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Abstract 

 Investigations have been performed to determine the requirements for 

homogeneous platinum- and iridium-catalyzed oxidative alkane functionalization.  

Previous platinum-catalyzed systems have involved initial C-H bond activation to 

generate a platinum(II)-alkyl, followed by two-electron oxidation of this species to 

activate the alkyl towards nucleophilic displacement from the metal center.  The factors 

affecting C-H bond activation by platinum(II) complexes and oxidation of 

alkylplatinum(II) complexes have been probed, while the possibility of using a 

diphenolate imidazolyl-carbene ligand to stabilize iridium complexes in a variety of 

oxidation states has been explored. 

 Relative oxidation and protonation rates for trichloro(methyl)platinum(II) dianion 

have been screened under a variety of conditions, using several different oxidants.  Both 

one- and two-electron oxidants were shown to compete effectively with protonation of 

trichloro(methyl)platinum(II) dianion, including CuCl2, CuBr2, FeCl3, 

Na3[H3PMo9V3O40], Br2, Na2IrIVCl6, and (NH4)2CeIV(NO3)6.  Oxidation by copper(II) 

proved to be highly dependent on the counteranion. 

 Disodium (2,2’-biindolyl)dimethylplatinum(II) has been synthesized for the 

purpose of probing the C-H bond activation chemistry of electron rich platinum(II) 

complexes.  This complex decomposes rapidly in air, and deuterolysis of both platinum-

methyls as well as the 2,2’-biindolyl ligand occurs when it is dissolved in methanol-d4.  

Methide abstraction from (2,2’-biindolyl)dimethylplatinum(II), either by protonolysis or 
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by reaction with B(C6F5)3, generates monomethylplatinum(II) species capable of 

activating C-H and C-D bonds. 

 In the search for ligands capable of stabilizing iridium complexes in a variety of 

oxidation states, the first iridium complexes containing a diphenolate imidazolyl-carbene 

ligand have been synthesized.  1,3-Di(2-hydroxy-5-tert-butylphenyl)imidazolium 

chloride was synthesized and then reacted with chloro-1,5-cyclooctadiene iridium(I) 

dimer to generate potassium (1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(I).  Oxidation of this complex with two equivalents of 

ferrocenium(III) hexafluorophosphate generates (acetonitrile)(1,5-cyclooctadiene){1,3-

di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate.  Reaction 

of this complex with dihydrogen generates a species capable of catalyzing olefin 

hydrogenations.  Heating (acetonitrile)(1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate with greater than two 

equivalents of tricyclohexylphosphine in acetonitrile followed by treatment with 

tetramethylammonium chloride results in (chloro)bis(tricyclohexylphosphine){1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III).  As indicated by cyclic voltammetry 

and bulk electrolysis, this complex undergoes two reversible one-electron oxidations in 

methylene chloride at -0.22 V and at 0.58 V. 

  



 xvi 

  Table of Contents 

 

Dedication..........................................................................................................................iii 

Acknowledgements...........................................................................................................iv 

Abstract............................................................................................................................xiv 

Table of Contents............................................................................................................xvi 

List of Figures..................................................................................................................xix 

List of Schemes...............................................................................................................xxii 

List of Tables..................................................................................................................xxv 

Chapter 1............................................................................................................................1 

  Introduction to Oxidative C-H Bond Functionalization with  

  Homogeneous Organometallic Catalysts 

 References and Notes…….......................................................................................6 

Chapter 2............................................................................................................................7 

  Competitive Oxidation and Protonation of Aqueous  

  Monomethylplatinum(II) Complexes: A Comparison of Oxidants 

 Abstract....................................................................................................................8 

 Introduction..............................................................................................................9 

 Results and Discussion..........................................................................................12 

 Conclusions............................................................................................................22 

 Experimental Section….........................................................................................23 

 References and Notes.............................................................................................30 



 xvii 

Chapter 3..........................................................................................................................33 

  The Synthesis, Protonolysis, and C-H Bond Activation Chemistry of 

  Platinum(II) Complexes Containing the Dianionic 2,2’-Biindolyl Ligand 

 Abstract..................................................................................................................34 

 Introduction............................................................................................................35 

 Results and Discussion..........................................................................................39 

 Conclusions............................................................................................................48 

 Experimental Section.............................................................................................49 

 References and Notes.............................................................................................56 

Chapter 4..........................................................................................................................59 

  The Synthesis and Characterization of Iridium Complexes 

  Containing a Diphenolate Imidazolyl-Carbene Ligand 

 Abstract..................................................................................................................60 

 Introduction............................................................................................................62 

 Results and Discussion..........................................................................................66 

 Conclusions……………………………………………………………………..101 

 Experimental Section...........................................................................................104 

 References and Notes...........................................................................................125 

 

 

 

 



 xviii 

Appendix 1......................................................................................................................132 

  Preliminary Studies on the Synthesis, Oxidation, and Protonation of 

  Water-Soluble Methylplatinum(II) Complexes Containing Sulfonated, 

  Bidentate Ligands 

 Introduction..........................................................................................................133 

 Results..................................................................................................................133 

 Discussion and Conclusions................................................................................137 

 Experimental Section...........................................................................................139 

 References and Notes...........................................................................................143 

Appendix 2......................................................................................................................145 

  Tables for X-ray Crystal Structures 

 Structure in Chapter 3..........................................................................................146 

 Structures in Chapter 4.........................................................................................153 

  



 xix 

   List of Figures 

 

Chapter 2 

 Figure 2.1.  The dependence of kMeH/kMeCl  for 1 on [H+] 

  ([Cu2+] = 0.05 M, [Cl-] = 4 M)………………………………..…....15 

 Figure 2.2.  The dependence of kMeCl/kMeH for 1 on [Cu2+] and on [Fe3+] 

  ([H+]= 2 M, [Cl-]= 4 M).………………………………………..….15 

Chapter 3 

 Figure 3.1.  Structural drawing of 2 with 15-crown-5 ether coordinating  

 to the sodium countercations……………………………….….…..41 

Chapter 4 

 Figure 4.1. Illustration (a) and structural drawings (b) of 5a……….…………...68 

 Figure 4.2.  The 1H NMR spectrum of 6 in THF-d8………………….…………69 

 Figure 4.3. Structural drawing of 6 with 18-crown-6 ether coordinating  

  to potassium…………………………………………………………70 

 Figure 4.4.  A dimer, synthesized and crystallized by Ross Fu, of  

  (1,5-cyclooctadiene)iridium(I) centers each containing a  

  diphenolate pyridine ligand with a sodium countercation……....…72 

 Figure 4.5.  1H NMR spectrum of 6 in methanol-d4……………………………..73 

 Figure 4.6.  Illustration (a) and structural drawings (b) of 7…………………….76 

 Figure 4.7.  Illustration (a) and structural drawing (b) of 8…………………..…77 

  



 xx 

 Figure 4.8.  Catalysis of cyclohexene hydrogenation using catalyst  

  precursor 9 in THF-d8 under 900 psi of dihydrogen…………….....79 

 Figure 4.9.  Structural drawings obtained from the crystals containing 

  an approximately 4:1 mixture of 12 and 15……………………......85 

 Figure 4.10.  Structural drawing of the two conformers in the unit cell of 16…..88 

 Figure 4.11.  Cyclic voltammogram of a 3 mM CH2Cl2 solution of 16………...89 

 Figure 4.12.  Cyclic voltammogram of a 0.3 mM DMF solution of 2……..……90 

 Figure 4.13.  EPR spectrum at 7 K of the solution resulting from one 

  coulometric oxidation (0.92 faradays per mole) of 16…………....91 

 Figure 4.14.  EPR spectrum at 18 K of the resulting solution from 

  two coulometric oxidations (each approximately  

          1 faraday per mole) of 16…………………………………..……..92 

 Figure 4.15.  Illustration (a) and fully optimized gas-phase structural 

  drawings (b) of 17………………………………….……………..94 

 Figure 4.16.  Illustration (a) and fully optimized gas-phase structural 

  drawings (b) of 18………………………………….……………..95 

 Figure 4.17.  The optimized gas-phase structure of 16 determined by  

  QMMM calculations…………………………………….………..97 

 Figure 4.18.  Depiction of the HOMO for the fully optimized gas-phase  

  structure of 17……………………………………………..………98 

 Figure 4.19.  Depiction of the HOMO for the fully optimized gas-phase 

  structure of 16 determined by QMMM calculations…….………..98 



 xxi 

 Figure 4.20.  The relative energies for optimized structures of 17 when the 

 Cipso-O1-O2-Cipso torsion angle is set at various angles between  

 0º and 90º…………………………………..……………………...99 

Figure 4.21.  Depiction of the HOMO for the fully optimized gas-phase 

 structure of 18………………………………………………..…..100 

 Figure 4.22.  The relative energies for optimized structures of 18 when  

 the Cipso-O1-O2-Cipso torsion angle is set at various angles  

       between -25º and 35º………………………………………….…101 

 Figure 4.23.  Coulometric oxidation of 16 at a potential positive of the  

 first oxidation wave (0.25 V)………………………….………...121 

 Figure 4.24.  Second coulometric oxidation of 16 at a potential positive 

 of the second oxidation wave of 16 (0.96 V)………….………...121 

  



 xxii 

  List of Schemes 

 

Chapter 1 

 Scheme 1.1.  Two possible outer-sphere C-H bond 

  functionalization pathways………………………………..………..4 

 Scheme 1.2.  Inner-sphere C-H bond functionalization…………………..………5 

Chapter 2 

 Scheme 2.1.  The proposed mechanism for the functionalization of  

  alkanes catalyzed by platinum(II/IV) salts…………….…...………9 

 Scheme 2.2.  The proposed mechanism for oxidation of 

  monomethylplatinum(II) by hexachloroplatinate(IV)……..……...10 

 Scheme 2.3.  The in situ generation of 1 in aqueous solutions with high  

  chloride concentrations at 95 °C………………………………….13 

 Scheme 2.4.  Possible pathways for the oxidation of 1 by CuCl2…………….…16 

 Scheme 2.5.  Dissolution of the 1, 4, and [PtIICl4]2- mixture containing 

  NaCl in a D2O solution of [PtIVCl6]2-……………………….…….19 

Chapter 3 

 Scheme 3.1.  The oxidation of methane to methyl bisulfate reported by  

  Periana et al. and catalyzed by (bipyrimidine)dichloro- 

  platinum(II) in fuming sulfuric acid…………………………........36 

  

 



 xxiii 

 Scheme 3.2.  The proposed mechanism for bipyrimidineplatinum(II)- 

  catalyzed methane oxidation reported by Periana et al.…..……....36 

 Scheme 3.3.  Possible platinum(II) C-H bond activation routes………………...38 

 Scheme 3.4.  Deprotonation of 2,2’-biindolyl and generation of 2……………...40 

 Scheme 3.5.  Deuterolysis of 2 in CD3OD………………………………………43 

 Scheme 3.6.  Protonation of 2 in THF-d8 with TFE leading to C-D bond  

  activation of THF-d8………………………………………………44 

 Scheme 3.7.  The reaction of 2 with 1 equivalent of TFE-d3 in CD3CN to  

  generate 3........................................................................................45 

Chapter 4 

 Scheme 4.1.  A potential catalytic cycle for oxidative iridium-catalyzed 

  C-H bond functionalization………………………………….……63 

 Scheme 4.2.  The oxidative functionalization of 1 as demonstrated by  

    Periana et al…………………………………………………………64 

 Scheme 4.3.  Potential binding of 2 to iridium(III)……………………………...64 

 Scheme 4.4.  The synthesis of titanium and zirconium complexes with a 

  diphenolate imidazolyl-carbene ligand as demonstrated by  

  Kawaguchi et al……………………………………………….…..66 

 Scheme 4.5.  The synthesis of potential ligand precursors, 2a and 4a……..……67 

 Scheme 4.6.  Metallation of 2a to generate 6……………………………………68 

 Scheme 4.7.  Reversible formation of 6’ in methanol-d4………………………..74 

  



 xxiv 

 Scheme 4.8.  A possible isomerization of 6’ in methanol-d4 that  

  is not observed…………..………………………………………...75 

Scheme 4.9.  The synthesis of 9 and 10 from 6…………………………….……78 

Scheme 4.10.  Displacements of cyclooctadiene from 9 with  

   trialkylphosphines………………………………………….……82 

 Scheme 4.11.  The reaction of 12 with 1.5 equivalents of trimethylphosphine…83 

 Scheme 4.12.  Equilibrium between 12 and 15 which occurs in acetonitrile  

       at 90 ˚C under an atmosphere of carbon monoxide……..……….84 

 Scheme 4.13.  Reaction of 12 with tetramethylammonium chloride to  

       generate 16……………………………………………..………...87 

Appendix 1 

 Scheme A1.1.  The synthesis of 1……………………………………………...134 

 Scheme A1.2.  The synthesis of 2………………………………………...……135 

 Scheme A1.3.  Protonolysis of 2 to generate isomers 3a and 3b………………135 

 Scheme A1.4.  Oxidations of 1 and 2 with CuCl2…………………………...…137 

 Scheme A1.5.  Oxidation of 1 with Cu(ClO4)2  

    in the presence of triethylamine………………………….……137 

  

 

 



 xxv 

   List of Tables 

 

Chapter 2 

 Table 2.1.  The kox/kH+ for a variety of oxidants reacting with  

       [PtII(CH3)Cl3]2- (1) at constant [H+]……………..…………………..14 

 Table 2.2.  The ability of Cu(II) salts to oxidize [PtII(CH3)Cl3]2- (1) to  

       [PtIV(CH3)Cl5]2- (3) under different conditions………………….…..21 

 Table 2.3.  Dependence of kOx/kD+ and kOx/kH+ on Na2[PtIVCl6] for 1 and 4  

       ([D2SO4] = 0.35 M, [Cl-] = 3.0 M)……………………………….….28 

 Table 2.4.  Dependence of kOx/kD+ and kOx/kH+ on [Cl]- for 1 and 4 

       (Na2[PtIVCl6] = 0.12 M, [D2SO4] = 0.35 M)……………………..….29 

 Table 2.5.  Dependence of kOx/kD+ and kOx/kH+ on [Cl]- for 1 and 4 

       ([CuIICl2] = 0.25 M, [D2SO4] = 0.35 M)…………………………….29 

Chapter 3 

 Table 3.1.  Crystal and refinement data for the structure of 2 with  

      15-crown-5 ether….............................................................................55 

Chapter 4 

 Table 4.1.  Selected bond lengths (Å) and angles (°) 

   for 16’, 16’’, 17, and 18……………………………………………..96 

 Table 4.2.  Crystal and refinement data for the structures of 5a, 6, and 7……..122 

 Table 4.3.  Crystal and refinement data for the structures 

  of 12/15, and 16……………………………………………………123 



 xxvi 

Appendix 2 

 Table A2.1.  Atomic coordinates ( x 104) and equivalent isotropic displacement 

 parameters (Å2 x 103) for 2 (CCDC 706858)……………………147 

 Table A2.2.  Bond lengths [Å] and angles [°] for 2 (CCDC 706858)……….....148 

 Table A2.3.  Anisotropic displacement parameters (Å2 x 104) for 2 

  (CCDC 706858)………………………………………………....151 

 Table A2.4.  Atomic coordinates ( x 104) and equivalent isotropic displacement 

  parameters (Å2 x 103) for 5a (CCDC 640093)……………...…...153 

 Table A2.5.  Bond lengths [Å] and angles [°] for 5a (CCDC 640093)……...…156 

 Table A2.6.  Anisotropic displacement parameters (Å2 x 104) for 5a 

  (CCDC 640093)……………………………………………...….160 

 Table A2.7.  Atomic coordinates ( x 104) and equivalent isotropic displacement 

  parameters (Å2 x 103) for 6 (CCDC 635046)……………………163 

 Table A2.8.  Bond lengths [Å] and angles [°] for 6 (CCDC 635046)………….165 

 Table A2.9.  Anisotropic displacement parameters (Å2 x 104) for 6 

  (CCDC 635046)………………………………………………....167 

 Table A2.10.  Atomic coordinates ( x 104) and equivalent isotropic displacement 

  parameters (Å2 x 103) for 7 (CCDC 704157)…………………...170 

 Table A2.11.  Bond lengths [Å] and angles [°] for 7 (CCDC 704157)……...…171 

 Table A2.12.  Anisotropic displacement parameters (Å2 x 104) for 7 

  (CCDC 704157)…………………………………………...……174 

  



 xxvii 

 Table A2.13.  Atomic coordinates ( x 104) and equivalent isotropic 

  displacement parameters (Å2 x 103) for 12/15 

  (CCDC 700172)………………………………………………...176 

 Table A2.14.  Bond lengths [Å] and angles [°] for 12/15 (CCDC 700172)…...179 

 Table A2.15.  Anisotropic displacement parameters (Å2 x 104) for  

  12/15 (CCDC 700172)……………………………………...…..182 

 Table A2.16.  Atomic coordinates  ( x 104) and equivalent  isotropic 

  displacement parameters (Å2 x 103) for 16 (CCDC 676694)…..186 

 Table A2.17.  Bond lengths [Å] and angles [°] for 16 (CCDC 676694)…….…190 

 Table A2.18.  Anisotropic displacement parameters  (Å2 x 104) for 16 

  (CCDC 676694)……………………………………………...…195 

  

  

  

 



 1 

  

 

 

 

 

 

 

 

 

 

 Chapter 1  

 Introduction to Oxidative C-H Bond Functionalization 

 with Homogeneous Organometallic Catalysts 

 



 2 

Although the abundance and low cost of alkanes make them valuable chemical 

feedstocks, they have not been utilized to their full potential due to difficulties associated 

with their selective functionalization.1-7  The high homolytic and heterolytic bond 

strengths of the C-C and C-H bonds composing alkanes make it challenging to achieve 

efficient conversion of these molecules into more valuable products such as unsaturated 

hydrocarbons, alcohols, aldehydes, and carboxylic acids.2,5,7  Currently, alkane 

conversion in the petrochemical industry is dominated by the use of heterogeneous 

catalysis;1 and in general, heterogeneous alkane conversion requires temperatures in 

excess of 200 ˚C and is energy intensive.1,4,5  While oxidative alkane conversion is 

thermodynamically favorable, heterogeneous catalysts for these processes still require 

high temperatures.1,5  The selectivities of these processes are limited by the use of high 

temperatures and the involvement of an initial homolytic C-H bond cleavage.5  Since the 

thermodynamic products of alkane oxidation are carbon dioxide and water, kinetic 

control of selectivity is required.  Unfortunately, the rates of C-H bond homolysis tend to 

vary inversely with C-H bond strengths, and the products of C-H bond functionalization 

usually have one or more C-H bonds that are weaker than those in the starting alkane.5  

This puts severe limitations on the amounts of desirable, partially oxidized products that 

can be accumulated because the products should be more reactive than the starting 

alkanes.5 

One alternative to heterogeneous alkane functionalization is enzymatic catalysis. 

A variety of enzymes have been shown to efficiently and selectively catalyze alkane 

oxidation, and these enzymes operate at physiological temperatures and pressures which 

are mild compared to the conditions required for heterogeneous alkane conversion.4,5,8,9  
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An additional benefit of enzyme-mediated alkane functionalization is that it involves the 

use of degradable catalysts and nontoxic cosubstrates.9  Unfortunately, large-scale 

catalysis is currently impractical due to low enzymatic activity and stability as well as the 

demand for expensive electron donors in the form of cofactors.9  

Homogeneous transition metal catalysis is the other major alternative to 

heterogeneous catalysis for alkane conversion.2-7  Relatively low-temperature activation 

and functionalization of alkane C-H bonds has been demonstrated with homogeneous 

transition metal complexes, and these complexes offer the advantage over enzymatic 

systems that their reactivity can often be adjusted simply by ligand modification.2-7  The 

selectivities of homogeneous transition metal systems are largely dictated by the pathway 

involved in the C-H bond breaking, or activation, step.3,10  Based on how they activate C-

H bonds, most transition metal catalysts for alkane functionalization can be divided into 

two general categories, complexes that react by an outer-sphere, or coordination 

chemistry, pathway and complexes that react via an inner-sphere, or organometallic 

pathway.3,10 

The characteristic feature of outer-sphere C-H bond functionalization is that the 

metal center does not directly interact with the C-H bond during the activation step.3,10  

Instead, the metal center may catalyze decomposition of the primary oxidant to generate 

reactive oxidant-derived fragments, typically oxygen-centered radicals, that react with the 

C-H bond; alternatively, the C-H bond may be cleaved by a reactive ligand bound to the 

metal center.3,10  In the latter case, the ligand may directly insert into the C-H bond, or it 

may simply abstract a hydride or hydrogen atom to generate a reactive alkyl fragment as 

depicted in scheme 1.1.3  Outer-sphere C-H bond functionalization typically occurs for 
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metals in high oxidation states, often with reactive oxo, imido, or carbene ligands.10  As 

most of these reactions involve homolytic C-H bond cleavage, the selectivity is typically 

determined by C-H bond strength.3,10  Selectivity thus favors the reaction of weaker C-H 

bonds such as those that are tertiary, benzylic, allylic, or alpha to heteroatoms; and as 

observed in heterogeneous alkane functionalization systems, overoxidation can be a 

problem.3,5,10 

 

Scheme 1.1. Two possible outer-sphere C-H bond functionalization pathways. 

 

 Homogeneous inner-sphere C-H bond functionalization involves direct reaction of 

a C-H bond with the transition metal center to form a metal-alkyl as depicted in scheme 

1.2.3,10  Functionalization then proceeds by reaction of the coordinated alkyl either with a 

ligand bound to the metal center or with an external reagent.3,10  In contrast to outer-

sphere pathways, inner-sphere pathways are favored by diamagenetic complexes that 

perform two-electron chemistry, avoiding one-electron changes in oxidation state and 

radical pathways.3  The selectivity is typically related to the propensity of the metal 

center to bind a particular C-H bond, and it is often significantly different from the 

selectivity observed for outer-sphere reactions.3,10  Regioselective alkane 

functionalization via inner-sphere C-H bond activation often occurs at the stronger, 
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terminal C-H bonds due to steric factors, and favorable chemoselectivities have been 

observed for some of these systems; however, many factors can affect selectivity, 

including the ligand environment at the metal center and the specific mechanism of the 

C-H bond cleavage step.2-7,10  Inner-sphere, homogeneous transition metal catalyzed C-H 

bond functionalization is thus promising due to the mild conditions under which it can be 

achieved and due to the potential for controlling regio- and chemo-selectivity via subtle 

system modifications.  This thesis focuses on determining the requirements for selective, 

homogeneous, inner-sphere C-H bond functionalization using complexes of platinum and 

iridium. 

 

  

Scheme 1.2.  Inner-sphere C-H bond functionalization. 

 

[M] RR H+[M]

C-H Bond

Activation Functionalization
R X+[M]
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Abstract 

 [PtII(CH3)Cl3]2- (1), generated at 95 °C in situ from Cs2[PtIV(CH3)2Cl4] in an 

aqueous solution of high chloride concentration and [H+] = 0.2 M,  undergoes 

competitive oxidation vs. protonation (kox/kH+) with several oxidants.  A first-order 

dependence on oxidant concentration was determined for both CuCl2 and FeCl3 

oxidations of 1, and kox/kH+ was determined to be 191 ± 24 and 14 ± 3.  CuCl2 was shown 

to catalyze the oxidation of 1 by dioxygen; however, [PtIICl4]2- was also oxidized under 

these conditions.  Anion 1, generated in a mixture of platinum(II) salts, 

[Cp2CoIII]2{[PtIICl4] + 1 + [PtII(CH3)2Cl2] (4)} . x NaCl (5), also undergoes competitive 

oxidation and protonation at room temperature in D2O when in the presence of oxidants.  

Increasing chloride decreases the ratio kox/kH+ for 1 when Na2[PtIVCl6] is used as the 

oxidant, but when CuCl2 is used as the oxidant, added chloride increases kox/kH+.  The 

one-electron oxidants, Na2[IrIVCl6] and (NH4)2[CeIV(NO3)6], were also shown to 

oxidize 1. 
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Introduction 

 About 35 years ago Shilov et al. reported that the homogeneous oxidation of 

alkanes by an aqueous mixture of platinum(II) and platinum(IV) salts at 120 °C gives the 

corresponding alcohols or alkyl chlorides with moderate selectivity (eq 2.1).1 Mechanistic 

studies indicate that the catalysis occurs by an inner-sphere pathway, and it involves three 

major steps as shown in scheme 2.1: (i) Pt(II) activates an alkane C-H bond to generate a 

Pt(II) alkyl; (ii) the Pt(II) alkyl is oxidized by hexachloroplatinate(IV) to a Pt(IV) alkyl; 

(iii) nucleophilic attack by water or chloride on the Pt(IV) alkyl affords the alcohol or 

alkyl chloride, respectively, and regenerates Pt(II).2 

 

 

 

Scheme 2.1.  The proposed mechanism for the functionalization of alkanes catalyzed by 

platinum(II/IV) salts.2 

 

While the C-H activation step (i) is rate and selectivity limiting in the catalysis, 

the oxidation step (ii) provides the thermodynamic driving force for the reaction.  
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Furthermore, since step (i) is highly reversible, oxidation of [PtII-R] by [PtIVCl6]2- must 

be remarkably fast in order to compete with protonolysis.  Studies on model complexes 

indicate that the oxidation step proceeds via a chloride bridged intermediate, as shown in 

scheme 2.2,3 a common mechanism for Pt(II)-Pt(IV) redox reactions.4  Isotopic labeling 

experiments have placed an upper limit on the rate of the self-exchange reaction between 

tetrachloroplatinate(II) and hexachloroplatinate(IV)5 that would be much too slow to 

compete with protonolysis.  Nonetheless, two studies have demonstrated that the rate 

constant for oxidation of [PtII-CH3] is comparable to (at room temperature)6 or much 

faster than (at 95 °C)7 the competing protonolysis.  The reasons for this great 

enhancement of reactivity are not entirely clear; possible factors include the lower 

oxidation potential of methylated Pt(II) complexes and or the lower energy required for 

formation of the five-coordinate species as a consequence of the greater cis and trans 

effects of a methyl ligand.8 

 

Scheme 2.2.  The proposed mechanism for oxidation of monomethylplatinum(II) by 

hexachloroplatinate(IV).3 

 

A major practical limitation of the Shilov oxidation of alkanes is the use of 

[PtIVCl6]2- as a stoichiometric oxidant.  Labeling studies indicate that this step occurs by 
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electron transfer, not alkyl transfer, to Pt(IV); hence in principle it should be possible to 

substitute an inexpensive stoichiometric oxidant.2e  There are strict constraints on suitable 

alternative oxidants, though: they must be fast enough to oxidize [PtII-R] competitively 

with protonolysis, but must not rapidly oxidize inorganic Pt(II), i.e. [PtIICln(H2O)4-n]
2-n, 

since that would deplete the species responsible for alkane activation.  (Note that all 

inorganic ligands have been represented as chloride in schemes and structural formulae 

for simplicity; the species actually present will generally be a mixture of chloro/aquo 

complexes whose composition will vary with conditions.) 

A variety of alternative oxidants, including chlorine,9 hydrogen peroxide,10 

peroxydisulfate,11 and the anode of an electrochemical cell,12 have been used with limited 

success.  The most interesting examples are Wacker-like systems that use catalytic 

amounts of an oxidant that can in turn be reoxidized by dioxygen, making the latter the 

stoichiometric oxidant; significant numbers of turnovers have been achieved with both 

CuIICl2
13

 and a polyoxometalate.14  All of the above still fall far short of what would be 

required for practical application, due in large part to catalyst inactivation, usually by 

deposition of metallic platinum.  A bipyrimidine platinum(II) complex has been found to 

catalyze oxidation of methane to methyl bisulfate in high yield, using  sulfuric acid as the 

oxidant and solvent;15 while it does not suffer from catalyst inactivation by deposition of 

metallic platinum, it still falls short of a practical process.16 

A systematic approach toward replacing Pt(IV) with a more practical oxidant 

would be facilitated if we better understood how various oxidants function in the actual 

oxidation step; such information is difficult to glean from overall performance of a 

complex catalytic system.  While, as noted above, the presumed Pt(II) alkyl that 
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undergoes oxidation in the Shilov system is highly unstable to protonolysis, methods6,7 

that were developed for generating this species in situ and assessing its reactivity towards 

[PtIVCl6]2- may be readily extended to other oxidants.  We report here the results of these 

studies. 

 

Results and Discussion 

Competitive oxidation and protonation at elevated temperature: 

Cu-mediated oxidation by O2.  Zamashchikov and co-workers determined the relative 

rates of protonolysis and oxidation of [PtII(CH3)Cl3]2- (1) by means of the system shown 

in scheme 2.3.7  Here nucleophilic attack of chloride on the dimethyl complex 

[PtIV(CH3)2Cl4]2- (2) generates 1 (along with an equivalent of methyl chloride), which is 

competitively protonated to generate methane and [PtIICl4]2-, and oxidized by [PtIVCl6]2- 

to monomethyl [PtIV(CH3)Cl5]2- (3).  Complex 3 is unstable under the reaction conditions, 

undergoing nucleophilic attack by chloride (step (iii) of the overall Shilov mechanism) to 

generate an additional equivalent of CH3Cl and [PtIICl4]2- 

As shown in scheme 2.3, there are two side reactions.  Nucleophilic attack by 

[PtIICl4]2- on 2 generates 1 and 3; however, this has no net effect on the final product 

distribution.  Also, some ethane is reductively eliminated from 2, but this is sufficiently 

slow relative to nucleophilic attack that only a very small amount of ethane (<5%) is 

generated.  Hence the ratio of second-order rate constants for oxidation and protonation 

(kox/kH+) could be determined from the relative yields of products along with the 

stoichiometry of reagents used, and was found to be 18.4 ± 0.5. 

.  
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Scheme 2.3.  The in situ generation of 1 in aqueous solutions with high chloride 

concentrations at 95 °C.7 

 

In our hands, heating an aqueous solution of Cs2[PtIV(CH3)2Cl4] (0.002 M) 

containing greater than 3 M chloride concentration at 95 °C for nine days resulted in 

complete disappearance of [PtIV(CH3)2Cl4]2- and generation of one equivalent of methane, 

as determined by GC-MS.  Under these reaction conditions CH3Cl substantially 

decomposes (to CH3OH) and cannot be accurately quantified; nonetheless the extent of 

competing oxidation (when an oxidant is present) can be calculated from the reduction in 

methane yield.  Assuming the reaction is first-order in both oxidant and 1, as is the case 

for Na2[PtIVCl6], the ratios of the “observed” rate constants for formation of CH3Cl vs. 

methane (kMeCl/kMeH) and the second-order rate constants for oxidation vs. protonation 

(kox/kH+) are found using equations (2) and (3), respectively, where n is the number of 

moles of the corresponding species.7 
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The results for several different oxidants are shown in table 2.1; that for 

Na2[PtIVCl6], 20 ± 4, is within experimental error of the previously reported value.  As 

noted above, the calculation assumes first-order dependence on reagent concentration.  

Protonolysis was shown to be first-order in [H+] (for CuCl2 as oxidant), as shown in 

figure 2.1, while oxidation was shown to be first-order in oxidant for both CuCl2 and 

FeCl3, as shown in figure 2.2. 

 

Table 2.1.  The kox/kH+ for a variety of oxidants reacting with [PtII(CH3)Cl3]2- (1) at 

constant [H+].  Except as noted, [Cs2PtIV(CH3)2Cl4] = 0.002 M; [H+] = 0.2 M; [oxidant] = 

0.02 M; [Cl-]= 4 M. a[CuIICl2] = 0.001 M, under excess O2 (1 atm).   b[Cl-]= 3 M. 

entry Oxidant kOx./kH+ 

1 Na2PtIVCl6    20 ± 4 

2 CuIICl2    191 ± 24 

3 O2/CuIICl2
a    173 ± 35 

4 FeIIICl3    14 ± 3 

5 Na3[H3PMo9V3O40]b    15 ± 3 

6 Br2
b    210 ± 40 
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Figure 2.1.  The dependence of kMeH/kMeCl for 1 on [H+] ([Cu2+] = 0.05 M, [Cl-] = 4 M).  

 

Figure 2.2.  The dependence of kMeCl/kMeH for 1 on [Cu2+] (left) and [Fe3+] (right) ([H+]= 

2 M, [Cl-]= 4 M). 

 

The rapid oxidation by CuCl2 is particularly striking.  Oxidation of platinum(II) 

complexes by copper(II) halides could in principle proceed via either one- or 
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oxidation is followed by comproportionation of copper(0) and copper(II), while in (b) 

initial (rate-determining) one-electron oxidation generates [PtIII(CH3)], which undergoes 

fast one-electron oxidation by a second Cu(II).  The first-order dependence on [Cu(II)] 

could be consistent with either of these possibilities.  For the all-inorganic analog, for 

which the thermodynamics lie in the opposite direction ([PtCl6]2- oxidizes Cu(I)), a 

one-electron route was proposed based on kinetics;17 but in fact, the kinetics could be 

consistent with the two-electron path as well.  In a later study on oxidation of 

(N,C)-ligated Pt(II) complexes by CuX2 the authors also preferred alternative (b), though 

not decisively so.18  

 

 

Scheme 2.4.  Possible pathways for the oxidation of 1 by CuCl2. 

 

The three oxidants CuII, FeIII, and Na3[H3PMo9V3O40] are all capable of 

reoxidation by O2 under certain conditions.  (Bromine, the most reactive oxidant, would 

not be useful in a catalytic system because it is known to oxidize [PtIICl4]2-.19)  As noted 

above, efficient catalytic oxidation of substrates such as ethanesulfonic acid has been 

achieved with a Pt/Cu/O2 system; in that case catalyst deactivation apparently does not 

involve Pt metal deposition.13  That finding implies that (as in the Wacker process) 

reoxidation of CuI by O2 is fast relative to other steps.  Indeed, when 1 is generated from 
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[PtIV(CH3)2Cl4]2- (2) under an atmosphere of dioxygen in the presence of only half an 

equivalent of CuCl2, the same rate constant ratio is observed (within experimental error) 

as with excess CuCl2 (entry 3, table 2.1).  A similar result could not be obtained with 

FeCl3, as kox/kH+ varied from run to run when only half an equivalent of FeCl3 was used 

under an atmosphere of dioxygen.  

As for the polyoxometalate (Na3[H3PMo9V3O40]), it is known to be reoxidizable 

by dioxygen; however, it is also difficult to obtain as a pure trivanadium species;20 

furthermore, it proved to be partially insoluble under our reaction conditions, so it was 

not tested in the presence of dioxygen.  It is encouraging though that stoichiometric 

oxidation of 1 could be observed, at a rate close to that of [PtIVCl6]2- (table 2.1). 

One likely mode of catalyst inactivation with the CuCl2/O2 system is suggested by 

the observation that Cs2[PtIVCl6] crystallizes out of solution during the course of this 

reaction, indicating oxidation of [PtIICl4]2-.  That would not be effected by either CuCl2 

(the reverse reaction takes place: see above) or O2 alone.  Presumably, peroxidic species 

(possibly free peroxide or some sort of copper-peroxide complex) formed during the 

reoxidation of copper(I) with dioxygen21 are responsible.  Because in the accepted 

mechanism [PtIICl4]2- is required for C-H activation, such a process would gradually 

remove a crucial component of the system and shut down the catalytic reaction. 

 

 Competitive oxidation and protonation at room temperature: chloride 

effects.  The above probe generates the key intermediate [PtII(CH3)Cl3]2- (1) by reaction 

of [PtIV(CH3)2Cl4]2- (2) with chloride, and hence requires high [Cl-].  This may be 

problematic in several regards.  First, since excess chloride inhibits the C-H activation 
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step in the Shilov system,1 the chloride level for this experiment differs significantly from 

that of the “real” reaction, potentially affecting the platinum speciation in solution.  

Second, the rate at which 1 is oxidized is likely to be [Cl-]-dependent in the mechanism 

of scheme 2.2.  Finally, the chloride concentration affects the oxidation potential of a 

variety of oxidants,22 including some of those examined here. 

We have previously reported an alternate route to transient 1 that does not require 

excess Cl-.  Reduction of Na2[PtIV(CH3)Cl5] with cobaltocene in tetrahydrofuran (THF) 

precipitates a mixture of cobaltocenium salts of [PtII(CH3)Cl3]2- (1), [PtII(CH3)2Cl2]2- (4), 

and [PtIICl4]2- (along with some NaCl), which upon addition to a solution of Na2[PtIVCl6] 

in D2O exhibits competitive protonolysis and oxidation of 1; the relative rates can be 

determined from the yield of [PtIV(CH3)Cl5]2- (3) (scheme 2.5).  In that earlier study, 

carried out under a limited range of acid and oxidant concentrations, it appeared that 4 

was completely oxidized to [PtIV(CH3)2Cl4]2- (2) (which is stable under the reaction 

conditions), even at low levels of [PtIVCl6]2-, indicating that [PtIICl4]2- is also capable of 

effecting oxidation of 4, presumably with formation of Pt0.  The rate constant ratio for 

oxidation vs. deuterolysis (kox/kD+) at 22 °C was estimated at approximately 2.55; using 

an independent determination of the isotope effect (kH+/kD+ ≈ 9)23 gave kox./kH+ ≈ 0.3, 

around two orders of magnitude lower than at 95 °C.6 
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Scheme 2.5.  Dissolution of the 1, 4, and [PtIICl4]2- mixture containing NaCl in a D2O 

solution of [PtIVCl6]2-. 

 

On repeating those experiments, we find the results are not quite so 

straightforward as previously reported.  In the first place, deuterolysis is competitive with 

oxidation for both 1 and 4 as shown in scheme 2.5: increasing the amount of acid (by 

adding D2SO4) results in a reduction of the yields of both 2 and 3.  Since 2 was used as an 

internal standard for NMR quantitation, the assumption that its yield was invariant 

introduced some error.  Secondly, the yields are not as reproducible as suggested by the 

earlier limited study.  This is not too surprising because of the way the experiment is 

(necessarily) performed: the solid mixture of Pt(II) salts is dissolved directly in the 

solution with which it reacts, probably causing the local concentrations of reagents to 

change drastically and irreproducibly as the solid dissolves.  From an extensive series of 

experiments measuring the amounts of 2 and 3 generated, rate constant ratios for 

oxidation vs. deuterolysis (kox/kD+) at 22 °C were determined to be 7.7 ± 0.9 for 1 and 14 

± 2 for 4.  This translates into a kox/kH+ of about 0.9 for 1.  (Tabular results for the 

specific experiments are provided in the Experimental Section.) 
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The difference between the two findings suggest that the kox/kH+ value determined 

by this method is only accurate to within a factor of three or so, but it is clearly 

significantly lower than that obtained at 95 °C with high chloride concentrations.  

Previously, this was attributed to the large temperature difference between the two 

studies; however, the large difference in chloride concentration between the two studies 

could also affect kox/kH+, if the kinetic order in chloride for oxidation and protonation 

differ.  Under the same conditions but with 3.0 M added chloride, kox/kD+ was determined 

to be 3.5 ± 0.4 for 1 and 5.0 ± 0.9 for 4.  Thus there is a chloride dependence on the ratio, 

with kox/kH+ for 1 about 0.4 under high chloride (vis-à-vis 0.9 at low chloride 

concentration) at 22 °C. 

 An analogous determination of kox/kH+ and its dependence on chloride 

concentration for CuCl2 is complicated by the effect of paramagnetic copper(II), which 

makes it difficult to integrate 1H NMR peaks in the spectrum; hence only qualitative 

results can be obtained (table 2.2).  It is clear that some additional halide (there is always 

a small amount of chloride present in these experiments, as the precipitated mixed 

cobaltocenium/Pt(II) salts contain some NaCl) is needed for the oxidation even in the 

absence of added acid, and quite high [Cl-] is needed to compete at low pH.  This 

requirement for relatively high chloride concentration could be due to the role of bridging 

halide, if an inner-sphere oxidation mechanism (schemes 2.2 and 2.4a) is followed.  It is 

also well known that Cu(II) is a stronger oxidant at higher halide concentrations, and 

further that one-electron oxidations are favored in the presence of chloride or bromide.24  

Substantial oxidation of [PtII(CH3)2Cl2]2- (4) to [PtIV(CH3)2Cl4]2- (2) was observed in all 
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these experiments, confirming that it is more facile than that of [PtII(CH3)Cl3]2- (1) to 

[PtIV(CH3)Cl5]2- (3). 

 

Table 2.2.  The ability of Cu(II) salts to oxidize [PtII(CH3)Cl3]2- (1) to [PtIV(CH3)Cl5]2- (3) 

under different conditions.  [Cs2PtIV(CH3)2Cl4]= 0.002 M; [CuII] = 0.24 M.   aX = 

perchlorate, triflate, acetate, sulfate. 

entry oxidant added Cl- added H+ 3 formed (>35%) 

1 CuIICl2 — — Yes 

2 CuIICl2 — 0.35 N D2SO4 No 

3 CuIICl2 3 M 0.35 N D2SO4 Yes 

4 CuIIBr2 — — Yes 

5 CuIIX2
a — — No 

 

 

To test the possibility of a one-electron pathway (such as that depicted in scheme 

2.4b) for oxidation of [PtII(CH3)Cl3]2- (1), Na2[IrIVCl6] and (NH4)2[CeIV(NO3)6] were 

examined.  These are known one-electron oxidants, which could not be tested by the high 

temperature route (Na2[IrCl6] because it directly oxidizes methane;25 Ce(IV) because at 

high chloride concentrations it oxidizes chloride22).  Indeed, addition of the mixed Pt(II) 

salts to a D2O solution containing an excess of either Na2[IrCl6] or (NH4)2[Ce(NO3)6] 
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resulted in significant oxidation of both 1 and [PtII(CH3)2Cl2]2- (4), indicating that a 

one-electron oxidation pathway can be rapid for these oxidants—and, by extension, may 

be plausible for Cu(II) and Fe(III) as well.  Finally, Na3[H3PMo9V3O40], bromine and 

hydrogen peroxide also were shown to oxidize 1 (and 4) in D2O at room temperature in 

the absence of added chloride. 

 

Conclusions 

The competitive oxidation and protonation of the monomethylplatinum(II) salt (1) 

involved in the Shilov system was studied in order to gain insight into the possibility of 

using an inexpensive stoichiometric oxidant for the replacement of Na2[PtIVCl6].  When 

Na2[PtIVCl6] is used as the oxidant, chloride has been shown to decrease the ratio of 

oxidation to protonation of 1, while high temperatures have been shown to increase the 

ratio of oxidation to protonation.  This implies that oxidation has a considerably higher 

activation energy than does protonolysis.  The chloride dependence of kox/kH+ is modest, 

and may represent either inhibition of oxidation or acceleration of protonolysis (or both) 

by chloride.  From the mechanism of scheme 2.2, oxidation is expected to be accelerated 

by chloride, but this could be balanced by a similar effect on protonolysis.26  Shifting the 

speciation equilibrium could then favor more highly chlorinated species that are harder to 

oxidize.  In any case, the conditions of the “real” Shilov system (low chloride 

concentrations, temperatures of about 120 °C) highly favor oxidation by Pt(IV) over 

protonation, and any alternative oxidant must also compete quite efficiently with 

protonation. 
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Ideally, the Shilov oxidation of alkanes would be performed under an atmosphere 

of oxygen with an oxidant that could oxidize 1, generating a reduced form that could be 

reoxidized by dioxygen.  To this end, a variety of oxidants were shown to oxidize 1, 

including CuCl2, FeCl3, and Na3[H3PMo9V3O40], all of which could potentially be 

reoxidized by dioxygen.  CuCl2 was actually shown to oxidize 1 catalytically in the 

presence of excess dioxygen; however under these conditions, the catalyst in the Shilov 

system, [PtIICl4]2-, is also oxidized.  This could prove problematic for the use of CuCl2 as 

a catalytic co-oxidant for the Shilov system. 

Both CuCl2 and FeCl3 oxidize 1 with first-order dependence on oxidant.  The 

oxidation of 1 by copper(II) was shown to be highly dependent on the counteranion—

only chloride and bromide proved competent—and oxidations by CuCl2 are highly 

dependent on chloride concentration.  In contrast to the case of Na2PtIVCl6, decreasing the 

chloride concentration decreases the rate at which CuCl2 oxidizes 1. 

At this time we cannot determine whether oxidation by Cu(II) goes via a one- or a 

two-electron pathway.  The fact that one-electron oxidants such as Na2IrIVCl6 and 

(NH4)2CeIV(NO3)6 rapidly oxidize 1 imply the former is quite reasonable, but the kinetics 

could be consistent with either, and the [Cl-] dependence might reflect the effect of 

chloride concentration on the one-electron oxidation potential of copper(II) or the 

chloride requirement of a bridged intermediate in a two-electron pathway.   

 

Experimental Section 

 General considerations.  Platinum salts were obtained from Strem.  Anhydrous 

lithium chloride was purchased from Aldrich.  6.25 M hydrochloric acid (aq.) was 
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purchased from VWR.  All deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc.  Na3[H3PMo9V3O40]27 was prepared according to literature procedures.  

NMR spectra were acquired on a Varian Mercury 300 (1H, 299.8 MHz) spectrometer at 

23 °C.  NMR shifts were referenced relative to internal solvent: 4.80 (s) (deuterium 

oxide) and 2.50 (m) (dimethyl sulfoxide-d6).  GC-MS data were collected using a 

Hewlett-Packard 5890 gas chromatograph with a HP-PLOT Q column and a 

Hewlett-Packard 5973 mass spectrometer. 

 

Synthesis of cesium dimethyltetrachloroplatinate(IV).  The procedure 

described below was generated from the procedure outlined by Zamashchikov et al.7 as 

well as information provided to J. A. Labinger in a personal communication from S. L. 

Litvinenko.28 

 Potassium tetrachloroplatinate(II) (8.3 g, 0.020 mol) was dissolved in 50 mL of 

water.  19 mL (0.21 mol) of anhydrous dimethylsulfate was added, and the solution was 

stirred for 24 hours.  Then, 1.07 g (0.011 mol) of hydrazine dihydrochloride was added.  

After 5 minutes, 38 mL (0.41 mol) of dimethylsulfate was added.  After 5 minutes, 

100 mL of methanol was added; and after another 5 minutes, 50 mL of water was added.  

This generated a yellow solution.  After 5 minutes, 102.5 g of sodium carbonate were 

added very slowly.  The solution slowly turned brown with a small amounts of black 

precipitate.  Stirring of the solution continued with 50 mL of water being added after 1, 2, 

and 3 hours.  After 6 hours, the solution was filtered through celite, and the filtrate was 

acidified with 6 M hydrochloric acid to a pH of about 1.  The solvent was removed under 

reduced pressure.  The residue was then dissolved in 50 mL of water, and this solution 
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was neutralized with sodium carbonate.  An extraction was performed with about 500 mL 

of acetone.  The organic phase was filtered through celite, and then acidification of the 

filtrate was repeated.  The solvent and volatiles were removed under reduced pressure.  

The resulting residue was dissolved in 40 mL of water, and this solution was filtered 

through celite.  Solvent was removed from the filtrate under reduced pressure.  The 

residue was dissolved in a minimal amount of water, and then the solution was filtered.  

An aqueous saturated cesium chloride solution at 0 ºC was added to the filtrate until 

precipitation occurred.  The solid was isolated by filtration and washed 3 times with 5 mL 

of water at 0 ºC.  It was then washed 3 times with 5 mL of methanol at 0 ºC.  Next, the 

solid was dissolved in about 2.5 mL of water, and chlorine gas was bubbled through the 

solution for about 5 minutes.  During this time, a yellow solid formed which was 

subsequently removed by filtration.  Solvent and volatiles were removed from the filtrate 

under reduced pressure in order to isolate a yellow solid (550 mg, 0.82 mmol, 4%). 

