

CONVERGENT METHODS FOR SYNTHESIZING RINGS IN THE
CONTEXT OF NATURAL PRODUCT SYNTHESIS:
I. DEVELOPMENT OF A TANDEM STILLE-OXA-ELECTROCYCLIZATION
REACTION, AND PROGRESS TOWARD THE TOTAL SYNTHESIS OF SAUDIN
II. DEVELOPMENT OF THE DIRECT ACYL-ALKYLATION OF ARYNES, AND ITS
APPLICATION TOWARD THE TOTAL SYNTHESIS OF AMURENSININE

Thesis by

Uttam Krishan Tambar

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended December 6, 2005)

© 2006

Uttam Krishan Tambar

All Rights Reserved

To my big brother

ACKNOWLEDGEMENTS

This is by far the most important part of my thesis. Synthetic chemists often define their achievements in terms of the number of natural products they have made or the number of novel reactions they have developed. Yet, I realize that my greatest achievements have been the professional and personal relationships I have developed that have gotten me to this stage in life. So it is with tremendous gratitude that I write these acknowledgements to show my appreciation to some of the people who have helped me throughout the years.

Caltech is an amazing place to conduct research, and its commitment to excellence is showcased by the individuals who kindly agreed to serve on my thesis committee: Professors David MacMillan, Robert Grubbs, and Jonas Peters. Dave MacMillan is a motivated and fearless scientist who is never afraid of thinking big. I cannot begin to describe how much I have learned from Dave through all of our discussions. He has had a tremendous influence on how I think of chemistry, and I hope to continue to learn from him in the future. Bob Grubbs may be the most down-to-earth genius on the planet. The Nobel Prize committee could not have given the award to a better human being. I am grateful for all the scientific and career advice Bob has provided me over the years. Jonas Peters has a tremendous energy and excitement for chemistry, and it is always inspiring to be around him. Jonas was the first person at Caltech to playfully chastise me for ignoring the details of metals in my proposed catalytic cycles, and I am thankful for this. I consider myself very fortunate to have had this opportunity to interact with the members of my committee and other distinguished faculty members at Caltech, and I look forward to staying in touch with them.

At Caltech I have learned some of my most valuable lessons from my peers. I would like to express my gratitude to the entire chemistry class that arrived at Caltech in the fall of 2000. This is an amazing group of people, and I have benefited so much from all of our time together. We have been through a lot over the last few years, and I feel so fortunate that they have always been there to support me. I would like to thank the members of my class in the Stoltz group. Our advisor has high standards for his graduate students because he was fortunate enough to have a rookie class like them. We all had a part in turning this young lab into a chemical powerhouse. A special thanks to Sarah Spessard, Neil Garg, Jeremy May, Raissa Trend (she came in 2001, but she's wise beyond her years), and Jeff Bagdanoff for making my experience at Caltech so pleasant. We had some incredible times over the years. Thank god for Amigos (Adios...) and the Christmas parties (electrical cart).

When I first came to graduate school, the older students at Caltech helped to shape me as a scientist. Jake Wiener, Arnab Chatterjee, Vy Dong, and Steve Goldberg provided a great deal of guidance during the early years. I must also thank the amazing Richmond Sarpong. His persistent enthusiasm is a great source of inspiration. I would not have the strength to stay in synthetic chemistry without his support. And of course I must thank the humble Taichi Kano, my partner in crime for the saudin project. Once, during group meeting, someone asked Taichi why he didn't sign up for more group jobs. He replied that he had the most difficult group job: taking care of Uttam! This statement was absolutely true. He taught me how to perform chemistry in lab and how to emotionally survive chemistry outside of lab. I am sure he will continue to be an important influence in my life for many years to come.

A special thanks to my other co-workers as well. I don't know what I did in my previous life to deserve the honor of working with Sekar Govindasamy, John F. Zepernick, and David C. Ebner. They are very talented chemists and even better people. Having a supportive bay mate can make a significant difference in graduate school. Thank you Yeeman Ramtohul, J. T. Mohr, and John Enquist for making it a pleasure to come to lab.

The friendships I have developed with the entire Stoltz group (past and present) will last a lifetime. It is such a supportive environment for conducting research. Ryan Zeidan, the original Playmaker, is like a little brother to me, and he has always been there to help me in my times of need. I have every intention to send my children to Ryan's home for their summer vacations so that he can teach them how to play football. Blake Green always knew how to make me laugh, and I will always appreciate that. Dan Caspi is known for being the computer guru of the group, but to me he is so much more. He has made Caltech tremendously fun, and I could not have made it through without his advice and sense of humor. There's no doubt in my mind that we will continue to make our yearly trips even once I leave Caltech. Viva Las Vegas, yah tu sabes! I would also like to thank Ernie Cruz. If everyone in the world had a friend like Ernie, the world would be a much happier place. Lunch will never be the same without him. I hope some day I can convince Gina and Ernie to move to the east coast. Until then, I guess I will have to make many trips out here to Pasadena.

I want to thank Dan Caspi, Raissa Trend, David Edner, and the magnanimous Jenny Roizen, who kindly and patiently took the time to proofread my thesis. They deserve credit for any coherence in the following pages. I am grateful for the support and friendship of the wonderful staff at Caltech: Dian Buchness, Lynne Martinez, Linda Syme, Mona Shahgholi, Scott Ross, Larry Henling, Mike Day, Tom Dunn, Rich Gerhart,

Joe Drew, Moises Renteria, and Terry James. They do the behind the scenes work that makes it possible for us to conduct our research.

Thanks also to my friends beyond the Stoltz group. The eating club has made my last couple of years at Caltech my happiest years. Thank you for always making me laugh. I would especially like to thank Melanie Pribisko for always being there to support me. I hope Mel never changes who she is.

