large clusters of particles which disrupt the imposed shear
flow. This flow blockage has also been seen in recent experiments by Boersma et al. for
suspensions of large particles (Pe — o0). The steady shear viscosity for an isotropic
structure is shown in Fig.4.4 and its value n,~ 6 is well below 7.~ 12 at Pe=10" seen
in Fig.6.2. Our results which are presented with the actual snap shots of the particle
positions in a monolayer model at Pe=10" (cf. Figures 6.15.a-c) and large values of the
pair-distribution function evaluated for touching particles for large Péclet numbers (cf.
Fig.6.7) evidently show that for hard spheres the shear thickening is associated with the
formation of elongated clusters of particles. This can also be argued from the fact that
the viscosity scales as the cube of the largest length, and for a given number density
of particles the only way to increase the viscosity is pack them into elongated clusters.
Compact spherical clusters will not increase the viscosity. The lack of any observations
of an ultimate shear thickening region with increasing shear rates in the experiments of
van der Werff and de Kruif for silica hard spheres are probable due to a small range of
shear rates. For Brownian hard spheres studied here, a Péclet number greater than 10’

is needed in order to observe the shear thickening.

In this chapter, we have presented the Stokesian-dynamics simulation method and
applied it to investigate the rheology, microstructure and self-diffusivities of dense hard-

sphere suspensions at a volume fraction ¢=0.45 in a simple shear flow. The remarkably
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good agreement between the computer simulation and experiment for the evolution of
the steady shear viscosity and for the static structure factor with the Péclet number
vindicates that Stokesian dynamics is well capable of excellent quantitative as well as
qualitative predictive abil‘ity. More importantly, the method provides a detailed under-
standing of the fundamental mechanisms causing interesting rheological behavior and its

important relation to the shear-induced microstructure.
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Table 6.1.a: Statistics for simulations of hard-sphere suspensions at a volume fraction
¢=0.45 and different Péclet numbers. Tables 6.1.a and 6.1.b give the necessary details of
each run and the sampling statistics for the rheology. Column (1) is the Péclet number,
Pe, and column (2) is the number of particles, N. Columns (3) and (4) are the starting
time and the end time of the run, respectively. Column (5) is the time step and column
(6) is the number of time steps. Column (7) is the length of time which is allowed
for each sample interval and column (8) is the time units which sampling intervals are
successively shifted in time. Column (9) is the total number of samples which is used to
compute the mean and statistics for suspension rheology. Initial particle configurations
of all the runs in the table are random except the special case with Pe = 10 shown at
the end of the table. For the run with Pe ="10, the initial particle placement is obtained
from the end of the run with Pe=10 and tepqg= 100. The symbol (*) denotes that a new
shear direction is tested along the y-axis. Results for the runs with larger number of
particles and with monolayers are shown in Table 6.1.b. The first 5,000 to 10,000 time
steps were discarded for the computing of suspension rheology.

Pe N | totart | tend Atger NSTEPS taiff | tshift # trials

0.01 | 27| 0.0 |500.0]5x10~4 108 130.0 | 10.0 25
0.10 27| 0.0 |5000]| 1078 500000 | 100.0 | 10.0 35
043271 0.0 50.0 | 103 50000 40.0 1.0 5
1.00 | 27| 0.0 |100.0| 10°3 100000 | 80.0 2.0 11
3.0027| 00 |150.0] 102 150000 | 60.0 2.0 41
6.00 | 27| 0.0 50.0 [ 10-3 50000 40.0 1.0 6
7.00 27| 0.0 50.0 | 10~3 50000 40.0 1.0 6
10.00 | 27| 0.0 |100.0| 10~3 100000 | 60.0 2.0 16
20.00 | 27| 0.0 60.0 | 1073 60000 40.0 1.0 16
102 |27 0.0 |100.0| 10-3 100000 | 60.0 2.0 16
2x10% [ 27| 0.0 60.0 | 10~ 60000 40.0 1.0 11
103 |27 0.0 |100.0| 10-3 100000 60.0 2.0 16
104 [ 27| 0.0 70.0 | 1073 70000 50.0 1.0 11
105 | 27| 0.0 [100.0| 1073 100000 60.0 6.0 9
106 | 27| 0.0 46.0 | 5%x10™% | 90000 40.0 1.0 6
oo |27] 0.0 26.0 | 10* 250000 20.0 1

"10.00 | 27 | 100.0 | 200.0 | 1073 100000 60.0 2.0 16
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Table 6.1.b: Statistics for simulations of hard-sphere suspensions at a volume frac-
tion ¢=0.45 and different Péclet numbers. Table captions are the same as shown in
Table 6.1.a. Initial particle configurations of all the runs with NV = 63, 64, 81 and 123
are random. A series of four continuing runs for a monolayer model with 25 particles
follows the order of bracketed numbers from [1] to [4] which are shown in the upper left

of Pe in column (1).

Pe N Lstart tend Atget NSTEPS taifs | Lshift # trials
0.01 | 63 0.0 40.0 | 5x10~% | 80000 30.0| 1.0 5
0.43 | 63 0.0 40.0 | 103 40000 30,0 1.0 5

10.00 | 63 0.0| 100.0| 108 100000 | 60.0| 2.0 15

10.00 | 64 0.0 | 100.0| 1073 100000 | 60.0 | 2.0 15

104 63 0.0 50.0 | 1073 50000 40.0 | 1.0 6

00 64 0.0 30.0| 107* 300000 26.0 1
001 81 0.0 60.0 | 5x10~% | 120000 46.0 | 1.0 6
0.43| 81 0.0 60.0 | 103 60000 46.0 | 1.0 6

10.00 | 81 00| 600 1073 60000 46.0 | 1.0 6

104 81 0.0 56.0 | 10~3 55000 40.0 | 1.0 6

—

043 123 0.0 40.0 | 5x10~* 80000 36.0

10.00 | 123 00| 500]| 10-3 50000 | 46.0 1
103 | 123 00| 400]| 1073 40000 | 36.0 1
Mo01 252D | 0.0 3500 5x10~%| 700000 | 100.0 | 10.0 5

®10.00 | 252D | 350.0 | 700.0 | 10=3 | 350000 | 60.0 | 10.0 30
“10.00 | 252D | 940.0 | 1240.0 | 10~3 | 300000 | 60.0 | 10.0 27
“103 | 252D | 700.0 | 940.0| 10=3 | 240000 | 60.0| 10.0 19
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Table 6.2.a: Results of the steady shear viscosities obtained by Stokesian dynamics
for hard-sphere suspensions at a volume fraction ¢=0.45 and different Péclet numbers.
Results are shown in this table for runs with 27 particles. Column (1) is the the Péclet
number, Pe, and column (2) is the number of particles, N. Columns (3) to (8) are
the mean and the standard deviation of the hydrodynamic, the Brownian and total
viscosity, respectively. The run with Pe = 10 denotes a new shear direction is tested
along the y-axis. Simulation results with larger number of particles (N = 63, 64, 81
and 123) and a monolayer (2D) with 25 particles are shown in Table 6.2.b.

Pe N nH 07];; 773 0773 77T 0-777'

0.01 | 27 | 4.611 [ 0.005| 9.052 | 9.111 | 14.644 | 9.114
0.10 | 27 | 4.573|0.035| 7.128 | 0.623 | 12.701 | 0.646
0.43 [ 27| 4.713|0.008| 6.289 | 0.056 | 11.001 | 0.608
1.00 | 27 | 4.795|0.009 | 3.737 | 0.018| 9.531 | 0.025
3.00 [ 27| 4.512|0.082| 1.465 | 0.068| 6.977 | 0.149
6.00 | 27 | 4.468 | 0.015| 1.317 |[0.017| 6.786 | 0.032
7.00 | 27 | 4.321 | 0.122 1.294 | 0.069 | 6.615 | 0.191
10.00 | 27 | 4.514 [ 0.057 | 1.082 | 0.026 | 6.597 | 0.082
20.00 | 27 | 6.052 | 0.162 | 0.399 | 0.037| 6.451 | 0.199
102 [ 27| 6.592(0.054| 0.184 |0.005| 7.776 | 0.058
2x10% | 27| 7.096 | 0.051 | 0.108 | 0.002{ 8.204 | 0.052
102 | 27| 9.225|0.100 | 0.030 | 0.001 | 10.256 | 0.101
10 [2710.889|0.094| 0.003 | 0.000{11.892 | 0.094
105 | 27| 13.870 | 1.680 | 2.7x10~% | 0.000 | 14.871 | 1.680
108 |27 19.717 | 3.292 | 4.1x107% | 0.000 | 20.717 | 3.292
oo | 27| 60.235 61.235

"10.00 | 27 | 4.643 | 0.049 0.798 0.022 | 6.441 | 0.071




Table 6.2.b: Results of the shear viscosities obtained by Stokesian dynamics for hard-
sphere suspensions at a volume fraction ¢=0.45 and different Péclet numbers. Results
are shown in the table with the following order of number of particles: N = 63, 64, 81
and 123. Results for a monolayer model with 25 particles are shown at the end of the
table. Table captions are the same as shown in Table 6.2.a. The relatively short runs
with 123 particles produce only one sample of results; therefore, the statistics were not

computed and listed in the table.
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Pe N My Ony Ns Oy Tz O,
0.01 | 63 | 4.425|0.011 | 10.168 | 8.150 | 16.594 | 8.152
043 | 63 | 4776 | 0.018| 6.480 | 0.130 | 11.256 | 0.147
10.00 | 63 | 4.595]0.073| 1.171 | 0.001 | 6.766 | 0.073
10.00 | 64 | 4.359|0.014| 1.175|0.006 | 6.434 | 0.020
10 63 | 10.065 | 0.195 | 0.003 | 0.000 | 11.068 | 0.195
0 64 | 67.151 68.151

0.01| 81 | 4775 0.006| 9.870 | 3.833 | 16.644 | 3.839
0.43| 81 | 4.789|0.003 | 6.630 | 0.046 | 11.419 | 0.049
10.00 | 81 | 4.592 | 0.040 | 1.286 | 0.018 | 6.878 | 0.057
10* 81 | 10.542 | 0.031 | 0.003 | 0.000 | 11.546 | 0.031
0.43 | 123 | 4.654 5.446 11.550

10.00 | 123 | 4.333 1.144 6.477

103 | 123 | 8.591 0.025 9.516
Wo01 | 252D | 4.816 | 0.041 | 9.185 | 6.600 | 16.000 | 6.684
“10.00 | 252D | 4.873 | 0.430 | 1.012 |0.112 | 6.473 | 0.541
“10.00 | 252D | 4.702 | 0.400 | 1.066 | 0.103 | 6.767 | 0.504
®108 | 252D | 9.458 | 0.336 | 0.025 | 0.002 | 10.483 | 0.338
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Table 6.4.b: The angularly averaged pair-distribution function evaluated
at particle center-center spacing r=2, g(2), for hard-sphere suspensions at a
volume fraction ¢=0.45 and different Péclet numbers. Columns (1) to (3)
are the Péclet number, Pe, the number of particles, N, and the angularly
averaged g(2), respectively. The symbol (**) denotes that g(2) is computed
by the Monte-Carlo method.

Pe N g(2)

0.01| 63 4.51
0.43 | 63 4.46
10.00 | 63,64 | 1.35
104 63 | 54.36

0.01 | 81 4.53
043 | 81 5.05
10.00 | 81 1.30
104 81 | 56.19
“20.00 4.65
0.00 | 123 4.59
0.43 | 123 4.94
10.00 | 123 0.84
103 123 | 47.88
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Table 6.5.a: Results of the short-time self-diffusion coefficients obtained by Stokesian dy-
namics for hard-sphere suspensions at a volume fraction ¢=0.45 and different Péclet num-
bers. Column (1) is Pe and column (2) is N. Columns (3) to (5) are the short-time
translational self-diffusion coefficients computed in the z-, y- and z-directions, respectively.
Columns (6) and (7) are the mean and standard deviation of the short-time translational
self-diffusion coefficient D,. Similarly, columns (8) to (12) give the short-time rotational
self-diffusion coefficients in the z-, y-, z-directions, the mean D: and its standard deviation.
The self-diffusion coefficients are normalized by the infinite dilution diffusion coefficient D,.
Results of runs with larger number of particles (N = 63, 64, 81 and 123) and a monolayer
with 25 particlwes are reported in Table 6.5.b. Note that D, is only truely a diffusivity at
Pe=0. At finite Pe, it gives a measure of the local mobility of a particle.

Pe

Oz

Oyy

Ozz

(D,)

o

O p.

D3

Tzx

Tyy

Tzz

0.00
0.01
0.10
0.43
1.00
3.00
5.00
7.00
10.00
20.00
102
2x102
103
104
10°
108

27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27

0.218
0.174
0.179
0.173
0.167
0.184
0.180
0.170
0.168
0.166
0.119
0.110
0.094
0.077
0.057
0.044
0.020

0.217
0.171
0.175
0.168
0.163
0.178
0.175
0.157
0.158
0.140
0.112
0.104
0.088
0.068
0.053
0.042
0.022

0.217
0.172
0.177
0.170
0.165
0.178
0.171
0.158
0.152
0.132
0.110
0.101
0.089
0.065
0.054
0.045
0.022

0.217
0.172
0.177
0.170
0.165
0.180
0.175
0.162
0.159
0.146
0.114
0.105
0.091
0.070
0.055
0.044
0.021

0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.001
0.003
0.001
0.001
0.000
0.001
0.001
0.004
0.000
0.002

0.603
0.553
0.554
0.545
0.533
0.567
0.556
0.526
0.519
0.475
0.411
0.386
0.331
0.252
0.215
0.175
0.113

0.604
0.553
0.555
0.545
0.534
0.564
0.549
0.532
0.519
0.494
0.416
0.384
0.333
0.254
0.209
0.174
0.108

0.604
0.553
0.554
0.542
0.531
0.560
0.551
0.527
0.524
0.507
0.409
0.386
0.326
0.256
0.206
0.166
0.111

0.604
0.553
0.555
0.544
0.533
0.563
0.552
0.528
0.521
0.492
0.412
0.385
0.330
0.251
0.210
0.171
0.111

0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.002
0.005
0.003
0.002
0.001
0.004
0.002
0.008
0.001
0.004
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Table 6.5.b: Results of the short-time translational and rotational self-diffusion coefficients
obtained by Stokesian dynamics for hard-sphere suspensions at volume fraction ¢=0.45 and
different Péclet numbers. The self-diffusion coefficients are normalized by the infinite dilution
diffusion coefficient D,. The symbol (*) shown next to N in column (2) denotes a monolayer
run. Captions of the table are the same as shown in Table 6.5.a.

Pe | N | D, | D, | Do, | (D) | Opy | Dry | Dry, | Dr. | (DD) | Oy,
0.00 | 64 | 0.204 | 0.205 | 0.204 | 0.204 | 0.001 | 0.570 | .569 | 0.569 | 0.569 | 0.001
0.01 | 63 | 0.198 | 0.194 | 0.197 | 0.196 | 0.001 | 0.557 | 0.560 | 0.557 | 0.558 | 0.001
0.43 | 63 | 0.185 | 0.185 | 0.183 | 0.184 | 0.000 | 0.541 | 0.540 | 0.542 | 0.541 | 0.000
10.00 | 63 | 0.184 [ 0.172 | 0.174 | 0.177 | 0.001 | 0.520 | 0.529 | 0.522 | 0.524 | 0.002
10.00 | 64 | 0.187 | 0.173 | 0.171 | 0.177 | 0.000 | 0.520 | 0.529 | 0.529 | 0.526 | 0.000
10 | 63 | 0.093 | 0.080 | 0.076 | 0.083 | 0.004 | 0.268 | 0.288 | 0.289 | 0.282 | 0.006
oo | 64 | 0.020 | 0.022 | 0.024 | 0.022 | 0.002 | 0.120 | 0.112 | 0.112 | 0.114 | 0.004
0.01 | 81 | 0.191 ] 0.190 | 0.191 | 0.191 | 0.000 | 0.551 | 0.550 | 0.549 | 0.549 | 0.000
0.43 | 81 | 0.191 | 0.188 | 0.188 | 0.189 | 0.000 | 0.539 | 0.543 | 0.541 | 0.541 | 0.000
10.00 | 81 | 0.217 | 0.181 | 0.188 | 0.195 | 0.002 | 0.536 | 0.569 | 0.559 | 0.555 | 0.004
104 | 81 | 0.092 | 0.084 | 0.082 | 0.086 | 0.000 | 0.272 | 0.281 | 0.279 | 0.277 | 0.000
0.43 | 123 | 0.206 | 0.203 | 0.203 | 0.204 0.550 | 0.552 | 0.551 | 0.551

10.00 | 123 | 0.189 | 0.182 | 0.184 | 0.185 0.520 | 0.526 | 0.517 | 0.521

103 | 123 | 0.116 | 0.111 | 0.105 | 0.110 0.340 | 0.342 | 0.342 | 0.341

0.01 | 25* | 0.336 | 0.329 0.333 | 0.000 0.582 | 0.582 | 0.001
10.00 | 25* | 0.335 | 0.332 0.333 | 0.011 0.582 | 0.582 | 0.018
10.00 | 25* | 0.338 | 0.335 0.336 | 0.010 0.589 | 0.589 | 0.016
108 | 25* | 0.213 | 0.215 0.214 | 0.003 0.316 | 0.316 | 0.004
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Table 6.6: Results of the long-time self-diffusion coefficients obtained by Stokesian dynam-
ics for hard-sphere suspensions at a volume fraction ¢=0.45 and different Péclet numbers.
Column (1) is Pe. Columns (2) to (5) are the long-time self-diffusion coefficient computed
in the y-direction, D;Yw/ D,, its standard deviation, the long-time self-diffusion coefficient

computed in the z-direction, D; ../ Do, and its standard deviation, respectively. The long-
time self-diffusion coefficients are normalized by the infinite dilution diffusion coefficient D,.
Columns (6) and (7) are the length of time of each sample and the number of samples which
are used to compute these long-time self-diffusion coefficients, respectively. All runs in the
table are with 27 particles. As shown in columns (6) and (7) in this table, the long-time self-
diffusivity requires long run times of 100 or more and the relatively short runs with a large
number of particles (N = 64, 81, 123 and 126) do not provide sufficient data for the particle
positions which are needed for the computing of the long-time self-diffusion coefficients.

Pe D o D O,, | taigs | # trials

O, Yy vy ©0,z2

0.00 { 0.059 | 0.012 | 0.055 | 0.010 | 100.0 9
0.01 | 0.068 | 0.003 | 0.058 | 0.008 | 185.0 4
0.10 [ 0.076 | 0.015 | 0.065 | 0.005 | 120.0 16
0.43 { 0.105 | 0.005 | 0.079 | 0.010 | 100.0 19
1.00 | 0.148 | 0.033 | 0.179 | 0.035 | 100.0 19
3.00 | 0.054 | 0.005 | 0.055 | 0.009 | 100.0 13
5.00 | 0.020 | 0.002 } 0.020 | 0.003 [ 50.0 6
7.00 | 0.008 | 0.002 | 0.015 ] 0.002 | 50.0 6
10.00 | 3x10 ™" | 0.000 | 0.004 | 0.000 | 250.0 11
20.00 | 0.018 | 0.001 | 0.020 | 0.002 | 85.0 11
102 0.029 | 0.003 | 0.025 | 0.002 | 50.0 6
2x10% | 0.028 | 0.003 | 0.027 | 0.004 | 85.0 11
108 0.039 | 0.004 | 0.046 | 0.003 | B5.0 11
10* 0.058 | 0.016 | 0.054 | 0.009 | 100.0 16
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Figure 6.1: The relative viscosity 7, of hard-sphere suspensions at a volume

fraction ¢=0.45 obtained by Stokesian dynamics as a function of Pe: total (@)
viscosity, hydrodynamic (A) viscosity and Brownian (0J) viscosity.
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Figure 6.2: Comparison of the simulation results for the steady shear viscosity as
a function of Pe at a particle volume fraction ¢=0.45 (N = 27, 63, 64, 81 and 123;
monolayers with N = 25; and (X) at Pe=10 denotes the shear direction along the
y-axis) with the experiments of van der Werff and de Kruif (1989) for ¢=0.419,
0.443 and 0.47.
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Figure 6.3.a: Plot of the first normal stress differences ¥, versus Pe.
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Figure 6.3.b: Plot of the second normal stress differences Y, versus Pe.

Figure 6.3.a-b: The first (Fig.6.3.a) and second (Fig.6.3.b) normal stress differences
of hard spheres at a volume fraction ¢=0.45 obtained by Stokesian dynamics as a
function of the Péclet number: total (@) normal stress differences, hydrodynamic (A)
and Brownian (0) contribution.
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Figure 6.4: The steady first and second total normal stress differences for hard
spheres at a volume fraction ¢=0.45 and N = 27 obtained by Stokesian dynamics
as a function of Pe: the first (@) and the second (A) total normal stress differences.
The horizontal dotted line through zero is drawn to guide the eyes. The first total
normal stress differences are also plotted for runs with larger number of particles:

N =63, 64 (0O, 81 (O) and 123 ().
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[
o

Figure 6.5: The radial dependence of the pair-distribution function g(r) determined
by Stokesian dynamics for hard-sphere suspensions with a volume fraction ¢=0.45,
N = 123, and different Pe numbers: (dotted curve) 0, (dotted-dash curve) 0.43, (solid
curve) 10, and (dashed curve) 1000. The insert figure in the upper left corner is the
plot of g(r) on a logarithmic scale for a small range of r. At r=2 (when two particles
are in contact), g(2) is smallest for Pe=10, largest for Pe=1000, and there is a very
small difference between the equilibrium (Pe=0) and slightly deformed suspensions
(Pe=0.43).
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Figure 6.6: Plot of the angularly averaged pair-distribution function versus the particle
center-center spacing distance r for different Pe numbers: (dotted curve (a)) O,
(dotted-dash curve (b)) 0.43, (solid curve (c)) 10 and (dashed curve (d)) 1000. It is seen
from the figure that the spike of g(r) at r=4 is sharp for the curve with Pe=1000. For the

curves with Pe=0.0, 0.43 and 10 the peak is broad and r is slightly shifted to the larger
value (r = 4.1 to 4.2).
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Figure 6.7: The angularly averaged pair-distribution function g(r) evaluated at particle
center-center spacing r=2 (when particles are in contact), g(2), obtained by Stokesian
dynamics for hard spheres at volume fraction ¢=0.45 as a function of the Péclet number.
g(2) is plotted with various sizes of number of particles: N = 27 (@), 63, 64 (O), 81 (O)
and (A) N=123. For suspensions with small deformation (Pe<1), g(2) is relatively constant.
As Pe increases, g(2) first decreases to a minimum at Pe=3, increases with large Pe, and
approaches an asymptotic limit for Pe210000. Note that g(2) is plotted on a logarithmic
scale.



152

"10°0=2¢ e Sun ommswwds 3y 01 paredwoo JuoqySiau 1saxeau 3531y oy Jo Juruadreys ay ofse 10u pue uonewoy

3uins a1 Aos1s3p QOO =34 3 S33eI 1e3Ys Y3y Y], "001 PUE OZ ‘01=97 10§ uonsaxp mopy 3y Suope sapured Summop

JO uonewIoy 3ulls PUNSIP SMOYS (A%)F "UoNdNP 1UAPEIS AIDO[A 3Y3 SI STKE-A [EDNIIIA SI PUE UOTIDAIP MOJ Y3 ST SIXE-X
[eruoziroy ay [ “Anpiqeqoid mof 1ussaidas 10j00 yjep jo suordas pue Auprqeqoid yBry 1uwasardar 10[oo 1y3if jo suoiSay [0 3un
o ut sopned /7 21€ 219y [, SISQUINY 13[09( IUSIIP PUE ¢H'(=0 UONOEY Jwnjoa & 3e suoisuadsns arayds-prey 105 (Ax)F

‘widuro oy 1€ pnred e s1 319y 3eyd uaald sued A-x ayy ur apnred e Suipuyy 1oy Lisusp Liiqeqoxd jo to[d v ce'gg smBiy

0001=2d 001=2d 0¢=2d O1=2d

10°0=2d

(Ax)3
LZ=N ‘SP°0=0



153

"0001=9 e s3ve1 Jeays ySiy a1 £q padonsap

SI UOIEWIO) [EUOSEXaY YL ‘001 PUE 07 ‘01=74 10j sapnred Suimoy jo sduins jo Junped LJEUOSEX3Y, 1DUNISIP B SMOYS
(£2)F uondanp 1ua1perd AD0PA Y3 SI SIXE-A [EJ1I3A 33 PUE UOTDAIP ANDILIOA S ST STXE-Z [EIUOZLIOY oy, -aueyd -z o
o1 seoipuadiad st uondanp moy ay 1, “Arjiqeqoid moy uasaxdas 10jod yaep jo suoidar pue Aipqeqord ydry 1uasardas sojoo
1311 Jo suoiday “s1qUINU 133 IWARYIP pue sapiued /7 M b (=0 JO UOTIEI SWN[OA € 18 saroyds prey 10j “(£2)F
‘urduo ayp 1e spnred e st a1au ey waaid sueyd 4z ayp ur spnred € Surpuy 1oj Asuap Aupqeqoid jo1oid v :q'g9 ainSig

000T=2d

0c=ad Or=2d

(£2)3
R LT=N ‘Sy"0=0



154

"0001=24 Aq paKonsap st pue §Q1=74 1€ 33EMIdON[ 03 su1daq uonewof Juins 3y o7 pue

01=3g 10§ sapuired Juimop Jo s3unls smoys (zX)F "SIXe-Z [ESNI2A Y1 ST UOTDANP ANDIIOA Y1 PUE SIXE-X [EIUOZLIOY U3 §1
uondanp mofy 3y “Auiqeqord mopuasarda s0jod yrep jo suoidar pue Aipiqeqord ySiy ruasardar soj0o 143y jo suoiday
‘[1o0 wun 3y ur saprred /7 AU AISY L SISqUINU I3[0 IUSIIP PUE GF'(=0 UONIEI dwm{oA & 1e sarayds prey 10§ {(zx)F
‘urdnio sy 1e spnred e st 219y 16y uaard swed z-x oy ur apnred e Jurpury 1oy Aisuap Lnjiqeqord jo 10jd y °grg ainSig

0001=2d 00T=2d 0¢=ad

10°0=2d

(zx)8
LZ=N ‘St 0=9



155

"007=34 Aq pa4o1isap st uorrewrioj unypoed jeuodexay

2y, Bupped  [euodexay, 10UNSIP B YlM (7 PUE O]=34 10J UI3S 3Q UED INIDNIISOIIW PaI3pI0 A[Suons ayl pue ¢=a7

12 19p10 01 u1daq sapured Sumop ay ], "woNOANP 1uAPesd AIDO[RA JY1 §T SIxe-A [EO1IA Y3 PUE UONIANP AID1IOA aya st
sixe-z [esuozioy ay 1, dueld £z o2 o1 zemorpuadiad st wonoanp moy 3y J, “Aujiqeqord mof 1uasardar 10100 yep jo suoidar
pue Lipiqeqoxd ySiy 1uasardas 10100 1ySiy jo suoiday 0oz 01 [ woly :equInu 333 2 jo 2Fuer [ews & pue sapnaed

LT Yum G5 0=¢ jo uonsey swnjoa e uotsuadsns arsyds-prey e 105 (£2)F Lisuap Lupqeqord jo 1o[d v :p-g'g sinSiy

00c=2d 001=2d 0T=ad 01=2d

(£2)3
R LZ=N ‘Sy"0=0



156

.ﬁ.w.o.wEEcgozmmca‘xuﬁE:oﬁu\&%aomu%%E&,NVMBENEE%uﬁuo.«ﬁuiuﬁomm\s ﬁu_agcuuﬁ&__ﬁcowmxﬁ__
Te[luIls € JO uonewIof 3yl AoN -aueld z-x sy 03 reporpuadiad st A ‘Uonoap mopy mau 3y, A 03 X WOI UOHIAIP MOJ A
JuiBueyd uo 31nwNNS Jo UoNN|OA? um Ay smoys amBy sy Aupqeqoid M0[ 1u3sa1dar 30[03 31ep jo suordar pue Anpiqeqoid
Y31y 1uasarday 10700 13if Jo suoiday 1= pue sspured /7 yum ¢F'0=0 Jo uonoery swmjoa e Je $213yds prey 10§ ‘(zX)F
urduo sy 1e spnred e st 319y 18 uaard sueld z-x a1 ur sprured € Surpuy 10§ Ausuap Lupiqeqoid jo 10/d y : 9°g°g aunSyy

€

00T 03 §ST 2w

0ST 03 QLT -ouIp

OLT 03 Q01 -ewy

(z°%)3
Z 0T=2d ‘LZ=N ‘St"0=9



157

$=0.45, N=63, 64 y
g(x,y) .
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Pe=0.01  Pe=0.43

Pe=10
Figure 6.9.a: A plot of probability density for finding a particle in the x-y plane
given that there is a particle at the origin, g(x,y), for hard spheres at a volume
fraction ¢=0.45 and different Péclet numbers. There are 63 or 64 particles in the

unit cell. Regions of light color represent high probability and regions of dark color
represent low probability. The flow direction is the horizontal x-axis and the velocity
gradient direction is the vertical y-axis. g(x,y) shows a string formation of flowing
particles for Pe=10.
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0=0.45, N=63, 64 Y

Pe=0.43

N

Figure 6.9.b: A plot of probability density for finding a particle in the z-y plane
given that there is a particle at the origin, g(z,y), for hard spheres ar a volume
fraction ¢=0.45 and different Péclet numbers. There are 63 or 64 particles in the
unit cell. Regions of light color represent high probability and regions of dark color
represent low probability. The flow direction is perpendicular to the z-y plane. The
horizontal z-axis is the vorticity direction and the vertical y-axis is the velocity
gradient direction. g(z,y) shows a distinct hexagonal packing of strings of flowing
particles for Pe=10.
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0=0.45, N=123, Pe=10

g(z.y)

Figure 6.10.d: Plots of the particle positions obtained by Stokesian dynamics for a
hard-sphere suspension at volume fraction $=0.45 with 123 particles and Pe=10.

From top to bottom: the left column shows a plot of the steady probability density
functions g(z,y), gx.y), and g(x,z) and on the right the corresponding particle positions
determined from these density plots.
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0=0.45, N=81
g(z,y)

i

Pe=0.43

Pe=10 Pe=104

Figure 6.11.a: A plot of probability density g(z,y) for hard spheres at a volume
fraction ¢=0.45 and different Péclet numbers. There are 81 particles in the unit cell.
Regions of light color represent high probability and regions of dark color represent
low probability. The flow direction is perpendicular to the z-y plane. The vorticity
direction is the horizontal z-axis and the velocity gradient direction is the vertical
y-axis. In the region of string formation, the hexagonal string arrangement cannot be
accommodated within the unit cell for 81 particles. It is inclined as illustrated in
Fig.6.11.b.
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$=0.45, N=81, Pe=10
g(z,y)

Figure 6.11.b: A plot of particle positions determined from the density plot of
Fig.6.11.a for g(z,y) with Pe=10, N=81 and ¢=0.45. The upper figure is the density
plot for g(z,y). The lower figure is the particle positions which shows the formation

of the hexagonal packing and "strings" of particles in the flow direction. The
hexagonal pattern is rotated by an angle 8 =-15 degrees relative to the horizontal z-axis,
the vorticity direction, in order to accommodate the packing with the unit cell. The
flow direction is perpendicular to the z-y plane.
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Figure 6.12: A snap shot of the starting configuration for 25 particles in a monolayer
model for hard spheres at an areal fraction ¢,=0.675 which is comparable to a volume
fraction ¢=0.45. The center square is the unit cell. The particles outside the unit cell
are periodic images.
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Figure 6.13.a: A snap shot of the particle positions at time t=100. The suspension
is sheared with Pe=0.01 and it is seen from the figure that the particle configuration is
“random” as expected for suspensions with strong Brownian motion.



170

o9

050
o

00
o'

Figure 6.13.b: A snap shot of the positions of 25 particles at time t=350. The
figure shows a random structure for suspensions with a small deformation (Pe=0.01).
The particles are well dispersed in the Brownian domination limit.
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Figure 6.14.a: A snap shot of the particle positions at time t=450. The suspension
is sheared at Pe=10 and the figure shows clearly the horizontal “string” formation of
flowing particles. The particles are relatively well separated from each other. The flow
direction is the horizontal z-axis and the velocity gradient direction is the vertcial y-axis.



172

550. At Pe=10, the

Figure 6.14.b: A snap shot of the particle positions at time t
microstructure displays a distinct formation of horizontal strings of flowing particles.
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Figure 6.14.c: A snap shot of the particle positions at time t=700. The strong
ordering microstructure with string formation of flowing particles is stable as the shear
rate is kept constant at Pe=10.
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Figure 6515.a: A snap shot of the particle positions at time t=750. Strong shear
rates (Pe=10") are seen to destroy the string formation of the flowing particles and the
hydrodynamically driven microstructure clearly shows large clusters of particles.
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Figure §.15.b: A snap shot of the particle positions at time t=850 for hard spheres
with Pe=10 . Note the very large spanning cluster of the particles along the compression
axis (135") of the shear flow for strong hydrodynamic interactions.
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Figure ;&15.@: A snap shot of the particle positions at time t=940 for hard spheres
with Pe=10 . The suspension structure is observed with chains of clusters of the particles
which span the entire unit cell.
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Figure 6.16.a: A snap shot of the particle positions at time t=1100 for hard spheres
with P3(3:10. Note the absence of the large cluster as the Péclet number is reduced from
Pe=10 to Pe=10. The particles flow as strings along the flow direction and are very well
dispersed.
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Figure 6.16.b: A snap shot of the particle positions at time t

spheres with Pe

10. The figure displays a suspension microstructure with distinct string

formation of flowing particles.
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Figure 6.18: The equilibrium structure factor S(k) of hard-sphere suspensions

at a volume fraction ¢=0.45 and 81 particles obtained by Stokesian dynamics at
Pe=0 with different dimensionless wave numbers : (dotted curve) S(k,), (solid
curve) S(ky) and (dashed curve) S(k,). The equilibrium structure factors computed
along different directions show small variations due to a relatively small number of
500 samples of particle configurations .



