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"The way to get started is to quit talking and begin doing."
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Abstract

This thesis develops a novel meshfree numerical method for simulating general fluid flows.
Drawing from concepts in optimal mass transport theory and in combination with the no-
tion of material point sampling and meshfree interpolation, the optimal transport meshfree
(OTM) method provides a rigorous mathematical framework for numerically simulating
three-dimensional general fluid flows with general, and possibly moving boundaries (as in
fluid-structure interaction simulations). Specifically, the proposed OTM method general-
izes the Benamou-Brenier differential formulation of optimal mass transportation problems
that leads to a multifield variational characterization of general fluid flows including vis-
cosity, equations of state, and general geometries and boundary conditions. With the use of
material point sampling in conjunction with local max-entropy shape functions, the OTM
method leads to a meshfree formulation bearing a number of salient features. Compared
with other meshfree methods that face significant challenges to enforce essential boundary
conditions as well as couple to other methods, such as the finite element method, the OTM
method provides a new paradigm in meshfree methods. The OTM method is numerically
validated by simulating the classical Riemann benchmark example for Euler flow. Further-
more, in order to highlight the ability of the OTM to simulate Navier-Stokes flows within
general, moving three-dimensional domains, and naturally couple with finite elements, an
illustrative strongly coupled FSI example is simulated. This illustrative FSI example, con-
sisting of a gas-inflated sphere impacting the ground, is simulated as a toy model of the final
phase of NASA’s landing scheme devised for Mars missions, where a network of airbags

are deployed to dissipate the energy of impact.
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Chapter 1

Introduction

In moving toward the goal of predictive science capabilities, numerically simulating mul-
tiphysics problems has highlighted the limitations of current numerical methods. Of such
multiphysics problems, fluid-structure interaction (FSI) problems represent a broad class
of physical phenomena with fascinating applications in the natural sciences, medical fields,
and engineering disciplines. FSI simulations highlight the challenges associated with cou-
pling the distinct computational frameworks (Eulerian, Lagrangian) traditionally employed
for numerical simulations of fluids and structures, respectively. To address these chal-
lenges, this thesis develops a new optimal transportation meshfree (OTM) method for nu-
merical simulations of general fluid flows in a completely Lagrangian setting. The OTM
method extends the concepts from optimal mass transportation theory to characterize gen-
eral Newtonian fluid flows. Here, the OTM method inherits a rigorous mathematical frame-
work that leads to geometrically exact mass density updates. Combined with the use of
meshfree interpolation for the velocity field and the concept of material point sampling for
the density field, the proposed OTM method provides a first-of-a-kind meshfree scheme
for numerical simulations of fluid flows with general equations of state, boundary condi-
tions, and initial conditions. Furthermore, the OTM framework facilitates the use of local
maximum-entropy (LME) meshfree shape functions [4] for dynamic simulations, which
has not been previously demonstrated. Combined with the use of LME shape functions, the

proposed OTM method for fluids bears the distinct advantage over other meshfree schemes
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by trivially accommodating essential boundary and coupling with other Lagrangian meth-
ods (i.e. finite elements). In this sense, the OTM method provides an ideal numerical
framework for coupling a meshfree fluid description with a traditional finite element model
of the deformable structure for strongly coupled three-dimensional FSI simulations.

FSI simulations aim to predict the (weakly or strongly) coupled behavior of deformable
structures interacting with dynamic fluid flows. Within a biomedical and biological setting,
the coupled behavior of fluids and deformable structures is apparent across the contin-
uum length scale in nature. Within the human body, the dynamics of cells, blood flow-
ing in arteries, as well as the operation of organs represent examples of the remarkable
functional interplay between deformable structures and the embedded fluidic environment.
Furthermore, there are numerous engineering applications involving deformable structures
interacting with fluids (both exterior and interior flows) including basic flight and nauti-
cal mechanisms, parachutes, airbags, inflatable structures for space applications, as well
as hydraulic machinery. Within the area of space-based structures, one FSI application
of interest includes the airbag-assisted landing scheme developed by NASA for missions
landing on Mars. In this scheme, prior to impact a network of airbags were deployed to
dissipate the energy of the landing process and protect the lander. In all of these examples,
numerical simulations play an integral role for scientific understanding and engineering
developments. This is especially true for applications where the cost, risk, or environment
make direct experiments prohibitive.

While traditional numerical methods have directly impacted engineering and scientific
developments, the state of the art in computational investigation of coupled multi-physics
problems, enabled by perpetual increases in performance and accessibility of modern com-
puters, has exposed the limitations of conventional numerical methods: the finite difference
(FDM), finite volume (FVM), finite element (FEM) methods, as well as strategies for cou-
pling these methods. These traditional numerical methods share a common reliance on a

numerical mesh that, in turn, either limits the ability to handle very large deformation pro-
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cesses (as in the FEM) or complicates modeling general and possibly moving boundaries
or free surfaces (as in the FVM). Within the field of computational mechanics, the search
for new numerical methods that mitigate the restrictions imposed by traditional grid-based
methods has recently spawned a renewed interest in particle and meshfree (or meshless)
methods. In addition to facilitating numerical simulation that traditional schemes are in-
capable of modeling, the inherent challenges and the overwhelming time consumed by
generating and maintaining a high quality numerical mesh highlights the appeal of gridless

(i.e. particle or meshfree) schemes.