At this point, I would like to thank Erna Knolmar for all of her support and words of encouragement. In many ways she has become like family. I think Harry Stoltz should probably thank the older graduate students in our group, because his mother had great practice in parenting while she took care of many of us. There were days during graduate school when I was convinced that I was the worst chemist in the world. But I knew that even on those days Erna would believe in my abilities as a chemist. Somehow Erna would always know when I needed to hear words of encouragement. She probably does not realize how much her support has meant to me over the years.

As much as my time at Caltech has shaped me over the past five-plus years, individuals in my pre-Caltech life have helped define me.

My desire to seek answers for unanswered questions, which eventually drove me to pursue graduate studies in chemistry, was developed when I was very young. I would like to take this opportunity to thank all my childhood teachers. I had the pleasure of attending the United Nations International School from kindergarten through twelfth grade. During this time, I was guided by the most inspiring people. Specifically, I would like to thank the wonderful teachers of UNIS Queens, who helped a skinny, little, quiet Indian boy come out of his shell. I would also like to thank my high school teachers, Mrs. Sylvia Gordon, Mr. Anthony Doyle, and Mr. Jean Pierre Jouas. Mr. Jouas was the first person to encourage me to pursue a career in science, and I always feel what I do today is simply an extension of what he taught me.

Before I came to Caltech, I was fortunate enough to develop some amazing friendships that have withstood the test of time. I would like to thank my childhood friends, the crew. Over the years, they have always been there to support me, and they have taught me the true meaning of friendship. College was the first period in my life where I was living away from my family. Fortunately, I met an amazing group of people that made me feel at home. I would like to thank my Mather House brothers, especially my roommates who became my new family, and the rest of my new extended family throughout the hallways of our dorm. I would also like to thank the South Asian Association and all its members, who helped me stay connected to my roots and always reminded me of who I was.

My time at Harvard was great and helped me grow intellectually. I will always be grateful to Professor Cynthia Friend for giving me my first research opportunity. Her support throughout the years (even once I came to Caltech) has been priceless. I would also like to thank Professor Stuart Schreiber, who helped me fall in love with organic chemistry. He has an amazing ability to think beyond the traditional boundaries of our field, and I feel fortunate to have had the opportunity to learn from him. In the Schreiber group I had the pleasure of working with some amazing scientists, including Derek Tan, Michael Foley, and Finny Kuruvilla. I would like to thank them for giving me a chance.

I must thank the most important people in my life, my family. I am nothing without them. My brother, Udai K. Tambar, is my best friend, my mentor, and my biggest pillar of support. I have known him for as long as I have known myself, and on most days I feel that he knows me better than I know myself. I could not imagine living a single day of my life without his support and guidance. My mother, Neelam Tambar, is the backbone of our family. She has sacrificed everything to ensure that my brother and I would always be able to strive for our goals. She deserves this Ph.D. as much as I do. My father, Balvir K. Tambar, is my role model in life. I need to thank him for developing my insatiable passion for pursuing knowledge. He has also taught me the value of hard work and humility. If I end up being one tenth the man that my father is, I will be a great man. I would also like to thank the two newest members of our family. My sister-in-law, Aparna Tambar, is an amazing person. She has always been willing to support me, especially during the toughest days of graduate school. Our family would not be complete without her. And of course I must thank my nephew, Karthik K. Tambar. His very existence is a source of inspiration. There is no doubt in my mind that he will achieve all of his goals in life. I would like to thank my extended family, especially my grandmother (Nani). She has always believed in me. I only hope that she realizes how much I love her.

Now that I have thanked my teachers, my co-workers, my friends, and my family, I must thank the only person in this world who seems to fit in all of these categories. How do I even begin to thank Brian Stoltz. I've known Brian for a long time now, and I have never had a difficult time saying anything to him. So it is ironic that I am having difficulty expressing my gratitude. How can I thank a person who has done everything in his power to make sure that I succeed in life. I'm getting emotional just thinking about it.

Intellectually, Brian has been an ideal advisor. I met him in the fall of 1998, when I was a skinny undergraduate student and he was a slim postdoc. At the time he was a Teaching Fellow for my advanced organic chemistry course. Seven years and fifty pounds later, Brian and I have both changed a great deal, but I am still learning so much from him. There is no doubt in my mind that I will be a student of Brian Stoltz for the

remainder of my life. As an advisor, he has always encouraged me to explore my ideas, and he has always guided me in the right direction. Brian's work ethic is inspiring, and his uncontrollable excitement for chemistry is contagious. Whenever I was losing motivation for a project, I knew that a five minute conversation with him would be enough to inspire me. Perhaps the only mistake Brian has made in his life has been to cheer for the Red Sox. Ah well, I guess no one is perfect.

The world knows Brian as a prolific, brilliant chemist. His intellect is only surpassed by his humility. And he is by far the hardest working person I know. But most of the world probably does not know that Brian is also an amazing friend. He has always been there to congratulate me on the happiest days of my life, and he has always been the first one to pick me up on the most difficult days of my life. I am able to sit here today and write my acknowledgements because of Brian's support. Although the occasion of my thesis defense marks the end of my time as a member of Brian's group, it also marks the beginning of a lifelong friendship.

ABSTRACT

Cyclic molecular structures are ubiquitous in chemistry. Efficient and convergent methods to synthesize these rings are of great importance, specifically in the context of natural product synthesis. The development of two methods for the synthesis of the core structures of the natural products saudin and amurensinine are described.

First, the development of the tandem Stille-oxa-electrocyclization will be discussed in the context of synthetic efforts with saudin. The labdane diterpenoid saudin was isolated in 1985 by Mossa and Cassady from the leaves of the *Clutia richardiana* (L.) family *Euphorbiaceae*. The natural product was found to induce hypoglycemia in mice and therefore could be an appealing lead structure for the development of new agents to treat diabetes. A diastereoselective tandem Stille-oxa-electrocyclization reaction has been developed, which provides access to the core structure of saudin in a rapid and convergent manner. Additionally, this new reaction has been extended to the convergent preparation of related polycyclic pyran systems. Progress has been made on the advancement of these complex pyran systems toward the synthesis of saudin.