 

 Oxidation vs. protonolysis of monomethylplatinum(II) complex (1) at 

elevated temperature.  To determine the baseline methane yield, a solution of 1.94 g 

anhydrous lithium chloride in about 8 mL deionized water was cooled to room 

temperature, and 34.8 mg of Cs2[PtIV(CH3)2Cl4] added.  This solution was then injected 

into the reaction vessel using a plastic syringe with a Teflon needle, and washed in with 

additional deionized water to give a total of 17 mL of solution in the reaction vessel.  The 

reaction vessel consisted of a round-bottom flask with a small stir bar sealed inside.  The 

only opening to the flask was a stopcock with a short (1.5 cm) hose adaptor on the other 

side.  The total internal volume of the flask was about 31 mL.  The solution was then 
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degassed and filled with helium.  With the stopcock open and connected via a rubber 

hose to a helium source and a mercury bubbler, the flask was heated to 368 K.  Then, 7.0 

mL of 6.25 M hydrochloric acid (aq) was injected into the flask through the hose 

connected to the stopcock, using a plastic syringe with a Teflon needle.  The stopcock 

was sealed, and the rubber hose was removed.  The hose adapter on the stopcock was 

then capped with a rubber septum held down by copper wire.  Using a syringe, the 

capped hose adapter was then filled with silicon oil in order to minimize exchange of 

gases between the air and the headspace of the reaction vessel during sampling.  The air 

in the capped hose adapter was drained with a needle as it was being filled with silicon 

oil.  200 µL of argon at 1 atm, for use as an internal standard, was added to the head 

space inside the vessel via syringe.  The reaction was stirred at 368 K for 9 days, at which 

point consumption of 2 was complete as determined by 1H NMR spectroscopy.  A 50 µL 

sample of the headspace gas was injected into the GC-MS for analysis of argon, methane, 

ethane, carbon dioxide, and methyl chloride.  (In a separate experiment, methyl chloride 

was found to decompose under the reaction conditions in the absence of 

Cs2[Pt(CH3)2Cl4], while methane, ethane, and carbon dioxide were stable.)  The final 

volume of solution in the vessel was measured at 368 K using a graduated cylinder in 

order to determine the exact concentrations of reagents.  

 For determination of relative rates, the desired amount of appropriate oxidant was 

added to the solution before heating, and the reaction carried out as above.  Some 

reactions were carried out under an atmosphere of dioxygen instead of helium.  The 

crystals that deposited at the end of the reaction using CuCl2 and dioxygen were 
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identified as Cs2[PtIVCl6] by matching the X-ray crystallographic unit cell parameters to 

published values. 

 

Oxidation vs. protonolysis of monomethylplatinum(II) complex (1) at room 

temperature.  The solid mixture of cobaltocenium salts containing 1 was prepared as 

previously described.6  A solution containing the desired amounts of oxidant, lithium 

chloride, and (in some cases) D2SO4 in 1.0 mL D2O was added to 20 mg of the solid 

mixture with vigorous stirring. The reaction was stirred for 20 minutes before being 

centrifuged.  The supernatant was then transferred to an NMR tube for analysis by 1H 

NMR spectroscopy.  Quantification was achieved using the signals of either added 

sodium p-toluenesulfonate or THF (present in the solid mixture) as internal standard; 

separate experiments showed that the amount of THF relative to sodium 

p-toluenesulfonate remained the same under all reaction conditions tested.  kOx./kD+ was 

determined for 4 and for 1 using eq. (2.4) and eq. (2.5), respectively.  [1]0 and [4]0 

represent the initial concentrations of the respective platinum(II) species in solution.  This 

was determined from the reaction in which 5 was dissolved in D2O with a 0.12 M 

[Na2PtIVCl6] because in this reaction both 1 and 4 were completely oxidized.  The 

concentrations of the methylplatinum(IV) species were determined by 1H NMR 

spectroscopy at the end of the reaction.  The kOx/kD+ and kOx/kH+ for 1 and 4 under various 

conditions are presented in tables 2.3, 2.4, and 2.5. 

 

      

€ 

4 : kOx.

kD+

=
[2]

[4]0 − [2]
[D+]
[Ox.]

    (2.4) 
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1: kOx.

kD+

=
[3]

([1]0 + [4]0) − [3]− [2])
[D+]
[Ox.]

   (2.5) 

 

Table 2.3.  Dependence of kOx/kD+ and kOx/kH+ on Na2[PtIVCl6] for 1 and 4 ([D2SO4] = 

0.35 M, [Cl-] = 3.0 M).  *These numbers differ from those reported in the text: the latter 

are based only on the data for [Na2PtIVCl6]= 0.12 M, for the purpose of using the same 

conditions to compare low and high [Cl]-. 

Na2[PtIVCl6] 1 4 

(M) kox/kD+ kox/kH+ kox/kD+ kox/kH+ 

0.12 3.2 0.35 4.1 0.45 

0.12 3.4 0.37 4.5 0.50 

0.12 4.1 0.46 5.8 0.64 

0.12 3.3 0.36 5.8 0.64 

0.25 3.6 0.40 4.0 0.44 

0.37 3.2 0.36 3.2 0.35 

0.37 2.5 0.27 3.3 0.37 

0.50 2.6 0.29 2.8 0.31 

0.50 4.1 0.46 3.5 0.39 

average* 3.3 0.37 4.1 0.46 

standard 

deviation* 0.6 0.06 1.1 0.12 
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Table 2.4.  Dependence of kOx/kD+ and kOx/kH+ on [Cl]- for 1 and 4 (Na2[PtIVCl6] = 0.12 

M, [D2SO4] = 0.35 M). 

[Cl-] 1 4 

(M) kox/kD+ kox/kH+ kox/kD+ kox/kH+ 

0.72 8.099 0.900 8.55 0.95 

0.72 10.877 1.209 9.21 1.02 

0.72 6.871 0.763 12.54 1.394 

0.72 7.723 0.858 16.44 1.827 

0.72 8.625 0.958 14.23 1.582 

1.5 5.677 0.631 6.70 0.74 

2.2 4.521 0.502 6.06 0.67 

3.0 3.165 0.352 4.09 0.45 

3.0 3.352 0.372 4.49 0.499 

3.0 4.125 0.458 5.78 0.642 

3.0 3.282 0.365 5.77 0.641 

 

 

Table 2.5.  Dependence of kOx/kD+ and kOx/kH+ on [Cl]- for 1 and 4 ([CuIICl2] = 0.25 M, 

[D2SO4] = 0.35 M). 

 [Cl-] 1 4 

(M) kox/kD+ kox/kH+ kox/kD+ kox/kH+ 

0.496 0.00 0.00 44.25 4.92 

3.0 0.776 0.086 48.41 5.38 
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 Chapter 3 

 The Synthesis, Protonolysis, and C-H Bond Activation Chemistry 

 of Platinum(II) Complexes Containing the Dianionic 2,2’-Biindolyl Ligand 
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Abstract 

 Electron rich platinum(II) complexes containing the 2,2’-biindolyl ligand were 

synthesized and probed for C-H bond activation chemistry.  2,2’-biindolyl was 

deprotonated with greater than two equivalents of sodium hydride, and it was 

subsequently reacted with dimethyl(1,5-cyclooctadiene)platinum(II) to generate disodium 

(2,2’-biindolyl)dimethylplatinum(II) (2).  Crystals of 2 with 15-crown-5 ether were 

grown from diethyl ether.  2 decomposes rapidly in air, and deuterolysis of both 

platinum-methyls as well as the 2,2’-biindolyl ligand occurs when 2 is dissolved in 

methanol-d4.  Protonolysis of a single platinum(II)-methyl bond occurs when 2 is reacted 

with one equivalent of 2,2,2-trifluoroethanol-d3 in either tetrahydrofuran-d8 (THF-d8) or 

acetonitrile-d3 (CD3CN).  This protonolysis occurs much more rapidly in CD3CN than in 

THF-d8.  In THF-d8, C-D bond activation of THF-d8 follows protonolysis, and C-D bond 

activation occurs faster than the protonolysis as no intermediate is observed.  The 

reaction of 2 with B(C6F5)3 in C6D6 also led to a species capable of activating C-D bonds 

as indicated by the generation of CH4, CH3D, CH2D2, and possibly CHD3. 
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Introduction 

 In the development of homogeneous catalysts for the conversion of alkanes into 

more valuable products, selective alkane functionalization has been achieved using a 

mixture of platinum(II) and platinum(IV) salts as discovered by Shilov et al. and 

described in chapter 2.1-3  In order to make this system practical, [PtIVCl6]2- needs to be 

replaced by an inexpensive stoichiometric oxidant, but improvements in catalytic rates 

and in catalyst stability are also necessary.4,5  Unfortunately further studies on this system 

are hindered by the number of species present in solution, the limited number of methods 

available to characterize these species, and the instability of these species. 

 The use of chelating ligands can limit the number of species in solution, can aid in 

characterization, and can be used to modify the chemistry of metal complexes.4,6  With 

regards to alkane functionalization using platinum complexes containing chelating 

ligands, the benchmark system was developed by Periana et al. at Catalytica Advanced 

Technology Inc.7  This system, depicted in scheme 3.1, involves the oxidation of methane 

to methyl bisulfate catalyzed by (bipyrimidine)dichloroplatinum(II) in fuming sulfuric 

acid.  The proposed mechanism for this reaction is closely related to the one proposed for 

the catalysis described by Shilov et al., and it is depicted in scheme 3.2.  SO3 or H2SO4 

functions as the stoichiometric oxidant in this system; however, the SO2 generated 

following oxidation of platinum could in principle be reoxidized to SO3 or H2SO4 by 

dioxygen, meaning that dioxygen would function as the stoichiometric oxidant.7  

Furthermore, the combination of the chelating ligand and the use of hot, fuming sulfuric 

acid prevents metal precipitation, and turnover numbers greater than 300 can be 
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achieved.5  The generation of methylbisulfate as the product allows yields to be achieved 

in excess of 70% based on methane.5 

 

 

Scheme 3.1.  The oxidation of methane to methyl bisulfate reported by Periana et al. and 

catalyzed by (bipyrimidine)dichloroplatinum(II) in fuming sulfuric acid.7 

 

 

Scheme 3.2.  The proposed mechanism for bipyrimidineplatinum(II)-catalyzed methane 

oxidation reported by Periana et al. (X = HSO4
- or Cl-).4-7 

 

 This system does, however, suffer from at least two major drawbacks.  First, 

methyl bisulfate is of little direct use.4  While methyl bisulfate can be converted by 

hydrolysis to methanol, a more useful product, this process is not yet economically 

practical for industrial use.4,7  Second, the catalyst is severely inhibited by both water and 

methanol.5  This is problematic because water is generated during the catalysis by 

oxidation of platinum with either SO3 or H2SO4.7  While water could potentially be used 
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to hydrolyze methyl bisulfate, the resulting methanol also inhibits catalysis.  In the 

absence of water and methanol, methane C-H bond activation is proposed to occur by 

initial displacement of bisulfate from platinum(II) with methane.5  Under the reaction 

conditions, water and methanol form stronger bonds with platinum(II) than bisulfate; 

thus, there is a larger barrier to displacement of water and methanol from platinum(II) by 

methane, and the overall barrier to methane C-H bond activation is increased.5  This has 

also been proposed to account for slow rates of catalysis in the alkane functionalization 

system developed by Shilov et al., as C-H bond activation in that system is also rate 

limiting.5  

 In order to increase rates of platinum-catalyzed alkane functionalization, 

conditions need to be found which decrease the barriers to C-H bond activation. C-H 

bond activation at platinum(II) can generally be divided into two steps as shown in 

scheme 3.3.6  The first step involves coordination of the C-H σ-bond to the metal center, 

and this is followed by C-H bond cleavage to generate a metal-carbon σ-bond.  Previous 

studies indicate that each step can occur by one of two different pathways (scheme 3.3), 

and the spectator ligands bound to platinum have a strong influence over which pathway 

is taken.6  C-H bond coordination can occur either by a dissociative exchange pathway or 

by an associative exchange pathway, while C-H bond cleavage can occur either by 

oxidative addition, to generate an (alkyl)hydridoplatinum(IV) species, followed by 

deprotonation or by electrophilic substitution.6  Ligands which make the platinum(II) 

metal center more electron deficient favor the generation of an alkylplatinum(II) species 

via associative C-H bond coordination followed by electrophilic substitution.  In contrast, 
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dissociative exchange and oxidative cleavage are favored by electron rich and strongly σ-

donating ligands. 

 

 

Scheme 3.3.  Possible platinum(II) C-H bond activation routes.  

 

 C-H bonds are poor nucleophiles; therefore in order for C-H bond coordination to 

be kinetically and thermodynamically accessible, it is necessary to design systems in 

which the ligand being displaced is relatively weakly bound to the platinum(II) metal 

center.5,6  In the case of electron deficient metal centers, this means that poorly 

coordinating solvents and counterions are necessary; however, product inhibition can still 

occur, as in the alkane functionalization system developed by Periana et al.5,6 Electron 

rich metal centers with electron donating ligands could be envisioned to destabilize 

complexes in which relatively strong nucleophiles are bound, thereby facilitating C-H 

bond coordination via a dissociative exchange pathway.5,6 The use of electron donating 

ligands should also make the resulting alkylplatinum(II) complex more prone to 

oxidation.  This is important as oxidation follows C-H bond activation in both of the 

platinum-catalyzed, alkane functionalization systems described above.3,5,7 
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 Unfortunately, few ligands have been shown to induce dissociative exchange at 

platinum(II).6,8  Dissociative exchange has been demonstrated for platinum(II) complexes 

containing cis-coordinating, anionic carbon spectator ligands.8,9  Dissociative exchange in 

some of these complexes has even led to C-H bond activation via cyclometallation, but 

one of the original anionic carbon ligands is reductively eliminated with the proton of the 

C-H bond being cyclometallated.8,10,11  As this indicates, one of the problems with using 

anionic carbon donors as spectator ligands for C-H bond functionalization at platinum(II) 

is that C-H bond activation generates an anionic carbon donor for functionalization.3,4,5  

Development of a platinum-catalyzed C-H bond functionalization system involving 

anionic carbon spectator ligands is thus likely to be difficult.  It would therefore be useful 

to probe other anionic donors, while incorporation of these donors into chelating ligands 

could aid in stabilization. 

 While C-H bond activation studies are lacking for platinum(II) complexes 

supported by chelating ligands containing two anionic nitrogen donors, bidentate ligands 

containing one anionic nitrogen donor have been used to support platinum(II) complexes 

capable of catalyzing C-H bond functionalization.12,13  These complexes seem to activate 

C-H bonds by an associative exchange mechanism, and catalysis is relatively slow;12,13 

therefore, the use of a dianionic biindolyl ligand will be probed to determine whether it 

can increase rates of C-H bond activation and potentially functionalization. 

 

Results and Discussion 

 The disodium salt of 2,2’-biindolyl (1) was generated by deprotonation of 2,2’-

biindolyl with excess sodium hydride in tetrahydrofuran (THF) as illustrated in 
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scheme 3.4.  Excess sodium hydride was removed by filtration through celite, and 1 was 

recrystallized from a 1:1 mixture of THF and diethyl ether.  Heating a THF solution of 1 

and dimethyl(1,5-cyclooctadiene)platinum(II) in a Schlenk bomb at 100 ˚C generated 

1,5-cyclooctadiene and disodium (2,2’-biindolyl)dimethylplatinum(II) (2, scheme 3.4) 

over the course of 8 days, and 2 could be isolated in 57% yield.  2 was isolated with two 

equivalents of THF per equivalent of 2, probably because THF was coordinated to the 

sodium countercations.  The amount of THF isolated with 2 was quantified by 1H NMR 

spectroscopy following dissolution of 2 in CD3CN.  In order to facilitate crystallization of 

2, an excess of 15-crown-5 ether was added to a solution of 2 in diethyl ether.  Crystals of 

2 with two equivalents of 15-crown-5 ether were grown at -35 °C, and the structure is 

depicted in figure 3.1. 

 

 

Scheme 3.4.  Deprotonation of 2,2’-biindolyl and generation of 2 (cod = 1,5-

cyclooctadiene). 
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Figure 3.1.  Structural drawing of 2 with 15-crown-5 ether coordinating to the sodium 

countercations.  Three perspectives are shown; the 15-crown-5 ethers have been removed 

from the view on the right.  One molecule of diethyl ether is present in the unit cell, but it 

is not shown here.  Displacement ellipsoids are drawn at the 50% probability level.  

Selected bond lengths (Å) and angles (˚): Pt1-C18 2.0469(16); Pt1-C17 2.0536(16); Pt1-

N2 2.1210(12); Pt1-N1 2.1265(13); Pt1-Na2 2.9821(6); Pt1-Na1 3.0565(6); Na1-N1 

2.8602(14); Na2-N1 3.071(1); Na1-N2 3.898(1); Na2-N2 3.916(1); C18-Pt1-C17 

87.71(7); C18-Pt1-N2 96.97(6); C17-Pt1-N2 175.22(6); C18-Pt1-N1 175.28(6); C17-Pt1-

N1 96.82(6); N2-Pt1-N1 78.52(5); Na2-Pt1-Na1 129.051(19). 

 

 Only two other transition metal complexes with the 2,2’-biindolyl functionality 

have been synthesized and published; in these complexes, 2,2’-biindolyl was 

incorporated into a tetradentate ligand framework for nickel(II).14  The crystal structure 

of 2 with 15-crown-5 ether, shown in figure 3.1, is the first crystal structure of a 

transition metal complex with the 2,2’-biindolyl functionality bound directly to the metal 

center.  In the crystal structure, the distances between the sodium ions and platinum as 

well as between the sodium ions and one nitrogen atom (N1) are within the sum of the 
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van der Waals radii for these atoms; however, the distances are still relatively long, 

indicating only weak interactions.15 

 2 decomposes rapidly when exposed to air, either in the solid state or in solution.  

While 2 reacts rapidly with oxidants such as N-bromosuccinimide and copper(II) 

chloride, a clean oxidation of 2 has not yet been achieved.   The reaction of 2 with proton 

sources was also investigated.  Protonolysis of a platinum(II)-methyl bond is the 

microscopic reverse of methane C-H bond activation at platinum(II); and therefore, it 

may provide insight into potential C-H bond activations.  Furthermore, it has been 

demonstrated previously that dimethylplatinum(II) complexes containing a chelating 

ligand can be induced to activate C-H and C-D bonds following removal of a methide 

either by protonolysis or by abstraction with a Lewis acid.6,16 

 When 2 is dissolved in anhydrous methanol-d4 (CD3OD) under anaerobic 

conditions, both platinum-methyls are rapidly protonolyzed as well as the 2,2’-biindolyl 

ligand (scheme 3.5).  A 1H NMR of the reaction was taken within 35 minutes, and peaks 

corresponding to 2 can no longer be observed.  Instead, peaks can be observed which 

correspond to CH4, CH3D, and CH2D2.  H/D isotopic scrambling prior to displacement of 

methane from platinum is well precedented, and it could account for the generation of 

CH2D2 and CH4.6,17,18  Deuterolysis of 2,2’-biindolyl was indicated by peaks matching 

those of the 4, 4’, 5, 5’, 6, 6’, 7, and 7’ protons in non-ligated 2,2’-biindolyl.  The 

absence of peaks corresponding to the 3 and 3’ protons of 2,2’-biindolyl is likely due to 

deuteration in these positions; deuteration in the 3 position of indole has been 

demonstrated previously in acidic solutions.19 
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Scheme 3.5.  Deuterolysis of 2 in CD3OD. 

 

 In order to better control and observe the protonation of 2, 2 was reacted with 

only one equivalent of trifluoroethanol (TFE) both in THF-d8 and in acetonitrile-d3 

(CD3CN).  When the reaction of 2 with one equivalent of either TFE or TFE-d3 was 

performed in THF-d8 and monitored by 1H NMR spectroscopy, the peaks corresponding 

to 2 disappeared slowly over the course of approximately 4 days, while new peaks 

appeared, including peaks corresponding to CH4, CH3D, and CH2D2.  The reaction 

occurred at approximately the same rate whether TFE or TFE-d3 was used; although, 

further experiments need to be performed in order to obtain a more accurate measurement 

of the isotopic effect on the rate of protonolysis.  The observance of CH3D and CH2D2 

even when the protonolysis is performed with protio-TFE indicates C-D bond activation 

of THF-d8 by a methylplatinum(II) species as illustrated in scheme 3.6.  The natural 

abundance of deuterium, 0.0156%, is too low for any other source to account for the 

amounts of CH3D and CH2D2 generated.20  A new platinum-methyl species is never 

observed, and it is unclear at this time what happens to the 2,2’-biindolyl ligand because 

multiple overlapping peaks are observed between 6.2 and 7.8 ppm.  
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Scheme 3.6.  Protonation of 2 in THF-d8 with TFE leading to C-D bond activation of 

THF-d8.  Outside of the ligands specified, it is unclear what is bound to platinum.  

 

 This reaction likely proceeds by protonolysis of a platinum(II)-methyl bond in 2 

to generate a monomethylplatinum(II) complex with THF-d8 coordinated, as depicted in 

scheme 3.6.  Intramolecular C-D bond activation could then occur from the methyl(THF-

d8)platinum(II) complex (scheme 3.6) since oxygen-bound THF adducts of other 

monomethylplatinum(II) complexes have been shown to undergo intramolecular C-H 

bond activation and subsequent reductive elimination of methane.21,22  It should be noted 

that protonolysis of a bond between platinum(II) and 2,2’-biindolyl could also allow 

coordination of THF-d8, leading to C-D bond activation, and this pathway cannot be 

ruled out at this time.  A methylplatinum(II) species other than 2 is never observed during 

the course of the reaction; so, C-D bond activation of THF-d8 seems to be fast relative to 

protonolysis.  Further experiments need to be performed in order to determine which C-D 

bonds of THF-d8 are activated and to determine the specific platinum species involved in 

the reaction. 
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 When 2 was reacted with one equivalent of either TFE or TFE-d3 in CD3CN and 

the reaction was monitored by 1H NMR spectroscopy, the peaks corresponding to 2 

disappeared over the course of about 4 hours, while CH4 and CH3D were generated along 

with a new methylplatinum(II) species (3, scheme 3.7).  Only trace amounts of CH3D are 

generated when protio-TFE is used.  In the 1H NMR spectrum, 3 exhibits a Pt-CH3 peak 

that is shifted downfield from the corresponding peak for 2, and the Pt-CH3 peak of 3 has 

195Pt satellites with a coupling constant of 78 Hz.  This is a significant decrease in 195Pt-

CH3 coupling constant relative to 2 (2JPtH = 84 Hz).  Previous protonolyses of 

dimethylplatinum(II) species to generate monomethylplatinum(II) species have also been 

accompanied by a decrease in 195Pt-CH3 coupling constants.23,24  Based on this evidence, 

along with the generation of methane isotopologues and the results for the protonolysis of 

2 in THF-d8, 3 is tentatively assigned as an (acetonitrile)(monomethyl)platinum(II) 

complex (scheme 3.7). 

 

 

Scheme 3.7.  The reaction of 2 with 1 equivalent of TFE-d3 in CD3CN to generate 3. 

 

 At the same rate as the Pt-CH3 peak of 3 appears in the 1H NMR spectrum, new 

peaks are observed in the aryl region for at least one species, possibly 3, containing 2,2’-

biindolyl.  Unfortunately, the nature of this species is unclear due to the presence of 
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biindolyl)methylplatinum(II) in the MALDI mass spectrum.  While it seems likely that 

2,2’-biindolyl is bound to platinum in 3, its binding mode is unclear, and further 

characterization of this species is necessary. 

 Deuterium incorporation into the platinum(II)-methyl of 3 is indicated by a triplet 

at 1.13 ppm for Pt-CH2D in the 1H NMR spectrum.  This peak is significantly smaller 

when protio-TFE is used, and it exhibits a coupling constant of 1.5 Hz, indicative of two-

bond coupling to deuterium.25  The Pt-CH2D peak occurs only slightly upfield of the 

singlet with 195Pt satellites for Pt-CH3 at 1.15 ppm.  There appear to be 195Pt satellites for 

the triplet as well, but they are hard to resolve due to overlap with the 195Pt satellites of 

the Pt-CH3 peak.  Incorporation of deuterium into the platinum(II)-methyl of 3 indicates 

reversible H/D isotopic exchange following protonation of 2 and prior to loss of methane 

as formulated for the deuterolysis of 2 in CD3OD and similar to protonolyses of 

dimethylplatinum(II) complexes described previously.6,17,18   

 Preliminary investigations were made into the activation of benzene-d6 (C6D6) C-

D bonds by platinum species containing the 2,2’-biindolyl ligand.  It was envisioned that 

methide abstraction by B(C6F5)3 would lead to a monomethylplatinum(II) complex 

capable of activating C-H or C-D bonds similarly to the species involved in the activation 

of THF-d8 described above.  Previously, other methylplatinum(II) complexes have been 

shown to undergo methide abstraction by B(C6F5)3 in benzene, leading to the activation 

of benzene C-H bonds at platinum(II).16  2 was therefore dissolved in C6D6 containing 

B(C6F5)3.  While 2 is only sparingly soluble in C6D6, partial dissolution of 2 was 

observed in the presence of one equivalent of B(C6F5)3, and complete dissolution of 2 

occurred when greater than two equivalents were used.  Regardless of whether one or two 
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equivalents of B(C6F5)3 were dissolved in C6D6, reaction of this solution with 2 

immediately resulted in a mixture of CH4, CH3D, CH2D2, and CHD3, as observed by 1H 

NMR spectroscopy.  Thus, a monomethylplatinum(II) complex, similar to the one 

involved in THF-d8 activation (scheme 3.6), was likely generated by methide abstraction 

or labilization with B(C6F5)3.  Similar to systems characterized previously, reversible 

activation of the C-D bonds in C6D6 by the monomethylplatinum(II) complex, followed 

by irreversible loss of methane, would account for generation of the deuterated methane 

isotopologues observed in the reaction.24   

 As evidence for this pathway, no methane was generated when the reaction was 

attempted in a 2.5:1 volume:volume mixture of CD3CN and C6D6; and based on 1H NMR 

spectroscopy, generation of what seems to be a new monomethylplatinum(II) complex 

(4) containing 2,2’-biindolyl occurred.  4 has a Pt-CH3 peak at 1.29 ppm, and the 195Pt 

satellites for this peak have a coupling constant of 80 Hz, intermediate between the 

coupling constants observed for 2 (84 Hz) and 3 (78 Hz).  Coordination of CD3CN in 4 

may block C-D bond activation of C6D6.  This reaction was not clean, but 4 can be 

generated cleanly by the reaction of B(C6F5)3 with 2 in CD3CN.  The peaks for 4 are 

significantly different from those of 3, and this could be due to an interaction of 

[BCH3(C6F5)3]-
  with 4, due to coordination of trifluoroethoxide in 3, or due to different 

coordination modes of 2,2’-biindolyl in the two complexes.  When 4 was generated in 

situ, a peak could not be observed in the 1H NMR spectrum for [BCH3(C6F5)3]-; however, 

it may precipitate out of solution, or it may be broadened out due to an as yet unidentified 

process.  Further studies need to be performed in order to fully characterize 4 and to gain 
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more insight into activation of the C-D bonds in C6D6 using (2,2’-biindolyl)platinum(II) 

complexes. 

  

Conclusions 

 In an attempt to find a ligand capable of facilitating C-H bond activation and 

stable to subsequent reductive elimination, the chelating, dianionic bisnitrogen donor 

ligand, 2,2’-biindolyl, was used to synthesize sodium (2,2’-

biindolyl)dimethylplatinum(II) (2).  This is one of the first examples of a 2,2’-biindolyl 

functionality bound directly to a transition metal center.14  2 is relatively electron rich as 

evidenced by its reactivity with mild oxidants and proton sources.  

 Methide abstraction from 2, either by protonolysis or by reaction with B(C6F5)3, 

generates monomethylplatinum(II) species capable of activating C-H and C-D bonds.  

Protonolysis of a platinum(II)-methyl bond is observed when 2 is reacted with one 

equivalent of trifluoroethanol-d3 in either THF-d8 or CD3CN.  The protonolysis occurs 

significantly faster in CD3CN than in THF-d8, and a species is observed which has 

tentatively been identified as an (acetonitrile)monomethylplatinum(II) complex.  In THF-

d8, C-D bond activation of THF-d8 follows protonolysis, likely via a similar 

(solvento)monomethylplatinum(II) species.  In addition, activation of the C-D bonds in 

C6D6 was indicated by the generation of deuterated methane isotopologues following 

methide abstraction from 2 using B(C6F5)3.  While these results are promising for the 

development of a C-H bond functionalization system involving 2,2’-biindolyl-ligated 

platinum(II) complexes, further studies need to be performed in order to determine the 

platinum species involved in and resulting from these C-D bond activation reactions.   
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Experimental Section 

 General considerations.  All air- and/or moisture-sensitive compounds were 

manipulated using standard Schlenk techniques or in a glovebox under a nitrogen 

atmosphere as described previously.26  Under standard glovebox conditions purging was 

not performed between uses of petroleum ether, diethyl ether, benzene, toluene and 

tetrahydrofuran; thus when any of these solvents were used, traces of all these solvents 

were in the atmosphere and could be found intermixed in the solvent bottles. All NMR 

solvents were purchased from Cambridge Isotopes Laboratories, Inc.  The solvents for 

air- and moisture-sensitive reactions were dried by passage through a column of activated 

alumina followed by storage under dinitrogen. 2, 2, 2-trifluoroethanol-d3 (TFE-d3) was 

purchased from Cambridge Isotopes Laboratories, Inc and then dried over 3 Å molecular 

sieves.  Next, it was vacuum distilled onto tris(pentafluorophenyl)borane (B(C6F5)3) 

before being distilled into a Strauss flask and stored under dinitrogen.  2, 2, 2-

trifluoroethanol (TFE) was purchased from Aldrich.  It was dried over 3 Å molecular 

sieves, degassed by the freeze-pump-thaw method, and then stored in a Schlenk bomb 

under dinitrogen.  All other materials were used as received.  Sodium hydride, B(C6F5)3, 

and chlorotrimethylsilane were purchased from Aldrich.  2, 2’-biindolyl was synthesized 

according to a previously reported procedure27 or purchased from Syntastic.  Dimethyl(1, 

5-cyclooctadiene)platinum (II) was purchased from Strem Chemicals, Inc.  1H, 13C and 

19F NMR spectra were recorded on Varian Mercury 300 spectrometers at room 

temperature, unless indicated otherwise.  Chemical shifts are reported with respect to 
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residual internal protio solvent for 1H and 13C{1H} NMR spectra.  CFCl3 was used as an 

external standard to reference 19F NMR spectra at 0 ppm.  

 The single crystal X-ray diffraction sample was prepared by coating the crystal 

with Paratone N oil under nitrogen and then transferring the crystals to a microscope slide 

under argon.  The sample was selected and mounted on a glass fiber with Paratone N oil.  

Data collection was carried out on a Bruker Smart 1000 CCD diffractometer.  The 

structure was solved by direct methods.  All non-hydrogen atoms were refined 

anisotropically. 

 

Generation of the disodium salt of 2,2’-biindolyl (1).  In a glovebox, 2, 2’-

biindolyl (500 mg, 2.2 mmol) was dissolved in about 40 mL of THF, and sodium hydride 

was suspended in about 20 mL of THF.  The sodium hydride suspension was slowly 

added to the solution of 2,2’-biindolyl, and bubbling occurred.  This solution was stirred 

for 6 hours, and then it was filtered through Celite to remove unreacted sodium hydride.  

The solvent was evaporated under vacuum, and the solid was then precipitated overnight 

from a 1:1 mixture of diethyl ether and THF by cooling it to 0° C.  This solid was washed 

with diethyl ether and dried in vacuo.  A white solid (97%, 875 mg, 2.1 mmol) was 

isolated, and it contains about two equivalents of THF per molecule of 1 based on 1H 

NMR spectroscopy.  The THF likely coordinates to sodium, making it difficult to 

remove.  1H NMR (300 MHz, THF-d8): δ 1.78 (m, 8H, 2 eq. THF), 3.61 (m, 8H, 2 eq. 

THF),6.52 (td, 3JHH = 6.8 Hz, 4JHH = 1.5 Hz, 2H), 6.57 (td, 3JHH = 7.1 Hz, 4JHH = 1.7 Hz, 

2H), 6.65 (s, 2H), 7.18 (br d, 3JHH = 7.3 Hz, 2H), 7.28 (m, 2H). 13C {1H} NMR (75 MHz, 
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THF-d8): δ 26.4 (THF), 68.3 (THF), 95.6, 115.1, 115.8, 116.2, 118.2, 135.1, 149.9, 

150.3. 

 

Synthesis of disodium dimethyl(2,2’-biindolyl)platinum (II) (2).  In a 

glovebox, 1 (120 mg, 0.285 mmol), containing 2 equivalents of THF,  and dimethyl(1, 5-

cyclooctadiene)platinum (II) (165 mg, 0.495 mmol) were dissolved in 30 mL THF in a 

Schlenk tube.  The tube was sealed and heated for 8 days at 100 °C.  The tube was then 

cooled to 23 °C.  The solvent and volatiles were removed under reduced pressure.  The 

resulting solid was washed with toluene.  It was then extracted with THF, and the THF 

solution was filtered through celite.  Removal of solvent from the filtrate under reduced 

pressure yielded a light yellow powder (57%, 105 mg, 0.163 mmol) that decomposes 

rapidly when exposed to air.  Based on 1H NMR in CD3CN, two equivalents of THF-d8 

remained coordinated to sodium in the product.  1H NMR (300 MHz, CD3CN): δ 0.94 (s, 

2JPtH = 84 Hz, 6H), 1.80 (m, 8H, 2 eq. THF), 3.64 (m, 8H, 2 eq. THF), 6.43 (d, 4JHH = 

0.86 Hz, 2H), 6.60 (m, 4H), 7.28 (m, 2H), 7.71 (m, 2H); 1H NMR (300 MHz, THF-d8): δ 

1.08 (s, 2JPtH= 83 Hz, 6H), 6.54 (s, 2H), 6.60 (td, 3JHH = 6.8 Hz, 4JHH = 1.7 Hz, 2H), 6.64 

(td, 3JHH = 6.8 Hz, 4JHH = 1.7 Hz, 2H), 7.26-7.33 (m, 2H), 7.72-7.82 (m, 2H). 13C {1H} 

NMR (75 MHz, THF-d8): δ -21.4, 94.1, 115.0, 115.7, 117.3, 118.7, 134.6, 148.5, 150.52. 

 

Crystallization of 2 with 15-crown-5 ether.  In a glovebox, approximately 10 

mg (0.02 mmol) of 2 were dissolved in a minimal amount of diethyl ether. 

Approximately 0.3 mL (1.5 mmol) of 15-crown-5 ether were added, and some precipitate 
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formed.  The solution was filtered, and the filtrate was stored at -35 °C.  Yellow crystals 

formed over the course of approximately two weeks. 

 

Deuterolysis of 2 in CD3OD.  In a glovebox, 2 (6 mg, 0.009 mmol) was 

dissolved in about 0.6 mL of CD3OD.  The solution was initially bright red; but within 30 

minutes, it turned brownish red.  A 1H NMR spectrum was taken within 35 minutes, and 

no peaks corresponding to 2 could be observed.  New peaks corresponding to CH4, 

CH3D, and CH2D2 were apparent along with new peaks in the aryl region.  The peaks in 

the aryl region match those of the 4, 4’, 5, 5’, 6, 6’, 7, and 7’ protons in free 2,2’-

biindolyl: 1H NMR (300 MHz, CD3OD) δ 7.00 (m, 2H), 7.10 (m, 2H), 7.38 (d of m, 3J = 

8.10 Hz, 2H), 7.53 (d of m, 3J = 7.93 Hz).  The absence of peaks corresponding to the 3 

and 3’ protons of 2,2’-biindolyl is likely due to deuteration in these positions; deuteration 

in the 3 position of indole has been demonstrated in acidic solutions.  Based on the 1H 

NMR spectrum, the reaction was fairly clean, but it should be noted that broad peaks 

were present at 6.77 ppm and at -0.17 ppm. 

 

 Protonation of 2 with TFE-d3 in THF-d8.  Initial silylation of a J-Young NMR 

tube was performed by washing it with a 20% solution of chlorotrimethylsilane in 

methylene chloride.  It was then heated for about 6 hours at 98 ˚C.  In a glovebox, 5.0 mg 

(0.010 mmol) of 2 was dissolved in approximately 200 µL of THF-d8 and transferred to 

the J-Young NMR tube with another 200 µL of THF-d8.  3.6 µL (0.051 mmol) of TFE-d3 

was then used to make a 1.0 mL THF-d8 solution in a volumetric flask.  150 µL of this 

solution (0.0076 mmol of TFE-d3) was added to the J-Young tube.  The tube was quickly 
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sealed, and the solution was mixed, thoroughly.  The reaction was then monitored by 1H 

NMR spectroscopy.  Over the course of about 4 days, the peaks in the 1H NMR 

corresponding to 2 slowly disappeared, while new biindolyl peaks grew in along with 

CH4, CH3D, and CH2D2.  A new peak in the 1H NMR corresponding to Pt-CH3 was never 

observed.  Since less than one equivalent of TFE was used relative to 2, some 2 remained 

unreacted. 

 

 Protonation of 2 with TFE in THF-d8.  The procedure used for the protonation 

of 2 with TFE-d3 was repeated, but the J-Young NMR tube was not silylated prior to the 

reaction.  Also, 3.6 µL (0.049 mmol) of TFE was instead used to make the 1.0 mL THF-

d8 solution in a volumetric flask.  150 µL of this solution (0.0074 mmol of TFE) was 

added to the J-Young tube.  This reaction also took about 4 days, and similar results were 

obtained as with TFE-d3. 

 

Protonation of 2 with TFE-d3 and TFE in CD3CN.  In a glovebox, 10.7 mg 

(0.0213 mmol) of 2 was dissolved in approximately 200 µL of THF-d8 and transferred to 

a J-Young NMR tube with another 200 µL of THF-d8.  7.5 µL (0.11 mmol) of TFE-d3 

was then used to make a 1.0 mL THF-d8 solution in a volumetric flask.  200 µL of this 

solution (0.021 mmol of TFE-d3) was added to the J-Young tube.  The tube was quickly 

sealed, and the solution was mixed, thoroughly.  The reaction was then monitored by 1H 

NMR spectroscopy.  Over the course of about 4 hours, the peaks in the 1H NMR 

corresponding to 2 slowly disappeared, while peaks corresponding to CH4 and CH3D 

grew in along with a new set of peaks likely corresponding to an 
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(acetonitrile)methylplatinum(II) complex (3) containing 2,2’-biindolyl.  It is not clear at 

this time how 2,2’-biindolyl binds to platinum(II) in 3, and more than one species may be 

present.  Deuterium incorporation into the platinum-methyl was evidenced by Pt-CH3 and 

Pt-CH2D peaks.  Similar results were obtained when the reaction was performed with 

protio-TFE, but the peaks for CH3D and Pt-CH2D decreased in intensity.  1H NMR of 3 

(300 MHz, CD3CN): δ 1.13 (t, 2JDH = 1.5 Hz, coupling to 195Pt was hard to resolve, 2H, 

Pt-CH2D), 1.15 (s, 2JPtH = 78 Hz, 2H, Pt-CH3), 6.46 (m, 1H), 6.74 (m, 5H), 7.36 (m, 3H); 

7.64 (br d, 1H).  MALDI-TOF MS m/z calcd. for (acetonitrile-d3)(2,2’-

biindolyl)methylplatinum(II) (C19H13D3N3Pt): 484.12.  Found: 484.2.  

 

 C-D bond activation of C6D6 with 2.  2 (6 mg, 0.012 mmol) and B(C6F5)3 (15 

mg, 0.029 mmol) were dissolved in 0.4 mL C6D6.  The solution bubbled rapidly, and a 

yellow solution with red oil at the bottom was formed.  1H NMR spectroscopy revealed 

multiple products, including CH4, CH3D, CH2D2, and possibly CHD3.  When this 

reaction was attempted with less than 2 equivalents of B(C6F5)3, not all of 2 reacted, and 

some solid remained.  This reaction was also attempted by first dissolving 2 (11 mg, 

0.025 mmol) in 0.25 mL CD3CN.  Separately, B(C6F5)3 (14 mg, 0.027 mmol) was 

dissolved in 0.25 mL CD3CN.  0.1 mL C6D6 was added to each solution, and then the 

solution with B(C6F5)3 was slowly added to the solution of 2.  An orange solution was 

formed, and multiple products were observed by 1H NMR spectroscopy, including 4 (1H 

NMR described below); however, there were no peaks corresponding to methane or its 

isotopologues. 

 



 55 

 In situ generation of 4 by the reaction of 2 with B(C6F5)3 in CD3CN (6.0 mg, 

0.014 mmol) and B(C6F5)3 (14.1 mg, 0.028 mmol) were dissolved separately, each in   

0.2 mL CD3CN.  The B(C6F5)3 solution was then added to the solution of 2.  A yellow 

solution was formed in which 3 could be identified by 1H NMR spectroscopy.  1H NMR 

(300 MHz, CD3CN): δ 1.29 (s, 2JPtH = 80 Hz, 3H), 6.76 (t, 3JHH = 14 Hz, 1H), 6.88-7.00 

(m, 3H), 7.01-7.17 (m, 3H), 7.61-7.69 (m, 2H), 7.72 (d, 3JHH = 8 Hz, 1H). 

 

Table of Crystal Data and Structure Refinement. 

Table 3.1.  Crystal and refinement data for the structure of 2 with 15-crown-5 ether. 

Empirical formula [C18H16N2Pt]2-  
2 [C10H20NaO5]+ •  
0.5 C4H10O 

 Crystal system Orthorhombic 

Formula weight 987.98  Space group Pbca 

T (K) 100(2)  dcalc, g/cm3 1.566 

a, Å 14.2417(7)  θ range, deg 1.88 to 37.82 

b, Å 17.5788(9)  µ, mm-1 3.459 

c, Å 33.1713(16)  Abs. correction Semiempirical 
from equivalents 

Z 6  GOF 2.356 

Volume, Å3 4499.5(7)  R1,a wR2
b [I>2σ(I)] 0.0303, 0.0484 

a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo
2-Fc

2)2]/∑[w(Fo
2)2]1/2. 
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 Chapter 4 

 The Synthesis and Characterization of Iridium Complexes 

 Containing a Diphenolate Imidazolyl-Carbene Ligand 
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Abstract 

 1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolium chloride (2a) was synthesized 

in 42% yield, and then it was reacted with chloro-1,5-cyclooctadiene iridium(I) dimer to 

generate potassium (1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(I) (6).  6 is the first iridium complex stabilized by a 

diphenolate imidazolyl-carbene ligand.  In the solid-state structure of 6 with 18-crown-6 

ether, only one phenoxide is actually bound to the metal center, while the other 

phenoxide is coordinated to the potassium countercation along with 18-crown-6 ether.  

The solution-phase structure of this complex is fluxional and highly solvent dependent. 

  (Acetonitrile)(1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}-iridium(III) hexafluorophosphate (9) is generated by the 

oxidation of 6 with two equivalents of ferrocenium(III) hexafluorophosphate in 

acetonitrile.  Reaction of this complex with dihydrogen results in the generation of 

cyclooctane and a species capable of catalyzing the hydrogenation of cyclohexene to 

cyclohexane.  Displacement of cyclooctadiene from 9 is achieved by heating 9 in 

acetonitrile to generate tris(acetonitrile){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (10).  Heating 9 in acetonitrile 

containing greater than three equivalents of trimethylphosphine results in the generation 

of tris(trimethylphosphine){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) 

hexafluorophosphate (11), while a similar reaction with three equivalents of 

tricyclohexylphosphine yields (acetonitrile)bis(tricyclohexylphosphine){1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (12). 
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 The reaction of 12 with carbon monoxide in acetonitrile at 90 ºC generates an 

equilibrium mixture of 12 and (carbon monoxide)bis(tricyclohexylphosphine){1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (15).  15 has a 

CO-stretching frequency of 2064 cm-1.  Acetonitrile can also be displaced from 12 by 

reaction with chloride to generate (chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-

5-tert-butylphenyl)imidazolyl}iridium(III) (16).  In the solid-state structure of 16, the 

diphenolate imidazolyl-carbene ligand is distorted from C2v-symmetry toward C2-

symmetry.  Based on DFT calculations, this may be due to an antibonding interaction 

between the phenolates and the metal center in the highest occupied molecular orbital 

(HOMO) of the complex.  As indicated by cyclic voltammetry and bulk electrolysis, 16 

undergoes two reversible one-electron oxidations in methylene chloride at -0.22 V and at 

0.58 V.  Based on EPR spectra, mass spectra, and DFT calculations, the first oxidation 

seems to generate [(chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium]+ (16+) with the unpaired electron occupying a molecular 

orbital that is delocalized over both the metal center and the diphenolate imidazolyl-

carbene ligand. 
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Introduction 

 In the search for new homogeneous organometallic alkane functionalization 

catalysts, iridium has shown a significant amount of potential.  Iridium has previously 

been shown to catalyze alkane dehydrogenation, and iridium(III) complexes have been 

shown to perform some of the lowest temperature electrophilic alkane C-H bond 

activations yet reported.1-3  Rapid C-H bond activation is important because it is often the 

rate-limiting step in organometallic alkane functionalization systems.4  Similar to the 

methylplatinum(II) complexes involved in platinum-catalyzed methane functionalization, 

methyliridium(III) complexes have been shown to react with strong oxidants to release 

methyl-containing organic products.4,5 This is promising for the development of an 

iridium-catalyzed alkane functionalization system akin to the ones demonstrated with 

platinum(II).4 

 A potential catalytic cycle for oxidative iridium-catalyzed C-H bond 

functionalization is illustrated in scheme 4.1.  Similar to platinum-catalyzed C-H bond 

functionalization, an initial electrophilic C-H bond activation could generate an 

alkyliridium(III) complex.  A two-electron oxidation could then be used to activate this 

complex toward either nucleophilic attack or reductive elimination, both of which would 

result in release of a functionalized alkyl and regeneration of the initial iridium(III) 

catalyst.  Alternatively, reductive elimination could occur from the alkyliridium(III) to 

generate a functionalized alkyl and an iridium(I) complex, which could be reoxidized; 

however, functionalization of an iridium(III) alkyl by reductive elimination or 

nucleophilic attack is difficult.5   
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Scheme 4.1.  A potential catalytic cycle for oxidative iridium-catalyzed C-H bond 

functionalization. 

  

 While there is a significant amount of precedent for the electrophilic activation of 

alkane C-H bonds with iridium(III) complexes,3,6 there is less precedence for the 

oxidation and functionalization steps.5  Periana et al. demonstrated that reaction of a 

methyliridium(III) complex (1) with strong oxidants such as iodobenzene diacetate 

resulted in the release of functionalized methyl-containing organic products such as 

methyl acetate (scheme 4.2).5  While methane was produced as a side-product in 

reactions of 1 with PhIX2 (X = acetate or trifluoroacetate), the use of either bromine or 

iodine as the oxidant resulted in quantitative formation of the corresponding methyl 

halide.5  The mechanisms of these reactions are not clear; however, it is plausible that 

two-electron oxidation of 1 activates it toward reductive elimination or nucleophilic 

attack.  Unfortunately, a complex similar to 1 has not yet been generated via alkane C-H 

bond activation.5  Ideally, a ligand system could be found for iridium(III) which would 

facilitate both alkane C-H bond activation and oxidative functionalization of the resulting 

alkyliridium(III) complex. 
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Scheme 4.2.  The oxidative functionalization of 1 as demonstrated by Periana et al.5 

 

 To this end, iridium(III) complexes containing a diphenolate imidazolyl-carbene 

ligand (2, scheme 4.3) were targeted.  The relatively trans-effecting imidazolyl-carbene 

functionality should facilitate ligand substitution.7  Iridium(III) complexes often suffer 

from exceedingly slow rates of ligand substitution, and this could hinder C-H bond 

activation, which is likely to require initial coordination of the C-H bond to the metal 

center.8-11 

                  

Scheme 4.3.  Potential binding of 2 to iridium(III). 