1.1 Traditional Numerical Strategies

Although both represent continuum materials, the numerical strategies for simulating solid
and fluid dynamics have traditionally been formulated in distinct reference frames: the
Lagrangian (fixed) and Eulerian (spatial) reference frame, respectively. Here, figure 1.1,
depicts the distinct boundary representation for an Eulerian and Lagrangian mesh associ-
ated with the FVM and FEM, respectively. In adopting a Lagrangian reference frame, the
evolution and dynamics of specific points on the body are evaluated and tracked. However,
in the Lagrangian setting, the reliance on a deforming mesh inherently restricts the allow-
able motion. In contrast, the Eulerian reference frame provides the evolution and dynamics
at a given point in space. In adopting the Eulerian approach, the numerical mesh does not
move or distort which, contrary to Lagrangian schemes, frees the restriction on the allow-
able deformation within an element. This feature, however, limits the ability of an Eulerian
scheme to inherently capture boundaries and moving surfaces.

The FEM, formulated in the Lagrangian (fixed) reference frame, has dominated the
field of computational solid mechanics as the preferred strategy for numerical simulations
of structures. While this method has had significant success applied to numerical simula-

tions of structures, simulations of large deformation processes (i.e. metal forming, fluid



NLA

Figure 1.1: Domain and boundary representation in the finite volume method (right) and
finite element method (left).

flows) as well as discrete phenomena (i.e. fracture, crack propagation) have exposed the
main limitations of the FEM. These limitations are central to the reliance of the FEM on a
deforming mesh. This reliance inherently restricts the allowable motion since, without re-
meshing, large deformations in the continuum lead to poor aspect ratios or inversion (i.e.
mesh entanglement) of the deformed elements, leading to deteriorated accuracy or pro-
gram termination. Furthermore, using the FEM for numerical simulations of fluid flows is
largely limited due to the necessity of costly, and possibly not converging, mesh generation
and update algorithms. A complete treatment of the FEM is detailed in [5].

The FVM method, posed in the Eulerian (spatial) reference frame, has had significant
success for simulations of large deformation processes (i.e. fluid flows). The equations
of motion for Newtonian fluid flows, formulated in the Eulerian reference frame, lead to
the well known Navier-Stokes equations. When considering fluid flows using an easily
integrated fixed domain, or control volume, the Navier-Stokes equations can be solved to
a high order of accuracy using advanced FVMs. A detailed description of traditional com-
putational fluid dynamics (CFD) methods employing FVMs can be found in the following
references [6, 7]. Here, the main limitation of the FVM method is accurately capturing, as

well as tracking, free boundaries or surfaces with a regular Eulerian mesh.
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1.1.1 Numerical Strategies for FSI Simulations

Numerical solutions for strongly coupled FSI problems entail tremendous numerical chal-
lenges since the features of nonlinear solid mechanics, fluid mechanics, and their coupling
must all be considered. Here, the coupling procedure is complicated by the fact that the
computational models characterizing the fluid and solid responses tend to be in distinct ref-
erence frames. Given that neither the FVM nor the FEM can innately simulate both fluid
and solid dynamics, several strategies for coupling the distinct Eulerian and Lagrangian
framework have been proposed.

One of the most popular coupling strategies is the arbitrary-Lagrangian-Eulerian (ALE)
method [8, 9, 10, 11]. The ALE method couples a fixed Eulerian mesh with a moving La-
grangian mesh through a buffered intermediate region where the conforming mesh moves
according to a prescribed velocity. Here, the success of the ALE method relies on specify-
ing the anticipated evolution of the mesh in the transition region. However, this demands
some a priori knowledge of the solution which, in turn, restricts the types of analyses that
can be simulated with the ALE method. Also, inherent in the ALE method is the require-
ment to update the mesh at each time step. This update procedure is not only computa-
tionally expensive but is further complicated by the lack of robust numerical algorithms
providing a guaranteed converged solution for the mesh update for a general geometry. In
connection with the concept of mesh adaption (r-adaption), Thoutireddy and Ortiz (2004)
[12] proposed a variational arbitrary Lagrangian-Eulerian (VALE) method for determin-
ing the optimal mesh. Here, the distinguishing characteristic of the VALE method is that
the variational principle simultaneously supplies the solution, the optimal mesh and the
equilibrium shapes of the system for shape optimization problems.

In contrast with ALE methods, interface-capturing techniques do not require the meshes
to conform at the interface. Sharp interface methods, such as the ghost fluid method
[13] and the immersed boundary method [14] have been applied to formulate a mixed

Lagrangian-Eulerian representation for FSI simulations [15, 16, 13, 17]. In the ghost fluid
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method, the discontinuities in the flow field (originating from the fluid-structure interface)
are directly embedded in the solution by appropriately defining the ghost-fluid cell. Here,
some of the finite volume cells are used as ghost fluid cells for enforcing the immersed
moving wall boundary conditions. However, defining and updating the ghost fluid cells
requires a priori specification of the anticipated structural deformation that restricts the
allowable deformation and the types of applications that can be simulated.