181

Y
9 >
Z
30,..IIII!|lllllll||l!El'Il!l!llﬁl!ll'T]Tl‘lllllllllllll‘lli[illﬁq
L h ]
- ,;e $=0.45, N = 81, Pe=10 ]
C A -4 - §=-15° ]
= . 0 P
20 § C -~ 6= 0% S(ky) =
_ ; ‘.‘ai [} 6= 45° N
C H O 8=90°%, Stk J
- ¢ ‘é (Y) =
- i L -
_ éé ¢ 5"&\ B
S(k) 10 = § i s A
L § 5; g %‘ -
[ ‘ A ,  paa
- g i S ’ l;f! S S
- § . ol s ¢ L
_ ¢y : 3 ‘L g "“ ]
N 0] "y, . -8, i E |
S - J‘: = éﬂ%\ ‘E s ;. %?E - ¢.'1-'Q iy - “:
il S "a:..-;ﬂ:g \N%.iz;@"i i °ﬂ"”°-m'.@'.g; é—- N P &F
- &, g 8 2
- B4 8 ” xgj
- 8
C a f
- Ly,
= Y
R 4
-10 SRS SRS BUTUEAREVESURRER RN ENENIRRURE REUN NN RNRRRENRE
2 3 4 5 6 7 8
k

Figure 6.19: The structure factor S(&) for hard-sphere suspensions at a volume
fraction ¢6=0.45, Pe=10, and 81 particles computed with different angles @ of the
incident light: (A) -15 degrees, (----) O degrees (S(k,)), (O0) 45 degrees and
(.....) 90 degrees (S(k,)). The figure clearly shows strong intensity maxima for
S(k) which are computed with wave numbers parallel to the -15 and 45 degrees
line. The angle § is shown in the upper right of this figure.
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Figure 6.20: The line structure factor S(k,) for hard-sphere suspensions at a
volume fraction ¢=0.45 and 123 particles obtained by Stokesian dynamics for
different Péclet numbers: (A) 0.43, (@) 10, and (O) 1000. The dimensionless
wave number k, is parallel to the flow direction, the x-axis.
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Figure 6.21: The static line structure factor S(k,) for hard-sphere suspensions

at a volume fraction $=0.45 and 123 particles obtained by Stokesian dynamics
for different Péclet numbers: (A) 0.43, (&) 10 and (T 1000. The dimensionless
wave number ky is parallel to the velocity gradient direction, the y-axis. It is seen

from the figure that S(k,) for Pe=10 shows the highest scattered intensity at wave
numbers ky=3.6 and 7.4 compared {0 S(ky) for Pe=0.43 and 1000 which show
insignificant scattering light intensity for this range of k..
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Figure 6.22: The line structure factor S(k,) for hard-sphere suspensions at a volume

fraction ¢=0.45 and 123 particles obtained by Stokesian dynamics for different
Péclet numbers: (A) 0.43, (@) 10, and ([O) 1000. The dimesionless wave number
k, is parallel to the vorticity direction, the z-axis. The structure factor S(k,) for
Pe=10 shows a high peak of scattered intensity at the dimensionless wave number
k,=6.
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Figure 6.23.2-b: The structure factors S(ky) and S(k,) for hard-sphere

suspensions at a volume fraction ¢=0.45 with N = 123 and different Pe
numbers: (A) 0.43, (@) 10 and ({J) 1000. The structure factors are
computed with small wave numbers ranging from 0.5 to 2.5. S(ky) and S(k,)

for Pe=10 show the long-ranged correlation of the flowing particles.
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Figure 6.24: The structure factor S(k,, /%y) obtained by Stokesian dynamics for hard

spheres at a volume fraction ¢$=0.45 with 123 particles and four different Péclet

numbers: 0 (upper left), 0.43 (upper right), 10 (lower left), and 1000 (lower right).
Regions of light color represent high and regions of dark color represent low scattering
light intensity. The upper right figure displays the range of the dimensionless wave
numbers £, and ky A contour plot of S(/ex,k),) with Pe=10 shows circular regions of
high intensity along the horizontal lines with wave numbers £~ +/- 4 and two "bands

of high scattered intensity along the vertical lines with wave numbers = +/-3.5.

¥
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Figure 6.25: The structure factor S(k,, k) obrained by Stokesian dynamics for hard

spheres at a volume fraction ¢=0.45 with 123 particles and four different Péclet
numbers: 0 (upper left), 0.43 (upper right), 10 (lower left), and 1000 (lower right).
Regions of light color represent high scattering light intensity and regions of dark color
represent low scattering light intensity. The upper right figure displays the range of
the dimensionless wave numbers £, and ;. A contour plot of §(£,,£,) shows a distinct
"hexagonal" pattern of six intensity maxima which is superimposed on the halo ring
for Pe=10. Another six smaller intensity maxima at smaller wave numbers shows the
long range order.
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0=0.45, N=123, Pe=10

Figure 6.27: A comparison of the nonequilibrium unperturbed (left column) and the
perturbed strucrure factors (right column) obtained by Stokesian dynamics for hard

spheres at a volume fraction ¢=0.45 with 123 particles and Pe=10. The perturbed
structure facror is defined as S'(k) = S(k,Pe) - S(k). S(k,,k,) and S'(/ex,kz) are shown in
the top row and S(kz,k),) and S'(kz,/ey) are shown in the bottom row. The range of the
dimesionless wave numbers 4, k, and 4, is from +/-0.5 to +/-4.0. Regions of light

color represent high scattering light intensity and region of dark color represent low
scattering intensity.
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Figure 6.28.b

Figure 6.28.2-b: The steady short-time translational (@) and rotational (A)
self-diffusion coefficients of hard spheres at a volume fraction ¢=0.45 with 27
particles obtained by Stokesian dynamics as a function of the Péclet number. It
is seen from the plots that both the self-diffusion coefficients remain relatively
constants at low Peclet numbers (Pe<1), increase slightly at (Pe=10) and finally
decrease noticeably with increasing Pe. Both coefficients are normalized by the
infinite dilution diffusivity D,
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Figure 6.29: The steady short-time translational self-diffusion coefficients:
the mean (@), and the coefficients computed for the x-axis (O (the flow
direction), the y-axis (A) (the velocity gradient direction) and the z-axis (O)
(the vorticity direction) of hard spheres at a volume fraction ¢=0.45 and 27
particles obtained by Stokesian dynamics as a function of the Péclet number.
It is seen from the figure that the self-diffusion coefficient computed in the

flow direction, Df,", is consistently slightly larger than the coefficients
computed in the directions of the velocity gradient and vorticity.
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Figure 6.30: The steady short-time rotational self-diffusion coefficients:

the mean (@), and the coefficients computed for the x-axis ([J), the y-axis
(A) and the z-axis (O) of hard spheres at a volume fraction ¢=0.45 and 27
particles obtained by Stokesian dynamics as a function of the Péclet number.
The short-time rotational self-diffusion coefficients computed for different
directions show negligible variations for the entire range of Pe.
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Figure 6.31: The long-time self-diffusivity computed in the velocity gradient
direction, the y-axis, normalized by the infinite dilution diffusivity D is plotted
as a function of the Péclet number for hard spheres at a volume fraction ¢=0.45.
The limiting asymptotes for the long-time self-diffusivity are: DL, ,,/ D~ 0.06
as Pe=0 and DL ;= 0.065%Pe for Pe—-. Note that the dimensional

long-time self-diffusivity DZ ,, scales as va® for the limit Pewsco.
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Figure 6.32: The long-time self diffusivity computed in the vorticity direction,
the z-axis, normalized by the infinite dilution diffusivity D, is plotted as a

function of the Péclet number for hard spheres at a volume fraction ¢=0.45.
The limiting asymptotes for the long-time self-diffusivity are: DZ,_, /D= 0.055
as Pe=0 and D~ 0.057%Pe for the limit of Pe=co. Note that as

Pe—soo, the dimensional long-time self-diffusivity D2, scales as 'yaz,
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Figure 6.33: The steady shear viscosity 77, and the long-time self-diffusion

coefficient DL ,,/ D, of hard spheres at a volume fraction $=0.45 with 27
particles obtained by Stokesian dynamics as a function of the Péclet number.
The left axis is for the steady shear viscosity and the right axis with a logarithmic
scale is for the long-time self-diffusion coefficient. It is seen from the figure that
while the suspension stops shear thinning at Pe=3, the long-time self-diffusion
coefficient begins to decrease at Pe=3 and attains a minimum value at Pe=10.
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Figure 6.34: Experimental results of Laun et al. for (top figure) the steady shear
viscosity (Fig.9) and (bottom figure) contour plots of the structure factor measured for
“A4G” system in a Couette flow with different shear rates (Fig.24). The flow direction
is normal to the vorticity-velocity gradlent plane. The “A4G” system is a suspen-
slon of electrostatically stabilized styrene-ethylacrylate-coplymer dispersed in glycol at
®=0.434. (Figures 9 and 24 are taken from Laun et al., J. Rheol., 36, 743,1992)
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Figure 6.35: Experimental results of Laun et al. for the structure factor measured for
“A4G" system in a Poiseuille flow with different shear rates (Fig.23). The flow direction
is normal to the vorticity-velocity gradient plane. (Figure 23 is taken from Laun et al.,
J. Rheol., 36, 743,1992)
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Chapter VII

STOKESIAN DYNAMICS SIMULATION
OF

MODERATELY DENSE HARD-SPHERE SUSPENSIONS
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In this chapter, we investigate the rheological and microstructural behavior of mod-
erately dense hard-sphere suspensions with a range of volume fraction ¢ from 0.316 to
0.419. At equilibrium, the structure of these suspensions is isotropic as the range of
volume fraction is below the freezing phase transition of hard spheres. Hoover and Ree
(1968) and Kose and Hachisu (1974) have measured the phase transition of hard spheres
at equilibrium and obtained ¢, = 0.494+0.002 for the fluid phase and ¢,,= 0.545+0.002
for the crystalline phase. A detailed study of the equilibrium phase behavior of a hard-
sphere model has also been reported by Pusey and van Megen (1986) and Pusey (1991).
As the suspensions are sheared, the changing microstructure causes change in suspen-
sion macroscopic properties. The influence of the imposed shear on the macroscopic
properties was discussed for dense hard-sphere suspensions at particle volume fraction
¢=0.45 in chapter VL. It is of our interest to study the dynamics of shearing deformation
to the suspension and to predict the macroscopic properties based on the shear-induced

microstructure.

The simulation results are presented for four hard-sphere suspensions with volume
fractions ¢=0.316, 0.37, 0.4 and 0.419. For these moderately dense suspensions, we focus
on determining the transitional volume fraction which hard-sphere suspensions can be
sheared to order and the transitional Péclet number where the suspension behavior
changes from a strong Brownian limit to a hydrodynamically dominated regime. The
outline of this chapter is identical to chapter VI and the results for ¢=0.45 are used
in this chapter as a reference to compare with these moderately dense suspensions.
Suspension rheology is discussed first, followed by the shear-induced microstructure and

the self-diffusivities.
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Details of the dynamic simulations and the sampling statistics for the rheology are
reported in Tables 7.1 to 7.4 for $=0.316, 0.37, 0.4 and 0.419, respectively. Column (1)
is the Péclet number, Pe, and column (2) is the number of particles, N. Columns (3) to
(6) are the starting time, ending time, the time step and number of time steps for each
run, respectively. Column (7) is the elapsed time of each sample and column (8) is the
dimensionless time units by which each sample is successively shifted in time. Column
(9) is the number of samples which are used to compute the steady shear viscosities and

normal stress differences.

Initial random samples of particle configuration are selected for the runs of suspen-
sions at ¢=0.316, 0.37 and 0.4. For the runs with ¢=0.419, after an initial sample of
particle configuration is chosen the suspension is sheared from Pe=0.01 to Pe=10". At
the end of each of the thirteen-run series, the Péclet number is step increased and the sus-
pension is sheared for an average dimensionless time of 60. These continuing runs which
follow the measurement practice in experiments are tested for the influence of starting
particle configurations on suspension properties. In addition to runs with 27 particles,
there are two special runs with 123 particles at Pe=10 for suspensions at ¢=0.316 and

0.419.
VII.1 Suspension Rheology
VIL.1.1 The Steady Shear Viscosity

Results for the steady shear viscosities of these four hard-sphere suspensions obtained

by Stokesian dynamics for different Péclet numbers are summarized in Tables 7.5 to 7.8.
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Column (1) is Pe and column (2) is N. Columns (3) to (8) are the steady hydrodynamic
viscosity, its standard deviation, the steady Brownian viscosity, its standard deviation,

the steady total viscosity and its standard deviation, respectively.

Results of the steady shear viscosities from Table 7.5 for ¢=0.316 and from Table 7.6
for ¢=0.37 are plotted in Figures 7.1 and 7.2, respectively. The figures show the change
of the hydrodynamic (A) and Brownian (O) contribution to the total (@) shear viscosity
with varying Péclet numbers. A small decrease in the total shear viscosity in the shear
thinning region with Pe < 10 corresponds to a decrease in the Brownian viscosity as
the hydrodynamic viscosity is constant. The total shear viscosity shows a small increase
at large Péclet number (Pe > 102) which is due to small increase in the hydrodynamic

viscosity since the Brownian viscosity has essentially vanished for Pe > 10.

The relation of the steady shear viscosities and the Péclet number are shown in
Fig.7.3 for $=0.4 and in Fig.7.4 for ¢=0.419. Data for the two plots are obtained from
Tables 7.7 and 7.8, respectively. Figures 7.3 and 7.4 display the same trend of the
total shear viscosity, but the shear thinning and shear thickening are more pronounced
than that of suspensions at ¢=0.316 and 0.37. In the shear thinning region (Pe < 10)
the hydrodynamic viscosity remains relatively constant, while the Brownian viscosity
decreases and causes the suspension to shear thin. In the region of large Péclet number,
hydrodynamic viscosity contributes all total viscosity and the suspension shear thickens.
Figure 7.4 for $=0.419 shows a small plateau region with Pe ~ 10 where the total shear
viscosity is minimum. The plateau region was not seen for suspensions at ¢=0.316, 0.37

and 0.4.
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In the shear thinning region with small Péclet number (Pe < 10), the stochastic
Brownian forces act to counter the shearing deformation to the suspension due to the
imposed shear. As the shear rate increases, the time scale decreases and Brownian forces
do not have sufficient time to restore the deformed suspension to the equilibrium isotropic
structure. The Brownian contribution to particle stress, and to macroscopic properties
in general, decreases significantly causing the suspension to shear thin, and Brownian
motion becomes less important relative to the imposed shear. For the shear thickening
region with large Péclet number (Pe > 102), the hydrodynamics play a dominant role and
dictate suspension behavior. An increase in hydrodynamic contribution to particle stress
in this region associates with formation of clustered particles causing the suspension to
shear thicken. Results from our studies for ¢$=0.45 in chapter VI and experiments of
Hoffman (1972), Graham and Bird (1984), Boersma and Laven (1990) and simulations
from Bossis and Brady (1984, 1987) on a monolayer have all shown similar evidence of

clusters.

As shown in Figures 7.1 and 7.2, the Brownian viscosity is always less than hydrody-
namic viscosity for hard-sphere suspensions at ¢=0.316 and 0.37 for all Péclet numbers.
As the volume fraction increases, there exists an unique Péclet number, Pe*, where
the Brownian viscosity is identical to hydrodynamic viscosity and this can be seen at
Pe*= 0.01 for =04 in Fig.7.3, at Pe*~ 0.2 for ¢=0.419 in Fig.7.4, and at Pe*= 0.6 for

¢=0.45 in Fig.6.1 of chapter VL.

Figure 7.5 presents a comparison of the steady shear viscosity 7, for these four sus-

pensions and the experimental results of van der Werff and de Kruif (1989) for silica
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hard spheres. The steady shear viscosity for suspension at ¢$=0.45 from Fig.6.2 is also
plotted in this figure for our reference of comparison. The volume fractions in the ex-
periments are ¢ = (x) 0.316+0.01, (+) 0.419+0.01, (1) 0.443+0.01 and (4) 0.47£0.01.
The range of the Péclet numbers in the experiment was from 0.01 to 10. The curves for
¢=0.419 and 0.47 show the measurements for the viscosity in a forward and a reverse
shear direction. The reproducibility of experimental results is excellent indicating the
independence of the steady shear viscosity on the direction of the shear at steady state.
Stokesian dynamics simulation results are shown for suspensions at ¢ = (4) 0.316, (¢)
0.37, (0) 0.4, (@) 0.419 and (®) 0.45. A comparison of the steady shear viscosity from
Stokesian dynamics and the experiments at the same volume fraction ¢=0.316 and 0.419
is excellent. The two viscosities are indistinguishable at ¢$=0.316 and change inappre-
ciably for all Péclet numbers. For suspensions at ¢=0.419, Stokesian dynamics results
compare very well with the experiments for Pe < 10, but for Pe ~ 10 simulation results
are seen to be consistently smaller than experimental results in the region of minimum
shear viscosity. At Pe=10, our result for the shear viscosity is 4.51 for 27 particles and
- 4.90 for 123 particles (Table 7.8) compared to 5.90 from the experiments. This noticeable
difference between Stokesian dynamics and the experiments is relatively small compared
to the large uncertainty in the measurements of the volume fraction in the experiments
which leads to large uncertainty in the viscosity as it is very sensitive on the volume
fraction. Our results of the steady shear viscosity for suspension at ¢=0.45 resembles
very well with the experimental curves at ¢=0.443 and 0.47. Figure 7.5 shows a small
change in the total relative viscosity for suspensions at ¢=0.316 and 0.37, a transitional

behavior with noticeable change at Pe=10 for suspension at ¢=0.4, and a shear thinning
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and shear thickening behavior for suspensions at ¢=0.419 and 0.45. Before we examine
the shear-induced microstructure for these hard spheres, the normal stress differences

are reported and discussed next to complete the section of suspension rheology.
VII.1.2 The Steady Normal Stress Differences

Tables 7.9 to 7.12 summarize the results for the steady first and second normal stress
differences for hard-sphere suspensions at ¢=0.316, 0.37, 0.4 and 0.419, respectively.
Column (1) is Pe and column (2) is N. Columns (3) to (8) give the first and columns
(9) to (14) give the second normal stress differences, respectively. The hydrodynamic
contribution is presented first, followed by Brownian contribution and the the total
normal stress differences. The standard deviation o is computed from a number of

samples shown in Tables 7.1 to 7.4.

Results from Tables 7.9 to 7.12 are plotted in pairs of figures to show the change of the
first and second normal stress differences with Péclet number. Figures 7.6.a, 7.7.a, 7.8.a,
and 7.9.a show the first and Figures 7.6.b, 7.7.b, 7.8.b, and 7.9.b show the second normal
stress differences for hard spheres at ¢=0.316, 0.37, 0.4 and 0.419, respectively. As seen
in these figures, the first and second total (®) normal stress differences, x,, and x,.,
are small and less then 2 units in absolute value for the moderately dense hard spheres.
In the region of small Péclet number (Pe < 1), the first and second hydrodynamic (4A)
normal stress differences, x,, and X,,, are small compared to the dominant Brownian
(O) contribution. As the Péclet number increases, both x,, and x,, decay in absolute
values quickly and have essentially vanished for Pe > 10°. In this large Péclet number

region, x,, and ), increase to a maximum and contribute all x,, and x,;, respectively.
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While both x,, and x,,, are positive for all Péclet numbers, x,, is negative and x,z is
positive. For suspensions at ¢=0.4 and 0.419, the region at Pe ~ 10 shows an interesting
behavior of the total normal stress differences. x,, and yx,, are minimum in absolute
value due to noticeable decrease of both hydrodynamic and Brownian contribution to the
normal stress differences and this is the plateau region where the steady shear viscosity

is minimum.

Figures 7.10.a and 7.10.b present a comparison for the first and second total normal
stress differences for hard spheres with ¢ = (&) 0.316, (¢) 0.37, (0) 0.4, and (O) 0.419.
The normal stress differences of hard-sphere suspensions at ¢=0.45 (®) which was pre-
sented in chapter VI are also shown in these two figures as a reference of comparison.
As expected for these four moderately dense hard spheres, x,, and x,, are relatively
smaller than the small normal stress differences of hard spheres at ¢=0.45. The transi-
tional volume fraction at which a hard-sphere suspension first shows minimum normal
stress differences (in absolute value) at Pe =~ 10 is .¢>:0.4. A suspension at this volume
fraction also shows the ﬁrst' rheological signal of shear thinning and shear thickening (cf.

Fig.7.5).

In this rheology section, we have seen a small change in the steady shear viscosity
for hard spheres at a volume fraction ¢ < 0.4. At the transitional volume fraction
¢=0.4, the suspension begins to show shear thinning and shear thickening behavior. For
hard-sphere suspensions at volume fraction ¢ > 0.4, the Brownian motion is important
and its contribution influences the macroscopic properties and the deformation of the

suspension structure, especially in the region of small Péclet number (Pe < 1). Next, we
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examine the microstructure of these hard spheres and determine its relation to suspension

macroscopic properties.
VIL.2 The Shear-Induced Microstructure
VII.2.1 The Angularly Averaged Pair-Distribution Function g(r)

The angularly averaged pair-distribution functions g(r) for the runs with 123 particles
are plotted in Figures 7.11 and 7.12 for hard spheres at Pe=10 and volume fraction
¢ = (dotted curve) 0.316, (dashed curve) 0.419 and the reference curve for ¢=0.45 (solid
curve). As shown in Fig.7.11, there is negligible difference in g(r) for large particle
center-center spacing (r>4). At r & 2 and r = 4, g(r) displays small variations which
can be seen from the insert figure, where g(r) is plotted with a small range of r from 2
to 2.2 for closely spaced particle pairs. The first peak of g(r) is seen at r ~ 2.03 and the
peak intensity increases with increasing ¢. The radial distance where the intense peak
occurs is shifted to smaller value from r = 2.04 for ¢=0.316 to r =~ 2.02 for ¢=0.45. As
the volume fraction increases, the probability of finding the first nearest neighbors at a
smaller radial distance also increases, but in this region with Pe = 10 the particles are still
very well separated from each other as shown by the small value of g(r) at r =~ 2. Figure
7.12 shows a plot of g(r) with a smaller scale from 0.5 to 1.5 for all particle center-center
spacing r. g(r) for $=0.316 shows a fluid-like behavior as its values fluctuate about
1.0 compared to a distinct peak pattern of g(r) for $=0.45. Hard-sphere suspension at
volume fraction ¢=0.419 shows the onset of microstructural order, but the order is not
long ranged as seen from the curve of g(r) for ¢=0.419. After showing a second peak at

r & 4.2, which is similar but less intense than that of g(r) for ¢=0.45, g(r) for ¢$=0.419
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fluctuates about 1.0 for r > 5 and shows the same fluid-like behavior as g(r) for ¢=0.316

in this range of large particle center-center spacing.

Figure 7.13 displays a comparison of the angularly averaged pair-distribution function
evaluated at particle center-center spacing r=2, g(2), for these moderately dense hard
spheres at ¢= (4) 0.316, (¢) 0.37, (©) 0.4, (O) 0.419, and the reference curve for ¢$=0.45
(e) with a fine increment of Péclet numbers. Data for this plot are obtained from Table
6.4.a for the runs with 27 particles. For suspensions with small deformation (Pe < 1),
g(2) varies insignificantly. As the Péclet number increases, g(2) first decreases to a
minimum value at Pe =~ 10 and then increases quickly with increasing Pe and approaches
an asymptotic limit at large Péclet number (Pe > 104). At Pe=10, g(2) for ¢=0.316 is
smallest which implies large spacing between the particles at this volume fraction. The

figure also show large g(2) with increasing volume fraction at the same Péclet number.

The angularly averaged pair-distribution function g(r) shows important information
on the local structure of the suspension. The equilibrium isotropic structure of hard
spheres at a rest state is deformed by the imposed shear and changed to less random,
but well dispersed particles at Pe &~ 10 as noted by small values of g(2). For large Péclet
numbers (Pe > 10° ), the hydrodynamics are dominant over the Brownian forces and large
shearing deformation causes the particles to form clusters corresponding to large values
for g(2). In the following section, we present the details of the shearing deformation to
suspension microstructure by examining the plane projection of the probability density

functions g(z,v), gz, z) and g(z,y).
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VI1I.2.2 The Probability Density Functions g(z,y), g(z, z) and g(z,y)

To examine the microstructure of the suspension, we travel along the steady shear
viscosity curves shown in Fig.7.5 and probe the relative arrangement of the flowing
particles at different Péclet numbers. Recall from chapter VI that the probability density
functions g(z,y), g(z, 2), and g(z,y) reveal striking and very valuable information on the
shear-induced microstructure for a hard-sphere suspension at ¢$=0.45. g{(x,y), g(z, ) and
g(z,y) give the probability of finding a particle in the z—y, x—z and z—y plane given
that there is a particle at the origin, respectively. The directions of the flow, the velocity
gradient, and the vorticity are the -, y-, and z-axis, respectively. For the z—y plane,
we have the frontal view of the flow of particles with the flow direction from left to right
and along the horizontal x-axis. The top view of the flow of particles is shown by the
x—z plane with the horizontal z-axis is the flow direction. Another effective view of the

flow of particles is given by the z—y plane which is perpendicular to the flow.

A plot of the probability density function g(x,y) with different Péclet numbers for a
hard-sphere suspension at ¢=0.316 in shown in Fig.7.14. Regions of light color represent
high probability and regions of dark color represent low probability. Starting from the
top to bottom and from left to right of Fig.7.14, the Péclet number is shown with an
increasing order from 0.01 to 10°. g(x,y) shows a thick and symmetric ring for a random
suspension with a small deformation (Pe < 1) and a thinner ring for an hydrodynamic
dominated suspension (Pe > 102). The pattern of thin ring implies the high probability of
finding closely spaced or touching particles - the existence of clusters. It is important to

note that the ring is always close in this range of the Péclet number. At volume fraction
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¢$=0.316, the suspension is relatively less dense and there is fluid space for particles to
move. g(z,y) does not show any ordered structure even though the pair-distribution

function g(2) is minimum (cf. Fig.7.13).

Figure 7.15 displays the probability densities g(z,y) (first row) and g(z,y) (second
row) for hard spheres at ¢=0.37 for a small range of the Péclet number from 5 to
20. g(z,y) begins to show signal of structural order at Pe=10, but the shear-induced
structure is weak, not well formed, and unstable as large fluctuations are seen near the

ordered regions.

Figures 7.16 and 7.17 show the probability densities g(z,y) and g(z,y) for a hard-
sphere suspension at ¢=>0.4, respectively. Compared to the microstructure of suspensions
at ¢=0.316 and 0.37 (cf. Figures 7.14 and 7.15), the signal of an ordered structure
is gaining strength with increasing volume fraction. g(z,y) displays string formation
of particles in the flow direction for a very narrow range of the Péclet number from
10 to 13 as seen in Fig.7.14. The string formation is unclear compared to the sharp
string formation for ¢=0.45 (cf. Fig.6.8.a). Similar to g(z,y), g(z,y) displays weakly
ordered structure in a narrow range of the Péclet numbers from 5 to 15. The structure
is unstable and destroyed at relatively small shear rate (Pe=20) as shown in Fig.7.15
and also in Fig.7.14. The transitional microstructural signature which shows the first
sign of shear-induced order of the particle positions is consistent with the transitional
rheological signature which begins to show shear thinning and shear thickening behavior

for a hard-sphere suspension at ¢=0.4.

The probability densities g(z,y) and g(z,y) of a hard sphere at ¢=0.419 are shown
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in Figures 7.18 and 7.19 with different Péclet numbers, respectively. For a small range
of the Péclet number from 10 to 20, the flowing suspension is ordered with well formed
strings of particles in the z—y plane (Fig.7.18) and hexagonally packed strings of flowing
particles in the z—y plane (Fig.7.19). The structural order is destroyed at a relatively

small Péclet number of 50.

The microstructure can be seen with more detail from the runs with 123 particles.
A comparison of g(z,y) and g(z,y) for three different volume fractions ¢=0.316 (left
figure), 0.419 (central figure) and 0.45 (right figure) with 123 particles at Pe=10 is
shown in Figures 7.20 and 7.21, respectively. Although the dimensionless run time of 40
for the runs with 123 particles is shorter than an average of 100 time units for the runs
with 27 particles, the microstructure and the rheology were carefully checked and verified
to be steady. There is clear evidence that the shear-induced order of the flowing particles
at Pe=10 develops in increasingly dense suspensions. The structure for suspensions at

$=0.316 and 0.419 are weak and fluctuated compared to the well formed and distinct

structure for ¢=0.45.

Our results for the microstructure showed that suspensions of colloidal particles at
volume fraction ¢ < 0.4 cannot be sheared into order. For a range of volume fraction from
0.4 to 0.419, transitional signature of a shear-induced structure is seen. The microstruc-
ture still fluctuates between a slightly deformed random structure and an ordered state
which occurs in a very narrow range of the Péclet number. In the following section, we
examine the microstructure by analyzing the structure factor S(k). The line and plane

structure factors are computed from the runs with 123 particles for ¢=0.316 and 0.419
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at Pe=10 and compared with the structure factors from the runs with 123 particles for

¢=0.45 which was presented in chapter VI.
VII1.2.3 The Line Structure Factors S(k;), S(ky) and S(k.)

The line structure factor computed in the flow direction, S(k;), is plotted in Fig.7.22
with different dimensionless wave numbers for hard-sphere suspensions at Pe=10 and
three volume fractions: ¢= (A) 0.316, (©) 0.419 and the reference curve ¢=0.45 (@).
There are 123 particles in the unit cell. S(k;) shows a small variation in the weak scat-
tering light patterns. In the flow direction, the particles constantly change the positions
causing change in the pattern of scattering light. It is difficult to label and attribute
the weakly scattered intensity of S(k;) to a structural order in the z-axis. The peaks
of scattered intensity from S(k;) are much smaller than that of the structure factors
computed in the velocity gradient direction, S(ky), and in the vorticity direction, S(k.),

as shown in Figures 7.23 and 7.24, respectively.

The line structure factors S(k,) in Fig.7.23 and S(k,) in Fig.7.24 for ¢ = (A) 0.316
and (0) 0.419 show insignificant scattered intensity compared to the intensity maxima
of O(N) for ¢=0.45 (®). A pattern of weak scattered intensity is consistent with the
information obtained from the plot of the probability density functions g(z,y) and g(z, y)
(cf. Figures 7.20 and 7.21) which show an unstable and fluctuated structure for ¢=0.316

and 0.419.
VI1.2.4 The Plane Structure Factors S(k;, k) and S(k., ky)

Figure 7.25 shows contour plots of the plane structure factors computed in the velocity
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- velocity gradient plane, S(k.,ky), (first row) and in the vorticity - velocity gradient
plane, S(k.,ky), (second row) for hard spheres at Pe=10 and three different volume
fractions: ¢=0.316 (left column), 0.419 (central column) and 0.45 (right column). There
are 123 particles in the unit cell. Regions of light color represent high scattering light
intensity and regions of dark color represent low scattering light intensity. The directions
of the dimensionless wave numbers k., ky and k. are displayed on the right of this figure.
The range of these wave numbers is from £0.5 to +4.0. S(kz, ky) and S(k.,k,) for
$=0.316 and 0.419 display weak scattered intensity of slightly deformed Debye-Scherrer
ring compared to S(kz,ky) and S(k,, ky) for ¢=0.45 which shows a distinct scattered
intensity pattern with two vertical bands in the k;-k, plane and halo ring with six
intensity maxima in the k,-k, plane reflecting a strongly order suspension. The evidence
that we examine here is the microstructure of a random suspension at volume fraction less
than 0.45 in the transition to order at Pe=10. The transitional signal of structural order
is stronger with increasing volume fraction but at ¢=0.419 the shear still cannot process
and induce the flowing suspension into a strong ordering as seen for the suspension
at ¢$=0.45. In the next section, we examine the self-diffusivities of these hard-sphere

suspensions and present the results of the short- and long-time self-diffusion coefficients.
VIL.3 The Self-Diffusivities

The self-diffusivities are important to suspension mechanics since they contain valu-
able information on particle mobility. The short-time self-diffusivities measure the in-
stant mobility of the suspended particles, and the long-time self-diffusivities measure the

dynamic behavior of the suspensions as the particles must travel a distance comparable
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to theirs own size, deform the local structure, and exchange places with neighbors. The

long-time self-diffusivity also describes the internal mixing at the particle scale level.
VII.3.1 The Short-Time Self-Diffusion Coefficients

Simulation results for the short-time translational and rotational self-diffusion coeffi-
cients are summarized in Tables 7.13 to 7.16 for ¢=0.316, 0.37, 0.4 and 0.419, respectively.
Column (1) is Pe and column (2) is N. Columns (3) to (6) are the steady short-time
translational self-diffusion coefficients computed in the z-axis, DZH, in the y-axis, Dzyy,

5

. . g « g
in the z-axis, D,_, the mean, i.e., D, = % (D,

Ozzx

+DZW+DZ”), and its standard deviation.
Similarly, columns (8) to (12) are the short-time rotational self-diffusion coefficients Dim,

&

Dy, D,

T2z

, the mean D, and its standard deviation. D and D, are normalized by the

infinite dilution diffusion coefficients Do= kT /(67na) and D,= kT/ (87r77a3), respectively.

Results from these four tables are plotted in Fig.7.26 for D, and in Fig.7.27 for D,
as a function of the Péclet number and different volume fractions ¢ = (4) 0.316, (¢)
0.37, (o) 0.4, (O) 0.419, and (®) 0.45. These two figures show a general behavior of
the short-time self-diffusion coefficients. Both D, and D, remain relatively constant in
the Brownian dominated limit (Pe < 1) as the equilibrium isotropic structure is slightly
deformed by small shear rates. At large Péclet number (Pe > 10), both D, and D,
decrease with increasing Péclet number and imply a reduction in the mobility of the
particles owing to the formation of closely spaced or touching particles. In the special
region with Pe ~ 10, the behavior of the short-time self-diffusion coefficients depends
on the volume fraction. For hard spheres at ¢ < 0.4, the transition behavior in this

region of the Péclet number is smooth as there is not much change in the local structure.
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For hard spheres at ¢=0.419 and 0.45, a small increase of DZ and Di is a direct result
of enhanced local mobility due to well separated particles in a suspension. In chapter
VI, we show that the strong ordering of the microstructure for ¢=0.45 with hexagonally
packed strings of flowing particles is accompanied by an increase in D, and D,. In an
hexagonal packing, the particles are not only relatively well separated from each other
but also are evenly spaced. The particles in the hexagonal arrangement are very mobile
and as a result, the short-time self-diffusion coefficients are maximum. Figures 7.26 and
7.27 also show a decrease of D, and D, as the volume fraction increases for hard spheres
at the same Péclet number. For relatively less dense suspension at ¢=0.316, the short-
time mean translational self-diffusion coefficient, (Df,), for a pure Brownian suspension
(Pe==0) and for a slightly deformed suspension (Pe=0.01) is the same as shown in Table
7.13. As the volume fraction increases, a small shear at low Péclet number can influence
and disturb the random structure and this can be seen by comparing (D) = 0.269 at
Pe=0 which is larger than (D)) = 0.221 at Pe=0.01 for ¢=0.4 (cf. Table 7.15). A
similar trend can be observed in the hydrodynamic dominated limit. The presence of
very small Brownian motion (Pezl()a) can perturb and induce diffusive behavior, and
this is seen by comparing (D,) = 0.1 at Pe=10° which is larger than a small D, = 0.044
for a pure hydrodynamic suspension (Pe=oo) for ¢=0.4 (cf .Tables 7.15). Data from
these four tables also show a consistent trend which the short-time translational self-
diffusion coefficient computed in the flow direction, Dsou, is slightly larger than Df,w and
Py

o.,- Lhe imposed shear increases the instantaneous mobility of the particles in the flow

direction compared to the directions of the velocity gradient and the vorticity.
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VI1.3.2 The Long-Time Self-Diffusion Coefficients

The long-time self-diffusion coefficients are reported in Tables 7.17 to 7.20 for the
runs with 27 particles of hard spheres at ¢=0.316, 0.37, 0.4 and 0.419, respectively.
Column (1) is Pe. Columns (2) to (5) are the steady long-time self-diffusion coefficient
computed in the velocity gradient direction, D;,yy, its standard deviation, in the vor-
ticity direction, D;o’zz, and its standard deviation, respectively. These coefficients are
normalized by the infinite dilution diffusion coefficient D,= kT'/(67na). The mean value
of these coefficients is computed from a number of samples shown in column (7) and
each sample interval has a time unit displayed in column (6). Note that the time has

been scaled with a diffusive time for these coefficients. For the method of computing the

long-time self-diffusion coefficients, please see section VI.3.2.