Secondly, the development of the direct acyl-alkylation of arynes will be described in the context of the total synthesis of the isopavine natural product amurensinine. The isopavine alkaloids are promising lead structures for the treatment of neuronal disorders such as as Parkinson's disease, Down's syndrome, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's chorea. All members of this family of natural products contain a seven-membered benzannulated carbocycle. To address the challenge of synthesizing the isopavines, an efficient and mild acyl-alkylation of arynes has been developed. The method forms *ortho*-disubstituted aromatic products that would otherwise be difficult to synthesize. Additionally, the method is used to synthesize medium-sized benzannulated carbocycles, such as the seven-membered ring structure in the isopavine alkaloids, by the ring-expansion of cyclic β -ketoesters. Overall, the transformation results in the formation of two new C–C bonds by the net insertion of an aryne into the α,β C–C σ -bond of a β -ketoester. This reaction has been applied in the total synthesis of amurensinine.

TABLE OF CONTENTS

Dedication	iii
Acknowledgements.....	iv
Abstract	ix
Table of Contents.....	x
List of Figures	xvi
List of Schemes.....	xxiv
List of Tables.....	xxviii
List of Abbreviations	xxx
CHAPTER ONE: A Brief History of Saudin	1
1.1 Background and Introduction.....	1
1.1.1 Isolation and Proposed Biosynthesis	1
1.1.2 Biological Activity	3
1.2 Synthetic Studies	4
1.2.1 González-Sierra's Approach.....	4
1.2.2 Winkler's Approach.....	6
1.2.3 Boeckman's Approach.....	8
1.3 Conclusion	13
1.4 Notes and References	14
CHAPTER TWO: Progress Toward the Total Synthesis of Saudin: The Development of a Tandem Stille-Oxa-Electrocyclization Reaction	16

2.1 Background 16	
2.1.1 Introduction	16
2.1.2 Retrosynthetic Analysis of Saudin.....	17
2.1.3 Oxa-Electrocyclization Reactions in Natural Product Synthesis	18
2.2 First Generation Strategy Based on a Michael Addition	19
2.2.1 Efficient Synthesis of the Core of Saudin	19
2.2.2 Advancing Furan Appended Tricycle 50	24
2.3 Second Generation Strategy Based on a 1,4-Reduction.....	27
2.3.1 Modified Strategy for the Synthesis of Saudin	27
2.3.2 Synthesis of Modified Furan Appended Tricycles	28
2.3.3 1,4-Reduction of Substituted Enone 71a	32
2.3.4 Proposal For the Completion of Saudin	35
2.4 Conclusion	36
2.5 Experimental Section	37
2.5.1 Materials and Methods.....	37
2.5.2 Preparative Procedures.....	38
2.6 Notes and References	67
APPENDIX ONE: Summary of Synthetic Progress Toward Saudin (1).....	73
APPENDIX TWO: Spectra Relevant to Chapter Two.....	75

APPENDIX THREE: X-ray Crystallography Reports Relevant to Chapter Two	130
A3.1 Crystal Structure Analysis of 66a	131
A3.2 Crystal Structure Analysis of 71c	141
A3.3 Crystal Structure Analysis of 90	150
APPENDIX FOUR: The Development and Scope of an Alternate Tandem Stille-Oxa-Electrocyclization Reaction	161
A4.1 Background and Introduction.....	161
A4.1.1 Application of the Tandem Stille-Oxa-Electrocyclization Toward the Partial Synthesis of Saudin.....	161
A4.1.2 An Alternate Tandem Stille-Oxa-Electrocyclization Strategy	163
A4.2 Development of an Alternate Tandem Stille-Oxa-Electrocyclization Reaction.....	165
A4.2.1 Synthesis of the 4- <i>cis</i> -Stannylenone Substrates for the Tandem Stille-Oxa-Electrocyclization.....	165
A4.2.2 Synthesis of the 2-Iodoenone Substrates for the Tandem Stille-Oxa-Electrocyclization.....	167
A4.2.3 Optimization of the Alternate Tandem Stille-Oxa-Electrocyclization	168
A4.2.4 Substrate Scope of the Alternate Tandem Stille-Oxa-Electrocyclization	170
A4.3 Theoretical Studies on the Tandem Stille-Oxa-Electrocyclization.....	172
A4.4 Conclusion	174

A4.5 Experimental Section	175	
A4.5.1 Materials and Methods	175	
A4.5.2 Preparative Procedures.....	176	
A4.6 Notes and References	190	
CHAPTER THREE: Development of the Direct Acyl-Alkylation of Arynes		192
3.1 Background and Introduction.....	192	
3.1.1 A Brief History of Benzyne	192	
3.1.2 Generation of Arynes	194	
3.1.3 Aryne Insertion into Inert σ -bonds.....	196	
3.2 Development of the Acyl-Alkylation of Arynes	201	
3.2.1 Serendipitous Discovery	201	
3.2.2 Acyl-Alkylation of Benzyne with Simple β -Ketoesters	202	
3.2.3 Mechanistic Insight into the Acyl-Alkylation of Benzyne ..	205	
3.2.4 Acyl-Alkylation of Other Arynes	206	
3.2.5 Acyl-Alkylation of Benzyne with Cyclic β -Ketoesters: Ring Expansion.....	207	
3.3 Conclusion	210	
3.4 Experimental Section	210	
3.4.1 Materials and Methods.....	210	
3.4.2 Preparative Procedures.....	211	
3.4.3 Spectral Data	215	
3.4.4 Independent Chemical Correlation / Structural Proof	228	