 

 In order to facilitate two-electron oxidation of potential alkyliridium(III) 

complexes, 2 incorporates two phenolate functionalities.  Although several iridium(V) 

complexes have been isolated and characterized previously, the generation of iridium(V) 

species often requires strongly donating ligands and/or harsh oxidants.8,12-21  Phenolates 
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have previously been demonstrated to stabilize relatively high oxidation state complexes 

of other transition metals.22,23  Furthermore, phenolate ligands can be oxidized to generate 

stable ligand-centered radicals.23,24  Phenolate oxidation may occur at a lower potential 

than that required for generation of iridium(V), and similar ligand-centered oxidations 

have previously been used to facilitate reductive elimination from otherwise stable 

zirconium(IV) complexes.25  Thus, phenolate ligands could possibly reduce the potentials 

required for two-electron oxidation of iridium(III) complexes while still promoting 

reductive elimination following oxidation.26,27 

 Currently, there are very few examples of diphenolate imidazolyl-carbene 

ligands.28,29,30  A diphenolate imidazolyl-carbene ligand precursor (3a) has been 

synthesized previously in which a methylene unit bridges each phenolate to the 

imidazolyl ring as shown in scheme 4.4.30  The deprotonated ligand is unstable to a 

1,2 benzyl migration reaction at room temperature; so, metallations must be performed at 

low temperature.  Upon ligation, this tridentate ligand forms seven-membered 

metallacycles, and it has been used to support titanium and zirconium complexes.  

Published reports are lacking on the synthesis and metallation of a diphenolate 

imidazolyl-carbene ligand such as 2 (scheme 4.3), in which methylenes do not bridge the 

phenolates to the imidazolyl ring; although, the synthesis of a similar ligand for 

ruthenium has been reported concurrently to the work described below.31  It is envisioned 

that this type of ligand will be more thermally robust and will form more stable six-

membered metallacycles. 
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Scheme 4.4.  The synthesis of titanium and zirconium complexes with a diphenolate 

imidazolyl-carbene ligand as demonstrated by Kawaguchi et al.30 

 

Results and Discussion 

Synthesis of potential ligands and an iridium(I) complex.  The precursor to the 

diphenolate imidazolyl-carbene ligand, 1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolium 

chloride (2a), was synthesized in 42% overall yield using the procedure illustrated in 

scheme 4.5.  This procedure was adapted from the synthesis of monophenolate 

imidazolium salts by Waltman et al.32  Another potential precursor to an imidazolyl-

carbene ligand, 1,3-di(2-bromo-4-tert-butylphenyl)imidazolium chloride (4a) was 

synthesized in a similar manner (scheme 4.5).  It was envisoned that activation of the 

bromo-phenyl bonds of 4a by iridium could generate an iridium complex with a 

tridentate diphenyl imidazolyl-carbene ligand.  Attempts at metallating 3a involved initial 

deprotonation or reaction with silver(I) cations, followed by reaction with chloro-1-5-

cyclooctadiene iridium(I) dimer.  Unfortunately, a clean iridium species was never 

isolated from reactions involving 4a. 
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Scheme 4.5.  The synthesis of potential ligand precursors, 2a and 4a.  Overall yields are 

shown. 

 

 Attempts were made to metallate 2a and another potential ligand precursor, 2,6-

di(2-hydroxy-3,5-tert-butylphenyl)pyridine (5a, figure 4.1), with a variety of iridium(I), 

iridium(III), and iridium(IV) starting materials.  A clean iridium complex was never 

obtained in reactions involving 5a; however, crystals of 5a were obtained when it was 

heated with dihydrogen hexachloroiridate (IV) hydrate in ethanol-d6.  The structure of 5a 

is shown in figure 4.1.   

 A clean iridium complex was obtained when 2a was deprotonated with potassium 

hexamethyldisilazide (KHMDS) and then reacted with chloro-1,5-cyclooctadiene 

iridium(I) dimer at room temperature as shown in scheme 4.6.  Based on 1H NMR 

spectroscopy, clean deprotonation of 2a occurred at room temperature when it was 

reacted with greater than 3 equivalents of potassium hexamethyldisilazide in THF-d8.  

1,5-cyclooctadiene iridium(I) dimer was then added to the resulting solution, and 

potassium (1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(I) (6) was generated quantitatively as observed by 1H 
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NMR spectroscopy (fig. 4.2). The 18-crown-6 etherate of 6 was crystallized from 

benzene, and the structure is depicted in figure 4.3. 

 

a)      b)   

Figure 4.1. Illustration (a) and structural drawings (b) of 5a.  Displacement ellipsoids are 

drawn at the 50% probability level.  The positions of the hydrogen atoms were calculated 

from geometrical considerations.  The unit cell contains two more molecules of 5a. 

Selected bond lengths (Å) and angles (˚): C1C-O1C 1.366(3); C17C-O2C 1.378(3); O1C-

N1C 2.629(3); O2C-N1C 2.704(3); N1C-C7C-C6C-C1C -27.61(36); N1C-C11C-C12C-

C17C -38.28(36); C1C-O1C-O2C-C17C -127.61(20). 

 

 

Scheme 4.6.  Metallation of 2a to generate 6. 
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Figure 4.2.  1H NMR spectrum of 6 in THF-d8.  Note some benzene was isolated with 6, 

and it is present in solution.  Also, the “-CH3” peak is truncated as it has a much greater 

intensity than the other peaks. 

 

 2 is one of only a few diphenolate imidazolyl-carbenes that have been 

synthesized.28-31  It has improved thermal stability over previously synthesized 

diphenolate imidazolyl-carbenes that have a methylene group bridging each phenolate to 

the imidazolyl ring (scheme 4.4).30  Imidazolium salts such as 3a require deprotonation 

and metallation at -78 ˚C, while 2a can be deprotonated and metallated at room 

temperature.30  6 is the first iridium complex with a diphenolate imidazolyl-carbene 

ligand to be isolated, and the crystal structure of 6 with 18-crown-6 ether is the first 

example of an iridium(I) complex with a pendant, non-binding phenolate or alkoxide. 
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a)   b)  

Figure 4.3. Structural drawing of 6 with 18-crown-6 ether coordinating to potassium.  

Displacement ellipsoids are drawn at the 50% probability level.  A molecule of benzene 

is in the unit cell, but it is not shown here.  (a) Perspective taken perpendicular to the 

square plane of the complex.  (b) Perspective taken facing down the C15–Ir bond, and the 

18-crown-6 ether was removed for clarity.  Selected bond lengths (Å) and angles (˚): Ir-

C15 2.041(3); Ir-O1 2.0423(19); Ir-C(24) 2.093(3); Ir-C25 2.145(3); Ir-C28 2.159(3); Ir-

C29 2.174(3); N1-C15 1.369(4); N2-C15 1.348(4); O2-K 2.576(2); C15-Ir-O1 87.56(10); 

C15-Ir-C24 93.31(12); O1-Ir-C24 153.01(11); C15-Ir-C25 100.71(10); C15-Ir-C25 

39.06(12); C15-Ir-O1 87.56(10); C15-Ir-C24 93.31(12); O1-Ir-C24 153.01(11); C15-Ir-

C25 100.71(12); O1-Ir-C25 165.77(10); C24-Ir-C25 39.06(12); C15-Ir-C28 164.27(12); 

O1-Ir-C28 88.10(10); C24-Ir-C28 97.40(12); C25-Ir-C28 80.84(11); C15-Ir-C29 

156.85(12); O1-Ir-C29 86.99(10); C24-Ir-C29 81.68(12); C25-Ir-C29; 89.62(12); C28-Ir-

C29; 37.61(12). 
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 Similar NMR spectra were obtained for 6 with 18-crown-6 ether in THF-d8 and in 

C6D6, as well as for 6 in the absence of 18-crown-6 ether in THf-d8, in CD3CN, and in 

DMSO-d6.  One set of peaks is observed in the 1H NMR (fig. 4.2) for both phenolates, 

and only three peaks are observed for the cyclooctadiene.  Two peaks are observed for 

the two –CH2 groups in the imidazolyl ring.  These were assigned after a 2D-COSY 1H 

NMR spectrum was used to identify the three cyclooctadiene peaks.  The one-

dimensional 1H NMR experiment was repeated at various temperatures between -70 and 

60 ˚C.  All the peaks broaden significantly below -40 ˚C.  Between -40 and -70 ˚C, the 

two imidazolyl –CH2 peaks coalesce, and the cyclooctadiene -CH peak splits.  In the 13C 

NMR spectrum at ambient temperature, only one peak appears for the –CH2 groups, and 

one set of peaks appears for both phenolates and for cyclooctadiene.  It should be noted 

that the –CH peak of cyclooctadiene is not observed in the 13C NMR spectrum because it 

overlaps with the THF solvent peak at 67.45 ppm (referenced to the other THF peak at 

25.37 ppm), and this was confirmed by 1H-13C HMQC.33,34  

 Determination of the solution-phase structure of 6 has proven difficult.  The solid-

state structure of 6 with 18-crown-6 ether is not static in solution as two sets of peaks 

would be expected for the phenolates, and six peaks would be expected for the 

cyclooctadiene. Two isomers of 6 could be in equilibrium as depicted in scheme 4.6.  

Unfortunately, it is still not clear why two peaks are observed in the 1H NMR spectra for 

the imidazolyl –CH2 groups.  This would seem to indicate that rotation about the 

nitrogen-phenolate bonds is slower than conversion between the two isomers shown in 

scheme 4.6;35 however, it is not apparent why the two imidazolyl –CH2 peaks converge 

around -70 ˚C.  Slow rotation about the nitrogen-phenolate bonds at room temperature 
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should also cause the three cyclooctadiene 1H NMR peaks to split into six peaks.  While 

only three peaks are observed for cyclooctadiene, this explanation may still be valid 

because these peaks are relatively broad. 

 Understanding the solution-phase chemistry of 6 is complicated by the fact that its 

1H NMR spectrum is significantly different at high concentrations, in C6D6, and in 

methanol-d4.  Both in C6D6 and at high concentrations in THF-d8 the 1H NMR peaks for 

6 in the absence of 18-crown-6 ether broaden significantly.  This is possibly indicative of 

the equilibrium, shown in scheme 4.6, being slowed down by intermolecular interactions 

between iridium complexes.  Dimers of a similar (1,5-cyclooctadiene)iridium(I) complex, 

containing a diphenolate pyridine ligand with a sodium countercation and depicted in 

figure 4.4 have been synthesized and crystallized by Ross Fu from non-polar solvents.36  

In these dimers, a pendant phenoxide from each iridium center bridges the two sodium 

countercations.  In C6D6, this interaction could be disrupted in the presence of 18-crown-

6 ether as indicated by sharpening of the 1H NMR peaks for 6. 

 

   

Figure 4.4.  A dimer, synthesized and crystallized by Ross Fu, of (1,5-

cyclooctadiene)iridium(I) centers each containing a diphenolate pyridine ligand with a 

sodium countercation.36 
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 The 1H NMR spectrum of 6 in methanol-d4, shown in fig. 5, is similar to the 

spectrum of 6 in THF-d8; however, there are two -CH peaks and four –CH2 peaks for 

cyclooctadiene bound to iridium(I).  The rest of the peaks are fairly sharp with one set of 

peaks for the phenolates and two imidazolyl –CH2 peaks.  Removal of methanol and 

dissolution in THF-d8 simply leads back to a spectrum resembling the one shown in 

figure 4.2.   

 

 

Figure 4.5.  1H NMR spectrum of 6 in methanol-d4. The methanol peak at 4.90 ppm and 

the “-CH3” peak are truncated. 

 

 It is unclear why in methanol-d4 the 1H NMR peaks for coordinated 

cyclooctadiene split into two sets.  Simple phenoxide stabilization by the protic solvent, 

decreasing the rate of isomerization is unlikely since two sets of peaks for the phenolates 

would also be expected.  It is possible that reversible protonation of a phenolate leads to a 
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methoxoiridium(I) complex (6’) as illustrated in scheme 4.7.  While the pKa of methanol 

should be much higher than that of the phenol, this should be compensated for by the 

formation of a bond between iridium and methoxide and by the high concentration of 

methanol; thus, it is possible that 6’ is the major species in solution, and it gives rise to 

the 1H NMR spectrum shown in figure 4.5.  This structure would explain why only a 

protic solvent gives rise to six peaks for iridium-coordinated cyclooctadiene.  An 

isomerization similar to the one depicted in scheme 4.8 might be expected in which the 

bound methoxide is protonated and displaced by a molecule of methanol in solution.  

This type of isomerization could equivalence the two sets of cyclooctadiene peaks in a 

similar manner to the isomerization proposed for 6 in THF and shown in scheme 4.6; 

however, this isomerization must be relatively slow on the NMR time scale as it would 

lead to only three peaks for iridium-coordinated cyclooctadiene.  The carbene may only 

shift to a position trans to the other olefin of cyclooctadiene in the phenolate 

isomerization (scheme 4.6) because the non-ligating phenolate is positioned to effect this 

isomerization by being on the other side of the carbene.  Further studies need to be 

performed in order to confirm these hypotheses on the solution-phase structure of 6 and 

on its solvent dependence. 

 

Scheme 4.7.  Reversible formation of 6’ in methanol-d4. 
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Scheme 4.8.  A possible isomerization of 6’ in methanol-d4 that is not observed. 

 

 An interesting result was obtained when attempts were made to grow crystals of 6 

following salt metathesis with bis(triphenyl-phosphoranylidene)ammonium ([PPN]+) 

chloride. 6 reacted slowly with PPN to generate crystals of µ-

(amidotriphenylphosphorus)-µ-hydroxobis((1,5-cyclooctadiene)iridium(I)) (7) and 

bis(triphenylphosphoranylidene)ammonium bis{1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) (8), the structures of which are shown in figures 4.6 

and 4.7, respectively.  Although the crystal structure of 8 is of poor quality, it is of 

interest because it shows that 2 can bind facially; there are relatively few examples of 

facial coordination for similar diphenolate pincer ligands.37-39  The crystal structure of 7 

is the first of an iridium-ligated phosphoraniminate, and 7 is the first example of a 

phosphoraniminate ligand bridging two iridium centers.  The phosphorus-nitrogen bond 

length for 7 (1.551(11) Å) is characteristic of a phosphorus-nitrogen double bond.40 

 [PPN]+ has been shown previously to react with alkoxides and hydroxides to 

generate Ph2P(O)NPPh3, a small amount of triphenylphosphine oxide, and some other 

unidentified products.41  The presence of triphenylphosphine oxide indicates cleavage of 

the phosphorus-nitrogen bond although the nitrogen-containing product was not 

identified.  A similar reaction with the non-ligating phenoxide of 6 could explain the 
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generation of the bridging triphenylphosphoraniminate ligand in 7.  Contamination of the 

sample with water or dioxygen could account for the bridging hydroxide.  The generation 

of 8 requires an oxidant; so, this could also be accounted for by contamination with 

dioxygen. 

                               a)   

b)            

Figure 4.6.  Illustration (a) and structural drawings (b) of 7 with displacement ellipsoids 

drawn at the 50% probability level.  Selected bond lengths (Å) and angles (˚): Ir1-N1 

2.069(10); Ir1-C9 2.071(14); Ir1-C10 2.088(12); Ir1-O1 2.093(9); Ir1-C14 2.112(12); Ir1-

C13 2.127(12); Ir1-Ir2 2.7709(9); Ir2-C1 2.067(13); Ir2-O1 2.076(11); Ir2-C5 2.089(11); 

Ir2-C6 2.093(11); Ir2-C2 2.096(11); Ir2-N1 2.098(10); P1-N1 1.551(11); P1-C23 

1.807(15); P1-C29 1.823(12); P1-C17 1.842(14); P1-N1-Ir1 137.9(6); P1-N1-Ir2 

137.1(6); Ir1-N1-Ir2 83.4(4); Ir2-O1-Ir1 83.3(4). 
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a)          b)            

Figure 4.7. Illustration (a) and structural drawing (b) of 8.  [PPN]+ and solvent fragments 

have been removed for clarity.  Disorder in the tert-butyl groups should be noted. 

 

Synthesis and chemistry of iridium(III) complexes.  In acetonitrile, 6 was fairly 

cleanly oxidized to (acetonitrile)(1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (9) using ferrocenium(III) 

hexafluorophosphate as illustrated in scheme 4.9.  This complex was characterized by 1H, 

13C, 31P, and 19F NMR spectroscopy as well as fast atom bombardment (FAB+) high 

resolution mass spectrometry  (HRMS).  In the 1H NMR spectrum, there is one set of 

peaks for the two phenolates; there are two peaks for the –CH2 groups of the imidazolyl 

ring; and, there are six peaks for iridium-coordinated cyclooctadiene.  The peaks for 

coordinated cyclooctadiene are shifted significantly downfield from their positions in 6.  

Based on the NMR data and the observance of the molecular ion in the mass spectrum, 9 

was identified as an octahedral iridium (III) complex with the diphenolate carbene ligand 

bound meridionally. 

 Simply heating 9 at 90 ˚C in acetonitrile results in the displacement of 

cyclooctadiene by acetonitrile to generate tris(acetonitrile){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (10) as shown in scheme 4.9.  
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Free cyclooctadiene is observed when the reaction is performed in CD3CN.  When 10 is 

generated in CH3CN, isolated, and then redissolved in CD3CN, the two peaks for iridium-

coordinated CH3CN appear in the 1H NMR spectrum at 2.53 and 2.68 ppm with an 

approximate ratio of 2:1.  These peaks are not present when 10 is generated in CD3CN.  

Furthermore, these peaks disappear over time in CD3CN, while the peak for 

uncoordinated CH3CN at 1.97 increases by approximately the same amount.  Mass 

spectrometry confirmed the assignment of 10 as tris(acetonitrile){1,3-di(2-hydroxy-5-

tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (scheme 4.9).  The fact 

that cyclooctadiene can simply be displaced from 9 by acetonitrile indicates weak binding 

to iridium(III) by cyclooctadiene. 

 

 

Scheme 4.9.  The synthesis of 9 and 10 from 6. 

 

 9 reacts with dihydrogen to generate cyclooctane at room temperature in THF 

under 1 atm of dihydrogen.  This leads to a species that catalyzes the hydrogenation of 

cyclohexene to cyclohexane.  In order to monitor the reaction, catalytic hydrogenation of 

cyclohexene was performed under 900 psi of dihydrogen in a high pressure sapphire 

NMR tube.  The concentrations of cyclohexene, cyclohexane, and dihydrogen in solution 

were monitored by 1H NMR spectroscopy, and the results are plotted in figure 4.8.  As 
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shown by the graph in figure 4.8a, diffusion of dihydrogen from the gas phase into 

solution was slow, and the concentration of dihydrogen in solution was lower than the 

concentration of olefin.  Surprisingly, the disappearance of cyclohexene and the 

generation of cyclohexane still followed a first-order dependence on cyclohexene 

concentration (figure 4.8b).  This seems to indicate a zero-order dependence on 

dihydrogen concentration, meaning that reaction of the catalyst with dihydrogen is much 

faster than reaction of the catalyst with cyclohexene; however, further studies need to be 

performed in order to confirm this preliminary result. 

a)  

b)  

Figure 4.8.  Catalysis of cyclohexene hydrogenation using catalyst precursor 9 in THF-d8 

under 900 psi of dihydrogen.  a) Plot of cyclohexene, cyclohexane, and dihydrogen 

concentrations vs. time.  b) The first-order dependence of the reaction on cyclohexene 
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concentration as determined both from cyclohexene disappearance ([A] = [cyclohexene]) 

and from cyclohexane appearance ([A] = [cyclohexene]0 – [cyclohexane]).  It should be 

noted that [cyclohexene]0 represents the initial concentration of cyclohexene. 

 

 While further studies need to be performed in order to determine the exact rate of 

catalysis, a minimum first-order rate constant for hydrogenation of cyclohexene can be 

approximated at 1 x 10-4 s-1 (figure 4.8b).  This rate is fairly low in comparison to many 

other iridium-catalyzed olefin hydrogenations, but most other iridium-catalyzed 

hydrogenations involve either an iridium(I) catalyst precursor or a dihydridoiridium(III) 

catalyst precursor.42-45  While generation of an iridium(I) complex or a 

dihydridoiridium(III) complex from 9 is unlikely to occur at least initially, 9 may be 

converted to a monohydrido iridium(III) complex by displacement of acetonitrile with 

dihydrogen, followed by deprotonation with a coordinated phenoxide.  Similar 

monohydrido iridium(III) complexes have been generated by coordination of dihydrogen 

and subsequent deprotonation; furthermore, some of these monohydrido iridium(III) 

complexes have proved to be competent precursors to hydrogenation catalysts.45-49 

 In an attempt to determine the fate of iridium in hydrogenations with 9, 9 was 

dissolved in THF-d8 and sealed in a J-Young NMR tube at room temperature under 1 atm 

of dihydrogen (the ratio of H2 to 9 in the tube was approximately 10:1).  By 1H NMR 

spectroscopy, only trace amounts of cyclooctene were ever observed; no iridium-hydride 

signals were observed; and, only broad peaks were observed for the diphenolate carbene 

ligand.  When the solvent and other volatiles were then removed under reduced pressure 

and the resulting solid was headed in CD3CN at 90 ˚C, 10 was generated.  The generation 
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of 10 seems to indicate that the diphenolate imidazolyl-carbene ligand remains bound to 

iridium throughout the catalysis; however, it is still unclear what other ligands are bound 

to iridium during the catalysis.  While iridium hydrides were not observed during 

hydrogenation, it is still possible that they are generated in small amounts or that they 

react rapidly.  Furthermore, it would be difficult to observe an iridium hydride due the 

broadening which occurs for the peaks of the other ligands bound to iridium. 

In order to further probe the coordination environment of the diphenolate carbene 

iridium(III) complexes, 9 was reacted, in separate experiments, with trimethylphosphine 

and tricyclohexylphosphine as shown in scheme 4.10.  In each case, greater than three 

equivalents of phosphine were used.  Based on 1H NMR spectroscopy, the reactions 

occurred slowly at room temperature, but they went to completion when heated for 

greater than 12 hours at 90 ˚C.  During this time, cyclooctadiene was cleanly displaced 

from the metal center.  In the reaction with trimethylphosphine, three equivalents of 

phosphine reacted to generate tris(trimethylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (11) as shown in scheme 4.10; 

however when greater than three equivalents of tricyclohexylphosphine were reacted with 

9, only two equivalents of phosphine bound to the metal center, resulting in the formation 

of (acetonitrile)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (12) (scheme 4.10). 

With respect to 12, only one singlet is observed for the coordinated 

tricyclohexylphosphines in the 31P NMR spectrum, and only one set of peaks is observed 

in the 1H NMR spectrum for both phenolates.  Taken together, this data indicates that the 

tricyclohexylphosphine ligands bind trans to each other, while the diphenolate carbene is 



 82 

bound meridionally as shown in scheme 4.10.  The 1H NMR spectrum of 11 also contains 

only one set of peaks for both phenolates, but the 31P NMR spectrum of 11 contains a 

doublet and a triplet with a 2:1 ratio of intensities.  The identity of each complex was 

confirmed by high resolution mass spectrometry (FAB+), and an elemental analysis was 

obtained for 12. 

 

 

Scheme 4.10.  Displacements of cyclooctadiene from 9 with trialkylphosphines. 

 

12 was reacted with 1.5 equivalents of trimethylphosphine in order to probe the 

steric requirements for coordination trans to the carbene.  After heating the reaction for 

approximately 12 hours at 90 ˚C, a mixture of iridium(III) phosphine complexes was 

generated as indicated by 31P NMR spectroscopy (scheme 4.11).  11 and unreacted 12 
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were present in this mixture as well as (acetonitrile)(tricyclohexylphosphine)-

(trimethylphosphine){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) 

hexafluorophosphate (13) and (acetonitrile)bis(trimethylphosphine){1,3-di(2-hydroxy-5-

tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (14) which were 

tentatively identified based on the 31P NMR spectrum.  The only triplet in the 31P NMR 

spectrum belonged to 11.  This indicates that significant amounts of 

bis(tricyclohexylphosphine)(trimethylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate were not generated, likely due 

to the imposition of substantial steric constraints by the tricyclohexylphosphine ligands. 

 

 

Scheme 4.11.  The reaction of 12 with 1.5 equivalents of trimethylphosphine. 

 

12 was reacted with carbon monoxide in order to probe electronic effects on 

ligands binding trans to the carbene.  In acetonitrile, an equilibrium mixture of 12 and 

(carbon monoxide)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (15) (scheme 4.12) forms over 

the course of about 3 days when the reaction is performed at 90 ˚C under approximately 

2.8 mL of carbon monoxide at 1.3 atm.  The maximum ratio of 12 to 15 in solution is 

approximately 2:1.  15 is converted back to 12 when the solution is degassed and 
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reheated to 90 ˚C.  This indicates that generation of 15 from 12 is reversible at 90 ˚C.  

Determination of an equilibrium constant is complicated by the formation of yellow 

crystals above the surface of the solution during the reaction.  Single crystal X-ray 

diffraction indicated that these crystals contain a 4:1 mixture of 12 and 15 (figure 4.9).  

Both complexes have the diphenolate carbene ligand coordinated meridionally with the 

tricyclohexylphosphine ligands trans to each other as depicted in figure 4.9.  It should be 

noted that the diphenolate carbene ligand is relatively planar in this structure with a Cipso-

O1-O2-Cipso torsion angle of only 2.9˚.  9 was also reacted with carbon-13C monoxide to 

confirm the solution-phase geometry of 15 and to check for an isotope shift in the 

infrared spectrum.  The resulting iridium(III)complex containing carbon-13C monoxide 

(15’) displays a triplet in the 13C NMR spectrum and a doublet in the 31P NMR spectrum 

as expected.  The infrared CO-stretching frequency of 15 is 2064 cm-1; and as expected, 

an isotopic shift is observed for 15’, which has a 13CO-stretching frequency of 2016 cm-1 

(2018 cm-1 calculated). 

 

 

Scheme 4.12.  Equilibrium between 12 and 15 which occurs in acetonitrile at 90 ˚C under 

an atmosphere of carbon monoxide. 
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Figure 4.9. Structural drawings obtained from the crystals containing an approximately 

4:1 mixture of 12 and 15.  Displacement ellipsoids are drawn at the 50% probability 

level.  [PF6]- has been removed from the bottom-right structure.  In the unit cell, there is a 

78% occupancy of positions N3A, C60A, and C61A of 12 and a 22% occupancy of 

positions C3B and O3B of 15.  The Cipso-O1-O2-Cipso torsion angle is 2.9˚. Selected bond 

lengths (Å) and angles (˚):Ir1-C1 1.9694(19); Ir1-O2 2.0331(14); Ir1-O1 2.0390(13); Ir1-

N3A 2.055(8); Ir1-C3B 2.14(4); Ir1-P2 2.4348(5); Ir1-P1 2.4437(5); C1-Ir1-O2 91.57(8); 

C1-Ir1-O1 92.21(7); O2-Ir1-O1 176.10(5); C1-Ir1-N3A 178.8(2); O2-Ir1-N3A 87.8(2); 
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O1-Ir1-N3A 88.5(2); C1-Ir1-C3B 174.1(10); O2-Ir1-C3B 94.4(10); O1-Ir1-C3B 

81.9(10); N3A-Ir1-C3B 6.7(12); C1-Ir1-P2 92.79(6); O2-Ir1-P2 91.00(5); O1-Ir1-P2 

89.77(4); N3A-Ir1-P2 86.2(2); C3B-Ir1-P2 87.5(11); C1-Ir1-P1 94.97(6); O2-Ir1-P1 

89.17(5); O1-Ir1-P1 89.56(4); N3A-Ir1-P1 86.0(2); C3B-Ir1-P1 84.8(11); P2-Ir1-P1 

172.229(16); Ir1-C3B-O3B 178(4); Ir1-N3A-C60A 175.1(7); N3A-C60A-C61A 

177.1(7); Cipso-O1-O2-Cipso -2.71(22). 

 

While the infrared CO-stretching frequency is within the range of other cationic 

diphosphine iridium(III) carbonyl complexes,50-52 it is toward the upper end of the normal 

range for transition metal carbonyl complexes (1820-2150 cm-1).45  This is indicative of 

relatively weak π-donation from iridium to the carbonyl π*-orbital, and this is consistent 

with the fact that the carbonyl- (15) and acetonitrile- (12) iridium(III) complexes are in 

equilibrium at elevated temperatures.  While the crystal structure shown in figure 4.9 of 

15 and 12 could provide additional insight into bonding between the iridium and the 

carbonyl, this analysis is precluded by inaccuracy in the bond lengths possibly due to 

only 22% occupancy of 15 in the unit cell. 

  Acetonitrile can also be displaced from 12 by chloride to generate the air-stable 

complex, (chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) (16), as shown in scheme 4.13.  Crystals of 16 were 

obtained from methylene chloride (CH2Cl2), and the structure, as determined by single 

crystal X-ray diffraction, is illustrated in figure 4.10.  Two isomers of 16 (16’ and 16’’) 

occupy the unit cell along with two molecules of methylene chloride.  The metal center, 

the chloride, the two oxygens, and the carbene carbon lie approximately in one plane for 
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both isomers; however, the rings of the diphenolate imidazolyl ligand do not lie in this 

plane for either isomer.  Instead, the diphenolate imidazolyl ligand is approximately C2-

symmetric.  In order to compare the degree to which the diphenolate imidazolyl ligand of 

each isomer is distorted from C2v-symmetry towards C2-symmetry, the Cipso-O1-O2-Cipso 

torsion angle can be compared.  For 16’, this angle is -15.72(26)˚; whereas for 16’’, this 

angle is 35.19(26)˚.  The diphenolate imidazolyl ligand of 16’’ is thus significantly more 

distorted from C2v-symmetry than the corresponding ligand on 16’.  It should be noted 

though that there is some disorder in the crystal structure, and this could affect the 

observed angles; furthermore, differences between the two isomers may be caused to 

some extent by the packing of the molecules in the crystal.  Still, each isomer is 

significantly distorted from C2v symmetry. 

 

 

Scheme 4.13.  Reaction of 12 with tetramethylammonium chloride to generate 16. 

  

 Cyclic voltammograms of 16 have been obtained with 0.3 M tetrabutylammonium 
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observed, as shown in figure 4.11.  One occurs at -0.22 V (ΔEp = 98 mV at a scan rate of 
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THF, oxidation waves are centered at approximately the same positions, but ΔEp 

increases to about 200 mV for each oxidation at a scan rate of 0.100 V/s; however, ΔEp 

for the ferrocene(II)/ferrocenium(III) couple is also about 200 mV.  16 was only 

sparingly soluble in DMF, and the wave for the second oxidation became only quasi-

reversible.  This was indicated by significantly less current being passed for the reduction 

peak relative to the oxidation peak.  Furthermore, overlap of the first oxidation wave with 

the ferrocene(II)/ferrocenium(III) wave hampered an accurate measurement of its 

potential. 

a)                  

b)              

Figure 4.10. Structural drawing of the two conformers in the unit cell of 16 with 

displacement ellipsoids drawn at the 50% probability level.  Two molecules of methylene 
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chloride are also in the unit cell.  a) Isomer 16’ is shown.  The perspective in the first 

view is directed approximately bisecting the P1A-Ir1-O1A angle; the perspective in the 

second view is directed down the C15A-Ir1 bond.  The Cipso-O1-O2-Cipso torsion angle is 

-15.72(26)˚.  b) Isomer 16’’ shown with approximately the same perspectives. The Cipso-

O1-O2-Cipso torsion angle is 35.19(26)˚. 

 

 

Figure 4.11.  Cyclic voltammogram of a 3 mM CH2Cl2 solution of 16 at a scan rate of 

100 mV/s with 0.3 M [NBu4][BF4] as the supporting electrolyte. 

 

 Controlled potential electrolysis of 16 in CD2Cl2 was used to determine how 

many electrons are involved per molecule of 16 in each oxidation.  Coulometric oxidation 

of 16 at a potential positive of the first oxidation wave (0.25 V) resulted in the passage of 

0.92 faradays per mole, indicating that the wave at -0.22 V corresponds to a one-electron 

oxidation of 16. The controlled potential electrolysis was continued at a potential positive 

of the second wave (0.96 V), and this resulted in the passage of 0.99 faradays per mole, 

indicating that the wave at 0.58 V also corresponds to a one-electron oxidation.   
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 In order to probe whether the diphenolate imidazolyl ligand of 16 is being 

oxidized, a cyclic voltammogram of 2 was obtained in DMF, and it is shown in figure 

4.12.  Two irreversible oxidations occur at 0.73 and 0.94 V.  Even though the oxidations 

of 2 occur at significantly higher potentials than even the highest potential at which 16 is 

oxidized, oxidation of the diphenolate imidazolyl-carbene ligand cannot be ruled out in 

the oxidation of 16 because the metallated ligand is likely to have significantly different 

oxidation potentials from the triply protonated, non-ligated diphenol imidazolium 

chloride (2).53,54 

 

 

Figure 4.12.  Cyclic voltammogram of a 0.3 mM DMF solution of 2 at a scan rate of 100 

mV/s with 0.3 M [NBu4][BF4] as the supporting electrolyte. 

 

 EPR samples were obtained from the controlled potential electrolysis of 16, both 

before and after the second oxidation.  The sample obtained after the first oxidation of 16 

had the EPR spectrum shown in figure 4.13.  The EPR spectrum is indicative of an 

S = 1/2 species with g|| = 2.19 and g⊥ ≈ 1.94.  It should be noted that at temperatures as 

low as 7 K, hyperfine splitting cannot be resolved.  The same spectrum is obtained when 
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16 is oxidized with less than one equivalent of ferrocenium(III) hexafluorophosphate.  

Mass spectroscopy of the EPR sample from the controlled potential electrolysis indicated 

a molecular ion with the mass of 16. 

 

 

Figure 4.13. EPR spectrum at 7 K of the solution resulting from one coulometric 

oxidation (0.92 faradays per mole) of 16. 

 

 After the second one-electron coulometric oxidation of 16 was completed, the 

resulting solution was analyzed by both EPR spectroscopy and 31P NMR spectroscopy.  

The EPR spectrum is shown in figure 4.14.  It should be noted that it is unclear whether 

ferrocenium(III) hexafluorophosphate contributes to this spectrum; it is present in trace 

amounts because it was used as the sacrificial oxidant.  Ferrocenium(III) 

hexafluorophosphate also has a peak in its EPR spectrum at approximately 1500 G; 

however, the rest of its spectrum at 18 K does not match the one shown in figure 4.14.  

Mass spectrometry of the EPR sample obtained from the second coulometric oxidation of 

16 indicated a molecular ion with the mass of 16.  The dominant peak in the 31P NMR 
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spectrum was for hexafluorophosphate from the ferrocenium(III); however, three other 

peaks were present, and they appeared at 138.86, 130.71, and 31.08 ppm. 

 

 

Figure 4.14.  EPR spectrum at 18 K of the solution resulting from two coulometric 

oxidations (each approximately 1 faraday per mole) of 16. 

 

 The one-electron oxidation product of 16 is likely 

[(chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium]+ (16+) as evidenced by the reversible one-electron 

oxidation of 16 under electrochemical conditions, the generation of the same species by 

chemical oxidation with one equivalent of ferrocenium, and the observance of a mass 

corresponding to 16+ for this species.  More than one possibility exists for the type of 

orbital in 16 from which the electron is removed to generate the relatively stable radical-

cation, 16+.  The oxidation of iridium(III) complexes to generate iridium(IV) complexes 

and the oxidation of phenolates to generate phenoxyl radicals are both well precedented.  

While oxidations of iridium(III) to iridium(IV) and oxidations of phenolate ligands to 
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generate phenoxyl radicals typically occur at potentials greater than the oxidation of 16 at 

-0.22 V, the oxidation of 16 falls within the range observed for both types of oxidation.53-

64  In the EPR spectrum, hyperfine coupling might be expected in either case because of 

spin coupling to the iridium nucleus (191Ir, 37%; 193Ir, 63%: both I = 3/2) and to the 

phosphorus nuclei (31P: I = 1/2) or because of spin coupling to hydrogen (1H: I = 1/2) and 

to nitrogen (14N, 99.635%: I = 1; 15N, 0.365%: I = 1/2).55,65  There is precedent, though, 

for iridium(IV) complexes in which the hyperfine splitting cannot be resolved at fairly 

low temperatures, and it is also possible that hyperfine coupling is not resolved due to a 

high degree of delocalization in the singly occupied orbital.63  The g-values for the EPR 

spectrum are characteristic of a metal-centered radical as they differ significantly from 

the free electron value of 2.0023 and from values for previously characterized phenoxyl 

radicals; however, this g-value could simply indicate some metal character in a singly 

occupied orbital that is delocalized over both the metal center and the ligands.53,60,65-67 

 With regards to the second one-electron oxidation of 16, the reversibility of the 

second oxidation of 16 in the cyclic voltammogram and the appearance of the molecular 

ion in the mass spectrum for 16 following two-electron coulometric oxidation seem to 

indicate that [(chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium]2+ (162+)  is the initial product.  Based on one-electron 

oxidation potentials obtained previously for iridium(IV) complexes and for phenolates, it 

is possible that 162+ could be either an iridium(V) species or an iridium(IV) species with 

a ligand-centered radical.20,53,54,60,61,63,64  Unfortunately, the appearance of peaks in both 

the EPR and NMR spectra of the two-electron oxidation product seems to indicate that 
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162+ is converted to other products over time, and this precludes a detailed electronic 

description of 162+.  

 In an attempt gain further insight into the one-electron oxidation of 16, Dr. Nilay 

Hazari performed full geometry optimizations and calculations of the gas-phase SCF 

energies on the model complexes, (chloro)bis(phosphine){1,3-di(2-

hydroxyphenyl)imidazolyl}iridium(III) (17) and [(chloro)bis(phosphine){1,3-di(2-

hydroxyphenyl)imidazolyl}iridium]+ (18), containing less steric bulk than the respective 

complexes 16 and 16+.68  The geometrical coordinates determined from the crystal 

structure of 16’ were used as a starting point for geometry optimization of 17, and the 

optimized structure of 17 was used as a starting point for geometry optimization of 18.  

The optimized structures of 17 and 18 are shown in figures 4.15 and 4.16, respectively, 

while a side-by-side comparison of the bond lengths and angles in 16’, 16’’, 17, and 18 is 

provided in table 4.1. 

a                   b)                      

                                                   

Figure 4.15.  Illustration (a) and fully optimized gas-phase structural drawings (b) of 17. 
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a)                b)                             

                                                              

Figure 4.16.  Illustration (a) and fully optimized gas-phase structural drawings (b) of 18. 

 

 With the exception of the Cipso-O1-O2-Cipso torsion angle, there is good agreement 

between the bond distances and angles of 16’, 16’’, and 17.  Although this angle is much 

greater in 17 (-62.62º) than in either 16’ (-15.72(26)º) or 16’’ (35.19(26)º), it is even 

significantly different between the two solid-state isomers of 16 (16’ and 16’’).  To probe 

whether the increased torsion angle of 17 is caused by a lack of steric bulk, QMMM 

calculations, in which all the steric bulk is included, were performed to determine the 

optimized gas-phase structure of 16.68  The resulting structure is shown in figure 4.17, 

and it has a Cipso-O1-O2-Cipso torsion angle of -9.55º.  The steric bulk of 16 therefore 

seems to have a dramatic impact on the torsion angle, probably because the 

tricyclohexylphosphine ligands prevent a large distortion of the diphenolate imidazolyl-

carbene ligand away from C2v-symmetry to C2-symmetry. 
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Table 4.1.  Selected bond lengths (Å) and angles (°) for 16’, 16’’, 17, and 18. 

 Structure 

 16’ 16’’ 17 18 

Bond Lengths     

Ir-C15 1.944(2) 1.944(2) 1.95 1.96 

Ir-O1 2.0343(16) 2.0307(17) 2.09 2.03 

Ir-O2 2.0257(17) 2.0380(18) 2.09 2.03 

Ir-P1 2.4365(7) 2.4102(8) 2.34 2.38 

Ir-P2 2.4194(7) 2.4260(8) 2.34 2.38 

Ir-Cl 2.4584(5) 2.4529(5) 2.49 2.46 

     

Angles     

C15-Ir-O1 93.06(8) 92.75(9) 90.9 92.7 

C15-Ir-O2 91.66(8) 90.14(9) 90.9 92.7 

C15-Ir-P1 93.67(7) 93.81(8) 97.0 98.8 

C15-Ir-P2 94.16(7) 94.60(8) 97.0 98.8 

C15-Ir-Cl 179.44(8) 177.33(8) 180.0 180.0 

O1-Ir-O2 175.24(6) 177.00(6) 178.3 174.5 

O1-Ir-P1 87.51(5) 92.32(5) 87.7 89.6 

O1-Ir-P2 88.45(5) 88.27(5) 92.1 89.6 

O1-Ir-Cl 87.29(4) 85.42(4) 89.1 87.2 

O2-Ir-P1 92.81(5) 86.70(5) 87.7 89.6 

O2-Ir-P2 90.58(5) 92.29(6) 92.1 89.6 

O2-Ir-Cl 87.99(4) 91.66(4) 89.1 87.2 

P1-Ir-P2 171.367(19) 171.53(2) 166.0 162.4 

P1-Ir-Cl 86.79(2) 84.32(2) 83.0 81.2 

P2-Ir-Cl 85.40(2) 87.30(2) 83.0 81.2 

     

Dihedral Angle     

Cipso-O1-O2-Cipso -15.72(26) 35.19(26) -62.6 0.3 
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Figure 4.17.  The optimized gas-phase structure of 16 determined by QMMM 

calculations.  The Cipso-O1-O2-Cipso torsion angle is -9.55º.  Hydrogen atoms have been 

removed for clarity. 

 

 One explanation for the increased torsion angle of 17 may be that it is favored by 

electronic effects.  This conclusion is supported by the calculated HOMO of 17, depicted 

in figure 4.18; a similar orbital was calculated for the optimized gas-phase structure of 

16, and it is shown in figure 4.19.68  This orbital has a π-antibonding interaction between 

the phenolate ligands and the metal center.  The increased Cipso-O1-O2-Cipso torsion angle 

of 17 probably decreases overlap between the π-orbitals of the phenolates and the metal 

center, thus diminishing the antibonding interaction and lowering the energy of the 

HOMO.  In order to probe the degree to which changes in this torsion angle affect the 

overall energy of the molecule, multiple geometry optimizations and calculations of the 

gas-phase SCF energies for 17 were performed with the Cipso-O1-O2-Cipso torsion angle 

held constant at various angles between 0º and 90º.68  The relative energies of the 

resulting structures are plotted against their respective Cipso-O1-O2-Cipso torsion angles in 

figure 4.20.  These results indicate that the energy of 17 changes relatively little (less than 

4 kJ/mol) for torsion angles between 0º and 90º.  Furthermore, increasing the torsion 
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angle from the optimized angle of -62.62º causes a greater increase in energy than 

decreasing the torsion angle.  This explains why factors such as steric bulk and crystal 

packing can cause such dramatic decreases in the Cipso-O1-O2-Cipso torsion angle of 16. 

 

 

Figure 4.18.  Depiction of the HOMO for the fully optimized gas-phase structure of 17. 

 

 

Figure 4.19.  Depiction of the HOMO for the fully optimized gas-phase structure of 16 

determined by QMMM calculations.  Hydrogen atoms have been removed for clarity. 
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Figure 4.20.  The relative energies for optimized structures of 17 when the 

Cipso-O1-O2-Cipso torsion angle is set at various angles between 0º and 90º. 

 

 In contrast to 17, 18 is approximately C2v-symmetric, with a Cipso-O1-O2-Cipso 

torsion angle of only 0.3º.  The singly occupied molecular orbital (SOMO) of 18, 

depicted in figure 4.21, is similar to the HOMOs of 16 and 17, and this may account for 

the small Cipso-O1-O2-Cipso torsion angle of 18.  As this orbital is only partially occupied, 

the energetic cost of the antibonding interaction between the phenolate ligands and the 

metal center should be significantly attenuated, and this cost may be outweighed by the 

corresponding bonding interactions in lower energy orbitals.  Maximization of π-orbital 

overlap between the phenolates and the metal center should therefore be favorable; and 

based on the orbital symmetry, this should be accomplished by the diphenolate 

imidazolyl-carbene ligand adopting an approximately C2v-symmetric geometry, as 

observed for 18. 
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Figure 4.21.  Depiction of the HOMO for the fully optimized gas-phase structure of 18. 

 

 In order to determine the degree to which this geometry is favored, multiple 

geometry optimizations and calculations of the gas-phase SCF energies for 18 were 

performed with the Cipso-O1-O2-Cipso torsion angle held constant at various angles 

between -20º and 35º.68  The relative energies of the resulting structures are plotted 

against their respective Cipso-O1-O2-Cipso torsion angles in figure 4.22.  As for 17, there is 

relatively little change in energy over a fairly wide range of torsion angles; therefore, 

sterics could play a significant role in dictating the geometry of 16+.  However, the use of 

sterically bulky tricyclohexyl phosphine axial ligands should also favor C2v-symmetric 

binding of the diphenolate imidazolyl-carbene ligand; so, 16+ is likely to adopt a similar 

geometry to 18. 
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Figure 4.22.  The relative energies for optimized structures of 18 when the 

Cipso-O1-O2-Cipso torsion angle is set at various angles between -25º and 35º. 

 

 Based on the SOMO of 18 as well as the HOMOs of 16 and 17, it seems likely 

that one-electron oxidation of 16 to generate 16+ involves the removal of an electron from 

a highly delocalized molecular orbital containing orbital density on both the diphenolate 

imidazolyl-carbene ligand and the metal center.  Stabilization of the unpaired electron in 

such a highly delocalized orbital may help to explain the lack of hyperfine splitting in the 

low temperature EPR spectrum of 16+. 

 

Conclusions 

 For the first time, iridium complexes have been synthesized with a diphenolate 

imidazolyl-carbene ligand (2).  Only a few diphenolate imidazolyl-carbene ligands have 

been synthesized previously.  The precursor to 2, 1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolium chloride (2a) shows increased thermal stability over most 

similar ligand precursors due to the lack of a methylene group bridging each phenolate to 

the imidazolyl ring.28-31  Deprotonation of 2a, followed by reaction with chloro-1,5-
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cyclooctadiene iridium(I) dimer generated a unique complex, potassium (1,5-

cyclooctadiene){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(I) (6).  Only 

one of the phenoxides is bound to iridium in the solid-state structure of this complex, 

containing one equivalent of 18-crown-6 ether; the other phenoxide is coordinated to the 

potassium countercation along with 18-crown-6-ether.  The solution-phase structure of 

this complex seems to be fluxional, and it is highly solvent dependent. 