Figure 7.28 is a log-log plot of D;O’yy / D, as a function of the Péclet number for hard
spheres at ¢ = (&) 0.316, (¢) 0.37, (0) 0.4, (O) 0.419 and (@) 0.45 as a reference for
comparison. Recall that the y-axis is the velocity gradient direction. For strong Brow-

nian suspension (Pe < 1), the dimensionless diffusion coefficient is relatively constant

8

and has an asymptotic limit of Dy, ,,~ O(D,) as Pe — 0. The influence of the im-

&

posed shear can be seen by comparing D ., for a pure Brownian suspension and for a

&

slightly deformed suspension at Pe=0.01. Table 7.17 gives Dy, ,,= 0.160 at Pe=0 com-

&

pared to Dy, ,,= 0.204 at Pe=0.1 for ¢=0.316. Similarly, Table 7.19 for ¢=0.4 shows
Deyo,yy= 0.103 at Pe=0 compared to Dy, ,,= 0.120 at Pe=0.1. A small amount of the

shear force is seen to disturb the Brownian suspension and enhance the diffusivity of par-

&

ticles in the velocity gradient direction. The long-time self-diffusion coefficient, Dy, ..,
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is also smaller than the short-time self-diffusion coefficient, DZ, at Pe=0 as shown in Ta-
bles 7.17 and 7.19. This behavior of the self-diffusivities has been measured in the tracer
diffusion experiments by van Megen, Underwood and Snook (1986). Their experimental
results of the short- and long-time self-diffusion coefficients for hard spheres at equilib-

8

= (.13 for ¢=0.384, and DZ: 0.22 and D, = 0.11

8

rium are: D,= 0.34 and Deog yy
for $=0.411 (cf. Table 1 and Fig.6 from van Megen, Underwood and Snock (1986)).
Stokesian dynamics simulation results are D)= 0.269 (Table 7.15) and D;o,yy: 0.103
(cf. Table 7.19) for ¢=0.4 and Pe=0. Our values compare remarkably well with their
experimental results for pure Brownian suspensions illustrating the excellent accuracy of

the Stokesian dynamics simulation method.

8

In the limit of large Péclet number (Pe > 10° , D increases linearly with in-
&0,YY y

creasing Pe as predicted by the dimensional analysis of the time scale for the diffusion.

L

As Pe — o0, the proper scale for the diffusion is "yag; therefore, D, ,,, which is nondi-
mensionalized by D, should scale with Pe as Pe — co. Figure 7.28 displays the correct

relation of D in the region of large Péclet number (Pe > 10"). The asymptotic limit
w’yy

g

as Pe — oo for the long-time self-diffusion coefficient is D, ,,,/ Do~ 0.06 which compares
very close to the new experiments of Phan and Leighton (1992). We shall present a final

comparison of the complete dense suspension with their experiments in chapter IX.

Figure 7.28 shows clearly the transitional Péclet number Pe ~ 10, where the behavior

of the D, changes from a strong Brownian limit to the hydrodynamic dominated

0, YY

2

co,yy Of hard spheres with ¢ > 0.4 decreases to a minimum implying

regime. At Pe=10, D

that the particles are packed in an ordered formation and flow as strings. Figure 7.28 also
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shows the transitional volume fraction ¢=0.4 as suspensions with a volume fraction below

0.4 display insignificant change of D;),yy in this special region of the Péclet number.

A similar behavior of the long-time self-diffusion coefficient computed in the vorticity
direction, D;,zz, is seen in Fig.7.29. Recall that the z-axis is the direction of the vorticity.
D;’zz changes inappreciably in the Brownian dominated limit (Pe < 1) and increases
linearly with increasing Pe for hydrodynamic dominated regime (Pe > 102). In the
special region of the Péclet number (Pe =~ 10), D;o,zz for hard spheres with a volume
fraction ¢ > 0.4 decreases to a minimum value but the decrease of D;,,zz is not as

8

pronounced as that of D, ...
VII.4 Conclusions

In this chapter, we showed that hard spheres at volume fraction ¢ < 0.4 cannot be
sheared into order and the change of the steady shear viscosity with the Péclet number
is small. As the volume fraction increases, the flowing suspension is in the transition
to form a structural order in the special region with Pe ~ 10, but the microstructure
is weak and fluctuated between a slightly deformed isotropic structure and an ordered
state. The suspension shear thins for Pe < 10 and shear thicken for Pe > 10. For
Pe =~ 10, the steady shear viscosity is minimum and no further shear thinning is found

in this special region.

Our results for the moderately dense hard-sphere suspensions agree with the exper-
imental findings of Pusey and van Megen (1986) for the equilibrium phase transition

of hard spheres. Hard spheres, which are below the colloidal fluid - colloidal crys-
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talline phase transition (¢,.= 0.494), are isotropic at rest and experimentally do not
show structural order in a simple shear flow. Near this phase transition, the suspension,
which shows the coexistence of colloidal fluid and colloidal crystals at equilibrium, can be
sheared into strong ordering as recently observed in experiments from Laun (1988) and
Laun et al. (1992). This study provides the fruitful capability of Stokesian dynamics in
modeling particulate flow and improves our understanding of the behavior of moderately

concentrated colloidal suspensions.

In contrast to Stokesian dynamics which does not show shear thinning and shear
thickening behavior and strong ordering of the flowing particles for suspensions at vol-
ume fractions ¢ < 0.4, computer simulations with nonequilibrium molecular dynamics
by Laun et al. (1992) and with Brownian dynamics method by Erpenbeck (1983), Heyes
(1988), Weider et al. (1991), Wilemski (1991) tend to predict the shear thinning along
with the string formation of flowing particles for all volume fractions. On of the main
reason for this poor prediction is that these simulations are incapable of treating the
important many-body hydrodynamic interactions and depend on the interparticle forces
to set the structure and the rheology. Stokesian dynamics with hydrodynamics accu-
rately produces the behavior of hard-sphere suspensions from dilution to close packing
without the need of interparticle forces. In the next chapter, we present and discuss
the rheological and microstructural behaviors of very dense hard-sphere suspensions at

particle volume fraction ¢ > 0.45.
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Table 7.1: Statistics for simulations of a hard-sphere suspension at volume fraction
$=0.316 and different Péclet numbers. Table captions are the same as shown in

Table 6.1.a. Initial particle configurations of all runs in the table are random.

Pe N | tetart | tend ADtger NSTEPS | tagifs | tenife | # lrials
0.01 | 27 | 0.0 |100.0|5x10™* | 200000 95.0 | 1.0 6
0.10| 27 | 0.0 | 2000 103 200000 60.0| 5.0 58
1.00 | 27 | 0.0 |2000]| 10-% 200000 60.0 | 5.0 58
10001 27 | 0.0 |100.0| 1073 100000 60.0 | 1.0 41
102 | 27 | 0.0 |100.0| 1073 100000 60.0 1 2.0 21
103 | 27| 00 |100.0| 103 100000 60.0 | 2.0 21
104 | 27| 00 |100.0| 1073 100000 60.0 | 2.0 21
105 | 27 | 00 |2000] 1073 200000 | 100.0 | 10.0 20
10 | 27 | 0.0 60.0 | 103 60000 50.0| 1.0 11
00 27 | 0.0 40.0 | 104 400000 30.0 1
10.00 [ 123 | 0.0 40.0| 1073 40000 35.0 1

Table 7.2: Statistics for simulations of a hard-sphere suspension at volume fraction
$=0.37 and different Péclet numbers. Table captions are the same as shown in Table

6.1.a. Initial particle configurations of all the runs in the table are random.

Pe N | tstart | tend Alget NSTEPS | taiss | tshift | # trials
0.01 27| 0.0 |2000]5%x10~% | 400000 | 195.0| 1.0 6
0.10 27| 0.0 60.0 | 10~ 60000 500 1.0 11
1.00 | 27| 0.0 60.0 | 1073 60000 500 | 1.0 11
5.0027 | 0.0 60.0 | 10-3 60000 50.0 | 1.0 11
10.00 | 27| 0.0 60.0{ 103 60000 50.0 | 1.0 11
15.00 | 27| 0.0 60.0| 10°3 60000 50.0 | 1.0 11
20.00 | 27| 0.0 60.0| 1073 60000 50.0 | 1.0 11
102 | 27| 0.0 60.0| 103 60000 50.0 | 1.0 11
102 | 27| 0.0 60.0 1073 60000 50.0 | 1.0 11
104 127 0.0 60.0| 1073 60000 50.0 | 1.0 11
106 | 27| 0.0 60.0 | 1073 60000 500 1.0 11
oo | 271 00 40.0 | 10°* 400000 | 30.0 1
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Table 7.3: Statistics for simulations of a hard-sphere suspension at volume fraction
¢=0.4 and different Péclet numbers. Table captions are the same as shown in Table
6.1.a. Initial particle configurations of all the runs in the table are random.

Pe N | totart | tend ADtger NSTEPS | taigs | tenise | # trials
0.01]27| 00 |110.0{5x10™% | 220000 | 100.0| 1.0 11
01027 0.0 60.0 | 1073 60000 500 1.0 11
1.00 |27 0.0 60.0| 1073 60000 50.0 | 1.0 11
500127 0.0 60.0 | 103 60000 500 1.0 11
7.001 27| 0.0 60.0 | 10~3 60000 500 1.0 11
10.00 | 27| 0.0 60.0{ 102 60000 500 1.0 11
13.00 | 27| 0.0 60.0 | 103 60000 500 1.0 11
15.00 | 27 | 0.0 60.0| 1073 60000 50.0 | 1.0 11
20.00 | 27| 0.0 60.0 | 1073 60000 50.0 | 1.0 11
102 | 27| 0.0 60.0 | 1073 60000 50.0 | 1.0 11
102 | 271 0.0 60.0| 1073 60000 500 1.0 11
10* | 27| 0.0 60.0 | 10°3 60000 500 1.0 11
106 27| 0.0 60.0 | 1073 60000 500 1.0 11
oo |27 0.0 40.01 10~¢ 400000 30.0 1
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Table 7.4;: Statistics for simulations of a hard-sphere suspension at volume frac-
tion ¢=0.419 and different Péclet numbers. Table captions are the same as shown
in Table 6.1.a. Initial random samples of particles are selected for the runs with
Pe=0.01, 30, 10°, and co. A series of 13 continuing runs is started with Pe=0.01 [1]
and ended with Pe=10* [13].

Pe N | tstart | lend Atget NSTEPS | taiss | tshist | # trials
Woo1 | 27 | 0.0/]100.0]|5x107% | 200000 | 75.0| 5.0 6
“o.10 | 27 | 100.0 | 2000 | 10-® | 100000 | 80.0| 2.0 11
®yo0 | 27 | 2000|3000 10-3 | 100000 | 80.0| 2.0 11
“isoo | 27 | 3000 360.0| 1073 60000 | 50.0 | 1.0 11
®s00 | 27 | 360.0 | 4200 10-3 60000 | 50.0| 1.0 11
®700 | 27 | 4200 | 480.0 | 1073 60000 | 50.0| 1.0 11
“10.00 | 27 | 480.0 | 540.0 | 10-3 60000 | 50.0| 1.0 11
“15.00 | 27 | 540.0 | 600.0 | 10-3 60000 | 50.0| 1.0 11
®20.00 | 27 | 600.0 | 660.0 | 1073 60000 | 50.0| 1.0 11

30 27 | 0.0/ 60.0] 1073 60000 | 50.0 | 1.0 11
"eo.00 | 27 | 660.0 | 7200 | 1073 60000 | 50.0 | 1.0 11
"ox102 | 27 | 720.0 | 780.0 | 10-3 60000 | 50.0 | 1.0 11
"h03 | 27 | 780.0 | 840.0 | 10-8 60000 | 50.0 | 1.0 11
"ot | 27 | 840.0 | 900.0 | 1073 60000 | 50.0 | 1.0 11
108 27 0.0| 600 1074 600000 | 50.0| 1.0 6
00 27 | 00| 500 10™* | 500000 | 40.0 1
10.00 | 123 0.0| 400]| 103 40000 | 35.0 1
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Table 7.5: Results of the shear viscosities obtained from Stokesian dynamics for
a hard-sphere suspension at volume fraction ¢=0.316 and different Péclet numbers.
Table captions are the same as shown in Table 6.2.a.

Pe | N | 1y | On, M Ong | Tlr | Ony

0.01 | 27 | 1.868 | 0.001 | 1.161 | 0.673 | 4.029 | 0.673
0.10 | 27 | 1.865 | 0.003 | 0.768 | 0.087 | 3.632 | 0.089
1.00 | 27 | 1.845 | 0.004 | 0.601 | 0.006 | 3.447 | 0.006
10.00 | 27 | 1.907]0.015| 0.176 | 0.003 | 3.083 | 0.019
102 | 27 | 2.258 | 0.027 | 0.029 | 0.001 | 3.287 | 0.028
10 | 27 12654 | 0077 0.003 | 0.000] 3.656 | 0.078
10* | 27 | 2.888 | 0.019 | 2.1x10~% | 0.000 | 3.889 | 0.019
10° | 27 | 2.988 | 0.032 | 1.9x10~5 | 0.000 | 3.986 | 0.032
10 | 27 | 3.044 | 0.090 | 1.1x10~¢ | 0.000 | 4.004 | 0.090
oo | 27 | 3.673 4.673

10.00 | 123 | 1.779 0.151 2.930

Table 7.6: Results of the shear viscosities obtained from Stokesian dynamics for
hard-spheres suspensions at volume fraction ¢=0.37 and different Péclet numbers.
Table captions are the same as shown in Table 6.2.a.

Pe | N | 7y Ony M Ony Ty On,

0.011]27|2660|0002] 1810 | 0.670 | 5.470 | 0.673
0.10 | 27 | 2.671 | 0.007 | 1.704 | 0.178 | 5.375 | 0.177
1.00 | 27 | 2.689 | 0.005 | 1.169 | 0.013 | 4.857 | 0.015
5.00 | 27 |1 2.629 | 0.011 | 0.543 | 0.008 | 4.172 | 0.015
10.00 | 27 | 2.676 | 0.025 | 0.293 | 0.009 | 3.969 | 0.034
15.00 | 27 { 2.799 | 0.015 | 0.292 | 0.004 | 4.090 | 0.019
20.00 | 27 | 2.909 | 0.007 | 0.208 | 0.002 | 4.117 | 0.008
102 | 27 13.479 | 0.017 | 0.062 | 0.001 | 4.541 | 0.018
10° | 27| 3.739 | 0.055 | 0.006 | 0.000 | 4.744 | 0.055
10* | 27| 4.297 | 0.040 | 5.7x10~% | 0.000 | 5.297 | 0.036
108 | 27 | 4.696 | 0.031 | 4.0x10~% | 0.000 | 5.696 | 0.031
oo | 27| 6.366 7.366
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Table 7.7: Results of the shear viscosities obtained from Stokesian dynamics for
a hard-sphere suspension at volume fraction ¢=0.4 and different Péclet numbers.
Table captions are the same as shown in Table 6.2.a.

Pe N TIH 0-77;; ??B (7713 77T U’IT

0.01 | 27 3.284 ] 0.005 3.224 1.126 } 7.507 | 1.131
0.10 | 27| 3.290 | 0.006 2.680 0.123 | 6.970 | 0.119
1.00 1 27| 3.303 | 0.005 1.808 6.013 | 6.111 ] 0.016
5.00 | 27| 2.965 | 0.018 0.617 0.007 | 4.853 | 0.022
7.00 | 27| 2.964 | 0.018 0.550 0.010 | 4.513 | 0.027
10.00 ] 27 | 2.886 | 0.027 0.292 0.020 | 4.178 | 0.039
13.00 | 27 | 3.467 | 0.059 0.408 0.023 | 4.875 | 0.082
15.00 ) 27 | 3.583 | 0.048 0.365 0.012 | 4.948 | 0.060
20.00 | 27 | 3.905 | 0.031 8.339 0.006 | 5.244 | 0.040
102 | 27| 4.570 | 0.036 0.104 0.003 | 5.674 | 0.039
103 | 27| 5.084 | 0.026 0.010 0.000 | 6.094 | 0.026
10* | 27| 6.012 | 0.046 0.002 0.000 | 7.003 | 0.046
10° | 27| 6.959 | 0.095 | 9.0x10~% | 0.000 | 7.959 | 0.095
co |27 ] 14.507 15.507
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Table 7.8: Results of the shear viscosities obtained from Stokesian dynamics for
a hard-sphere suspension at volume fraction ¢=0.419 and different Péclet numbers.
Table captions are the same as shown in Table 6.2.a.

Pe N 77}1 O-’OH T]B 0.773 77T O-UT

“oo1 | 27| 3.779 | 0.018 | 4.930 |3.916| 9.709 | 3.916
“loa0 | 27 | 3.726 | 0070 | 4235 |0.342 | 8.961 | 0.347
W00 | 27 | 3.824 | 0007 | 2402 |0.014| 7.226 | 0.017
“soo | 27 | 3.6120017] 1.314 |0.007| 5.925 | 0.022
“s00 | 27 | 3542|0038 0870 |0.027| 5412 0.065
“I700 | 27 | 3377|0042 0537 |0.025| 4913 0.066
“10.00 | 27 | 3.184 | 0069 | 0323 |0.024| 4507 | 0.094
“15.00 | 27 | 3.385 | 0089 | 0270 |0.020]| 4.655 | 0.095

“a0.00 | 27 | 3523 0.032| 0236 |0.009| 4.758 | 0.040
3000 | 27 | 4.421 |0033| 0307 |0.007| 5727 0.040

"50.00 | 27 | 4.860 | 0.051] 0221 |0.005| 6.081 | 0.055
2x102 | 27 | 5.972 | 0.023| 0.080 |0.001| 7.052 | 0.024
108 27 | 6.486 | 0.106 | 0.017 |0.001| 7.503 | 0.106

10* 27 7.283 | 0.053 0.002 0.000 | 8.284 | 0.053
108 27 9.374 | 0.412 | 1.1x107°% | 0.000 | 10.374 | 0.412
o0 27 | 24.151 25.151

(11
(12}

[13]

10.00 123 | 3.431 0.465 4.896
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Table 7.17: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.316 and differ-
ent Péclet numbers. Table captions are the same as shown in Table 6.6. The
runs are with 27 particles.

Pe D g D g laifs | # trials

o0, Yy vy 0,2z zz

0.00 | 0.160 | 0.015 | 0.158 | 0.025 | 100.0 19
0.01 | 0.187 | 0.017 | 0.126 | 0.015 | 90.0 6
0.10 | 0.204 | 0.013 | 0.100 | 0.005 | 100.0 19
1.00 | 0.326 | 0.030 | 0.179 | 0.027 | 100.0 19
10.00 | 0.022 | 0.002 | 0.012 | 0.001 | 85.0 11
102 | 0.011 | 0.001 | 0.010 | 0.001 | 85.0 11
10% | 0.049 | 0.004 | 0.008 | 0.001 | 85.0 11
104 | 0.051 | 0.004 | 0.011 | 0.001 | 85.0 11
10° | 0.038 | 0.009 | 0.007 | 0.001 | 85.0 11
10 | 0.038 | 0.009 | 0.007 | 0.001 | 85.0 11
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Table 7.18: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.37 and different
Péclet numbers. Table captions are the same as shown in Table 6.6. The
runs are with 27 particles.

Pe | D o, | D 0., |taiss | # trials

o, Yy vy 00,2z zz

0.01 | 0.105 | 0.022 | 0.114 | 0.040 | 90.0
0.10 | 0.131 | 0.011 | 0.124 | 0.015 | 50.0
1.00 { 0.184 | 0.017 | 0.164 | 0.005 | 50.0
5.00 | 0.032 | 0.005 | 0.054 | 0.006 | 50.0
10.00 | 0.019 | 0.001 | 0.013 { 0.001 | 50.0
15.00 | 0.028 | 0.004 | 0.029 | 0.002 | 50.0
20.00 | 0.027 | 0.003 | 0.028 | 0.003 | 50.0
102 | 0.022 | 0.002 | 0.019 | 0.002 | 50.0
10 | 0.028 | 0.003 | 0.014 | 0.001 | 50.0
10% | 0.036 | 0.004 | 0.015 | 0.002 | 50.0
10% | 0.045 | 0.003 | 0.008 | 0.002 | 50.0
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Table 7.19: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.4 and different
Péclet numbers. Table captions are the same as shown in Table 6.6. The
runs are with 27 particles.

Pe | D o, | D O,. |taiss | # trials

O, YY wy 0,22 zz

-t
o

0.00 | 0.103 | 0.016 | 0.131 | 0.029 | 95.0
0.01 | 0.115 | 0.013 | 0.101 | 0.014 | 95.0
0.10 | 0.120 | 0.004 | 0.104 | 0.009 | 50.0
1.00 | 0.135 | 0.012 | 0.144 | 0.015 | 50.0
5.00 | 0.018 | 0.002 | 0.040 | 0.002 | 50.0
7.00 | 0.022 | 0.002 | 0.023 | 0.001 | 50.0
10.00 | 0.008 | 0.001 | 0.016 | 0.001 | 50.0
13.00 | 0.033 | 0.002 | 0.029 | 0.001 | 50.0
15.00 | 0.030 | 0.003 | 0.038 | 0.003 | 50.0
20.00 | 0.043 | 0.001 | 0.046 | 0.007 | 50.0
102 | 0.039 | 0.003 | 0.015 | 0.002 | 50.0
10% | 0.023 | 0.002 | 0.024 | 0.002 | 50.0
10* | 0.065 | 0.006 | 0.016 { 0.002 | 50.0
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Table 7.20: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.419 and differ-
ent Péclet numbers. Table captions are the same as shown in Table 6.6. The
runs are with 27 particles.

Pe | D g D ag Laiff | # trials

00,y Y vy 00,22 2z

0.01 | 0.074 | 0.010 | 0.071 | 0.011 | 90.0
0.10 | 0.085 | 0.011 | 0.087 | 0.010 | 90.0
1.00 | 0.210 | 0.018 | 0.153 | 0.023 | 90.0
3.00 | 0.093 | 0.003 | 0.059 | 0.005 | 50.0
5.00 | 0.044 | 0.005 | 0.048 | 0.007 | 50.0
7.00 | 0.009 | 0.001 | 0.015 | 0.001 | 50.0
10.00 | 0.007 | 0.003 | 0.007 | 0.002 | 50.0
15.00 | 0.007 | 0.001 | 0.009 | 0.001 | 50.0
20.00 | 0.008 | 0.002 | 0.009 | 0.002 | 50.0
30.00 | 0.017 | 0.003 | 0.026 | 0.004 | 50.0
50.00 | 0.030 | 0.003 | 0.039 | 0.002 | 50.0
2x102 | 0.048 | 0.007 | 0.029 | 0.004 | 50.0
10° | 0.030 | 0.001 | 0.018 | 0.004 | 50.0
10 | 0.046 | 0.003 | 0.027 | 0.006 | 50.0
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Figure 7.1-2: The steady shear viscosities: total (@) viscosity 1y,
hydrodynamic (A) viscosity 7;; and Brownian ([J) viscosity 77,
obtained by Stokesian dynamics as a function of the Péclet number
for hard spheres at particle volume fraction ¢=0.316 (Fig.7.1) and
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Figure 7.2

0.37 (Fig.7.2).
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Figure 7.3-4: The steady shear viscosities: total (®) viscosity 71y,
hydrodynamic (A) viscosity 7y and Brownian (O) viscosity g,
obtaired by Stokesian dynamics as a function of the Péclet number
for hard spheres at particle volume fraction ¢=0.4 (Fig.7.3) and
0.419 (Fig.7.4).
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Figure 7.5: Comparison of the simulation results for the steady shear
viscosity as a function of the Péclet number for hard-sphere suspensions
at volume fractions: ¢ = (&) 0.316, (¢) 0.37, (©) 0.4, (B) 0.419, and
(@) 0.45 with the experiments from van der Werff and der Kruif (1989)
for silica hard spheres with ¢ = 0.316 (3¢, 0.419 (4), 0.443 (), and
(A) 0.47.
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Figure 7.6.a-b: The first (Fig.7.6.a) and second (Fig.7.6.b) normal siress differences
for hard spheres at a volume fraction ¢=0.316 obtained by Stokesian dynamics as a
function of the Péclet number. The plot symbols are: the total (@), hydrodynamic (A)
and Brownian ([J) normal stress differences.
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Figure 7.7.a-b: The first (Fig.7.7.a) and second (Fig.7.7.b) normal stress differences
for hard spheres at a volume fraction ¢=0.37 obtained by Stokesian dynamics as a
function of the Péclet number. The plot symbols are: the total (@), hydrodynamic (A)
and Brownian ([0J) normal stress differences.
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Figure 7.8.a-b: The first (Fig.7.8.a) and second (Fig.7.8.b) normal stress differences
for hard spheres at a volume fraction ¢$=0.4 obtained by Stokesian dynamics as a
function of the Peclet number. The plot symbols are: the total (@), hydrodynamic (A)
and Brownian (O0) normal stress differences.
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Figure 7.9.a-b: The first (Fig.7.9.a) and second (Fig.7.9.b) normal stress differences
for hard spheres at a volume fraction ¢=0.419 obtained by Stokesian dynamics as a
function of the Péclet number. The plot symbols are: the total (@), hydrodynamic (A)
and Brownian ([J) normal stress differences.
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Figure 7.10.a: A comparison of the first normal stress difference y,r for hard

spheres obtained by Stokesian dynamics at different volume fractions: ¢ = (4) 0.316,
(¢) 0.37, (0) 0.4, (D) 0.419 and (@) 0.45.
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Figure 7.10.b: A comparison of the second normal stress difference y, for hard

spheres obtained by Stokesian dynamics at different volume fractions: ¢ = (4) 0.316,
(@) 0.37, (0) 04, () 0.419 and (@) 0.45.
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Figure 7.11: The radial dependence of the pair-distribution function g(r) determined
by Stokesian dynamics for hard spheres with Pe=10 and different volume fractions:

¢ = (dotted curve) 0.316, (dashed curve) 0.419 and (solid curve) 0.45. The insert
figure in the upper left corner is a plot of g(r) with small range of the particle
center-center spacing r. The figure shows g(r) increases with increasing volume
fraction at near contact (r=2.03). The pair-distribution function evaluated at r=2 for
touching particles, g(2), are small for hard spheres at Pe=10.
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Figure 7.13: The radial pair-distribution function g(r) evaluated at particle
center-center spacing r=2 (when particles are in contact), g(2), obtained by
Stokesian dynamics for hard spheres as a function of the Péclet number at
different volume fractions: ¢ = (&) 0.316, (&) 0.37, (0) 04, () 0419

and (@) 0.45. g(2) increases with increasing volume fraction for hard
spheres at the same Peclet number. For suspensions with a small deformation
(Pe<1), g(2) changes inappreciably. As the Péclet number increases, g(2)
first decreases to a minimum value at Pe=10, increases quickly with large

Pe and approaches an asymptotic value at Pe=10000.
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Figure 7.22: The line structure factor S(k,) determined by Stokesian dynamics

for hard spheres with Pe=10 and volume fractions ¢ = (4) 0.316, (0) 0.419 and
(®) 0.45. k, is the dimensionless wave number in the flow direction, the x-axis.

There are 123 particles in the unit cell. S(k,) shows small variation in scattered
intensity due to constant and large change of particle positions in the flow direction.
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Figure 7.23: The line structure factor S(k,) determined by Stokesian dynamics

for hard spheres with Pe=10 and volume fractions ¢ = (A) 0.316, (O) 0.419 and
(® 0.45. k, is the dimensionless wave number in the direction of the velocity
gradient, the y-axis. There are 123 particles in the unit cell. The line structure
factor for hard spheres with ¢=0.45 displays two scattered intensity peaks at

the wave numbers k, = 3.6 and = 7.4. Suspensions at ¢=0.316 and 0.419 show

insignificant scattered intensity compared to that of a suspension at $=0.45.
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Figure 7.24: The line structure factor S(k,) determined by Stokesian dynamics
for hard spheres with Pe=10 and volume fractions ¢ = (A) 0.316, (O) 0.419 and
(@) 0.45. k, is the dimensionless wave number in the direction of the vorticity,

the z-axis. There are 123 particles in the unit cell. The line structure factor for
hard spheres at $=0.45 displays an intensity peak at the wave number k, = 6.
Suspensions at $=0.316 and 0.419 show insignificant scattered intensity compared
to that of a suspension at ¢=0.45.



260

"Gy 0=0 103 1338 3q AJuo ued sue(d *y-%y sy ur ewrxew Asuarur x1s Yum Juis o ue oueyd %y-*y oy1 ui spue 11194 OM)
¥°0=0 10 q4] 1d "9~ sy ur e ! 1S 11 opey p 14799 3y ut spueq e

yum suranred Asusur paranieds y3iy ay L, "0p-/+ 01 §'Q-/+ woyy st %y pue y %y s1aquinu aaem ssa[uoIsawIp 2y jo a3ues
a4, “Ausuarur 1y Sursanieds mof 3ussardar 10[0d yrep Jo suordar pue Aisumnur 3ySi) Suuearess ySiy 1uasardar 30100 13|

Jo suoiday (uwnjod 1y3u) ¢3Q pue (UWIN{Od [BIIU) G1H°0 {(WWN[0D Y3]) 91¢ 0= 'SUOIIOBIJ SWN[OA 1UIAJIP 2211 PuE
01=94 3 s313yds prey 10] (MOI wo110q) A@ “y)s pue (mox doz) (% y)s syo108] 25m1on1s 31 Jo wosiredwod y :¢z /. aInBig

€ZI=N ‘01=ad



261

0-4 i F Iillll] ¥ I EELL] ¥ H Blllli! I IITHII 1 L IITIIII |2 lIiHl
03¢ . 8 . 3
C A ]
= A ]
i R 1
¢ ¢ 600 i
© o o 0(90 ]
) ® @ U[j ® o
@ ) [} =
- ®
- = [m] ©
- @ (o]
C N=27 0
- A ¢=0316 ® =
0.1~ ® ¢=037
- O $=04
- O ¢=0.419
R ® $=0.45
0-0 8 I i ﬂ!iiill I | !Ell]ii ] ] ﬂlll!l! B _j R!Sllll i3 !Eﬁllli i1 ll!ll
0.01 0.1 1 10 100 1000 10000
Pe

Figure 7.26: The short-time translational self-diffusion coefficient D}
normalized by the infinite dilution diffusion coefficient D obtained by
Stokesian dynamics as a function of the Péclet number for hard spheres at
volume fractions ¢: (&) 0.316, (¢) 0.37, (0) 0.4, (D) 0.419 and (@) 0.45.
The short-time translational self-diffusion coefficient is relatively constant
for small Péclet number (Pe<1) and decreases with increasing Pe. At the
same Péclet number, the short-time self-diffusion coefficient decreases
with increasing volume fraction.
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Figure 7.27: The short-time rotational self-diffusion coefficient D}
normalized by the infinite dilution diffusion coefficient D  obtained by
Stokesian dynamics as a function of the Péclet number for hard spheres
at volume fractions ¢: (4) 0.316, (¢) 0.37, (0) 0.4, (O) 0.419 and

(®) 0.45. It is seen from the figure that the short-time rotational
self-diffusion coefficient is relatively constant for small Péclet number
(Pe<1) and decreases with increasing Pe. As the volume fraction
increases, the short-time self-diffusion coefficient decreases.
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Figure 7.28: The long-time self-diffusion coefficient D;,,,yy normalized by the infinite
dilution value D, is plotted as a function of the Péclet number for hard spheres at
volume fractions: ¢ = 0.316 (a), 0.37 (¢), 0.4 (0), 0.419 (O) and 0.45 (). The
limiting asymptotes are: D;,yyz O(D,) as Pe — 0 and D;’yy% 0.06 x Pe as Pe — oo.
Note that as Pe — oo, the dimensional long-time self-diffusion coefficient scales as Ya2.
The transition from the strong Brownian regime to the hydrodynamic domination limit
occurs for Pe ~ 10. The two limits of D;,yy at Pe — 0 and at Pe — oo are shown in

the figure for hard spheres at ¢=0.45.
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Figure 7.29: The long-time self-diffusion coefficient D;,zz normalized by the infinite
dilution value D, is plotted as a function of the Péclet number for hard spheres at
volume fractions: ¢ = 0.316 (&), 0.37 (¢), 0.4 (0), 0.419 (1) and 0.45 (e). The
limiting asymptotes are: D;,zzz O(D,) as Pe — 0 and D;’zzz 0.057x Pe as Pe — oo.
Note that as Pe — oo, the dimensional long-time self-diffusion coefficient scales as 4a2.
The transition from the strong Brownian regime to the hydrodynamic domination limit
occurs for Pe & 10. The two limits of D;,,zz at Pe — 0 and at Pe — oo are shown in
the figure for hard spheres at ¢=0.45.
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Before we proceed to present the results and to discuss the behavior of very dense
hard-sphere suspensions, let’s briefly review our results for the dense and moderately
dense colloidal suspensions. In chapter VI, we presented the complete details of our
study for the behavior of dense hard-sphere suspensions at a volume fraction ¢=0.45.
In the Brownian dominated limit (Pe < 1), the suspension shear thins and the decrease
of the steady shear viscosity corresponds to the decrease of Brownian contribution to
the stress. The equilibrium isotropic structure is slightly perturbed, but particles are
still very well dispersed. In the special plateau region (Pe ~ 10), a balance of Brownian
and hydrodynamic forces induce a strongly ordered suspension with distinct “hexagonal”
packing of strings of particles flowing with the shear flow. The steady shear viscosity
remains relatively unchanged and is a minimum. In this region, a decrease of Brownian
contribution to particle stress is compensated by an increase of hydrodynamic contribu-
tion. Most importantly, our results show that the shear-induced structure does not cause
further shear thinning of the suspension (cf. Fig.6.33). The nonlinear behavior of the di-
rect Brownian contribution to the stress, which comes directly from the highly nonlinear
deformation of the local structure, is the main cause of the shear thinning. The ordered
structure is controlled by the Brownian forces which act as short-ranged repulsive forces
and counter the shearing deformation of the suspension. At high shear rates (Pe > 102),
the suspension shear thickens and the hydrodynamics contribute all particle stress. In
the shear thickening region, the hexagonal packing is destroyed and the suspended par-
ticles become closely spaced or touch and form elongated clusters disrupting the bulk

flow and this is the main cause of shear thickening.

In comparison to hard spheres at a volume fraction ¢=0.45, the moderately dense
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colloidal suspensions at volume fractions in the range of 0.316 to 0.419 show a very weak
shear thinning and shear thickening behavior and the results were presented in chapter
VII. Hard-sphere suspensions with volume fraction ¢ below 0.4 cannot be sheared to order
and the change in the steady shear viscosity is small. As the volume fraction increases
(¢==0.4 and 0.419), the suspensions did show a signature of shear-induced structure for
Pe ~ 10, but the order is weak, unstable and occurs in a narrow range of the Péclet
number. The transitional volume fraction is found to be approximately ¢=0.4, where the
suspension begins to display shear thinning and shear thickening and the microstructural

arrangements suggest the start of ordering.

In this chapter, we investigate the behavior of very dense hard-sphere suspensions
with volume fractions above 0.45. The range of volume fraction in our study is from 0.47
to 0.6. At equilibrium, these hard spheres span the colloidal fluid-colloidal crystalline
phase transition, with ¢,= 0.494+0.002 for the fluid phase and ¢,,= 0.5454:0.002, and
go beyond the the glass region, where the glass transition occurs at ¢ = 0.58. In addi-
tion to determining the influence of the shear on the deformation of the microstructure
and relating this to suspension macroscopic properties, we endeavor to study the shear
melting effect which disturbs and destroys the equilibrium crystalline structure of very
dense hard spheres and induces the flowing particles to a different ordered pattern. The
relaxation time of a string-ordered microstructure is also studied. Similar to the out-
line of chapters VI and VII, we present the suspension rheology first, the shear-induced

microstructure second, and the self-diffusivities last.

Details of the simulations and the sampling statistics for the rheology are summarized
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in Tables 8.1 to 8.5 for hard spheres at ¢=0.47, 0.48, 0.49, 0.51 and 0.55, respectively.
Column (1) is the Péclet number, Pe, and column (2) is the number of particles, N.
Columns (3) to (6) are the starting time, ending time, the time step and number of time
steps for each run, respectively. Column (7) is the elapsed time for each sample and
column (8) is the time units which each sample is successively shifted in time. Column

(9) is the number of samples which are used to compute the rheology.

Table 8.1 for ¢=0.47 shows a nine-run series which begins with the run at Pe=0.1 [1]
and ends with the run at Pe=10" [9]. The bracketed number, which is shown in column
(1) next to the Péclet number, specifies the order of the run series. Initial samples of
particles are selected randomly for the runs with Pe=0.01, 0.1 and 10°. All of these runs

are with 27 particles and an average of dimensionless run time is 100.