3.5 Notes and References	229
APPENDIX FIVE: Spectra Relevant to Chapter Three.....	235
CHAPTER FOUR: A Convergent Synthesis of Amurensinine	
Via Selective C-H and C-C Insertion Reactions.....	280
4.1 Background and Introduction.....	280
4.1.1 C-H and C-C Insertion Reactions in Natural Product Synthesis	280
4.1.2 Isopavine Natural Products	281
4.1.3 Retrosynthetic Analysis of Amurensinine and Reframidine.....	282
4.2 Synthesis of Amurensinine.....	284
4.2.1 Model Studies on the C-H/C-C Insertion Strategy for the Isopavines.....	284
4.2.2 Synthetic Efforts Toward the Synthesis of Reframidine	285
4.2.3 Synthesis of the Core Structure of Amurensinine.....	287
4.2.4 Completion of the Total Synthesis of Amurensinine.....	288
4.3 Conclusion	293
4.4 Experimental Section	294
4.4.1 Materials and Methods.....	294
4.4.2 Preparative Procedures.....	295
4.5 Notes and References	309

APPENDIX SIX: Synthetic Summary for Amurensinine (193)	314
APPENDIX SEVEN: Spectra Relevant to Chapter Four	317
APPENDIX EIGHT: Notebook Cross-Reference	344
Comprehensive Bibliography	347
Index	361
About the Author	365

LIST OF FIGURES

CHAPTER ONE

Figure 1.1.1	Saudin (1).....	1
Figure 1.1.2	The furanoid and pre-furanoid labdanes.....	2

CHAPTER TWO

Figure 2.1.1	Saudin (1).....	16
Figure 2.3.1	Crystal structure of polycycle 71c	32

APPENDIX TWO

Figure A2.1	^1H NMR (300 MHz, $\text{DMSO}-d_6$) of compound 56	76
Figure A2.2	Infrared spectrum (KBr pellet) of compound 56	77
Figure A2.3	^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) of compound 56	77
Figure A2.4	^1H NMR (300 MHz, CDCl_3) of compound 52a	78
Figure A2.5	Infrared spectrum (thin film/NaCl) of compound 52a	79
Figure A2.6	^{13}C NMR (75 MHz, CDCl_3) of compound 52a	79
Figure A2.7	^1H NMR (300 MHz, CDCl_3) of compound 52b	80
Figure A2.8	Infrared spectrum (thin film/NaCl) of compound 52b	81
Figure A2.9	^{13}C NMR (75 MHz, CDCl_3) of compound 52b	81
Figure A2.10	^1H NMR (300 MHz, CDCl_3) of compound 52c	82
Figure A2.11	Infrared spectrum (thin film/NaCl) of compound 52c	83
Figure A2.12	^{13}C NMR (75 MHz, CDCl_3) of compound 52c	83
Figure A2.13	^1H NMR (300 MHz, CDCl_3) of compound 53a	84
Figure A2.14	Infrared spectrum (thin film/NaCl) of compound 53a	85
Figure A2.15	^{13}C NMR (75 MHz, CDCl_3) of compound 53a	85
Figure A2.16	^1H NMR (300 MHz, CDCl_3) of compound 53b	86

Figure A2.17	Infrared spectrum (thin film/NaCl) of compound 53b	87
Figure A2.18	^{13}C NMR (75 MHz, CDCl_3) of compound 53b	87
Figure A2.19	^1H NMR (300 MHz, C_6D_6) of compound 53c	88
Figure A2.20	Infrared spectrum (thin film/NaCl) of compound 53c	89
Figure A2.21	^{13}C NMR (75 MHz, CDCl_3) of compound 53c	89
Figure A2.22	^1H NMR (300 MHz, CDCl_3) of compound 63	90
Figure A2.23	Infrared spectrum (thin film/NaCl) of compound 63	91
Figure A2.24	^{13}C NMR (75 MHz, CDCl_3) of compound 63	91
Figure A2.25	^1H NMR (300 MHz, CDCl_3) of compound 50	92
Figure A2.26	Infrared spectrum (thin film/NaCl) of compound 50	93
Figure A2.27	^{13}C NMR (75 MHz, CDCl_3) of compound 50	93
Figure A2.28	^1H NMR (500 MHz, C_6D_6) of compound 66a	94
Figure A2.29	Infrared spectrum (thin film/NaCl) of compound 66a	95
Figure A2.30	^{13}C NMR (125 MHz, C_6D_6) of compound 66a	95
Figure A2.31	^1H NMR (500 MHz, C_6D_6) of compound 66b	96
Figure A2.32	Infrared spectrum (thin film/NaCl) of compound 66b	97
Figure A2.33	^{13}C NMR (125 MHz, C_6D_6) of compound 66b	97
Figure A2.34	^1H NMR (300 MHz, C_6D_6) of compound 68(1)	98
Figure A2.35	Infrared spectrum (thin film/NaCl) of compound 68(1)	99
Figure A2.36	^{13}C NMR (125 MHz, C_6D_6) of compound 68(1)	99
Figure A2.37	^1H NMR (300 MHz, C_6D_6) of compound 68(2)	100
Figure A2.38	Infrared spectrum (thin film/NaCl) of compound 68(2)	101
Figure A2.39	^{13}C NMR (125 MHz, C_6D_6) of compound 68(2)	101
Figure A2.40	^1H NMR (500 MHz, C_6D_6) of compound 70	102
Figure A2.41	Infrared spectrum (thin film/NaCl) of compound 70	103
Figure A2.42	^{13}C NMR (125 MHz, C_6D_6) of compound 70	103
Figure A2.43	^1H NMR (300 MHz, CDCl_3) of compound 79	104
Figure A2.44	Infrared spectrum (thin film/NaCl) of compound 79	105
Figure A2.45	^{13}C NMR (75 MHz, CDCl_3) of compound 79	105
Figure A2.46	^1H NMR (300 MHz, CDCl_3) of compound 82	106
Figure A2.47	Infrared spectrum (thin film/NaCl) of compound 82	107