 Oxidation of 6 with two equivalents of ferrocenium(III) hexafluorophosphate in 

acetonitrile leads to the generation of (acetonitrile)(1,5-cyclooctadiene){1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (9).  Reaction 

of this complex with dihydrogen results in the generation of cyclooctane and a species 

capable of catalyzing the hydrogenation of cyclohexene to cyclohexane.  Heating 9 in 

acetonitrile results in the displacement of cyclooctadiene by acetonitrile to generate 

tris(acetonitrile){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) 

hexafluorophosphate (10).  This indicates relatively weak binding of cyclooctadiene to 

iridium in 9.  Cyclooctadiene can also be displaced from 9 at elevated temperatures with 

trialkylphosphines.  The reaction of trimethylphosphine with 9 results in the generation of 

tris(trimethylphosphine){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III)  

hexafluorophosphate (11), while the reaction of 9 with tricyclohexylphosphine leads to 

the formation of (acetonitrile)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III)  hexafluorophosphate (12). 

 In order to probe electronic effects on ligands binding trans to the carbene, 12 

was reacted with carbon monoxide.  At 90 ºC in acetonitrile, an equilibrium mixture of 12 

and (carbon monoxide)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-
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butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (15) is generated.  Consistent 

with the observed equilibrium mixture of 12 and 15, the CO-stretching frequency of 15 

(2064 cm-1) is indicative of relatively weak π-donation from iridium into the carbonyl π*-

orbital. 

 Acetonitrile can also be displaced from 12 by chloride, resulting in the formation 

of (chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}-

iridium(III) (16).  Based on DFT calculations, the HOMO of this complex is a highly 

delocalized molecular orbital, containing an antibonding interaction between the 

phenolates and the metal center.  This interaction seems to cause a distortion of the 

diphenolate imidazolyl-carbene ligand from C2v-symmetry toward C2-symmetry as 

observed in the solid-state structure of 16.  In methylene chloride, two reversible one-

electron oxidations of 16 are observed at -0.22 and 0.58 V by cyclic voltammetry and 

bulk electrolysis.  Based on EPR spectra and on DFT calculations, the SOMO of the 

complex resulting from the first oxidation is similar to the HOMO calculated for 16, and 

it seems to have orbital density both on the metal center and on the diphenolate 

imidazolyl-carbene ligand.  It is likely that the second oxidation occurs from a similar 

orbital, but further studies are required to characterize the two-electron oxidation product 

of 16. 

 Overall, this diphenolate imidazolyl-carbene ligand (2) has proven capable of 

stabilizing both iridium(I) and iridium(III) complexes, including complexes with 

interesting structural and electronic properties and a complex capable of catalyzing olefin 

hydrogenations.  The fact that 2 can support iridium(I) complexes, as well as iridium(III) 
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complexes capable of undergoing two reversible one-electron oxidations, is promising for 

the incorporation of this ligand into redox-active catalysts. 

 

Experimental Section 

 General considerations.  All air- and/or moisture-sensitive compounds were 

manipulated using standard Schlenk techniques or in a glovebox under a nitrogen 

atmosphere as described previously.69  Under standard glovebox conditions purging was 

not performed between uses of petroleum ether, diethyl ether, benzene, toluene and 

tetrahydrofuran; thus when any of these solvents were used, traces of all these solvents 

were in the atmosphere and could be found intermixed in the solvent bottles. All NMR 

solvents were purchased from Cambridge Isotopes Laboratories, Inc.  The solvents for 

air- and moisture-sensitive reactions were dried by passage through a column of activated 

alumina followed by storage under dinitrogen.  All other materials were used as received.  

2-amino-4-tert-butylphenol, oxalyl chloride, triethylamine, BH3-THF (1M in THF), 

triethyl orthoformate, potassium hexamethyldisilazide (potassium 

bis(trimethylsilyl)amide), bis(triphenyl-phosphoranylidene)ammonium chloride, 

ferrocenium hexafluorophosphate70 were purchased from Aldrich.  2-bromo-4-tert-

butylaniline was purchased from Oakwood Products, Inc.  Chloro-1,5-cyclooctadiene 

iridium(I) dimer was purchased from Strem Chemicals, Inc. 2,6-di(2-hydroxy-3,5-tert-

butylphenyl)pyridine (5a) was obtained from Theodor Agapie.37  1H, 13C, 31P, and 19F 

NMR spectra were recorded on Varian Mercury 300 spectrometers at room temperature, 

unless indicated otherwise.  Chemical shifts are reported with respect to residual internal 

protio solvent for 1H and 13C{1H} NMR spectra. H3PO4 and CFCl3 were used as external 
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standards to reference 31P and 19F NMR spectra, respectively, at 0 ppm.  High resolution 

mass spectra (HRMS) were obtained at the California Institute of Technology Mass 

Spectral Facility.  Elemental analyses were obtained by Midwest Microlab, LLC located 

in Indianapolis, IN and Columbia Analytical Services (formerly Desert Analytics) located 

in Tucson, AZ.   

 All electrochemical measurements were carried out on a Bioanalytics 

BAS100B/W.  These measurements were performed under a nitrogen or argon 

atmosphere in 0.3 M tetrabutylammonium tetrafluoroborate solutions.  Ferrocene was 

used as an internal standard, and all potentials are referenced to the 

ferrocene/ferrocenium couple.  For cyclic voltammetry experiments, the working 

electrode was a glassy carbon disk (2 mm diameter); the counter electrode was a coiled 

platinum wire; and, a silver wire was used as a pseudoreference electrode.  In the bulk 

electrolysis experiments, the glassy carbon disk was replaced with a platinum wire basket 

for the working electrode. 

 The spectrometer used for all EPR experiments was an X-band Bruker EMX with 

a standard TE102 cavity.  Approximately 250 µL samples were transferred to an EPR 

tube, frozen with liquid nitrogen, and then placed in a modified TE102 cavity fit with a 

liquid helium-powered cryostat.  This allowed EPR spectra to be obtained at temperatures 

between 7 and 77 K. 

 Single-crystal X-ray diffraction samples were prepared by decanting or pipetting 

off any solvent and then coating the crystals with Paratone N oil.  The crystals were then 

transferred to a microscope slide.  Samples were selected and mounted on a glass fiber 

with Paratone N oil.  Data collection was carried out on a Bruker Smart 1000 CCD 
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diffractometer.  The structures were solved by direct methods.  With the exception of 8, 

all non-hydrogen atoms were refined anisotropically. 

 Density functional calculations were carried out using Gaussian 03 Revision 

D.01.71  Calculations on the model systems (with minimal steric bulk) were performed 

using the nonlocal exchange correction by Becke72,73 and nonlocal correlation corrections 

by Perdew,74 as implemented using the bvp86 keyword in Gaussian.  The following basis  

sets were used: LANL2DZ75-77 for iridium atoms, Stuttgart-Dresden78,79 for phosphorus 

atoms and 6-31G** basis set for all other atoms.  Pseudopotentials were utilized for 

iridium and phosphorus atoms, using the LANL2DZ ECP for iridium and the Stuttgart-

Dresden potential for phosphorus.  For calculations on full experimental systems, 

QMMM calculations were performed using ONIOM(bvp86:UFF).80  In these calculations 

the tertiary-butyl groups on the tridentate diphenolate imidazolyl-carbene ligands and the 

cyclohexyl groups on the phosphine ligands were calculated at the UFF level and the rest 

of the molecule was calculated using DFT.  All optimized structures were verified using 

frequency calculations and did not contain any imaginary frequencies.  Isosurface plots 

were made using the Molekel program.81  

 

 Synthesis of N, N’-Di(2-hydroxy-5-tert-butylphenyl)oxalamide.  4.0 mL (5.9 g, 

0.046 mol) oxalyl chloride was combined with 35 mL CH2Cl2 under argon in a Schlenk 

flask.  100 mL of CH2Cl2 were then used to dissolve 15.0 g (0.091 mol) 2-amino-4-tert-

butylphenol in a second Schlenk flask, and 12.6 mL (9.1 g, 0.090 mol) of triethylamine 

was added.  Both solutions were then cooled to 273 K.  The solution of 2-amino-4-tert-

butylphenol and triethylamine was slowly cannula transferred into the solution of oxalyl 
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chloride, producing a white gas.  Additional CH2Cl2 was used to wash in any remaining 

2-amino-4-tert-butylphenol and triethylamine.  The resulting solution was stirred for 2 

hours, and then 150 mL H2O was added.  CH2Cl2 was used to extract the organic 

products.  The solvent was removed under vacuum.  The resulting solid was washed with 

both ethyl acetate and petroleum ether.  Volatiles were removed under vacuum, and a 

white solid was isolated (9.77g, 0.0255 mol, 56.2% yield).  1H NMR (300 MHz, N,N-

dimethylformamide (DMF)-d7) δ = 10.61 (s, 2 H), 10.04 (s, 2H), 8.45 (d, 4J = 2.34 Hz, 

2H), 7.11 (dd, 3J = 8.55 Hz, 4J = 2.33 Hz, 2H), 6.99 (d, 3J = 8.55 Hz, 2H), 1.31 (s, 18H); 

13C {1H} NMR (75 MHz, DMF-d7): δ 157.7, 145.4, 142.5, 125.1, 122.4, 117.0, 114.8, 

31.4.  HRMS (FAB+) m/z calculated for C22H28O4N2 + H: 385.2127. Found: 385.2108 

(M + H).  Analysis calculated for C22H28O4N2: C, 68.73; H, 7.34; N, 7.29.  Found: C, 

68.53; H, 7.25; N, 7.33. 

 

 Synthesis of 1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolium chloride (2a).  

1.00 g (2.60 mmol) N, N’-Di(2-hydroxy-5-tert-butylphenyl)oxalamide was weighed into 

an oven-dried Schlenk flask.  N, N’-Di(2-hydroxy-5-tert-butylphenyl)oxalamide was 

dissolved in 26.5 mL BH3-THF (1M in THF, 26.5 mmol).  A large amount of bubbling 

occurred, and the solution turned bright orange.  The reaction was heated and stirred for 

19 hours at 70 °C.  The reaction was then cooled to room temperature, yielding a 

transparent brown solution.  While stirring, methanol was added until all bubbling 

ceased.  5.1 mL of 12 M HCl was then added, and the solvent was removed under 

reduced pressure.  The resulting solid was redissolved in methanol, and then the solvent 

was again removed under reduced pressure.  Methanol was added then removed two 
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more times.  This resulted in a white solid, the dihydrochloride salt of the diimine, which 

was not characterized.  In a Schlenk flask under argon, the solid was suspended in 10.5 

mL triethylorthoformate and heated to 100 °C with vigorous stirring.  The solid still did 

not dissolve, even when another 10 mL triethylorthoformate was added.  The suspension 

was then heated for two hours at 120 °C, and the suspension started to become tan in 

color.  The suspension was then filtered while still warm, and the resulting solid was 

washed with diethyl ether.  A white solid was isolated.  The filtrate was filtered again.  

The resulting solids were combined, and volatiles were removed under reduced pressure.  

A white solid was thus obtained (777 mg, 1.93 mmol, 74.2%).  1H NMR (300 MHz, 

dimethylsulfoxide (DMSO)-d6) δ = 10.74 (br s, 2H), 9.49 (s, 1H), 7.38 (d, 4J = 2.09 Hz, 

2H), 7.27 (dd, 3J = 8.69 Hz, 4J = 2.09 Hz, 2H), 7.05 (d, 3J = 8.69 Hz), 4.57 (s, 4H), 1.27 

(s, 18H); 13C {1H} NMR (75 MHz, DMSO-d6): δ 156.7, 148.0, 142.3, 125.7, 123.0, 

120.3, 116.5, 49.8, 34.0, 31.2.  HRMS (FAB+) m/z calculated for C23H31O2N2: 367.2386. 

Found: 367.2390 (M+).  Analysis calculated for C23H31O2N2Cl: C, 68.55; H, 7.75; N, 

6.95.  Found: C, 68.30; H, 7.78; N, 6.85.  CV in DMF: Ep, V vs. ferrocene at 0.100 V/s: 

0.73 V (irr.), 0.94 V (irr.). 

 

 Synthesis of N, N’-di(2-bromo-4-tert-butylphenyl)oxalamide.  0.60 mL (0.87 g, 

0.0069 mol) oxalyl chloride was combined with 6 mL CH2Cl2 under argon in a Schlenk 

flask.  10 mL of CH2Cl2 were then used to dissolve 2.5 g (0.011 mol) 2-bromo-4-tert-

butylaniline in a second Schlenk flask, and 1.93 mL (1.4 g, 0.014 mol) of triethylamine 

was added.  Both solutions were then cooled to 273 K.  The solution of 2-amino-4-tert-

butylphenol and triethylamine was slowly cannula transferred into the solution of oxalyl 
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chloride, producing a white gas.  10 mL additional CH2Cl2 was used to wash in any 

remaining 2-bromo-4-tert-butylaniline and triethylamine.  The resulting solution was 

stirred for 2 hours, and then 20 mL H2O was added.  CH2Cl2 was used to extract the 

organic products.  The solvent was removed under vacuum.  The resulting solid was 

redissolved in a minimal amount of methylene chloride.  Impurities were precipitated out 

with petroleum ether and removed by filtration. Solvent was once again removed under 

vacuum yielding a solid (1.95 g, 0.00382 mol, 69.7% yield).  1H NMR (300 MHz, 

CDCl3) δ = 9.87 (s, 2H), 8.34 (d, 3J = 8.68 Hz, 2H), 7.60 (d, 4J = 2.10 Hz, 2H), 7.39 (dd, 

3J = 8.68 Hz, 4J = 2.10 Hz, 2H), 1.32 (s, 18H). 

 

 Synthesis of 1,3-di(2-bromo-4-tert-butylphenyl)imidazolium chloride (4a).  

4.00 g (7.84 mmol) N, N’-Di(2-bromo-4-tert-butylphenyl)oxalamide was weighed into an 

oven-dried Schlenk flask. N, N’-Di(2-bromo-4-tert-butylphenyl)-oxalamide was 

dissolved in 63 mL BH3-THF (1M in THF, 63 mmol).  Bubbling occurred.  The reaction 

was heated and stirred for 19 hours at 70 °C.  The reaction was then cooled to room 

temperature.  While stirring, methanol was added until all bubbling ceased.  20 mL of 12 

M HCl was then added, and the solvent was removed under reduced pressure.  The 

resulting solid was redissolved in methanol, and then the solvent was again removed 

under reduced pressure.  Methanol was added then removed two more times.  This 

resulted in a white solid, the dihydrochloride salt of the diimine, which was not 

characterized.  In a Schlenk flask under argon, the solid was suspended in 75 mL 

triethylorthoformate and heated to 100 °C while stirring.  The vessel was heated for 25 

minutes at 120 °C, and then the suspension started to darken in color.  The suspension 
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was filtered while still warm, and the solid was washed with diethyl ether three times.  

The product was thus obtained as a white solid (1.5 mg, 2.8 mmol, 36%).  1H NMR (300 

MHz, dimethylsulfoxide (DMSO)-d6) δ 9.46 (s, 1H), 7.84 (d, 4J = 1.95 Hz, 2H), 7.76 (d, 

3J = 8.46 Hz, 2H), 7.65 (dd, 3J = 8.46 Hz, 4J = 1.95 Hz, 2H), 4.57 (s, 4H), 1.31 (s, 18H); 

13C {1H} NMR (75 MHz, DMSO-d6): δ 159.9, 155.1, 132.2, 130.6, 128.0, 126.4, 119.3, 

52.3, 34.9, 30.7.  HRMS (FAB+) m/z calculated for C23H29Br2N2: 491.0698. Found: 

491.0701 (M+).  Analysis calculated for C23H29Br2Cl2N2: C, 52.25; H, 5.53; N, 5.30.  

Found: C, 52.07; H, 5.50; N, 5.30. 

 

 Crystallization of 2,6-di(2-hydroxy-3,5-tert-butylphenyl)pyridine (5a). 10 mg 

(0.021 mmol) of 2,6-di(2-hydroxy-3,5-tert-butylphenyl)pyridine and 11 mg of 

dihydrogen hexachloroiridate (IV) hydrate were dissolved in 0.7 mL ethanol-d6 and 

transferred to a J-Young NMR tube.  The tube was then sealed and heated to 90 ˚C.  

Crystals were observed after 3 days. 

 

 Synthesis of potassium (1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(I) (6).  In a glovebox, THF was used to dissolve 1.5 g 

(4.0 mmol) of 2a and 2.4 g (12 mmol) potassium hexamethyldisilazide in an Erlenmeyer 

flask, and the solution was stirred for 30 minutes.  In a separate flask, chloro-1,5-

cyclooctadiene iridium(I) dimer (1.33 g, 1.98 mmol) was then dissolved in THF and 

slowly added to the solution of 2a and potassium hexamethyldisilazide.  The resulting 

bright orange solution was stirred for 30 minutes, and then the solvent was removed 

under reduced pressure.  An orange solid was obtained which was then stirred in 
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methanol for 12 hours under argon.  Solvent was again removed under reduced pressure.  

The resulting solid was dissolved in THF and stirred for 15 minutes.  Then, the solvent 

was removed under reduced pressure.  This solid was dissolved in benzene and filtered.   

Finally, volatiles were removed from the filtrate by lyophilization, yielding a bright 

orange powder (2.2 g, 3.1 mmol, 79%).  1H NMR (300 MHz, THF-d8) δ 6.81 (m, 4H), 

6.43 (d, 3J = 8.62 Hz, 2H), 3.90 (app. t, 3J = 8.81 Hz, 2H), 3.66 (app. t, 3J = 8.81 Hz, 2H), 

3.51 (br s, 4H), 1.84 (br s, 4H), 1.38 (m, 4H), 1.26 (s, 18H); 1H NMR (300 MHz, 

CD3OD) δ 7.19 (d, 4J = 2.58 Hz, 2H), 6.98 (dd, 3J = 8.37 Hz, 4J = 2.58 Hz, 2H), 6.66 (d, 

3J = 8.37 Hz, 2H), 4.53 (br s, 2H), 4.27 (br s, 2H), 2.40 (br s, 2H), 3.74 (br s, 2H), 2.92 

(br s, 2H), 1.92 (br s, 2H), 1.55 (br s, 2H), 1.33 (br m, 20H); 13C {1H} NMR (75 MHz, 

THF-d8): δ 196.8, 161.1, 134.3, 132.6, 123.9, 119.6, 51.6, 34.3, 32.4, 32.2.  HRMS 

(FAB+) m/z calculated for C31H40N2O2Ir: 665.2719. Found: 665.2745 (M+), 557.1913 

(M+ - cod). 

 

 Crystallization of 6 with 18-crown-6 ether.  In a glovebox, saturated solutions 

of 6 (40 mg, 0.099 mmol) and 18-crown-6 ether (26.3 mg, 0.0995 mmol) in benzene were 

prepared.  Another 0.5 mL of benzene were added to each solution, and the solution of 

18-crown-6 ether was slowly added to the solution of 6 in a 20 mL vial.  The vial was 

sealed, and orange crystals formed over the course of approximately one month. 

 

 Crystalization of µ-(amidotriphenylphosphorus)bis((1,5-cyclooctadiene)-

iridium(I)) (7).  In a glovebox, a minimal amount of THF was used to dissolve 50 mg 

(0.071 mmol) of 6 in a vial. In a separate vial, 37 mg (0.064 mmol) of 
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bis(triphenylphosphoranylidene)ammonium chloride was also dissolved in a minimal 

amount of THF, and this solution was slowly added to the solution of 6.  The resulting 

solution was stored at room temperature in a capped vial for about two months.  Orange 

crystals were then observed along with an oily orange solid. 

 

 Crystallization of bis(triphenylphosphoranylidene)ammonium bis{1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) (8).  In a glovebox, a minimal 

amount of benzene was used to dissolve 50 mg (0.071 mmol) of 6 in a vial.  In a separate 

vial, 37 mg (0.064 mmol) of bis(triphenylphosphoranylidene)ammonium chloride was 

also dissolved in a minimal amount of benzene, and this solution was slowly added to the 

solution of 6.  The resulting was sealed in a vial; and over the course of three months, 

yellow crystals formed which were characterized by single crystal X-ray diffraction. 

 

 Synthesis of (acetonitrile)(1,5-cyclooctadiene){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (9).  In a glovebox, 

acetonitrile was used to dissolve 1.00 g (1.42 mmol) of 6 in an Erlenmeyer flask.  In a 

separate flask, 1.18 g (3.55 mmol) ferrocenium(III) hexafluorophosphate was dissolved 

in acetonitrile.  The ferrocenium(III) solution was slowly added to the solution of 6.  The 

resulting solution was stirred for 30 minutes and filtered.  The solvent was removed from 

the filtrate under reduced pressure, and the resulting solid was washed with petroleum 

ether and diethyl ether.  Volatiles were then removed from the solid under reduced 

pressure; 550 mg (0.65 mmol, 46% yield) of yellow solid was isolated.  1H NMR (300 

MHz, CD3CN) δ 7.02 (dd, 3J = 8.41 Hz, 4J = 2.29 Hz, 2H), 6.95 (d, 3J = 2.29 Hz, 2H), 
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6.87 (d, 3J = 8.41 Hz, 2H), 6.35 (m, 2H), 5.12 (m, 2H), 4.51 (m, 2H), 4.29 (m, 2H), 2.59 

(br m, 2H), 2.46 (br m, 2H), 2.35 (br m, 2H), 2.17 (br m, 2H), 1.30 (s, 18H); 13C {1H} 

NMR (75 MHz, THF-d8): δ 152.3, 141.4, 128.3, 127.4, 123.8, 120.3, 115.4, 94.0, 49.3, 

35.1, 34.9, 31.8, 26.9; 31P{1H} NMR (CD3CN, 121 MHz): δ -141 (septet, 1J = 700 Hz); 

19F{1H} NMR (CD3CN, 282 MHz): δ -72.2 (d), -151.2 (s, [BF4]-).70  HRMS (FAB+) m/z 

calculated for C33H43N3O2Ir: 706.2984. Found: 706.2987 (M+), 665.2721 (M+ - CH3CN), 

557.1781 (M+ - (CH3CN + cyclooctadiene)). 

 

 In situ generation of tris(acetonitrile){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (10).  In a glovebox, 100 

mg (0.118 mmol) of 9 were dissolved in about 25 mL of acetonitrile and transferred into 

a 50 mL Schlenk bomb.  The bomb was sealed and heated at 90 ˚C for about 12 hours.  It 

was then cooled to room temperature, and the solvent was removed under reduced 

pressure.  This solid was extracted with diethyl ether, and again the solvent was removed 

under reduced pressure.  45 mg (0.054 mmol, 46%) of brown solid was isolated.  The 

peaks in the 1H NMR at 2.53 and 2.68 ppm disappear over time in CD3CN, while the 

CH3CN peak at 1.97 peak increases by approximately the same amount.  1H (300 MHz, 

CD3CN) δ 6.94 (m, 4H), 6.67 (d, 3J = 8.37 Hz, 2H), 4.50 (s, 4H), 2.68 (s, < 3H), 2.53 (s, 

< 6H), 1.97 (s, CH3CN), 1.29 (s, 18H); 13C {1H} NMR (75 MHz, CD3CN, taken after 

peak at 2.68 ppm in 1H NMR disappeared): δ 153.8, 139.4, 128.3, 122.9, 119.9, 115.4, 

48.8, 34.5, 31.8, 4.1, 1.8 (CH3CN); 31P{1H} NMR (CD3CN, 121 MHz): δ -144 (septet, 1J 

= 700 Hz); 19F{1H} NMR (CD3CN, 282 MHz): δ -72.1 (d, 1J = 704 Hz), -150.7  
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(s, [BF4]-), -150.8 (s, [BF4]-).70  HRMS (FAB+, performed on the tris(acetonitrile-d3) 

complex) m/z calculated for C29H28IrO2N5D9: 689.341. Found: 689.3156 (M+). 

 

 Hydrogenation of 9.  In a glovebox, 10 mg (0.012 mmol) of 9 was dissolved in 

about 0.6 mL THF-d8 and sealed inside a 3.3 mL J-Young NMR tube.  The solution was 

degassed by three freeze-pump-thaw cycles.  The tube was then filled with 1 atm 

dihydrogen.  The solution turned from yellow to orange over the course of about 15 

minutes, and cyclooctane began to appear at 1.54 ppm in the 1H NMR spectrum.  Very 

small amounts of cyclooctene were observed after 1.5 hours by 1H NMR, while the 

cyclooctane peak continued to grow.  Another 1H NMR spectrum was taken after 18 

hours; the spectrum indicated that the coordinated 1,5-cyclooctadiene of 9 was 

completely hydrogenated to cyclooctane.  No signals were observed in the 1H NMR at 

less then 0 ppm, even after the sample was heated at 90 ˚C for 12 hours.  After this period 

of heating, the solvent was removed under reduced pressure, and the sample was 

redissolved in CD3CN.  Heating the sample for at least 12 hours generated 10 as the 

major product. 

 

 Hydrogenation of cyclohexene catalyzed by 9.  In a glovebox, a 1.0 mL THF-d8 

solution containing 10 mg (0.012 mmol) of 9 and 22.0 µL (17.8 mg, 0.217 mmol) 

cyclohexene was prepared in a 1.0 mL volumetric flask.  500 µL of this solution was 

syringed into a 1.5 mL high pressure, sapphire NMR tube.  The tube was sealed and then 

was filled to a pressure of 900 psi with dihydrogen.  The NMR tube was inverted several 
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times to ensure mixing between the headspace and the solution.  1H NMR spectra were 

taken every 608 seconds starting about 630 seconds after mixing commenced.   

 

In situ generation of tris(trimethylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (11).  In a glovebox, 10 mg 

(0.012 mmol) of 9 was dissolved in approximately 0.6 mL THF-d8 and transferred to a J-

Young NMR tube.  5.0 µL (0.048 mmol) of trimethylphosphine was added to the 

solution.  The NMR tube was then sealed, and the solution was mixed.  The NMR tube 

was then heated at 90 ˚C in an oil bath for greater than 12 hours.  Solvent and other 

volatiles were removed under reduced pressure, leaving a yellow solid. 1H (300 MHz, 

THF-d8) δ 6.97 (d, 4J = 2.34 Hz, 2H), 6.85 (dd, 3J = 8.59 Hz, 4J = 2.34 Hz, 2H), 6.52 (d, 

3J = 8.59 Hz, 2H), 4.48 (s, 4H), 1.66 (d, 2J = 9.18 Hz, 9H), 1.36 (app. t, J = 3.75 Hz, 

18H), 1.28 (s, 18H); 31P{1H} NMR (THF-d8, 121 MHz): δ -32.8 (d, 2J = 28.1 Hz, 2P), -

44.1 (t, 2J = 28.1 Hz, 1P), -144 (septet, 1J = 700 Hz, 1P).  HRMS (FAB+) m/z calculated 

for C32H55IrN2O2P3: 785.3105. Found: 785.3097 (M+). 

 

 Synthesis of (acetonitrile)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-

tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (12).  In a glovebox, 

810 mg (0.952 mmol) of 9 and 587 mg (2.09 mmol) of tricyclohexylphosphine were 

combined in a 500 mL Schlenk bomb with a Teflon stir bar.  CH3CN was added until 

both solids went into solution.  The bomb was then sealed and heated at 90 ˚C for 16 

hours while stirring.  The solvent and volatiles were removed under reduced pressure.  

The solid was washed consecutively with petroleum ether, benzene, and diethyl ether.  
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Finally, the solid was washed with a minimal amount of acetonitrile.  Volatiles were 

again removed under reduced pressure.  The solid was redissolved in acetonitrile and 

filtered.  The solvent was removed from the filtrate under reduced pressure, and this 

yielded a bright yellow solid (750 mg, 0.57 mmol, 60%).  1H (300 MHz, CD3CN) δ 6.89 

(dd, 3J = 8.44 Hz, 4J = 2.31 Hz, 2H), 6.84 (d, 4J = 2.31 Hz, 2H), 6.39 (d, 3J = 8.44 Hz, 

2H), 4.27 (s, 4H), 2.14 (m, 6H), 1.90 (br, 12H, overlaps with solvent peak), 1.67 (br m, 

24H), 1.26 (s, 18H, overlaps with peak at 1.23 ppm), 1.23 (br m, 24H, overlaps with peak 

at 1.26 ppm); 13C {1H} NMR (75 MHz, CD3CN): δ 150.8, 137.6, 127.3, 121.4, 119.3, 

113.4, 46.5, 33.0 (apparent t, J = 11 Hz), 30.5, 28.0, 27.2 (apparent t, J = 3.8 Hz), 25.8; 

31P{1H} NMR (CD3CN, 121 MHz): δ -7.3, -143 (septet, 1J = 700 Hz); 19F{1H} NMR 

(CD3CN, 282 MHz): -71.0 (d, 1J = 705 Hz), -151.1. HRMS (FAB+, performed on the 

acetonitrile-d3 complex) m/z calculated for C61H94IrN2O2P2D3 – CD3CN: 1117.642. 

Found: 1117.6417 (M+ - CD3CN), 837.4271 (M+ - (CD3CN + PC18H33).  Analysis 

calculated for C61H97F6IrN3O2P3: C, 56.20; H, 7.50; N, 3.22; F, 8.74; Ir, 14.75.  Found: C, 

56.19; H, 7.33; N, 3.12; F, 8.5; Ir, 15.0. 

 

 The reaction of 12 with 1.5 equivalents of trimethylphosphine.  In a glovebox, 

10 mg (0.0077 mmol) of 12 was dissolved in approximately 0.6 mL CD3CN and 

transferred into a J-Young NMR tube.  1.2 µL (0.012 mmol) of trimethylphosphine were 

added.  The tube was sealed; and then, the solution was mixed thoroughly.  The J-Young 

tube was heated for greater than 12 hours at 90 ˚C, and then the products were analyzed 

by 1H and 31P NMR spectroscopy.  Based on the 31P NMR spectrum, 11 and 12 were 

present as well as two species, which were tentatively identified as 
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(acetonitrile)(tricyclohexylphosphine)(trimethylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III)  hexafluorophosphate (13) and 

(acetonitrile)bis(trimethylphosphine){1,3-di(2-hydroxy-5-tert-butylphenyl)imidazolyl}-

iridium(III)  hexafluorophosphate (14).  31P{1H} NMR (CD3CN, 121 MHz): δ 11.31 (br 

s, free PCy3), -2.99 (d, 2J = 390 Hz, PCy3 of 13), -7.33 (s, PCy3 of 12), -20.21 (d, 2J = 

390 Hz, P(CH3)3 of 13), -23.88 (s, P(CH3)3 of 14), -32.66 (d, 2J = 27.8 Hz, P(CH3)3 of 

11), -43.53 (t, 2J = 27.8 Hz, P(CH3)3 of 11, -143 (septet, 1J = 700 Hz, PF6). 

 

 In situ generation of (carbon monoxide)bis(tricyclohexylphosphine){1,3-di(2-

hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (15).  In a 

glovebox, 10 mg (0.0077 mmol) of 12 was dissolved in 0.6 mL CD3CN and sealed in a 

3.3 mL J-Young NMR tube.  The solution was degassed by the freeze-pump-thaw 

method, then the tube was filled with one atmosphere of carbon monoxide at room 

temperature.  The tube was heated at 90 ˚C, and the reaction was monitored by 1H NMR 

spectroscopy.  Over the course of about 3 days, 15 appeared in the 1H NMR spectrum, 

and the peak did not grow in further with continued heating.  Yellow crystals appeared in 

the J-Young tube slightly above the solvent level.  These were identified as an 

approximately 4:1 ratio of 12 to 15 by single crystal X-ray diffraction.  The 1H NMR 

spectrum of the solution phase indicated a ratio of 12 to 15 that was approximately 2:1.  

When the solution was degassed and heated for another 2 days, 15 was converted back to 

12, and the ratio of 12:15 increased to greater than 8:1 based on the 1H NMR spectrum.   

The following data are for 15, only.  1H (300 MHz, CD3CN) δ 6.95 (dd overlapping with 

d at 6.95, 3J = 9.22 Hz, 4J = 2.23 Hz, 2H), 6.95 (d overlapping with dd at 6.95, 4J = 2.23 
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Hz, 2H), 6.48 (d, 3J = 9.22 Hz, 2H), 4.46 (s, 4H), 1.1-2.2 (br multiplets for PCy3 

overlapping with a water peak, which came from the carbon monoxide; the solvent peak; 

the t-butyl peak of 15, and multiple peaks for 12, 66 H), 1.28 (s overlapping with br 

multiplets for PCy3 of 12 and 15); 31P{1H} NMR (CD3CN, 121 MHz): δ 1.43, -143 

(septet, 1J = 700 Hz).  IR (CD3CN): νCO, 2064 cm-1. 

 

In situ generation of (carbon-13C monoxide)bis(tricyclohexylphosphine){1,3-

di(2-hydroxy-5-tert-butylphenyl)imidazolyl}iridium(III) hexafluorophosphate (15’).  

This complex was generated in a similar manner to 15, but 13C-enriched carbon 

monoxide was used.  1H (300 MHz, CD3CN): δ 6.95 (dd overlapping with d at 6.95, 3J = 

9.22 Hz, 4J = 2.23 Hz, 2H), 6.95 (d overlapping with dd at 6.95, 4J = 2.23 Hz, 2H), 6.48 

(d, 3J = 9.22 Hz, 2H), 4.46 (s, 4H), 1.1-2.2 (br multiplets for PCy3 overlapping with a 

water peak, which came from the carbon monoxide; the solvent peak; the t-butyl peak of 

15’, and multiple peaks for 12, 66 H), 1.28 (s overlapping with br multiplets for PCy3 of 

12 and 15’); 13C {1H} NMR (75 MHz, CD3CN): δ 184.7 (free 13CO), 174.8 (t, 2J = 9.7 

Hz); 31P{1H} NMR (CD3CN, 121 MHz): δ 1.44 (d, 2J = 9.7 Hz), -143 (septet, 1J = 700 

Hz).  IR (CD3CN): ν13CO, 2015.5 cm-1. 

 

 Synthesis of (chloro)bis(tricyclohexylphosphine){1,3-di(2-hydroxy-5-tert-

butylphenyl)imidazolyl}iridium(III) (16).  In a glovebox, approximately 10 mL of 

CH3CN was used to dissolve 166 mg (0.127 mmol) of 12 in a 20 mL vial.  14 mg (0.13 

mmol) of tetramethylammonium chloride was dissolved in about 2 mL of CH3CN and 

added to the solution of 12.  The resulting solution was transferred to a 100 mL Schlenk 
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bomb with a Teflon stir bar.  The Schlenk bomb was then sealed, and the solution was 

allowed to stir for 3 days.  During this time, a yellow precipitate formed.  The precipitate 

was isolated by filtration and washed with acetonitrile.  The yellow solid was then 

dissolved in benzene, which was then removed under reduced pressure.  The resulting 

solid was redissolved in methylene chloride and filtered.  Removal of solvent and other 

volatiles under reduced pressure resulted in the isolation of a yellow solid (95 mg, 0.082 

mmol, 63%).  Crystals were grown by cooling a concentrated methylene chloride solution 

of 16 to -20 ˚C.  1H (300 MHz, CD2Cl2) δ 6.81 (dd, 3J = 8.56 Hz, 4J = 2.41 Hz, 2H), 6.65 

(d, 4J = 2.41 Hz, 2H), 6.36 (d, 3J = 8.56 Hz, 2H), 4.09 (s, 4H), 2.39 (br m, 6H), 2.08 (br 

m, 12H), 1.61 (br, 24H), 1.26 (s overlapping with the br multiplet at 1.12, 18H), 1.12 (br 

multiplet overlapping with s at 1.26, 24H); 13C {1H} NMR (75 MHz, CD2Cl2): δ 153.0, 

136.5, 128.6, 121.6, 121.0, 113.0, 47.2, 34.1, 33.4 (apparent t, J = 10.7 Hz), 32.0, 30.3, 

29.0, 28.5 (apparent t, J = 4.8 Hz), 27.3; 31P{1H} NMR (CD2Cl2, 121 MHz): δ -12.7.  

HRMS (FAB+) m/z calcd. for C59H94ClIrN2O2P2: 1152.611. Found: 1152.6105 (M+); 

1117.6425 (M+-Cl).  Analysis calculated for C59H94IrN2O2P2: C, 61.46; H, 8.22; N, 2.43.  

Found: C, 61.7; H, 7.9; N, 2.3.  CV in CH2Cl2: E1/2, V vs. ferrocene at 0.100 V/s (ΔEp): -

0.22 V (98 mV), 0.58 V (98 mV); in THF at 0.050 V/s: -0.20 V (226 mV), 0.58 V (202 

mV); in DMF at 0.100 V/s: -0.13 V (53 mV), 0.59 V (65 mV). 

 

Bulk electrolysis of 16 with EPR and mass spectra of the oxidation products.  

In a glovebox, 33 mg (0.029 mmol) of 16 and 1.01 g (3.07 mmol) of 

tetrabutylammonium tetrafluoroborate ([NBu4][BF4]) were used to make a 10 mL CD2Cl2 

solution, which was transferred into the working electrode side of the bulk electrolysis 
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cell.  78 mg (0.24 mmol) of ferrocenium hexafluorophosphate(III) and 1.01 g (3.07 

mmol) of [NBu4][BF4] were used to make a 10 mL CD2Cl2 solution.  About 6 mL of this 

solution was transferred into the auxiliary side of the bulk electrolysis cell.  Coulometric 

oxidation of 16 was performed at a potential positive of the first oxidation wave (0.25 V), 

and the results are shown in figure 4.23.  0.92 Faradays per mole of 16 were passed.  250 

µL of solution was removed from the working electrode side of the bulk electrolysis cell 

and sealed in J-Young EPR tube.  The solution in this tube was then frozen at 77 K.  The 

EPR spectrum is shown in figure 4.13.  After the EPR spectrum was obtained, the EPR 

sample was analyzed for 16 or its cation by mass spectroscopy.  HRMS (FAB+) m/z 

calcd. for C59H94ClIrN2O2P2: 1152.61. Found: 1152.66 (M+). 

Coulometric oxidation of 16 was continued at a potential positive of the second 

oxidation wave (0.96 V), and the results are shown in figure 4.24.  0.99 Faradays per 

mole of 16 were passed. Another 250 µL of solution was removed from the working 

electrode side of the bulk electrolysis cell and sealed in a J-Young EPR tube.  The 

solution in the tube was then frozen at 77 K, and the EPR spectrum is shown in 

figure 4.14.  After the EPR spectrum was obtained, the EPR sample was analyzed for 16 

or its cation by mass spectroscopy.  HRMS (FAB+) m/z calcd. for C59H94ClIrN2O2P2: 

1152.61. Found: 1152.67 (M+). 

The remaining solution from the working electrode side of the bulk electrolysis 

cell was stored at about -20 ˚C for greater than two weeks.  The solvent was then 

removed under reduced pressure, until about 4 mL remained.  0.6 mL were transferred to 

a J-Young NMR tube, and a 31P NMR spectrum was obtained.  31P{1H} NMR (CD2Cl2, 

121 MHz): δ 138.86, 130.71, 31.08, -143.52 (septet, 1J = 700 Hz). 
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Figure 4.23.  Coulometric oxidation of 16 at a potential positive of the first oxidation 

wave (0.25 V). 

 

 

Figure 4.24.  Second coulometric oxidation of 16 at a potential positive of the second 

oxidation wave of 16 (0.96 V). 
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2 mg (6 mmol) ferrocenium(III) hexafluorophosphate was dissolved in 1.7 mL CH2Cl2.  

The ferrocenium(III) solution was added to the solution of 16, while stirring.  200 µL of 

this solution was transferred to a J-Young EPR tube.  The same EPR spectrum was 

obtained as for the one-electron oxidation product in the coulometric oxidation of 16. 

 

Tables of Crystal Data and Structure Refinement. 

Table 4.2.  Crystal and refinement data for the structures of 5a, 6, and 7. 

 
5a 6 7 

Empirical formula C33H45NO2 [C43H48N2O2Ir]¯ 

[C8H16O6K]+ • (C6H6) 

C34H40NOPIr 

Formula weight 487.70 1007.32 894.04 

T (K) 100(2) 100(2) 100(2) 

a, Å 11.2818(11) 13.9766(6) 11.408(4) 

b, Å 15.6956(15) 14.0671(7) 12.890(4) 

c, Å 26.299(3) 14.2902(7) 20.209(7) 

α, deg 92.992(2) 69.3360(10)  

β, deg 94.515(2) 68.6020(10)  

γ, deg 103.637(2) 64.4860(10)  

Volume, Å3 4499.5(7) 2295.88(19) 2971.8(17) 

Z 6 2 4 

Crystal system Triclinic Triclinic Orthorhombic 

Space group P-1 P-1 P212121 
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dcalc, g/cm3 1.080 1.457 1.998 

θ range, deg 1.87 to 25.06 1.88 to 42.81 1.87 to 28.32 

µ, mm-1 0.066 3.051 9.028 

Abs. correction None SADABS Semiempirical from 

equivalents 

GOF 1.162 1.328 1.253 

R1
 ,a wR2

 b [I>2σ(I)] 0.0612, 0.1087 0.0501, 0.0904 0.0505, 0.0833 

a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo
2-Fc

2)2]/∑[w(Fo
2)2]1/2. 

 

Table 4.3.  Crystal and refinement data for the structures of 12/15, and 16. 

 
12/15 16 

Empirical formula [C59H94N2O2P2(NC2H3)0.78(CO)0.22Ir]+ [PF6]- C59H94N2O2P2ClIr • 

CH2Cl2 

Formula weight 1300.60 1237.88 

T (K) 100(2) 100(2) 

a, Å 15.8837(6) 13.5361(7) 

b, Å 17.9448(6) 38.3615(18) 

c, Å 21.1330(8) 22.7930(12) 

β, deg  96.738(3) 

Volume, Å3 6023.5(4) 1173.9(10) 

Z 4 8 

Crystal system Orthorhombic Monoclinic 
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Space group P212121 P21/n 

dcalc, g/cm3 1.434 1.399 

θ range, deg 1.60 to 33.58 1.39 to 31.90 

µ, mm-1 2.359 2.505 

Abs. correction Semiempirical from equivalents None 

GOF 2.300 1.075 

R1
 ,a wR2

 b [I>2σ(I)] 0.0277, 0.0481 0.0369, 0.0541 

a R1 = ∑||Fo| - |Fc||/∑|Fo|.  b wR2 = [∑[w(Fo
2-Fc

2)2]/∑[w(Fo
2)2]1/2. 
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 Appendix 1  

 Preliminary Studies on the Synthesis, Oxidation, and Protonation of  

 Water-Soluble Methylplatinum(II) Complexes Containing Sulfonated, 

 Bidentate Ligands 
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Introduction 

As stated in chapter 3, the platinum(II)-catalyzed alkane functionalization 

discovered by Shilov et al. requires improved catalyst stability in order to be practical.1-4  

The use of chelating ligands has the potential to improve catalyst stability and to aid in 

characterization, in part by limiting the number of species in solution.4,5  Since the 

platinum(II) system used by Shilov et al. is performed in aqueous solutions, sulfonated, 

chelating ligands will be used to generate water-soluble methylplatinum(II) complexes 

relevant to this catalysis.  In particular, oxidation of these complexes will be used to gain 

more information about possible factors affecting oxidation of the methylplatinum(II) 

species in the Shilov system.3 

 

Results 

The sodium salt of 1,4-bis(4-phenylsulfonate)-2,3-dimethyl-1,4-diaza-1,3-

butadiene was heated in methanol at 50 °C with bis(dimethyl(µ-

dimethylsulfide))platinum(II) to generate (4-bis(4-phenylsulfonate)-2,3-dimethyl-1,4-

diaza-1,3-butadiene)dimethylplatinum(II) (1) as depicted in scheme A1.1.  Likely due to 

the thermal instability of the bis(dimethyl(µ-dimethylsulfide))platinum(II), some 

colloidal platinum(0) always formed, and it proved difficult to remove.  Thus, in all 

reactions performed with this complex, there was a small amount of colloidal 

platinum(0).  1 is a dark red solid that is soluble in water, and it is sparingly soluble in 

methanol.  When it is dissolved in water, it forms a yellow solution; however, the 

complex decomposes slowly in water, and a significant amount of decomposition can be 

observed by 1H NMR spectroscopy after 1 day. 
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In order to circumvent problems associated with colloidal platinum removal and 

decomposition in aqueous solution, (2,2’-bipyridine-5-sulfonate)dimethylplatinum(II) (2) 

was synthesized.  2,2’-Bipyridine-5-sulfonic acid was synthesized by published 

procedures, and then it was deprotonated with an aqueous sodium hydroxide solution to 

form the sodium salt of 2,2’-bipyridine-5-sulfonate.6  This was then reacted with 

bis(dimethyl(µ-dimethylsulfide))platinum(II) to generate (2,2’- bipyridine-5-

sulfonate)dimethylplatinum(II) (2) as illustrated in scheme A1.2.  Excess bis(dimethyl(µ-

dimethylsulfide))platinum(II) was decomposed by heating the solution to 60° C.  

Impurities were precipitated out of the resulting solution by addition of diethyl ether, and 

they were then removed by filtration.  Removal of solvent and other volatiles under 

reduced pressure resulted in the isolation of 2 as a bright red solid.  When dissolved in 

water, this complex, like 1, forms a yellow solution. 

 

 

Scheme A1.1.  The synthesis of 1. 
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Scheme A1.2.  The synthesis of 2. 

 

 (2, 2’-bipyridine-5-sulfonate)chloromethylplatinum(II) (3) was generated in situ 

by heating an aqueous DCl solution of 2 with pD = 2 to 45° C for 45 minutes (scheme 

A1.3).  Two isomers were formed as characterized by 1H NMR spectroscopy, and they 

showed Pt-CH3 peaks at 0.87 and 0.88 ppm each with 195Pt satellites having a coupling 

constant of 2JPtH= 75 Hz. 

 

 

Scheme A1.3.  Protonolysis of 2 to generate isomers 3a and 3b. 

 

Complexes 1 and 2 seem to be oxidized by both dioxygen and hydrogen peroxide 

to form the respective dimethylplatinum(IV) complexes in aqueous solutions.7  These 

complexes are a light yellow color in solution.  For similar complexes, the Pt-CH3 peak 
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about 80 Hz to about 70 Hz is typical for the oxidation of platinum(II) species to 

platinum(IV) species.8,9  The Pt-CH3 peak of 1 occurs at 0.63 ppm with 2JPtH= 85 Hz.  

Upon oxidation, a species was generated which was tentatively identified as platinum(IV) 

based on the characteristic Pt-CH3 peak in the 1H NMR spectrum at 1.01 ppm with a 

coupling constant of 2JPtH= 69 Hz.7,8  The Pt-CH3 peaks of 2 occur at 0.85 and 0.87 ppm 

with coupling constants of 2JPtH=84 Hz, while oxidation leads to a probable platinum(IV) 

species  in which these peaks are shifted to 1.70 and 1.72 ppm with coupling constants of 

2JPtH= ~70 Hz.  The products formed in the reaction of 3a and 3b with hydrogen peroxide 

in D2O containing DCl at a pH of 2 could not be identified. 

Oxidations of 1 and 2 with hydrogen peroxide occur cleanly and rapidly, and they 

are complete within five minutes; however, oxidations of 1 and 2 with dioxygen occur at 

a significantly slower rate.  An approximate dioxygen oxidation rate of 1 was determined 

previously by UV-Vis spectroscopy; 1, in a 0.33 mM aqueous solution, has a half-life of 

about 24 minutes under an atmosphere of oxygen.7  

Both 1 and 2 were oxidized cleanly by excess CuCl2 in aqueous solutions to 

species tentatively identified as platinum(IV) complexes (scheme A1.4).  These reactions 

were complete in less than five minutes as observed by a downfield shift of the peaks in 

the 1H NMR spectrum relative to the peaks of the initial platinum(II) complex.  