Details of dynamic simulations for hard spheres at a volume fraction ¢=0.48 are
reported in Table 8.2. In addition to a three-run series with 123 particles, a monolayer
model with 80 and 120 particles at an areal fraction ¢, = 0.72, which is comparable to a
volume fraction ¢=0.48 using the 2/3 rule, is also simulated. At the end of the run with
80 particles and Pe=10 [1], the microstructure is verified for strings of particles in the
flow direction, the z-axis. The influence of the shear on the order of flowing particles is
tested with high shear rates at Pe=10’ [2] and 10* [2]. In a different run starting with
strings of flowing particles, the shear is stopped (in the run with Pe=0 [2]) and the string
formation at Pe=10 [1] is allowed to relax to an equilibrium state, so we can study the
relaxation of a string-ordered structure. A monolayer model with 80 and 120 particles

provides a large number of neighboring particles which are needed for the computing of
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the structure factors at small wave numbers (large wave lengths). In a monolayer with
100 particles, a particle has up to 5 particle diameters of different neighbors and it is
equivalent to a three dimensional model with 1000 particles, which is prohibitively costly

to run on a workstation.

Table 8.3 gives details of the runs for hard spheres at ¢$=0.49. The Péclet number
ranges from 0.01 to 10" and these runs start with a random initial sample of 27 particles.
A special run with 123 particles at Pe=10 is shown at the end of this table. Details of
the runs for hard spheres at a volume fraction ¢=0.51 are reported in Table 8.4. There
are two series of continuing runs for 27 particles and the order of the run series is denoted
by the bracketed numbers shown in column (1). The first run series follows the order of
Pe=10 [1], 10° [2], 10° [34], 2000 [4+] and 10° [5+]. The second run series follows the
order of Pe=10 [1], 10° [2], 0.1 [3-] and 0.01 [4-]. All other runs in this table start with
random sample of the particles. Table 8.5 shows details of the runs with 28 particles
for ¢=0.55. Initial random particle configurations are chosen for the runs with Pe=0.01,
3, 10, 30 and 10°. A series of continuing runs are carried out with the following order
of Pe=10 [1], 10’ [2] and 10° [3]. The particle configuration at the end of the run with
Pe=10" [3] is used for the runs with Pe=0.1, 1 and 10°. A special run with 126 particles
at Pe=10 is shown at the end of Table 8.5. To select a random particle configuration for
a hard-sphere suspension with a volume fraction above 0.55, we set 28 or 126 particles
in a BCC or FCC lattice and then randomize the spheres for approximately 10° moves.
Note that a volume fraction 0.55 is above the maximum close packing ¢fffx = 0.5236
for a SCC lattice and 27 or 123 particles cannot be assembled into a BCC or FCC lattice.

This is the reason why the runs for ¢>0.55 are with 28 or 126 particles.



270

VIII.1 Suspension Rheology
VIII.1.1 The Steady Shear Viscosity

Results of the steady shear viscosities of hard-sphere suspensions at volume fractions
$=0.47, 0.48, 0.49, 0.51 and 0.55 obtained by Stokesian dynamics for different Péclet
numbers are summarized in Tables 8.6 to 8.10, respectively. Column (1) is Pe and col-
umn (2) is N. Columns (3) to (8) are the steady hydrodynamic viscosity, its standard
deviation, the steady Brownian viscosity, its standard deviation, the steady total shear
viscosity and its standard deviation, respectively. Results of the steady shear viscosities
from Table 8.6 for ¢=0.47 are plotted in Fig.8.1 to show the change of Brownian (0) and
hydrodynamic contribution (A) to the total shear viscosity (@) with varying Péclet num-
bers. The total shear viscosity curve shows a strong shear thinning and shear thickening
behavior and resembles quite strikingly experimental curves. The steady total shear
viscosity, 7, decreases noticeably in the shear thinning region (Pe < 5) from 1, ~ 21.1
at Pe=0.01 to a minimum viscosity 5, ~ 4.2 in a small plateau region (5 < Pe < 10)
and then increases with increasing Péclet numbers in the shear thickening region with
Pe > 10. The cause of the shear thinning in the region of Pe < 1 is due only to the
decrease in the Brownian contribution to the stress since the hydrodynamic contribution
remains unchanged in this region. For 1 < Pe < 5, the suspension continuously shear
thins and the shear thinning in this region is due not only to a decrease in the Brownian
contribution to particle stress but also due to a small reduction in the hydrodynamic
contribution as well. The reduction in hydrodynamic viscosity was not seen for suspen-

sions at ¢=0.45 (cf. Fig.6.1). Figure 8.1 shows a small plateau region (5 < Pe < 10)
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where the total shear viscosity is minimum. A further shear thickening region is seen at
Pe > 10 where hydrodynamics contribute all to the total shear viscosity. At Pe*~ 0.7,

Brownian and hydrodynamic viscosities are the same.

The rheological behavior of the two hard-sphere suspensions at volume fractions
¢=0.48 and 0.49 are plotted in Figures 8.2 and 8.3 with data for these two figures taken
from Tables 8.7 and 8.8, respectively. The two hard spheres show the same trend seen
for hard spheres at ¢=0.47. In the first shear thinning region (Pe < 1), the decrease
in the Brownian viscosity, 17:3, is a direct cause of the shear thinning. For 1 < Pe < 5,
the decrease of both nf and 77:{ drives a further decrease of the total viscosity, 7., to
a minimum value in the second shear thinning region. The suspension shear thickens
for Pe > 10 as 17:{ increases quickly and contributes essentially all to the total shear
viscosity since nf has decayed and vanished for Pe > 10°. As seen in Fig 8.2, the
total shear viscosity shows little variation for a monolayer with 80 particles () and 120
particles () at Pe=10. The comparison for the total viscosity of a monolayer with 80
particles (®) and a 3D model with 123 particles (0) at Pe=0.43, 10 and 10° is excellent.
The negligible change of total viscosity with different number of particles: 27 and 123,
in the simulation can also be seen in Fig.8.3 for $=0.49. At Pe*~ 0.9, Brownian and

hydrodynamic viscosities are the same for the two hard-sphere suspensions.

Results from Table 8.9 for ¢=0.51 are plotted in a log-log plot in Fig.8.4 to show
the relation of the relative viscosities as a function of the Péclet number. As the Péclet
number increases from the Brownian dominated limit (Pe=0.01), the suspension strongly

shear thins for Pe < 10 and shear thickens for Pe > 10. The plateau region, which is
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seen for hard spheres at ¢=0.45 (cf. Fig.6.1) where the steady total shear viscosity is
minimum, has reduced to a very narrow region at Pe=10. The figure shows a decrease
in 77? and 77:3 for 1 < Pe < 10 which causes the suspension to further shear thin. At
Pe=10, both nf and 77:3 are a minimum value. A good comparison is obtained for 7,
from the run with 27 particles (@) and 123 particles (®) at Pe=10. Figure 8.4 shows

identical Brownian and hydrodynamic viscosities at Pe*~ 1.

Figure 8.5 displays the relation of the relative viscosities for hard spheres at a volume
fraction ¢=0.55 with different Péclet numbers in a log-log scale. Data for the figure are
taken from Table 8.10. For a slightly perturbed dense hard-sphere suspension ( Pe=0.01),
the steady total shear viscosity is large. As the Péclet number increases, the dense
suspension shows very strong shear thinning as the total shear viscosity decreases from
n, ~ 0(1000) at Pe=0.01 to 7, ~ 10 at Pe=10. In the plateau region (30 < Pe < 102)?
the total shear viscosity is unchanged and minimum as the decrease of the Brownian
contribution to the stress is balanced by the increase of hydrodynamic contribution,
which is the same behavior obtained for hard spheres at $=0.45. For large Péclet numbers
(Pe > 103), the suspension shear thickens due to an increase of hydrodynamic viscosity.
Note that the Brownian viscosity is small compared to hydrodynamic viscosity, but it
has not completely vanished in the shear thickening region as seen for hard spheres at
smaller volume fractions. Figure 8.5 shows a delay of the transition from shear thinning
to shear thickening and the plateau region is shift to larger Péclet number, from Pe = 10
at ¢<051 1030 < Pe < 10° for $=0.55. The variation in the total shear viscosity for
28 particles (@) and for 126 particles (®) at Pe=10 is negligibly small. At Pe*~ 2, the

contribution of Brownian and hydrodynamic to particle stress are identical.
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A comparison of the simulation results for the steady total viscosity and experimental
results from van der Werff and de Kruif (1989) for silica hard spheres is shown in Fig.8.6

with a log-log scale. Stokesian dynamics results are plotted for hard spheres at ¢ = (@)

0.45 as a reference for comparison, 0.47, () 0.48, (4) 0.49, (0) 0.51 and () 0.55.
The volume fractions in the experiments are: ¢ = (4) 0.419+0.01, (&) 0.4434+0.01, (A)
0.4740.01 and (x) 0.488+0.01. In the region with Pe < 1, Stokesian dynamic results
for $=0.47 and 0.49 compare remarkably well with experiments at identical or similar
volume fractions: ¢=0.47 and 0.488. In the region of Pe = 10, simulation results are
noticeably twice as small as the experimental results. This noticeable difference in the
total viscosity is rather peculiar since the comparison for our results for ¢=0.45 with

their experiments is excellent as shown in chapter VI. The uncertainty of our results is

small as shown in Tables 8.6 to 8.10 for the shear viscosities in this region.

The newly noticeable difference is due largely to the small reduction of the hydrody-
namic viscosity which is found for these very dense hard spheres. In the experiments, van
der Werff and de Kruif reported an approximate 2% uncertainty for the measurements
of the viscosities and another 2% for the measurements of the volume fractions. The
2% uncertainty for the shear viscosities is standard, but a 2% uncertainty in the volume
fractions may lead to large uncertainty in the viscosity, especially at high ¢ values due to
extreme sensitivity of the viscosity on the volume fraction. This can be seen by noting
the large difference in the shear viscosity curves at ¢=0.419, 0.47, and 0.488 from their

experiments.

Our results also show that the total shear viscosity for ¢=0.47 is smallest at Pe=10
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and smaller than the minimum viscosity for ¢=0.45. This trend has not yet been seen
in experiments or reported. There is clearly a need for further experiments as well
as simulations of well characterized dense colloidal dispersions. As the Péclet number
increases, our viscosity curves recover quickly for Pe > 10 and would have matched the
trend of the experiments in the region of large Péclet number if the shear rates were
increased. The suspension shows a shear thickening region for Pe > 10" and this was not
seen in the experiments of van de Werff and de Kruif which were limited to highest shear
rates at Pe=10. Shear thickening have been observed in many other systems (Hoffman
(1972), Laun (1988), Barnes (1989), Boersma et al. (1990)). The viscosities, which are
measured for large spheres (Pe — oo) by Jeffery and Acrivos (1976), Gadala-Maria (1979)
and Pétzold (1980), are larger than the minimum in the shear thinning viscosity of the
Brownian suspensions shown in Fig.8.6; therefore, the suspension must shear thicken. In

the next section, we present our findings for the steady normal stress differences.
VIII.1.2 The Steady Normal Stress Differences

Results of the steady first and second normal stress differences and its statistics are
summarized in Tables 8.11 to 8.15 for these very dense hard-sphere suspensions at volume
fractions ¢=0.47, 0.48, 0.49, 0.51 and 0.55, respectively. Column (1) is Pe and column
(2) is N. Columns (3) to (8) give the first and columns (9) to (14) give the second
normal stress differences, respectively. In these columns, results for the hydrodynamic
contribution are presented first, followed by the Brownian contribution, and the total
normal stress differences last. The standard deviation computed from the number of

samples shown in Tables 8.1 to 8.5 is denoted by ¢. For the runs of a monolayer with 80
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and 120 particles shown in Table 8.12, the forces in the z direction are not needed for
dynamic simulations, so the second normal stress differences are not computed. Results
from Tables 8.11 to 8.15 are plotted in pairs of figures for each ¢ to show the change
of the hydrodynamic (A) and Brownian contribution (0O) to the total normal stress
differences (@) with varying Péclet numbers. For a monolayer with 80 particles, only the

first normal stress differences are plotted in Fig.8.8.

Figures 8.7.a, 8.8, 8.9.a, 8.10.a and 8.11.a show the first and Figures 8.7.b, 8.9.b,
8.10.b and 8.11.b show the second normal stress differences for hard spheres at ¢=0.47,
0.48, 0.49, 0.51 and 0.55, respectively. For the region with small Péclet number, the hy-
drodynamic (A) first and second normal stress differences, x,, and x,,, are small and
negligible compared to the dominant Brownian contribution (O) x,, and x,,, respec-
tively. In the region of small Péclet number (Pe < 1), the statistical uncertainty in the
Brownian contribution to stress is large as shown in Tables 8.11 to 8.15. The standard
deviation for the Brownian contribution to the normal stress difference oy, , (column
(6)) and oy,, (column (12)) are large, and the mean values of normal stress differences
reflect the simulation fluctuations at low Pe. The large fluctuations in Brownian contri-
bution to the stress in the region of small Péclet number are due to small deformation
of the equilibrium structure for relatively short runs. Simulations with longer run times
are necessary for the region of small Péclet numbers. For a hard-sphere distribution of
force-free particles, it is expected that there are no normal stress differences in the limit

of Pe — 0.

As the Péclet number increases, x,, and y,, decay in absolute value and have essen-
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tially vanished for Pe > 10°. In this large Péclet number region, x,, and x,, increase
and contribute totally to x,, and x,,, respectively. Note that while both x,, and x,, are
positive for all Péclet numbers, x,, is negative and y,, is positive. The special regions
at Pe ~ 10 for hard spheres at ¢ < 0.51 (cf. Figures 8.7 to 8.10) and at Pe ~ 100 for
hard spheres at ¢=0.55 (Fig.8.11.a-b) show a large decrease in absolute value for both
normal stress differences, and recall that in these special regions, the total viscosities are
also minimum. The minimum in absolute value of x,, and x,, in this region is due to a
noticeable decrease of both the hydrodynamic and Brownian contribution to the normal
stress differences. A shift of the transition from shear thinning to shear thickening to
larger Péclet number as the volume fraction increases to ¢=0.55 (cf. Fig.8.5) is seen to
be consistent with a similar shift of the region where both the normal stress differences

are minimum as shown in Figures 8.11.a and 8.11.b.

Figure 8.12.a and 8.12.b illustrate a comparison for the total first and second normal
stress differences with different volume fractions ¢ = (0O) 0.47, (¢) 0.48, (A) 0.49, ()
0.51 and (®) 0.55. The normal stress differences of hard-sphere suspensions at ¢=0.45
(®) are also shown in these two figures as a reference for comparison. In the region
of 1 < Pe< 104, X:r and x,, for dense hard spheres at volume fraction ¢ < 0.51 are
relatively the same as the normal stress differences of hard spheres at ¢=0.45 which are
of O(1) and small compared to the normal stress differences for suspensions at ¢=0.55

which are positive and of 0(10).

Our results and experiments show pronounced shear thinning and shear thickening

behavior of very dense hard-sphere suspensions in simple shear flow. The important
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challenge to us is to determine and to understand the mechanisms which produce these
interesting rheological behaviors, especially in the special region with Pe ~ 10, where
the minimum viscosity of hard spheres at a range of volume fraction from 0.47 to 0.51
is smaller than the minimum viscosity of hard-sphere suspensions at ¢=0.45. This is a
great opportunity for us to study and to understand the relation of certain shear-induced
order patterns of the flowing particles to the pronounced shear thinning behavior. In the

following section, the shear-induced microstructure is presented.

VIil.2 The Shear-Induced Microstructure

VIIIL.2.1 The Angularly Averaged Pair-Distribution Function g(r)

Figure 8.13.a shows the radial dependence of the angularly averaged pair-distribution
function, g(r), with Pe=10 for hard-sphere suspensions at volume fractions ¢ = (dotted
curve) 0.48, (dashed curve) 0.49 and (dotted-dash curve) 0.51. There are 123 particles in
the unit cell. In comparison to g(r) for $=0.45 (solid curve) which displays strong single
peaks at the particle center-center radial spacing r ~ 4, 6 and 8, g(r) for these denser
hard spheres shows a strikingly different pattern with two strong twin peaks at r =~ 4 and
r & 6 and two intense single peaks at r ~ 7 and 9. These sharp peaks with high intensity
are the signature of the strong ordering of the flowing particles at Pe=10. Recall that
the pattern of g(r) for ¢=0.45 reflects the hexagonal packing of strings of flowing particle
which we discussed in detail in chapter VI. As the volume fraction increases, one would
expect the location of the intense peaks to be shifted to a slightly smaller r for denser
suspensions. Figure 8.13.a displays this shift from r ~ 4.2 for ¢=0.45 to r ~ 3.8 for

¢$=0.48, 49 and 0.51, but the peak at r ~ 4.2 is also seen for these denser suspensions.
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The twin peaks of g(r) at these two radial spacings suggest that the hexagonal ring is
not symmetrical and the packing pattern of the flowing particles may be stretched or
distorted. g(r) offers information from which we can identify the location of distortion.
In the region of strong ordering, there are two distinct arrangements of the particles:
hexagonal formation for particles on the z—y plane and string formation for particles in
the flow direction, which can be seen from the x—y and -z planes. By analyzing the
peaks of g(r), we can identify that the stretching must be from the particle positions
at the apex of the hexagon and not from the stringed particles in the flow direction.
This is because that at r = 3.8, which is less than 4 for two particle diameters, the two
particles in a string formation (the first and second nearest neighbors of the particle at
the origin) must have been overlapped and the program would have terminated which
it did not occur. Particles in the hexagonal formation do not overlap for » ~ 3.8 due to
their staggered positions in this packing. The double-peaked g(r) gives the location of
the particles on the second (r &~ 3.8) and third (r ~ 4.2) distorted hexagonal rings. This
can also be seen from the plot of the probability density computed in the z—y plane,

glz,y) (cf. Fig.8.21.¢).

Similar to the plot of g(r) in Fig.8.13.a, we plot the radial dependence of g(r) for
denser hard-sphere suspensions at ¢ = (dotted curve) 0.55, (dashed curve) 0.58 and
(dotted-dash curve) 0.6 in Fig.8.13.b, and the results are obtained from simulations with
126 particles. g(r) for ¢=0.49 and 123 particles (solid curve) is also plotted in this figure
for our comparison. The twin-peaked g(r) for 0.47 < ¢ < 0.51 becomes less strong as ¢
increases to the range of 0.55 to 0.6 and comparing to g(r) for ¢$=0.45 (cf. Fig.8.13.a),

we observe a reversal trend of g(r) which changes from a pattern with double peaks
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to a similar pattern of strong single peaks of ¢=0.45. The degree of the distortion and
stretching of the particle order is less for hard spheres with a volume fraction in the range
of 0.55 to 0.6 compared to the distortion of the structure for ¢ in the range of 0.48 to 0.51.
While the stretching and distortion may be related to the small size of the unit cell as
the volume fraction increases, it is a strong evidence that the suspensions in this range of
volume fraction are induced to a strong ordering state at Pe & 10 by the balance of shear
and Brownian forces. For the current computing power of workstations and small unit
times on the Cray Y-MP supercomputer, we are limited to simulations with less than
150 particles. It is of our interest to bring the Stokesian dynamics simulation method
to the full speed of parallel computing so that simulations with 0(103) particles can be

performed.

Figure 8.13.c illustrates the pair-distribution function for a small range of r from
2.0 (when the particles come in contact) to 2.1 and with Pe=10. There are 123 or 126
particles in the unit cell. Note that g(r) is plotted with a logarithmic scale. The plot
symbols for different volume fractions are: ¢ = (0) 0.48, (A) 0.49, (0) 0.51, (a) 0.55, (K)
0.58, and (¢) 0.6. As the volume fraction ¢ increases from 0.45 (@), the pair-distribution
function evaluated at r=2, g(2), first decreases to a minimum for ¢ = 0.48 and then
increases with increasing volume fraction. In chapter VI, we determined the relation of
the steady shear viscosity to the deformation of the microstructure, which in a dense
suspension can be represented by the pair-distribution function evaluated at r=2 (cf.
Fig.6.5). The minimurm shear viscosity in the special region Pe & 10 corresponds to the
minimum of g(2) and, in the shear thickening region with large Péclet numbers, the large

value of the steady shear viscosity corresponds to the large value of g(2). g(2) for ¢ in
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the range of 0.48 to 0.51 is indeed smaller than the small g(2) of $=0.45 indicating that
the relatively well separation of strings of the flowing particles produces a more efficient
flow than the string order at ¢=0.45, and as a result the steady shear viscosity should
be less, which is observed for these very dense suspensions. The first peak of g(r) is seen
at r & 2.02 and for very dense suspension at ¢=0.58 and 0.6, it is shifted to=r ~ 2 as

particles are closely spaced or touch.

A comparison of g(r) for different Péclet numbers: (dotted curve) 0.43, (solid curve)
10 and (dashed curve) 10" is presented in Fig.8.14 for ¢=0.48 with 123 particles. Intense
peaks for strong ordering microstructure can only be seen for Pe=10. The insert figure
shows g(r) with a logarithmic scale for a smaller range of the particle center-center
spacing r from 2.0 to 2.1. For a slightly deformed suspension (Pe=0.43), our results for
£(2) is 5.81 which compares very well with the value of 6.1 of a random suspension (Pe=0)
computed by a Monte-Carlo simulation. At Pe=10, g(2) is small and then increases 100
fold for Pe=10" in the shear thickening region. The large value of g(2) in the region of

strong hydrodynamics (Pe > 102) is a direct result of the formation of particle clusters.

Figure 8.15 shows the relation of g(2) with a finer increment of the Péclet number
from 0.01 to 10" for hard spheres at different volume fractions: ¢ = (@) 0.45, (O0) 0.47,
(£) 0.49, (0) 0.51 and (&) 0.55. g(2) are computed from the runs with 27 or 28 particles
in the unit cell and data for the plot are taken from Table 6.4.a. In the region of small
Péclet numbers (Pe < 1), g(2) is relatively constant and increases with large ¢. As the
Péclet number increases, g(2) decreases sharply for Pe ~ 10 and increases quickly and

approaches an asymptotic value in the hydrodynamic dominated limit (Pe — oco). The
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special region at Pe=10 shows a remarkable behavior of g(2) which it first decreases to a
minimum at ¢=0.47 and then increases with increasing ¢. g(2) displays little variation

for different numbers of particles as shown in Table 6.4.a.

The steady shear viscosity and the pair-distribution function show a clear evidence
of the two types of suspension behavior in the special region (Pe &~ 10). For the volume
fraction in the range of 0.47 to 0.51 which spans the colloidal crystalline-colloidal fiuid
phase transition of hard spheres at equilibrium, the steady shear viscosity is small.
The flowing particles are largely separated from each other and the packing order is
distorted or stretched as shown by the double peaked pattern of g(r) compared to single-
peaked pattern of suspensions at ¢=0.45. As the volume fraction increases into the
glass transition (0.55 < ¢ < 0.6), the rheological behavior returns to the behavior for
suspensions at ¢=0.45 and the suspension shows a delay to larger Péclet number of
the shear thinning-shear thickening transition. In the following section, we examine
the shear-induced microstructure with more detail by traveling along the steady shear
viscosity curves (cf. Figures 8.1 to 8.5) and probing the relative arrangement of the

particles at each particular Péclet number where the viscosities are computed.

VIIL.2.2 The Probability Density Functions g(z,y), g(z, z) and g(z,y)

Our computer simulations for very dense hard spheres include two systems of different
number of particles. In this section, the simulation results for 27 or 28 particles are
presented first, followed by the simulation results with large N which include 123 or 126

particles, and a monolayer model with 80 and 120 particles last.
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VIIL.2.2.1 g(z,y), g(z, z) and g(z,y) for 3-D models with 27 or 28 particles

The microstructure of the first group of hard spheres at ¢=0.47, 0.49 and 0.51 is
presented by the probability density functions computed in the z—y plane, g(z,y), in
the z—z plane, 'g(:r,z) and in the z—y plane, g(z,y) in Figures 8.16, 8.17 and 8.18,
respectively. The are 27 particles in the unit cell. The flow direction is the z-axis,
the velocity gradient direction is the y-axis, and the vorticity direction is the z-axis.
Regions of light color represent high probability and regions of dark color represent low
probability. The probability density functions are plotted with a range of the Péclet

numbers shown with the increasing order from left to right and from top to bottom.

Figures 8.16.a, 8.16.b and 8.16.c show the change of g(z,y), gz, 2) and g(z,y) for
$=0.47 with varying Pe ranging from 0.1 to 103, respectively. Starting from Pe=0.1 in
the upper left, the microstructure is seen with a slightly deformed symmetric ring for
strong Brownian suspension (Pe=0.1 and 1). For Pe in the range of 3 to 100, the flowing
suspension is strongly ordered with strings of particles in the flow direction shown by
g(z,y) and g(z,y) and two different patterns of hexagonal packing of strings of flowing
particles shown by g(z,y) in Fig.8.16.c. g(z,y) shows a slightly stretched and distorted
hexagonal at Pe=10 compared to the symmetrical hexagonal packing at Pe=20 which
is the packing order for the flowing particles obtained for ¢$=0.45 (cf. Fig.6.8.b). The
important difference between the two patterns is not the orientation of the hexagonal
packing but it is the separation of the particles in the packing. Figure 8.16.c shows that
the separating distance of the particles in the hexagonal formation is larger at Pe=10

compared to that of Pe=20. This trend can also be seen from Fig.8.15 for the plot of
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the pair-distribution function evaluated for particle center-center spacing r=2, g(2). For
$=0.47, g(2) at Pe=10 is 0.01 compared to 8.31 for Pe=20 which is nearly 1000 fold
increase (cf. Table 6.4.a). Referring to the steady shear viscosity curve of ¢=0.47 (cf.
Fig.8.1), the shear viscosity is smaller and minimum at Pe=10 than at Pe=20. The

order of the flowing particles is destroyed at large shear rates (Pe:103),

The microstructure of hard spheres at a volume fraction ¢=0.49 is displayed in Fig-
ures 8.17.a-c and it is very similar to the microstructure of ¢=0.47. In the regions
of strong ordering (Pe=3 and 30), g(z,y) in Fig.8.17.a and g(z, 2) in Fig.8.17.b show
strings of flowing particles in the flow direction, and g(z,y) in Fig.8.17.c. shows a dis-
tinct hexagonal packing of strings of flowing particles. g(z,y) clearly shows a very well
formed hexagonal at Pe=10. Note that there are only three strings of particles in the
z-axis compared to five strings of the hexagonal packing at Pe=30. The difference in the
number strings of the particles at Pe=10 and Pe=30 can also be seen from g(z, z). If we
view the flow of the particles from the top of the unit cell, the x—z plane, with the flow
direction from our left to our right, then we would see three distinct sheets of particles
with large fluid space between the sheets at Pe=10. In this packing, the separating
distance between the particles is largest and as expected the shear viscosity is minimum
(cf. Fig.8.3). The microstructural order of the flowing particles are destroyed by high

shear rates at Pe:IOBQ

The microstructures of the last hard-sphere suspension in the first group are presented
by the density plot of g(z,y) in Fig.8.18.a and g(z,y) in Fig.8.18.b for ¢$=0.51. Regions

of string order are seen for Pe=3, 10 and 10°. Again we observe two different patterns of
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hexagonal packing at Pe=10 and 100, with the particles more separated in the new type
of hexagonal packing at Pe=10. The transitional Péclet number which the suspension
begins to order is seen at Pe=3 and the string formation is destroyed at considerably

large shear rates (Pe:104).

Figures 8.19.a-c display the microstructures of hard spheres at $=0.55 for Pe ranging
from 0.1 to 10°. There are now 28 particles in the unit cell. g(z,y) in Fig.8.19.a and
g(z, z) in Fig.8.19.b show a string formation of particles for a large range of the Péclet
number from 10 to 10'. g(z,y) shows an interesting type of packing in the region of
string order. The stretched hexagonal is inclined and rotated with a small positive angle
relative to the vorticity direction, the z-axis, to accommodate all 28 particles within the
unit cell, which is similar to the inclination of the packing of 81 particles for ¢=0.45 (cf.
Fig.6.11.a). Only one type of hexagonal packing is seen for ¢=0.55. More interestingly,
as shown by the steady shear viscosity curve in Fig.8.5 the suspension starts to shear
thicken for Pe from 10 to 103, yet the microstructure begins to order for this range of
the Péclet number. The string order of hexagonally packed particles does not necessarily

produce the minimum viscosity as we see clearly for this very dense suspension.

For very dense hard-sphere suspensions, the results of the runs with 27 or 28 particles
reveal a remarkable shear-induced microstructure which helps us to envision the shearing
deformation of the suspension and gain the physical understanding of the mechanisms
which induce the rheological behavior. This is a great motivation for us to pursue
dynamic simulations with a larger number of particles which provide more detail of the

microstructure, especially its long-ranged order and the necessity of a large number of
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particles for the computation of the structure factors. In the next section, we present
the details of our finding for the microstructure of dense hard spheres modeled with a

large number of particles.
VIIL.2.2.2 g(z,y), g(z,z) and g(z,y) for Suspensions with 123 or 126 Particles

In this section, the microstructure of the flowing suspensions is determined from the
runs with 123 or 126 particles. This allows a comparison with the microstructure of
a hard-sphere suspension at ¢=0.45 which we presented in detail in Chapter VI (cf.
Figures 6.10.a to 6.10.g). As shown in Figures 8.20.a-c, the steady probability density
functions g(x,y), g(z,2) and g(z,y)are plotted for ¢=0.48 and three different Péclet
numbers: Pe=0.43 (left figure), 10 (central figure) and 10° (right figure). There are 123
particles in the unit cell. The flow direction is the z-axis, the velocity gradient direction
is the y-axis and the vorticity direction is the z-axis. Regions of light color represent
high probability and regions of dark color represent low probability. These figures dis-
play three representative microstructures of the hard spheres. At low Péclet number
(Pe=0.43), the small shear rate can only slightly perturb the equilibrium structure since
the Brownian motion is strong and the particle motion is diffusive. The structure is
very close to that of suspension at rest state which -is isotropic for ¢=0.48 and this is
correctly shown by Stokesian dynamics in these three figures. The probability density
functions show a symmetric ring with small deformation for Pe=0.43 in all three planes.
As the Péclet number increases into the ordered region (Pe=10), the flowing suspension
is strongly ordered with strings of particles in the flow direction shown by g(z,y) in

Fig.8.20.a and g(x, z) in Fig.8.20.b and a distinct “hexagonal” packing of strings of flow-



286

ing particles shown by g(z,y) in Fig.8.20.c. The order is long ranged as shown by several
hexagonal packing of the particles within the unit cell. For a hydrodynamic dominated
suspension (Pe:IOB), the hexagonal packing of strings of particles is destroyed. Large
clusters of particles are formed as seen by the sharpening first nearest neighbor ring for

Pe:103,

The most revealing microstructure in the ordered region with Pe=10 is shown in
Figures 8.21.a-c for hard spheres at ¢ = (top left) 0.45, (top éentral) 0.48, (top right)
0.49, (bottom left) 0.51, (bottom central) 0.55 and (bottom right) 0.58. There are 123 or
126 particles in the unit cell. g(z,y) in Fig.8.21.a and g(z, z) in Fig.8.21.b clearly show
strings of particles in the flow direction, the z-axis, for ¢ from 0.45 to 0.51. For ¢=0.55
and 0.58, the structure has not equilibrated after a dimensionless time of 40, but the
particles are seen in transition to order as g(z,y) and g(z,z) show less intense signals
of a string formation. Note the striking difference in the patterns of string formation in
the density plots of g(z,y) and g(z, z) for $=0.45 compared to ¢ in the range of 0.48 to
0.58. This comparison shows a clear evidence of the switching in the packing order from
the z—y and z—z packing for ¢=0.45 to the z~2z and z—y for larger ¢, respectively.
As shown in Fig.8.21.a, g(z,y) changes from a 5-stringed formation for ¢=0.45 to a 9-
stringed pattern for larger ¢. Similarly, g(z, 2) in Fig.8.21.b shows a reversal trend which
it changes from a 9-stringed formation for ¢=0.45 to a 5-stringed pattern for denser hard
spheres. The more effective means to observe the change of the order microstructure at
Pe=10 is shown in Fig.8.21.c for the probability density function g(z,y). g(z,y) displays
the hexagonal packing of strings of flowing particles. A closer examination of these

hexagonal patterns shows a noticeable difference among these packing. As ¢ increases
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from 0.45 to the range of 0.48 to 0.51, the symmetric hexagonal packing for ¢=0.45 is
rotated by an angle of 90 degrees and slightly stretched in the velocity gradient direction,
the vertical y-axis. The distortions of the hexagons are seen from this figure as well as
from the pair-distribution function g(r) which shows two twin peaks (cf. Figures 8.13.a
and 8.13.b). The new hexagonal packing is consistent with the new packing in the z—y
and x—z plane. As the volume fraction increases to 0.55 and 0.58, the new hexagonal
packing is further inclined by a small angle relative to the vorticity direction, the z-axis,
to accommodate 126 particles within the unit cell. The switching of the orientation
of the strings is most likely influenced by the small size of the unit cell as the volume

fraction increases.

Figure 8.21.d shows our most recent results for dynamic simulations with 126 parti-
cles at volume fractions ¢=0.59 (left column) and 0.6 (right column). g(z,y) is shown
in the top row and g(z,y) is shown in the bottom row. Initial particle samples are se-
lected randomly and the dimensionless run time is 50. The microstructure has not yet
equilibrated, but the onset of particle order can be seen from this figure. These runs
demonstrate the capability of Stokesian dynamics in simulating very dense suspensions.
The theoretical volume fraction for an hexagonal packing of strings of particles in three
dimensions is 0.605. From a random sample of 126 particles at ¢=0.6, which is in the
glass transition at rest state and essentially theoretical maximum volume fraction of

hexagonally packed particles, we can shear the suspension to order.
VII1.2.2.3 g(z,y) for a Monolayer with 80 Particles

The probability density function g(z,y) is plotted in Fig.8.22.a for a monolayer with
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80 particles at an areal fraction ¢,= 0.72, which is comparable with ¢$=0.48 in three
dimensions, for different Péclet numbers. The flow direction is the horizontal z-axis and
the velocity gradient direction is the vertical y-axis. The initial sample of 80 particles is
selected by first setting 80 particles in a square array 8x10 and then the particles are
randomized by a Monte-Carlo calculation for 10° moves with a small random displace-
ment step. Note that at equilibrium, the microstructure displays a crystalline phase
as shown in the upper left most figure at Pe=0. Alder and Wainwright (1962) have
studied and found the phase transition of a hard-disk fluid starting at an areal fraction
¢j: 0.62 (comparable to $=0.41 which is less than ¢,= 0.494 of the phase transition of
a hard-sphere model). This is consistent with our finding for the equilibrium crystalline
microstructure at ¢,= 0.72. The small shear rate at Pe=0.01 is seen to perturb, but it
is not sufficiently strong to melt the crystalline phase. At Pe=1, we observe the shear
melting effect which destroys the equilibrium crystalline phase. As the Péclet number
increases, the shear begins to induce the string order of particles in the flow direction as
can be seen for Pe in the range of 10 to 10°. The string formation is destroyed at very

high shear rates (Pe:IOS) and again we observe the shear melting effect on the colloidal

crystals.
VIII1.2.2.4 The Relaxation of a String-Ordered Microstructure

In addition to studying the shear melting effect, we investigate the relaxation time of
a string-order microstructure. The monolayer is first sheared to string order at Pe=10
as shown in Fig.8.22.a, then the shear rate is discontinued and we perform a dynamic

simulation with pure Brownian motion at Pe=0. As the microstructure equilibrates,
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Stokesian dynamics is expected to capture the process of recrystallization of the mono-
layer at ¢,= 0.72. The evolution of the microstructure at different times is shown in
Fig.8.22.b. The suspension recrystallizes after a sufficiently long dimensionless time of
80 and the figure shows the excellent comparison of crystalline phase obtained by Stoke-
sian dynamics simulation at Pe=0 and computed by a Monte-Carlo calculation. Note
that the time is scaled with diffusive time and for a typical colloidal diffusive time of
0(10~?sec), it should take approximately 2 hours for the suspension to relax and return
to a crystalline phase. The large relaxation times have also been confirmed in experi-
ment of Ackerson and Pusey (1988) and Pusey and van Megen (1986). In the following

section, we present simulation results for the line and plane structure factors.