Figure A2.48	^{13}C NMR (75 MHz, CDCl_3) of compound 82	107
Figure A2.49	^1H NMR (300 MHz, CDCl_3) of compound 84	108
Figure A2.50	Infrared spectrum (thin film/NaCl) of compound 84	109
Figure A2.51	^{13}C NMR (75 MHz, CDCl_3) of compound 84	109
Figure A2.52	^1H NMR (300 MHz, C_6D_6) of compound 75	110
Figure A2.53	Infrared spectrum (thin film/NaCl) of compound 75	111
Figure A2.54	^{13}C NMR (75 MHz, C_6D_6) of compound 75	111
Figure A2.55	^1H NMR (300 MHz, C_6D_6) of compound 76	112
Figure A2.56	Infrared spectrum (thin film/NaCl) of compound 76	113
Figure A2.57	^{13}C NMR (75 MHz, C_6D_6) of compound 76	113
Figure A2.58	^1H NMR (300 MHz, C_6D_6) of compound 77	114
Figure A2.59	Infrared spectrum (thin film/NaCl) of compound 77	115
Figure A2.60	^{13}C NMR (75 MHz, C_6D_6) of compound 77	115
Figure A2.61	^1H NMR (300 MHz, CDCl_3) of compound 71a	116
Figure A2.62	Infrared spectrum (thin film/NaCl) of compound 71a	117
Figure A2.63	^{13}C NMR (75 MHz, CDCl_3) of compound 71a	117
Figure A2.64	^1H NMR (300 MHz, C_6D_6) of compound 71b(1)	118
Figure A2.65	Infrared spectrum (thin film/NaCl) of compound 71b(1)	119
Figure A2.66	^{13}C NMR (125 MHz, C_6D_6) of compound 71b(1)	119
Figure A2.67	^1H NMR (300 MHz, C_6D_6) of compound 71b(2)	120
Figure A2.68	Infrared spectrum (thin film/NaCl) of compound 71b(2)	121
Figure A2.69	^{13}C NMR (125 MHz, C_6D_6) of compound 71b(2)	121
Figure A2.70	^1H NMR (300 MHz, C_6D_6) of compound 71c	122
Figure A2.71	Infrared spectrum (thin film/NaCl) of compound 71c	123
Figure A2.72	^{13}C NMR (75 MHz, C_6D_6) of compound 71c	123
Figure A2.73	^1H NMR (300 MHz, CDCl_3) of compound 85	124
Figure A2.74	Infrared spectrum (thin film/NaCl) of compound 85	125
Figure A2.75	^{13}C NMR (75 MHz, C_6D_6) of compound 85	125
Figure A2.76	^1H NMR (300 MHz, CDCl_3) of compound 89	126
Figure A2.77	Infrared spectrum (thin film/NaCl) of compound 89	127
Figure A2.78	^{13}C NMR (125 MHz, CDCl_3) of compound 89	127

Figure A2.79	^1H NMR (300 MHz, C_6D_6) of compound 90	128
Figure A2.80	Infrared spectrum (thin film/NaCl) of compound 90	129
Figure A2.81	^{13}C NMR (75 MHz, C_6D_6) of compound 90	129

APPENDIX THREE

Figure A3.1.1	Crystal Structure of ketone 66a	131
Figure A3.2.1	Crystal Structure of polycycle 71c	141
Figure A3.3.1	Crystal Structure of ketone 90	150

CHAPTER THREE

Figure 3.1.1	Benzyne (117).....	192
--------------	-----------------------------	-----

APPENDIX FIVE

Figure A5.1	^1H NMR (300 MHz, CDCl_3) of compound 172	236
Figure A5.2	Infrared spectrum (thin film/NaCl) of compound 172	237
Figure A5.3	^{13}C NMR (75 MHz, CDCl_3) of compound 172	237
Figure A5.4	^1H NMR (300 MHz, CDCl_3) of compound 173	238
Figure A5.5	Infrared spectrum (thin film/NaCl) of compound 173	239
Figure A5.6	^{13}C NMR (75 MHz, CDCl_3) of compound 173	239
Figure A5.7	^1H NMR (300 MHz, CDCl_3) of compound 175a	240
Figure A5.8	Infrared spectrum (thin film/NaCl) of compound 175a	241
Figure A5.9	^{13}C NMR (75 MHz, CDCl_3) of compound 175a	241
Figure A5.10	^1H NMR (300 MHz, CDCl_3) of compound 175b	242
Figure A5.11	Infrared spectrum (thin film/NaCl) of compound 175b	243
Figure A5.12	^{13}C NMR (75 MHz, CDCl_3) of compound 175b	243
Figure A5.13	^1H NMR (300 MHz, CDCl_3) of compound 175c	244
Figure A5.14	Infrared spectrum (thin film/NaCl) of compound 175c	245

