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CHAPTER ONE

Enantioselective Oxidation Chemistry

1.1  Oxidation in Biological Systems

Oxidation is a fundamental process in chemistry and biology.  In biological

systems, a number of enzymes catalyze a diverse set of oxidative reactions through the

use of molecular oxygen.  Metalloenzymes that catalyze these aerobic oxidations are

divided into two distinct types (Figure 1.1.1).  Oxygenases involve the transfer of an

oxygen atom from O2 to the substrate, often via a high-valent metal oxo species (1).  The

reduced metal intermediate (2) is then oxidized by dioxygen back to the active species,

mediated by two protons and two electrons.  Importantly, one of the oxygen atoms from

O2 is incorporated into the oxidized substrate.  Oxidases differ in that the metal oxidant

(3) catalyzes the dehydrogenation of the substrate, releasing two protons.  In this case,

there is no oxygen atom transfer to the substrate—molecular oxygen is used simply as a

proton and electron acceptor for the catalytic process.  The atoms from O2 are released as

either water or hydrogen peroxide.

Figure 1.1.1  Oxygenase and oxidase metalloenzymes.
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1.2  Oxidation in Chemical Synthesis

In chemical synthesis, there have been several developments regarding

asymmetric oxidation catalysts that involve heteroatom transfer, i.e., catalysts that mimic

the behavior of oxygenase enzymes.  Some of the most notable examples are illustrated

in Figure 1.2.1.  The initial discovery of a highly enantioselective catalytic oxidation was

reported by Sharpless and Katsuki.1  Allylic alcohols were epoxidized (5 →  6) by a

titanium-tartrate catalyst, using tert-butyl hydroperoxide as the stoichiometric oxidant.

Sharpless later reported the asymmetric dihydroxylation of unfunctionalized olefins (7 →

8) using an osmium catalyst system.2  Jacobsen and Shi have both disclosed examples of

enantioselective epoxidations of simple olefins (9 → 11, 12 → 14).3  Highly asymmetric

aziridinations (15  →  16 , 17 →  19) have also been described by both Evans and

Jacobsen.3b,4  Although these examples do not involve O2 as the stoichiometric oxidant

like oxygenase enzymes, they do all proceed by heteroatom transfer from a reagent to the

substrate.
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Figure 1.2.1  Asymmetric oxidations featuring heteroatom transfers.
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Chemical methods that mimic the reactions catalyzed by oxidase enzymes have

also been developed.  This class of transformations does not involve a heteroatom

transfer to a substrate, but a dehydrogenative process instead.  Fundamental reactions of

this type include alcohol oxidations and alkane dehydrogenations, both ubiquitous in

nature and in chemical synthesis.  Although prevalent, asymmetric catalytic variants of

this class of reactions have been relatively less explored in comparison to the oxygenase

mimics.

Several enantioselective dehydrogenative reactions are illustrated in Figure 1.2.2.

The kinetic resolution of racemic alcohols involves the selective oxidation of one

enantiomer to produce a prochiral ketone (21) and an enantioenriched alcohol (20).  This
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same selective process can be applied to the desymmetrization of meso diols (22 → 23).

Enantiopure heterocycles and carbocycles (e.g., 25 and 27) can be envisioned to arise

from asymmetric dehydrogenative processes.  Other potential asymmetric non-

heteroatom transfer oxidations include cycloadditions (28 → 29) and aromatic oxidations

(30  →  31).  The design and development of palladium(II) catalytic systems for

investigations into this fertile area of enantioselective oxidation chemistry will be the

focus of this thesis.5

Figure 1.2.2  Enantioselective dehydrogenative reactions.
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