The immersed boundary method (IB), proposed by Peskin [14], couples the fluid and
structure response by distributing nodal forces and interpolating nodal velocities on the
Eulerian and Lagrangian domains. Here, the IB method models the fluid using an Eulerian
mesh and embeds the Lagrangian body as an elastic network of fibers. In the IB method, the
fluid variables are evaluated on the Eulerian mesh using finite differences and subsequently
interpolated onto the Lagrangian mesh by a smoothed approximation of the Dirac delta
function. Here, the primary advantage of the IB method over the ALE method is that the
fluid-structure interface is tracked automatically. This circumvents costly mesh generation
and updating algorithms. However, one major obstacle of the IB formulation is the lack
of an accurate solid body representation. Specifically, the IB formulation assumes that the
structure is composed of one-dimensional beamlike structures that carry mass but occupy
no volume within the fluid domain. This may be appropriate for fiberlike structures, but in
general limits the application of the IB method from modeling more general structures such
as membranes. Furthermore, the use of finite difference approximations places restrictions
on the arrangement of computational nodes and their spacing, which limits the ability to
resolve complex shapes and fluid boundaries.

While there are several traditional strategies for coupling the distinct numerical frame-
works for FSI simulations, all of these methods represent a compromise. In contrast, a fully
Lagrangian description for both the fluid and structural model, if robust, provides a conve-
nient framework for simulating strongly coupled FSI applications. Here, the main obstacles

to a fully Lagrangian description for FSI applications is the necessity to remesh the fluid
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domain. This complexity motivates the use of Lagrangian particle and meshfree methods
as an appealing direction of research for numerical simulations of fluid flows. Particle and
meshfree methods aim to possess the salient features of both the FEM and the FVM by
accurately capturing complex or deforming boundaries, as in the FEM, without concern for
mesh entanglement due to large deformations, as allowed for in the FVM. Bearing a La-
grangian framework, without the implicit restrictions of a Lagrangian mesh, furnishes an
ideal framework for modeling the fluid and coupling the response to a structural description
for FSI simulations. This goal provides the motivation for the OTM method developed in

this thesis.

1.2 Numerical Solutions to Partial Differential Equations

Mathematically, the dynamic evolution of fluids, solids, and the coupled behavior amounts
to solving a boundary value problem (BVP) consisting of a PDE ( strong form), in a domain,
(2, with boundary, d{2, subject to essential boundary conditions (i.e. Dirichlet, displace-
ment) on part or all of the domain, d€2;, and natural boundary conditions (i.e. Neumann,
traction) on part or all of the domain, d{2,. A convenient strategy for numerically solv-
ing this BVP is to recast the strong form as a minimum variational principle (i.e. weak
form). Furthermore, the BVP is represented as a minimum variational principle to provide
a basis for comparing typical mesh-based methods with particle and meshfree methods for

numerical simulations of the BVP.

1.2.1 Minimum Variational Problem

In general a BVP can be recast as a minimum variational problem by seeking a func-

tional, F'[u], such that the original BVP is recovered by the Euler-Lagrange equations (i.e.
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equivalent to the infimum of the desired functional). That is,

inf F(u)

m
<

u

Uy, =W,

where X : {u € H'(Q) : ulgq,} is the space of solutions, u are the prescribed essential

boundary conditions, and F'[u] is a functional of integrable type of the general form:

Fu] —/Qf(x,u, Vu)dx—i—/dQ g(x,u)ds. (1.1)

Then, consider variations of the functional in the path of integration that yield a minimum

of the form,
v=u-+en ecR.

Here, the test (or weight) function, n € X, is an admissible variation in the sense that

requiring v = a1 on df; leads to the condition:

677|dQl =0.

In other words the test function is admissible if it satisfies the essential boundary conditions
on df);. In essence, the problem has been reduced to a one-dimensional minimization
problem along a line. From the theory of calculus of variations [18], we note that u is a

minimizer of F' (F is Gateau differentiable) if,

d
—F(u+en)| _ =0 Vnadmissible.
de e=0



1.2.1.1 Principle of Virtual Work

Applying this definition to recast the functional, equation 1.1, into weak form yields:

0—%{/Qf(x,uﬂmv(uﬂn))dwr/

dQa

g(x,u+ en)ds} V' n admissible
=0

€

d d
- { / / (x,u+en, V(u+ en))n; + —f(x, u+ en, V(u+ en))n; ;dv
Q duz dui,j

d
+ / g (x,u+ en))nids
df2 dUl e=0

df df dg
- [ [ w2 v acs [ s

(1.2)

which is the principle of virtual work. Furthermore, integrating equation 1.2 by parts leads

to the convenient local form:

0= / {ﬁ(x, u, Vu) — ii(x, u, Vu)] ndx
Q

dui dl’j dum

a df (1.3)
* /d§22 {di (x,u)) + du; 77]} n;ds V1 admissible.
Then, the Euler-Lagrange equations of motion are given by,
d d d
d_i(x, u, Vu) — %j_duji:j (x,u,Vu) = 0in
d d
d?i (x,u) + du];- (x,u, Vu)n; = 0 on d)y
u=uond). (1.4)

As a consequence of this form, if u is a stationary point of equation 1.1 then it is a

solution to the Euler-Lagrange equations.
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1.2.1.2 Hamilton’s Principle

As a brief illustration of this method consider Hamilton’s principle. For a conservative

mechanical system the action functional is given by,

Sla(t)] = / ' L(q &)dt, (1.5)

where L(q, q) denotes the Lagrangian of the system, and q = (q*, g%, ...,q") is a point
in configuration space. Here, the Lagrangian is defined in terms of both the kinetic energy,

K, and potential energy, E, of the system by,

For a conservative mechanical system, the classical Lagrangian is given by,

) 1. i
L(q,q) = §qTMq —V(q),

where M is the (positive definite) symmetric mass matrix and V' is the potential energy
of the system. Then, Hamilton’s principle states that the evolution (or trajectories) of the
system, ¢(t), between the states specified at times ¢, and ¢, are the curves that render the

action functional stationary. That is,

for all admissible variations, dq (i.e. variations that satisfy homogeneous conditions:

0q¢, = 0qq, = 0). By directly applying the Euler-Lagrange equations,

==, (1.6)
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the equations of motion for our Lagrangian are given by,
Mg = —-VV(q).