Following oxidation of 1, the Pt-CH3 peak in the oxidized complex was shifted downfield 

to 1.15 ppm with a coupling constant of 2JPtH= 68 Hz.  The corresponding peak resulting 

from the oxidation of 2 was shifted downfield to 1.21 ppm with a coupling constant of 

2JPtH= 68 Hz.  Octahedral dimethylplatinum(IV) complexes containing the respective 

chelating ligands are likely formed in these reactions, but it is unclear what combination 
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of hydroxides and chlorides are in the axial positions.  1 was also oxidized by 

[Cu(H2O)6][ClO4]2, but the reaction was not as clean unless an excess of triethylamine 

was used (scheme A1.5).  This could be due to the formation of acid in these reactions as 

depicted in schemes A1.4 and A1.5.  Based on 1H NMR spectroscopy, no reaction 

occurred in a preliminary attempt at oxidizing the chloro(methyl)platinum(II) complex 

(3) with CuCl2 in an aqueous solution with a pH of 2. 

 

 

Scheme A1.4.  Oxidations of 1 and 2 with CuCl2. 

 

 

 

Scheme A1.5.  Oxidation of 1 with Cu(ClO4)2 in the presence of triethylamine. 
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dioxygen.10,11  Significant numbers of turnovers actually have been achieved in a 

modified Shilov system using CuCl2 to catalyze the oxidation of alkylplatinum(II) 

complexes with dioxygen.12  Unfortunately, there are a two major problems with the use 

of CuCl2 to catalyze these oxidations.  First, the chloride ion is corrosive in aqueous 

solutions.  Secondly, chloride is consumed in the Shilov system due to the formation of 

alkyl chlorides, and this could make it difficult to keep enough chloride in solution when 

attempting to catalyze the oxidation of alkylplatinum(II) complexes using CuCl2.3 

Due to the aforementioned problems, it could be beneficial to work with a system 

that does not require chloride ions in solution.  The only other copper salt tested in these 

oxidations thus far has been [Cu(H2O)6][ClO4]2.  In the absence of chloride, 

[Cu(H2O)6][ClO4]2 oxidized 1 at a similar rate to CuCl2 and hydrogen peroxide; although, 

some side-products were formed.  The reaction occurred more cleanly when there was 

base around, possibly due to the formation of acid (schemes A1.4 and A1.5).  The 

oxidation of 1 with [Cu(H2O)6][ClO4]2 is interesting because aqueous oxidation of the 

monomethylplatinum(II) salts described in chapter 2 did not occur with 

[Cu(H2O)6][ClO4]2 as the oxidant.  In that case, though, oxidation of the 

monomethylplatinum(II) species had to compete with rapid protonolysis. 

 Chloromethylplatinum(II) complexes with bidentate ligands have previously been 

shown to be more difficult to oxidize than the corresponding dimethylplatinum(II) 

complexes; so, it would be of interest if these complexes could be oxidized by CuCl2, 

especially since the Shilov cycle requires the oxidation of alkylchloroplatinum(II) 

complexes.13  A chloromethylplatinum(II) complex (3) containing the sulfonated 

bipyridine ligand was generated in situ from protonolysis of 2.  The PtII-CH3 peaks for 3a 
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and 3b in the 1H NMR  spectrum were intermediate in chemical shift and 195Pt coupling 

constants between those of the dimethylplatinum(II) complexes and those of the 

dimethylplatinum(IV) complexes, likely indicating a complex intermediate between the 

two in electron density at the platinum center.  This should make this complex more 

difficult to oxidize than the dimethylplatinum(II) complexes, as would be expected based 

on the oxidation potential differences determined previously for dimethyl- and 

chloromethyl-platinum(II) complexes.13  3 was not oxidized by CuCl2 at a pH of 2; 

however, it may be more easily oxidized at a higher pH. 

 

Experimental Section 

 General considerations.  All moisture-sensitive compounds were manipulated 

using standard vacuum line, Schlenk or cannula techniques or in a glovebox under a 

dinitrogen atmosphere.  Unless otherwise noted, solvents were deoxygenated and dried 

by thorough sparging with dinitrogen gas followed by passage through an activated 

alumina column.14  All deuterated solvents were purchased from Cambridge Isotope 

Laboratories, Inc.  Methanol-d4 was degassed prior to use.  Anhydrous methanol was 

purchased from Aldrich and degassed.  Bis(dimethyl(µ-dimethylsulfide))platinum (II),15 

(1,4-bis(4-sulfonylphenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene),16 and 2,2’-bipyridine-

5-sulfonic acid6 were prepared according to previously published procedures. 

 NMR spectra were acquired on a Varian Mercury 300 (1H, 299.8 Mhz; 13C, 

75.4626 Mhz) spectrometer at 23 °C.  1H NMR shifts were referenced with respect to 

internal solvent: 4.80 (DSS) (deuterium oxide) and 3.31 (m) (methanol-d4).   
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Synthesis of (1, 4-bis(4-sulfonylphenyl)-2, 3-dimethyl-1, 4-diaza-1, 3-

butadiene)dimethylplatinum(II) (1).  The sodium salt of 1,4-bis(4-sulfonate)-2,3-

dimethyl-1,4-diaza-1,3-butadiene) (386 mg, 0.88 mmol) and bis(dimethyl(µ-

dimethylsulfide)) (250 mg, 0.415 mmol) were dissolved in 18 mL of methanol in a 

Schlenk tube and sealed.  While stirring, the yellow suspension was heated to 50° C, and 

it turned red after about 15 minutes.  Heating was continued for 12 hours, and then the 

vessel was cooled to 23 °C.  The solid was isolated by filtration and then washed with 

methanol.  The resulting red solid, which contained some black platinum (0) from 

decomposition of bis(dimethyl(µ-dimethylsulfide)), was dried in under reduced pressure.  

1H NMR (300 MHz, D2O, δ): 0.63 (s, 6H, 2JPtH= 85 Hz, PtCH3), 1.78 (s, 12H, CH3), 7.13 

(d, 4H, 3JHH= 8.3 Hz, o-H), 7.97 (d, 4H, 3JHH= 8.3 Hz, m-H). 

 

Oxidation of 1 with copper(II) salts in D2O.  1 (15 mg, 0.022 mmol) and CuCl2 

(9 mg, 0.07 mmol) were each dissolved in 0.02 mL of D2O.  The solution of CuCl2 was 

then added to the solution of 1, and complete conversion to the oxidized product was seen 

immediately by 1H NMR spectroscopy.  1H NMR (300 MHz, D2O, δ): 1.16 (s, 6H, 2JPtH= 

68 Hz, PtCH3), 2.45 (s, 12H, CH3), 7.22 (b s, 4H, o-H), 7.96 (b s, 4H, m-H).  This 

reaction was repeated with CuClO4
. 6 H2O (13 mg, 0.04 mmol), 1 (11 mg, 0.02 mmol), 

and an excess of triethylamine to yield the same results.  The reaction with CuClO4
. 6 

H2O occurred without triethylamine, but small amounts of side-products were formed. 

 

Synthesis of (2,2’-bipyridine-5-sulfonate)dimethylplatinum(II) (2).  2,2’-

bipyridine-5-sulfonic acid (870 mg, 3.7 mmol) was dissolved in 50 mL H2O.  Aqueous 
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sodium hydroxide solution (0.024 M) was added until the solution reached a pH of 7.  

The solvent was then evaporated to yield a white solid (799.02 mg, 3.0945 mmol).  In a 

Schlenk tube, this solid (238 mg, 0.414 mmol) was dissolved along with bis(dimethyl(µ-

dimethylsulfide))platinum(II) (125 mg, 0.218 mmol) in 50 mL of methanol.  The vessel 

was sealed, and the solution was stirred for about 12 hours.  During that time, the solution 

turned from yellow to orange.  The solution was then heated to 60° C for 2 hours before 

being cooled to room temperature.  Diethyl ether was added to the solution in order to 

precipitate an impurity which was then removed by filtration.  This was repeated, and 

then the solvent was removed from the filtrate under reduced pressure.  The resulting 

solid was washed with diethyl ether, and then volatiles were removed under reduced 

pressure.  This yielded a bright red solid (58.9%, 118 mg, 0.244 mmol).  1H NMR (300 

MHz, D2O, δ): 0.85 (s, 3H, 2JPtH=84 Hz, PtCH3), 0.87 (s, 3H, 84 Hz, CH3), 7.62 (t, 1H, 

3JHH= 6.7 Hz), 8.09-8.35 (m, 3H), 8.49 (dd, 1H 3JHH= 8.7 Hz), 8.91 (d, 1H, 3JHH= 5.4 

Hz), 9.20 (d, 1H, 4JHH= 2.2 Hz, 3JPtH= 22 Hz, 6-H). 

 

Oxidations of 2 in D2O.  2 (5 mg, 0.01 mmol) was dissolved in 0.4 mL D2O to 

form a yellow solution.  CuCl2 (about 1 mg, 0.1 mmol) was then added.  The solution 

turned a lighter yellow, and the 1H NMR spectrum revealed a mixture of an oxidized 

Pt(IV) species and starting material.  The oxidized Pt(IV) species showed characteristic 

PtCH3 peaks at 1.21 ppm (2JPtH= 68 Hz) and 1.22 ppm (2JPtH= 68 Hz) in the 1H NMR 

spectrum.  The oxidation of 2 was repeated with and excess of aqueous hydrogen 

peroxide solution (1 drop, 10 M).  Bubbling occurred, and the solution turned light 

yellow.  The PtCH3 peaks again migrated downfield, indicating formation of a 
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platinum(IV) complex.  1H NMR (300 MHz, D2O, δ): 1.70 (PtCH3), 1.72 (PtCH3), 7.90, 

8.35, 8.65, 8.70, 9.02, 9.27. 

 

 In situ generation of (2,2’-bipyridine-5-sulfonate)chloromethylplatinum(II) 

(3).  2 (5 mg, 0.01 mmol) was dissolved in 0.4 mL of a DCl and D2O solution (pD= 2).  

This solution was heated to 45 °C for 45 minutes, and it changed from yellow to orange.  

1H NMR spectroscopy revealed the formation of two isomers.   1H NMR (300 MHz, 

D2O, δ): one isomer- 0.87 (s, 3H, 2J 75 Hz, PtCH3), 7.42 (m, 1H, 5’-H), 8.07- 8.35 (m, 

3H), 8.49 (dd, 1H, 3JHH= 8.5 Hz, 4JHH= 1.9 Hz, 5’-H)), 8.75 (d, 1H, 3JHH= 4.9 Hz, 6’-H), 

9.05 (d, 1H, 4JHH= 1.8 Hz, 6-H); other isomer- 0.88 (s, 3H, 2JPtH= 75 Hz, PtCH3), 7.77 (m, 

1H, 5’-H), 8.07-8.34 (m, 3H), 8.45 (dd, 1H, 3JHH= 8.5 Hz, 4JHH= 2.2 Hz, 5’-H), 8.82 (d, 

1H, 3JHH= 5.6 Hz, 6’-H), 9.12 (b s, 1H, 6-H). 

 

 Attempted oxidation of 3.  CuCl2 (about 1 mg, 0.01 mmol) was added to the 

solution of 8.  No reaction was observed by 1H NMR spectroscopy. 
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Structure in Chapter 3 

 

Structure of 2 (CCDC 706858) 

Special Refinement Details 

Crystals were mounted on a glass fiber using Paratone oil then placed on the 

diffractometer under a nitrogen stream at 100K. 

The diethylether sits at a center of symmetry and is therefore half occupancy.  The 

geometry was fixed and the temperature factors were not refined. 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 
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Table A2.1.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for 2 (CCDC 706858).  U(eq) is defined as the trace of the orthogonalized Uij 

tensor.  

______________________________________________________________________________ 
 x y z Ueq Occ 
______________________________________________________________________________ 
Pt(1) 9392(1) 9137(1) 3336(1) 17(1) 1 
Na(1) 11131(1) 8176(1) 3515(1) 22(1) 1 
Na(2) 7647(1) 9322(1) 3823(1) 27(1) 1 
O(1) 12310(1) 7936(1) 4063(1) 24(1) 1 
O(2) 12111(1) 9238(1) 3665(1) 25(1) 1 
O(3) 12054(1) 8643(1) 2926(1) 25(1) 1 
O(4) 11222(1) 7253(1) 2966(1) 25(1) 1 
O(5) 11046(1) 6862(1) 3774(1) 25(1) 1 
O(6) 6386(1) 9233(1) 3332(1) 28(1) 1 
O(7) 7022(1) 10609(1) 3578(1) 38(1) 1 
O(8) 8020(1) 10398(1) 4242(1) 67(1) 1 
O(9) 7032(1) 9197(1) 4514(1) 55(1) 1 
O(10) 6726(1) 8131(1) 3909(1) 33(1) 1 
N(1) 9747(1) 9014(1) 3955(1) 19(1) 1 
N(2) 10027(1) 10203(1) 3459(1) 18(1) 1 
C(1) 9645(1) 8508(1) 4271(1) 19(1) 1 
C(2) 9270(1) 7768(1) 4274(1) 24(1) 1 
C(3) 9222(1) 7384(1) 4637(1) 27(1) 1 
C(4) 9546(1) 7710(1) 4997(1) 27(1) 1 
C(5) 9932(1) 8433(1) 5001(1) 24(1) 1 
C(6) 9982(1) 8847(1) 4638(1) 20(1) 1 
C(7) 10291(1) 9588(1) 4532(1) 20(1) 1 
C(8) 10136(1) 9663(1) 4123(1) 18(1) 1 
C(9) 10304(1) 10296(1) 3853(1) 18(1) 1 
C(10) 10715(1) 11000(1) 3922(1) 21(1) 1 
C(11) 10711(1) 11380(1) 3544(1) 20(1) 1 
C(12) 11029(1) 12093(1) 3407(1) 23(1) 1 
C(13) 10919(1) 12284(1) 3005(1) 26(1) 1 
C(14) 10506(1) 11774(1) 2733(1) 27(1) 1 
C(15) 10182(1) 11067(1) 2858(1) 24(1) 1 
C(16) 10279(1) 10865(1) 3263(1) 19(1) 1 
C(17) 8822(1) 8073(1) 3261(1) 25(1) 1 
C(18) 9062(1) 9349(1) 2746(1) 27(1) 1 
C(19) 12398(1) 8624(1) 4286(1) 29(1) 1 
C(20) 12734(1) 9225(1) 3996(1) 31(1) 1 
C(21) 12436(1) 9685(1) 3336(1) 31(1) 1 
C(22) 11924(1) 9446(1) 2963(1) 29(1) 1 
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C(23) 11604(1) 8330(1) 2579(1) 28(1) 1 
C(24) 11699(1) 7484(1) 2607(1) 27(1) 1 
C(25) 11442(1) 6499(1) 3085(1) 28(1) 1 
C(26) 10863(1) 6338(1) 3454(1) 30(1) 1 
C(27) 11836(1) 6659(1) 4018(1) 30(1) 1 
C(28) 12019(1) 7306(1) 4302(1) 29(1) 1 
C(29) 6024(1) 9918(1) 3163(1) 37(1) 1 
C(30) 6786(2) 10492(1) 3168(1) 44(1) 1 
C(31) 7831(1) 11069(1) 3633(1) 69(1) 1 
C(32) 7969(2) 11143(2) 4069(1) 87(1) 1 
C(33) 7775(2) 10373(2) 4653(1) 99(1) 1 
C(34) 7701(2) 9564(2) 4775(1) 88(1) 1 
C(35) 6846(2) 8423(2) 4601(1) 72(1) 1 
C(36) 6219(2) 8116(1) 4280(1) 55(1) 1 
C(37) 6174(1) 7981(1) 3559(1) 38(1) 1 
C(38) 5681(1) 8682(1) 3408(1) 38(1) 1 
O(40) 9930(2) 5434(2) 5045(1) 50 0.50 
C(41) 10364(3) 5556(3) 4663(1) 50 0.50 
C(42) 9901(5) 5183(4) 4312(2) 50 0.50 
C(43) 10060(3) 4680(3) 5177(2) 50 0.50 
C(44) 10053(5) 4692(4) 5638(2) 50 0.50 
______________________________________________________________________________ 
 

 

Table A2.2.   Bond lengths [Å] and angles [°] for 2 (CCDC 706858). 

______________________________________________________________________________
Pt(1)-C(18)  2.0469(16) 
Pt(1)-C(17)  2.0536(16) 
Pt(1)-N(2)  2.1210(12) 
Pt(1)-N(1)  2.1265(13) 
Pt(1)-Na(2)  2.9821(6) 
Pt(1)-Na(1)  3.0565(6) 
Na(1)-O(2)  2.3828(12) 
Na(1)-O(4)  2.4419(13) 
Na(1)-O(5)  2.4672(12) 
Na(1)-O(3)  2.4943(13) 
Na(1)-O(1)  2.5103(13) 
Na(1)-N(1)  2.8602(14) 
Na(2)-O(8)  2.4073(16) 
Na(2)-O(6)  2.4305(13) 
Na(2)-O(9)  2.4619(16) 
Na(2)-O(10)  2.4869(13) 
Na(2)-O(7)  2.5630(15) 

O(1)-C(19)  1.423(2) 
O(1)-C(28)  1.424(2) 
O(2)-C(20)  1.411(2) 
O(2)-C(21)  1.422(2) 
O(3)-C(23)  1.428(2) 
O(3)-C(22)  1.429(2) 
O(4)-C(25)  1.4176(19) 
O(4)-C(24)  1.430(2) 
O(5)-C(26)  1.430(2) 
O(5)-C(27)  1.430(2) 
O(6)-C(38)  1.417(2) 
O(6)-C(29)  1.425(2) 
O(7)-C(30)  1.418(3) 
O(7)-C(31)  1.419(2) 
O(8)-C(33)  1.407(4) 
O(8)-C(32)  1.431(4) 
O(9)-C(35)  1.416(3) 
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O(9)-C(34)  1.441(3) 
O(10)-C(36)  1.428(2) 
O(10)-C(37)  1.428(2) 
N(1)-C(1)  1.3834(19) 
N(1)-C(8)  1.3849(19) 
N(2)-C(9)  1.3738(19) 
N(2)-C(16)  1.3814(19) 
C(1)-C(2)  1.407(2) 
C(1)-C(6)  1.436(2) 
C(2)-C(3)  1.384(2) 
C(3)-C(4)  1.401(3) 
C(4)-C(5)  1.384(2) 
C(5)-C(6)  1.410(2) 
C(6)-C(7)  1.419(2) 
C(7)-C(8)  1.381(2) 
C(8)-C(9)  1.449(2) 
C(9)-C(10)  1.389(2) 
C(10)-C(11)  1.421(2) 
C(11)-C(12)  1.408(2) 
C(11)-C(16)  1.440(2) 
C(12)-C(13)  1.383(2) 
C(13)-C(14)  1.402(3) 
C(14)-C(15)  1.388(2) 
C(15)-C(16)  1.395(2) 
C(19)-C(20)  1.507(3) 
C(21)-C(22)  1.497(3) 
C(23)-C(24)  1.497(2) 
C(25)-C(26)  1.503(3) 
C(27)-C(28)  1.501(3) 
C(29)-C(30)  1.482(3) 
C(31)-C(32)  1.466(5) 
C(33)-C(34)  1.483(5) 
C(35)-C(36)  1.491(4) 
C(37)-C(38)  1.505(3) 
O(40)-C(43)  1.409(4) 
O(40)-C(41)  1.425(5) 
C(41)-C(42)  1.490(6) 
C(43)-C(44)  1.529(7) 
 
C(18)-Pt(1)-C(17) 87.71(7) 
C(18)-Pt(1)-N(2) 96.97(6) 
C(17)-Pt(1)-N(2) 175.22(6) 
C(18)-Pt(1)-N(1) 175.28(6) 
C(17)-Pt(1)-N(1) 96.82(6) 
N(2)-Pt(1)-N(1) 78.52(5) 
C(18)-Pt(1)-Na(2) 107.91(5) 

C(17)-Pt(1)-Na(2) 80.55(5) 
N(2)-Pt(1)-Na(2) 98.84(3) 
N(1)-Pt(1)-Na(2) 71.69(3) 
C(18)-Pt(1)-Na(1) 118.22(5) 
C(17)-Pt(1)-Na(1) 80.85(5) 
N(2)-Pt(1)-Na(1) 96.01(3) 
N(1)-Pt(1)-Na(1) 64.07(3) 
Na(2)-Pt(1)-Na(1) 129.051(19) 
O(2)-Na(1)-O(4) 130.13(5) 
O(2)-Na(1)-O(5) 133.57(5) 
O(4)-Na(1)-O(5) 68.91(4) 
O(2)-Na(1)-O(3) 66.24(4) 
O(4)-Na(1)-O(3) 66.82(4) 
O(5)-Na(1)-O(3) 127.36(4) 
O(2)-Na(1)-O(1) 65.74(4) 
O(4)-Na(1)-O(1) 113.09(4) 
O(5)-Na(1)-O(1) 67.85(4) 
O(3)-Na(1)-O(1) 105.69(4) 
O(2)-Na(1)-N(1) 83.91(4) 
O(4)-Na(1)-N(1) 139.37(4) 
O(5)-Na(1)-N(1) 105.71(4) 
O(3)-Na(1)-N(1) 126.37(4) 
O(1)-Na(1)-N(1) 100.28(4) 
O(2)-Na(1)-Pt(1) 94.76(3) 
O(4)-Na(1)-Pt(1) 105.36(3) 
O(5)-Na(1)-Pt(1) 123.03(3) 
O(3)-Na(1)-Pt(1) 95.30(3) 
O(1)-Na(1)-Pt(1) 140.92(4) 
N(1)-Na(1)-Pt(1) 41.96(3) 
O(8)-Na(2)-O(6) 126.96(5) 
O(8)-Na(2)-O(9) 67.14(7) 
O(6)-Na(2)-O(9) 110.81(5) 
O(8)-Na(2)-O(10) 135.38(7) 
O(6)-Na(2)-O(10) 68.46(4) 
O(9)-Na(2)-O(10) 68.30(6) 
O(8)-Na(2)-O(7) 64.26(6) 
O(6)-Na(2)-O(7) 65.67(4) 
O(9)-Na(2)-O(7) 104.47(5) 
O(10)-Na(2)-O(7) 126.60(4) 
O(8)-Na(2)-Pt(1) 102.43(5) 
O(6)-Na(2)-Pt(1) 104.18(4) 
O(9)-Na(2)-Pt(1) 142.27(4) 
O(10)-Na(2)-Pt(1) 114.17(4) 
O(7)-Na(2)-Pt(1) 102.38(4) 
C(19)-O(1)-C(28) 113.37(13) 
C(19)-O(1)-Na(1) 106.96(9) 
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C(28)-O(1)-Na(1) 109.85(9) 
C(20)-O(2)-C(21) 113.66(13) 
C(20)-O(2)-Na(1) 121.15(10) 
C(21)-O(2)-Na(1) 117.61(10) 
C(23)-O(3)-C(22) 113.09(13) 
C(23)-O(3)-Na(1) 105.56(9) 
C(22)-O(3)-Na(1) 100.92(9) 
C(25)-O(4)-C(24) 113.05(12) 
C(25)-O(4)-Na(1) 115.23(10) 
C(24)-O(4)-Na(1) 117.28(9) 
C(26)-O(5)-C(27) 113.69(12) 
C(26)-O(5)-Na(1) 110.72(10) 
C(27)-O(5)-Na(1) 113.08(9) 
C(38)-O(6)-C(29) 113.03(14) 
C(38)-O(6)-Na(2) 116.57(10) 
C(29)-O(6)-Na(2) 118.43(10) 
C(30)-O(7)-C(31) 113.42(19) 
C(30)-O(7)-Na(2) 104.97(10) 
C(31)-O(7)-Na(2) 100.39(12) 
C(33)-O(8)-C(32) 113.9(2) 
C(33)-O(8)-Na(2) 118.63(19) 
C(32)-O(8)-Na(2) 118.42(16) 
C(35)-O(9)-C(34) 115.5(2) 
C(35)-O(9)-Na(2) 110.11(12) 
C(34)-O(9)-Na(2) 106.57(16) 
C(36)-O(10)-C(37) 114.84(16) 
C(36)-O(10)-Na(2) 112.45(13) 
C(37)-O(10)-Na(2) 110.69(10) 
C(1)-N(1)-C(8) 105.42(12) 
C(1)-N(1)-Pt(1) 140.57(10) 
C(8)-N(1)-Pt(1) 113.68(9) 
C(1)-N(1)-Na(1) 97.33(8) 
C(8)-N(1)-Na(1) 110.76(8) 
Pt(1)-N(1)-Na(1) 73.96(4) 
C(9)-N(2)-C(16) 105.87(12) 
C(9)-N(2)-Pt(1) 114.28(10) 
C(16)-N(2)-Pt(1) 139.85(10) 
N(1)-C(1)-C(2) 129.79(15) 
N(1)-C(1)-C(6) 109.86(13) 
C(2)-C(1)-C(6) 120.35(14) 
C(3)-C(2)-C(1) 118.38(16) 
C(2)-C(3)-C(4) 121.73(16) 
C(5)-C(4)-C(3) 120.97(16) 
C(4)-C(5)-C(6) 119.07(16) 

C(5)-C(6)-C(7) 134.45(15) 
C(5)-C(6)-C(1) 119.48(14) 
C(7)-C(6)-C(1) 106.05(13) 
C(8)-C(7)-C(6) 106.22(13) 
C(7)-C(8)-N(1) 112.45(13) 
C(7)-C(8)-C(9) 130.92(14) 
N(1)-C(8)-C(9) 116.63(13) 
N(2)-C(9)-C(10) 112.67(13) 
N(2)-C(9)-C(8) 116.73(13) 
C(10)-C(9)-C(8) 130.60(14) 
C(9)-C(10)-C(11) 105.72(14) 
C(12)-C(11)-C(10) 134.63(15) 
C(12)-C(11)-C(16) 119.22(14) 
C(10)-C(11)-C(16) 106.14(13) 
C(13)-C(12)-C(11) 119.33(15) 
C(12)-C(13)-C(14) 120.92(15) 
C(15)-C(14)-C(13) 121.30(16) 
C(14)-C(15)-C(16) 118.80(16) 
N(2)-C(16)-C(15) 129.98(14) 
N(2)-C(16)-C(11) 109.59(13) 
C(15)-C(16)-C(11) 120.42(14) 
O(1)-C(19)-C(20) 106.95(14) 
O(2)-C(20)-C(19) 108.02(13) 
O(2)-C(21)-C(22) 108.70(13) 
O(3)-C(22)-C(21) 106.55(14) 
O(3)-C(23)-C(24) 107.01(13) 
O(4)-C(24)-C(23) 106.88(13) 
O(4)-C(25)-C(26) 106.35(13) 
O(5)-C(26)-C(25) 112.51(13) 
O(5)-C(27)-C(28) 107.59(13) 
O(1)-C(28)-C(27) 106.75(14) 
O(6)-C(29)-C(30) 107.82(16) 
O(7)-C(30)-C(29) 106.43(15) 
O(7)-C(31)-C(32) 106.6(2) 
O(8)-C(32)-C(31) 108.75(19) 
O(8)-C(33)-C(34) 108.3(2) 
O(9)-C(34)-C(33) 108.2(2) 
O(9)-C(35)-C(36) 108.27(17) 
O(10)-C(36)-C(35) 107.79(17) 
O(10)-C(37)-C(38) 112.01(16) 
O(6)-C(38)-C(37) 106.81(13) 
C(43)-O(40)-C(41) 111.1(4) 
O(40)-C(41)-C(42) 115.9(5) 
O(40)-C(43)-C(44) 107.3(5) 

__________________________________________________________________
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Table A2.3.   Anisotropic displacement parameters (Å2x 104) for 2 (CCDC 706858).  The 

anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11+ ... +2 h k a* b* 

U12 ]. 

________________________________________________________________________ 
                U11             U22             U33              U23              U13            U12 
________________________________________________________________________ 
Pt(1) 124(1)  216(1) 159(1)  -18(1) 5(1)  4(1) 
Na(1) 186(3)  197(3) 262(3)  20(3) 6(2)  4(2) 
Na(2) 192(3)  340(4) 285(4)  -93(3) 40(2)  2(3) 
O(1) 278(5)  217(6) 238(6)  -7(4) 35(4)  7(4) 
O(2) 235(5)  217(6) 304(7)  -4(5) 23(4)  -34(4) 
O(3) 265(5)  197(6) 280(6)  0(4) 27(4)  29(4) 
O(4) 251(5)  223(6) 269(6)  -3(5) -27(4)  29(4) 
O(5) 218(5)  225(6) 319(7)  51(5) 0(4)  24(4) 
O(6) 328(5)  219(6) 304(7)  -17(5) -77(5)  12(4) 
O(7) 268(6)  283(7) 583(10)  -139(6) 102(6)  -70(5) 
O(8) 349(7)  769(12) 902(15)  -561(11) -269(8)  230(7) 
O(9) 388(7)  1028(14) 225(7)  -26(8) -53(5)  370(8) 
O(10) 210(5)  401(7) 369(8)  133(6) 73(5)  21(5) 
N(1) 194(5)  195(7) 173(6)  1(5) 2(4)  -8(5) 
N(2) 168(5)  207(7) 182(6)  7(5) -8(4)  1(5) 
C(1) 154(5)  209(8) 203(8)  23(6) 11(5)  12(5) 
C(2) 209(7)  236(8) 272(9)  13(6) -2(5)  -7(6) 
C(3) 227(7)  235(9) 349(10)  85(7) 11(6)  -29(6) 
C(4) 213(6)  321(9) 279(9)  137(7) 4(6)  20(6) 
C(5) 195(6)  322(9) 209(8)  50(7) -8(6)  31(6) 
C(6) 151(5)  243(8) 197(7)  25(6) 8(5)  30(5) 
C(7) 175(6)  230(8) 183(7)  -7(6) 0(5)  6(5) 
C(8) 168(5)  190(7) 177(7)  -15(5) 8(5)  8(5) 
C(9) 160(5)  213(8) 166(7)  -3(5) 11(5)  17(5) 
C(10) 199(6)  214(8) 201(7)  -23(5) 9(5)  -4(5) 
C(11) 155(6)  200(8) 232(8)  19(6) 35(5)  28(5) 
C(12) 188(6)  195(8) 309(10)  8(6) 35(5)  27(5) 
C(13) 194(6)  213(8) 356(10)  91(7) 61(6)  52(6) 
C(14) 229(7)  322(9) 258(9)  110(7) 19(6)  57(6) 
C(15) 221(7)  284(9) 231(8)  43(6) -15(6)  25(6) 
C(16) 155(5)  210(7) 197(7)  18(6) 14(4)  34(5) 
C(17) 228(6)  281(9) 246(9)  -53(6) -15(6)  -22(6) 
C(18) 246(7)  353(9) 203(8)  -4(7) -44(6)  -36(7) 
C(19) 271(7)  313(9) 273(9)  -78(7) -20(6)  43(7) 
C(20) 280(7)  268(10) 382(11)  -88(7) -18(7)  -37(7) 
C(21) 297(7)  200(8) 423(11)  20(8) 107(7)  -49(6) 
C(22) 295(7)  202(8) 363(10)  56(7) 116(7)  28(6) 
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C(23) 257(7)  340(10) 251(9)  21(7) 3(6)  29(7) 
C(24) 245(7)  334(9) 242(8)  -39(7) -11(6)  -2(7) 
C(25) 284(7)  185(8) 370(10)  -49(7) -61(7)  17(6) 
C(26) 236(7)  185(9) 479(12)  26(7) -42(7)  -37(6) 
C(27) 234(7)  229(9) 425(11)  115(7) -14(7)  9(6) 
C(28) 277(7)  335(10) 267(9)  101(7) 18(6)  20(7) 
C(29) 529(11)  304(10) 269(10)  -15(8) -83(8)  137(9) 
C(30) 610(13)  287(10) 423(12)  58(9) 205(10)  93(9) 
C(31) 234(9)  278(12) 1570(30)  -139(14) 26(13)  -42(8) 
C(32) 410(12)  498(16) 1710(40)  -593(19) -424(17)  155(11) 
C(33) 466(13)  1470(30) 1020(30)  -950(20) -470(15)  551(17) 
C(34) 473(13)  1810(30) 356(14)  -460(18) -234(10)  659(18) 
C(35) 653(14)  1230(20) 272(12)  274(13) 216(11)  648(16) 
C(36) 433(11)  565(14) 644(17)  344(12) 351(11)  207(10) 
C(37) 258(8)  278(10) 619(14)  42(9) -97(8)  -67(7) 
C(38) 267(8)  311(10) 567(14)  7(8) -151(8)  -38(7) 
________________________________________________________________________ 
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 Structures in Chapter 4 

 

Structure of 5a (CCDC 640093) 

Special Refinement Details 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 

 

Table A2.4.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for 5a (CCDC 640093).  U(eq) is defined asthe trace of the orthogonalized Uij 

tensor.  

______________________________________________________________________________ 
 x y z Ueq 
______________________________________________________________________________ 
O(1A) 10111(2) 1209(1) 1178(1) 24(1) 
O(2A) 8322(2) -319(1) 1878(1) 22(1) 
N(1A) 9617(2) 1334(1) 2152(1) 17(1) 
C(1A) 9804(2) 2004(2) 1136(1) 18(1) 
C(2A) 9736(2) 2318(2) 648(1) 19(1) 
C(3A) 9437(2) 3129(2) 614(1) 19(1) 
C(4A) 9204(2) 3626(2) 1035(1) 18(1) 
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C(5A) 9283(2) 3291(2) 1506(1) 19(1) 
C(6A) 9606(2) 2486(2) 1568(1) 18(1) 
C(7A) 9748(2) 2205(2) 2101(1) 17(1) 
C(8A) 10047(3) 2810(2) 2516(1) 22(1) 
C(9A) 10122(2) 2518(2) 3003(1) 21(1) 
C(10A) 9948(2) 1632(2) 3058(1) 21(1) 
C(11A) 9732(2) 1046(2) 2628(1) 17(1) 
C(12A) 9589(2) 95(2) 2674(1) 18(1) 
C(13A) 10164(2) -186(2) 3108(1) 18(1) 
C(14A) 10025(2) -1051(2) 3192(1) 16(1) 
C(15A) 9264(2) -1668(2) 2834(1) 18(1) 
C(16A) 8671(2) -1450(2) 2392(1) 16(1) 
C(17A) 8871(2) -551(2) 2315(1) 16(1) 
C(18A) 9969(3) 1794(2) 172(1) 23(1) 
C(19A) 11280(3) 1663(2) 232(1) 33(1) 
C(20A) 9848(3) 2270(2) -314(1) 36(1) 
C(21A) 9051(3) 896(2) 91(1) 30(1) 
C(22A) 8895(2) 4514(2) 961(1) 18(1) 
C(23A) 7865(3) 4425(2) 532(1) 32(1) 
C(24A) 10047(3) 5157(2) 818(1) 31(1) 
C(25A) 8502(3) 4902(2) 1444(1) 33(1) 
C(26A) 10645(2) -1362(2) 3669(1) 18(1) 
C(27A) 11536(3) -615(2) 3991(1) 29(1) 
C(28A) 9651(3) -1800(2) 4004(1) 25(1) 
C(29A) 11364(2) -2027(2) 3511(1) 22(1) 
C(30A) 7849(2) -2156(2) 2016(1) 19(1) 
C(31A) 6547(2) -2007(2) 1952(1) 26(1) 
C(32A) 7723(3) -3080(2) 2189(1) 25(1) 
C(33A) 8362(3) -2145(2) 1487(1) 26(1) 
O(1B) 5055(2) 3647(1) 1899(1) 23(1) 
O(2B) 8018(2) 4033(1) 2650(1) 23(1) 
N(1B) 6349(2) 2571(1) 2243(1) 17(1) 
C(1B) 5021(2) 3233(2) 1428(1) 19(1) 
C(2B) 4482(2) 3571(2) 1006(1) 19(1) 
C(3B) 4485(2) 3154(2) 530(1) 22(1) 
C(4B) 4972(3) 2429(2) 445(1) 23(1) 
C(5B) 5470(3) 2112(2) 871(1) 22(1) 
C(6B) 5494(2) 2492(2) 1366(1) 18(1) 
C(7B) 5964(2) 2069(2) 1804(1) 17(1) 
C(8B) 5947(2) 1181(2) 1781(1) 20(1) 
C(9B) 6336(2) 811(2) 2212(1) 21(1) 
C(10B) 6726(2) 1337(2) 2657(1) 19(1) 
C(11B) 6724(2) 2219(2) 2670(1) 17(1) 
C(12B) 7136(2) 2813(2) 3131(1) 17(1) 
C(13B) 6874(2) 2504(2) 3613(1) 20(1) 
C(14B) 7288(3) 3021(2) 4059(1) 20(1) 
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C(15B) 8051(3) 3853(2) 4020(1) 22(1) 
C(16B) 8346(2) 4204(2) 3561(1) 18(1) 
C(17B) 7815(3) 3679(2) 3114(1) 19(1) 
C(18B) 3923(3) 4369(2) 1077(1) 21(1) 
C(19B) 2868(3) 4154(2) 1421(1) 28(1) 
C(20B) 3372(3) 4606(2) 566(1) 32(1) 
C(21B) 4905(3) 5178(2) 1304(1) 30(1) 
C(22B) 4994(3) 1996(2) -88(1) 30(1) 
C(23B) 4373(3) 2413(2) -506(1) 39(1) 
C(24B) 4279(3) 1018(2) -103(1) 48(1) 
C(25B) 6301(3) 2048(3) -197(1) 56(1) 
C(26B) 6905(3) 2727(2) 4584(1) 26(1) 
C(27B) 5979(3) 1850(2) 4538(1) 49(1) 
C(28B) 8007(3) 2693(3) 4934(1) 55(1) 
C(29B) 6278(3) 3400(2) 4829(1) 49(1) 
C(30B) 9189(3) 5122(2) 3539(1) 20(1) 
C(31B) 10245(3) 5077(2) 3212(1) 31(1) 
C(32B) 9768(3) 5520(2) 4068(1) 37(1) 
C(33B) 8461(3) 5742(2) 3307(1) 29(1) 
O(1C) 4818(2) 362(1) 3414(1) 22(1) 
O(2C) 2428(2) 1470(1) 3807(1) 23(1) 
N(1C) 3340(2) 1162(1) 2913(1) 17(1) 
C(1C) 4352(2) -349(2) 3074(1) 18(1) 
C(2C) 4735(2) -1118(2) 3151(1) 16(1) 
C(3C) 4202(2) -1842(2) 2819(1) 19(1) 
C(4C) 3317(2) -1853(2) 2411(1) 18(1) 
C(5C) 3016(3) -1058(2) 2337(1) 20(1) 
C(6C) 3525(2) -299(2) 2651(1) 18(1) 
C(7C) 3238(2) 544(2) 2522(1) 17(1) 
C(8C) 2944(2) 719(2) 2023(1) 20(1) 
C(9C) 2756(2) 1542(2) 1925(1) 22(1) 
C(10C) 2879(2) 2169(2) 2326(1) 20(1) 
C(11C) 3166(2) 1972(2) 2818(1) 18(1) 
C(12C) 3276(2) 2607(2) 3262(1) 18(1) 
C(13C) 3771(2) 3502(2) 3213(1) 21(1) 
C(14C) 3803(3) 4127(2) 3606(1) 20(1) 
C(15C) 3255(3) 3839(2) 4045(1) 21(1) 
C(16C) 2757(2) 2969(2) 4121(1) 19(1) 
C(17C) 2841(2) 2347(2) 3727(1) 19(1) 
C(18C) 5680(2) -1169(2) 3597(1) 17(1) 
C(19C) 5149(3) -1052(2) 4109(1) 29(1) 
C(20C) 6041(3) -2050(2) 3580(1) 25(1) 
C(21C) 6879(2) -454(2) 3577(1) 25(1) 
C(22C) 2693(2) -2672(2) 2065(1) 20(1) 
C(23C) 1302(3) -2884(2) 2109(1) 35(1) 
C(24C) 3143(3) -3477(2) 2208(1) 34(1) 
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C(25C) 2941(3) -2501(2) 1515(1) 32(1) 
C(26C) 4414(3) 5105(2) 3579(1) 24(1) 
C(27C) 4996(3) 5282(2) 3074(1) 30(1) 
C(28C) 3452(3) 5639(2) 3626(1) 36(1) 
C(29C) 5415(3) 5395(2) 4025(1) 31(1) 
C(30C) 2145(3) 2685(2) 4606(1) 21(1) 
C(31C) 816(3) 2141(2) 4465(1) 30(1) 
C(32C) 2067(3) 3476(2) 4956(1) 37(1) 
C(33C) 2858(3) 2131(2) 4917(1) 29(1) 
 

 

Table A2.5.   Bond lengths [Å] and angles [°] for 5a (CCDC 640093). 

