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ABSTRACT

Oxidation is a fundamental process in chemistry and biology.  In synthetic

chemistry, several developments have been made in catalytic asymmetric oxidative

transformations that involve a heteroatom transfer from a reagent to a substrate (e.g.,

epoxidations, dihydroxylations).  Enantioselective oxidations that do not involve a

heteroatom transfer have been relatively less explored.  These types of oxidative

transformations were investigated using a general palladium(II) catalyst system.

A palladium-catalyzed oxidative kinetic resolution of secondary alcohols was

developed.  This catalytic system utilizes (–)-sparteine as the chiral ligand and molecular

oxygen as the sole stoichiometric oxidant.  Benzylic and allylic alcohols can be resolved

to high enantiomeric excesses in excellent yields.  The same selective process has been

applied to the desymmetrization of meso diols.

This general palladium(II) oxidative system was applied to intramolecular

Wacker oxidations to form a variety of heterocycles.  Lactones, lactams,

tetrahydrofurans, dihydrobenzofurans, and dihydrobenzopyrans were all accessed by this

methodology.  Importantly, this work provided entry into the development of asymmetric

variants.  Highly enantioselective cyclizations of phenolic substrates were realized with a

palladium-sparteine catalyst, analogous to the kinetic resolution chemistry.  The

heterocyclization chemistry was employed in the context of the total synthesis of the

Cephalotxaxus alkaloids.

Oxidative annulations for the synthesis of carbocycles were developed utilizing

this general palladium system.  Indoles with pendant olefin tethers were oxidatively



ix
cyclized under palladium(II) catalysis to form annulated indoles.  Electron-rich aromatic

systems were also investigated, culminating in the syntheses of benzofurans and

dihydrobenzofurans.  These reactions were demonstrated to proceed by an initial C-H

bond functionalization event, followed by olefin insertion and β-hydride elimination.

Enantioselective heterocyclizations using the general oxidative system were

further explored.  Promising results were realized in the heterocyclizations of

sulfonamide-based compounds.  Key experiments allowed for a firmer understanding of

how the reaction was progressing and, specifically, how enantioselectivity was being

induced by the palladium catalyst.
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