As expected, the equations of motion resulting from directly applying the Euler-Lagrange
equations to the Lagrangian of a conservative mechanical system leads to Newton’s second

law of motion (i.e. F = ma).

1.2.1.3 Lagrange-D’Alembert Principle

For mechanical systems with forcing and dissipation, the equations of motion can be ob-
tained from the Lagrange-D’ Alembert variational principle. In this setting we seek trajec-

tories, q(t), such that

5 / "L (at) 4(t)) dt + / "F(a(t),d(t)) - adt =0,

for all 0q(t) admissible (i.e. dq(t,) = dq(t,) = 0). Here F'(q(t),q(t)) is an arbitrary
forcing function. Thus, the forcing or dissipation constraint is appended to the variation of
the action directly. For fluids with viscosity the Lagrange-D’ Alembert principle provides

the basis for deriving the discrete equations of motion.

1.2.2 Numerical Interpolation and Approximation

Up to this point we have not addressed the character of the test functions, 1 (other than
they are admissible by virtue of satisfying the essential boundary conditions) or how we
plan on approximating the solution for u. To this end, consider discretizing the domain €2
by N points (nodes) and identifying a basis for a finite-dimensional subspace X, of our
space of solutions X. Then, we can approximate the solution, u”, and the test function, 7"

by considering linear combinations of basis functions, ¢;(x), N;(x) € X}, (not necessarily
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the same), of the form:

u(x) ~ u"(z) = Zu1¢1(x),
n(x) ~n'(x) = miNi(x), (1.7)

where uy, 1)y are the nodal degrees of freedom. Here, { N;(x)} are the test (or weight) func-
tions and {¢;(x)} are the basis (or trial) functions, commonly denoted as shape functions.

Paramount to choosing appropriate basis (shape) functions is the concept of nth order
consistency for the approximation. In order to ensure that the interpolation is exact, we
require that the given basis is capable of reproducing polynomials up to a required order
n. For convergence in the weak form, equation 1.3, the basis functions must be capable of
exactly reproducing polynomials of order greater than or equal to the order of the highest
derivative appearing in the functional (consistency condition). In addition to guaranteeing
consistency, convergence of a given method requires a notion of stability, which is related
to the numerical integration technique employed in evaluating the weak form, equation 1.3.
This thesis considers numerical solutions to second-order PDEs, which, when posed in the
weak form, only posses first derivatives (i.e. by virtue of integration by parts). Thus, we
require the shape functions to be first order consistent and reproduce linear fields exactly.

This amounts to requiring

N

1= ¢1(x), (1.8)
I1=0
N

X = fogb[(x). (1.9)
1=0

These requirements offer a wide range of flexibility for choosing the interpolation

schemes for the test and trial functions. In particular, several classes of numerical meth-
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ods, including the FEM, FVM, as well as meshfree and particle methods, are derived by

specifying a choice for the functions N; and ¢;.

FVM. Choosing N;(x) = d(x — x;) reduces equation 1.3 to a collocation scheme. In
turn, the strong form is satisfied at individual points similar to a finite difference method.
If we divide our domain into a set of nonoverlapping subdomains, {€2y} and introduce a

heavy-side function as the test function basis over the sub-domain, i.e.,

1 x e Qy,
NQk(X) =

0 else,

then the weak form, equation 1.3 is localized to integrals over the subdomain, €2y. This
is the starting point of the FVM, which is formulated by choosing the subdomains as eas-
ily integrated domains (i.e. squares for two dimensions, cubes for three dimensions) and
converting the integrals over the body into surface integrals (via the divergence theorem).
These integrals are subsequently evaluated by considering the fluxes in and out of the sub-
domain. A complete treatment of the FVM method for numerical simulations of fluid flows

can be found in [6, 7].

FEM. Choosing the basis function for the test function to be the same as our shape func-
tion, i.e., N; = ¢y, leads to the Galerkin form (FEM). Here, the finite element shape
functions are constructed by enforcing the conditions that the shape functions must be nor-
malized functions and natural under restriction to face of the element cell. This implies that
the FEM shape functions inherently contain the Kronecker-delta property, ¢;(x;) = d;/,
which is not generally true for meshfree shape functions. Choosing the basis for the test
function as distinct, but associated to the trial functions by a transformation yields the

Petrov-Galerkin form. A complete analysis of the FEM can be found in [5].
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1.2.3 Numerical Integration

In the FEM, the weak form integrals in equation 1.3 must be numerically integrated. Here,
typically a Gaussian quadrature rule is employed over the isoparametric elements. The

general form for numerical integration rules is given by

NQ
/Q F)dx ~ Y F(0)WV (6).

Here, W (fy), is the numerical weight associated with the quadrature point §,, and N () are
the number of quadrature points in the integration rule. In contrast with traditional finite
elements, numerical integration of the weak form, equation 1.3, for meshfree methods is
not exact! This is not unexpected, since the lack of a mesh specifying the connections
between related nodes complicates the concept of a geometrically well-defined area (for

two dimensions) or volume (for three dimensions) for the integration weights.