Figure A5.15	^{13}C NMR (75 MHz, CDCl_3) of compound 175c	245
Figure A5.16	^1H NMR (300 MHz, CDCl_3) of compound 175d	246
Figure A5.17	Infrared spectrum (thin film/NaCl) of compound 175d	247
Figure A5.18	^{13}C NMR (75 MHz, CDCl_3) of compound 175d	247
Figure A5.19	^1H NMR (300 MHz, CDCl_3) of compound 175e	248
Figure A5.20	Infrared spectrum (thin film/NaCl) of compound 175e	249
Figure A5.21	^{13}C NMR (75 MHz, CDCl_3) of compound 175e	249
Figure A5.22	^1H NMR (300 MHz, CDCl_3) of compound 175f	250
Figure A5.23	Infrared spectrum (thin film/NaCl) of compound 175f	251
Figure A5.24	^{13}C NMR (75 MHz, CDCl_3) of compound 175f	251
Figure A5.25	^1H NMR (300 MHz, CDCl_3) of compound 175g	252
Figure A5.26	Infrared spectrum (thin film/NaCl) of compound 175g	253
Figure A5.27	^{13}C NMR (75 MHz, CDCl_3) of compound 175g	253
Figure A5.28	^1H NMR (300 MHz, CDCl_3) of compound 175h	254
Figure A5.29	Infrared spectrum (thin film/NaCl) of compound 175h	255
Figure A5.30	^{13}C NMR (75 MHz, CDCl_3) of compound 175h	255
Figure A5.31	^1H NMR (300 MHz, CDCl_3) of compound 181a	256
Figure A5.32	Infrared spectrum (thin film/NaCl) of compound 181a	257
Figure A5.33	^{13}C NMR (75 MHz, CDCl_3) of compound 181a	257
Figure A5.34	^1H NMR (300 MHz, CDCl_3) of compound 181b	258
Figure A5.35	Infrared spectrum (thin film/NaCl) of compound 181b	259
Figure A5.36	^{13}C NMR (75 MHz, CDCl_3) of compound 181b	259
Figure A5.37	^1H NMR (300 MHz, CDCl_3) of compound 187	260
Figure A5.38	Infrared spectrum (thin film/NaCl) of compound 187	261
Figure A5.39	^{13}C NMR (75 MHz, CDCl_3) of compound 187	261
Figure A5.40	^1H NMR (500 MHz, CDCl_3) of compound 180c	262
Figure A5.41	Infrared spectrum (thin film/NaCl) of compound 180c	263
Figure A5.42	^{13}C NMR (125 MHz, CDCl_3) of compound 180c	263
Figure A5.43	^1H NMR (300 MHz, CDCl_3) of compound 181c	264
Figure A5.44	Infrared spectrum (thin film/NaCl) of compound 181c	265
Figure A5.45	^{13}C NMR (75 MHz, CDCl_3) of compound 181c	265

Figure A5.46	^1H NMR (300 MHz, CDCl_3) of compound 185a	266
Figure A5.47	Infrared spectrum (thin film/NaCl) of compound 185a	267
Figure A5.48	^{13}C NMR (75 MHz, CDCl_3) of compound 185a	267
Figure A5.49	^1H NMR (300 MHz, CDCl_3) of compound 188	268
Figure A5.50	Infrared spectrum (thin film/NaCl) of compound 188	269
Figure A5.51	^{13}C NMR (75 MHz, CDCl_3) of compound 188	269
Figure A5.52	^1H NMR (300 MHz, CDCl_3) of compound 185b	270
Figure A5.53	Infrared spectrum (thin film/NaCl) of compound 185b	271
Figure A5.54	^{13}C NMR (75 MHz, CDCl_3) of compound 185b	271
Figure A5.55	^1H NMR (300 MHz, CDCl_3) of compound 189	272
Figure A5.56	Infrared spectrum (thin film/NaCl) of compound 189	273
Figure A5.57	^{13}C NMR (75 MHz, CDCl_3) of compound 189	273
Figure A5.58	^1H NMR (300 MHz, CDCl_3) of compound 185c	274
Figure A5.59	Infrared spectrum (thin film/NaCl) of compound 185c	275
Figure A5.60	^{13}C NMR (75 MHz, CDCl_3) of compound 185c	275
Figure A5.61	^1H NMR (300 MHz, CDCl_3) of compound 185d	276
Figure A5.62	Infrared spectrum (thin film/NaCl) of compound 185d	277
Figure A5.63	^{13}C NMR (125 MHz, CDCl_3) of compound 185d	277
Figure A5.64	^1H NMR (300 MHz, CDCl_3) of compound 185e	278
Figure A5.65	Infrared spectrum (thin film/NaCl) of compound 185e	279
Figure A5.66	^{13}C NMR (75 MHz, CDCl_3) of compound 185e	279

CHAPTER FOUR

Figure 4.1.1	The Isopavine Natural Products	281
--------------	--------------------------------------	-----

APPENDIX SEVEN

Figure A7.1	^1H NMR (300 MHz, CDCl_3) of compound 208	318
Figure A7.2	Infrared spectrum (thin film/NaCl) of compound 208	319

Figure A7.3	^{13}C NMR (75 MHz, CDCl_3) of compound 208	319
Figure A7.4	^1H NMR (300 MHz, CDCl_3) of compound 210	320
Figure A7.5	Infrared spectrum (thin film/NaCl) of compound 210	321
Figure A7.6	^{13}C NMR (75 MHz, CDCl_3) of compound 210	321
Figure A7.7	^1H NMR (300 MHz, CDCl_3) of compound 202	322
Figure A7.8	Infrared spectrum (thin film/NaCl) of compound 202	323
Figure A7.9	^{13}C NMR (75 MHz, CDCl_3) of compound 202	323
Figure A7.10	^1H NMR (300 MHz, CDCl_3) of compound 201	324
Figure A7.11	Infrared spectrum (thin film/NaCl) of compound 201	325
Figure A7.12	^{13}C NMR (75 MHz, CDCl_3) of compound 201	325
Figure A7.13	^1H NMR (300 MHz, C_6D_6) of compound 203	326
Figure A7.14	Infrared spectrum (thin film/NaCl) of compound 203	327
Figure A7.15	^{13}C NMR (75 MHz, C_6D_6) of compound 203	327
Figure A7.16	^1H NMR (300 MHz, CDCl_3) of compound 182c	328
Figure A7.17	Infrared spectrum (thin film/NaCl) of compound 182c	329
Figure A7.18	^{13}C NMR (75 MHz, CDCl_3) of compound 182c	329
Figure A7.19	^1H NMR (300 MHz, C_6D_6) of compound 199	330
Figure A7.20	Infrared spectrum (thin film/NaCl) of compound 199	331
Figure A7.21	^{13}C NMR (75 MHz, C_6D_6) of compound 199	331
Figure A7.22	^1H NMR (300 MHz, C_6D_6) of compound 213	332
Figure A7.23	Infrared spectrum (thin film/NaCl) of compound 213	333
Figure A7.24	^{13}C NMR (75 MHz, C_6D_6) of compound 213	333
Figure A7.25	^1H NMR (300 MHz, CDCl_3) of compound 216	334
Figure A7.26	Infrared spectrum (thin film/NaCl) of compound 216	335
Figure A7.27	^{13}C NMR (75 MHz, CDCl_3) of compound 216	335
Figure A7.28	^1H NMR (300 MHz, CDCl_3) of compound 220	336
Figure A7.29	Infrared spectrum (thin film/NaCl) of compound 220	337
Figure A7.30	^{13}C NMR (75 MHz, CDCl_3) of compound 220	337
Figure A7.31	^1H NMR (500 MHz, CDCl_3) of compound 224	338
Figure A7.32	Infrared spectrum (thin film/NaCl) of compound 224	339
Figure A7.33	^{13}C NMR (125 MHz, CDCl_3) of compound 224	339