VIII.2.3 The Structure Factor 5(k)

Our goals are to provide a comparison of the structure factors obtained by Stokesian
dynamics and measured from experiments. Furthermore, we need to determine the
spectroscopic signature of an ordered suspension and understand the relation of the
scattering light pattern to the deformation of the flowing suspension. In the following
sections, the line structure factors S(ks), S(ky) and S(k.) are presented first, followed

by the plane structure factors S(kz, ky), S(kz, k2) and S(k., ky).

VII1.2.3.1 The Line Structure Factors S(k;), S(ky) and S(k.)

The line structure factors S(kz), S(ky) and S(k.) are computed by choosing the wave
vector parallel to the k-, ky- and k.-axis, respectively. To compute S(k.) for example,

we fix the dimensionless wave numbers ky=k,=0 and vary only the wave number k.
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The computing method for the structure factors is presented in chapter VI.

Figures 8.23.a-c show S(kz), S(ky) and S(k.) for dense hard spheres in the ordered
region with Pe=10 for different volume fractions: ¢ = (O) 0.48, (A) 0.49 and (0) 0.51.
The structure factors for hard spheres at ¢=0.45 (@) are also plotted in these three
figures for a reference of comparison. There are 123 particles in the unit cell and the
dimensionless wave numbers k., k, and k, range from 2 to 8. As shown in Fig.8.23.a,
the structure factors computed in the flow direction, S(k;), show small variation due to
constant and large changes of the particle positions. The scattering light intensities of
S(kz) are small compared to that of S(k,) and S(k;) computed in the directions of the
velocity gradient and the vorticity as shown in Figures 8.23.b and 8.23.c, respectively.
S(ky) shows a single peak with high intensity at the dimensionless wave number k;, ~ 6.4
and S(k:) shows two intense peaks at the dimensionless wave numbers k, ~ 3.5 and
k; =~ 7. The peak intensities of S(ky) and S(k,) are less for ¢=0.51 compared to the
high intensity of ¢=0.48 and 0.49. These intensity maxima probe the string order of
the particles in the flow direction at Pe=10. The most striking revealing of a change of
the microstructure at Pe=10 as the volume fraction increases from 0.45 to the range of
0.48 to 0.51 is by comparing the structure factors S(k,) and S(k.) of these denser hard
spheres to S(k.) and S(k,) for ¢=0.45 shown in Figures 8.23.b and 8.23.c, respectively.
The striking resemblance of these curves clearly demonstrates a switching in the packing
order of the flowing particles along the y- and the z-axis for ¢=0.45 to the z- and the
y-axis for denser suspensions, respectively. This switching of the packing pattern is also
seen from a plot of the probability density functions g(z,y) and g(z, z) (cf. Figures

8.21.a and 8.21.b).
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Figure 8.23.d plots the structure factor which is computed with an angle §=—15"
relative to the z-axis for ¢ = (A) 0.55 and (O) 0.58 at Pe=10. There are 126 particles
in the unit cell and to accommodate all 126 hexagonally packed particles, the hexagon
is inclined as shown in Fig.8.21.c. Figure 8.23.d reinforces this claim and shows that
strong scattering light intensity can only be seen along the @ = —15" line. The structure

factor computed with #=0", S(k.), shows a negligible scattering for all wave numbers.

A comparison for the structure factors S(k,) and S(k.) with three different Péclet
numbers: Pe = (0O) 0.43, (@) 10 and (A) 103, is shown in Figures 8.24.a and 8.24.b
for hard spheres at ¢=0.48, respectively. The strong scattered intensity which is the
spectroscopic signature of strongly ordered flowing particles can only be seen for Pe=10

as shown in these two figures.
VIIL.2.3.2 The Line Structure Factor S(ky) for a Monolayer

At equilibrium, the monolayer at an areal fraction ¢,= 0.72 shows the crystalline
phase as presented in Figures 8.22.a and 8.22.b. To display the intensity pattern of
the shear melting effect, the structure factor computed in the direction of the velocity
gradient, S(ky), is plotted in Fig.8.25 for different Péclet numbers: Pe = (0) 0.01,
(O0) 1,(e) 10, (®) 10° and (D) 10°. S(ky) shows an intensity maxima peak at the
dimensionless wave number &k, ~ 3.5 and a less intense peak at &k, ~ 6.5 for Pe=10 and
10° which are seen as the spectroscopic signature for strings of flowing particles in the
flow direction. The colloidal crystals at equilibrium are sheared to melt and induced into
strings of particles for Péclet number in the range of 10 to 10°. The string formation is

destroyed at very high shear rate (Pe:IOS) and shows minimal scattering.
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The relaxation of a string-order suspension is probed by plotting the evolution of
S(ky) for different dimensionless times as shown in Fig.8.26. S(k,) shows one intense
peak at ky = 3.5 and one smaller peak at k, ~ 6.5 for the starting string-ordered
suspension at time=0 (@). The intensity at these two peaks decreases sharply with time.
After a dimensionless time of 80, S(k,) displays intensity maxima for the crystalline

phase (M) as the suspension recrystallizes and returns to a rest state.

The anisotropic line structure factors were effectively used to probe the strings for-
mation of the flowing suspension in the ordered region with Pe=10. The most striking
evidence was presented to show a change in the microstructure as the volume fraction
increases from 0.45 to the range of 0.48 to 0.51. The packing order has switched from
the y- and z-axis for ¢$=0.45 to the 2z- and y-axis for denser hard spheres, respectively.
These denser hard-sphere suspensions also show a small shear viscosity for Pe=10. To
probe two different patterns of hexagonal formation and examine the deformation of the
microstructure, the two-dimensional plane structure factors are computed and presented

in the following section.
VIIL.2.4 The Plane Structure Factors S(k;,ky), S(kz, k) and S(k,, k,)

The plane structure factors S(kz, ky), S(kz, k) and S(k., ky) are computed by choos-
ing the wave vectors parallel to each of the plane of interest. To compute S(k;, ky) for
example, we fix the wave number k,=0 and vary k; and ky. The dimensionless wave
numbers kz, ky and k, are varied from 0.5 to £4.0. This range of wave numbers is used
to compute the nonequilibrium plane structure factors which are plotted in a contour plot

with four symmetrical quadrants similar to the topographical plots of the small angle
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neutron scattering (SANS) measurements of the static piane structure factors reported
by Johnson et al. (1988), van der Werff and de Kruif (1989) and Laun et al. (1992). In
the first quadrant, both the wave numbers parallel to the horizontal and vertical axes
are positive and vary from 0.5 to 4.0. For the second quadrant, the wave number parallel
to the vertical axis is unchanged and the wave number parallel to the horizontal axis is
negative and ranges from -4.0 to -0.5. The third and fourth quadrant are mirror images

of the first and the second quadrant, respectively.
VIII.2.4.1 The Plane Structure Factor S(k;,k,) of a Monolayer

The dynamic simulations with monolayer of 80 and 120 particles provide a large
number of neighboring particles within the cell which are necessary for the computation
of the structure factor with both large and small wave numbers probing the short- and
long-ranged order of the flowing suspension, respectively. Figures 8.27.a-c show the plane
structure factor computed in the z—y plane, S(k;, k), for a monolayer of 80 particles at
an areal fraction ¢, = 0.72 with different Péclet numbers. The range of the dimensionless
wave numbers k, and ky is from £0.5 to £4.0 and these three figures display the surface
plots of S(kz, ky) as a function of k, and k. Sfarting from the top of Fig.8.27.a, S(ks, ky)
shows random regions of strong scattering light intensity for the crystals of an equilibrium
hard-disk fluid. There is little variation in S(k;, ky) for a suspension with small defor-
mation at Pe=0.01 (bottom figure) compared to the equilibrium S(k;, k,) (top figure).
The scattered intensity pattern of S(k, ky) becomes increasingly distinct as the Péclet
number increases. At Pe=1 (top figure in Fig.8.27.b), S(kz, k,) begins to form bands

and the regions of random scattered intensity seen at Pe=0.01 completely disappears.
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The two vertical bands along the wave numbers k; ~ 3.5 are clearly seen for Pe=10
(bottom figure in Fig.8.27.b) and at Pe=10’ (top figure in Fig.8.27.c). These bands
with intensity maxima are the signature of strings of flowing particles. The pattern of
high intensities is destroyed at high shear rates (Pez:l()s) (bottom figure in Fig.8.27.c).
The surface plot of S(ks,ky) provides a clear comparison of the microstructure for a
strong Brownian suspension with random regions of high intensity (Pe=0.01) and a hy-
drodynamic dominated suspension with distorted ring of intensity maxima, which is the

signature of clusters of particles in the high Péclet number limit.

To capture the long-ranged order of the flowing suspension, we compute S(kg, ky)
with a smaller range of the dimensionless wave numbers k. and k, from 0.5 to 1.5 and
plotted in Figures 8.28.a-c. At Pe=10, the long-ranged order of strings of particles can
be seen with vertical bands of high intensity along the wave numbers k; =~ 0.75 and
kz ~ 1.5 (bottom figure in Fig.8.28.b). S(kg, ky) with small wave numbers at Pe=10’
(top figure in Fig.8.28.c) does not show the long-ranged string formation. This is due to
the deficiency in number of particles for the computation of small-wave-number struc-
ture factors. Results from the run with a monolayer of 120 particles at Pe=10 and the
same areal fraction are plotted in Fig.8.29 for S(k., k,) with small (top figure) and large
(bottom figure) wave numbers. The intensity pattern of S(k;, ky) are much higher, espe-
cially for the small wave numbers for 120 particles compared to S(k,, ky) for 80 particles.
It is clear that for small-wave-number structure factors, simulations with monoclayer of
0(102) particles are needed; it is equivalent with simulations of 0(103) particles in three

dimensions, which is beyond the present 100-MFLOPS rated workstations.
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VIIL.2.4.2 The Plane Structure Factors S(kz, ky), S(kz, k.) and S(k., ky)

Figures 8.30.a, 8.30.b and 8.30.c show the comparison for the plane structure fac-
tors S(kz, ky), S(ke, k) and S(k;, ky) with different Péclet numbers for hard spheres at
¢=0.48, respectively. For Pe=0.43 (left figure), the isotropic Debye-Scherrer ring for the
equilibrium structure is slightly distorted to an elliptic in the Fourier k-space. For the
strongly ordered region with Pe=10 (central figure) S(ky, ky) and S(kz, k) displays ver-
tical bands of intensity maxima for strings of flowing particles. Furthermore, S(k;, k)
displays circular regions of high intensity for the order of flowing particles in a hexagonal
packing which can also be seen clearly with S(k,, k). At Pe=10" (right figure), the

patterns of high scattering light are destroyed.

The microstructures of the flowing suspensions in the special shear region with Pe=10
are compared for hard-sphere suspensions with different volume fractions and they are
shown in Figures 8.31.a and 8.31.b. There are 123 or 126 particles in the unit cell and
the volume fraction ¢ varies from 0.45 to 0.58. The two figures show conclusive evidence
of a strongly ordered microstructure with bands of high intensity from contour plots of
S(kz,ky) and a halo ring of six intensity Iﬁaxima from contour plots of S(k;,k,). Note
that the circular regions of intensity maxima can only be seen for ¢=0.45 in Fig.8.31.a.
Recall that we report our findings of a switching in the packing order of flowing particles
from y- and z-axis for $=0.45 to z and y-axis for ¢ in the range of 0.48 to 0.51. The
absence of circular regions of high intensity in S(k;, ky) for denser hard spheres can now
be seen from S(k., k;) shown in Fig.8.30.b. Note also that the difference in the halo

pattern shown in Fig.8.31.b. The halo ring for ¢=0.45 is rotated by an angle 90 degrees
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for ¢ in the range of 0.48 and 0.51 and it is further inclined by a small angle with respect
to the horizontal k,-axis due to the accommodation of 126 particles within the unit cell.
The rotation of the halo ring is also evidence of the switching in the packing pattern as

¢ becomes larger than 0.45.

The most recent SANS measurements for the plane structure factors by Laun et al.
(1992) for both plane Poiseuille and Couette flows have shown the halo ring patterns in
the shear thinning region, and the halo ring disappears as the shear rate increases into the
sheaf thickening region (cf. Fig.24 from Laun et al. (1992) and shown in Figures 6.34 and
6.35 in chapter VI) for suspensions of electrostatically stabilized styrene-ethylacrylate-
copolymer spheres in glycol and in water at a volume fraction of ¢=0.434. Results from
the experiments with plane Poiseuille flow for denser hard spheres do not reveal a change
in the pattern of the halo ring or a stronger shear thinning behavior. There was only one
experiment with Couette flow for hard spheres at ¢=0.434 reported. Our results for the
plane structure factors in the velocity gradient-velocity plane show the same halo ring
pattern of scattering light for strongly ordered suspensions as measured by Laun et al..
We needs more experiments with well characterized and dense colloidal hard spheres in

shear flow to verify the interesting change of the microstructure and pronounced shear

thinning behavior.

The question that needs to be addressed is whether the new orientation of the hexag-
onal packing induces a more efficient flow of the particles for ¢ in the range of 0.48 to 0.51
which shows smaller shear viscosities at Pe=10 than the small viscosity of suspensions

at ¢$=0.45. In chapter VI, we showed that the orientation of the symmetric hexagonal
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packing does not influence the rheology as seen from the indistinguishable difference in
shear viscosity given by 27, 81 and 123 particles at ¢=0.45. The shear viscosity depends
on the deformation of the suspension and the relative separation distance between the
particles. In this aspect, we see clearly a connection of the steady shear viscosity and the
pair-distribution function evaluated for closely spaced particles at r=2, g(2), which is
a function of the two important dimensionless parameters, the volume fraction and the
Péclet number. For hard spheres with ¢ in the range of 0.48 to 0.51, g(2) at Pe=10 is
smaller than g(2) for ¢=0.45 (cf. Fig.8.15) and thus we obtained small shear viscosities
for denser hard spheres. The stretching of the new hexagonal packing allows a larger
separation of the particles in the packing and induces a more efficient flow of strings of

hexagonally packed particles.
VIII.3 The Self-Diffusivities

In this section, we focus on the short- and lorig—time self-diffusion coefficients of
Brownian particles in dense suspensions. The short-time self-diffusivities measure the
instantaneous mobility of the particles on a small time scale so small that the particles
do not have to move a distance comparable to its own size. In contrast to the short-
time self-diffusivities, the long-time self-diffusivities measure the dynamic behavior of
the suspensions as the particles must travel a distance far from their starting locations,

deform the local structure and exchange places with neighbors.
VI1I1.3.1 The Short-Time Self-Diffusion Coefficients

The short-time translational and rotational self-diffusion coefficient are denoted by D,
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and D, respectively. D, is normalized by the infinite dilution coefficient D,= kT'/(67na)
and D, is normalized by D.=kT/ (87r77a3). The short-time self-diffusion coefficients D,
and D; are reported in Tables 8.16 to 8.20 for ¢=0.47, 0.48, (.49, 0.51 and 0.55, re-
spectively. Column (1) is Pe and column (2) is N. Columns (3) to (6) are the steady
short-time translational self-diffusion coefficients computed in the z-axis, D;I:: in the
y-axis, D;w, in the z-axis, D,_, the mean, i.e., D, = %—(DZII—FDZWJrDZ”), and its stan-
dard deviation. Similarly, columns (8) to (12) are the short-time rotational self-diffusion
coeflicients D:u, Diw, D:”, the mean D, and its standard deviation. For the monolayer

model, the z-component of the short-time self-diffusivities is not computed and the mean

is defined as the x and y average, i.e., D, = 1(D]

Oz

+D';w).

Results of the steady D, and D, from these five tables are plotted in Figures 8.32.a
and 8.32.b as a function of the Péclet number, respectively. The plot symbols for different
volume fractions ¢ are: (0O) 0.47,(A) 0.49, (0) 0.51 and (&) 0.55. There are 27 or 28
particles in the unit cell. D, and D, for ¢=0.45 (@) are also plotted in these two figures
as a reference for comparison. As shown in these two figures, D, and D, are relatively
constant for Pe < 1, decrease slightly at Pe = 1, increase to a maximum at Pe &~ 10,
and finally decrease with increasing Pe. The behavior of the short-time self-diffusion
coefficients can be explained by referring to the shearing deformation of the suspensions.
In the region of small shear rates (Pe < 1), the equilibrium structure, whether it is
random or a crystalline phase, is slightly perturbed and the strong Brownian motion
dominates and maintains the diffusive behavior of the suspension. The microstructure
in this region is very close to that of a rest state and as a result the short-time self-

diffusion coefficients do not change.
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For the region of Pe = 1, the stronger shear force begins to influence the deformation
of the suspension and the particles are less diffusive than pure Brownian particles at
Pe=0. In this region, we observe a slight decrease of the short-time self-diffusion coef-
ficients. D, and D, also decrease as the volume fraction increases for Pe < 10. In the
ordered region with Pe & 10, the figure shows an increase of D, and D. to a maximum
value which implies the enhancement of instantaneous mobility due to a large separation
of particles. This is consistent with the microstructure described in section VIII.2. The
proper balance of Brownian and hydrodynamic forces induces an ordered structure with
well separated and relatively uniform spaced particles packed in the strings along the
flow direction. As a consequence, the particles are very mobile at Pe=10 and we observe
the maximum of the short-time self-diffusion coefficients. In this region, the short-time
self-diffusion coefficients for ¢=0.47 and 0.49 are also larger than that for ¢=0.45. Again
this is consistent with the behavior of the pair-distribution function evaluated for touch-
ing pairs of particles, g(2), (cf. Fig.8.15) and the behavior of the steady shear viscosity

(cf. Fig.8.6).

In the region of large Péclet number (Pe > 102), the high shearing deformation causes
particles to cluster. The mobility of the flowing particles in the clusters is greatly reduced
and as a result we have a decrease in the short-time self-diffusion coefficients as shown
in these two figures. Summarized results from Tables 8.16 to 8.20 also show that D
computed in the z-axis, D:;u, is slightly larger than Dz, computed in the y- and the

. 8 8
z-axis, D, ~and D, .
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VII1.3.2 The Long-Time Self-Diffusion Coeflicients

Results of the long-time self-diffusion coefficients are reported in Tables 8.21 to 8.24
for the runs with 27 or 28 particles for ¢=0.47, 0.49, 0.15 and 0.55. Column (1) is the
Péclet number. Columns (2) to (5) are the steady long-time self-diffusion coefficient
computed in the velocity gradient direction, D;o,yy’ its standard deviation, the steady
long-time self-diffusion coefficient computed in the vorticity direction, D;O,zz, and its
standard deviation, respectively. The mean value of these coefficients are computed
from the number of samples shown in column (7) and each sample interval has a time
unit displayed in column (6). These coefficients are normalized by the infinite dilution
diffusion coefficient D,= kT /(6mwna). Note that the reported values for the normalized

&

Do, yy and D;O,zz in these tables are scaled with the diffusive time. Long run times of
the simulations with 27 or 28 particles are needed for DZW and Dizz which equilibrate
after an average of a dimensionless time of 80 as shown in these tables. The relatively
shorter run times for simulations with 123 and 126 particles do not provide sufficient
particle positions and this is why these runs are not used to compute DZW and DZ
The velocity gradient direction is the y-axis and the vorticity direction is the z-axis. For

Pe>1, the time is scaled with 4~ and this is equivalent to multiplying D;O,yy and D;’zz

reported in Tables 8.21 to 8.24 with Pe.

Figure 8.33.a shows a log-log plot of the simulation results for D;o,yy /D, as a function
of the Péclet number. For Pe < 1, the suspension is essentially all Brownian and the
dimensionless diffusion coefficient is relatively constant and D;O,yy ~ O(D,) as shown

in the limit of Pe — 0. At much higher Péclet number (Pe>102), Fig.8.33.a shows a
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very different relation of D:;O’yy /D, which is linear with increasing Pe. This is expected

based on the dimensional analysis: as Pe — oo, the only scale for the diffusion is f'yaQ;

&8

0,yy Should scale with Pe as Pe — oo. Our results indeed

therefore, the dimensional D
show this behavior remarkably well with D;o,yy ~ 0.065x Pe for Pe — oo. Figure 8.33.2
also shows clearly the transitional Péclet number Pe ~ 10, where the behavior of the long-
time self-diffusion coefficient changes from a strong Brownian limit to a hydrodynamic

&

dominated regime. At Pe=10, the nondimensionalized D, ,, decreases to a minimum
value which is two orders of magnitude less than that of Pe < 1. It is again the ordered
region where the steady shear viscosity is also minimum. Referring to the shear-induced
ordered structure at Pe=10, the minimum value of D;o,yy indicates that the particles
are least diffusive in the y-axis. Equivalently, the minimum value of D;’yy must imply
a strongly ordered structure and in string formations, the particles can not break away.

&

Note also that at Pe=10, D, ,, for ¢ = (O) 0.47 and (A) 0.49 are smaller than that
of ¢ = (@) 0.45 which is the same as D;,yy for ¢ = (0) 0.51. Results of Brownian
dynamic simulations by Xue and Grest (1990) have also shown the similar minimum in
the long-time self-diffusivities of ordered suspensions in an oscillating shear flow. D:,oyyy
for ¢=0.55 shows a different behavior with a plateau region with Pe in the range of 10

to 100 where D remains minimum and then increases with large Pe. A shift of the

00,yy
Brownian-hyrodynamic transition from Pe=10 to Pe=100 as seen in this figure and is

consistent with the small shift of the shear thinning-shear thickening transition as shown

in Fig.8.6.

The long-time self-diffusion coefficient computed in the vorticity direction, the z-axis

is plotted in Fig.8.33.b as a function of the Péclet number for the same hard-sphere sus-
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pensions. We observe a behavior of D;,ZZ/DO similar to that of D;yyy/Do in Fig.8.33.a
in the strong Brownian and strong hydrodynamic regimes. For slightly deformed hard
spheres (Pe < 1), D‘;O,zz /D, is relatiﬁely constant and for hydrodynamically driven sus-
pensions, the dimensional D;o,zz scales with Pe. The two asymptotic limits of D‘;o,zz
at Pe — 0 and at Pe — oo are similar to that of D:o’yy. In the ordered region with
Pe =~ 10, D;Yzz decreases to a minimum value but it is less pronounced than the signif-
icant decrease of D;o,yy. We observe the same behavior for D;ﬂz as Df,o,yy for ¢=0.55
which shows a plateau region with Pe in the range of 10 to 1000 where D:,o'zz changes
inappreciably and a shift to larger Péclet number of the transition from the Brownian to
hydrodynamic domination. In chapter IX, we provide the comparison of our simulation
results for the long-time self-diffusion coefficients in the limit of pure hydrodynamics

(Pe — o00) with the experimental findings from Eckstein et al. (1977), Leighton and

Acrivos (1987), and the most recent results from Phan and Leighton (1992).

QOur study of the self-diffusivities for dense hard sphere suspensions shows a clear dis-
tinction between the diffusive Brownian regime (Pe — 0) and a hydrodynamic dominated
regime (Pe — 00) with a transition region near Pe ~ 10. The long-time self-diffusion
coefficients D, are constant at small Péclet numbers, decrease to minimum value at
transitional region where the structure is strongly ordered and then grow linearly with
increasing Pe. In this special transitional region, the short-time self-diffusion is maxi-
mum due to enhanced instantaneous mobility of the suspended particles. At high Pe,
the reduction of the short-time self-diffusion coeflicients is a direct result of large particle
clusters: a particle cannot move without moving all members of the compact cluster even

at short time scales.
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VIII.4 Conclusions

In this chapter, we detailed our study for very dense hard-sphere suspensions with
volume fraction ranging from 0.47 to 0.6. In a simple shear flow, these dense hard-
sphere suspensions displayed interesting rheological and microstructural behaviors. The
suspensions with volume fraction from 0.47 to 0.51 strongly shear thinned for Pe < 1, and
in the special region with Pe=10 the steady shear viscosity was minimum and smaller
than the steady shear viscosity of hard spheres at ¢=0.45. In the region of large Péclet
number (Pe > 102), these very dense suspensions shear thickened. The pronounced
minimum shear viscosities in the special region at Pe=10 corresponded to not only a
decrease in the Brownian but also a small reduction in hydrodynamic viscosity. This
was not seen for suspensions at ¢=0.45, where the hydrodynamic contribution to the

stress remains unchanged for Pe < 10.

Our results for microstructure show clearly the evolution of the flowing particles as
a function of both the Péclet number and volume fraction. In the region of low Péclet
number (Pe < 1), the microstructure is that of a slightly deformed suspension near
equilibrium. Both the short- and long-time self-diffusivities showed little variation as the
flowing suspension was still strongly diffusive and Brownian motion plays a dominant role
in this low Péclet number regime. In the ordered region (Pe = 10), the proper balance
of the Brownian and hydrodynamic forces induced the flowing suspension into strong
ordering with hexagonally packed strings of particles in the flow direction. The short-
time self-diffusion coefficients were maximum as the flowing particles are very mobile.

The long-time self-diffusion coefficients were minimum due to the packing formation of
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flowing particles which are locked into strings.

The distinct hexagonal packing for ¢=0.45 with 123 particles was rotated by 90
degrees as the volume fraction increases to the range of 0.47 to 0.51, which may be related
to the size of the unit cell. However, it is important to note that it is not the orientation
of the packing which produces a smaller minimum viscosity for these dense hard spheres
than the minimum viscosity for ¢=0.45. The small minimum viscosities are directly
related to the deformation of the structure which gives relatively large separation among
the particles in the hexagon. The new hexagonal packing for very dense hard spheres was
stretched slightly in the velocity gradient direction allowing the particles in this packing
to be further apart than the particles in the hexagonal packing for ¢$=0.45. The particles
moved more efficiently in the new packing and for this new flow pattern, we obtained
the lowest shear viscosity. This is a great opportunity for processing optimization where

dense suspensions can be made to flow with homogeneous order and least resistance.

We have successfully applied the Stokesian dynamics simulation method for study-
ing the rheological and microstructural behaviors of very dense hard sphere suspensions.
Our results provide the necessary physical understanding of the mechanisms which cause
interesting suspension microscopic and macroscopic behavior. The accurate treatments
for both the hydrodynamic and Brownian forces in dense suspension were demonstrated
by good comparison of simulation results for the steady shear viscosities with experi-
mental measurements. The accuracy of the method was also illustrated by reproducing
the recrystallization process when a string-ordered suspension relaxed and returned to

the crystalline phase at equilibrium. The shear melting of the crystals at equilibrium
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and of the crystals which we produced by a shear-induced process at Pe=10 for dense
hard-sphere suspensions were presented in detail. At the theoretical maximum packing
of " = 0.605 of the hexagonally packed particles, Stokesian dynamics is well capable
of simulating a random particle configuration and inducing a flow of ordered particles.
The simulations provide vast amount of information and results from which can be used

to test theories as well as other simulation methods.
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Table 8.1: Statistics for simulations of hard spheres at volume fraction ¢=0.47
and different Péclet numbers. Table captions are the same as shown in Table 6.1.a.
Random samples of particle configurations are selected for Pe=0.01, 0.1 and 10°.
The running order of a series of nine continuing runs from [1] to [9] is given by
bracketed numbers which are shown in column (1) next to Pe.

Pe N | tstart | lend Dtger NSTEPS taifs | tshift # trials
0.01 | 27| 0.0]2000]|5%10~%| 400000 | 190.0| 1.0 11
Moo | 27| 0.0/ 1000 5%x10-4| 200000 | 80.0| 1.0 11
®100 | 271000 2000]| 1073 | 100000 | 70.0| 20 16
®3.00 |27 2000 |3000]| 10°% | 100000 | 60.0| 2.0 21
“700 | 273000 400.0] 1073 | 100000 | 60.0| 2.0 21
®10.00 | 27 | 400.0 | 500.0 | 103 | 100000 | 60.0| 2.0 21
®90.00 | 27 | 500.0 | 600.0 | 10-3 | 100000 | 60.0| 2.0 21
M102 | 27| 6000 7000| 1073 | 100000 | 60.0| 2.0 21
®10% |27 700.0 | 800.0| 103 | 100000 | 60.0| 2.0 21
"0t | 278000900 10-® | 100000 | 60.0| 2.0 21
105 |27] 00| 500| 1074 | 500000 | 40.0| 1.0 5




307

Table 8.2: Statistics for simulations of hard-sphere suspensions at a volume frac-
tion ¢=0.48 and different Péclet numbers. Table captions are the same as shown in
Table 6.1.a. For the runs with 123 particles, a series of three-continuing runs begins
with Pe=0.43 [1] and ends with Pe=10" [3]. For simulations of monolayer with 80
particles, initial particle configuration of the run with Pezl()z, 10° and 0 are taken
from the end of the run with Pe=10. The run of a monolayer with 120 particles is
started with a random particle configuration.

Pe N Latart tend Atset NSTEPS tdiff tshi ft # trials
"o.43 | 123 0.0 40.0|5%x10-4] 80000 | 35.0 1
®1000 | 123 | 400 800 1073 40000 | 35.0 1
103 123 | 80.0!1200] 10-3 40000 | 35.0 1
001 | 802D | 0.0 300 107* | 300000
1.00 | 802D | 0.0] 30.0] 107* | 300000 | 20.0 1
"10.00 | 802D | 0.0] 400 1078 40000 | 30.0 1
20.00 | 802D | 0.0 250 103 25000 | 20.0 1
103 | 802D | 0.0/ 230 1073 23000 | 20.0 1
P10t | 802D | 40.0| 70.0| 10-* | 300000 | 25.0 1
“105 | 802D | 40.0| 50.0] 10=* | 100000 | 10.0 1
®0.00 | 802D | 40.0| 90.0| 10°* | 500000
10.00 |1202D | 00| 400 10-3 40000 | 35.0 1
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Table 8.3: Statistics for simulations of hard spheres at volume fraction ¢=0.49
and different Péclet numbers. Table captions are the same as shown in Table 6.1.a.
Random particle configurations are selected for all the runs.

Pe N | tetart | Tend Al et NSTEPS tairs | tshift # trials

0.01| 27 | 0.0 | 140.0 | 5x10~% | 280000 | 90.0| 1.0 5
0.10| 27 | 0.0 |100.0| 103 100000 | 80.0| 1.0 11
1.00| 27 | 00 |100.0| 1073 100000 | 80.0| 1.0 11
2.00| 27 | 0.0 |100.0] 1073 100000 | 80.0| 1.0 11
3.00f{ 27| 00 |100.0| 1073 100000 | 80.0 1.0 11
1000 27 | 0.0 |1000] 1073 100000 | 80.0| 1.0 11
30.00{ 27 | 0.0 |100.0| 10-3 100000 | 60.0| 5.0 7
102 | 27 | 0.0 |100.0| 1073 100000 | 60.0| 5.0 7
102 | 27 | 0.0 |100.0| 103 100000 | 60.0 | 5.0 7
10* | 27| 00 |1000| 1073 100000 | 60.0| 5.0 7
10° | 27 | 0.0 85.0 104 850000 | 60.0 ] 5.0 5

10.00 | 123 | 0.0 40.0 | 1073 40000 35.0 1
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Table 8.4: Statistics for simulations of hard spheres at volume fraction ¢=0.51
and different Péclet numbers. Table captions are the same as shown in Table 6.1.a.
Initial random samples of particles are selected for the runs with Pe=1, 10 and 10°
with 27 particles and Pe=10 with 123 particles. There are two series of continuing
runs for 27 particles and the orders of the run series are given by the bracketed
numbers shown in column (1). The first run series follows the order of {1}, [2], [3+4],
[4+] and [5+] and the second run series follows the order of (1], [2], [3-] and [4-].

Pe N Tstart tend Atset NSTEPS tdiff tshift # trials
“Io.o1 | 27 | 300.0 | 400.0 | 1074 108 90.0 | 1.0 11
®Jo.10 | 27 | 200.0 | 300.0 | 104 106 90.0 | 1.0 11
1.00 | 27| 0.0/1000] 1073 | 100000 | 700| 2.0 16
“s00 | 27 | 300.0 | 400.0 | 163 | 100000 | 70.0| 2.0 16
“10.00 | 27 | 0.0|1000| 1073 | 100000 | 70.0| 2.0 16
02 27 | 100.0 | 200.0 | 103 | 100000 | 70.0| 2.0 16
“I3x102 | 27 | 300.0 | 400.0 | 10~3 | 100000 | 70.0| 2.0 16

(3+]

102 | 27 | 200.0 | 300.0 | 16=3 | 100000 | 70.0| 5.0
“ox103 | 27 | 300.0 | 400.0 | 10=3 | 100000 | 70.0| 5.0

5104 27 | 400.0 | 500.0 | 103 | 100000 | 70.0| 5.0
10° 27 0.0 45.0] 10~% | 450000 300 1.0

DO O W

10.00 123 0.0 | 400 103 40000 35.0 1
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Table 8.5: Statistics for simulations of hard spheres at volume fraction ¢=0.55
and different Péclet numbers. Table captions are the same as shown in Table 6.1.a.
Initial rangiom particle configurations are chosen for the run with Pe=0.01, 3, 10,
30 and 10 . A series of continuing runs are carried out with the order of Pe from
[1] to [4] as shown in column (1). Except a special run with 126 particles at Pe=10,
all other runs are with 28 particles.

Pe N | tatart | tend Atger NSTEPS | taizs | tenift | # trials

0.01 28 0.0 | 1000 | 10% 108 90.0 | 1.0 11
“o10 | 28 | 300.0 | 4000 | 104 108 80.0 | 2.0 11
“100 | 28 | 300.0|400.0 | 5x10~* | 200000 | 80.0| 2.0 11
300 | 28 | 001000 10°® | 100000 | 90.0| 1.0 11
10,00 | 28 | 0.0]1000] 10°3 | 100000 | 60.0| 5.0 9
3000 | 28 | 0.0|1000| 10°3 | 100000 | 60.0| 5.0 9
“102 | 28 |100.0 | 2000| 10°3 | 100000 | 60.0| 5.0 9
“03 | 28 | 200.0 | 300.0 | 103 | 100000 | 60.0] 5.0 9
404 28 | 300.0 | 360.0 | 5x10=4 | 120000 | 50.0 | 1.0 11
10° 28 00| 60.0| 10°° 600000 | 50.0 | 1.0 6

10.00 | 126 0.0 40.0 10~3 40060 35.0 1
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Table 8.6: Results of the shear viscosities obtained by Stokesian dynamics for hard
spheres at volume fraction ¢=0.47 and different Péclet numbers. Table captions are
the same as shown in Table 6.2.a.

Pe N U Ony N Oay Nr O,

0.01 |27 5.191 | 0.033 | 14.937 | 10.187 | 21.127 | 10.231
"o10 | 27| 5.156 | 0.013 | 14.244 | 3.063 | 20.309 | 3.103
“1.00 |27| 6.804|0.002 | 6501 | 1.751 | 14.305 | 1.845
¥3.00 | 27| 3.930|0.061| 1.002| 0.074| 6.022| 0135
“700 | 27| 3140|0012 0.147| 0005 | 4287 0017
“10.00 | 27| 3.084 | 0.030 | 0.097| 0.017| 4.181| 0.042
“I20.00 | 27 | 5.536 | 0.316 | 0.586 | 0.073| 7.122| 0.389
102 | 27| 7.604 | 0.523 | 0.240| 0.028 | 8844 | 0.551
10> |27 |11.146 | 0.186 | 0.042 | 0.001 | 12.188 | 0.187

10* 27 113.922 | 1.438 | 0.005 | 0.000 | 14.927 | 1.438
10° 27 | 22.877 | 3.092 | 0.001 | 0.000 | 23.877 | 3.092




312

Table 8.7: Results of the shear viscosities obtained by Stokesian dynamics for hard
spheres at volume fraction ¢=0.48 and different Péclet numbers. Table captions are
the same as shown in Table 6.2.a. The last section of the table give the results of
the simulations for a monolayer (2D) with 80 and 120 particles.