1.3 Thesis Overview

This thesis develops a new meshfree method for simulating fluid flows with unprecedented
mathematical formalism. Drawing on the theorems founded in optimal mass transporta-
tion theory, the OTM method extends the concepts and provides a rigorous formulation
for numerical simulations of general fluid flows including Euler and Navier-Stokes flows.
Here, the primary advantage of the proposed OTM method is tied directly to the inherently
Lagrangian description. Combined with the use of LME shape functions, the OTM method
couples with finite elements in a trivial manner. In turn, this provides a unique and ideal
framework for numerical simulations of fluid-structure interaction (FSI) problems. Fur-
thermore, the proposed OTM method naturally enables the use of LME shape functions for
dynamic simulations, which has not been demonstrated in previous work.

Chapter 2 presents a review of commonly used particle and meshfree methods. As this
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area of numerical analysis has been recently rekindled, there is an almost equal plethora
of ideas and approaches as there are applications. Indeed, the variety of methods is a tes-
tament to the fact that there is simply no single, overarching algorithm that is ideal for all
applications. Depending on the physical phenomenon, length scales, boundary conditions,
and accuracy requirements one or several methods may be appealing. All of the reviewed
methods, as shown for the FVM and FEM, fall under a common framework of approxima-
tions in the sense of approximations in the weak form, equation 1.3. Chapter 3 provides
an overview of the key concepts arising in optimal mass transportation theory that are ex-
tended for general fluid flows in chapter 4. Chapter 4 extends the concepts of optimal mass
transportation theory to general fluid flows. Following the development of the scheme,
the discrete forms and updates are provided. Chapter 5 provides numerical examples of
the OTM method. Specifically, the OTM method is validated using a standard Riemann
numerical benchmark problem for fluid flows to verify the ability of the OTM methods to
capture shock waves. In order to showcase the OTM method’s ability to seamlessly couple
with the FEM as well as solve compressible gas dynamics in three dimensions with mov-
ing boundaries, we consider an illustrative three dimensional FSI simulation consisting of
a gas-inflated thin-walled sphere undergoing large deformation while impacting the ground
at high speed. Here, the balloon is modeled using membrane finite elements and the fluid is
modeled as a compressible Newtonian gas using the proposed OTM method. This example
is inspired by the continued success of the airbags used by NASA to dissipate the impact

of landing on Mars in past missions.
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Chapter 2
Particle and Meshfree Methods

This chapter presents a review of commonly used particle and meshfree methods along
with the associated challenges of imposing essential boundary conditions, numerical inte-
gration, and coupling the schemes to other methods (i.e. with finite elements). Here, the
focus of the review is on continuum-scale methods, so atomistic methods, such as Molec-
ular Dynamics [19], are not discussed. In this chapter, particle and meshfree methods are
classified independently. While both types of methods discretize the physical domain by a
collection of nodes or particles, particle methods maintain all of the physical and mathe-
matical properties on the particle itself. Physical properties (velocity, density, temperature,
pressure, etc.) as well as relevant mathematical variables (gradients, volumetric deforma-
tions, etc.) are assigned to each particle and represent a neighborhood average of the field
value around the particle. Here, each particle moves according to its own mass and applied
forces (internal and external), where the external forces are evaluated by direct interactions
with the neighboring particles. This is somewhat distinct from meshfree methods, which
use the discretization for generating shape functions that potentially provide the integration
scheme for the weak form, equation 1.3. Here, the solution is evaluated at the integration
points and subsequently interpolated to the nodes to provide the evolution of the unknown
field.

The interest in particle and meshfree methods has been recently rekindled in response

to the increased computational costs and limitations of traditional grid-based methods. At-
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tempts to simulate large-deformation processes involving moving boundary definition with
traditional numerical methods have highlighted the limitations and motivated the need for
new numerical methods. Furthermore, generating and maintaining a high-quality numerical
mesh for dynamic simulations presents a tremendous challenge since there is no mathemat-
ical guarantee that an algorithm will converge for an arbitrary three-dimensional geometry.
In turn, updating the deformed mesh requires significant attention and user intervention. In-
deed, the majority of simulation efforts for most applications is consumed by mesh-related
tasks. Of the presented meshfree shape function, LME shape functions poses a number of

salient features that motivate their use in the proposed OTM method.

2.1 Why Gridless?

While the FEM, particle and meshfree methods rely on shape functions to approximate
fields in the weak formulation of the BVP, particle and meshfree methods aim to gener-
ate shape functions based on nodal locations for a given discretization of the geometry
(nodes/particles) without recourse to a grid (mesh) and the associated connectivity infor-
mation. The lack of robust algorithms for generating an acceptable numerical mesh of an
arbitrary three dimensional geometry forces engineers and scientists to spend the major-
ity of their simulation and analysis efforts in simply generating the numerical mesh. In
practice, the mesh generation process involves an iterative and often infuriating procedure
of using automeshers or numerical algorithms combined with manual adjustments. For
this reason alone, particle and meshfree methods present an appealing direction of research
for static problems. When considering dynamic simulations of continuum materials un-
dergoing large deformations, the unresolved issues of meshing are constantly revisited by
the necessity to re-mesh the domain in order to avoid deteriorated accuracy of the solu-
tion due to poor aspect ratios of the mesh as well as termination of the simulation due to

mesh entanglement and inversion (i.e. negative Jacobian). In this sense, meshfree meth-
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ods bear the marked advantage over mesh-based approaches in that, ideally, no inherent
limitations are placed on the allowable deformation of the continuum in consideration.
Furthermore, another advantage over grid-based numerical methods lies in the fact that
the time required to determine connectivity in meshfree methods (for generating the shape
functions or integration scheme) can always be bounded in time, which is not generally the
case for three-dimensional meshes. This distinction is exceedingly important for simulat-
ing large deformation processes since grid-based methods may require constant re-meshing
to maintain well-behaved elements.

