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ABSTRACT

Cyclic molecular structures are ubiquitous in chemistry.  Efficient and convergent

methods to synthesize these rings are of great importance, specifically in the context of

natural product synthesis.  The development of two methods for the synthesis of the core

structures of the natural products saudin and amurensinine are described.

First, the development of the tandem Stille-oxa-electrocyclization will be

discussed in the context of synthetic efforts with saudin.  The labdane diterpenoid saudin

was isolated in 1985 by Mossa and Cassady from the leaves of the Clutia richardiana

(L.) family Euphorbiaceae.  The natural product was found to induce hypoglycemia in

mice and therefore could be an appealing lead structure for the development of new

agents to treat diabetes.  A diastereoselective tandem Stille-oxa-electrocyclization

reaction has been developed, which provides access to the core structure of saudin in a

rapid and convergent manner.  Additionally, this new reaction has been extended to the

convergent preparation of related polycyclic pyran systems.  Progress has been made on

the advancement of these complex pyran systems toward the synthesis of saudin.

Secondly, the development of the direct acyl-alkylation of arynes will be

described in the context of the total synthesis of the isopavine natural product

amurensinine.  The isopavine alkaloids are promising lead structures for the treatment of

neuronal disorders such as as Parkinson’s disease, Down’s syndrome, Alzheimer’s

disease, amyotrophic lateral sclerosis, and Huntington’s chorea.  All members of this

family of natural products contain a seven-membered benzannulated carbocycle.  To

address the challenge of synthesizing the isopavines, an efficient and mild acyl-alkylation

of arynes has been developed.  The method forms ortho-disubstituted aromatic products

that would otherwise be difficult to synthesize.  Additionally, the method is used to

synthesize medium-sized benzannulated carbocycles, such as the seven-membered ring

structure in the isopavine alkaloids, by the ring-expansion of cyclic -ketoesters.

Overall, the transformation results in the formation of two new C–C bonds by the net

insertion of an aryne into the ,  C-C -bond of a -ketoester.  This reaction has been

applied in the total synthesis of amurensinine.
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