Pe N Ny Ony Ns Onp Nr On,.
Mo43 | 123 | 6.001 8.752 15.757
1000 | 123 | 4673 0.876 6.549
©l103 123 | 11.408 0.043 12.451
001 | 802D | 6.029 18.751 25.780
1.00 | 80,2D | 5.956 5.949 12.905
"10.00 | 802D | 3.898 0.853 5.751
20.00 | 80,2D | 7.203 0.755 8.958
108 80,2D | 13.084 0.038 14.122
"ot 80,2D | 15.736 0.004 16.740
“105 | 80,2D | 22.632 0.001 23.633
10.00 |1202D | 3.769 1.115 5.884
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Table 8.8: Results of the shear viscosities obtained by Stokesian dynamics for hard
spheres at volume fraction ¢=0.49 and different Péclet numbers. Table captions are
the same as shown in Table 6.2.a.

Pe | N Ny Ony e Ong Mz Ony

0.01 | 27 6.052 | 0.504 { 22.670 | 13.723 | 29.721 | 13.800
0.10 | 27 6.011 | 1.245 | 15.111 [ 5.007 | 22.122 | 5.850
1.00 | 27 6.246 | 0.030 | 5.947 | 0.069 | 13.193 | 0.099
2.00 | 27 4.933 1 0.014 | 2.451 | 0.018 | 8.384 | 0.032
300} 27 | 4.329 | 0.216 [ 1.172 | 0256 | 6.501 | 0.472
10.00 | 27 4.031 1 0.014 | 0.595 | 0.002 | 5.626 | 0.014
30.00 | 27 6.645 | 0.083 | 0.569 | 0.018 [ 8.173 | 0.101
10? 27 8.623 | 0.266 | 0.298 | 0.023 | 9.921 | 0.289
102 27 | 12.375 [ 1.373 | 0.051 | 0.002 | 13.426 | 1.375
10* | 27 | 18.643 | 3.291 [ 0.008 | 0.000 | 19.651 | 3.292
10° 27 | 31.097 | 5.238 | 0.001 | 0.000 | 30.098 | 5.238

10.00 | 123 | 4.239 0.351 5.590
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Table 8.9: Results of the shear viscosities obtained by Stokesian dynamics for hard
spheres at volume fraction ¢=0.51 and different Péclet numbers. Table captions are
the same as shown in Table 6.2.a.

Pe N 771'1 UTIH nB 0.773 T]T 0-17T

“Jo.01 | 27 | 6.841 | 0.009 | 134.500 | 51.083 | 142.340 | 51.091

“Jo.10 27 6.696 | 0.052 | 21.757 | 8.197 | 29.454 | 8.243
1.00 27 6.804 | 0.021 6.501 | 0.265 | 14.305 | 0.266

“JI300 | 27 | 5083|0041 | 1.653| 0.065| 7.737| 0.106
"10.00 | 27 | 4107|0015 0147 0.001| 5.525| 0015
102 27 | 8450|0070 0265 0.008| 9.715| 0.079
“ax102 | 27 | 12512 0565 | 0.179 | 0.015 | 13.691 | 0.581
“hod | 27 | 16.778 | 1.447 | 0.084 | 0.004 | 17.862 | 1.450
“ox10% | 27 | 17.504 [ 3.149 | 0.044 | 0.001 | 18.548 [ 3.150

104 27 | 21.992 [ 5572 | 0.001 | 0.041] 22.993| 5613
10 27 | 44.556 | 8560 | 0.001 | 0.000| 45.557 | 8.560

10.00 123 | 5.035 0.290 6.325
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Table 8.10: Results of the shear viscosities obtained by Stokesian dynamics for
hard spheres at volume fraction ¢=0.55 and different Péclet numbers. Table captions
are the same as shown in Table 6.2.a.

Pe N Nu Ony Me Ong Nr Ty

0.01 28 | 11.346 | 0.157 | 774.575 | 63.685 | 786.925 | 63.837
.10 28 | 11.298 | 0.062 | 70.526 | 12.870 | 82.824 | 13.066

“100 | 28 | 12.945 | 0.114 | 20982 | 0327 | 34.927 | 0.437
3.00 | 28 | 11559 | 0.150 | 8767 | 0202 | 21.325 | 0.348

"10.00| 28 | 8305|0083 | 1.929| 0060 11.234 | 0.141
30.00 | 28 | 8178 |0.075| 0.769| 0.023| 9.947 | 0.097

®102 28 8.787 | 0.051 0.301 | 0.007 | 10.088 | 0.058
103 28 | 13.806 | 0.148 0.090 | 0.003 | 14.895| 0.151

10* 28 | 47.299 | 2.349 0.035 | 0.003 | 48.344 | 2.351
10° 28 | 55.981 | 5.362 0.003 | 0.001 | 56.984 | 5.362

10.00 | 126 | 8.429 2.123 11.552
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Table 8.21: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.47 and different
Péclet numbers. All runs are with 27 particles. Captions for the table are
the same as shown in Table 6.5.

Pe D o D O.. | laifs | # trials

o0, Yy vy ©0,zx

0.01 0.042 0.014 0.043 0.010 | 80.0 12
0.10 0.078 0.008 0.040 0.004 | 80.0 16
1.00 0.150 0.018 0.097 0.007 | 80.0 16
3.00 0.009 0.001 0.015 0.002 | 80.0 16
7.00 | 2.4x10~% | 0.000 | 7.0x10~* [ 0.000 | 80.0 16
10.00 | 4.9x10~* | 0.000 | 5.8x10~% | 0.000 | 80.0 16
20.00 0.007 0.001 0.008 0.001 | 80.0 16
10? 0.015 0.001 0.022 0.002 | 80.0 16
103 0.030 0.003 0.036 0.007 | 80.0 16
10* 0.039 0.006 0.033 0.003 | 80.0 16
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Table 8.22: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.49 and different
Péclet numbers. All runs are with 27 particles. Captions for the table are
the same as shown in Table 6.5.

Pe D g D 0., | taifs | # trials

©0,¥Y v 00,22

0.01 | 0.023 |0.001| 0.043 |0.001] 90.0 11
0.10 { 0.041 |0.006| 0.060 |[0.007| 80.0 16
1.00 | 0.160 |0.011| 0.089 |0.007 | 80.0 16
2.00| 0.030 |0.003| 0.032 |0.004| 80.0 16
3.00 | 0.021 |0.001| 0.020 |0.003| 80.0 16
10.00 | 1.7x10~% | 0.000 | 1.8x10~% | 0.000 | 95.0 4
30.00 | 0.003 | 0.000| 0.002 |0.000| 85.0 11
102 0.010 |0.001| 0.021 |0.002| 80.0 16
108 0.020 | 0.003| 0.042 |0.005| 80.0 16
104 0.052 | 0.004 | 0.048 | 0.003 | 80.0 16
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Table 8.23: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for hard spheres at volume fraction ¢=0.51 and different
Péclet numbers. All runs are with 27 particles. Captions for the table are
the same as shown in Table 6.5.

Pe D o D g, tdifs # trials

oo, Yy 124 0,22

0.01| 0.017 |0.001| 0.030 | 0.003| 80.0 16
0.10| 0.032 |0.004| 0.051 |0.002]| 80.0 16
1.00] 0.084 [0.004] 0011 |0.016] 80.0 16
3.00( 0.006 |0.000| 0.017 |0.000| 80.0 16
10.00 | 3.0x10—* | 0.000 | 5.0x10~* | 0.000 | 80.0 16
102 0.002 | 0.000 | 0.002 | 0.000| 80.0 16
3x102 | 0.022 |[0.002| 0.024 002 | 80.0 16
102 0.031 |0.004| 0.020 |0.003| 80.0 16
2x10% | 0.033 |0.003| 0.036 | 0.002| 80.0 16
104 0.030 |{0.005| 0.031 |0.002]| 80.0 16
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Table 8.24: Results of the long-time self-diffusion coefficients obtained by
Stokesian dynamics for suspensions with ¢=0.55 and different Péclet num-
bers. All runs are with 28 particles. Captions for the table are the same as
shown in Table 6.5.

Pe D g D o taify | # trials

oo,y v 00,22 zz

0.01 | 0.010 | 0.001 | 0.013 | 0.001 | 90.0 6
0.10 | 0.031 | 0.006 | 0.027 | 0.004 | 80.0 16
1.00 [ 0.149 | 0.017 | 0.136 | 0.020 | 80.0 16
3.00 ] 0.029 | 0.004 | 0.062 | 0.003 | 80.0 16
10.00 | 0.002 | 0.000 | 0.010 | 0.002 | 80.0 16
30.00 | 0.001 | 0.000 | 0.005 | 0.001 | 80.0 16
10% | 4.8x10~* | 0.000 | 0.003 | 0.000 | 80.0 16
103 | 5.2x10~* | 0.000 | 0.002 | 0.000 | 80.0 16
104 0.065 | 0.009 | 0.087 | 0.001 | 50.0 6




330

25 LI} lllllll LI lllllll LI lllllll LI llllll] LB Illllll

20 -

-----
-

0 1 llllllll 1 llllllll i

0.01 0.1 1 10
Pe

0=0.47, N = 27
—— Nr

-A- Ty
~0- 1y

100 1000

LR BLAL

10000

Figure 8.1: The relative viscosity 7, of hard-sphere suspensions at a volume
fraction ¢=0.47 obtained by Stokesian dynamics as a function of the Péclet
number: total (@) shear viscosity 7, hydrodynamic (A) viscosity ny and

Brownian (O) viscosity 7.
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Figure 8.2: The relative viscosity of a monolayer at areal fraction ¢ ,= 0.72

and hard-sphere suspensions at a comparable volume fraction ¢=0.48 obtained
by Stokesian dynamics as a function of the Péclet number: total (@) shear
viscosity, hydrodynamic (A) viscosity 77y and Brownian () viscosity 7.

The variation of the total shear viscosity is negligibly small for a monolayer with
(@) 80 particles and (&) 120 particles at Pe=10 and a 3D model with 123
particles (Q) at a comparable volume fraction ¢=0.48 and Pe=0.43, 10 and 1000.
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Figure 8.3: The relative viscosity 7, of a hard-sphere suspension at volume
fraction ¢=0.49 obtained by Stokesian dynamics as a function of the Péclet
number: total (@) shear viscosity, hydrodynamic (A) viscosity Ny and
Brownian (0J) viscosity 77z. A comparison of the total shear viscosity at Pe=10
for 27 particles (@) and for 123 particles (X) at the same volume fraction
shows negligible difference.
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Figure 8.4: A log-log plot of the relative viscosity 7, of hard spheres

at a volume fraction ¢=0.51 obtained by Stokesian dynamics as a function

of the Péclet number: total (@) shear viscosity, hydrodynamic (A) viscosity My
and Brownian (0) viscosity n7p. A comparison of the total shear viscosity at
Pe=10 for (@) 27 particles and for (&) 123 particles at the same volume fraction
shows negligible variation.
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Figure 8.5: A log-log plot of the relative viscosity 7, of hard-sphere suspensions
at a volume fraction ¢=0.55 obtained by Stokesian dynamics as a function of the
Péclet number: total (@) shear viscosity, hydrodynamic (A) viscosity 7y and
Brownian ([J) viscosity 775. The total shear viscosity shows lilltle variation in
changing the number of particles from 28 (@) to 126 particles () at Pe=10.
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Figure 8.6: Comparison of the simulation results for the steady shear viscosity
as a function of the Péclet number and different volume fractions: ¢ = (®) 0.45,
(W) 0.47, (0) 0.48, (a) 0.49, (0) 0.51 and (®) 0.55 with the experiments of van der
Werff and de Kruif (1989): (+) 0.419+0.01, (&) 0.44340.01, (A) 0.4740.01 and (x)
0.488+0.01.
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Figure 8.7.a-b: The first (Fig.8.7.a) and second (Fig.8.7.b) normal stress differences
for hard spheres at volume fraction ¢=0.47 obtained by Stokesian dynamics as a
function of the Péclet number: total (@) normal stress differences, hydrodynamic (A)
and Brownian ([J) contribution.
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Figure 8.8: The first normal stress difference ), for a monolayer with 80
particles at areal fraction ¢ ,= 0.72 obtained by Stokesian dynamics as a

function of the Péclet number: total (@) first normal stress difference,
hydrodynamic (A) and Brownian ({J) contribution.
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Figure 8.9.a-b: The first (Fig.8.9.a) and second (Fig.8.9.b) normal stress differences
for hard spheres at volume fraction ¢=0.49 obtained by Stokesian dynamics as a
function of the Péclet number: total (@) normal stress differences, hydrodynamic (A)
and Brownian ([J) contribution.
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Figure 8.10.a-b: The first (Fig.8.10.a) and second (Fig.8.10.b) normal stress
differences for hard spheres at volume fraction ¢=0.51 obtained by Stokesian
dynamics as a function of the Péclet number: total (@) normal stress differences,
hydrodynamic (A) and Brownian (O) contribution.
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Figure 8.11.a-b: The first (Fig.8.11.a) and second (Fig.8.11.b) normal stress
differences for hard spheres at volume fraction ¢=0.55 obtained by Stokesian
dynamics as a function of the Péclet number: total (@) normal stress differences,
hydrodynamic (A) and Brownian (0J) contribution.
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Figure 8.12.a: The total first normal stress differences ¥, for hard spheres

obtained by Stokesian dynamics as a function of the Péclet number and
different volume fractions ¢ = (@) 0.45, (O) 0.47, (A) 0.49, (O) 0.51 and
(®) 0.55. Results for the first total normal stress differences of a monolayer
with 80 particles (#) at areal fraction ¢p,= 0.72 (comparable to a volume

fraction ¢=0.48) is also plotted in the figure.
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Figure 8.12.b: The total second normal stress differences x, for hard spheres

obtained by Stokesian dynamics as a function of the Péclet number and different
volume fractions ¢ = (@) 0.45, (O) 0.47, (A) 0.49, (0) 0.51 and (®) 0.55.
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Figure 8.13.a: The radial dependence of the pair-distribution function g(r) determined
by Stokesian dynamics for hard-sphere suspensions with Pe=10 and different volume
fractions ¢ = (solid curve) 0.45, (dotted curve) 0.48, (dashed curve) 0.49 and (dotted-dash
curve) 0.51. There are 123 particles in the unit cell. Note the change of the radial
pair-distribution function as the volume fraction increases from 0.45. g(2) for ¢$=0.48,
0.49 and 0.51 shows two strong double peaks at the particle center-center radial spacing
r=4 and r=6 and two less intense single peaks at r=7 and r=9. In comparison to g(r) for
9=0.45, the twin-peaked pattern of g(r) for these dense hard spheres reflects a slight
distortion and stretching to the symmetry of the hexagonal packing for ¢=0.48, 0.49 and
0.51 (cf. Fig.8.21.c).
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Figure 8.13.b: The radial dependence of the pair-distribution function g(r) determined
by Stokesian dynamics for hard-sphere suspensions with Pe=10 and different volume
fractions ¢ = (dotted curve) 0.55, (dashed curve) ¢=0.58, and (dotted-dash curve) 0.6.
There are 126 particles in the unit cell. g(r) for 9=0.49 (solid curve) (cf. Fig.8.13.a) is
plotted as a reference for comparison. As the volume fraction increases from 0.49 to 0.6,
the twined-peak pattern, which is seen for ¢=0.49 indicating a distortion to the symmetric
of the hexagonal packing, is less pronounced. g(2) for very dense hard spheres at 0=0.55,

0.58 and 0.6 shows a sharp and more intense peak at r=4 and smaller peaks at larger radial
distances r=6 and r=7.
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by Stokesian dynamics for hard spheres at Pe=10 with a small range of the particle
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symbols are for suspensions at different volume fractions ¢ = (@) 0.45, (0J) 0.48,

(A) 0.49, (0) 0.51, (A) 0.55, (®) 0.58 and (@) 0.6. There are 123 or 126 particles
in the unit cell. At r=2, g(2) first decreases as the volume fraction ¢ increases from
0.45 to 0.47 and then increases with increasing ¢. Note that g(r) is plotted with a
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Figure 8.14: The radial dependence of the pair-distribution function g(r) obtained
by Stokesian dynamics for hard spheres at a volume fraction ¢=0.48 with 123
particles and different Pe: (dotted curve) 0.43, (solid curve) 10 and (dashed curve)
1000. g(r) at Pe=10 shows intense peaks at regular spacing r. The insert figure

in the upper left of this figure shows a semi-log plot of g(r) with a smaller range

of r from 2 to 2.1. The pair-distribution function evaluated for r=2, g(2), is smallest
for Pe=10 and largest for Pe=1000. The shearing deformation to the suspension is
small at Pe=0.43 as shown by g(2)=6.1 which changes slightly from g(2)=5.81 for
the isotropic hard-sphere distribution obtained by a Monte-Carlo calculation.
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Figure 8.15: A log-log plot of the radial pair-distribution function g(r) evaluated at
particle center-center spacing r=2 (when particles are in contact), g(2), obtained by
Stokesian dynamics for hard spheres as a function of the Péclet number at different
volume fractions: ¢ = ([0) 0.47, (A) 0.49, (O) 0.51 and (&) 0.55. There are 27 or
28 particles in the unit cell. g(2) for $=0.45 (@) is also plotted in this figure as a
reference for comparison. For suspensions with a small deformation (Pe<1), g(2)
changes inappreciably. As the Péclet number increases, g(2) first decreases to a
minimum value at Pe=10, then increases quickly with large Pe and approaches an
asymptotic value for Pe>1000. Note that at Pe=10, g(2) first decreases as ¢
increases from 0.45 to 0.47 and then increases with increasing ¢.
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Pe=10, N=126
0=0.59 0=0.6

g(z,y)

Figure 8.21.d: The probability density functions g(x,y) (top row) and g(z,y) (bottom
row) obrained by Stokesian dynamics for hard spheres with Pe=10 and volume
fractions ¢=0.59 (left column) and 0.6 (right column). There are 126 particles in the
unit cell and the initial particle configurations for the simulations are selected randomly.
Regions of light color represent high probability and regions of dark color represent low
probability. The flow direction is the horizontal x-axis (top ﬁgures) and perpendncuiar
to the z-y plane (bottom figures). After 50 dimensionless time units, the microstructure
has not equilibrated and large fluctuations are seen from the plot of g(x,y) and g(z,y).
#(z,y) shows the onset signal of hexagonal packing of strings of flowing particles as the
particles appear to be in the transition to order.
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Figure 8.23.a: The line structure factor S(k,) obtained by Stokesian dynamics for

hard-sphere suspensions with Pe=10 for different volume fractions: ¢ = (J) 0.48,

(0) 0.49 and (A) 0.51. The line structure factor for a hard-sphere suspension at
$=0.45 (@) is also plotted in this figure as a reference for comparison. £, is the
dimensionless wave number in the flow direction, the x-axis. There are 123 particles
in the unit cell. S(k,) shows little variation in this range of volume fraction and the
scattering light intensity is small compared to that of S(ky) and S(k,) (cf. Fig.8.23.b-c).
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Figure 8.23.b: The line structure factor S(ky) obtained by Stokesian dynamics for
hard-sphere suspensions with Pe=10 for different volume fractions ¢ = ([J) 0.48,

(O) 0.49 and (A) 0.51. ky is the dimensionless wave number in the velocity gradient
direction, the y-axis. There are 123 particles in the unit cell. S(ky) shows an intensity
maxima peak at k,~6.5 for ¢=0.48, 0.49 and 0.51. The line structure factor S(k,)

for a hard-sphere suspension at $=0.45 (@) is also plotted in this figure as a reference
for comparison with S(k,) of ¢=0.48, 0.49 and 0.51. The similarity of these curves
shows a strong evidence of a change in microstructure from the y and z patterns of
the particle order at $=0.45 to the z and y patterns of hard spheres at volume

fraction ¢=0.48, 0.49 and 0.51, respectively.
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Figure 8.23.c: The line structure factor S(k,) obtained by Stokesian dynamics for

hard-sphere suspensions with Pe=10 and different volume fractions ¢ = ([J) 0.48,
(O) 0.49 and (A) 0.51. k, is the dimensionless wave number in the vorticity direction,

the z-axis. There are 123 particles in the unit cell. S(k,) shows two intensity maxima
peak at k,=3.5 and at k,=7.5 for ¢=0.48, 0.49 and 0.51. The line structure factor
S(k,) for a hard-sphere suspension at $=0.45 (®) is also plotted in this figure as a
reference for comparing with S(k,) of ¢=0.48, 0.49 and 0.51. It is a clear evidence

that the microstructure has switched from z and y packing patterns at $=0.45 to y
angd z packing formations as ¢ increases from 0.45 to the range of 0.48 to 0.51.
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Figure 8.23.d: The line structure factor S(k) obtained by Stokesian dynamics for
hard-sphere suspensions with Pe=10 for volume fractions ¢$=0.55 and 0.58.

& is the dimensionless wave number. There are 126 particles in the unit cell. The
structure factor computed with an angle 8= o° (©) (which is S(ky)) shows minimum
scattered intensity compared to the strong scattered intensity of the structure factor
computed with an angle 8=-15° for $=0.55 (A) and 0.58 ([). This is confirmed
by the plot of the probability density function g(z,y) which also shows an inclined
"hexgonal” packing of strings of flowing particles (cf. Fig.8.21.d).
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Figure 8.24.a: The line structure factor S(ky) for hard spheres at a volume fraction

¢=0.48 with 123 particles obtained by Stokesian dynamics for three different Péclet
numbers: Pe = 0.43 (00, 10 (@) and 1000 (A). ky is the dimensionless wave number

in the velocity gradient direction. S(k,) for Pe=10 displays strong scattered intensity
pattern with an intense peak at k,~6.5 compared to small scattered intensity of S(ky)
for Pe=0.43 and 1000.
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Figure 8.24.b: The line structure factor S(k,) for hard spheres at a volume fraction

0=0.48 with 123 particles obtained by Stokesian dynamics for three different Péclet
numbers: Pe = 0.43 (O), 10 (®) and 1000 (A). k, is the dimesionless wave number

in the vorticity direction. S(k,) for Pe=10 displays strong scattered intensity pattern
with two intense peaks at k,=3.5 and at =7.5 compared to insignificant scattered
intensity of S(k,) for Pe=0.43 and 1000.
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Figure 8.25: The line structure factor S(k,) of a monolayer with 80 particles

at areal fraction ¢,= 0.72 obtained by Stokesian dynamics as a function of

the Péclet number: Pe = 0.01 (0), 1 (00), 10 (®), 1000 (&) and 10° (A).

ky is the dimensionless wave number in the velocity gradient direction, the y-axis.
S(ky) for Pe=10 and 1000 shows peaks with high scattering light intensity at k~3.5

and at =6.5 reflecting the string formation of particles in the flow direction similar
to the string formation of hard spheres at $=0.45 (c¢f. Fig.6.21).
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Figure 8.26: The time evolution of the line structure factor S(ky) of a monolayer
with 80 particles at areal fraction ¢ ,= 0.72 obtained by Stokesian dynamics for
different times: 0 (®, Pe=10), 0 to 10 (0), 10 to 20 (A), 20 to 40 () and 40

to 80 (E). ky is the dimensionless wave number in the velocity gradient direction,
the y-axis. S(k,) shows the relaxation of the string-ordered microstructure with
time as the suspension returns to a rest state (Pe=0). The scattered intensity
decreases with time and at equilibrium (after 80 dimensionless time units), strong
scattered intensity of S(ky) reflects the crystailine phase transition of a hard-disk

fluid at ¢ ,= 0.72.
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N =80, ¢,= 0.72

Figure 8.27.a: The structure factor S(k,.4,) obtained by Stokesian dynamics fora
monolayer with 80 particles at an areal fraction ¢p4= 0.72 and Pe=0.01 (bortom).
The range of the dimensionless wave numbers &, and ky is from +/-0.5 to +/-4.0.
In comparison to S(Kvx,/%y) of the starting random configuration (top) obtained by a
Monte-Carlo (MC) calculation, S(/éx,/zy) for Pe=0.01 shows a small variation for a
slightly perturbed isotropic hard-sphere distribution.
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N =80,¢,=0.72

Figure 8.27.b: The structure factor S(ky,k,) obrained by Stokesian dynamics for a

monolayer with 80 particles at ¢5= 0.72 and Pe=1 (top) and 10 (bottom). The

range of the dimensionless wave numbers 4, and %y is from +/-0.5 to +/-4.0. As

the Péclet number increases, S(/ex,ky) shows a pattern of scattering light intensity which
forms two vertical bands along the wave numbers £~ +/- 3.5 and signals the onset of
strings of flowing particles. This can clearly be seen for Pe=10.
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Figure 8.27.c: The structure facror S(ky,k,) obtained by Stokesian dynamics fora

monolayer with 80 particles at ¢ 4= 0.72 and Pe=103 (top) and 105 (bottom). The
range of the dimensionless wave numbers £, and ky is from +/-0.5 to +/-4.0. The
vertical-banded pattern of the scattering light intensity from S(k,, ky) can still be seen

at Pe=103. Ata much higher shear rates (Pe=105), the pattern is destroyed.



379

N=280,¢,=0.72

Sk fy)

£ e pesrad ' .
e,
iz bt.* o "‘f

15

Pe=0, MC
0.5

Figure 8.28.a: The structure factor S(k,4,) obtained by Stokesian dynamics for a

monlayer with 80 particles at an areal fraction ¢,= 0.72 and Pe=0.01 (bottom).
S(%y, /) is computed with a smaller range of /4, and #, from 0.5 to 1.5. In comparison
to S(kx,ky) of the starting random configuration obrained by a Monte-Carlo (MCQ)
calculation (top), S(4,.4,) computed with small wave numbers for Pe=0.01 shows a
noticeable variation for a slightly deformed hard-sphere structure.



380

N =80, ¢,= 0.72

, %)
s Ry
L R
’sﬁéggi}“lnmmf"ﬁﬁ’ =
L L A T
k S e e
SR NSRRI AL T
SRR ' o oy /
"’ 2 1.5

0.5

err

SRR
T R NS
Sy

i,
iy,
Ly,

L Ly

0.5

Pe=10

0.5

1.5

Figure 8.28.b: The structure factor S(kx,ky) obtained by Stokesian dynamics for a
monolayer with 80 particles at $4= 0.72 and Pe=1 (top) and 10 (bottom). As Pe
increases, S(4,,4,) computed with small wave numbers shows a pattern of scattering
light intensity which forms two vertical bands along the lines with wave numbers
ky=0.75 and k= 1.5. The string order of flowing parricles is seen to be long ranged as

shown for Pe=10.
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Figure 8.28.c: The structure factor S(ky, k) obtained by Stokesian dynamics for a

monolayer with 80 particles at an areal fraction ¢,= 0.72 and Pe=103 (top) and 105

(bottom). While the short range order of the microstructure is seen at Pe=103
(cf. Fig.8.27.c), there is no long range order of the flowing particles at high shear rates
as the vertical bands of S(£,, /éy) computed with small wave numbers for Pe=10 is

destroyed by Pe=103and 105.
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Figure 8.29: The structure facror Sy, ky) obtained by Stokesian dynamics for a

monolayer with 120 particles at an areal fraction ¢,= 0.72 and Pe=10 for two
different ranges of the dimensionless wave numbers 4, and ky: from 0.5 to 1.5 (top)
and from +/-0.5 to +/-4.0 (bottom). S(/ex,ky) computed with small wave numbers
(top) and with large wave numbers comparable to the particle size (bottom) shows the

long and short range order of the string formation of flowing particles, respectively.
Vertical bands of intensity maxima are seen for S(kx,k),) with both ranges of the wave

number. Note that in a monolayer of 120 particles, each particle has up to six
different layers of neighboring particles.
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Figure 8.32.a: The short-time translation self-diffusion coefficient Dy normalized

by the infinite dilution diffusion coefficient D, obtained by Stokesian dynamics as

a function of the Péclet number for hard spheres at volume fractions ¢ = 0.47 (0J),
0.49 (A), 0.51 (©) and 0.55 (). There are 27 or 28 particles in the unit cell.

The self-diffusion coefficient of a hard-sphere suspension at $=0.45 (@) is plotted

as a reference for comparison. The short-time translational self-diffusion coefficient
remains relatively constant for Pe<1, increases noticeably at Pe=10, and decreases with
increasing Pe. Note the maximum of the self-diffusion coefficients for ¢=0.47 and
0.49 are larger than that of ¢=0.45.
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Figure 8.32.b: The short-time rotational self-diffusion coefficient D; normalized
by the infinite dilution diffusion coefficient D, obtained by Stokesian dynarmics as
a function of the Péclet number for hard spheres at volume fraction ¢$=0.47 (0J),
0.49 (A), 0.51 (O) and 0.55 (). There are 27 or 28 particles in the unit cell. The
short-time rotational self-diffusion coefficient remains relatively constant for Pe<1,
increases for Pe=10, and decreases with increasing Pe. Note the maximum of the
self-diffusion coefficients for ¢=0.47 and 0.49 are larger than that of ¢=0.45 (@).
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Figure 8.33.a: The long-time self-diffusion coefficient D;o,yy normalized by the infinite
dilution diffusivity D, is plotted as a function of the Péclet number for hard spheres
at volume fractions ¢ = 0.45 (e), 0.47 (O), 0.49 (4), 0.51 (©) and 0.55 (®). The
limiting asymptotes are: D 4y O(D,) as Pe — 0 and D, 4~ 0.065 Pe as Pe — oo
Note that as Pe — oo, the dimensional long-time self- dlffusmn coefficient scales as Ja?.
The transition from the strong Brownian regime to the hydrodynamic domination limit
occurs for Pe =~ 10. The two limits of D;,yy at Pe — 0 and at Pe — oo are shown in
the figure for hard spheres at ¢=0.45.



391

103? T T TTTI T T TTeT] T T T T T T
2 s s -
107 g D, = 0.057%Pe (Pe~ oo, $=0.45)
- i
10" {3
0 i 7 jf |
s 10 = ? ,.@5{ ?;
Dw,zz E i o= E
- B .
D i ' )
° ¢! & ==
 JN *e -
5 &‘Q@ i, N=27,28
10 = s b }i =&~ $=0.45 =
E DL~ 0055 (Pe~0,0=0.45) g O $=047] 3
- =br= $=0.49 ]
10_3 L =0 - ¢=0.51 B
= =&- ¢=0.55 §
Eo—é | IIIHII i B ilﬂllli i_.4 iﬂlllli - li!l”l | | liillli 0 3 apgpe
0.01 0.1 1 10 100 1000 106000
Pe

8

Figure 8.33.b: The long-time self-diffusion coefficient D, ,, normalized by the infinite
dilution diffusivity D, is plotted as a function of the Péclet number for hard spheres
at volume fractions ¢ = 0.45 (@), 0.47 (O), 0.49 (4), 0.51 (0) and 0.55 (®). The
limiting asymptotes are: D;o,zzz O(D,) as Pe — 0 and D;,zzz 0.057 Pe as Pe — oo.
Note that as Pe — 0o, the dimensional long-time self-diffusion coefficient scales as a?.
The transition from the strong Brownian regime to the hydrodynamic domination limit
occurs for Pe = 10. The two limits of D;,zz at Pe — 0 and at Pe — oo are shown in

the figure for hard spheres at ¢=0.45.
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Chapter IX

MACROSCOPIC PROPERTIES
OF

HARD-SPHERE SUSPENSIONS
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The two dimensionless parameters: the volume fraction and the Péclet number, play
an essential role in suspension mechanics. Suspension macroscopic properties and the
evolution of the microstructure are modeled as a function of only these two variables. In
a colloidal suspension, the volume fraction sets the relative separation of the flowing par-
ticles, thus it dictates the strength of the many-body hydrodynamic interactions among
the suspended particles. The resistance tensors R,,, R, and R, are purely geomet-
ric quantities and for spherical particles, they depend only on the separating distance
between the particles, which in turn is a function of the volume fraction. The Péclet
number, which can be viewed as the ratio of the diffusive relaxation time, a’ /D.($), to
the flow time, 4!, determines the strength of the flow and the degree of the shearing

deformation.

In the last three chapters, chapters VI to VIII, we presented our study and results
for the rheology, the shear-induced microstructure and the short- and long-time self-
diffusivities of hard-sphere suspensions with volume fraction ranging from 0.316 to 0.6.
The flow of particles in a linear shear flow with different shear rates was, for the first time,
shown in detail to illustrate the dynamical processes of the shearing deformation of the
microstructure. More importantly, we have a detailed understanding of the relation of
suspension macroscopic properties to the microstructure. In these studies, the shear rates
were varied by changing the Péclet number from the limit of strong Brownian (Pe = 0.01)

to the hydrodynamic dominated regime (Pe > 104) at a fixed volume fraction.

Our results showed behavior of dense hard-sphere suspensions in the three distinct

limits: low (Pe < 1), intermediate (Pe = 10) and high Péclet numbers (Pe > 102)‘
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For a slightly perturbed equilibrium structure in the low Péclet number limit (Pe < 1),
the Brownian forces were strong and the time, which is scaled with a diffusive time,
was large allowing the strong Brownian forces to restore the deformed structure to the
isotropic structure of a rest state. The microstructure is close to that at equilibrium. The
Brownian contribution to the stress, Brownian viscosity 7;:3, decreased as the imposed
shear rate increased and is the cause of the shear thinning. Similar to the region of
low Péclet number, the region of high Péclet number (Pe > 102) can be considered as a
perturbation to the pure hydrodynamic limit (Pe — o0). In this region, we witnessed the
formation of large clusters or chains of particles spanning the unit cell and disrupting the
flow. The large increase in the hydrodynamic contribution to the stress, hydrodynamic
viscosity nf{, is the main cause of the shear thickening as the Brownian contribution has

essentially decayed and vanished for Pe > 10°.

The region with Pe = 10 was special and attracted most of our attention. The flowing
suspension was strongly ordered with distinct “hexagonal” packing of strings of flowing
particles. In this region, the steady shear viscosity was minimum. For suspensions at
¢=0.45, the mechanism which causes the shear thinning behavior was due only to the
decrease of Brownian viscosity since hydrodynamic viscosity remains constant in this
region. As the volume fraction increases into the range of 0.47 to 0.51, a small reduction
in hydrodynamic viscosity combined with a decrease of Brownian viscosity gave a smaller
shear viscosity than the small shear viscosity of suspension at $=0.45. An examination of
the microstructure for these denser suspensions showed that particles were further apart
in the packing than in the hexagonal packing at ¢=0.45. This is the brief summary of

suspension behavior with varying Péclet numbers at fixed volume fraction.
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For this chapter, we focus on the changes of the suspension macroscopic properties
with varying volume fraction at fixed shear rates, i.e., at constant Péclet number. The
simulation results, which were discussed at length in the last three chapters, are recom-
piled and shown as a function of the volume fraction. Data for the figures in this chapter
are taken from Tables in chapters VI to VIII. Summarized results are presented in the
first section, followed by the comparison of the experiments in the second section, then
the relation of the rheology and the deformation of the suspension in the third section.
Finally, in the last section the suspension temperature is computed according to (U/U,),
with U the particle velocities and the prime denoting the fluctuation, i.e., U'=U-U~

and U” is the velocity due to the bulk shear flow.
IX.1 The Scaling of Suspension Macroscopic Properties with ¢ and Pe

As shown in Fig.9.1, the steady shear viscosity is plotted on a logarithmic scale
versus the volume fraction for hard-sphere suspensions with different Péclet numbers:
Pe=10.01(0),0.1 (A),1(0),10(e), 10° (0, 10° (&) and for Pe in the range of 10° to 0o
(). The steady shear viscosity curves show a shear thickening behavior with increasing
volume fraction, which has generally been observed in experiments. The special curve
for Pe=10 shows a strong shear thinning region when the volume fraction increases from
0.45 to the range of 0.47 to 0.51 which was discussed in chapter VIII. Another shear
thickening behavior can also be seen by comparing the two shear viscosity curves for
the perturbed Brownian suspension at Pe=0.01 and for the perturbed hydrodynamic
suspension at Pe > 10", The shear viscosity for large Péclet number is higher than

the shear viscosity for small Péclet number for all volume fractions, thus the suspension
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must shear thicken and Stokesian dynamics displays the trend remarkably well. The
shear thickening behavior in which the viscosity increases with increasing shear rates is

commonly known as “dilatancy.”