While there is tremendous potential for applying particle and meshfree methods to fa-
cilitate previously unthinkable simulations, there are several significant obstacles in the
path of gridless methods gaining acceptance and widespread use in the engineering and
scientific community. The inherent challenge of establishing integration weights for gen-
eral domains (without connectivity information) as well as the commonly faced challenge
of imposing essential boundary conditions all within a consistent mathematical framework
represent significant obstacles that require new mathematical developments. The OTM
method, detailed in chapter 4, provides a unique mathematical framework for meshfree
methods. Specifically, the combination of material point sampling and conforming inter-
polation provides a unique meshfree algorithm endowed with geometrically exact mass
density updates. Combined with the use of LME shape functions, the OTM method inher-
its the ability to enforce essential boundary conditions and couple with finite elements in a

trivial manner.

2.2 Particle Methods

Historically, particle methods represent the earliest efforts of devising gridless numerical
methods. Particle methods have had success in numerically modeling large deformation

processes and discrete phenomena. Of these methods, smoothed particle hydrodynamics
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has been the most widely studied and used.

2.2.1 Smoothed Particle Hydrodynamics (SPH)

Smoothed particle hydrodynamics (SPH), developed in 1977 independently by Lucy [20]
and Monaghan [21], is one of the oldest and most well-studied particle methods. The SPH
method has been used in a wide range of applications including astrophysics problems
such as star formation [22], as well as continuum problems involving sloshing fluid flows
[23] and fracture of brittle solids [24]. Indeed several commercial software packages have
coupled SPH routines into their numerical capabilities. As an illustration of the popularity
of this method, consider that in the movie, Lord of the Rings: Return of the King, SPH
was used to simulate the lava flow that the character, Gollum, fell into at the end of the
movie.

While there have been many variations since its inception, SPH represents a general
class of strong form collocation methods. SPH makes use of an integral, or kernel, approx-

imation based on the following identity of the Dirac delta function, §(x):

The SPH method relies on approximating the delta function with a smoothing kernel,

w(x, h). Specifically, the SPH approximation takes the form:

') = [ ulyywtx =y hdy. @.1)

Here, h is the smoothing length that prescribes the radius of support for the smoothing ker-
nel. According to Monaghan [25], a candidate smoothing kernel should have the following

properties:
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Jow(x—x,h)dx =1 (Normalization property)
w(x—X,h)=0 for |x — X| > kh (Compact support)
w(x —X,h) >0 for all Z in the support domain of x (Positivity property)
lim,_ow(x — X, h) — 6(x — X) (Delta function property)
w(x — X, h) is a monotonically decreasing function (Decay property)
w(x — X, h) is a symmetric function (Symmetric property)

Here, the normalization condition amounts to satisfying the zeroth-order consistency con-
dition (i.e. exactly approximating constant functions). The second condition localizes the
global SPH approximation based on a scaling factor, x, whose effect is to prescribe the
size of the local neighbor (or support domain) of nodes that contribute to the evaluation of
field variables. Positivity is required to avoid unphysical results, such as negative density
or energy, and prevent numerical instabilities (i.e. spurious oscillations). The decay prop-
erty is mathematically unnecessary but represents the intuitive notion adopted from basic
physics: the magnitude of particle interactions is inversely related to increased separation.
Furthermore, requiring the smoothing kernel to be a monotonically decreasing function en-
sures that the neighbor distance of particles directly correlates with their level of influence.
Choosing the smoothing kernel to be an even, symmetric function is enforced out of conve-
nience since this requirement eliminates the first error term in the Taylor series expansion
of equation (2.1).

It should be noted that these conditions represent general, intuitive guidelines for gener-
ating smoothing kernels for the SPH method. Many of the kernel functions that have been
proposed, in practice, violate these conditions. In particular, due to the fact that the SPH
shape functions lack the Kronecker-delta property, the normalization or zeroth-order con-
sistency condition (if uncorrected) is violated at the boundary. Furthermore, many of the

proposed smoothing functions violate the positivity requirement over their support domain.
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This typically leads to instabilities and spurious oscillations. Below are three commonly

used smoothing kernels taken from [21], [25], and [26], respectively.

Gaussian Kernel

wilx — x|, h) = Ze= ()

hd

1

where o = {\/%?, i #} for dimension, d = 1, 2, 3.

Cubic Splines
(
3 (r)\2 3 (r\3 r
1-3(7)+31(G) 0<i<1,
idk—ﬂﬁ%:% Ly’ 1<t <2,
0 r>2,

where for normalization, o = {%, %, %} for dimension, d = 1, 2, 3.

Piecewise Quartic Splines

25-5)"=5(15-5)"+10(05-1)" 0<
. s | @5-5)"=5015-1)" 0.5
w(|x —x|,h) = X
(25— 1) 1.5 <
0 r>

\

=

< 0.5,

>

r
h

)

< 1.5,

< 2.5.