______________________________________________________________________________
_
O(1A)-C(1A)  1.379(3) 
O(2A)-C(17A)  1.371(3) 
N(1A)-C(7A)  1.355(3) 
N(1A)-C(11A)  1.359(3) 
C(1A)-C(6A)  1.395(4) 
C(1A)-C(2A)  1.401(4) 
C(2A)-C(3A)  1.397(4) 
C(2A)-C(18A)  1.535(4) 
C(3A)-C(4A)  1.397(4) 
C(4A)-C(5A)  1.375(4) 
C(4A)-C(22A)  1.533(4) 
C(5A)-C(6A)  1.409(4) 
C(6A)-C(7A)  1.497(4) 
C(7A)-C(8A)  1.374(4) 
C(8A)-C(9A)  1.386(4) 
C(9A)-C(10A)  1.375(4) 
C(10A)-C(11A)  1.389(4) 
C(11A)-C(12A)  1.475(4) 
C(12A)-C(17A)  1.404(4) 
C(12A)-C(13A)  1.411(3) 
C(13A)-C(14A)  1.362(3) 
C(14A)-C(15A)  1.396(4) 
C(14A)-C(26A)  1.544(3) 
C(15A)-C(16A)  1.394(3) 
C(16A)-C(17A)  1.403(3) 
C(16A)-C(30A)  1.524(4) 
C(18A)-C(20A)  1.526(4) 
C(18A)-C(21A)  1.534(4) 
C(18A)-C(19A)  1.537(4) 

C(22A)-C(25A)  1.521(4) 
C(22A)-C(23A)  1.531(4) 
C(22A)-C(24A)  1.532(4) 
C(26A)-C(27A)  1.519(4) 
C(26A)-C(29A)  1.527(4) 
C(26A)-C(28A)  1.536(4) 
C(30A)-C(32A)  1.520(3) 
C(30A)-C(31A)  1.539(4) 
C(30A)-C(33A)  1.548(4) 
O(1B)-C(1B)  1.364(3) 
O(2B)-C(17B)  1.382(3) 
N(1B)-C(7B)  1.344(3) 
N(1B)-C(11B)  1.359(3) 
C(1B)-C(6B)  1.396(4) 
C(1B)-C(2B)  1.410(4) 
C(2B)-C(3B)  1.383(4) 
C(2B)-C(18B)  1.539(4) 
C(3B)-C(4B)  1.391(4) 
C(4B)-C(5B)  1.382(4) 
C(4B)-C(22B)  1.531(4) 
C(5B)-C(6B)  1.399(4) 
C(6B)-C(7B)  1.484(4) 
C(7B)-C(8B)  1.387(4) 
C(8B)-C(9B)  1.386(4) 
C(9B)-C(10B)  1.376(4) 
C(10B)-C(11B)  1.383(4) 
C(11B)-C(12B)  1.465(4) 
C(12B)-C(17B)  1.400(4) 
C(12B)-C(13B)  1.407(4) 
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C(13B)-C(14B)  1.374(4) 
C(14B)-C(15B)  1.397(4) 
C(14B)-C(26B)  1.541(4) 
C(15B)-C(16B)  1.386(4) 
C(16B)-C(17B)  1.404(4) 
C(16B)-C(30B)  1.535(4) 
C(18B)-C(21B)  1.533(4) 
C(18B)-C(20B)  1.537(4) 
C(18B)-C(19B)  1.537(4) 
C(22B)-C(25B)  1.509(4) 
C(22B)-C(23B)  1.515(4) 
C(22B)-C(24B)  1.553(4) 
C(26B)-C(28B)  1.500(4) 
C(26B)-C(27B)  1.512(4) 
C(26B)-C(29B)  1.544(4) 
C(30B)-C(32B)  1.525(4) 
C(30B)-C(33B)  1.534(4) 
C(30B)-C(31B)  1.536(4) 
O(1C)-C(1C)  1.366(3) 
O(2C)-C(17C)  1.378(3) 
N(1C)-C(7C)  1.355(3) 
N(1C)-C(11C)  1.363(3) 
C(1C)-C(2C)  1.394(4) 
C(1C)-C(6C)  1.412(4) 
C(2C)-C(3C)  1.380(4) 
C(2C)-C(18C)  1.540(4) 
C(3C)-C(4C)  1.404(4) 
C(4C)-C(5C)  1.387(4) 
C(4C)-C(22C)  1.525(4) 
C(5C)-C(6C)  1.390(4) 
C(6C)-C(7C)  1.483(4) 
C(7C)-C(8C)  1.388(4) 
C(8C)-C(9C)  1.392(4) 
C(9C)-C(10C)  1.379(4) 
C(10C)-C(11C)  1.378(4) 
C(11C)-C(12C)  1.473(4) 
C(12C)-C(17C)  1.399(4) 
C(12C)-C(13C)  1.401(4) 
C(13C)-C(14C)  1.379(4) 
C(14C)-C(15C)  1.399(4) 
C(14C)-C(26C)  1.535(4) 
C(15C)-C(16C)  1.381(4) 
C(16C)-C(17C)  1.410(4) 
C(16C)-C(30C)  1.534(4) 
C(18C)-C(20C)  1.530(4) 
C(18C)-C(19C)  1.536(4) 

C(18C)-C(21C)  1.547(4) 
C(22C)-C(25C)  1.520(4) 
C(22C)-C(24C)  1.521(4) 
C(22C)-C(23C)  1.540(4) 
C(26C)-C(28C)  1.528(4) 
C(26C)-C(29C)  1.533(4) 
C(26C)-C(27C)  1.537(4) 
C(30C)-C(32C)  1.531(4) 
C(30C)-C(33C)  1.541(4) 
C(30C)-C(31C)  1.546(4) 
 
C(7A)-N(1A)-C(11A) 119.3(2) 
O(1A)-C(1A)-C(6A) 120.6(2) 
O(1A)-C(1A)-C(2A) 117.7(3) 
C(6A)-C(1A)-C(2A) 121.6(2) 
C(3A)-C(2A)-C(1A) 116.8(3) 
C(3A)-C(2A)-C(18A) 121.5(2) 
C(1A)-C(2A)-C(18A) 121.7(2) 
C(2A)-C(3A)-C(4A) 123.7(3) 
C(5A)-C(4A)-C(3A) 117.4(2) 
C(5A)-C(4A)-C(22A) 122.6(3) 
C(3A)-C(4A)-C(22A) 120.0(2) 
C(4A)-C(5A)-C(6A) 121.8(3) 
C(1A)-C(6A)-C(5A) 118.7(2) 
C(1A)-C(6A)-C(7A) 123.5(2) 
C(5A)-C(6A)-C(7A) 117.8(3) 
N(1A)-C(7A)-C(8A) 121.6(2) 
N(1A)-C(7A)-C(6A) 117.1(2) 
C(8A)-C(7A)-C(6A) 121.3(2) 
C(7A)-C(8A)-C(9A) 119.2(3) 
C(10A)-C(9A)-C(8A) 119.2(3) 
C(9A)-C(10A)-C(11A) 119.8(3) 
N(1A)-C(11A)-C(10A) 120.6(2) 
N(1A)-C(11A)-C(12A) 118.3(2) 
C(10A)-C(11A)-C(12A) 121.0(2) 
C(17A)-C(12A)-C(13A) 117.9(2) 
C(17A)-C(12A)-C(11A) 123.2(2) 
C(13A)-C(12A)-C(11A) 118.9(3) 
C(14A)-C(13A)-C(12A) 122.4(3) 
C(13A)-C(14A)-C(15A) 117.5(3) 
C(13A)-C(14A)-C(26A) 122.6(2) 
C(15A)-C(14A)-C(26A) 119.9(2) 
C(16A)-C(15A)-C(14A) 123.9(3) 
C(15A)-C(16A)-C(17A) 116.3(3) 
C(15A)-C(16A)-C(30A) 121.3(2) 
C(17A)-C(16A)-C(30A) 122.3(2) 
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O(2A)-C(17A)-C(16A) 117.6(2) 
O(2A)-C(17A)-C(12A) 120.5(2) 
C(16A)-C(17A)-C(12A) 121.8(2) 
C(20A)-C(18A)-C(21A) 107.3(2) 
C(20A)-C(18A)-C(2A) 112.1(2) 
C(21A)-C(18A)-C(2A) 110.9(2) 
C(20A)-C(18A)-C(19A) 107.2(2) 
C(21A)-C(18A)-C(19A) 109.5(2) 
C(2A)-C(18A)-C(19A) 109.7(2) 
C(25A)-C(22A)-C(23A) 108.3(2) 
C(25A)-C(22A)-C(24A) 108.0(2) 
C(23A)-C(22A)-C(24A) 109.2(2) 
C(25A)-C(22A)-C(4A) 112.6(2) 
C(23A)-C(22A)-C(4A) 110.7(2) 
C(24A)-C(22A)-C(4A) 108.1(2) 
C(27A)-C(26A)-C(29A) 107.2(2) 
C(27A)-C(26A)-C(28A) 108.4(2) 
C(29A)-C(26A)-C(28A) 108.9(2) 
C(27A)-C(26A)-C(14A) 112.9(2) 
C(29A)-C(26A)-C(14A) 110.3(2) 
C(28A)-C(26A)-C(14A) 108.9(2) 
C(32A)-C(30A)-C(16A) 113.1(2) 
C(32A)-C(30A)-C(31A) 106.7(2) 
C(16A)-C(30A)-C(31A) 110.3(2) 
C(32A)-C(30A)-C(33A) 106.9(2) 
C(16A)-C(30A)-C(33A) 110.8(2) 
C(31A)-C(30A)-C(33A) 108.9(2) 
C(7B)-N(1B)-C(11B) 120.7(2) 
O(1B)-C(1B)-C(6B) 120.9(2) 
O(1B)-C(1B)-C(2B) 117.9(2) 
C(6B)-C(1B)-C(2B) 121.2(3) 
C(3B)-C(2B)-C(1B) 116.9(3) 
C(3B)-C(2B)-C(18B) 122.0(2) 
C(1B)-C(2B)-C(18B) 121.1(2) 
C(2B)-C(3B)-C(4B) 124.3(3) 
C(5B)-C(4B)-C(3B) 116.6(3) 
C(5B)-C(4B)-C(22B) 120.2(3) 
C(3B)-C(4B)-C(22B) 123.1(3) 
C(4B)-C(5B)-C(6B) 122.6(3) 
C(1B)-C(6B)-C(5B) 118.3(3) 
C(1B)-C(6B)-C(7B) 122.8(3) 
C(5B)-C(6B)-C(7B) 118.8(2) 
N(1B)-C(7B)-C(8B) 120.3(3) 
N(1B)-C(7B)-C(6B) 117.2(2) 
C(8B)-C(7B)-C(6B) 122.4(3) 
C(9B)-C(8B)-C(7B) 119.9(3) 

C(10B)-C(9B)-C(8B) 118.9(3) 
C(9B)-C(10B)-C(11B) 120.0(3) 
N(1B)-C(11B)-C(10B) 120.2(3) 
N(1B)-C(11B)-C(12B) 117.2(2) 
C(10B)-C(11B)-C(12B) 122.6(2) 
C(17B)-C(12B)-C(13B) 118.2(3) 
C(17B)-C(12B)-C(11B) 122.3(2) 
C(13B)-C(12B)-C(11B) 119.5(2) 
C(14B)-C(13B)-C(12B) 121.8(3) 
C(13B)-C(14B)-C(15B) 117.4(3) 
C(13B)-C(14B)-C(26B) 122.4(2) 
C(15B)-C(14B)-C(26B) 120.1(3) 
C(16B)-C(15B)-C(14B) 124.0(3) 
C(15B)-C(16B)-C(17B) 116.4(2) 
C(15B)-C(16B)-C(30B) 122.0(2) 
C(17B)-C(16B)-C(30B) 121.6(2) 
O(2B)-C(17B)-C(12B) 120.3(2) 
O(2B)-C(17B)-C(16B) 117.9(2) 
C(12B)-C(17B)-C(16B) 121.8(2) 
C(21B)-C(18B)-C(20B) 107.5(2) 
C(21B)-C(18B)-C(19B) 110.8(2) 
C(20B)-C(18B)-C(19B) 106.5(2) 
C(21B)-C(18B)-C(2B) 110.4(2) 
C(20B)-C(18B)-C(2B) 111.6(2) 
C(19B)-C(18B)-C(2B) 109.9(2) 
C(25B)-C(22B)-C(23B) 109.2(3) 
C(25B)-C(22B)-C(4B) 109.7(3) 
C(23B)-C(22B)-C(4B) 112.7(2) 
C(25B)-C(22B)-C(24B) 109.7(3) 
C(23B)-C(22B)-C(24B) 106.9(3) 
C(4B)-C(22B)-C(24B) 108.5(3) 
C(28B)-C(26B)-C(27B) 110.5(3) 
C(28B)-C(26B)-C(14B) 110.5(3) 
C(27B)-C(26B)-C(14B) 112.0(2) 
C(28B)-C(26B)-C(29B) 108.2(3) 
C(27B)-C(26B)-C(29B) 106.5(3) 
C(14B)-C(26B)-C(29B) 109.0(2) 
C(32B)-C(30B)-C(33B) 108.3(2) 
C(32B)-C(30B)-C(16B) 111.9(2) 
C(33B)-C(30B)-C(16B) 110.1(2) 
C(32B)-C(30B)-C(31B) 106.9(2) 
C(33B)-C(30B)-C(31B) 109.0(2) 
C(16B)-C(30B)-C(31B) 110.5(2) 
C(7C)-N(1C)-C(11C) 120.1(2) 
O(1C)-C(1C)-C(2C) 118.1(2) 
O(1C)-C(1C)-C(6C) 120.9(2) 
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C(2C)-C(1C)-C(6C) 121.0(3) 
C(3C)-C(2C)-C(1C) 117.1(3) 
C(3C)-C(2C)-C(18C) 121.3(2) 
C(1C)-C(2C)-C(18C) 121.5(2) 
C(2C)-C(3C)-C(4C) 124.7(3) 
C(5C)-C(4C)-C(3C) 115.7(3) 
C(5C)-C(4C)-C(22C) 120.5(2) 
C(3C)-C(4C)-C(22C) 123.8(2) 
C(4C)-C(5C)-C(6C) 122.9(3) 
C(5C)-C(6C)-C(1C) 118.4(2) 
C(5C)-C(6C)-C(7C) 119.8(2) 
C(1C)-C(6C)-C(7C) 121.8(2) 
N(1C)-C(7C)-C(8C) 120.8(2) 
N(1C)-C(7C)-C(6C) 117.0(2) 
C(8C)-C(7C)-C(6C) 122.1(3) 
C(7C)-C(8C)-C(9C) 119.1(3) 
C(10C)-C(9C)-C(8C) 119.4(3) 
C(11C)-C(10C)-C(9C) 119.9(3) 
N(1C)-C(11C)-C(10C) 120.6(3) 
N(1C)-C(11C)-C(12C) 117.1(2) 
C(10C)-C(11C)-C(12C) 122.3(2) 
C(17C)-C(12C)-C(13C) 118.6(3) 
C(17C)-C(12C)-C(11C) 121.7(2) 
C(13C)-C(12C)-C(11C) 119.6(3) 
C(14C)-C(13C)-C(12C) 121.5(3) 
C(13C)-C(14C)-C(15C) 117.4(2) 
C(13C)-C(14C)-C(26C) 122.9(3) 
C(15C)-C(14C)-C(26C) 119.7(3) 
C(16C)-C(15C)-C(14C) 124.1(3) 
C(15C)-C(16C)-C(17C) 116.3(3) 

C(15C)-C(16C)-C(30C) 122.4(3) 
C(17C)-C(16C)-C(30C) 121.4(2) 
O(2C)-C(17C)-C(12C) 120.8(3) 
O(2C)-C(17C)-C(16C) 117.7(2) 
C(12C)-C(17C)-C(16C) 121.5(2) 
C(20C)-C(18C)-C(19C) 107.8(2) 
C(20C)-C(18C)-C(2C) 112.3(2) 
C(19C)-C(18C)-C(2C) 109.9(2) 
C(20C)-C(18C)-C(21C) 106.2(2) 
C(19C)-C(18C)-C(21C) 109.7(2) 
C(2C)-C(18C)-C(21C) 110.7(2) 
C(25C)-C(22C)-C(24C) 108.6(2) 
C(25C)-C(22C)-C(4C) 109.1(2) 
C(24C)-C(22C)-C(4C) 112.6(2) 
C(25C)-C(22C)-C(23C) 109.4(2) 
C(24C)-C(22C)-C(23C) 107.5(2) 
C(4C)-C(22C)-C(23C) 109.5(2) 
C(28C)-C(26C)-C(29C) 109.2(3) 
C(28C)-C(26C)-C(14C) 109.1(2) 
C(29C)-C(26C)-C(14C) 108.9(2) 
C(28C)-C(26C)-C(27C) 109.1(2) 
C(29C)-C(26C)-C(27C) 108.8(2) 
C(14C)-C(26C)-C(27C) 111.7(2) 
C(32C)-C(30C)-C(16C) 111.8(2) 
C(32C)-C(30C)-C(33C) 107.6(2) 
C(16C)-C(30C)-C(33C) 111.3(2) 
C(32C)-C(30C)-C(31C) 106.7(2) 
C(16C)-C(30C)-C(31C) 110.3(2) 
C(33C)-C(30C)-C(31C) 109.0(2) 

__________________________________________________________________ 
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Table A2.6.   Anisotropic displacement parameters (Å2x 104) for 5a (CCDC 640093).  The 

anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11 + ... +2 h k a* 

b*U12]. 

______________________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
______________________________________________________________________________ 
O(1A) 341(13)  196(11) 215(12)  57(9) 49(11)  127(9) 
O(2A) 271(12)  228(11) 171(11)  83(9) -16(9)  74(9) 
N(1A) 153(13)  184(13) 172(14)  49(11) 31(10)  37(10) 
C(1A) 146(16)  174(15) 220(18)  30(13) 6(13)  38(12) 
C(2A) 193(17)  200(16) 182(17)  26(13) 46(13)  36(13) 
C(3A) 183(17)  220(16) 151(17)  48(13) 34(13)  35(13) 
C(4A) 143(16)  225(16) 175(17)  42(13) 34(13)  70(12) 
C(5A) 189(17)  224(16) 167(17)  5(13) 28(13)  86(13) 
C(6A) 144(16)  214(16) 173(17)  32(13) 6(13)  50(13) 
C(7A) 156(16)  202(16) 180(17)  38(13) 31(13)  62(13) 
C(8A) 244(18)  219(16) 233(19)  41(14) 24(14)  100(13) 
C(9A) 210(17)  263(17) 170(17)  -5(14) -11(13)  112(13) 
C(10A) 217(17)  250(17) 176(17)  50(14) -15(13)  101(13) 
C(11A) 126(16)  239(16) 162(17)  36(14) -1(13)  68(13) 
C(12A) 158(17)  221(16) 184(17)  53(13) 61(13)  78(13) 
C(13A) 146(16)  238(16) 131(16)  11(13) 9(12)  19(12) 
C(14A) 147(16)  169(15) 170(17)  56(13) 56(13)  42(12) 
C(15A) 151(16)  190(15) 195(17)  64(13) 33(13)  39(13) 
C(16A) 159(16)  200(15) 126(16)  -11(13) 34(12)  51(12) 
C(17A) 126(16)  238(16) 136(16)  46(13) 15(12)  79(13) 
C(18A) 282(19)  242(17) 186(18)  43(14) 61(14)  78(14) 
C(19A) 400(20)  331(19) 300(20)  49(15) 164(16)  143(16) 
C(20A) 580(20)  370(20) 181(19)  7(15) 103(17)  221(18) 
C(21A) 350(20)  323(18) 209(18)  -53(15) -6(15)  109(15) 
C(22A) 197(17)  221(16) 149(17)  25(13) 24(13)  92(13) 
C(23A) 300(20)  360(19) 320(20)  55(16) -17(16)  149(15) 
C(24A) 310(20)  264(18) 400(20)  130(16) 64(16)  111(15) 
C(25A) 460(20)  294(18) 310(20)  89(15) 73(17)  228(16) 
C(26A) 158(16)  204(15) 157(17)  53(13) -17(13)  11(12) 
C(27A) 320(20)  258(17) 289(19)  65(15) -67(15)  77(15) 
C(28A) 244(18)  308(18) 228(18)  61(14) 38(14)  91(14) 
C(29A) 193(17)  258(17) 234(18)  83(14) 30(14)  60(13) 
C(30A) 155(16)  226(16) 185(17)  17(13) 11(13)  41(13) 
C(31A) 170(17)  338(18) 256(19)  -20(15) -8(14)  23(14) 
C(32A) 272(19)  207(16) 213(18)  -39(14) -24(14)  -12(13) 
C(33A) 241(18)  342(18) 211(18)  -22(14) -9(14)  107(14) 
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O(1B) 278(12)  263(11) 152(12)  1(9) 1(9)  110(9) 
O(2B) 267(13)  249(11) 154(11)  45(9) 12(9)  18(9) 
N(1B) 135(13)  191(13) 178(14)  38(11) 33(11)  18(10) 
C(1B) 171(17)  262(17) 125(17)  8(14) -11(13)  47(13) 
C(2B) 185(17)  230(16) 140(17)  35(13) -11(13)  22(13) 
C(3B) 145(17)  305(17) 216(19)  62(15) -18(13)  74(13) 
C(4B) 192(18)  358(19) 142(17)  -1(14) -31(13)  82(14) 
C(5B) 185(17)  281(17) 230(19)  23(14) 22(14)  104(13) 
C(6B) 157(16)  223(16) 161(18)  9(13) -3(13)  51(13) 
C(7B) 135(16)  218(16) 150(17)  16(13) 40(13)  34(12) 
C(8B) 171(17)  251(17) 202(18)  -22(14) 37(13)  80(13) 
C(9B) 159(17)  217(16) 266(19)  31(14) 39(14)  72(13) 
C(10B) 136(16)  246(17) 182(17)  29(14) 20(13)  27(13) 
C(11B) 98(16)  244(16) 178(17)  75(14) 48(12)  49(12) 
C(12B) 132(16)  214(16) 152(17)  12(13) -17(12)  37(12) 
C(13B) 193(17)  215(16) 194(18)  80(14) 13(13)  48(13) 
C(14B) 235(18)  208(16) 175(18)  34(13) -8(14)  90(13) 
C(15B) 222(18)  225(16) 206(18)  -16(14) -20(14)  68(13) 
C(16B) 158(16)  194(15) 170(17)  -4(13) -16(13)  56(12) 
C(17B) 206(17)  230(16) 174(17)  74(14) 43(13)  94(13) 
C(18B) 201(17)  252(17) 196(18)  33(14) -5(13)  77(13) 
C(19B) 251(19)  301(18) 310(20)  46(15) 15(15)  139(14) 
C(20B) 390(20)  360(19) 290(20)  91(16) 0(16)  217(16) 
C(21B) 320(20)  284(18) 300(20)  63(15) 18(15)  92(15) 
C(22B) 350(20)  420(20) 184(19)  -20(15) -10(15)  219(16) 
C(23B) 440(20)  560(20) 210(20)  -31(17) -23(16)  218(18) 
C(24B) 650(30)  550(20) 280(20)  -123(18) -34(19)  300(20) 
C(25B) 410(20)  1080(30) 250(20)  -70(20) 56(18)  320(20) 
C(26B) 340(20)  296(18) 140(17)  57(14) 28(14)  76(15) 
C(27B) 610(30)  480(20) 350(20)  87(18) 145(19)  7(19) 
C(28B) 320(20)  1130(30) 280(20)  300(20) 60(17)  290(20) 
C(29B) 470(20)  640(30) 460(20)  180(20) 240(20)  240(20) 
C(30B) 178(17)  187(15) 225(18)  3(13) -7(13)  20(13) 
C(31B) 196(18)  205(17) 500(20)  -13(16) 58(16)  -1(13) 
C(32B) 410(20)  219(17) 390(20)  -33(16) -60(17)  -45(15) 
C(33B) 264(19)  176(16) 430(20)  54(15) 39(16)  33(14) 
O(1C) 235(12)  179(11) 236(12)  14(9) -13(9)  64(9) 
O(2C) 251(12)  182(11) 246(13)  37(9) 49(10)  25(9) 
N(1C) 138(13)  174(13) 201(14)  30(11) 31(11)  10(10) 
C(1C) 162(17)  199(16) 156(17)  -1(13) 25(13)  21(13) 
C(2C) 134(16)  179(15) 175(17)  31(13) 46(13)  28(12) 
C(3C) 156(16)  184(15) 247(18)  50(14) 65(13)  69(13) 
C(4C) 155(17)  229(16) 164(17)  7(13) 47(13)  47(13) 
C(5C) 175(17)  262(17) 145(17)  -7(13) -21(13)  62(13) 
C(6C) 136(16)  247(16) 186(17)  28(13) 42(13)  79(13) 
C(7C) 155(16)  187(15) 151(17)  -10(13) 27(13)  28(12) 
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C(8C) 146(17)  262(17) 206(18)  18(14) 42(13)  58(13) 
C(9C) 156(17)  296(17) 221(18)  54(15) 5(13)  56(13) 
C(10C) 156(17)  215(16) 241(19)  56(14) 40(13)  69(13) 
C(11C) 77(15)  237(16) 230(18)  61(14) 23(13)  55(12) 
C(12C) 162(16)  199(16) 196(18)  16(13) 19(13)  62(13) 
C(13C) 211(17)  236(17) 187(18)  78(14) 19(13)  70(13) 
C(14C) 186(17)  199(16) 226(18)  43(14) -12(14)  70(13) 
C(15C) 216(17)  204(16) 201(18)  -6(13) -13(14)  68(13) 
C(16C) 185(17)  240(17) 152(17)  19(13) -4(13)  67(13) 
C(17C) 152(16)  155(15) 259(19)  49(13) -10(13)  23(12) 
C(18C) 195(17)  167(15) 151(17)  -1(12) 9(13)  62(12) 
C(19C) 291(19)  346(19) 214(19)  42(15) -17(15)  76(15) 
C(20C) 249(18)  198(16) 302(19)  46(14) -53(15)  48(13) 
C(21C) 218(18)  271(17) 263(19)  43(14) -32(14)  84(14) 
C(22C) 165(17)  222(16) 188(18)  -22(13) -16(13)  30(13) 
C(23C) 280(20)  362(19) 350(20)  -89(16) 8(16)  17(15) 
C(24C) 390(20)  269(18) 340(20)  -92(15) -40(16)  105(15) 
C(25C) 380(20)  331(19) 225(19)  -20(15) -9(15)  53(16) 
C(26C) 203(18)  178(16) 311(19)  17(14) -5(14)  20(13) 
C(27C) 294(19)  247(17) 360(20)  64(15) 7(16)  34(14) 
C(28C) 205(19)  235(17) 630(20)  49(17) 43(17)  35(14) 
C(29C) 260(19)  246(17) 390(20)  5(15) -20(16)  -1(14) 
C(30C) 227(18)  258(17) 132(17)  7(13) 44(13)  51(13) 
C(31C) 263(19)  470(20) 178(18)  59(15) 66(14)  112(16) 
C(32C) 450(20)  410(20) 220(20)  -6(16) 78(16)  70(17) 
C(33C) 259(19)  420(20) 236(19)  106(15) 60(15)  107(15) 
______________________________________________________________________________ 
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Structure of 6 (CCDC 635046) 

Special Refinement Details 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 

 

Table A2.7.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for 6 (CCDC 635046).  U(eq) is defined as the trace of the orthogonalized Uij 

tensor.  

______________________________________________________________________________ 
 x y z Ueq 
______________________________________________________________________________ 
Ir 10238(1) 6292(1) 7803(1) 14(1) 
O(1) 11904(2) 5620(2) 7349(2) 17(1) 
O(2) 7190(2) 5461(2) 7430(2) 22(1) 
N(1) 10945(2) 4254(2) 7144(2) 16(1) 
N(2) 9387(2) 5324(2) 6751(2) 17(1) 
C(1) 12410(2) 4560(2) 7446(2) 14(1) 
C(2) 13466(2) 4089(2) 7608(2) 16(1) 
C(3) 14061(2) 2994(3) 7712(3) 18(1) 
C(4) 13628(2) 2286(2) 7660(2) 16(1) 
C(5) 12575(2) 2744(3) 7498(2) 16(1) 
C(6) 11967(2) 3860(2) 7379(2) 14(1) 
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C(7) 10647(2) 3559(3) 6814(3) 21(1) 
C(8) 9593(3) 4319(3) 6491(3) 26(1) 
C(9) 8541(2) 6286(2) 6417(2) 16(1) 
C(10) 7439(2) 6287(3) 6805(3) 17(1) 
C(11) 6653(2) 7290(3) 6446(3) 21(1) 
C(12) 6939(2) 8176(3) 5768(3) 21(1) 
C(13) 8029(2) 8147(3) 5384(3) 17(1) 
C(14) 8815(2) 7167(2) 5728(2) 16(1) 
C(15) 10155(2) 5259(2) 7152(2) 14(1) 
C(16) 14304(3) 1078(3) 7737(3) 21(1) 
C(17) 15273(3) 951(3) 6767(3) 34(1) 
C(18) 14762(3) 596(3) 8695(3) 31(1) 
C(19) 13646(3) 434(3) 7782(3) 30(1) 
C(20) 8379(2) 9109(3) 4658(3) 19(1) 
C(21) 9174(3) 8813(3) 3642(3) 28(1) 
C(22) 7413(3) 10111(3) 4373(3) 30(1) 
C(23) 8945(3) 9416(3) 5188(3) 29(1) 
C(24) 8718(2) 6402(3) 8868(3) 19(1) 
C(25) 8567(2) 7365(3) 8074(3) 18(1) 
C(26) 8405(2) 8448(3) 8238(3) 21(1) 
C(27) 9495(2) 8647(3) 7901(3) 20(1) 
C(28) 10455(2) 7605(2) 8054(3) 17(1) 
C(29) 10480(2) 6783(3) 8958(3) 18(1) 
C(30) 9540(3) 6823(3) 9929(3) 21(1) 
C(31) 8740(3) 6333(3) 9938(3) 21(1) 
K 5960(1) 4381(1) 7765(1) 17(1) 
O(41) 4900(2) 3516(2) 9880(2) 21(1) 
O(42) 3751(2) 5546(2) 8813(2) 23(1) 
O(43) 4646(2) 6297(2) 6753(2) 22(1) 
O(44) 6288(2) 4757(2) 5629(2) 25(1) 
O(45) 7650(2) 2784(2) 6665(2) 27(1) 
O(46) 6582(2) 2063(2) 8697(2) 25(1) 
C(41) 3752(3) 4059(3) 10253(3) 23(1) 
C(42) 3511(3) 5249(3) 9912(3) 25(1) 
C(43) 3533(3) 6669(3) 8381(3) 26(1) 
C(44) 3571(3) 6881(3) 7263(3) 26(1) 
C(45) 4739(3) 6385(3) 5700(3) 28(1) 
C(46) 5926(3) 5891(3) 5185(3) 31(1) 
C(47) 7435(3) 4259(4) 5202(3) 36(1) 
C(48) 7731(3) 3059(4) 5594(3) 36(1) 
C(49) 7800(3) 1668(3) 7115(3) 31(1) 
C(50) 7678(3) 1459(3) 8245(3) 31(1) 
C(51) 6362(3) 1834(3) 9795(3) 30(1) 
C(52) 5163(3) 2375(3) 10223(3) 27(1) 
C(61) 937(3) 9684(3) 9222(3) 31(1) 
C(62) 440(3) 8938(3) 9899(3) 33(1) 
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C(63) -495(3) 9265(3) 10668(3) 34(1) 
 
 
 
 
Table A2.8.   Bond lengths [Å] and angles [°] for 6 (CCDC 635046). 
______________________________________________________________________________
Ir-C(15)  2.041(3) 
Ir-O(1)  2.0423(19) 
Ir-C(24)  2.093(3) 
Ir-C(25)  2.145(3) 
Ir-C(28)  2.159(3) 
Ir-C(29)  2.174(3) 
O(1)-C(1)  1.326(4) 
O(2)-C(10)  1.287(4) 
O(2)-K  2.576(2) 
N(1)-C(15)  1.369(4) 
N(1)-C(6)  1.412(3) 
N(1)-C(7)  1.474(4) 
N(2)-C(15)  1.348(4) 
N(2)-C(9)  1.427(4) 
N(2)-C(8)  1.471(4) 
C(1)-C(2)  1.403(4) 
C(1)-C(6)  1.414(4) 
C(2)-C(3)  1.383(4) 
C(3)-C(4)  1.403(4) 
C(4)-C(5)  1.401(4) 
C(4)-C(16)  1.534(4) 
C(5)-C(6)  1.408(4) 
C(7)-C(8)  1.522(4) 
C(9)-C(14)  1.387(4) 
C(9)-C(10)  1.435(4) 
C(10)-C(11)  1.424(4) 
C(11)-C(12)  1.394(5) 
C(12)-C(13)  1.407(4) 
C(13)-C(14)  1.400(4) 
C(13)-C(20)  1.534(4) 
C(16)-C(19)  1.517(5) 
C(16)-C(18)  1.534(5) 
C(16)-C(17)  1.544(5) 
C(20)-C(22)  1.527(4) 
C(20)-C(23)  1.532(5) 
C(20)-C(21)  1.538(5) 
C(24)-C(25)  1.417(5) 
C(24)-C(31)  1.509(5) 
C(25)-C(26)  1.531(5) 

C(26)-C(27)  1.539(4) 
C(27)-C(28)  1.513(4) 
C(28)-C(29)  1.397(5) 
C(29)-C(30)  1.522(4) 
C(30)-C(31)  1.540(5) 
K-O(43)  2.766(2) 
K-O(44)  2.803(3) 
K-O(45)  2.883(3) 
K-O(42)  2.909(2) 
K-O(46)  2.915(3) 
K-O(41)  2.916(2) 
K-C(47)  3.510(4) 
O(41)-C(52)  1.422(4) 
O(41)-C(41)  1.431(4) 
O(42)-C(43)  1.415(4) 
O(42)-C(42)  1.424(4) 
O(43)-C(44)  1.422(4) 
O(43)-C(45)  1.428(4) 
O(44)-C(46)  1.425(5) 
O(44)-C(47)  1.433(4) 
O(45)-C(48)  1.413(5) 
O(45)-C(49)  1.422(5) 
O(46)-C(50)  1.425(4) 
O(46)-C(51)  1.427(4) 
C(41)-C(42)  1.488(5) 
C(43)-C(44)  1.504(5) 
C(45)-C(46)  1.501(5) 
C(47)-C(48)  1.494(6) 
C(49)-C(50)  1.494(6) 
C(51)-C(52)  1.498(5) 
C(61)-C(63)#1  1.377(6) 
C(61)-C(62)  1.394(6) 
C(62)-C(63)  1.385(6) 
C(63)-C(61)#1  1.377(6) 
 
C(15)-Ir-O(1) 87.56(10) 
C(15)-Ir-C(24) 93.31(12) 
O(1)-Ir-C(24) 153.01(11) 
C(15)-Ir-C(25) 100.71(12) 
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O(1)-Ir-C(25) 165.77(10) 
C(24)-Ir-C(25) 39.06(12) 
C(15)-Ir-C(28) 164.27(12) 
O(1)-Ir-C(28) 88.10(10) 
C(24)-Ir-C(28) 97.40(12) 
C(25)-Ir-C(28) 80.84(11) 
C(15)-Ir-C(29) 156.85(12) 
O(1)-Ir-C(29) 86.99(10) 
C(24)-Ir-C(29) 81.68(12) 
C(25)-Ir-C(29) 89.62(12) 
C(28)-Ir-C(29) 37.61(12) 
C(1)-O(1)-Ir 121.82(18) 
C(10)-O(2)-K 141.1(2) 
C(15)-N(1)-C(6) 127.9(3) 
C(15)-N(1)-C(7) 112.4(2) 
C(6)-N(1)-C(7) 119.7(2) 
C(15)-N(2)-C(9) 126.3(3) 
C(15)-N(2)-C(8) 113.8(2) 
C(9)-N(2)-C(8) 119.0(2) 
O(1)-C(1)-C(2) 118.7(3) 
O(1)-C(1)-C(6) 124.5(2) 
C(2)-C(1)-C(6) 116.8(3) 
C(3)-C(2)-C(1) 122.9(3) 
C(2)-C(3)-C(4) 121.0(3) 
C(5)-C(4)-C(3) 116.7(3) 
C(5)-C(4)-C(16) 122.3(3) 
C(3)-C(4)-C(16) 120.9(3) 
C(4)-C(5)-C(6) 122.8(3) 
C(5)-C(6)-N(1) 118.4(3) 
C(5)-C(6)-C(1) 119.7(2) 
N(1)-C(6)-C(1) 121.8(3) 
N(1)-C(7)-C(8) 103.4(2) 
N(2)-C(8)-C(7) 102.7(3) 
C(14)-C(9)-N(2) 119.2(3) 
C(14)-C(9)-C(10) 123.0(3) 
N(2)-C(9)-C(10) 117.8(3) 
O(2)-C(10)-C(11) 123.7(3) 
O(2)-C(10)-C(9) 122.8(3) 
C(11)-C(10)-C(9) 113.5(3) 
C(12)-C(11)-C(10) 122.8(3) 
C(11)-C(12)-C(13) 122.6(3) 
C(14)-C(13)-C(12) 115.5(3) 
C(14)-C(13)-C(20) 120.1(3) 
C(12)-C(13)-C(20) 124.4(3) 
C(9)-C(14)-C(13) 122.6(3) 
N(2)-C(15)-N(1) 107.4(3) 

N(2)-C(15)-Ir 132.1(2) 
N(1)-C(15)-Ir 120.4(2) 
C(19)-C(16)-C(18) 109.2(3) 
C(19)-C(16)-C(4) 112.5(3) 
C(18)-C(16)-C(4) 110.2(3) 
C(19)-C(16)-C(17) 107.3(3) 
C(18)-C(16)-C(17) 108.6(3) 
C(4)-C(16)-C(17) 108.9(3) 
C(22)-C(20)-C(23) 107.7(3) 
C(22)-C(20)-C(13) 112.8(3) 
C(23)-C(20)-C(13) 109.3(3) 
C(22)-C(20)-C(21) 107.1(3) 
C(23)-C(20)-C(21) 109.4(3) 
C(13)-C(20)-C(21) 110.5(3) 
C(25)-C(24)-C(31) 124.3(3) 
C(25)-C(24)-Ir 72.47(17) 
C(31)-C(24)-Ir 112.3(2) 
C(24)-C(25)-C(26) 122.1(3) 
C(24)-C(25)-Ir 68.48(16) 
C(26)-C(25)-Ir 114.08(19) 
C(25)-C(26)-C(27) 111.8(2) 
C(28)-C(27)-C(26) 112.3(3) 
C(29)-C(28)-C(27) 124.9(3) 
C(29)-C(28)-Ir 71.78(19) 
C(27)-C(28)-Ir 111.3(2) 
C(28)-C(29)-C(30) 124.2(3) 
C(28)-C(29)-Ir 70.61(19) 
C(30)-C(29)-Ir 112.2(2) 
C(29)-C(30)-C(31) 112.6(3) 
C(24)-C(31)-C(30) 113.0(3) 
O(2)-K-O(43) 85.10(7) 
O(2)-K-O(44) 89.83(8) 
O(43)-K-O(44) 61.15(7) 
O(2)-K-O(45) 94.48(8) 
O(43)-K-O(45) 121.30(8) 
O(44)-K-O(45) 60.15(7) 
O(2)-K-O(42) 108.16(8) 
O(43)-K-O(42) 58.08(7) 
O(44)-K-O(42) 113.86(7) 
O(45)-K-O(42) 156.87(8) 
O(2)-K-O(46) 122.13(7) 
O(43)-K-O(46) 152.37(7) 
O(44)-K-O(46) 110.21(8) 
O(45)-K-O(46) 57.41(7) 
O(42)-K-O(46) 111.18(7) 
O(2)-K-O(41) 119.80(8) 
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O(43)-K-O(41) 115.20(7) 
O(44)-K-O(41) 150.26(7) 
O(45)-K-O(41) 115.29(7) 
O(42)-K-O(41) 57.39(7) 
O(46)-K-O(41) 57.88(7) 
O(2)-K-C(47) 79.38(10) 
O(43)-K-C(47) 80.83(9) 
O(44)-K-C(47) 22.92(8) 
O(45)-K-C(47) 42.14(9) 
O(42)-K-C(47) 136.49(8) 
O(46)-K-C(47) 98.51(9) 
O(41)-K-C(47) 154.59(10) 
C(52)-O(41)-C(41) 110.4(3) 
C(52)-O(41)-K 117.9(2) 
C(41)-O(41)-K 117.71(19) 
C(43)-O(42)-C(42) 114.4(3) 
C(43)-O(42)-K 108.39(19) 
C(42)-O(42)-K 115.13(18) 
C(44)-O(43)-C(45) 112.3(3) 
C(44)-O(43)-K 122.3(2) 
C(45)-O(43)-K 116.6(2) 
C(46)-O(44)-C(47) 111.0(3) 
C(46)-O(44)-K 110.0(2) 
C(47)-O(44)-K 107.5(2) 

C(48)-O(45)-C(49) 112.4(3) 
C(48)-O(45)-K 114.7(2) 
C(49)-O(45)-K 119.2(2) 
C(50)-O(46)-C(51) 111.9(3) 
C(50)-O(46)-K 113.5(2) 
C(51)-O(46)-K 112.2(2) 
O(41)-C(41)-C(42) 109.1(3) 
O(42)-C(42)-C(41) 108.3(3) 
O(42)-C(43)-C(44) 107.7(3) 
O(43)-C(44)-C(43) 108.3(3) 
O(43)-C(45)-C(46) 108.4(3) 
O(44)-C(46)-C(45) 109.0(3) 
O(44)-C(47)-C(48) 108.3(3) 
O(44)-C(47)-K 49.60(16) 
C(48)-C(47)-K 85.4(2) 
O(45)-C(48)-C(47) 109.3(3) 
O(45)-C(49)-C(50) 108.6(3) 
O(46)-C(50)-C(49) 108.0(3) 
O(46)-C(51)-C(52) 108.7(3) 
O(41)-C(52)-C(51) 108.9(3) 
C(63)#1-C(61)-C(62) 119.5(4) 
C(63)-C(62)-C(61) 119.6(4) 
C(61)#1-C(63)-C(62) 120.9(4) 

__________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,-z+2 

 

  

Table A2.9.   Anisotropic displacement parameters (Å2x 104) for 6 (CCDC 635046).  The 

anisotropic displacement factor exponent takes the form: -2π2[h2a*2U11 + ... +2 h k a* b* 

U12]. 

________________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
________________________________________________________________________ 
Ir 114(1)  150(1) 180(1)  -45(1) -41(1)  -50(1) 
O(1) 113(8)  141(10) 264(13)  -68(9) -23(8)  -48(7) 
O(2) 205(10)  210(12) 281(14)  -39(10) -66(10)  -117(9) 
N(1) 146(9)  137(11) 231(15)  -50(10) -83(10)  -34(8) 
N(2) 174(10)  130(11) 253(15)  -36(10) -109(10)  -51(8) 
C(1) 128(10)  149(13) 145(15)  -27(10) -35(11)  -57(9) 
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C(2) 136(10)  170(14) 189(16)  -49(11) -49(11)  -51(9) 
C(3) 160(11)  190(14) 206(17)  -39(11) -78(12)  -61(10) 
C(4) 179(11)  162(14) 145(16)  -25(11) -58(11)  -54(10) 
C(5) 162(11)  175(14) 185(16)  -34(11) -66(11)  -69(10) 
C(6) 135(10)  161(13) 134(15)  -33(10) -41(11)  -45(9) 
C(7) 191(12)  165(14) 320(20)  -84(13) -120(13)  -47(10) 
C(8) 243(14)  163(15) 450(20)  -113(14) -200(15)  -18(11) 
C(9) 157(11)  157(13) 193(16)  -49(11) -85(11)  -48(9) 
C(10) 165(11)  171(14) 214(17)  -55(11) -68(12)  -63(10) 
C(11) 147(11)  205(15) 300(20)  -91(13) -52(13)  -65(10) 
C(12) 171(12)  191(15) 276(19)  -58(13) -83(13)  -43(11) 
C(13) 170(11)  166(14) 202(17)  -28(11) -87(12)  -64(10) 
C(14) 148(10)  173(14) 189(17)  -51(11) -64(11)  -54(10) 
C(15) 136(10)  149(13) 136(15)  -16(10) -45(11)  -60(9) 
C(16) 214(13)  148(14) 264(19)  -35(12) -112(13)  -38(11) 
C(17) 284(16)  236(19) 400(20)  -96(16) -39(17)  -36(14) 
C(18) 372(18)  182(17) 410(20)  4(15) -256(18)  -54(14) 
C(19) 332(17)  168(16) 470(20)  -26(15) -238(17)  -70(13) 
C(20) 215(12)  161(14) 226(18)  -22(12) -94(13)  -70(11) 
C(21) 357(18)  218(17) 280(20)  -41(14) -53(16)  -141(14) 
C(22) 306(16)  191(17) 380(20)  12(15) -152(17)  -63(13) 
C(23) 407(19)  252(18) 330(20)  3(15) -179(17)  -195(15) 
C(24) 138(11)  207(15) 238(18)  -90(12) -11(12)  -79(10) 
C(25) 107(10)  197(15) 226(18)  -94(12) -25(11)  -25(10) 
C(26) 167(11)  178(15) 267(19)  -89(12) -79(13)  -8(10) 
C(27) 190(12)  168(14) 248(18)  -52(12) -75(13)  -50(10) 
C(28) 138(10)  150(14) 237(18)  -55(11) -44(12)  -53(9) 
C(29) 137(10)  205(15) 241(18)  -80(12) -62(12)  -58(10) 
C(30) 222(13)  233(16) 172(17)  -48(12) -57(13)  -83(12) 
C(31) 206(13)  224(16) 196(18)  -56(12) -10(13)  -96(12) 
K 157(2)  179(3) 188(4)  -27(2) -50(2)  -73(2) 
O(41) 200(9)  212(12) 245(13)  -34(9) -44(9)  -114(9) 
O(42) 244(10)  210(12) 249(14)  -83(10) -56(10)  -72(9) 
O(43) 200(9)  250(12) 227(13)  -14(9) -88(9)  -88(9) 
O(44) 233(10)  295(14) 217(13)  -18(10) -73(10)  -100(10) 
O(45) 246(11)  295(14) 278(15)  -98(11) -99(11)  -54(10) 
O(46) 219(10)  224(12) 270(14)  -40(10) -90(10)  -40(9) 
C(41) 190(13)  350(20) 195(18)  -90(14) 9(13)  -153(13) 
C(42) 197(13)  340(20) 250(20)  -150(15) -21(13)  -96(13) 
C(43) 219(13)  216(17) 380(20)  -131(15) -55(15)  -66(12) 
C(44) 206(13)  183(16) 390(20)  -51(14) -119(15)  -47(11) 
C(45) 350(17)  260(18) 260(20)  16(14) -177(16)  -99(14) 
C(46) 410(20)  350(20) 200(20)  11(15) -99(17)  -193(17) 
C(47) 239(15)  580(30) 170(20)  -18(17) -32(15)  -142(17) 
C(48) 213(15)  560(30) 260(20)  -200(19) -53(15)  -10(16) 
C(49) 184(13)  300(20) 410(20)  -164(17) -46(15)  -11(13) 
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C(50) 232(14)  203(17) 410(20)  -56(15) -94(16)  -4(12) 
C(51) 364(18)  226(18) 280(20)  12(14) -156(17)  -86(14) 
C(52) 348(17)  253(18) 240(20)  -5(14) -72(15)  -172(14) 
 
C(61) 313(17)  370(20) 290(20)  -98(16) -61(16)  -156(16) 
C(62) 340(18)  263(19) 470(30)  -119(17) -138(18)  -123(15) 
C(63) 367(19)  360(20) 340(20)  -15(17) -62(18)  -235(17) 
________________________________________________________________________ 
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Structure of 7 (CCDC 704157) 

Special Refinement Details 

Crystals were mounted on a glass fiber using Paratone oil then placed on the 

diffractometer under a nitrogen stream at 100K. 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using 

the full covariance matrix.  The cell esds are taken into account individually in the estimation of 

esds in distances, angles and torsion angles; correlations between esds in cell parameters are only 

used when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell 

esds is used for estimating esds involving l.s. planes. 

 

 

Table A2.10.  Atomic coordinates ( x 104) and equivalent isotropic displacement parameters 

(Å2x 103) for 7 (CCDC 704157).  U(eq) is defined as the trace of the orthogonalized Uij 

tensor.  

______________________________________________________________________________ 
 x y z Ueq 
______________________________________________________________________________ 
Ir(1) 7820(1) 4989(1) 909(1) 17(1) 
Ir(2) 9029(1) 6015(1) -85(1) 16(1) 
P(1) 9425(3) 7025(3) 1455(2) 15(1) 
O(1) 7246(9) 5849(8) 92(5) 48(3) 
N(1) 8837(9) 6319(8) 929(5) 20(3) 
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C(1) 9008(10) 4958(11) -853(5) 21(3) 
C(2) 8991(12) 5973(12) -1121(5) 22(3) 
C(3) 10072(12) 6485(12) -1460(6) 25(4) 
C(4) 10794(12) 7119(11) -954(6) 28(3) 
C(5) 10668(10) 6693(10) -242(6) 11(3) 
C(6) 10818(10) 5657(9) -106(6) 14(3) 
C(7) 11165(11) 4834(12) -573(6) 28(4) 
C(8) 10039(12) 4273(12) -863(7) 33(4) 
C(9) 7234(13) 3566(11) 568(7) 30(4) 
C(10) 6350(10) 4032(11) 988(6) 19(3) 
C(11) 6146(13) 3657(11) 1689(6) 28(4) 
C(12) 7277(14) 3560(12) 2084(7) 32(4) 
C(13) 8208(11) 4295(10) 1838(6) 18(3) 
C(14) 9081(11) 4029(11) 1368(5) 17(3) 
C(15) 9139(12) 2998(10) 1033(6) 24(3) 
C(16) 7943(12) 2660(10) 761(6) 23(3) 
C(17) 10840(13) 6588(10) 1793(6) 19(3) 
C(18) 11862(12) 6760(12) 1455(7) 24(4) 
C(19) 12910(12) 6295(10) 1665(6) 24(3) 
C(20) 12909(13) 5720(11) 2235(7) 31(4) 
C(21) 11890(12) 5575(11) 2592(7) 26(4) 
C(22) 10854(11) 5990(11) 2383(6) 20(3) 
C(23) 9721(11) 8315(11) 1148(6) 19(3) 
C(24) 9060(12) 8713(10) 603(6) 21(3) 
C(25) 9202(11) 9702(10) 404(6) 21(3) 
C(26) 9992(12) 10377(11) 714(6) 21(4) 
C(27) 10635(10) 10007(14) 1251(6) 21(3) 
C(28) 10509(11) 8998(12) 1454(6) 20(3) 
C(29) 8489(11) 7205(10) 2177(6) 13(3) 
C(30) 7394(11) 6752(11) 2211(6) 19(3) 
C(31) 6671(12) 6913(12) 2756(7) 27(4) 
C(32) 7017(12) 7533(10) 3259(6) 21(3) 
C(33) 8074(12) 8043(12) 3229(6) 27(4) 
C(34) 8810(11) 7878(11) 2684(6) 20(3) 
______________________________________________________________________________ 
 

 

Table A2.11.   Bond lengths [Å] and angles [°] for 7 (CCDC 704157). 