In Figure 9.2, we plot both the Péclet number and the relative viscosity for the onset
region where the Brownian contribution to the stress is identical to the hydrodynamic
contribution versus the volume fraction. The left vertical scale is for the special Péclet
number, Pe* (@) and the right vertical scale is for both the Brownian and hydrodynamic
viscosity (O). Recall that the onset region can be viewed as a rheological signature for
the start of the plateau region where the shear viscosity is minimum. Furthermore, the
existence of the onset region, where the Brownian and hydrodynamic forces are properly
balanced, is followed by a strongly ordered flowing suspension. For suspensions with
a volume fraction below 0.419, the onset region does not exist and the change in the
steady shear viscosity with Pe is small. The suspension cannot be sheared to order. The
figure shows the onset region, which shifts to a larger Péclet number with increasing ¢,

for suspensions with a volume fraction ¢ > 0.419.

Figure 9.3 shows the shearing deformation of the suspension which is represented
by the angularly averaged pair-distribution function evaluated at particle center-center
spacing r = 2 (for touching particles), g(2), as a function of the volume fraction. The plot
symbols for different Péclet numbers are: Pe = 0.01 (), 1 (0), 10 (@), 10° (O) and 10°
(a). Except the special curve for Pe=10, g(2) increases monotonically with increasing
volume fraction. For the curve with Pe=10, a significant reduction of nearly 100 fold

occurs as the volume fraction ¢ increases from 0.45 to the range of 0.47 to 0.51. The
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small values of g(2) for these denser suspensions imply that during the course of dynamic
simulation, the particles are seldom in contact and there is a large separation between
particles. This is consistent with the steady shear viscosity curve in Fig.9.1 which shows
a smaller minimum viscosity for suspensions with ¢ in the range of 0.47 to 0.51 than
the small minimum viscosity for ¢$=0.45 at Pe=10. Figure 9.3 also displays an increase
of g(2) with increasing Péclet number at fixed volume fraction. In the limit of strong
hydrodynamics (Pe > 102), the particles are closely spaced and form large elongated
clusters resulting in a large value of g(2) compared to small g(2) for randomly dispersed
particles in a slightly deformed suspension. As the volume fractions increases, g(2) also
increases and for the hard-sphere suspension, it is known that the radial-distribution

function at contact diverges at the close packing (Russel et al. (1989), Brady (1993)) as:

g2) ~ (1 —¢/¢,.,)" as ¢ — &, - (9.1)

Here ¢,,,~ 0.63 is the random close packing for the hard spheres. A plot of g(2) as a
function of the dimensionless group (1 — ¢/ qzﬁm)—1 is shown in Figure 9.4 for the limit of
vanishing shear rate with Pe=0.01 (Q). The figure captures this correct scaling with a

slope of 1.08 and agrees well with 1.2 from Brady’s theoretical prediction (1993).

Figures 9.5 and 9.6 show the relation of the short-time translational and rotational

self-diffusion coefficients with the volume fraction, respectively. The curves with different

(e), 10’ (L), 10° (2) and oo (®) for pure hydrodynamic. Results for D, and D, are

obtained from the simulations with 27 or 28 particles. Except for the special curve with
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Pe=10, both D:, and D, decrease with increasing volume fraction at constant Péclet
number. Recall that the short-time self-diffusivities measure the instantaneous mobility
of the flowing particles. In a dense suspension, the particles are less mobile due to
a reduction in the fluid space separating the particles. The two figures also show a
decrease of D, and D, with increasing Péclet number at constant ¢. A reduction in
the instantaneous mobility of the suspended particles as the Péclet number increases is
due to the formation of clusters of particles which hinder the movement of individual
particles even on the short-time scale. For the region with ¢ in the range of 0.47 and
0.51, the curve with Pe=10 shows an increase in the short-time self-diffusion coefficients
which indicates the large separating distance among the flowing particles and results in
the enhanced mobility for the flowing particles. Experiment by Pusey and van Megen
(1983) and stokesian dynamics simulation by Phillips et al. (1988), Ladd (1990) and
this work show that the short-time self diffusivity vanishes in the limit of close random

packing as seen in these two figures.

The scaling of the reduced shear viscosity with a new dimensionless group Pe/DZ,
where the diffusion coefficient of a particle at infinite dilution, D,, employed in the
definition of the Péclet number: Pe = "ya2 /Dy = 67r77a3"y/ kT, is replaced by the short-
time self-diffusion coefficient DZ. Figures 9.7 and 9.8 are plotted with DZ computed at
the Péclet number and ¢ where the steady shear viscosity and g(2) are obtained. The low
(Pe < 10) and high shear limit (Pe > 10) steady shear viscosity are plotted in Figures

9.7 and 9.8, respectively. For the low shear limit, the reduced viscosity 771i is defined as:

T 1(Pe) — n(Pe = 10)
~ n(Pe=0.01)—n(Pe=10) ’ (9:2)
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and for the high shear limit, the reduced viscosity 7" is defined as:

- n(Pe) — n(Pe = 10)

— n(Pe >10*) — n(Pe = 10) (9.3)

n

The reduced viscosities show a good scaling with the new dimensionless group Pe/ DZ for
volume fraction ranging from 0.316 to 0.55 and they are superimposed onto a universal
curve as shown in these figures. Recall that for Pe < 1, DBO is essentially constant and
the correlation of the reduced viscosity with Pe/ D; in the low shear limit is excellent
as shown in Figure 9.7. In the high shear limit (Fig.9.8), the correlation displays some
variations with more scattering of the reduced viscosities with D, obtained in the limit

of Pe — (.

In the following section, we present comparison of the simulation results for the

rheology with experiments.
IX.2 Comparisons of Simulation Results with Experiments

As shown in Figure 9.9, the simulation results for the steady shear viscosity (@) in
the low shear limit (Pe = 0.01) compare very well with the experiments of van der Werff
and de Kruif (1989) for Pe=0.01 (A) and with the experiments of Kreiger (1972) in
the limit of vanishing shear rates (O). The dashed curve is the scaling (1 — ¢/¢mp)_a
where the exponent equals 2 and ¢, = 0.63 is the maximum packing for the random
hard-sphere model. The agreement of our results with experiments and with the scaling
in the low shear limit is excellent for the entire range of volume fraction in our study.

The theoretical prediction of the steady shear viscosity in the low shear limit by Brady
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(1993), which is based on the evolution equation for the pair-distribution function and
the scaling derived from the viscoelastic response of Brownian contribution to the particle
stress, displays truly remarkable results as shown by the solid curve in this figure. The

zero shear-rate viscosity is given by Brady as:
H 2 2;
n, =1+n +29¢ 3)5(2) a (9.4)

The viscosity computed from a random hard-sphere distribution, the high frequency
hydrodynamic viscosity n;o(gzﬁ), by Phillips et al. (1988) ($) is also plotted in the figure
for comparison. 77;0(¢) displays a good fit with the scaling (1 — ¢>/¢»mp)—° where the

exponent is found at 1.35 using ¢, = 0.63.

In Figure 9.10, we plot the simulation results for the steady shear viscosity at finite

shear rates for Pe=1 (@) and 10° as a function of the volume fraction and compare
them to the experiments of van der Werff and de Kruif at Pe=1 (0) and the experiments
of Kreiger (1972) at a reduced shear rate 7. ~ 300 (3). For this intermediate shear rate
limit, our simulation results compare equally well for the experimental results at Pe=1
and Pe=100, while the empirical scaling (1 — <j>/¢mp)_2 (dotted curve) with ¢, = 0.63
shows significant variation with our results and with experiments. With the exponent

reduced from 2 to 1.65, the empirical scaling shows a relative good fit for the shear

viscosity with intermediate shear rates.

Figure 9.11 illustrates the relation of the steady shear viscosity and the volume
fraction in the high shear limit (Pe > 104). Stokesian dynamics results (@) agrees well

with the experiments of non-Brownian spheres from Rutgers (1962) (O) (the average
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curve labeled as curve #1) and Gadala-Maria (1979) (©), while the experiments of
Patzold (1980) (A) which seems to fit very well with the scaling (1 — (}5/(15,,‘@)‘2 with

@ mp~ 0.63 shows small difference with our results.

We now turn to a slightly different comparison of the simulation results for the
long-time self-diffusion coefficient computed in the velocity gradient direction, D;’yy,
in the limit of Pe — oco. The hydrodynamically induced diffusive motion comes from
the deterministic chaos displayed by the highly nonlinear evolution equations for the
particle positions (Eq. (2.7) with Pe — o0). It also emphasizes the important many-body
hydrodynamic interactions in dense suspensions which induce diffusive displacements for
the flowing particles. Figure 9.12 shows the comparison of D;o’yy normalized by the
infinite dilution diffusivity D, of simulation results (@) with the experiments of Eckstein
et al. (1977) (E), Leighton and Acrivos (1987) (0), (O) and (A) for various sizes of
spheres and shear rates and the most recent experiments from Phan and Leighton (1992)
(a). The two sets of experiments agree only at low volume fraction (¢ < 0.2), but at

&

higher ¢, while the results from Eckstein et al. show an asymptotic value D, = 0.03

L

for ¢ > 0.2, Leighton and Acrivos obtain increasing D, ,, with large ¢. The solid
curve is according to the correlation of experimental data of Leighton and Acrivos which
captures D;yyy in the limit of dilution (¢ < 0.2). The most recent experiment from
Phan and Leighton shows the long-time self-diffusivity saturated at a value of 0.09 for
¢>0.3. Our results for the normalized D;,yy fluctuate between 0.05 to 0.06 for ¢ from

0.4 to 0.6 and lie between the results of these two groups and agree reasonably well with

the new experiments.
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IX.3 The Relation of Rheclogy with g(2)/D,

The aim in the section is to determine the relation of the suspension rheology to the
deformation of the suspension. The shearing deformation of a flowing suspension can
be represented by the angularly averaged pair-distribution function evaluated at particle
center-center spacing r=2, g(2), and by the short-time self-diffusion coefficient, D, which
measures the local mobility of the suspended particles in a suspension. Both g(2) and
D, are function of ¢ and Pe and they offer value information of the microstructural

deformation of the suspension in a shear flow.

Recent theoretical model for predicting the shear viscosity in the low shear limit
developed by Brady (1993) has provided insight to the relation of the macroscopic prop-
erties to the shearing deformation of the suspension. The behaviors of dense hard-sphere
suspensions in the limits of low and high Péclet numbers can clearly be seen when we plot
the steady shear viscosity as a function of g(2)/D, in Figures 9.13 and 9.14, respectively.
For the low shear limit with Pe=0.01 (0) and (4) 0.1, the steady shear viscosities of
these two small Péclet numbers show good fit for g(2)/D,, less than 20, but as g(2)/D,
increases the two viscosity curves display noticeable difference as shown in Fig.9.13. At
Pe=0.1, the imposed shear begins to perturb the microstructural deformation and the
diffusive Brownian motion contribution to macroscopic stress weakens as the volume
fraction increases (large g(2)/D,). As a result, we observe a shear thinning effect as
the viscosity curve for Pe=0.1 falls below the curve for Pe=0.01. In the limit of highv
shear rates with Pe=10" (&) and 10° (®), the dominant hydrodynamic forces contribute

essentially all particle stress and the presence of the weak Brownian force can simply
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contribute to the microscopic deformation of the flowing suspension. The steady shear
viscosities display excellent scaling with this new dimensionless group which collapses
the steady shear viscosity for all volume fractions onto an universal curve as shown in

Figure 9.14.

IX.4 Suspension Temperature and The Time Auto-Correlation Functions
I1X.4.1 Suspension Temperature

In this section, we present the suspension temperature which is computed according
to (U'U’") , with U the particle velocities and the prime denoting the fluctuation, i.e.,
U'= U-U". Care must be exercised here since the fluctuation in particle velocities, U/,
includes only the deterministic contribution from the hydrodynamic and one of the two
contributions from the Brownian motion, the configurational divergence term V-R:U.
Missing in the computing of (U'U’) is the random step of the Brownian contribution.
We present the simulation results for suspension temperature which is computed from
the particle velocity fluctuation and from the particle displacements with the convective

contribution from the applied shear removed.

The steady mean square of the translational and rotational velocity fluctuation are
plotted with the Péclet number and shown in Figures 9.15.a-b and 9.16.a-b. (U'U') is
computed by averaging (U/U/) for the velocity gradient and the vorticity direction, the y
and the z-axis, while (€'€2'), with € the rotational fluctuation velocity, is averaged for the
z and the y-axis. Figures 9.15.a-b for ¢ from 0.316 to 0.419 display two different behaviors

of the mean square of the particle velocity fluctuation: for Pe < 1, both (U'U’) and
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(YY) are small and constant, and for Pe > 1, (U'U') and (§2' Q) increase and approach
an asymptotic limit for the pure hydrodynamic suspension (Pe — o00). Summarized
results for the terms (U'U’) and (€2'€¥) as a function of the volume fraction ¢ is shown
in Table 9.1 for Pe>10". For more dense suspensions, (U'U') and (Q'§Y) display a
striking behavior for the region of Pe=10 as shown in Fig.9.16.a-b for suspensions with
¢ in the range of 0.45 to 0.55. In the region of minimum viscosity with Pe=10, (U,U/)
and (V€Y decrease significantly for ¢=0.45 to 0.51 and less pronounced for ¢=0.55.
This behavior can be explained by referring to the shear-induced microstructure of the
flowing suspension in this special region. The suspended particles which are strongly
ordered flow as strings with the bulk flow and they are least diffusive. The fluctuation
in the particle velocities must be small and minimum compared to other Péclet number
regions as we see in these two figures. In the limit of high Péclet numbers, large value
of suspension temperatures are due to the frequent forming and breaking clusters of

particles which result in large fluctuations of the particle velocities.

For the region of low Péclet numbers (Pe < 1), the strong Brownian motion should
give large fluctuations of the particle velocities due to rapid changes in the positions of
highly diffusive particles. This set of figures do not show this trend because the comput-
ing of (U'U’") and (£ Q') from the particle velocities does not include the contribution
of the random step of the Brownian contribution to particle displacements as we have
already mentioned. The large suspension temperature in the strong Brownian limit can
clearly be seen from the plots of suspension temperature computed from the particle dis-
placements by the terms ((AX /At)(AX /AL)) and (A8 /At)(A6 /At)), with X and

6 the particle displacement and the particle rotational angle, respectively. The prime
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denotes the fluctuation. Figures 9.17.a-b for ¢=0.316 to 0.419 and Figures 9.18.a-b for
¢=0.45 to 0.55 show large suspension temperature in the region of low Péclet num-
bers (Pe < 1). In the limit of high Péclet numbers the two methods of computing the
mean square of the particle velocity fluctuation that give the same results as the Brow-
nian contribution have vanished. The interesting point is that for the special region at
Pe=10, Figures 9.18.a-b do not show a noticeable reduction for ((AX//At)(AX//At))
and ((AG,/At)(AGI/At)) compared to a large decrease of (U'U’) and (€2 Q') shown in
Figures 9.16.a-b. The small contribution from the random step of Brownian motion tries
to randomize the strings of flowing particles, but the time which is scaled with the shear
rate is much shorter than the diffusive time and the random step can only slightly perturb
the strings of flowing particles and is not able to break the packing order. A reduction in
(U'U'Y and (S¥'€Y') is due only to the vanishing of the fluctuation from the deterministic
shear in this strong shear thinning region. This is clearly seen by differentiating the two
sets of figures: Figures 9.16.a-b which do not include the contribution of the random step
and Figures 9.18.a-b which includes all the contributions to the fluctuation of particle

velocities.
IX.4.2 The Time Auto-Correlation Function of Velocity Fluctuation

The amplitude and the persistence in time of the particle velocity fluctuation in
a suspension determines the hydrodynamic dispersion coefficient, the long-time self-

diffusivities. The long-time self-diffusion can be computed from the displacements of the
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particles according to (2.27) which is repeated here for our reference

’ lim 1 d
T tSo0 2N dt

(X~ (X))?) - (9.5)

Equivalently, D;O can be computed from the time auto-correlation function of the velocity

fluctuation as the following:
D, = / (UU) @ - (9.6)
0

The normalized time auto-correlation for the velocity fluctuation are defined as:

_ (UOU @)
‘0= Ty 0

The time auto-correlation functions play an important role in the field of nonequilibrium
statistical mechanics and have been extensively used to compute transport coefficients.
To compute the time integration constant for (9.6), simulations with long run times were
carried out for suspensions at ¢=0.316, 0.45 and 0.51 and with three different Péclet
numbers: 0.1, 1 and 10°. From an average run time of 400, the time auto-correlation
functions were sampled for a large number of time intervals to improve the statistic
of its results. An average of 200 to 400 samples were taken from these long runs for
the computing of C(t). The normalized time auto-correlation function for the velocity
fluctuation in the velocity gradient and the vorticity direction, the y and the z-axis, are
plotted with time in Figures 9.19.a-b for ¢=0.316, in Figures 9.20.a-b for ¢$=0.45 and in

in Figures 9.21.a-b for ¢=0.51, respectively. In these sets of figures, the dotted curve is
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for Pe=0.1, the solid curve is for Pe=1 and the dash curve is for Pe=10". The small line
through zero is drawn in these figures to guide the eyes. These figures display a decay of
C(t) as a single exponent in time, i.e., C(t) = e~*/7, with a relaxation time constant 7
varying from 1 to 4 dimensionless time units. The relaxation time constant 7 decreases
with increasing ¢. Numerical integrations for these auto-correlation curves are carried
out to determine the time integration constant and the results are displayed in Table 9.2
for both the translational and rotational velocity fluctuation . Results from Table 9.1
for the normalization constant (U U') and (€0'§Y) are plotted in Fig.9.22 for Pe>10".

In the limit of hydrodynamic domination, the long-time self-diffusion coefficient D, .,

and D computed by (9.5) and (9.6) give similar results and indicate the correctness

00,22

of the two methods.
IX.5 Conclusions

In this chapter, we detailed the relation of suspension macroscopic properties and the
particle volume fraction for complete dense hard-sphere suspensions in our study. The
results emphasize the distinct behavior of dense colloidal suspensions in the three limits
of low, intermediate and high Péclet number. The.reduced shear viscosity defined in
(9.1) and (9.2) shows a scaling with the new dimensionless group Pe/(1/D,)with Pe=10
taken as a cut point for the two limits of low and high Péclet numbers, respectively.
The simulation results provide, for the first time, a complete set of results for the rheol-
ogy, the shear-induced microstructure, the short- and long-time self-diffusivities and the
suspension temperature. These have not yet been reported or achieved by experiment

and/or theory. Our results provide the essential physical understanding of suspension
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mechanics and supply the foundation where new theories as well as simulations can be

tested against ours.

Finally before we end this chapter, the results of the steady shear viscosity as a
function of the volume fraction and the Péclet number, i.e., . = 7, (Pe,¢) are illustrated
in Fig.9.23. The horizontal logarithmic scale is for the Péclet number varying from 0.01
to 10" and the vertical scale is for the volume fraction ¢ ranging from 0.316 to 0.55.
Fig.9.23 is a contour plot of the steady shear viscosity and the legend of the high and
low logarithmic scale of the shear viscosity is shown in the right-hand side of the figure.
Contour regions of light color represent high viscosity and dark low. The interpretation
of this figure is simple. We can march along the horizontal direction which specifies a
constant volume fraction, for example the line with ¢=0.45, and examine the change
of the shear viscosity with the change in the Péclet number. Starting from Pe=0.01,
the steady shear viscosity enters the region of darker color for Pe=0.1 and 1 as the
suspension shear thins. Continuing to the region of Pe & 10, the steady shear viscosity
is minimum as shown by very dark color, and as the Péclet number increases, we enter the
shaded regions with light color indicating the suspension shear thickens as the steady
shear viscosity increases. We can also march along the vertical line which specifies a
constant shear rate, i.e., constant Péclet number, and examine the change of the steady
shear viscosity as with the changing volume fraction. For example by traveling along
the vertical line at Pe=1 starting from the top for ¢=0.316 to the bottom for ¢=0.55,
the steady shear viscosity is seen to increase as the volume fraction increases at Pe=1.
The final method is to follow a contour line with the same color and determine the

operating conditions at a particular volume fraction and a particular shear rate which



409

are necessary to maintain a steady shear viscosity. The figure shows the complete details
of the shear viscosity which is highly sought and extremely valuable to scientists and
to engineers as it provides the completion of the process characterization and optimum

operating conditions.
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Table 9.1: Results of the suspension temperature in the limit of large Péclet
number (Pe>104). Column (1) is the volume fraction. Columns (2) is the y
and z averaged mean square of the particle translational velocity fluctuation.
The y-axis is the velocity gradient direction and the z-axis is the vorticity
direction. Similarly, column (3) is the mean square of the particle rotational
velocity fluctuation which is avraged for the z- and y-direction.

! ’ ! ’

¢ | (UT)|{aa)

0.05 0.009 0.002
0.15 0.043 0.008
0.27 6.100 0.025
0.316 | 0.149 0.031
0.37 0.204 0.051
0.4 0.238 0.060
0.419 | 0.305 0.084
0.45 0.364 0.096
0.47 0.397 0.097
0.49 0.428 0.103
0.51 0.483 0.107
0.55 0.555 0.129
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Table 9.2: Results of the time integration constant for the auto-correlation
function of the velocity fluctuation. Columns (1) and (2) are the volume frac-
tion and Péclet number. Columes (3) and (4) are the time integration constants
for the auto-correlation function of the particle translational velocity fluctua-
tion in the y- and z-direction. Columns (5) and (6) are the time integration
constants for the auto-correlation function of the particle rotational velocity
fluctuation in the z- and y-direction.

¢ Pe TU;U; T | Taa, Tn;n;
0.316 | 0.1 | 0.397 | 0.262 | 0.289 | 0.283
0.316 | 1.0 | 0.238 | 0.216 | 0.206 | 0.245
0.316 | 10° | 0.126 | 0.145 | 0.643 | 0.895
0.45 | 01| 0.321 | 0.265 | 0.277 | 0.255
0.45 | 1.0 | 0.176 | 0.202 | 0.190 | 0.194
0.45 | 10° | 0.144 | 0.181 | 0.443 | 0.457
0.51 | 0.1 0395 | 0.334 | 0.285 | 0.307
051 | 1.0 0.131 | 0.153 | 0.161 | 0.161
0.51 | 10" | 0.083 | 0.008 | 0.100 | 0.183
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Figure 9.1: The steady shear viscosity obtained by Stokesian dynamics as a
function of the volume fraction for hard-sphere suspensions with different
Péclet numbers: Pe = 0.01 (©), 0.1 (4), 1 (0), 10 (&), 100 (O, 10000 (&)
and 10° - e (B9). The viscosity curves show a shear thickening behavior with
increasing volume fraction ¢. The special curve for the shear viscosity at
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Pe=10 shows a region of strong shear thinning as the volume fraction increases
from 0.45 to the range of 0.47 to 0.51.
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Figure 9.2: A plot of the Péclet number (@) and the steady shear viscosity ({0) for the
onset region, where the Brownian and hydrodynamic contributions to the siress are
identical, as a function of the volume fraction for hard-sphere suspensions. The left

vertical scale is for the Péclet number Pe” and the right vertical scale is for the steady
Brownian and hydrodynamic viscosities computed at Pe .
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Figure 9.3: The angularly averaged pair-distribution function evaluated at particle
center-center radial spacing r=2 (when the particles come in contact), g(2), obtained
by Stokesian dynamics as a function of the volume fraction for hard-sphere colloidal
suspensions with different Péclet mumbers: Pe = 0.01 (¢), 1 (0), 10 (@), 100 ?7>0G)
and 10000 (4). The special cuvre for g(2) with Pe=10 shows a significant decrease
as the volume fraction ¢ increases from 0.45 to the range of 0.47 to 0.51. g(2) with
other Péclet numbers increases with increasing ¢.
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Figure 9.4: The angularly averaged pair-distribution function evaluated at particle
center-center radial spacing r=2 (when the particles come in contact), g(2), obtained

by Stokesian dynamics as a function of the dimensionless group (];-(j)/d),@)'i with
$mp=0.63 the maximum packing of the random hard spheres. The curves are for

Pe = 0.01 (o) and best-fitied line with g(2) = 1.08*(1-¢/¢, ).
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Figure 9.5: The short-time translational self-diffusion coefficients obtained
by Stokesian dynamics as a function of the volume fraction for hard-sphere
suspensions with different Péclet numbers: Pe = 0 (8), 0.01 (¢), 1(0), 10 (@),

1000 (A), 10000 (&) and oo (®). The short-time translational self-diffusion
coefficient for Pe=10 displays an interesting behavior: D} increases for the
volume fraction ¢ in the range of 0.47 to .51 and is larger than that of a
hard-sphere suspension at $=0.45. D; for other Péclet numbers decreases
monotonically with increasing ¢. The short-time translational self-diffusion

coefficients are computed from simulations with 27 or 28 particles. Dotted
line shows the extrapolation of zero self-diffusivities at ¢, .= 0.625 for Pe=10.
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Figure 9.6: The short-time rotational self-diffusion coefficients obtained

by Stokesian dynamics as a function of the volume fraction for hard-sphere
suspensions with different Péclet numbers: Pe = 0 (B), 0.01 (¢), 1(0), 10 (€
1000 (A), 10000 (4) and o (). The short-time rotational self-diffusion
coefficient for Pe=10 increases for the volume fraction ¢ in the range of 0.47 to
0.51 and is larger than that of a hard-sphere suspension at $=0.45. D for other
Péclet numbers decreases monotonically with increasing ¢. Results are obtained
from simulations with 27 or 28 particles. The limit of zero self-diffusivities at

= (.675 is shown by dotted line for Pe=10.
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Figure 9.7: The reduced viscosity 71" for the low shear limit obtained by Stokesian
dynamics as a function of the new dimensionless group Pe/ D with the short-time
self-diffusion coefficient D; obtained at the same Péclet number. The range of the

volume fraction ¢ is from 0.316 to 0.55. The reduced viscosity 1" is defined as
(n(Pe)-n(Pe=10)) / (n(Pe=0.01)-n(Pe=10)).
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Figure 9.8: The reduced viscosity rf in the high shear limit obtained by Stokesian
dynamics as a function of the new dimensionless group Pe/D; with the short-time
self-diffusion coefficient D computed at the same Péclet number. The range of

the volume fraction ¢ is from 0.316 to 0.51. The reduced viscosity N’ is defined as
(n(Pe)-1(Pe=10)) / (n(Pe= =)-n(Pe=10)).
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Figure 9.9: Comparison of the simulation results for the steady shear viscosity in the
low shear limit (@) (at Pe=0.01) as a function of the particle volume fraction ¢ with
the experiments of van der Werff and de Kruif (1989) at the same Péclet number
Pe=0.01 (A) and the experiments of Krieger (1972) in the limit of vanishing shear
rate ([J). The dashed curve is according to the scaling (1=—¢>/¢)mi))'2 with the maximum
packing for the random hard-sphere model ¢,,= 0.63. The viscosity of random

hard spheres computed by Phillips er al. (1988) () is also plotted in the figure, which
shows a good fit with the scaling (1-¢/¢mp)“~35 {dotted-dash curve) with (bmp= 0.63.
Brady's (1993) theoretical prediction for the shear viscosity in the low shear limit is
excellent as shown by the solid curve for the entire range of ¢.
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Figure 9.10: Comparison of the simulation results for the steady shear viscosity in the
intermediate shear limit: Pe = 1 (@) and 100 (W) as a function of the particle volume

fraction ¢ with the experiments of van der Werff and de Kruif (1989) for Pe=1 (O) and

the experiments of Krieger (1972) with a reduced shear rate of 300 (J). The dashed
curve is according to the scaling (1-<p/<pmp)'2 with ¢,.= 0.63 the maxium packing of the
random hard spheres. The dotted-dash curve is fitted with the scaling ( 1-¢/¢mp)'1'65.
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Figure 9.11: Comparison of the simulation results for the steady shear viscosity

in the high shear limit (@) (Pe21 0’ ) as a function of the volume fraction ¢
with the experiments of Rutgers (curve #1, 1962) (1), Pitzold (1980) (A) and
Gadala-Maria (1980) (O) for non-Brownian suspensions (Pe—»=). The dashed

curve is according to the scaling (1-¢/¢mp)'2 with ¢mp= 0.63 the maxium

packing of the random hard spheres.
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Figure 9.13: The steady shear viscosity in the low shear limit with three small Péclet
numbers: Pe = 0.01 (¢) and 0.1 (A) obtained by Stokesian dynamics for hard-sphere
suspensions as a function of the dimensionless group g(2)/D;. g(2) is the angularly
averaged pair-distribution function evaluated at particle center-center spacing r=2
(when the particles come in contact) and Dj is the short-time self-diffusion coefficient
evaluated at the same Péclet number where the shear viscosity and g(2) are obtained.
The range of the volume fraction ¢ is from 0.316 to 0.6.
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Figure 9.14: The steady shear viscosity in the high shear limit with two large Péclet
numbers: Pe = 1000 (4) and 10000 (&) obtained by Stokesian dynamics for
hard-sphere suspensions as a function of the dimensionless group g(2)/Dj. g(2) is

the angularly averaged pair-distribution function evaluated at particle center-center
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hard spheres at different volume fractions: ¢ = 0.316 (A), 0.37 (¢), 0.4 (O) and
0.419 (I}). The prime denotes the fluctuation.
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Figure 9.16.a-b: The steady mean square of the translation and rotational velocity
fluctuations obtained by Stokesian dynamics as a function of the Péclet number for
hard spheres at different volume fractions: ¢ = 0.45 (@), 0.47 (), 0.49 (4),

0.51 (©) and 0.55 (®). The prime denotes the fluctuation.
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Figure 9.17.a-b: The steady mean square of the translation and rotational velocity
fluctuations computed from the displacements of the particles as a function of the Péclet
number for hard spheres at different volume fractions: ¢ = 0.316 (A), 0.37 (¢), 0.4 (O)
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Figure 9.18.a-b: The steady mean square of the translation and rotational velocity
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Figure 9.19.a-b: The time auto-correlation function of the velocity fluctuation
in the velocity gradient direction, the y-axis, and the vorticity direction, the z-axis,
for hard spheres at a volume fraction ¢=0.316 and three different Péclet numbers:

Pe = 0.1 (dotted curve), 1 (solid curve) and 10° (dashed curve).
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Figure 9.20.a-b: The time auto-correlation function of the velocity fluctuation
in the velocity gradient direction, the y-axis, and the vorticity direction, the z-axis,
for hard spheres at a volume fraction ¢=0.45 and three different Péclet numbers:

Pe = 0.1 (dotted curve), 1 (solid curve) and 10° (dashed curve).
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Figure 9.21.a-b: The time auto-correlation function of the velocity fluctuation
in the velocity gradient direction, the y-axis, and the vorticity direction, the z-axis,
for hard spheres at a volume fraction ¢=0.51 with three different Péclet numbers:

Pe = 0.1 (dotted curve), 1 (solid curve) and 10° (dashed curve).
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Chapter X

SEDIMENTATION OF COLLOIDAL PARTICLES

IN CONCENTRATED SUSPENSIONS



436

In this chapter, we present a brief study for the sedimentation of colloidal particles
in dense suspensions. While the sedimentation of particles have been examined only
in the limit of pure hydrodynamics or infinite dilution by theories (Batchelor (1972,
1982), Batchelor and Wen (1982), Koch and Brady (1985, 1987), Koch and Shagfeh
(1989, 1991)), experiments (Mirza and Richardson (1979), Acrivos and Herbolzheimer
(1979), Herbolzheimer and Acrivos (1981)), and also by simulations (Ansell and Dick-
inson (1986), Lester (1987), Ladd (1988, 1990, 1992)), the sedimentation of colloidal
particles at finite Péclet numbers has not been investigated. Here, the Péclet number
is defined as the ratio of the gravitational and Brownian forces. Our objective is to de-
termine the sedimentation velocity and the related microstructure of colloidal particles
settling under gravity. The simulation method is presented first, followed by simulation
results for the mean sedimentation velocity, the radial pair-distribution function, and

the short-time self-diffusivity, and finally the sediment microstructure.
X.1 The Simulation Method

One of the advantages offered by the Stokesian dynamics simulation method is that
it can be modified with relative ease for variety of applications. To simulate the sedi-
mentation of Brownian particles, the evolution equation (2.7) or (2.9) can be simplified
by setting the deterministic convective terms identically zero, i.e., U= 0 and E”= g,
and assigning a gravitational force for all N particles, F = F,. The evolution equation
(2.9) becomes:

i

55 (V- R, At + X(At)) . (10.1)

Ax = (R,,-F,) At +
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Here, the new Péclet number, Pe = |F |a/kT = 47ra4Apg/kT, measures the relative
importance of the gravitational and Brownian forces. In (10.1), a is the characteristic
particle size, Apequivpa-pf is the density difference between the solid particle and the
suspending fluid, g is the gravitational constant, k is the Boltzmann’s constant, and T is
the absolute temperature. The evolution equation (10.1) is applicable for Pe > 1 which
is the regime for this study. For Pe < 1, we scale the time with the diffusive time o’ /D,

and the equivalent form of (10.1) in the limit of Brownian domination is:
Ax = Pe(R_,-F,) At + (V- R, At + X(A?)) . (10.2)

As seen in (10.1) or (10.2), there are two main contributions to the particle displacements:
a deterministic contribution from the gravtitational force F [R;;-Fy] At and the two
familiar contributions from the Brownian forces: the deterministic displacement from
the configurational-space divergence of the N-particle diffusivity V-R:U At, and the
random step X(At) whose properties are such that the fluctuation-dissipation theorem
is satisfied and given by (2.8.a) and (2.8.b). Note that the Péclet number scales with o

3 ®
compared to a for sheared suspensions.