In the SPH method, the integral (2.1) is discretized by a set of /V interpolation points,

or particles (i.e. using a trapezoidal rule for the numerical quadrature) resulting in the

following approximation:
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w(x — X)urAzg (one dimension),

~
Il

1

2
WE
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where AV} represents the volume associated with node /. As compared with equation 1.7,

the SPH shape functions can be written as

OPH(x) = w(x — x7,h) AV

The SPH method has been one of the most widely used and studied particle methods. SPH,
in its original form suffered due to a lack of consistency that led to degraded accuracy.
In subsequent work [25, 27], symmetrization methods were proposed to allow the shape
functions to reproduce linear fields and thus, conserve linear and angular momentum. Fur-
thermore, the original SPH scheme was unstable for positive (tensile) pressures leading to
unphysical results and spurious oscillation modes [28]. In [29], it was shown that the SPH
method could be partially stabilized by adding stress points for integration. However, in
[30] and [31] it was recognized that this tensile instability originated from using an Eule-
rian kernel with a Lagrangian description of motion. Here, it was also noted that the tensile

instability for all particle methods can only be eliminated by using a Lagrangian kernel.

2.2.2 Reproducing Kernel Particle Methods (RKPM)

In 1995, Liu proposed the reproducing kernel particle method (RKPM) to improve the ac-
curacy of the SPH method [32]. While the RKPM method derived from wavelet theory, the

resulting approximation scheme is similar, if not identical, to moving least square (MLS)
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approximants [33]. In the RKPM, the kernel approximation is of the form:

uh () = / K (%, y)u(y)dy

- / O, % — y)w(x — y)uly)dy, 2.2)

where C'(x,x — y) is the correction that restores consistency to the SPH shape functions,
and w(x — y) is the weighting function. Note that if X' = w, the RKPM approxima-
tion is exactly equivalent to the SPH approximation. Here the integral in equation 2.2 is

discretized as

u(x) = Z C(x, xp)w(x —xp)urAVy,

I=1
where AV is the volume related to particle /. Considering the continuous counterpart to

the MLS derivation in the preceding section, the RKPM approximants can be derived by

considering the weighted Lo norm:

J(x) = /Qw(x —x)[u(x,%) — u(x)%dx.

Using the following approximation,

=2 [ wex—x [pr@af(x) —u(i)] [ZpJ<>-<>daJ<x>] & @3

— 0V day. (2.4)
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Then, introducing the continuous counterpart of the discrete moment matrix,

Apy(z) = /Qw(x — X)pr(X)ps(X)dX,

and substituting this form into equation 2.3 gives

S Apy(x)as(x) = /Q w(x — %)pr (R)u(X)dx.

Finally, solving for a; and substituting back into the approximation provides the RKPM

approximation:

Compared with the SPH approximant: u"(x) = [,u(y)w(x — y,h)dy, the term
C(x,%) = pr(x)A;; (x)p.;(X) represents a correction term that restores consistency to the
SPH kernel approximation. Here, if the integration weight AV, = 1, one exactly recovers
the MLS approximation. Applications of RKPM for numerical simulations of fluid flows

can be found in [34, 35].

2.2.3 Particle-In-Cell/Material Point Methods (PIC/MPM)

The particle-in-cell method (PIC) [36, 37], proposed in 1957, represents one of the earli-
est attempts to model fluid dynamics from a Lagrangian point of view. This method uses
a Lagrangian description for the motion of the particles combined with an Eulerian mesh

for interpolating information from the mass particles to the Eulerian mesh. Here, the goal
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for the approach is to draw on the advantages of both the Lagrangian and Eulerian frame-
works. More recently, in 1995 Sulsky and co-workers [38, 39] extended the concepts of
PIC to develop the material point method (MPM). In the MPM, a numerical mesh, com-
prised of Lagrangian material points, is used to discretize the domain. Here, the material
points carry all of the physical properties such as mass, velocity, stress, and strain. Further-
more, the interaction of the material points is determined on a background Eulerian finite
element mesh. Standard finite element shape functions are used to map the field informa-
tion from the material points to the nodes of the bounding cell. Then, the material point
field variables are updated from the solution, found on the Eulerian mesh, and mapped onto

the corresponding Lagrangian points. The mass density for the MPM method is given by

p(x,t) = Z mpd(x — X,),

where §(x) is the Dirac delta function. Substituting this form into the weak formulation,
1.e., equation 1.3, converts the integral into a sum of quantities that are evaluated at the
material points.

While the gradient and divergence terms are calculated on a background mesh, the
MPM is viewed as a meshfree method since the interpolation is based on a moving domain
of influence that continually updates with the deformation of the body. Although the MPM
method does not introduce a new class of shape functions, the method cleverly utilizes the
advantages of a mixed Lagrangian-Eulerian description to avoid the inherent challenges in
each. Applications of the MPM method for numerical simulations of fluid flows and FSI

applications can be found in [40, 41].