______________________________________________________________________________
Ir(1)-N(1)  2.069(10) 
Ir(1)-C(9)  2.071(14) 
Ir(1)-C(10)  2.088(12) 
Ir(1)-O(1)  2.093(9) 

Ir(1)-C(14)  2.112(12) 
Ir(1)-C(13)  2.127(12) 
Ir(1)-Ir(2)  2.7709(9) 
Ir(2)-C(1)  2.067(13) 
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Ir(2)-O(1)  2.076(11) 
Ir(2)-C(5)  2.089(11) 
Ir(2)-C(6)  2.093(11) 
Ir(2)-C(2)  2.096(11) 
Ir(2)-N(1)  2.098(10) 
P(1)-N(1)  1.551(11) 
P(1)-C(23)  1.807(15) 
P(1)-C(29)  1.823(12) 
P(1)-C(17)  1.842(14) 
C(1)-C(2)  1.416(19) 
C(1)-C(8)  1.471(17) 
C(2)-C(3)  1.557(18) 
C(3)-C(4)  1.547(18) 
C(4)-C(5)  1.547(16) 
C(5)-C(6)  1.374(16) 
C(6)-C(7)  1.474(17) 
C(7)-C(8)  1.586(18) 
C(9)-C(10)  1.449(18) 
C(9)-C(16)  1.473(18) 
C(10)-C(11)  1.513(17) 
C(11)-C(12)  1.523(19) 
C(12)-C(13)  1.507(18) 
C(13)-C(14)  1.419(16) 
C(14)-C(15)  1.494(18) 
C(15)-C(16)  1.534(18) 
C(17)-C(18)  1.370(18) 
C(17)-C(22)  1.419(17) 
C(18)-C(19)  1.403(18) 
C(19)-C(20)  1.369(17) 
C(20)-C(21)  1.381(19) 
C(21)-C(22)  1.364(17) 
C(23)-C(28)  1.402(18) 
C(23)-C(24)  1.430(17) 
C(24)-C(25)  1.347(17) 
C(25)-C(26)  1.400(17) 
C(26)-C(27)  1.395(17) 
C(27)-C(28)  1.37(2) 
C(29)-C(30)  1.381(17) 
C(29)-C(34)  1.391(17) 
C(30)-C(31)  1.391(17) 
C(31)-C(32)  1.352(19) 
C(32)-C(33)  1.374(18) 
C(33)-C(34)  1.402(17) 
 
N(1)-Ir(1)-C(9) 157.1(5) 
N(1)-Ir(1)-C(10) 159.7(5) 

C(9)-Ir(1)-C(10) 40.8(5) 
N(1)-Ir(1)-O(1) 75.7(4) 
C(9)-Ir(1)-O(1) 96.1(5) 
C(10)-Ir(1)-O(1) 97.0(4) 
N(1)-Ir(1)-C(14) 95.4(5) 
C(9)-Ir(1)-C(14) 81.2(6) 
C(10)-Ir(1)-C(14) 99.6(5) 
O(1)-Ir(1)-C(14) 150.4(4) 
N(1)-Ir(1)-C(13) 102.4(4) 
C(9)-Ir(1)-C(13) 89.3(5) 
C(10)-Ir(1)-C(13) 81.4(5) 
O(1)-Ir(1)-C(13) 169.8(4) 
C(14)-Ir(1)-C(13) 39.1(4) 
N(1)-Ir(1)-Ir(2) 48.8(3) 
C(9)-Ir(1)-Ir(2) 110.0(4) 
C(10)-Ir(1)-Ir(2) 137.5(3) 
O(1)-Ir(1)-Ir(2) 48.1(3) 
C(14)-Ir(1)-Ir(2) 105.0(3) 
C(13)-Ir(1)-Ir(2) 137.5(3) 
C(1)-Ir(2)-O(1) 92.9(4) 
C(1)-Ir(2)-C(5) 99.9(5) 
O(1)-Ir(2)-C(5) 161.2(4) 
C(1)-Ir(2)-C(6) 81.4(5) 
O(1)-Ir(2)-C(6) 159.4(4) 
C(5)-Ir(2)-C(6) 38.4(4) 
C(1)-Ir(2)-C(2) 39.8(5) 
O(1)-Ir(2)-C(2) 98.6(5) 
C(5)-Ir(2)-C(2) 82.9(5) 
C(6)-Ir(2)-C(2) 89.6(5) 
C(1)-Ir(2)-N(1) 148.9(5) 
O(1)-Ir(2)-N(1) 75.5(4) 
C(5)-Ir(2)-N(1) 99.4(4) 
C(6)-Ir(2)-N(1) 99.4(4) 
C(2)-Ir(2)-N(1) 168.3(5) 
C(1)-Ir(2)-Ir(1) 103.0(4) 
O(1)-Ir(2)-Ir(1) 48.6(3) 
C(5)-Ir(2)-Ir(1) 139.1(3) 
C(6)-Ir(2)-Ir(1) 113.3(3) 
C(2)-Ir(2)-Ir(1) 134.5(4) 
N(1)-Ir(2)-Ir(1) 47.9(3) 
N(1)-P(1)-C(23) 112.7(6) 
N(1)-P(1)-C(29) 111.7(6) 
C(23)-P(1)-C(29) 105.5(6) 
N(1)-P(1)-C(17) 117.0(6) 
C(23)-P(1)-C(17) 104.2(6) 
C(29)-P(1)-C(17) 104.8(6) 
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Ir(2)-O(1)-Ir(1) 83.3(4) 
P(1)-N(1)-Ir(1) 137.9(6) 
P(1)-N(1)-Ir(2) 137.1(6) 
Ir(1)-N(1)-Ir(2) 83.4(4) 
C(2)-C(1)-C(8) 124.1(12) 
C(2)-C(1)-Ir(2) 71.2(7) 
C(8)-C(1)-Ir(2) 113.3(9) 
C(1)-C(2)-C(3) 123.3(12) 
C(1)-C(2)-Ir(2) 69.0(7) 
C(3)-C(2)-Ir(2) 114.4(8) 
C(4)-C(3)-C(2) 110.7(10) 
C(5)-C(4)-C(3) 112.2(11) 
C(6)-C(5)-C(4) 121.3(11) 
C(6)-C(5)-Ir(2) 71.0(7) 
C(4)-C(5)-Ir(2) 111.9(8) 
C(5)-C(6)-C(7) 127.2(12) 
C(5)-C(6)-Ir(2) 70.7(7) 
C(7)-C(6)-Ir(2) 115.7(9) 
C(6)-C(7)-C(8) 110.3(11) 
C(1)-C(8)-C(7) 111.6(12) 
C(10)-C(9)-C(16) 123.7(12) 
C(10)-C(9)-Ir(1) 70.2(8) 
C(16)-C(9)-Ir(1) 115.9(10) 
C(9)-C(10)-C(11) 121.5(12) 
C(9)-C(10)-Ir(1) 69.0(7) 
C(11)-C(10)-Ir(1) 112.6(9) 
C(10)-C(11)-C(12) 112.7(11) 
C(13)-C(12)-C(11) 111.8(11) 
C(14)-C(13)-C(12) 124.3(13) 
C(14)-C(13)-Ir(1) 69.9(7) 

C(12)-C(13)-Ir(1) 114.2(9) 
C(13)-C(14)-C(15) 123.4(13) 
C(13)-C(14)-Ir(1) 71.0(7) 
C(15)-C(14)-Ir(1) 110.6(8) 
C(14)-C(15)-C(16) 112.1(11) 
C(9)-C(16)-C(15) 111.0(11) 
C(18)-C(17)-C(22) 119.8(13) 
C(18)-C(17)-P(1) 120.7(10) 
C(22)-C(17)-P(1) 119.2(10) 
C(17)-C(18)-C(19) 120.3(13) 
C(20)-C(19)-C(18) 119.0(14) 
C(19)-C(20)-C(21) 120.9(14) 
C(22)-C(21)-C(20) 120.9(13) 
C(21)-C(22)-C(17) 118.9(12) 
C(28)-C(23)-C(24) 117.0(13) 
C(28)-C(23)-P(1) 123.1(10) 
C(24)-C(23)-P(1) 119.7(10) 
C(25)-C(24)-C(23) 120.4(13) 
C(24)-C(25)-C(26) 122.2(13) 
C(27)-C(26)-C(25) 118.3(13) 
C(28)-C(27)-C(26) 120.1(14) 
C(27)-C(28)-C(23) 122.0(13) 
C(30)-C(29)-C(34) 117.7(12) 
C(30)-C(29)-P(1) 121.1(10) 
C(34)-C(29)-P(1) 121.0(10) 
C(29)-C(30)-C(31) 120.9(13) 
C(32)-C(31)-C(30) 120.6(13) 
C(31)-C(32)-C(33) 120.4(13) 
C(32)-C(33)-C(34) 119.2(13) 
C(29)-C(34)-C(33) 121.0(12) 

 
__________________________________________________________________ 
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Table A2.12.   Anisotropic displacement parameters (Å2x 104) for 7 (CCDC 

704157).  The anisotropic displacement factor exponent takes the form:  

-2π2[h2a*2U11 + ... +2 h k a* b* U12]. 

__________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
__________________________________________________________________ 
Ir(1) 149(2)  233(3) 114(2)  6(3) -19(2)  -13(3) 
Ir(2) 137(2)  266(3) 90(2)  -14(2) -7(2)  -13(3) 
P(1) 145(19)  230(20) 92(16)  -16(15) -6(13)  -8(17) 
O(1) 610(60)  540(60) 300(50)  70(50) -160(50)  140(60) 
N(1) 170(50)  320(60) 100(40)  60(50) -10(40)  -40(50) 
C(1) 210(50)  210(60) 210(50)  30(60) 40(50)  20(70) 
C(2) 120(50)  310(70) 230(50)  -120(60) -10(50)  40(60) 
C(3) 230(70)  330(80) 190(60)  10(60) 10(50)  0(60) 
C(4) 300(70)  400(70) 150(60)  110(60) 130(60)  -10(60) 
C(5) 120(60)  100(60) 110(50)  -60(50) -20(40)  -40(50) 
C(6) 40(50)  270(60) 110(50)  0(50) 20(50)  10(50) 
C(7) 310(70)  270(70) 250(60)  -20(60) -20(50)  80(60) 
C(8) 330(70)  410(80) 260(60)  -90(60) -40(60)  -20(60) 
C(9) 350(70)  340(70) 220(60)  60(60) 160(60)  20(60) 
C(10) 200(60)  220(60) 170(50)  110(60) -40(50)  -20(60) 
C(11) 270(70)  300(80) 280(60)  30(60) 100(60)  10(60) 
C(12) 350(70)  310(80) 300(70)  0(60) 70(60)  -160(60) 
C(13) 150(60)  190(70) 200(60)  60(50) -110(50)  20(50) 
C(14) 40(50)  280(70) 180(50)  100(60) -20(50)  0(60) 
C(15) 300(70)  200(70) 210(60)  -40(50) -40(60)  30(60) 
C(16) 200(60)  270(70) 220(60)  10(50) 70(50)  20(60) 
C(17) 240(60)  240(70) 100(50)  -80(50) 10(50)  20(60) 
C(18) 200(70)  320(70) 210(60)  60(60) -80(50)  40(60) 
C(19) 150(60)  320(70) 270(60)  -30(60) -20(50)  -60(60) 
C(20) 260(70)  290(70) 370(70)  -10(60) -100(60)  100(60) 
C(21) 290(70)  250(70) 230(60)  100(60) -20(50)  10(60) 
C(22) 150(60)  240(70) 210(50)  20(60) 0(50)  10(60) 
C(23) 190(60)  240(70) 130(60)  -40(50) 60(50)  -10(60) 
C(24) 210(60)  230(70) 190(50)  -50(50) 60(50)  0(60) 
C(25) 220(60)  260(80) 140(50)  50(50) 170(50)  70(60) 
C(26) 250(70)  180(70) 210(60)  -10(50) 160(50)  90(50) 
C(27) 180(60)  260(70) 170(50)  -70(60) 50(40)  -10(60) 
C(28) 270(60)  210(70) 130(50)  -40(60) 90(50)  50(60) 
C(29) 160(60)  130(70) 90(50)  -20(50) 50(50)  20(50) 
C(30) 130(60)  280(70) 160(60)  -10(60) 10(50)  0(60) 
C(31) 170(60)  380(80) 250(60)  90(60) 50(50)  20(60) 
C(32) 240(70)  220(70) 170(60)  -70(50) 110(50)  -50(60) 
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C(33) 330(70)  350(70) 140(60)  -80(60) 30(50)  -50(60) 
C(34) 190(60)  310(70) 100(50)  -10(50) 10(50)  -130(60) 
__________________________________________________________________
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Structure of 12/15 (CCDC 700172) 

Special Refinement Details 

Crystals were mounted on a glass fiber using Paratone oil then placed on the 

diffractometer under a nitrogen stream at 100K. 

The axial ligand on Ir is disordered between acetonitrile (78%) and carbonyl (22%).  

Disorder is also observed in the counterion. 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 

covariance matrix.  The cell esds are taken into account individually in the estimation of esds in 

distances, angles and torsion angles; correlations between esds in cell parameters are only used 

when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell esds is 

used for estimating esds involving l.s. planes. 

 

Table A2.13.  Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for 12/15 (CCDC 700172).  U(eq) is defined as the trace of the 

orthogonalized Uij tensor.  

______________________________________________________________________________ 
 x y z Ueq Occ 
______________________________________________________________________________ 
Ir(1) 8077(1) 4908(1) 5396(1) 15(1) 1 
P(1) 7564(1) 3624(1) 5357(1) 15(1) 1 
P(2) 8389(1) 6236(1) 5417(1) 20(1) 1 
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O(1) 8124(1) 4924(1) 4432(1) 18(1) 1 
O(2) 7943(1) 4891(1) 6353(1) 20(1) 1 
N(1) 9796(1) 4539(1) 4972(1) 16(1) 1 
N(2) 9700(1) 4509(1) 6006(1) 16(1) 1 
N(3A) 6833(5) 5215(4) 5340(4) 16(1) 0.777(5) 
C(3B) 6790(30) 5200(20) 5221(17) 24(7) 0.223(5) 
C(1) 9274(1) 4631(1) 5462(1) 15(1) 1 
C(2) 8810(1) 4796(1) 4087(1) 16(1) 1 
C(3) 8724(1) 4838(1) 3430(1) 22(1) 1 
C(4) 9387(1) 4728(1) 3016(1) 23(1) 1 
C(5) 10198(1) 4585(1) 3239(1) 18(1) 1 
C(6) 10289(1) 4536(1) 3894(1) 20(1) 1 
C(7) 9619(1) 4624(1) 4319(1) 15(1) 1 
C(8) 10652(1) 4334(1) 5174(1) 22(1) 1 
C(9) 10583(1) 4302(1) 5891(1) 23(1) 1 
C(10) 9385(1) 4541(1) 6632(1) 18(1) 1 
C(11) 9950(2) 4407(1) 7127(1) 23(1) 1 
C(12) 9725(2) 4431(1) 7754(1) 28(1) 1 
C(13) 8879(2) 4595(1) 7886(1) 31(1) 1 
C(14) 8314(2) 4728(1) 7402(1) 28(1) 1 
C(15) 8540(1) 4723(1) 6770(1) 20(1) 1 
C(16) 10956(1) 4519(1) 2795(1) 21(1) 1 
C(17) 10692(2) 4210(2) 2149(1) 37(1) 1 
C(18) 11626(2) 3997(2) 3061(1) 43(1) 1 
C(19) 11339(2) 5291(1) 2705(1) 36(1) 1 
C(20) 10385(2) 4358(2) 8281(1) 38(1) 1 
C(21) 10019(2) 3929(2) 8845(2) 78(1) 1 
C(22) 10594(3) 5145(2) 8499(2) 138(2) 1 
C(23) 11150(2) 3945(2) 8071(2) 65(1) 1 
C(24) 7517(1) 3322(1) 4508(1) 17(1) 1 
C(25) 6795(1) 3704(1) 4151(1) 21(1) 1 
C(26) 6853(2) 3548(1) 3436(1) 26(1) 1 
C(27) 6884(2) 2716(1) 3299(1) 28(1) 1 
C(28) 7597(2) 2345(1) 3663(1) 28(1) 1 
C(29) 7519(2) 2480(1) 4370(1) 24(1) 1 
C(30) 8160(2) 2861(1) 5739(1) 23(1) 1 
C(31) 9064(1) 2830(1) 5484(1) 23(1) 1 
C(32) 9533(2) 2152(2) 5736(1) 37(1) 1 
C(33) 9530(2) 2145(2) 6443(1) 36(1) 1 
C(34) 8636(1) 2147(1) 6695(1) 30(1) 1 
C(35) 8148(2) 2829(1) 6455(1) 28(1) 1 
C(36) 6478(1) 3546(1) 5685(1) 18(1) 1 
C(37) 6129(1) 2742(1) 5696(1) 22(1) 1 
C(38) 5226(1) 2716(1) 5948(1) 25(1) 1 
C(39) 5160(2) 3058(1) 6605(1) 31(1) 1 
C(40) 5463(2) 3860(1) 6579(1) 32(1) 1 
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C(41) 6370(1) 3910(1) 6346(1) 24(1) 1 
C(42) 8472(1) 6589(1) 4591(1) 23(1) 1 
C(43) 7610(1) 6616(1) 4253(1) 26(1) 1 
C(44) 7712(2) 6774(2) 3559(1) 37(1) 1 
C(45) 8222(2) 7470(2) 3426(2) 43(1) 1 
C(46) 9074(2) 7431(2) 3767(1) 39(1) 1 
C(47) 8954(2) 7320(1) 4476(1) 34(1) 1 
C(48) 9358(1) 6588(1) 5803(1) 25(1) 1 
C(49) 10169(1) 6301(1) 5495(1) 28(1) 1 
C(50) 10935(2) 6695(2) 5779(1) 38(1) 1 
C(51) 10981(2) 6548(2) 6484(1) 47(1) 1 
C(52) 10186(2) 6799(2) 6817(1) 42(1) 1 
C(53) 9390(1) 6478(1) 6514(1) 27(1) 1 
C(54) 7503(1) 6763(1) 5781(1) 23(1) 1 
C(55) 7186(1) 6478(1) 6426(1) 29(1) 1 
C(56) 6392(2) 6886(1) 6634(1) 32(1) 1 
C(57) 6523(2) 7726(1) 6657(1) 35(1) 1 
C(58) 6841(2) 8010(1) 6029(1) 34(1) 1 
C(59) 7640(2) 7612(1) 5819(1) 32(1) 1 
C(60A) 6135(2) 5383(2) 5355(2) 18(1) 0.777(5) 
O(3B) 6231(8) 5350(7) 5138(5) 29(3) 0.223(5) 
C(61A) 5237(2) 5590(2) 5408(2) 32(1) 0.777(5) 
P(3) 2978(1) 4962(1) 5335(1) 46(1) 1 
F(1A) 2505(6) 4215(4) 5350(6) 91(4) 0.526(8) 
F(2A) 3547(4) 4619(3) 5933(3) 72(2) 0.526(8) 
F(3A) 3630(6) 4678(6) 4893(4) 80(3) 0.526(8) 
F(4A) 3470(3) 5738(2) 5478(4) 64(2) 0.526(8) 
F(5A) 2339(4) 5230(4) 5903(4) 93(2) 0.526(8) 
F(6A) 2408(5) 5296(4) 4863(4) 103(3) 0.526(8) 
F(1B) 2538(3) 4727(7) 4609(3) 118(4) 0.474(8) 
F(5B) 3422(3) 5608(4) 4904(5) 92(3) 0.474(8) 
F(4B) 2198(3) 5476(3) 5416(8) 117(5) 0.474(8) 
F(3B) 3391(4) 5182(9) 5889(4) 157(6) 0.474(8) 
F(2B) 3763(6) 4453(6) 5154(5) 76(3) 0.474(8) 
F(6B) 2444(7) 4324(6) 5556(6) 93(4) 0.474(8) 
______________________________________________________________________________ 
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Table A2.14.   Bond lengths [Å] and angles [°] for 12/15 (CCDC 700172). 

______________________________________________________________________________
Ir(1)-C(1)  1.9694(19) 
Ir(1)-O(2)  2.0331(14) 
Ir(1)-O(1)  2.0390(13) 
Ir(1)-N(3A)  2.055(8) 
Ir(1)-C(3B)  2.14(4) 
Ir(1)-P(2)  2.4348(5) 
Ir(1)-P(1)  2.4437(5) 
P(1)-C(30)  1.850(2) 
P(1)-C(36)  1.865(2) 
P(1)-C(24)  1.876(2) 
P(2)-C(48)  1.854(2) 
P(2)-C(42)  1.861(3) 
P(2)-C(54)  1.862(2) 
O(1)-C(2)  1.332(2) 
O(2)-C(15)  1.329(3) 
N(1)-C(1)  1.337(3) 
N(1)-C(7)  1.417(3) 
N(1)-C(8)  1.472(3) 
N(2)-C(1)  1.352(3) 
N(2)-C(10)  1.417(3) 
N(2)-C(9)  1.471(3) 
N(3A)-C(60A)  1.150(8) 
C(3B)-O(3B)  0.95(4) 
C(2)-C(3)  1.398(3) 
C(2)-C(7)  1.409(3) 
C(3)-C(4)  1.382(3) 
C(4)-C(5)  1.395(3) 
C(5)-C(6)  1.396(3) 
C(5)-C(16)  1.531(3) 
C(6)-C(7)  1.401(3) 
C(8)-C(9)  1.521(3) 
C(10)-C(11)  1.398(3) 
C(10)-C(15)  1.411(3) 
C(11)-C(12)  1.374(3) 
C(12)-C(13)  1.403(4) 
C(12)-C(20)  1.535(4) 
C(13)-C(14)  1.380(3) 
C(14)-C(15)  1.384(3) 
C(16)-C(19)  1.524(3) 
C(16)-C(18)  1.525(3) 
C(16)-C(17)  1.532(3) 
C(20)-C(23)  1.490(4) 
C(20)-C(22)  1.524(4) 

C(20)-C(21)  1.534(4) 
C(24)-C(25)  1.534(3) 
C(24)-C(29)  1.539(3) 
C(25)-C(26)  1.539(3) 
C(26)-C(27)  1.523(3) 
C(27)-C(28)  1.521(3) 
C(28)-C(29)  1.517(3) 
C(30)-C(35)  1.515(3) 
C(30)-C(31)  1.535(3) 
C(31)-C(32)  1.522(3) 
C(32)-C(33)  1.493(4) 
C(33)-C(34)  1.516(3) 
C(34)-C(35)  1.534(3) 
C(36)-C(37)  1.545(3) 
C(36)-C(41)  1.550(3) 
C(37)-C(38)  1.531(3) 
C(38)-C(39)  1.522(3) 
C(39)-C(40)  1.518(3) 
C(40)-C(41)  1.526(3) 
C(42)-C(47)  1.537(3) 
C(42)-C(43)  1.545(3) 
C(43)-C(44)  1.503(4) 
C(44)-C(45)  1.514(4) 
C(45)-C(46)  1.535(4) 
C(46)-C(47)  1.525(4) 
C(48)-C(53)  1.517(3) 
C(48)-C(49)  1.532(3) 
C(49)-C(50)  1.529(3) 
C(50)-C(51)  1.515(4) 
C(51)-C(52)  1.514(4) 
C(52)-C(53)  1.528(3) 
C(54)-C(55)  1.539(4) 
C(54)-C(59)  1.541(3) 
C(55)-C(56)  1.522(3) 
C(56)-C(57)  1.523(3) 
C(57)-C(58)  1.510(4) 
C(58)-C(59)  1.522(3) 
C(60A)-C(61A)  1.478(4) 
P(3)-F(3B)  1.399(6) 
P(3)-F(6A)  1.475(5) 
P(3)-F(3A)  1.485(9) 
P(3)-F(6B)  1.498(8) 
P(3)-F(1A)  1.536(6) 
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P(3)-F(4B)  1.555(5) 
P(3)-F(2B)  1.592(9) 
P(3)-F(4A)  1.626(4) 
P(3)-F(5B)  1.635(6) 
P(3)-F(5A)  1.643(6) 
P(3)-F(2A)  1.671(6) 
P(3)-F(1B)  1.738(6) 
 
C(1)-Ir(1)-O(2) 91.57(8) 
C(1)-Ir(1)-O(1) 92.21(7) 
O(2)-Ir(1)-O(1) 176.10(5) 
C(1)-Ir(1)-N(3A) 178.8(2) 
O(2)-Ir(1)-N(3A) 87.8(2) 
O(1)-Ir(1)-N(3A) 88.5(2) 
C(1)-Ir(1)-C(3B) 174.1(10) 
O(2)-Ir(1)-C(3B) 94.4(10) 
O(1)-Ir(1)-C(3B) 81.9(10) 
N(3A)-Ir(1)-C(3B) 6.7(12) 
C(1)-Ir(1)-P(2) 92.79(6) 
O(2)-Ir(1)-P(2) 91.00(5) 
O(1)-Ir(1)-P(2) 89.77(4) 
N(3A)-Ir(1)-P(2) 86.2(2) 
C(3B)-Ir(1)-P(2) 87.5(11) 
C(1)-Ir(1)-P(1) 94.97(6) 
O(2)-Ir(1)-P(1) 89.17(5) 
O(1)-Ir(1)-P(1) 89.56(4) 
N(3A)-Ir(1)-P(1) 86.0(2) 
C(3B)-Ir(1)-P(1) 84.8(11) 
P(2)-Ir(1)-P(1) 172.229(16) 
C(30)-P(1)-C(36) 104.75(10) 
C(30)-P(1)-C(24) 102.90(10) 
C(36)-P(1)-C(24) 107.25(10) 
C(30)-P(1)-Ir(1) 120.86(8) 
C(36)-P(1)-Ir(1) 111.52(7) 
C(24)-P(1)-Ir(1) 108.58(7) 
C(48)-P(2)-C(42) 103.75(10) 
C(48)-P(2)-C(54) 105.82(11) 
C(42)-P(2)-C(54) 105.51(10) 
C(48)-P(2)-Ir(1) 120.72(8) 
C(42)-P(2)-Ir(1) 109.34(7) 
C(54)-P(2)-Ir(1) 110.55(7) 
C(2)-O(1)-Ir(1) 125.06(12) 
C(15)-O(2)-Ir(1) 125.98(12) 
C(1)-N(1)-C(7) 128.09(18) 
C(1)-N(1)-C(8) 112.37(18) 
C(7)-N(1)-C(8) 119.53(18) 

C(1)-N(2)-C(10) 127.69(18) 
C(1)-N(2)-C(9) 112.27(18) 
C(10)-N(2)-C(9) 120.02(18) 
C(60A)-N(3A)-Ir(1) 175.1(7) 
O(3B)-C(3B)-Ir(1) 178(4) 
N(1)-C(1)-N(2) 109.07(17) 
N(1)-C(1)-Ir(1) 125.19(16) 
N(2)-C(1)-Ir(1) 125.73(16) 
O(1)-C(2)-C(3) 117.04(17) 
O(1)-C(2)-C(7) 126.46(19) 
C(3)-C(2)-C(7) 116.50(19) 
C(4)-C(3)-C(2) 123.1(2) 
C(3)-C(4)-C(5) 121.1(2) 
C(4)-C(5)-C(6) 116.2(2) 
C(4)-C(5)-C(16) 122.4(2) 
C(6)-C(5)-C(16) 121.4(2) 
C(5)-C(6)-C(7) 123.4(2) 
C(6)-C(7)-C(2) 119.7(2) 
C(6)-C(7)-N(1) 117.43(19) 
C(2)-C(7)-N(1) 122.91(19) 
N(1)-C(8)-C(9) 103.38(18) 
N(2)-C(9)-C(8) 102.89(18) 
C(11)-C(10)-C(15) 119.8(2) 
C(11)-C(10)-N(2) 117.74(19) 
C(15)-C(10)-N(2) 122.5(2) 
C(12)-C(11)-C(10) 123.3(2) 
C(11)-C(12)-C(13) 116.5(2) 
C(11)-C(12)-C(20) 121.3(2) 
C(13)-C(12)-C(20) 121.9(2) 
C(14)-C(13)-C(12) 120.8(2) 
C(13)-C(14)-C(15) 123.1(2) 
O(2)-C(15)-C(14) 117.0(2) 
O(2)-C(15)-C(10) 126.5(2) 
C(14)-C(15)-C(10) 116.5(2) 
C(19)-C(16)-C(18) 109.1(2) 
C(19)-C(16)-C(5) 108.71(18) 
C(18)-C(16)-C(5) 111.8(2) 
C(19)-C(16)-C(17) 109.1(2) 
C(18)-C(16)-C(17) 107.2(2) 
C(5)-C(16)-C(17) 110.9(2) 
C(23)-C(20)-C(22) 112.0(3) 
C(23)-C(20)-C(21) 106.9(3) 
C(22)-C(20)-C(21) 108.2(3) 
C(23)-C(20)-C(12) 112.6(2) 
C(22)-C(20)-C(12) 106.8(2) 
C(21)-C(20)-C(12) 110.3(3) 
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C(25)-C(24)-C(29) 110.26(18) 
C(25)-C(24)-P(1) 111.79(14) 
C(29)-C(24)-P(1) 117.80(16) 
C(24)-C(25)-C(26) 110.93(19) 
C(27)-C(26)-C(25) 111.52(19) 
C(28)-C(27)-C(26) 110.9(2) 
C(29)-C(28)-C(27) 111.6(2) 
C(28)-C(29)-C(24) 110.1(2) 
C(35)-C(30)-C(31) 111.2(2) 
C(35)-C(30)-P(1) 117.23(16) 
C(31)-C(30)-P(1) 110.60(15) 
C(32)-C(31)-C(30) 111.28(19) 
C(33)-C(32)-C(31) 110.9(2) 
C(32)-C(33)-C(34) 110.7(2) 
C(33)-C(34)-C(35) 111.1(2) 
C(30)-C(35)-C(34) 110.7(2) 
C(37)-C(36)-C(41) 109.90(18) 
C(37)-C(36)-P(1) 114.09(15) 
C(41)-C(36)-P(1) 113.91(14) 
C(38)-C(37)-C(36) 111.72(19) 
C(39)-C(38)-C(37) 111.66(19) 
C(40)-C(39)-C(38) 109.1(2) 
C(39)-C(40)-C(41) 111.4(2) 
C(40)-C(41)-C(36) 111.78(19) 
C(47)-C(42)-C(43) 109.99(19) 
C(47)-C(42)-P(2) 118.30(19) 
C(43)-C(42)-P(2) 112.45(15) 
C(44)-C(43)-C(42) 111.2(2) 
C(43)-C(44)-C(45) 113.2(2) 
C(44)-C(45)-C(46) 110.3(2) 
C(47)-C(46)-C(45) 110.9(2) 
C(46)-C(47)-C(42) 109.2(2) 
C(53)-C(48)-C(49) 110.4(2) 
C(53)-C(48)-P(2) 114.82(16) 
C(49)-C(48)-P(2) 113.37(17) 
C(50)-C(49)-C(48) 110.3(2) 
C(51)-C(50)-C(49) 110.1(2) 
C(52)-C(51)-C(50) 111.4(2) 
C(51)-C(52)-C(53) 112.5(2) 
C(48)-C(53)-C(52) 113.1(2) 
C(55)-C(54)-C(59) 109.2(2) 
C(55)-C(54)-P(2) 116.36(16) 
C(59)-C(54)-P(2) 114.64(16) 
C(56)-C(55)-C(54) 111.6(2) 
C(55)-C(56)-C(57) 111.8(2) 
C(58)-C(57)-C(56) 110.5(2) 

C(57)-C(58)-C(59) 112.2(2) 
C(58)-C(59)-C(54) 111.16(19) 
N(3A)-C(60A)-C(61A) 177.1(7) 
F(3B)-P(3)-F(6A) 137.6(6) 
F(3B)-P(3)-F(3A) 107.3(4) 
F(6A)-P(3)-F(3A) 98.1(5) 
F(3B)-P(3)-F(6B) 102.7(7) 
F(6A)-P(3)-F(6B) 100.0(5) 
F(3A)-P(3)-F(6B) 109.2(6) 
F(3B)-P(3)-F(1A) 117.3(7) 
F(6A)-P(3)-F(1A) 93.9(5) 
F(3A)-P(3)-F(1A) 93.1(6) 
F(6B)-P(3)-F(1A) 18.4(9) 
F(3B)-P(3)-F(4B) 96.5(6) 
F(6A)-P(3)-F(4B) 49.0(4) 
F(3A)-P(3)-F(4B) 145.9(6) 
F(6B)-P(3)-F(4B) 88.2(5) 
F(1A)-P(3)-F(4B) 97.2(4) 
F(3B)-P(3)-F(2B) 89.8(5) 
F(6A)-P(3)-F(2B) 123.5(5) 
F(3A)-P(3)-F(2B) 26.6(4) 
F(6B)-P(3)-F(2B) 94.6(6) 
F(1A)-P(3)-F(2B) 83.6(6) 
F(4B)-P(3)-F(2B) 172.4(6) 
F(3B)-P(3)-F(4A) 51.5(5) 
F(6A)-P(3)-F(4A) 94.1(3) 
F(3A)-P(3)-F(4A) 94.3(4) 
F(6B)-P(3)-F(4A) 150.3(6) 
F(1A)-P(3)-F(4A) 168.1(6) 
F(4B)-P(3)-F(4A) 81.6(3) 
F(2B)-P(3)-F(4A) 99.2(5) 
F(3B)-P(3)-F(5B) 93.7(5) 
F(6A)-P(3)-F(5B) 66.4(4) 
F(3A)-P(3)-F(5B) 65.9(4) 
F(6B)-P(3)-F(5B) 163.6(6) 
F(1A)-P(3)-F(5B) 147.2(6) 
F(4B)-P(3)-F(5B) 89.1(4) 
F(2B)-P(3)-F(5B) 86.3(4) 
F(4A)-P(3)-F(5B) 44.6(3) 
F(3B)-P(3)-F(5A) 66.2(4) 
F(6A)-P(3)-F(5A) 89.7(4) 
F(3A)-P(3)-F(5A) 172.1(4) 
F(6B)-P(3)-F(5A) 69.3(6) 
F(1A)-P(3)-F(5A) 86.4(5) 
F(4B)-P(3)-F(5A) 41.7(4) 
F(2B)-P(3)-F(5A) 145.8(4) 



 182 

F(4A)-P(3)-F(5A) 84.9(3) 
F(5B)-P(3)-F(5A) 117.8(4) 
F(3B)-P(3)-F(2A) 38.5(6) 
F(6A)-P(3)-F(2A) 173.4(5) 
F(3A)-P(3)-F(2A) 88.5(3) 
F(6B)-P(3)-F(2A) 77.9(5) 
F(1A)-P(3)-F(2A) 85.9(5) 
F(4B)-P(3)-F(2A) 124.5(6) 
F(2B)-P(3)-F(2A) 63.1(4) 
F(4A)-P(3)-F(2A) 85.1(3) 
F(5B)-P(3)-F(2A) 116.7(4) 
F(5A)-P(3)-F(2A) 83.7(3) 

F(3B)-P(3)-F(1B) 174.8(4) 
F(6A)-P(3)-F(1B) 41.8(3) 
F(3A)-P(3)-F(1B) 69.0(4) 
F(6B)-P(3)-F(1B) 82.1(6) 
F(1A)-P(3)-F(1B) 67.1(5) 
F(4B)-P(3)-F(1B) 85.4(5) 
F(2B)-P(3)-F(1B) 87.9(4) 
F(4A)-P(3)-F(1B) 124.4(4) 
F(5B)-P(3)-F(1B) 81.5(4) 
F(5A)-P(3)-F(1B) 117.8(3) 
F(2A)-P(3)-F(1B) 142.8(4) 
 

__________________________________________________________________ 
 
 
 

 

Table A2.15.   Anisotropic displacement parameters (Å2x 104) for 12/15 

(CCDC 700172).  The anisotropic displacement factor exponent takes the 

form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ] 

__________________________________________________________________ 
 U11 U22 U33 U23 U13 U12 
__________________________________________________________________ 
Ir(1) 96(1)  134(1) 211(1)  -6(1) 24(1)  -5(1) 
P(1) 132(2)  138(2) 176(3)  -2(3) 22(3)  9(2) 
P(2) 115(2)  149(2) 335(4)  -7(3) 31(3)  -19(2) 
O(1) 117(5)  211(7) 221(8)  48(6) -15(5)  -7(8) 
O(2) 160(7)  255(8) 194(8)  -59(7) 51(6)  -5(7) 
N(1) 93(8)  252(10) 131(10)  -22(8) -19(7)  18(7) 
N(2) 123(8)  267(10) 103(10)  -17(8) 2(7)  11(7) 
N(3A) 180(17)  101(16) 210(30)  0(20) -50(20)  -42(9) 
C(1) 153(9)  166(9) 130(11)  -5(9) 7(9)  -23(7) 
C(2) 142(9)  179(11) 172(11)  55(9) -22(8)  -22(8) 
C(3) 182(9)  275(12) 209(12)  63(11) -41(9)  -12(9) 
C(4) 283(12)  298(13) 112(12)  56(10) -34(9)  -51(9) 
C(5) 228(11)  160(11) 167(13)  6(9) 25(10)  -21(8) 
C(6) 161(10)  190(11) 248(14)  -15(10) 1(10)  29(8) 
C(7) 159(10)  158(10) 134(12)  4(9) -9(9)  -8(8) 
C(8) 111(10)  371(14) 193(13)  -38(10) -45(9)  69(9) 
C(9) 132(10)  314(13) 235(14)  -39(11) -6(9)  37(9) 
C(10) 242(11)  180(11) 119(12)  -20(9) 18(9)  -29(8) 
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C(11) 255(12)  203(11) 221(14)  -20(10) 3(10)  -3(9) 
C(12) 433(15)  200(12) 217(14)  -6(11) -22(12)  -62(11) 
C(13) 475(16)  280(13) 181(14)  -28(11) 98(12)  -72(11) 
C(14) 316(13)  274(13) 238(14)  -77(10) 94(11)  -67(9) 
C(15) 211(10)  150(11) 228(13)  -33(9) 45(10)  -45(8) 
C(16) 261(12)  217(12) 153(13)  4(10) 34(10)  8(9) 
C(17) 395(15)  452(17) 256(16)  -110(13) 50(13)  -7(12) 
C(18) 410(16)  614(19) 258(16)  105(14) 128(13)  265(14) 
C(19) 324(14)  337(15) 410(17)  -36(12) 116(13)  -86(11) 
C(20) 680(20)  271(14) 176(15)  20(11) -126(14)  -5(13) 
C(21) 1000(30)  1080(30) 246(19)  260(20) 80(20)  460(30) 
C(22) 2260(60)  350(20) 1530(40)  -10(30) -1620(40)  -130(30) 
C(23) 425(19)  1250(30) 265(18)  150(20) -135(15)  60(20) 
C(24) 176(10)  167(10) 179(14)  -10(9) 20(9)  -2(7) 
C(25) 172(11)  198(11) 250(13)  -2(9) -3(9)  -18(8) 
C(26) 228(11)  297(12) 239(13)  18(10) -6(11)  -33(11) 
C(27) 273(12)  334(12) 243(14)  -68(10) 22(12)  -26(12) 
C(28) 291(13)  276(13) 264(15)  -80(11) 27(11)  13(10) 
C(29) 317(13)  167(11) 247(14)  -32(10) 16(10)  5(9) 
C(30) 212(11)  216(11) 268(14)  31(9) 24(11)  68(10) 
C(31) 205(10)  248(11) 232(14)  19(11) 59(10)  69(8) 
C(32) 277(13)  392(16) 444(18)  45(13) 72(13)  146(11) 
C(33) 218(12)  404(16) 443(19)  141(13) -35(12)  48(11) 
C(34) 230(12)  343(14) 316(16)  130(12) -26(11)  12(10) 
C(35) 226(12)  291(12) 328(15)  26(10) -1(12)  -9(11) 
C(36) 152(10)  163(10) 209(12)  -1(9) 17(9)  -9(8) 
C(37) 204(11)  188(11) 255(14)  -21(10) 16(10)  -58(8) 
C(38) 217(11)  310(13) 233(14)  -43(11) 40(10)  -97(10) 
C(39) 226(12)  406(15) 293(15)  -72(12) 97(11)  -118(11) 
C(40) 247(12)  364(15) 365(17)  -147(12) 116(12)  -73(11) 
C(41) 210(11)  243(12) 278(15)  -72(10) 73(10)  -68(9) 
C(42) 168(9)  197(10) 332(14)  10(12) 33(12)  -31(7) 
C(43) 182(11)  207(12) 402(18)  82(11) -6(11)  -14(9) 
C(44) 329(14)  367(16) 402(19)  88(13) -102(13)  -66(12) 
C(45) 368(17)  418(16) 510(20)  249(14) -110(14)  -58(13) 
C(46) 248(13)  389(15) 550(20)  218(14) 14(13)  -59(11) 
C(47) 230(11)  245(12) 530(20)  112(13) -20(12)  -41(9) 
C(48) 152(10)  186(11) 419(17)  -14(11) 11(10)  -47(8) 
C(49) 168(10)  269(12) 396(17)  5(12) 34(11)  -40(8) 
C(50) 202(12)  450(17) 500(20)  -71(14) 27(12)  -110(11) 
C(51) 238(14)  680(20) 480(20)  -136(17) -48(13)  -99(13) 
C(52) 275(14)  518(18) 480(20)  -117(15) -18(14)  -123(13) 
C(53) 188(11)  280(13) 345(16)  -53(11) -1(11)  -43(9) 
C(54) 153(10)  191(11) 334(16)  -28(10) 14(10)  -10(8) 
C(55) 219(11)  223(12) 424(17)  -69(12) 72(11)  0(9) 
C(56) 238(12)  310(14) 426(18)  -90(12) 85(12)  12(10) 
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C(57) 262(13)  297(14) 491(19)  -151(13) 8(13)  65(10) 
C(58) 329(14)  211(11) 488(18)  -79(11) 6(14)  66(11) 
C(59) 244(12)  190(12) 528(19)  -46(12) 75(12)  -9(9) 
C(60A) 105(13)  150(14) 290(20)  12(18) 37(18)  -24(9) 
C(61A) 124(13)  415(18) 410(20)  30(20) 25(16)  57(11) 
P(3) 244(3)  404(4) 745(5)  20(5) 61(4)  -56(3) 
F(1A) 350(40)  190(20) 2190(120)  20(40) -410(50)  -84(18) 
F(2A) 620(30)  790(40) 760(50)  80(30) -350(30)  70(30) 
F(3A) 520(40)  1330(100) 550(40)  -450(50) 130(30)  -220(50) 
F(4A) 500(20)  450(20) 980(60)  20(30) 150(30)  -189(16) 
F(5A) 440(30)  960(50) 1400(60)  -130(40) 360(30)  130(30) 
F(6A) 1250(60)  620(40) 1210(70)  590(40) -810(50)  -310(40) 
F(1B) 560(30)  2550(110) 420(30)  -260(50) 110(30)  -570(40) 
F(5B) 560(30)  830(40) 1360(80)  520(40) 150(40)  30(30) 
F(4B) 280(20)  520(40) 2720(140)  -450(70) 160(60)  -20(20) 
F(3B) 610(50)  3300(170) 800(60)  -1240(90) 150(40)  -800(70) 
F(2B) 380(30)  700(40) 1200(110)  -210(50) 40(50)  140(20) 
F(6B) 260(30)  1160(90) 1360(80)  1000(70) 160(40)  20(40) 
__________________________________________________________________
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Structure of 16 (CCDC 676694) 

Special Refinement Details 

Crystals were mounted on a glass fiber using Paratone oil then placed on the 

diffractometer under a nitrogen stream at 100K. 

There are two molecules in the asymmetric unit, each of which is disordered, differently.  

Molecule A (figure 4.10a) is disordered in the tertiary butyl group composed of carbons 21-23. 

Molecule B (figure 4.10b) is disordered in two of the cyclohexyl groups composed of carbon 

atoms 24-35. 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for negative 

F2. The threshold expression of F2 > 2σ( F2) is used only for calculating R-factors(gt) etc. and is 

not relevant to the choice of reflections for refinement.  R-factors based on F2 are statistically 

about twice as large as those based on F, and R-factors based on ALL data will be even larger. 

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full 

covariance matrix.  The cell esds are taken into account individually in the estimation of esds in 

distances, angles and torsion angles; correlations between esds in cell parameters are only used 

when they are defined by crystal symmetry.  An approximate (isotropic) treatment of cell esds is 

used for estimating esds involving l.s. planes. 
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Table A2.16.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement 

parameters (Å2x 103) for 16 (CCDC 676694).  U(eq) is defined as the trace of the 

orthogonalized Uij tensor.  