The dynamic simulations are carried out with three different Péclet numbers: 10,
16" and co. Particle volume fractions vary from 0.27 to 0.49. The number of particles
in all runs is N=27 and the run times range from 200 to 400 dimensionless time units
with a time step At from 10~ to 10", The sedimentation velocity is plotted with time
to verify that the equilibration has been reached before we compute its time-averaged

mean. Periodic boundary conditions are applied to model unbounded suspensions. The
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y-axis is the direction of gravity. The Reynolds number which is scaled with the mean
sedimentation velocity |U| is assumed to be small, i.e., Re = p|Ula/n < 1, so that

Stokes’ flow is applicable.
X.2 Simulation Results

Figures 10.1.a and 10.1.b are the plots of the sedimentation velocity, (U, ), and the
angularly averaged pair-distribution function evaluated at particle center-center-spacing
r=2, g(2), with different particle volume fractions, respectively. The symbol () implies
that the sedimentation velocity is first averaged for all N particles and then averaged for
over the last 150 time units. The symbols for three Péclet numbers are: Pe = (@) 10, (A)
10° and (0) oo. Figure 10.1.a shows a large decrease in the sedimentation velocity with
increasing volume fraction for all three Péclet numbers. At the same volume fraction,
(U, ) increases with increasing Péclet number. At high ¢ value, $=0.49, the differences in
(U, ) are small for three Péclet numbers as the curves for (U, ) converge to the same value
of ~ 0.04. In the limit of Pe — oo, simulation results (0) compare well with the empirical
scaling (U )=(1 - qb)d'6 (dotted curve) for ¢ > 0.3 from Mirza and Richardson (1979).
For ¢ in the range of 0.4 to 0.419, the two curves are indistinguishable. A comparison
of our results (©) with simulation results of Ladd (1990) (O) (reported in column (3)
of Table IV for the sedimentation velocities adjusted for the limit of N — oo) displays
noticeable difference, especially in the region of low ¢ values. This is expected since
Ladd’s results were computed from the isotropic dispersions of hard spheres (no ydynamics
were performed) compared to ours which have no restrictions on the microstructure. The

figure shows a resemblance of our Pe=10" curve and Ladd’s results for Pe — oo.
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To explain the small values of (U,) for Pe = 10, we can refer to the sediment mi-
crostructure. Figure 10.1.b shows a plot of the angularly averaged pair-distribution
function g(2) for the same three Péclet numbers above with different volume fractions.
g(2) for Pe = 10 (@) is identically zero for this range of volume fraction, a clear indica-
tion of well separated settling particles compared to a large mean value of 50 for g(2)
at Pe — oo (©). The results of our study for sheared suspensions have shown that the
instantaneous mobility of particles measured by the short-time self-diffusivity is large if
the particles do not touch. This is exactly what we see from the plot of the short-time
translational and rotational self-diffusion coefficient D, and D, in Figures 10.2.a and
10.2.b, respectively. D, and D, for Pe=10 (®) are large compared to that of Pe=10’
(4) and oo (0). The extrapolation to the limit of zero self-diffusivities for Pe=10 (dotted
lines) show the maximum packing ¢~ = 0.7 where D, =D=0. In the next section, we

present the sediment microstructure in the form of the probability density.
X.3 The Sediment Microstructure

The probability density g(z, z) is plotted for Pe = 10 with different volume fractions
ranging from 0.27 (upper left) to 0.49 (bottom right). There are 27 particles in the
unit cell. Region of light color represent high and regions of dark color represent low
probability. The direction of sedimentation is the y-axis normal to the z—=z plane. g{z, 2)
shows a hexagonal packing of strings of settling particles only for ¢=0.419. This is
different than the sheared suspensions which show strongly ordered structure for a much
wider range of ¢ from 0.419 to as high as 0.6. It is important to note that even though

we do not find ordered sediment structures at Pe = 10 for different volume fractions
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than 0.419, the sedimentation velocities are consistently small as shown in Fig.10.a.
As long as the settling particles are well separated from each other, the reduction in
the sedimentation velocity is obtained irrespective of the hexagonal formation. The

hexagonal packing is destroyed as Pe increases from 10 to 10’ as shown in Fig.10.4.

We also study the suspension of bi-dense settling colloidal particles by randomly
assigning 13 out of 27 particles a gravitational force F,  slightly larger than F, =-1of
the other 14 particles. The Péclet number is scaled with the smaller F,,. Figure 10.5
displays the plot of g(z, 2) for $=0.419 at Pe=10 with F, =-1 (left) (the uniformly dense
suspension from Fig.10.3), F, =-1.25 (central) and F, =-2 (right). The figure clearly
shows that as F, increases in magnitude, the ordered formation with hexagonal packing

is weakened (central) and destroyed (right).
X.4 Conclusions

In this work, we examined the dynamical process of sedimentation of Brownian par-
ticles and demonstrated the versatility of the Stokesian dynamics simulation which can
be employed to model a variety of different physical problems. Our results indicate an
important relation of the sedimentation velocity and the microstructure. A large reduc-
tion in the sedimentation velocity at Pe = 10 relates to the sediment microstructure in
which the settling particles are well separated from each other and do not form large
aggregates or clusters. For ¢=0.419, the microstructure forms an hexagonal packing of
strings of settling particles along the direction of the grévity. Correspondingly for closely
spaced particles, the sedimentation velocity increases. We identified and provided some

explanations for the mechanisms which cause the change in the macroscopic properties
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of settling Brownian particles. It is suggested that this investigation should be contin-
ued since there are interesting questions that need to be answered. The occurrence of
strongly ordered sediment structure only for Pe=10 and ¢=0.419 and the large reduction

in sedimentation velocities need to be investigated in detail.
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Figure 10.1.2-b: The sedimentation velocity (Fig.10.1.2) and the angularly averaged
pair-distribution function (Fig.10.1.b) evaluated at particle center-center spacing r=2,
2(2), obtained by Stokesian dynamics as a function of volume fraction for three
different Péclet numbers: Pe = (@) 10, (A) 1000 and (O) oo. The Péclet number is
defined as the ratio of the gravitational and Brownian forces. In Fig.10.1.a, the dotted
curve is according to the scaling (1-¢))4'6 of Richardson (1979) and (OJ) symbols are
simulation results taken from Table IV of Ladd (1990); both results are applicable

for the limit of Pe = oo,
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Figure 10.2.a-b: The translational (Fig.10.2.a) and rotational (Fig.10.2.b) short-time
self-diffusion coefficients obtained by Stokesian dynamics as a function of volume
fraction for suspensions of settling colloidal particles with Pe = (@) 10, (A) 1000

and () ec. There are 27 particles in the unit cell. Both the diffusion coefficients
are normalized by the diffusion coefficient at infinite dilution. The Péclet number
is defined as the ratio of the gravitational and Brownian forces. Dotted lines are
extrapolated to the limit of zero self-diffusivities for Pe=10.
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Chapter XI

CONCLUDING REMARKS
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In this work, we have applied the Stokesian dynamics simulation method to study
the behavior of concentrated colloidal suspensions in shear flow. The main objectives
have been the prediction of suspension macroscopic properties and their relation to
the microstructure. The simulation method gives an accurate treatment of many-body
hydrodynamic interactions from which the Brownian forces are computed. Suspension
macroscopic properties and the shear-induced microstructure were modeled as a function
of the only two parameters: the volume fraction, ¢, and the Péclet number, Pe. The
volume fraction sets the relative separation between particles, thus it sets the strength of
the hydrodynamic forces. The Péclet number, which measures the relative importance of
the imposed shear and Brownian forces, specifies the degree of the shearing deformation

of the suspension.

Simulation results for the shear viscosity and the self-diffusivity agreed very well
with experimental results and revealed three “distinct” behaviors in the limits of low,
intermediate and high Péclet numbers. For a slightly perturbed equilibrium structure
in the limit of small Péclet numbers (Pe < 1), strong Brownian forces coupled with
the relatively large diffusive time scale act to restore the perturbed structure to an
equilibrium state. The decrease of Brownian contribution to the stress with increasing
shear rates in the strong Brownian limit was the cause of shear thinning. Both the short-
and long-time self-diffusivities are close to that of isotropic hard-sphere distribution. The
microstructure was slightly deformed, but particles were still relatively well dispersed;

no ordered structure was found in the shear thinning region.

Similar to the region of low Péclet numbers, the region of high Péclet numbers
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(Pe > 103) represents a perturbation to the pure hydrodynamic suspension by the pres-
ence of weak Brownian forces. In this region, particles were closely spaced and formed
large, elongated clusters disrupting the shear flow. The large increase in hydrodynamic
contribution to the stress accounts for the shear thickening. The reduction of the short-
time self-diffusivity with increasing Pe indicated a significant decrease of the instanta-
neous mobility of suspended particles owing to the formation of particle clusters. The
long-time self-diffusivity increased linearly with Pe in the limit of pure hydrodynamics
(Pe — oo) and compared favorably with tracer diffusion experiments. Even though
the direct contribution from Brownian forces has vanished, its presence was capable of

disturbing and inducing an anisotropic structure in the region of large Péclet number.

In the special plateau region with Pe =~ 10, a proper balance of hydrodynamic and
Brownian forces induced a strongly ordered microstructure. The flowing suspension
no longer shear thinned and the shear viscosity was a minimum. Our results show
a most revealing microstructure with hexagonally packed particles flowing as strings
with the shear flow. In the hexagonal packing, the particles were not only relatively well
separated but also evenly spaced. The hexagonal packing has a perfect six-fold symmetry,
allowing the particles to flow with ease relative to one another following the imposed shear
flow. The orientation of the hexagon was found to depend on the number of particles
in the simulation. While the short-time self-diffusivity is maximum due to enhanced
local mobility of suspended particles, the long-time self-diffusivity was minimum as a
result of the string formation from which the particles could not escape. The most

important finding was that the shear thinning, which has essentially terminated in the
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plateau region, does not directly relate to the shear-induced ordered microstructure in
the minimum viscosity region. The string formation of hexagonally packed particles was
determined by the Brownian forces which act as short-ranged spring-like repulsive forces

to counter the shearing deformation and prevent particles from touching each other.

Our simulation results provide complete detail of suspension macroscopic properties
and, for the first time, the dynamics of shearing deformation of the suspension mi-
crostructure. The flow of particles in a suspension has been probed and this information
helps our understanding of sheared suspensions. We have also provided a complete pro-
cess characterization by mapping the relation of the steady shear viscosity to the volume
fraction and the Péclet number (cf. Fig.9.23) for dense hard sphere suspensions. Such in-
formation is valuable to the processing industries where an optimum operating condition
suitable to a particular process can now be selected. By controlling the Péclet number
and volume fraction, colloidal suspensions can be processed to homogeneous order and

this provides an opportunity for fine material processing.

Stokesian dynamics has been brought to an efficient and fast computing level allowing
the completion of this study. A run with 27 particles and 50,000 time steps in three
dimensions with Brownian motion, which represents one (¢, Pe) point in the simulation
results discussed in this thesis, requires 5.5 hours on an IBM RiSC/6000 model 530. The
time requirement increases by a factor of 10 for N=64 and by 80 for N=123 (slightly
less than the N scaling). A similar 50,000 time-step simulation but without Brownian
motion (Pe — oo) requires only 1.5 hours for N=27, a nearly four-fold reduction. With

the present power of workstations, simulations in three dimensions with less than 100
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particles can be routinely performed, making the method accessible. Thus, the range
of problems of both a fundamental and practical nature that can be addressed through

Stokesian dynamics is quite extensive.
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Appendix A

PROGRAMMING AND OPTIMIZING

BROWNIAN MOTION AND BROWNIAN STRESS
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In this section, we present the optimization for the mathematical operations for Brow-

-1

s and Brownian stress, V-(RSU-R;;). V-R;; is the deterministic

nian motion, V-R
contribution of Brownian forces to particle displacements shown in the evolution equa-
tion (2.5), and V-(RSU-R;;) is the direct contribution of Brownian forces to the bulk
stress () shown in equation (2.20.c). These two terms, as written, are computation-
ally intensive and not yet in a form suitable for dynamic simulation. Efficient computer

algorithms were developed and implemented to speed up these numerically intensive

operations and to minimize CPU memory requirement.
A.1 Programming and Optimizing Brownian Motion

Introduce two column vectors A; and B; of dimensions (6V), where N denotes the

number of particles, as the following:
VR, =Ai+ B . (A.1)

Using the following mathematical identity:

-1
FU

VR, =-R, -(VRy): R, , (A.2)

FU

and with the grand resistance tensor R constructed according to (2.13), (A.2) is identical

to:

-1

VR, =-R, - V(M +R¥):R_ , (A.3)

where Rl;gb is the near-field lubrication resistance tensor of dimension (6N x6/N) added
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to the invert of grand mobility tensor, M ' to form the grand resistance tensor R.

Applying the mathematical identity in (A.2) for M’_l, (A.3) further reduces to:

-1 -1 #—1 ~1

VR, =R, (M [VM]: M . VRW ). R . (A.4)

FU FU

Since the resistance tensor RX? is constructed pairwise, VRI¥ = 6’Rlp’;’f;k /8z, can be
analytically computed in a similar pairwise fashion. Each spherical particle has three
translational partial derivatives 8/0x,, where | = 1,2,3. The three rotational partial

derivatives 0/00, are identically zero for spheres. There are six degree of freedom (3

-1

v+ SO the dimensions of VR™? for each

translational and 3 rotational) in R,, and R

pair of particles are (6x6x3).

For Brownian motion, the upper portion of the tensors M* and M’ are used.
They relate the translation/rotational velocity to the force/torque on the particles and
their dimensions are (6N x11N). Similar to the operation of VR%’, we can analytically
compute VM*E&M:”p/am“ where [ = 1,2,3 and the sizes of VM* for each pair of
particles are (11N x11N x3). Define a matrix Q of dimension (6 N x11N) and two column

vectors: Ty, of size (11N) and P; of size (61V), as follows:

@ = Ry M, (A.5)
. OM.
T, = T2 Qi A.6)
axl D (
ORI
Lo . .._Zk -1
P = o R;, - (A.7)
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In (A.5), Lj = 1,6N and p = 1,11N. Equation (A.5) requires (6N x6N x11N) oper-
ations for the matrix-matrix multiplication. To save significant computer mermory, we
compute VM?* in pairwise fashion and then multiply to matrix @, to obtain the vec-
tor Trm as shown in (A.6) with m,p = 1,11N and [ = 1,2,3 for each pair of particles.
Equation (A.6) requires (11N x11N x3N) operations. Similarly, P; defined in (A.7) re-
quires (6NN x6N x3N) operations with j,k = 1,6V and [ = 1,2,3 for each pair of particles.
Hence the dynamic simulation with Brownian motion problem demands @(JV3 ) com-
putations with A ranging from 6N to 11N. Without this optimization technique, a
direct calculation for (A.4) requires O(/\f5 ) calculations which are prohibitively costly
and possibly beyond the computing power of workstations. Also since both M " and

-1 . o .
R, are symmetric, the following identity holds:

Q=R M =MTR_, . (A-8)

(A.4) can be expressed as:

-1

VR, = (R M) (VM) : (M7 Ry,) - Ry (VR Ry) , (A9

and with the introduction of matrix ¢ and two column vectors T, and P;, (A.9) simplifies

to:

VR, =Ai+Bi= Qim Tm- Ry, - Pj . (A.10)

7

The final results for A; and B; are:

Ai == Qim : ijm 3 (A'll)



P (A.12)

Both A4; and B; require only O(N 2) operations for matrix-vector multiplication in the
final steps of Brownian motion. Some of these calculations are saved and used for the

. R B
calculation of Brownian stress § .

We need to add one more part, the random step X (At) defined in (2.8.a) and (2.8.b),
to complete Brownian motion. Results for X (At) have been derived by Bossis and Brady

(1987, 1989) and we shall use them for our simulations. Their results for the random

step X are:

X =VAIAT .Y, (A.13)

R, =A - (A“)J’ (A.14)
The symbol 1 indicates a transpose operation and A" is the lower inverse of R, Yis
a random vector of dimensions (6/NV) with a mean of zero and a corvariance (YY) = 2L
A.2 Programming and Optimizing Brownian Stress

For the Brownian contribution to particle stress, we have:

V{(Rg R, )=VRg: R, +Ry (VR ) . (A.15)

F

Using A; and B; from (A.11) and (A.12), (A.15) can be expressed as:
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V-(RgR,,) = VR R+ Rgy- (Ai + Bi) . (A.16)

r

Following the same derivation for the operation of VR, VR, can be written as:
VRg= VR = VM~ + VR | (A.18)
and applying (A.2) for M*, (A.17) simplifies to:
VRg=- M- (VM*): M7+ VR (A.18)

For the Brownian stress we use the lower portion of M* and M’ of dimensions
(5Nx11N). They are the couplings of the rate of strain E~ and the particle stress

S. V-(RSU-R;L) is equal to:

V-(RgyR) = - M7 (VM*):M7: R + VRE: R_ + Ry, (Ai+B;), (A.19)

F

V(R R,) =- M T + VR : R+ Ry, (As+Bi), (A.20)

F

with T, defined in (A.6). Introduce the column vectors Aj, Ejy C’j, and f)j of dimensions

(5NV) as follows:

Ayz-MTm (A.21)
aRlub

5 SU g —

B,= —5— Ry (A.22)

C =Ry - A , (A.23)



D =R, -Bi . (A.24)

Hence, the final form of the Brownian stress V-(RSU-R;;) is:

V-(RgyR,,)=A, +B,+C, +D, . (A.25)

F

In (A.21) m=1,11N, in (A.22) k= 1,6N and | = 1,2,3 for each pair of particles; in (A.23)
and (A.24) i = 1,6/N and j = 1,5N for all. The calculation of Ej in (A.22) is similar to
that of the column vector P; in (A.7). Bj requires (5N x6N x3N) multiplications. f&j,

C'j and f)]. are a matrix-vector multiplication and is O(/\/’2 )} computations.

Particle translational/rotational velocities U are computed at each time step by

solving:
R,, (U-U")=[R,:E°+F] . (A.26)

We can solve for U by either using a direct solve method by inverting R, or by an
indirect solve method operating on both R, and the right-hand side of (A.26). It
is O(CN") operations with ’=6N and the coefficient C = 1 or 4 depending on the
method employed. Iterative methods can be used with significant time saving but the
solution is approximated within some predetermined tolerances and more importantly,
R;:j cannot be obtained as part of the solution. By inverting R,,, the full Brownian
contribution can be computed and it is of our interest to include Brownian motion in

the Stokesian dynamics simulation method to improve the computer model for colloidal

dispersions.
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Appendix B

THE SIMULATION PROCESS OF STOKESIAN DYNAMICS METHOD



460

Figure 3.1 illustrates a flowchart of the Stokesian dynamics simulation method and
in chapter 111, we presented the general process of a dynamic simulation. In this section,
we emphasize on the execution of a Stokesian dynamic computer program and explain
step-by-step the procedure to run an efficient dynamic simulation, especially when the
Brownian motion and Brownian stress are of importance (Pe # 0). Referring to the
flowchart of Stokesian dynamics, the following section will guide the users from the start

to the completion of a simulation:

Step 1: An initial sample of N particles is selected. It can be from a random selection
using the Monte-Carlo method, or a periodic lattice or any particular configuration
obtained, for example, from another simulation for the purpose of testing the influence of
initial particle configurations on suspension macroscopic properties. Stokesian dynamics
simulation method is capable of simulating a specific or any particle configuration, static

or dynamic.

Step 2: The grand mobility tensor M* is computed. The Ewald summation with pe-
riodic boundary condition is used to form M®* for an unbounded suspension. M* is
then inverted using the Cholesky inversion method for a symmetric and positive definite
matrix. It is important to note here that to save the computing time we do not need
to form and invert M* at every time step since the change of M* is small provided
that particles do not move a length comparable to their characteristic size a. In the
simulation, we form and invert M™ once every dimensionless time of ¢ &~ 0.1 and during
this time particles in a simple shear flow move a distance less than its own size. Com-

parisons for simulations with M* and M computed at every time step and with M*
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and M formed once every t ~ 0.1 show very small and negligible differences in macro-
scopic properties of relatively dense suspensions. The near-field lubrication is computed

at every time step and then added to M ™ to form the grand resistance tensor .

Step 3: From the partition of R, R, is obtained and inverted using the same Cholesky

method. During the inversion of R, we save A= /R for the random step X (At).
FU FU

-1
FU?

Step 4: Using R__, particle velocities U are computed according (A.26). If there is the
interparticle/external force F’ then it is straightforward to compute it from the specified

input form.

Step 5: The Brownian motion V-R;L defined in (2.9) is computed. In appendix A,
we explained and optimized V-R;:j in secticn A.l1. We need toc compute the matrix ¢
defined in (A.5), Tin in (A.6) and P; in (A.7) to complete A; and B; according to (A.11)
and (A.12), respectively. While @, P; and B; are computed at every time step, Tin and
A; are computed and renewed at the same frequency of M* for the reason that the

changes of M* are small for ¢ & 0.1; therefore, the change of VM is also small.

Step 6: New particle trajectories are’computed from particle velocities U and from Brow-
nian motion. The 4** order Adam-Bashforth integrating scheme is employed to update
new particle positions from the deterministic contribution U of step 4. To complete
particle displacements, the two contributions from Brownian motion: VeR;; At from
step 5 and X (At) from step 3 are added to particle placements. A” is saved from step
3 and now used with the random vector Y according to (A.13). We generate 12 random

numbers from 0.0 to 1.0 for each of the 6N entries of Y to improve the sampling statistics
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at each time step. Y is chosen to satisfy (Y) = 0 and (YY) = 2I. The 1°¢ order Euler

integration scheme is used for both Brownian motion terms.

Step 7: s" and 8" are computed according to equation (2.20.a) and (2.20.b), respec-
tively. s” is the hydrodynamic contribution to particle stress and S” is the added stress

resulting from the interparticle/external force acting on the particle.

Step 8: Brownian stress S® defined in (2.20.c) is computed using (A.25). We need to
compute fij, Bj, C’j and D]. which are defined in (A.21), (A.22), (A.23), and (A.24),
respectively. Similar to the procedure to obtain A; from step 5, f!]. and (:"]. are computed
at the same frequency of M*, while BJ, and ﬁj are computed at every time step. Together
with the computing for s” and 8”7 in step 7, we have the complete set of bulk stress

(3°) to determine the suspension rheology.

Step 9: The final step of the simulation process is designated for computing the number-
averaged mean and statistics of suspension bulk properties: shear viscosity from (3°),
short-time self-diffusion coefficients defined in (2.25) with R;,Z, is saved from step 3.

Output results for final analysis are saved at the desired frequency.

The dynamic simulation returns to step 2 until the final time ¢;54; is reached and
the execution is terminated. As we present here, Stokesian dynamics requires @(ﬁ‘\f3 ) op-
erations mainly from the inversion of M* and R,,,. We do not invert M™ of dimensions
(11N x11N) at every time step, so it is a tremendous saving in computer time. R, with
smaller dimension (6/Vx6N) needs to be inverted at every time step. Once R;; is ob-

tained, we have the full benefit of determining Brownian contribution to particle motion
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and to particle stress in addition to just solving for U from (A.26). It is important to note
that there is no need to assemble the operation VR%’, VM, and VR?;[’ into matrices.
These operations are analytically computed in pairwise fashion, multiplied to the proper
right-hand side matrix and then summed for all pairs of particles. This technique saves
significant amount of computer memory and enables simulations to be run on worksta-
tions. Had we formed all of these matrices, then their sizes would be (11N x11/N x3) for
VM, (6Nx6Nx3) for VRI> and (5N x6Nx3) for VRP. For simulations with 123

particles, the matrix with sizes (11Vx11N x3) will require =~ 20 Megabytes to store in

double precisions and is a big block of CPU memory for a workstation.
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Appendix C

OPTIMIZATION AND TIMING
FOR

STOKESIAN DYNAMICS SIMULATION
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In this appendix section, we present the optimizing techniques which speed up Stoke-
sian dynamics simulation and report the timing for specific computational tasks as well
as the overall stokesian dynamics program. Details of mathematical operations for Brow-
nian motion and Brownian stress and the simulation process are given in appendices A
and B, respectively. Our important goal is to develop and implement efficient and fast
algorithms which allow computer simulations of O(100) particles in a workstation com-
puter like the IBM RiSC/6000 computers which have a high speed but small size cache

ranging from 64 to 128 KiloBytes.

The three major computational tasks of stokesian dynamics simulation are the for-
mation of the grand mobility matrix M* and its inverse M, the computing of R:U
which is required for the calculation of the particle velocities and Brownian motion, and
the computing of Brownian motion V=R;; and Brownian stress Ve(RSU»R;;), The first
two tasks require explicit matrix inversions and the last one requires matrix-matrix and

matrix-vector multiply. The number of numerical operations of these three tasks are of

-1
FU?

O((11N)’) for M and O((6N)’) for R,,, V-R,, and V-(R,-R,, ). Here, NV is the

number of particles in the simulation.

The first optimizing technique is implemented to speed up the formation of the

mobility inverse M """ which satisfies the following mathematical identity:
MM = 1. (C.1)

T is the unit matrix with the same dimensions as M* and M" which are (11N x11N).

. ° . . o ‘_l I3 °
Since M* is symmetric and positive definite, its inverse, M | is also symmetric and
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positive definite. Following the same decomposition of M* as shown in (2.12), we write

the mobility inverse M T as:

- A B
M = . (C.2)
C D
Equation (C.1) becomes:
M,, M, A B I, 0
= . (C.3)
Mg, Mg C D 0 1,

In (C.3) I, and I, are square unit submatrices. A and I, have the same dimensions
(6Nx6N) as My.. D and I, have the same dimensions (SNx5N) as M,;. Simi-
larly, dimensions of B and C are the same as M, and M, which are (6 Vx5N) and

(5N x6N), respectively. The submatrix operations of (C.3) give:

My,-A + M,;C = 1

M,, B + M,;D = 0 -

Mg, A+ M, ,C = 0

MEFB+MESD = Ez

By solving the linear system of equations (C.4), we obtain the results of submatrices A,

B, C and D as follows:
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-1 -1
= (MUF - MUSMESMEF)

—1 -1 —1
= _MUFMUS(MES - MEFMUFMUS) (©5)

-1

—1 -1
= _MESMEF(MUF - MUSMESMEF)

g o w »

~1 -1
= (MES - MEFMUFMUS)

(C.5) requires two explicit matrix inversion operations to invert M, and to invert
the matrix group (M- MEFM;;MUS) and seven matrix-matrix multiplies. Press et
al. (1988) derives the eleven-step process for the inversion of a general matrix. This
technique is similar to Strassen’s method (1969) for accelerating matrix-matrix multiply

and reducing the number of operations from O(Na) to O(N“).,

By using the symmetric condition of M* and M’ , we can further reduce the total
of number of matrix-matrix operations from seven to four and the process of inverting

M* is given by the following six-step process:

-1
UF '’

Step 1: Compute Z, = M

T -1 T
Step 2: Compute 2, = M, M =M, Z, ;

Us

Step 3: Compute Z, = M., (MT M. )T: M., 7 (first Z, is transposed and then
il it 3 Us UsS T TUF 2

Us—2

multiplied);

i

T T -1.7,-1 —_-
Step 4: Compute (M - MUS(MUSMUF) ) = (M, -Z,) = D;
-1 T T

Step 5: Compute (MZSM;;)Ta (MES—M;(MZSM;;)T) =%Z,-D=C=B ;

Step 6: Compute M;IF- (M;M;;)TC = M;;— ZZTC = A .
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Note that there is no need to compute C and hence to invert (M, .- MUSI\/E;;MEF)
since C=B" given by the symmetric condition of M In addition, M, ., M, their

1

and M__, A and D are all symmetric and positive definite.

inverses M .

As shown in Figure C.1, the two main computing kernels for the mobility inverse
M are the Cholesky method of inverting a positive definite and symmetric matrix and
BLAS3 (Basic Linear Algebra Subprograms) DGEMM for fast matrix-matrix multiply.
It is the implementation of BLAS3 DGEMM kernel which we shall show to significantly
speed up the numerically intensive task of inverting M*. The BLAS kernels exploit the
technique of loop blocking and rolling to effectively fill the high speed cache with data.
This technique optimizes the cycles which the computer replaces the unused with the new
data from the memory for next computational tasks. It also allows more computational

cycles per filled cache.

To illustrate this speed up, we plot the performance measured in MFLOPS (Millions
of Floating Point Operations per Second) in double precision of the IBM RiSC/6000
model 560 computer with 128KBytes cache size as a function of the matrix size in Figure
C.2 for the matrix-matrix multiplication. The solid curve is the rated 40 MFLOPS for
this model. While the multiplication of the transpose of matrix AA with matrix BB
gives a relatively good performance at 38 MFLOPS (&) which is very closed to the peak
speed, a simply naive matrix AA and BB multiplying yields very poor and unacceptable
performance at 2 MFLOPS as the matrix size increases to larger than 400 as shown by
the (@) curve. This is a significant twenty-fold speed down due to poor system scalibility

because of large missed cache per time cycle. With the optimizing technique of loop



469

blocking and rolling as coded in BLAS3, we eliminate the poor system scalibility and
not only double the performance from the rated 40 MELOPS to 8 MFLOPS, but more
importantly the speed up is independent of matrix size as shown by two top curves
((0) and (O).) Note that for Stokesian dynamics simulation with 27 particles in three
dimensions, the size of M* and M is (297,297) and it is where the poor scalibility
begins to show and the performance significantly decreases. For relatively less powerful
computer and smaller cache size of 64 KBytes like the RiSC/6000 model 520 and 530,

the degradation starts with smaller matrix dimensions of (100x 100).

The second optimizing technique is to modify the Cholesky method to avoid the
naive AAxBB operation by replacing it with AA" % BB. The Cholesky method includes
three computational phases: the L(L)T decomposition, the inversion of (L)T to obtain
the square-root of full inverse and the multiplication of the square-root of the full inverse
with its transpose to obtain the full inverse. In the last two phases, the main computing
kernel is the matrix-matrix multiply of the upper half (L)T to the lower half L and our
optimizing technique shows great improvement in speed up the matrix inversion process.
Furthermore by decomposing the grand mobility matrix to submatrices, we need to invert
only two smaller matrices shown in step 1 and step 4 and exploit the fast matrix-matrix
multiply from the other four steps to speed up the inverting process. This technique
proves to work well for all workstation computers like Sun, Stardent, IRIS and with the
supercomputer Cray Y-MP as well, which for simulations with 123 particles, we obtained
the average speed of near 210 MFLOPS per a single CPU. This is a near ten-fold speed

up compared to earlier version of stokesian dynamics programs.
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The fast matrix-matrix multiplication is also implemented in the computing of Brow-
nian motion and Brownian stress. Figure C.3 shows the details of this task. The forma-

tion of the vector T}y in (A.6) requires the matrix Qip which is defined in (A.5) as:
Qip =Ry M, (C.6)

for which the fast matrix-matrix multiply is applied to speed up the result.

The timing in seconds of these three computational tasks is reported in Table C.1
for the IBM RiSC/6000 model 560 computer. The simulation is with 126 particles and
the time results are averaged for 100 sample runs. Column 1 shows the specific task and
subtasks, columns 2 and 3 are the CPU and total time in seconds. With our six-step
optimizing technique, the formation of the mobility inverse of dimensions (1386x 1386)
consumes 50 seconds and gives a performance speed of 71 MFLOPS (The Cholesky
inversion of a symmetric matrix requires %PB number of operations where P = 11 x N is
the size of the matrix.) In forming Brownian motion and Brownian stress, the most time
consuming task is to compute Q) shown in (C.6). The number of operations for this task
is 2x6/N x6N x11N (one add and one multiply per cycle), and for N=126 it consumes 19
seconds and delivers a performance of 83 MFLOPS (labeled as the subroutine BIGSTEP
in Table C.1). The last task is the inversion of R, of dimension (6/Vx6N). Because of
the need of saving the square-root of R;:] required for the computing of the random step
for Brownian motion in (A.14), it is impossible to recursively decompose R ,, and we can
only perform the Cholesky inversion which gives a performance of nearly 45 MFLOPS

(computed from 13 seconds consumption to invert a matrix size of (756x756).)
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Table C.2 gives the timing results in minutes of the overall stokesian dynamics sim-
ulation for three sample sizes with V=27, 81 and 126. The timing is for 1000 time steps
for which we form M*, M’ ™" and V-M* one for every 100 time steps and is averaged
for 100 sample runs. Column 1 gives the main specific tasks which are the comput-
ing and saving of the separation of each pair of particles (CALDIST), forming and
inverting of mobility matrix (FORMOBI), adding the near-field lubrication resistance to
form the grand resistance matrix (ADDLUB3D), computing R;tl] and particle velocities
(CALVELO), forming Brownian motion and Brownian stress (BRWNIAN), computing
particle rheology (CALSTRS), and integrating new particle trajectories (TRAJECT).
Under the columns of sample sizes, we report the timing in minutes and the percentage
of total time for each computational task. The table clearly shows that the inversion
of R,,, which must be executed at every time step, plays an essential role in stokesian
dynamics simulation. Its percentage of total simulation time ranges from 70% for N=27
to 86% for N=126. A 10’ time-step simulation (100 shear time units) with 27 particles
requires approximately 250 minutes or 4.2 hours on the IBM RiSC/6000 model 560 com-
puter. With the less powerful RiSC/6000 model 530 computer rated at 20 MFLOPS,
the similar 10° time-step simulation requires about 11 hours. With the present power
of workstations, simulations in three dimensions with less than 100 particles can be

routinely performed, making the Stokesian dynamics method accessible to scientists,

researchers and engineers.
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Table C.1: Details of the timing for the three main computational tasks of stokesxan
forming and inverting the grand mobility matrix M*, forming Brownian motion V- R

and Browian stress V(R - RFU), and forming RFU and computing particle velocity U.
The runs are with 126 particles on the IBM RiSC/6000 model 560 computer and the

timing in seconds is averaged for 100 runs.

COMPUTATIONAL TASKS Time Total Time
(NUMPART=126) in Seconds | in Seconds
1. Form and invert moblity matrix 67.80
1.a Form mobility matrix M*(N11xN11) 17.80
1.b Compute mobility inverse M 50.00
CHOLESKY matrix inversion

1.b.1 N6xNG6 13.10
1.b.2 N5xN5 7.18

BLAS3 DGEMM matrix-matrix multiply

1.b.3 N5xNG6xNG6 7.90

1.b.4 N5xN5x NG 7.00

1.b.5 N6xN5xN5 6.92

1.b.6 N6xN6xN5 7.90

2. Compute Brownian motion V- R and

Brownian stress V-(Rg, RFU) 20.10

2.a Subroutine BRWNIAN 1.07

2.b Subroutine BIGSTEP 19.03
3. Compute R;L and particle velocities U 13.20

3.a Compute R;; 13.10

3.b Compute U 0.10
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Table C.2: Timing for the main computational tasks of stokesian dynamics program.
The final time of these tasks is averaged with 100 sample runs. Each run has 1000 time
steps of DT=0.001.M", M ™" and V-M* are formed one for every 100 time steps.
CPU timing in minutes is taken for the IBM RiSC/6000 computer model 560 computer.
The columns show these runs with three different numbers of particles: N=27, 81 and
126. A production run with N=27 and 10° time steps of DT=0.001 (shear time of 100
units) as reported in this thesis requires approximately 250 minutes or 4.2 hours on the
IBM RiSC/6000 model 560 computer.

NUMPART = 27 | NUMPART = 81 | NUMPART = 126
Subroutine | Time | % Total | Time | % Total | Time % Total

(min.) Time (min.) Time (min.) Time
CALDIST 0.62 0.76 0.21 0.29 0.51 0.20
FORMOBI 6.21 7.95 3.51 4.91 11.54 4.53
ADLUB3D 0.19 7.20 3.78 5.29 11.81 4,64
CALVELO 1.86 70.44 60.02 84.03 220.21 86.50
BRWNIAN 0.33 12.50 3.63 5.08 9.92 3.90
CALSTRS 0.03 1.14 0.26 0.36 0.58 0.23
TRAJECT .01 0.01 0.02 0.03 0.01 0.00
e sk ook kR Ok sk AR skoskesk3k 3 233 saskk sk Aok Ak
Total Time 2.64 100.00 71.43 166.00 254.58 100.00
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(" Form Grand Mobility Matriz M

Figure C.1: Flow chart of subroutine "FORMOBI " which forms the grand mobility
matrix M and its inverse M 1. The two subroutines " CHOLESKY " for inverting

a symmetric and positive definite matrix and BLAS3 (Basic Linear Algebra Subprograms)
"DGEMM " subprogram for fast matrix-matrix multiply are used to invert M .
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: ~Form Brownian Motion —
N and Brownian Stress

mpute A; S
— t ompute A;ﬁ

Figure C.3: Details of the computational tasks for Brownian motion V.Rpy =4+ B
and Brownian stress SB= Ahat+ Bhat+ Chat+ Dhat .
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