Figure A7.34	^1H NMR (500 MHz, CDCl_3) of compound 197	340
Figure A7.35	Infrared spectrum (thin film/NaCl) of compound 197	341
Figure A7.36	^{13}C NMR (125 MHz, CDCl_3) of compound 197	341
Figure A7.37	^1H NMR (500 MHz, CDCl_3) of compound 193	342
Figure A7.38	Infrared spectrum (thin film/NaCl) of compound 193	343
Figure A7.39	^{13}C NMR (125 MHz, CDCl_3) of compound 193	343

LIST OF SCHEMES

CHAPTER ONE

Scheme 1.1.1	Proposed biosynthesis of saudin (1)	3
Scheme 1.2.1	González-Sierra's retrosynthetic analysis of saudin (1).....	5
Scheme 1.2.2	Synthesis of epoxy-acetal 15 by González-Sierra	5
Scheme 1.2.3	Synthesis of lactone 14 by González-Sierra	6
Scheme 1.2.4	Winkler's retrosynthetic analysis of saudin (1).....	7
Scheme 1.2.5	Synthesis of saudin (1) by Winkler.....	8
Scheme 1.2.6	Boeckman's first retrosynthetic analysis of saudin (1)	9
Scheme 1.2.7	Failed Claisen rearrangement of 32 by Boeckman	9
Scheme 1.2.8	Undesirable Claisen rearrangement of 38 by Boeckman	10
Scheme 1.2.9	Boeckman's second retrosynthetic analysis of saudin (1)	11
Scheme 1.2.10	Synthesis of ketone 40 by Boeckman	11
Scheme 1.2.11	Synthesis of saudin (1) by Boeckman.....	12

CHAPTER TWO

Scheme 2.1.1	Retrosynthetic analysis of saudin (1)	18
Scheme 2.1.2	Equilibrium between <i>cis</i> -dienone 54 and α -pyran 55	19
Scheme 2.2.1	The synthesis of 52a , 52b , and 52c	20
Scheme 2.2.2	The synthesis of 53a , 53b , and 53c	21
Scheme 2.2.3	Failed Sonogashira couplings between 53a-b and 52b	21
Scheme 2.2.4	Failed Heck couplings between 53c and 52a	22
Scheme 2.2.5	A failed attempt to synthesize 61	22
Scheme 2.2.6	The synthesis of dienone 63	23
Scheme 2.2.7	The synthesis of polycycle 50	24
Scheme 2.2.8	The synthesis of ketones 66a and 66b	25
Scheme 2.2.9	The synthesis of ketone 68	26

Scheme 2.2.10	The synthesis of ketone 70	26
Scheme 2.3.1	The revised strategy for installing stereochemistry at C(5)	28
Scheme 2.3.2	The revised strategy for the synthesis of saudin (1).....	28
Scheme 2.3.3	Retrosynthetic analysis of polycycles 71a , 71b , and 71c	29
Scheme 2.3.4	The synthesis of vinyl iodides 75 , 76 , and 77	30
Scheme 2.3.5	The synthesis polycycles 71a , 71b , and 71c	31
Scheme 2.3.6	The synthesis ketone 85	33
Scheme 2.3.7	The synthesis diketone 89	34
Scheme 2.3.8	The synthesis ketone 90	35
Scheme 2.3.9	A proposal for the completion of saudin (1)	36

APPENDIX ONE

Scheme A1.1	The synthesis of polycycle 50	74
Scheme A1.2	The synthesis of ketone 90	74

APPENDIX FOUR

Scheme A4.1.1	Retrosynthetic analysis of saudin (1).....	162
Scheme A4.1.2	A summary of the synthesis of polycycles 50 and 71a-c	163
Scheme A4.1.3	Two variants of the Tandem Stille-oxa-electrocyclization	164
Scheme A4.2.1	The synthesis of alkynes 79 and 104b-c	166
Scheme A4.2.2	The synthesis of vinyl stannanes 106a-c	166
Scheme A4.2.3	The synthesis of vinyl iodides 108a-c	167
Scheme A4.2.4	The synthesis of vinyl iodide 52d	168
Scheme A4.2.5	The synthesis of pyran 109a	168
Scheme A4.2.6	Mechanism of copper assisted Stille couplings	169
Scheme A4.2.7	The synthesis of pyrans 109a-e	171