______________________________________________________________________________ 
 x y z Ueq Occ 
______________________________________________________________________________ 
Ir(1) 3561(1) 1999(1) 2207(1) 10(1) 1 
Cl(1) 4027(1) 1386(1) 2083(1) 14(1) 1 
P(1A) 2390(1) 1925(1) 1319(1) 13(1) 1 
P(2A) 4702(1) 1978(1) 3107(1) 13(1) 1 
O(1A) 2474(1) 1822(1) 2675(1) 13(1) 1 
O(2A) 4686(1) 2134(1) 1739(1) 17(1) 1 
N(1A) 2496(2) 2600(1) 2624(1) 13(1) 1 
N(2A) 3645(2) 2763(1) 2071(1) 13(1) 1 
C(1A) 1884(2) 2028(1) 2951(1) 11(1) 1 
C(2A) 1209(2) 1862(1) 3280(1) 14(1) 1 
C(3A) 571(2) 2042(1) 3600(1) 20(1) 1 
C(4A) 568(2) 2405(1) 3614(1) 20(1) 1 
C(5A) 1222(2) 2571(1) 3280(1) 18(1) 1 
C(6A) 1870(2) 2398(1) 2951(1) 14(1) 1 
C(7A) 2413(2) 2982(1) 2621(1) 17(1) 1 
C(8A) 3188(2) 3094(1) 2227(1) 16(1) 1 
C(9A) 4375(2) 2760(1) 1675(1) 13(1) 1 
C(10A) 4625(2) 3075(1) 1414(1) 17(1) 1 
C(11A) 5305(2) 3098(1) 1010(1) 19(1) 1 
C(12A) 5771(2) 2790(1) 875(1) 22(1) 1 
C(13A) 5546(2) 2478(1) 1132(1) 19(1) 1 
C(14A) 4859(2) 2448(1) 1530(1) 14(1) 1 
C(15A) 3206(2) 2484(1) 2308(1) 12(1) 1 
C(16A) -97(2) 2616(1) 3980(1) 30(1) 1 
C(17A) -808(4) 2838(1) 3579(2) 108(2) 1 
C(18A) 551(3) 2842(1) 4409(2) 91(2) 1 
C(19A) -719(3) 2392(1) 4324(2) 79(2) 1 
C(20A) 5523(2) 3444(1) 714(2) 31(1) 1 
C(21A) 4517(5) 3518(2) 261(4) 66(3) 0.555(6) 
C(22A) 6322(5) 3416(2) 292(3) 38(2) 0.555(6) 
C(23A) 5694(9) 3725(2) 1107(4) 79(4) 0.555(6) 
C(21C) 5472(9) 3420(2) 99(3) 56(4) 0.445(6) 
C(22C) 6655(5) 3537(2) 964(4) 41(3) 0.445(6) 
C(23C) 4916(6) 3753(2) 926(4) 33(2) 0.445(6) 
C(24A) 1226(2) 1729(1) 1540(1) 14(1) 1 
C(25A) 233(2) 1785(1) 1147(1) 17(1) 1 
C(26A) -629(2) 1653(1) 1469(1) 22(1) 1 
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C(27A) -512(2) 1267(1) 1627(1) 22(1) 1 
C(28A) 479(2) 1202(1) 1994(1) 20(1) 1 
C(29A) 1356(2) 1338(1) 1692(1) 17(1) 1 
C(30A) 1904(2) 2304(1) 864(1) 14(1) 1 
C(31A) 1410(2) 2578(1) 1231(1) 17(1) 1 
C(32A) 920(2) 2867(1) 839(1) 22(1) 1 
C(33A) 1679(2) 3041(1) 495(1) 23(1) 1 
C(34A) 2163(2) 2776(1) 123(1) 19(1) 1 
C(35A) 2649(2) 2477(1) 502(1) 19(1) 1 
C(36A) 2845(2) 1613(1) 787(1) 15(1) 1 
C(37A) 2144(2) 1561(1) 209(1) 20(1) 1 
C(38A) 2513(2) 1263(1) -158(1) 28(1) 1 
C(39A) 3578(2) 1319(1) -285(1) 29(1) 1 
C(40A) 4261(2) 1373(1) 290(1) 24(1) 1 
C(41A) 3912(2) 1676(1) 650(1) 18(1) 1 
C(42A) 4080(2) 1764(1) 3702(1) 15(1) 1 
C(43A) 3820(2) 1377(1) 3580(1) 21(1) 1 
C(44A) 3136(2) 1241(1) 4013(1) 22(1) 1 
C(45A) 3579(2) 1286(1) 4650(1) 24(1) 1 
C(46A) 3872(2) 1665(1) 4774(1) 27(1) 1 
C(47A) 4563(2) 1796(1) 4341(1) 23(1) 1 
C(48A) 5875(2) 1728(1) 3057(1) 14(1) 1 
C(49A) 6319(2) 1774(1) 2473(1) 18(1) 1 
C(50A) 7238(2) 1542(1) 2452(1) 22(1) 1 
C(51A) 8026(2) 1608(1) 2968(1) 24(1) 1 
C(52A) 7583(2) 1551(1) 3547(1) 24(1) 1 
C(53A) 6686(2) 1785(1) 3583(1) 19(1) 1 
C(54A) 5147(2) 2391(1) 3474(1) 16(1) 1 
C(55A) 4332(2) 2609(1) 3715(1) 22(1) 1 
C(56A) 4795(2) 2908(1) 4095(1) 26(1) 1 
C(57A) 5416(2) 3140(1) 3740(1) 30(1) 1 
C(58A) 6215(2) 2931(1) 3477(1) 28(1) 1 
C(59A) 5768(2) 2622(1) 3106(1) 20(1) 1 
Ir(2) 2114(1) 4465(1) 2621(1) 15(1) 1 
Cl(2) 2327(1) 3830(1) 2633(1) 22(1) 1 
P(1B) 3494(1) 4459(1) 3392(1) 18(1) 1 
P(2B) 726(1) 4379(1) 1860(1) 19(1) 1 
O(1B) 3031(1) 4462(1) 1977(1) 19(1) 1 
O(2B) 1215(1) 4443(1) 3277(1) 20(1) 1 
N(1B) 2568(2) 5188(1) 2314(1) 16(1) 1 
N(2B) 1389(2) 5166(1) 2897(1) 17(1) 1 
C(1B) 3504(2) 4743(1) 1804(1) 17(1) 1 
C(2B) 4244(2) 4693(1) 1437(1) 27(1) 1 
C(3B) 4837(2) 4958(1) 1263(1) 29(1) 1 
C(4B) 4680(2) 5302(1) 1434(1) 23(1) 1 
C(5B) 3925(2) 5357(1) 1781(1) 19(1) 1 
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C(6B) 3327(2) 5093(1) 1971(1) 16(1) 1 
C(7B) 2343(2) 5556(1) 2411(1) 19(1) 1 
C(8B) 1521(2) 5542(1) 2804(1) 19(1) 1 
C(9B) 658(2) 5047(1) 3245(1) 15(1) 1 
C(10B) -24(2) 5288(1) 3428(1) 19(1) 1 
C(11B) -755(2) 5199(1) 3774(1) 21(1) 1 
C(12B) -797(2) 4849(1) 3949(1) 25(1) 1 
C(13B) -136(2) 4607(1) 3770(1) 22(1) 1 
C(14B) 603(2) 4691(1) 3414(1) 18(1) 1 
C(15B) 2013(2) 4971(1) 2612(1) 15(1) 1 
C(16B) 5376(2) 5605(1) 1308(1) 25(1) 1 
C(17B) 4770(2) 5941(1) 1163(1) 30(1) 1 
C(18B) 6089(2) 5662(1) 1869(1) 31(1) 1 
C(19B) 5941(2) 5524(1) 778(1) 33(1) 1 
C(20B) -1454(2) 5471(1) 3994(1) 29(1) 1 
C(21B) -1434(3) 5815(1) 3662(2) 43(1) 1 
C(22B) -1080(3) 5547(1) 4653(1) 46(1) 1 
C(23B) -2507(2) 5343(1) 3958(2) 53(1) 1 
C(24B) 4697(6) 4400(2) 3087(3) 22(2) 0.731(5) 
C(25B) 5681(3) 4475(1) 3539(2) 38(1) 0.731(5) 
C(26B) 6591(4) 4469(2) 3218(3) 50(2) 0.731(5) 
C(27B) 6700(4) 4123(1) 2914(3) 47(2) 0.731(5) 
C(28B) 5758(5) 4031(2) 2508(3) 33(2) 0.731(5) 
C(29B) 4835(14) 4049(4) 2783(8) 29(3) 0.731(5) 
C(24C) 4797(16) 4408(5) 3200(9) 2(3) 0.269(5) 
C(25C) 5226(8) 4704(2) 2825(5) 22(3) 0.269(5) 
C(26C) 6334(9) 4629(3) 2837(7) 34(3) 0.269(5) 
C(27C) 6508(8) 4291(3) 2501(6) 24(3) 0.269(5) 
C(28C) 6017(13) 3991(5) 2797(9) 38(5) 0.269(5) 
C(29C) 4840(30) 4071(11) 2840(20) 20(7) 0.269(5) 
C(30B) 3722(6) 4849(2) 3842(3) 22(2) 0.754(5) 
C(31B) 4094(3) 5163(1) 3589(2) 24(1) 0.754(5) 
C(32B) 4453(4) 5436(1) 4064(2) 23(1) 0.754(5) 
C(33B) 3630(4) 5533(1) 4422(2) 25(1) 0.754(5) 
C(34B) 3191(4) 5214(1) 4700(2) 26(1) 0.754(5) 
C(35B) 2834(11) 4934(3) 4233(7) 20(2) 0.754(5) 
C(30C) 3611(18) 4854(6) 3965(10) 17(5) 0.246(5) 
C(31C) 4645(9) 4972(2) 4139(5) 21(3) 0.246(5) 
C(32C) 4636(12) 5359(3) 4323(7) 25(4) 0.246(5) 
C(33C) 3772(12) 5425(4) 4690(7) 28(4) 0.246(5) 
C(34C) 2793(11) 5328(3) 4385(7) 35(4) 0.246(5) 
C(35C) 2900(40) 4966(10) 4190(20) 31(11) 0.246(5) 
C(36B) 3445(2) 4092(1) 3929(1) 22(1) 1 
C(37B) 4144(2) 4133(1) 4504(1) 28(1) 1 
C(38B) 4240(2) 3795(1) 4854(1) 31(1) 1 
C(39B) 3230(3) 3663(1) 4988(1) 36(1) 1 
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C(40B) 2494(2) 3641(1) 4434(1) 33(1) 1 
C(41B) 2423(2) 3984(1) 4083(1) 27(1) 1 
C(42B) 1148(2) 4350(1) 1120(1) 21(1) 1 
C(43B) 1773(2) 4017(1) 1053(1) 23(1) 1 
C(44B) 2236(2) 4024(1) 476(1) 29(1) 1 
C(45B) 1476(2) 4067(1) -58(1) 26(1) 1 
C(46B) 842(2) 4392(1) 8(1) 27(1) 1 
C(47B) 366(2) 4392(1) 580(1) 27(1) 1 
C(48B) 73(2) 3967(1) 1985(1) 23(1) 1 
C(49B) -384(2) 3980(1) 2573(1) 28(1) 1 
C(50B) -774(3) 3625(1) 2737(2) 42(1) 1 
C(51B) -1490(3) 3473(1) 2247(2) 46(1) 1 
C(52B) -1009(3) 3451(1) 1683(2) 50(1) 1 
C(53B) -646(2) 3807(1) 1491(1) 34(1) 1 
C(54B) -198(2) 4736(1) 1839(1) 21(1) 1 
C(55B) 172(2) 5075(1) 1562(1) 21(1) 1 
C(56B) -499(2) 5382(1) 1676(1) 30(1) 1 
C(57B) -1558(2) 5312(1) 1447(2) 35(1) 1 
C(58B) -1930(2) 4979(1) 1717(1) 31(1) 1 
C(59B) -1267(2) 4667(1) 1593(1) 31(1) 1 
C(61) 8052(3) 2497(1) 1599(2) 45(1) 1 
Cl(3) 8328(1) 2508(1) 869(1) 54(1) 1 
Cl(4) 9122(1) 2512(1) 2116(1) 53(1) 1 
C(62) 2133(2) 190(1) 4796(2) 41(1) 1 
Cl(5) 3284(1) 307(1) 4585(1) 43(1) 1 
Cl(6) 1713(1) 490(1) 5294(1) 50(1) 1 
______________________________________________________________________________
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 Table A2.17.   Bond lengths [Å] and angles [°] for 16 (CCDC 676694). 
______________________________________________________________________________
Ir(1)-C(15A)  1.944(2) 
Ir(1)-O(2A)  2.0257(17) 
Ir(1)-O(1A)  2.0343(16) 
Ir(1)-P(2A)  2.4194(7) 
Ir(1)-P(1A)  2.4365(7) 
Ir(1)-Cl(1)  2.4584(5) 
P(1A)-C(36A)  1.859(2) 
P(1A)-C(30A)  1.860(2) 
P(1A)-C(24A)  1.867(2) 
P(2A)-C(54A)  1.858(2) 
P(2A)-C(42A)  1.868(3) 
P(2A)-C(48A)  1.871(2) 
O(1A)-C(1A)  1.332(3) 
O(2A)-C(14A)  1.328(2) 
N(1A)-C(15A)  1.342(3) 
N(1A)-C(6A)  1.422(3) 
N(1A)-C(7A)  1.468(3) 
N(2A)-C(15A)  1.366(3) 
N(2A)-C(9A)  1.415(3) 
N(2A)-C(8A)  1.475(3) 
C(1A)-C(2A)  1.403(3) 
C(1A)-C(6A)  1.420(3) 
C(2A)-C(3A)  1.378(3) 
C(3A)-C(4A)  1.392(3) 
C(4A)-C(5A)  1.389(3) 
C(4A)-C(16A)  1.529(4) 
C(5A)-C(6A)  1.389(3) 
C(7A)-C(8A)  1.520(3) 
C(9A)-C(10A)  1.406(3) 
C(9A)-C(14A)  1.420(3) 
C(10A)-C(11A)  1.380(3) 
C(11A)-C(12A)  1.392(3) 
C(11A)-C(20A)  1.534(3) 
C(12A)-C(13A)  1.382(3) 
C(13A)-C(14A)  1.380(3) 
C(16A)-C(19A)  1.489(4) 
C(16A)-C(18A)  1.508(5) 
C(16A)-C(17A)  1.508(5) 
C(20A)-C(21C)  1.399(8) 
C(20A)-C(23A)  1.402(7) 
C(20A)-C(22A)  1.534(7) 
C(20A)-C(23C)  1.550(8) 
C(20A)-C(22C)  1.610(8) 
C(20A)-C(21A)  1.635(8) 

C(24A)-C(25A)  1.540(3) 
C(24A)-C(29A)  1.545(3) 
C(25A)-C(26A)  1.536(3) 
C(26A)-C(27A)  1.527(3) 
C(27A)-C(28A)  1.516(4) 
C(28A)-C(29A)  1.530(3) 
C(30A)-C(35A)  1.528(3) 
C(30A)-C(31A)  1.546(3) 
C(31A)-C(32A)  1.525(3) 
C(32A)-C(33A)  1.517(4) 
C(33A)-C(34A)  1.520(3) 
C(34A)-C(35A)  1.537(3) 
C(36A)-C(41A)  1.531(3) 
C(36A)-C(37A)  1.544(4) 
C(37A)-C(38A)  1.533(3) 
C(38A)-C(39A)  1.519(4) 
C(39A)-C(40A)  1.526(4) 
C(40A)-C(41A)  1.529(3) 
C(42A)-C(47A)  1.532(4) 
C(42A)-C(43A)  1.544(3) 
C(43A)-C(44A)  1.523(3) 
C(44A)-C(45A)  1.513(4) 
C(45A)-C(46A)  1.524(3) 
C(46A)-C(47A)  1.522(4) 
C(48A)-C(49A)  1.534(4) 
C(48A)-C(53A)  1.542(4) 
C(49A)-C(50A)  1.535(3) 
C(50A)-C(51A)  1.513(4) 
C(51A)-C(52A)  1.527(4) 
C(52A)-C(53A)  1.522(3) 
C(54A)-C(55A)  1.536(3) 
C(54A)-C(59A)  1.538(3) 
C(55A)-C(56A)  1.527(3) 
C(56A)-C(57A)  1.520(4) 
C(57A)-C(58A)  1.525(4) 
C(58A)-C(59A)  1.539(3) 
Ir(2)-C(15B)  1.944(2) 
Ir(2)-O(1B)  2.0307(17) 
Ir(2)-O(2B)  2.0380(18) 
Ir(2)-P(1B)  2.4102(8) 
Ir(2)-P(2B)  2.4260(8) 
Ir(2)-Cl(2)  2.4529(5) 
P(1B)-C(30B)  1.822(7) 
P(1B)-C(24C)  1.88(2) 
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P(1B)-C(36B)  1.870(3) 
P(1B)-C(24B)  1.857(9) 
P(1B)-C(30C)  1.99(2) 
P(2B)-C(42B)  1.846(3) 
P(2B)-C(54B)  1.850(3) 
P(2B)-C(48B)  1.852(2) 
O(1B)-C(1B)  1.337(3) 
O(2B)-C(14B)  1.324(3) 
N(1B)-C(15B)  1.354(3) 
N(1B)-C(6B)  1.411(3) 
N(1B)-C(7B)  1.468(3) 
N(2B)-C(15B)  1.352(3) 
N(2B)-C(9B)  1.415(3) 
N(2B)-C(8B)  1.470(3) 
C(1B)-C(2B)  1.390(4) 
C(1B)-C(6B)  1.425(3) 
C(2B)-C(3B)  1.380(3) 
C(3B)-C(4B)  1.400(3) 
C(4B)-C(5B)  1.381(4) 
C(4B)-C(16B)  1.545(3) 
C(5B)-C(6B)  1.395(3) 
C(7B)-C(8B)  1.509(3) 
C(9B)-C(10B)  1.406(3) 
C(9B)-C(14B)  1.420(3) 
C(10B)-C(11B)  1.380(4) 
C(11B)-C(12B)  1.401(3) 
C(11B)-C(20B)  1.534(4) 
C(12B)-C(13B)  1.385(3) 
C(13B)-C(14B)  1.399(4) 
C(16B)-C(18B)  1.524(4) 
C(16B)-C(19B)  1.537(4) 
C(16B)-C(17B)  1.542(3) 
C(20B)-C(23B)  1.502(4) 
C(20B)-C(21B)  1.523(4) 
C(20B)-C(22B)  1.555(4) 
C(24B)-C(25B)  1.609(9) 
C(24B)-C(29B)  1.539(18) 
C(25B)-C(26B)  1.503(6) 
C(26B)-C(27B)  1.515(6) 
C(27B)-C(28B)  1.524(8) 
C(28B)-C(29B)  1.464(18) 
C(24C)-C(29C)  1.53(5) 
C(24C)-C(25C)  1.57(2) 
C(25C)-C(26C)  1.525(15) 
C(26C)-C(27C)  1.538(14) 
C(27C)-C(28C)  1.52(2) 

C(28C)-C(29C)  1.63(5) 
C(30B)-C(31B)  1.450(7) 
C(30B)-C(35B)  1.612(15) 
C(31B)-C(32B)  1.542(6) 
C(32B)-C(33B)  1.503(7) 
C(33B)-C(34B)  1.528(6) 
C(34B)-C(35B)  1.549(13) 
C(30C)-C(35C)  1.22(5) 
C(30C)-C(31C)  1.48(3) 
C(31C)-C(32C)  1.543(17) 
C(32C)-C(33C)  1.54(2) 
C(33C)-C(34C)  1.47(2) 
C(34C)-C(35C)  1.47(4) 
C(36B)-C(41B)  1.523(4) 
C(36B)-C(37B)  1.531(4) 
C(37B)-C(38B)  1.518(3) 
C(38B)-C(39B)  1.523(4) 
C(39B)-C(40B)  1.517(4) 
C(40B)-C(41B)  1.538(3) 
C(42B)-C(47B)  1.535(4) 
C(42B)-C(43B)  1.551(3) 
C(43B)-C(44B)  1.522(4) 
C(44B)-C(45B)  1.507(4) 
C(45B)-C(46B)  1.530(3) 
C(46B)-C(47B)  1.519(4) 
C(48B)-C(53B)  1.528(4) 
C(48B)-C(49B)  1.541(4) 
C(49B)-C(50B)  1.522(3) 
C(50B)-C(51B)  1.510(5) 
C(51B)-C(52B)  1.510(4) 
C(52B)-C(53B)  1.535(4) 
C(54B)-C(59B)  1.514(4) 
C(54B)-C(55B)  1.554(3) 
C(55B)-C(56B)  1.527(3) 
C(56B)-C(57B)  1.490(4) 
C(57B)-C(58B)  1.531(4) 
C(58B)-C(59B)  1.541(4) 
C(61)-Cl(3)  1.748(4) 
C(61)-Cl(4)  1.759(4) 
C(62)-Cl(5)  1.743(3) 
C(62)-Cl(6)  1.758(3) 
 
C(15A)-Ir(1)-O(2A) 91.66(8) 
C(15A)-Ir(1)-O(1A) 93.06(8) 
O(2A)-Ir(1)-O(1A) 175.24(6) 
C(15A)-Ir(1)-P(2A) 94.16(7) 
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O(2A)-Ir(1)-P(2A) 90.58(5) 
O(1A)-Ir(1)-P(2A) 88.45(5) 
C(15A)-Ir(1)-P(1A) 93.67(7) 
O(2A)-Ir(1)-P(1A) 92.81(5) 
O(1A)-Ir(1)-P(1A) 87.51(5) 
P(2A)-Ir(1)-P(1A) 171.367(19) 
C(15A)-Ir(1)-Cl(1) 179.44(8) 
O(2A)-Ir(1)-Cl(1) 87.99(4) 
O(1A)-Ir(1)-Cl(1) 87.29(4) 
P(2A)-Ir(1)-Cl(1) 85.40(2) 
P(1A)-Ir(1)-Cl(1) 86.79(2) 
C(36A)-P(1A)-C(30A) 105.13(11) 
C(36A)-P(1A)-C(24A) 105.83(11) 
C(30A)-P(1A)-C(24A) 102.17(11) 
C(36A)-P(1A)-Ir(1) 112.52(9) 
C(30A)-P(1A)-Ir(1) 121.69(8) 
C(24A)-P(1A)-Ir(1) 108.05(8) 
C(54A)-P(2A)-C(42A) 101.42(11) 
C(54A)-P(2A)-C(48A) 103.39(11) 
C(42A)-P(2A)-C(48A) 106.00(11) 
C(54A)-P(2A)-Ir(1) 119.69(8) 
C(42A)-P(2A)-Ir(1) 109.43(9) 
C(48A)-P(2A)-Ir(1) 115.31(9) 
C(1A)-O(1A)-Ir(1) 123.99(13) 
C(14A)-O(2A)-Ir(1) 126.57(15) 
C(15A)-N(1A)-C(6A) 127.51(18) 
C(15A)-N(1A)-C(7A) 112.72(19) 
C(6A)-N(1A)-C(7A) 119.76(19) 
C(15A)-N(2A)-C(9A) 127.87(18) 
C(15A)-N(2A)-C(8A) 111.4(2) 
C(9A)-N(2A)-C(8A) 120.42(18) 
O(1A)-C(1A)-C(2A) 116.5(2) 
O(1A)-C(1A)-C(6A) 127.1(2) 
C(2A)-C(1A)-C(6A) 116.4(2) 
C(3A)-C(2A)-C(1A) 122.9(2) 
C(2A)-C(3A)-C(4A) 121.2(2) 
C(5A)-C(4A)-C(3A) 116.2(2) 
C(5A)-C(4A)-C(16A) 120.6(2) 
C(3A)-C(4A)-C(16A) 123.2(2) 
C(6A)-C(5A)-C(4A) 124.2(2) 
C(5A)-C(6A)-C(1A) 119.1(2) 
C(5A)-C(6A)-N(1A) 118.5(2) 
C(1A)-C(6A)-N(1A) 122.4(2) 
N(1A)-C(7A)-C(8A) 103.27(18) 
N(2A)-C(8A)-C(7A) 103.58(17) 
C(10A)-C(9A)-N(2A) 118.8(2) 

C(10A)-C(9A)-C(14A) 119.0(2) 
N(2A)-C(9A)-C(14A) 122.1(2) 
C(11A)-C(10A)-C(9A) 123.4(2) 
C(10A)-C(11A)-C(12A) 116.6(2) 
C(10A)-C(11A)-C(20A) 121.8(2) 
C(12A)-C(11A)-C(20A) 121.5(2) 
C(13A)-C(12A)-C(11A) 120.9(3) 
C(14A)-C(13A)-C(12A) 123.3(2) 
O(2A)-C(14A)-C(13A) 118.2(2) 
O(2A)-C(14A)-C(9A) 125.2(2) 
C(13A)-C(14A)-C(9A) 116.7(2) 
N(1A)-C(15A)-N(2A) 108.96(18) 
N(1A)-C(15A)-Ir(1) 125.68(16) 
N(2A)-C(15A)-Ir(1) 125.36(18) 
C(19A)-C(16A)-C(18A) 108.2(3) 
C(19A)-C(16A)-C(17A) 106.5(3) 
C(18A)-C(16A)-C(17A) 110.5(3) 
C(19A)-C(16A)-C(4A) 112.7(2) 
C(18A)-C(16A)-C(4A) 108.8(3) 
C(17A)-C(16A)-C(4A) 110.1(3) 
C(21C)-C(20A)-C(11A) 113.1(3) 
C(23A)-C(20A)-C(11A) 114.2(4) 
C(23A)-C(20A)-C(22A) 112.3(5) 
C(11A)-C(20A)-C(22A) 113.6(3) 
C(21C)-C(20A)-C(23C) 113.5(6) 
C(11A)-C(20A)-C(23C) 112.9(3) 
C(21C)-C(20A)-C(22C) 107.6(6) 
C(23C)-C(20A)-C(22C) 103.8(5) 
C(23A)-C(20A)-C(21A) 109.5(6) 
C(11A)-C(20A)-C(21A) 103.7(3) 
C(22A)-C(20A)-C(21A) 102.3(4) 
C(25A)-C(24A)-C(29A) 109.57(19) 
C(25A)-C(24A)-P(1A) 119.50(17) 
C(29A)-C(24A)-P(1A) 111.92(17) 
C(26A)-C(25A)-C(24A) 109.6(2) 
C(27A)-C(26A)-C(25A) 111.7(2) 
C(28A)-C(27A)-C(26A) 110.5(2) 
C(27A)-C(28A)-C(29A) 112.3(2) 
C(28A)-C(29A)-C(24A) 110.9(2) 
C(35A)-C(30A)-C(31A) 110.47(19) 
C(35A)-C(30A)-P(1A) 115.41(17) 
C(31A)-C(30A)-P(1A) 112.20(17) 
C(32A)-C(31A)-C(30A) 111.3(2) 
C(33A)-C(32A)-C(31A) 110.3(2) 
C(32A)-C(33A)-C(34A) 111.0(2) 
C(33A)-C(34A)-C(35A) 111.6(2) 
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C(30A)-C(35A)-C(34A) 111.3(2) 
C(41A)-C(36A)-C(37A) 110.3(2) 
C(41A)-C(36A)-P(1A) 115.14(16) 
C(37A)-C(36A)-P(1A) 114.96(17) 
C(38A)-C(37A)-C(36A) 110.7(2) 
C(39A)-C(38A)-C(37A) 112.0(2) 
C(38A)-C(39A)-C(40A) 110.4(2) 
C(39A)-C(40A)-C(41A) 111.7(2) 
C(40A)-C(41A)-C(36A) 110.4(2) 
C(47A)-C(42A)-C(43A) 108.20(19) 
C(47A)-C(42A)-P(2A) 118.48(18) 
C(43A)-C(42A)-P(2A) 113.92(17) 
C(44A)-C(43A)-C(42A) 110.8(2) 
C(45A)-C(44A)-C(43A) 112.4(2) 
C(44A)-C(45A)-C(46A) 110.7(2) 
C(47A)-C(46A)-C(45A) 111.2(2) 
C(46A)-C(47A)-C(42A) 111.3(2) 
C(49A)-C(48A)-C(53A) 110.0(2) 
C(49A)-C(48A)-P(2A) 114.49(17) 
C(53A)-C(48A)-P(2A) 114.29(17) 
C(48A)-C(49A)-C(50A) 111.2(2) 
C(51A)-C(50A)-C(49A) 112.3(2) 
C(50A)-C(51A)-C(52A) 109.6(2) 
C(53A)-C(52A)-C(51A) 111.1(2) 
C(52A)-C(53A)-C(48A) 111.9(2) 
C(55A)-C(54A)-C(59A) 110.01(19) 
C(55A)-C(54A)-P(2A) 114.61(18) 
C(59A)-C(54A)-P(2A) 114.50(17) 
C(56A)-C(55A)-C(54A) 110.3(2) 
C(57A)-C(56A)-C(55A) 110.7(2) 
C(56A)-C(57A)-C(58A) 111.3(2) 
C(57A)-C(58A)-C(59A) 111.7(2) 
C(54A)-C(59A)-C(58A) 110.4(2) 
C(15B)-Ir(2)-O(1B) 92.75(9) 
C(15B)-Ir(2)-O(2B) 90.14(9) 
O(1B)-Ir(2)-O(2B) 177.00(6) 
C(15B)-Ir(2)-P(1B) 93.81(8) 
O(1B)-Ir(2)-P(1B) 92.32(5) 
O(2B)-Ir(2)-P(1B) 86.70(5) 
C(15B)-Ir(2)-P(2B) 94.60(8) 
O(1B)-Ir(2)-P(2B) 88.27(5) 
O(2B)-Ir(2)-P(2B) 92.29(6) 
P(1B)-Ir(2)-P(2B) 171.53(2) 
C(15B)-Ir(2)-Cl(2) 177.33(8) 
O(1B)-Ir(2)-Cl(2) 85.42(4) 
O(2B)-Ir(2)-Cl(2) 91.66(4) 

P(1B)-Ir(2)-Cl(2) 84.32(2) 
P(2B)-Ir(2)-Cl(2) 87.30(2) 
C(30B)-P(1B)-C(24C) 96.6(6) 
C(30B)-P(1B)-C(36B) 105.5(2) 
C(24C)-P(1B)-C(36B) 100.4(6) 
C(30B)-P(1B)-C(24B) 102.2(3) 
C(24C)-P(1B)-C(24B) 8.5(8) 
C(36B)-P(1B)-C(24B) 104.7(3) 
C(30B)-P(1B)-C(30C) 8.6(8) 
C(24C)-P(1B)-C(30C) 103.1(9) 
C(36B)-P(1B)-C(30C) 98.6(7) 
C(24B)-P(1B)-C(30C) 109.3(7) 
C(30B)-P(1B)-Ir(2) 117.9(3) 
C(24C)-P(1B)-Ir(2) 120.0(6) 
C(36B)-P(1B)-Ir(2) 113.67(9) 
C(24B)-P(1B)-Ir(2) 111.5(2) 
C(30C)-P(1B)-Ir(2) 117.7(7) 
C(42B)-P(2B)-C(54B) 107.61(12) 
C(42B)-P(2B)-C(48B) 107.10(12) 
C(54B)-P(2B)-C(48B) 107.63(12) 
C(42B)-P(2B)-Ir(2) 111.36(9) 
C(54B)-P(2B)-Ir(2) 112.45(9) 
C(48B)-P(2B)-Ir(2) 110.46(10) 
C(1B)-O(1B)-Ir(2) 124.17(15) 
C(14B)-O(2B)-Ir(2) 125.93(15) 
C(15B)-N(1B)-C(6B) 127.01(19) 
C(15B)-N(1B)-C(7B) 112.3(2) 
C(6B)-N(1B)-C(7B) 120.63(19) 
C(15B)-N(2B)-C(9B) 127.39(19) 
C(15B)-N(2B)-C(8B) 112.4(2) 
C(9B)-N(2B)-C(8B) 120.22(19) 
O(1B)-C(1B)-C(2B) 118.1(2) 
O(1B)-C(1B)-C(6B) 125.4(2) 
C(2B)-C(1B)-C(6B) 116.5(2) 
C(3B)-C(2B)-C(1B) 123.8(2) 
C(2B)-C(3B)-C(4B) 120.1(3) 
C(5B)-C(4B)-C(3B) 116.7(2) 
C(5B)-C(4B)-C(16B) 120.0(2) 
C(3B)-C(4B)-C(16B) 122.9(2) 
C(4B)-C(5B)-C(6B) 124.2(2) 
C(5B)-C(6B)-N(1B) 118.1(2) 
C(5B)-C(6B)-C(1B) 118.6(2) 
N(1B)-C(6B)-C(1B) 123.3(2) 
N(1B)-C(7B)-C(8B) 103.60(18) 
N(2B)-C(8B)-C(7B) 103.36(18) 
C(10B)-C(9B)-N(2B) 118.6(2) 
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C(10B)-C(9B)-C(14B) 119.7(2) 
N(2B)-C(9B)-C(14B) 121.7(2) 
C(11B)-C(10B)-C(9B) 123.1(2) 
C(10B)-C(11B)-C(12B) 117.1(2) 
C(10B)-C(11B)-C(20B) 121.9(2) 
C(12B)-C(11B)-C(20B) 120.9(2) 
C(13B)-C(12B)-C(11B) 120.7(3) 
C(12B)-C(13B)-C(14B) 123.0(2) 
O(2B)-C(14B)-C(13B) 118.6(2) 
O(2B)-C(14B)-C(9B) 124.9(2) 
C(13B)-C(14B)-C(9B) 116.4(2) 
N(2B)-C(15B)-N(1B) 108.36(19) 
N(2B)-C(15B)-Ir(2) 126.51(18) 
N(1B)-C(15B)-Ir(2) 125.13(18) 
C(18B)-C(16B)-C(19B) 111.3(3) 
C(18B)-C(16B)-C(17B) 109.1(2) 
C(19B)-C(16B)-C(17B) 107.7(2) 
C(18B)-C(16B)-C(4B) 107.0(2) 
C(19B)-C(16B)-C(4B) 111.3(2) 
C(17B)-C(16B)-C(4B) 110.4(2) 
C(23B)-C(20B)-C(21B) 109.2(3) 
C(23B)-C(20B)-C(11B) 112.1(2) 
C(21B)-C(20B)-C(11B) 112.3(2) 
C(23B)-C(20B)-C(22B) 108.3(3) 
C(21B)-C(20B)-C(22B) 107.3(2) 
C(11B)-C(20B)-C(22B) 107.4(2) 
C(25B)-C(24B)-C(29B) 107.9(9) 
C(25B)-C(24B)-P(1B) 115.9(4) 
C(29B)-C(24B)-P(1B) 115.6(8) 
C(26B)-C(25B)-C(24B) 110.5(4) 
C(25B)-C(26B)-C(27B) 111.4(4) 
C(26B)-C(27B)-C(28B) 111.1(4) 
C(29B)-C(28B)-C(27B) 115.1(9) 
C(28B)-C(29B)-C(24B) 112.8(12) 
C(29C)-C(24C)-C(25C) 106(2) 
C(29C)-C(24C)-P(1B) 108(2) 
C(25C)-C(24C)-P(1B) 117.9(12) 
C(26C)-C(25C)-C(24C) 106.1(11) 
C(25C)-C(26C)-C(27C) 111.0(9) 
C(28C)-C(27C)-C(26C) 108.4(11) 
C(27C)-C(28C)-C(29C) 111(2) 
C(24C)-C(29C)-C(28C) 107(3) 
C(31B)-C(30B)-C(35B) 111.6(6) 
C(31B)-C(30B)-P(1B) 120.2(4) 
C(35B)-C(30B)-P(1B) 112.9(6) 
C(30B)-C(31B)-C(32B) 112.3(4) 

C(33B)-C(32B)-C(31B) 110.9(4) 
C(32B)-C(33B)-C(34B) 112.1(3) 
C(33B)-C(34B)-C(35B) 112.0(7) 
C(34B)-C(35B)-C(30B) 109.1(9) 
C(35C)-C(30C)-C(31C) 123(3) 
C(35C)-C(30C)-P(1B) 122(3) 
C(31C)-C(30C)-P(1B) 114.1(12) 
C(30C)-C(31C)-C(32C) 109.2(12) 
C(33C)-C(32C)-C(31C) 109.7(11) 
C(34C)-C(33C)-C(32C) 113.7(13) 
C(35C)-C(34C)-C(33C) 106(2) 
C(30C)-C(35C)-C(34C) 125(4) 
C(41B)-C(36B)-C(37B) 108.5(2) 
C(41B)-C(36B)-P(1B) 117.18(19) 
C(37B)-C(36B)-P(1B) 114.67(18) 
C(38B)-C(37B)-C(36B) 111.7(2) 
C(37B)-C(38B)-C(39B) 111.5(2) 
C(40B)-C(39B)-C(38B) 111.5(2) 
C(39B)-C(40B)-C(41B) 112.5(2) 
C(36B)-C(41B)-C(40B) 110.4(2) 
C(47B)-C(42B)-C(43B) 109.8(2) 
C(47B)-C(42B)-P(2B) 117.9(2) 
C(43B)-C(42B)-P(2B) 111.72(18) 
C(44B)-C(43B)-C(42B) 110.7(2) 
C(45B)-C(44B)-C(43B) 112.8(2) 
C(44B)-C(45B)-C(46B) 110.3(2) 
C(47B)-C(46B)-C(45B) 112.5(2) 
C(46B)-C(47B)-C(42B) 111.5(2) 
C(53B)-C(48B)-C(49B) 111.7(2) 
C(53B)-C(48B)-P(2B) 120.1(2) 
C(49B)-C(48B)-P(2B) 110.69(17) 
C(50B)-C(49B)-C(48B) 111.7(2) 
C(51B)-C(50B)-C(49B) 112.0(3) 
C(50B)-C(51B)-C(52B) 110.4(3) 
C(51B)-C(52B)-C(53B) 112.1(2) 
C(48B)-C(53B)-C(52B) 110.1(3) 
C(59B)-C(54B)-C(55B) 109.6(2) 
C(59B)-C(54B)-P(2B) 119.57(17) 
C(55B)-C(54B)-P(2B) 112.36(18) 
C(56B)-C(55B)-C(54B) 110.5(2) 
C(57B)-C(56B)-C(55B) 111.7(2) 
C(56B)-C(57B)-C(58B) 111.0(2) 
C(57B)-C(58B)-C(59B) 110.4(2) 
C(54B)-C(59B)-C(58B) 110.4(2) 
Cl(3)-C(61)-Cl(4) 112.71(19) 
Cl(5)-C(62)-Cl(6) 112.10(17)
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Table A2.18.   Anisotropic displacement parameters  (Å2x 104 ) for 16 (CCDC 676694).  

The anisotropic displacement factor exponent takes the form: -2π2 [ h2 a*2U 11  + ... + 2 h 

k a* b* U12 ] 

______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
Ir(1) 116(1)  77(1) 115(1)  6(1) 7(1)  6(1) 
Cl(1) 171(3)  93(2) 162(4)  -3(2) 0(3)  13(2) 
P(1A) 145(4)  117(3) 119(4)  13(2) 9(3)  1(2) 
P(2A) 144(4)  87(3) 144(4)  -8(3) -8(3)  6(3) 
O(1A) 138(10)  85(7) 162(10)  30(7) 13(8)  -5(6) 
O(2A) 190(11)  115(7) 191(11)  41(7) 29(9)  -2(7) 
N(1A) 155(12)  69(8) 155(13)  12(8) 36(10)  29(8) 
N(2A) 173(13)  55(8) 171(13)  -2(8) 45(10)  23(8) 
C(1A) 77(12)  175(11) 90(14)  -11(10) 3(10)  -13(10) 
C(2A) 164(15)  131(11) 133(15)  28(10) 4(12)  1(10) 
C(3A) 163(15)  286(14) 164(16)  13(11) 19(12)  -27(11) 
C(4A) 198(16)  237(13) 172(17)  11(11) 51(13)  52(11) 
C(5A) 210(16)  158(12) 189(17)  -8(11) 53(13)  36(11) 
C(6A) 129(14)  149(11) 145(15)  -2(10) 14(12)  5(10) 
C(7A) 248(16)  101(10) 159(15)  0(10) 39(12)  47(10) 
C(8A) 217(15)  86(10) 177(16)  -11(10) 25(12)  40(10) 
C(9A) 121(14)  133(11) 117(15)  20(10) -17(11)  -6(10) 
C(10A) 172(15)  126(11) 217(17)  10(10) -4(13)  1(10) 
C(11A) 172(15)  168(12) 220(17)  69(11) 5(13)  -16(10) 
C(12A) 205(16)  242(13) 245(18)  63(12) 110(14)  -1(11) 
C(13A) 189(16)  150(11) 228(17)  29(11) 57(13)  32(10) 
C(14A) 154(14)  131(11) 123(15)  17(10) -11(12)  -14(10) 
C(15A) 113(13)  123(10) 108(15)  6(9) -23(11)  14(9) 
C(16A) 350(20)  246(14) 340(20)  -11(13) 224(16)  45(13) 
C(17A)1190(50)  1320(40) 810(40)  240(30) 470(30)  1080(40) 
C(18A) 680(30)  1100(30) 1050(40)  -820(30) 550(30)  -310(30) 
C(19A) 860(40)  540(20) 1120(40)  -280(20) 780(30)  -70(20) 
C(20A) 360(20)  210(14) 390(20)  134(13) 182(17)  7(13) 
C(21A) 390(50)  670(50) 970(70)  700(50) 270(40)  190(30) 
C(22A) 280(40)  390(30) 470(50)  240(30) 90(40)  -50(30) 
C(23A)1490(110)  240(30) 790(70)  -50(40) 740(80)  -320(50) 
C(21C)1230(120)  260(40) 200(50)  60(30) 90(60)  -170(50) 
C(22C) 250(40)  240(30) 770(70)  100(40) 180(40)  -90(30) 
C(23C) 260(40)  140(30) 610(60)  180(30) 130(50)  20(30) 
C(24A) 127(14)  165(11) 119(15)  8(10) 16(11)  -18(10) 
C(25A) 150(15)  202(12) 150(16)  29(10) 5(12)  -27(10) 
C(26A) 152(16)  273(14) 228(18)  28(12) -32(13)  -20(11) 
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C(27A) 164(16)  292(14) 194(17)  32(12) 27(13)  -46(11) 
C(28A) 167(15)  221(12) 198(17)  23(11) 12(13)  -37(11) 
C(29A) 154(15)  160(11) 180(16)  28(10) -1(12)  -4(10) 
C(30A) 152(15)  141(11) 133(15)  34(10) -10(12)  24(10) 
C(31A) 185(15)  177(12) 146(16)  2(10) 10(12)  29(11) 
C(32A) 223(17)  228(13) 208(17)  19(11) -19(13)  93(11) 
C(33A) 291(17)  153(12) 221(17)  48(11) -61(14)  43(11) 
C(34A) 241(17)  179(12) 160(16)  52(11) 9(13)  6(11) 
C(35A) 179(15)  182(12) 188(17)  30(11) -5(13)  22(11) 
C(36A) 180(15)  131(11) 134(15)  2(10) 42(12)  -2(10) 
C(37A) 232(17)  228(13) 148(16)  -37(11) 18(13)  -13(11) 
C(38A) 380(20)  270(14) 193(18)  -94(12) 58(15)  -27(13) 
C(39A) 380(20)  262(14) 242(19)  -93(12) 119(16)  -11(13) 
C(40A) 261(17)  208(13) 266(18)  -14(12) 108(14)  30(11) 
C(41A) 202(16)  171(12) 163(16)  14(10) 51(13)  12(10) 
C(42A) 159(15)  137(11) 140(16)  7(10) -4(12)  18(10) 
C(43A) 303(18)  132(11) 176(17)  10(10) 12(14)  29(11) 
C(44A) 290(18)  177(12) 183(17)  30(11) 6(14)  -35(11) 
C(45A) 288(18)  291(14) 140(17)  73(12) 30(14)  -36(12) 
C(46A) 340(19)  341(15) 136(17)  -18(12) 16(14)  -139(13) 
C(47A) 237(17)  280(14) 167(17)  23(12) -42(14)  -83(12) 
C(48A) 139(14)  104(10) 181(16)  15(10) 13(12)  20(9) 
C(49A) 161(15)  172(12) 199(17)  -2(11) -4(13)  28(10) 
C(50A) 200(16)  237(13) 227(18)  -18(11) 53(13)  42(12) 
C(51A) 151(16)  246(13) 320(20)  0(12) 5(14)  48(11) 
C(52A) 182(16)  247(13) 274(19)  -4(12) -53(14)  56(12) 
C(53A) 140(15)  235(13) 192(17)  -17(11) -29(13)  35(11) 
C(54A) 163(15)  121(11) 183(16)  -27(10) -43(12)  3(10) 
C(55A) 212(16)  177(12) 262(18)  -81(11) -26(13)  26(11) 
C(56A) 283(18)  168(12) 303(19)  -125(11) -33(15)  43(11) 
C(57A) 410(20)  144(12) 330(20)  -70(12) -79(16)  -26(12) 
C(58A) 340(19)  163(13) 330(20)  7(12) 15(15)  -73(12) 
C(59A) 275(17)  133(11) 183(17)  4(10) -8(13)  -29(11) 
Ir(2) 185(1)  86(1) 192(1)  9(1) 43(1)  10(1) 
Cl(2) 287(4)  91(2) 282(4)  0(3) 58(3)  15(2) 
P(1B) 218(4)  123(3) 203(4)  -2(3) 29(3)  24(3) 
P(2B) 191(4)  142(3) 231(5)  -8(3) 32(3)  -6(3) 
O(1B) 217(11)  107(8) 248(12)  -9(7) 64(9)  -10(7) 
O(2B) 223(11)  147(8) 247(12)  38(8) 65(9)  45(7) 
N(1B) 195(13)  80(9) 198(13)  -8(8) 51(11)  0(8) 
N(2B) 202(13)  83(9) 223(14)  7(8) 40(11)  6(9) 
C(1B) 182(15)  135(11) 205(17)  9(10) 45(13)  -9(10) 
C(2B) 346(19)  110(11) 390(20)  14(12) 201(16)  47(11) 
C(3B) 289(18)  213(13) 410(20)  9(13) 230(16)  39(12) 
C(4B) 260(17)  151(12) 282(18)  36(11) 70(14)  -11(11) 
C(5B) 239(17)  116(11) 229(17)  22(10) 63(13)  -3(10) 
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C(6B) 152(15)  144(11) 184(16)  5(10) 28(12)  8(10) 
C(7B) 217(16)  90(11) 269(17)  -19(11) 42(13)  26(10) 
C(8B) 217(16)  84(10) 274(17)  6(11) 53(13)  -11(11) 
C(9B) 157(15)  164(11) 135(16)  2(10) 23(12)  -3(10) 
C(10B) 205(16)  144(11) 214(17)  10(11) 15(13)  23(11) 
C(11B) 215(16)  200(13) 232(18)  -9(11) 45(14)  41(11) 
C(12B) 234(17)  263(14) 267(19)  17(12) 85(14)  -6(12) 
C(13B) 250(17)  143(12) 268(18)  34(11) 99(14)  34(11) 
C(14B) 202(16)  156(12) 179(16)  12(10) 29(13)  19(11) 
C(15B) 143(14)  117(10) 183(16)  -1(10) 6(12)  8(10) 
C(16B) 236(17)  156(12) 370(20)  44(12) 130(15)  1(11) 
C(17B) 325(19)  133(12) 470(20)  111(12) 160(16)  -6(12) 
C(18B) 301(19)  218(13) 440(20)  -26(13) 110(17)  -46(12) 
C(19B) 350(20)  228(13) 430(20)  51(14) 151(17)  -59(13) 
C(20B) 299(19)  223(14) 390(20)  21(13) 178(16)  77(12) 
C(21B) 430(20)  280(16) 610(30)  82(15) 210(20)  186(14) 
C(22B) 630(30)  377(17) 410(20)  -45(16) 210(20)  130(17) 
C(23B) 290(20)  365(17) 970(30)  -85(19) 200(20)  58(15) 
C(24B) 270(40)  300(30) 50(40)  -30(20) -90(30)  80(20) 
C(25B) 330(30)  540(30) 270(30)  -130(20) 10(20)  90(20) 
C(26B) 190(30)  710(40) 590(40)  -320(30) 0(30)  80(30) 
C(27B) 260(30)  690(40) 450(40)  -180(30) 30(30)  140(30) 
C(28B) 280(40)  330(30) 380(50)  -130(30) 40(30)  100(20) 
C(29B) 390(50)  180(30) 330(60)  -60(30) 130(30)  120(20) 
C(24C) 30(30)  20(30) 20(30)  -1(10) 4(11)  1(10) 
C(25C) 230(70)  130(40) 310(70)  -10(40) 10(50)  0(40) 
C(26C) 90(60)  290(60) 650(110)  -170(60) 130(70)  -30(50) 
C(27C) 120(60)  330(60) 290(80)  -20(50) 110(50)  50(50) 
C(28C) 160(100)  370(80) 620(150)  -300(100) 100(90)  40(70) 
C(29C) 200(70)  200(70) 200(70)  1(10) 22(13)  -1(10) 
C(30B) 250(30)  210(20) 230(40)  -120(20) 190(30)  -26(17) 
C(31B) 310(20)  166(17) 230(20)  50(15) 27(19)  -11(15) 
C(32B) 330(30)  150(20) 200(30)  7(18) -10(20)  -70(19) 
C(33B) 310(30)  108(19) 330(30)  -16(18) -20(20)  7(18) 
C(34B) 330(30)  194(19) 260(30)  -14(17) 70(20)  47(19) 
C(35B) 260(40)  110(20) 240(40)  -40(30) 110(30)  -10(20) 
C(30C) 170(50)  160(50) 170(50)  1(10) 20(11)  -3(10) 
C(31C) 280(70)  180(50) 160(70)  -20(40) -20(50)  70(50) 
C(32C) 300(90)  90(60) 340(110)  80(60) -70(80)  -130(50) 
C(33C) 370(90)  170(70) 340(110)  -20(60) 170(80)  90(60) 
C(34C) 360(90)  260(70) 460(110)  -130(60) 90(80)  150(60) 
C(35C) 310(110)  310(110) 310(110)  3(10) 36(16)  -2(10) 
C(36B) 327(18)  132(11) 199(17)  14(11) 59(14)  46(11) 
C(37B) 420(20)  188(13) 214(18)  16(11) 19(15)  73(12) 
C(38B) 480(20)  201(13) 218(19)  3(12) -28(16)  76(13) 
C(39B) 580(30)  262(15) 260(20)  106(13) 73(18)  115(15) 
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C(40B) 370(20)  269(15) 360(20)  122(13) 79(17)  36(13) 
C(41B) 350(20)  196(13) 277(19)  100(12) 76(15)  55(12) 
C(42B) 207(16)  183(12) 241(18)  -28(11) 9(13)  -14(11) 
C(43B) 228(17)  180(12) 263(18)  -53(11) 13(14)  -6(11) 
C(44B) 244(18)  263(14) 360(20)  -56(13) 86(16)  -9(12) 
C(45B) 268(18)  272(14) 235(18)  -35(12) 50(14)  -35(12) 
C(46B) 318(19)  270(14) 238(19)  -20(12) 50(15)  -7(12) 
C(47B) 300(18)  238(14) 252(19)  -51(12) 12(15)  16(12) 
C(48B) 230(17)  139(12) 332(19)  -12(11) 90(14)  -28(11) 
C(49B) 308(19)  206(13) 350(20)  -9(12) 111(16)  -55(12) 
C(50B) 420(20)  276(15) 610(30)  46(16) 250(20)  -66(14) 
C(51B) 470(20)  287(15) 670(30)  -123(17) 300(20)  -194(15) 
C(52B) 580(30)  327(17) 640(30)  -235(17) 330(20)  -260(16) 
C(53B) 294(19)  320(15) 420(20)  -129(14) 98(17)  -136(13) 
C(54B) 204(16)  165(12) 264(18)  -18(11) 37(14)  5(11) 
C(55B) 189(16)  222(13) 206(17)  13(11) -7(13)  -10(11) 
C(56B) 302(19)  209(13) 390(20)  61(13) 43(16)  9(12) 
C(57B) 310(20)  312(15) 420(20)  71(14) 32(17)  69(14) 
C(58B) 179(17)  343(16) 410(20)  45(14) 17(15)  47(13) 
C(59B) 276(19)  259(14) 390(20)  13(13) 45(16)  14(13) 
C(61) 330(20)  472(19) 570(30)  -47(17) 76(19)  22(16) 
Cl(3) 395(6)  614(5) 636(7)  156(5) 122(5)  169(4) 
Cl(4) 457(6)  398(4) 701(7)  -93(4) -8(5)  20(4) 
C(62) 340(20)  334(16) 550(30)  -17(16) 89(19)  5(14) 
Cl(5) 467(6)  287(4) 581(6)  55(4) 197(5)  -13(4) 
Cl(6) 577(6)  453(5) 488(6)  40(4) 198(5)  137(4) 
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