CHAPTER THREE

Scheme 3.1.1	Amination of unsymmetrical chloroarenes.....	193
Scheme 3.1.2	Mechanism for the amination of chloroarenes	194
Scheme 3.1.3	The generation of arynes	195
Scheme 3.1.4	Kobayashi's method for generating arynes	196
Scheme 3.1.5	A general strategy of aryne insertion into σ -bonds.....	197
Scheme 3.1.6	Aryne insertion into metal containing σ -bonds.....	198
Scheme 3.1.7	Aryne insertion into heteroatom-heteroatom σ -bonds	199
Scheme 3.1.8	Aryne insertion into carbon containing σ -bonds.....	200
Scheme 3.1.9	A proposed strategy for aryne insertion into C-C σ -bonds.....	201
Scheme 3.2.1	Discovery of the aryne insertion into C-C σ -bonds	202
Scheme 3.2.2	Two potential mechanisms for the acyl-alkylation of arynes	205
Scheme 3.2.3	The use of enol ether 178 as a mechanistic probe	206
Scheme 3.2.4	Mechanism of the ring expansion of cyclic β -ketoesters	208

CHAPTER FOUR

Scheme 4.1.1	Retrosynthetic analysis of the isopavines	283
Scheme 4.2.1	The synthesis β -ketoester 207	284
Scheme 4.2.2	The synthesis ketoester 208	285
Scheme 4.2.3	The synthesis β -ketoester 201	285
Scheme 4.2.4	Failed attempts to synthesize ketoester 198	286
Scheme 4.2.5	The synthesis β -ketoester 182c	287
Scheme 4.2.6	The synthesis ketoester 199	288
Scheme 4.2.7	The synthesis oxime 213	289
Scheme 4.2.8	The synthesis aminal 216	290
Scheme 4.2.9	The synthesis aminal 220	291
Scheme 4.2.10	Failed attempts to synthesize lactams 219 and 221	291
Scheme 4.2.11	The synthesis hydroxyester 224	292
Scheme 4.2.12	The synthesis amurensinine 193	293

APPENDIX SIX

Scheme A6.1	The synthesis of β -ketoester 182c	315
Scheme A6.2	The synthesis of ketoester 199	315
Scheme A6.3	The synthesis amurensinine 193	316

LIST OF TABLES

APPENDIX THREE

Table A3.1.1	Crystal data and structure refinement for 66a	132
Table A3.1.2	Atomic coord./equiv. isotropic displacement param. for 66a	134
Table A3.1.3	Bond lengths and angles for 66a	135
Table A3.1.4	Anisotropic displacement parameters for 66a	139
Table A3.1.5	Hydrogen coord./isotropic displacement param. for 66a	140
Table A3.2.1	Crystal data and structure refinement for 71c	142
Table A3.2.2	Atomic coord./equiv. isotropic displacement param. for 71c	144
Table A3.2.3	Bond lengths and angles for 71c	145
Table A3.2.4	Anisotropic displacement parameters for 71c	148
Table A3.2.5	Hydrogen coord./isotropic displacement param. for 71c	149
Table A3.3.1	Crystal data and structure refinement for 90	151
Table A3.3.2	Atomic coord./equiv. isotropic displacement param. for 90	153
Table A3.3.3	Bond lengths and angles for 90	154
Table A3.3.4	Anisotropic displacement parameters for 90	159
Table A3.3.5	Hydrogen coord./isotropic displacement param. for 90	160

APPENDIX FOUR

Table A4.2.1	Optimizing the alternate tandem Stille-oxa-electrocyclization.....	170
Table A4.2.2	Equilibrium mixture of dienones and α -pyrans	172
Table A4.3.1	Theoretical studies on tandem Stille-oxa-electrocyclizations	174

CHAPTER THREE

Table 3.2.1	The acyl-alkylation of benzyne.....	204
Table 3.2.2	The acyl-alkylation of substituted arynes	207
Table 3.2.3	The ring expansion of cyclic β -ketoesters	209

APPENDIX EIGHT

Table A8.1	Compounds Appearing in Chapter 2	344
Table A8.2	Compounds Appearing in Chapter 3	345
Table A8.3	Compounds Appearing in Chapter 4	346

LIST OF ABBREVIATIONS

<i>p</i> -ABSA	<i>para</i> -acetamidobenzenesulfonyl azide
Ac	acetyl, acetate
AIBN	2,2'-azobisisobutyronitrile
app.	apparent
aq.	aqueous
atm	atmosphere
Bn	benzyl
Bu	butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -Butyl
°C	degrees Celsius
calc'd	calculated
CCDC	Cambridge Crystallographic Data Centre
<i>m</i> -CPBA	<i>meta</i> -chloroperoxybenzoic acid
d	doublet
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
DCE	dichloroethane
DCM	dichloromethane
DMAP	4-dimethylaminopyridine
DMF	N,N-dimethylformamide
DMSO	dimethyl sulfoxide
dppf	1,1'-bis(diphenylphosphino)ferrocene
ee	enantiomeric excess
equiv	equivalent
EI	electrospray ionization
Et	ethyl

FAB	fast atom bombardment
g	gram(s)
h	hour(s)
η^3	trihapto
[H]	reduction
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HMPA	hexamethylphosphoramide
HRMS	high resolution mass spectroscopy
$h\nu$	light
Hz	hertz
IR	infrared (spectroscopy)
<i>J</i>	coupling constant
λ	wavelength
L	liter
m	multiplet or milli
<i>m</i>	meta
<i>m/z</i>	mass to charge ratio
μ	micro
Me	methyl
MHz	megahertz
min	minute(s)
mol	mole(s)
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
nbd	norbornadiene
NMP	N-methylpyrrolidinone
NMR	nuclear magnetic resonance
nOe	Nuclear Overhauser Effect
[O]	oxidation
<i>t</i> OcNC	<i>tert</i> -octyl isocyanide

<i>p</i>	para
PDC	pyridinium dichromate
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
PhH	benzene
PhMe	toluene
ppm	parts per million
Pr	propyl
<i>i</i> -Pr	<i>iso</i> -propyl
pyr	pyridine
q	quartet
rt	room temperature
R _F	retention factor
s	singlet
t	triplet
TBAF	tetrabutylammonium fluoride
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl (trifyl)
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMS	trimethylsilyl
Ts	<i>p</i> -toluenesulfonyl (tosyl)
UV	ultraviolet