2.2.4 Vortex Methods (VM)

Vortex methods, developed independently by Rosenhead in 1930 [42], Chorin in 1973 [43],

and Leonard in 1980 [44], have been successfully used in direct simulations of viscous in-
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compressible flows and, more recently, have been extended for compressible flow [45].
Vortex methods formulate the Navier-Stokes equations as a vorticity-velocity formulation
rather than as a velocity-pressure formulation. Furthermore, VMs discretize the domain
into a finite number of moving particles, or vortex blobs. Here, bearing the Lagrangian
framework, simply tracking the motion of the particles explicitly directly provides the vor-
ticity of the flow. In this sense, VMs are inherently and fundamentally linked to the un-
derlying physics which the formulation aims to solve. As in the SPH method, VMs use a

smoothing kernel approximation, (.(x), of the form:

fo(x) = / F)G(x — y)dy,

N
FEx) =) wylelx =),

where € denotes the characteristic length of the kernel. Posed as a vorticity-velocity formu-
lation, the Navier-Stokes equations describe the evolution of the vorticity field, w =V x u
. For incompressible flows, the equations governing the evolution of vorticity and velocity

field in Eulerian form are given, respectively, as

%—j +(u-Vw = (w-V)u+riw,

Au= -V X w.

Posed in the Lagrangian reference frame, the vorticity-velocity formulation is given, re-

spectively, as
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d

— = [V, t)] w, + vAw(x,),
dx

d_tp = u<XP> t)a

where x,, and w,, denote the locations and vorticity carried by the fluid element, or vortex blob.
A classical way to relate the velocity and vorticity is through an integral representation. In
particular, velocity calculations explicitly satisfying the far-field boundary conditions are

based on the Biot-Savart law,

u(x) = /K(x —y) X w(y)dy + Uy.

Here, Uj is the solution to the Laplace’s equation, Au = 0, and K(z) denotes the Biot-
Savart kernel for the Poisson equation (i.e. the rotational counterpart to the Green’s function
for the Poisson equation). Due to the function’s inherent singularity, K is typically replaced
with a mollified or smoothed form: K. = [ K(y)(.(x — y)dy.

Furthermore, the vortex blob approximation for the vorticity-carrying particles with fi-

nite core size, ¢, is given by

N
we (x) = Z UpwpGe(X = Xp),
p=1

where v, represents the volume of the vortex blob. Then, the dynamics of the vortex blobs
are determined by solving the following system of ODEs for the particle locations and

vorticity:
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dxp

N
ol quKE(Xp —x4) X wy + Ug(x,, 1),
q=1
N

N

dw v

d_tp = quVKs(Xp — Xq) X wq| wp + 2 qu wg = wpl ne( xp — %4 |) + F(x5).
q=1

q=1

Here, F(x,) accounts for the generation of vorticity at solid boundaries and 7). is a radially

¢ (%))

x|

symmetric version of the smoothing kernel (i.e. 7. = —e% ). Applications of this

method for numerical simulations of fluid flows can be found in [46], [45], [47], [48].

2.3 Meshfree Methods

While the area of numerical methods for mesh-independent methods has had significant
attention and success for some applications, the apparent lack of mathematical proofs for
fundamental concepts including numerical integration, convergence, stability, and com-
pleteness directly point to the infancy of this area of numerical research. In general, the
goal of meshfree methods is to generate shape functions that can provide a convenient space
of solution for the weak form of the BVP. Here, the domain is discretized by points or nodes
without specifying or maintaining the associated connectivity of the discretization. Then,
given a distribution of nodes {x;}, the algorithm given by each meshfree method provides
the shape functions that are used to discretize the weak form, equation 1.3. The rest of
this section provides an overview of the commonly used and historically relevant meshfree

methods.

2.3.1 Moving Least Square Approximants (MLS)

Moving least square approximants are the basis for many meshfree methods. MLS approx-

imants were originally introduced for smoothing and interpolating data by Lancaster and
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Salkauskas (1981) [49]. MLS functions are approximants rather than interpolants, since
MLS(x ;) # 677. MLS approximants consist of three components: a weight function as-
sociated with each node, a basis function (usually a polynomial), and a set of coefficients
determined by the nodal positions. MLS shape functions possess the property that their
continuity is directly related to the continuity of the weight function rather than the basis
[50]. Thus, if the continuity of the basis is greater than the continuity of the weight function,
the resulting approximation will inherit the continuity of the weight function. Therefore,
even if one chooses a low order basis (i.e. linear), the level of desired continuity of the
approximation can be imposed by choosing the weight function appropriately. Here, the
weight function associated with a given node is chosen to have compact support outside
of which the function’s value is zero. Thus, the support of the weight function defines the
node’s domain of influence as the sub-domain region over which the node contributes to

the approximation.
Assuming that the function u(x) is sufficiently smooth on the domain of definition, the

MLS local approximation around a fixed point in the domain, X, is given as

u'(x,%) = ) pr(x)ar(x)
=1
=P’ (x)a(%),
where p;(x) is a complete polynomial basis of order m (i.e. PT(x) = [1 x x* ... x™]),
and a;(x) is the set of unknown coefficients (i.e. a' (x) = [a,(x) a1(x) az(x) ... am(x)])

to be determined based on the nodal data. In particular, the coefficients, a;(x), are obtained

by minimizing the discrete weighted Ly norm, .J, for the local approximation given by
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w(x —x;) [PT(xp)a(x) — u(x,)]”.

NE

T
0

Here, N is the number of nodes in the neighborhood of x for which the weight function
is nonzero (i.e w(x—xy) # 0). Subsequently, the unknown coefficients, a(x), are evaluated

by considering the extremum of .J:

oJ
Ta A(x)a(x) — B(x)u (2.5)
=0,
where A (z) is the moment matrix:
Az) =) wx—x)Px)P' (x1),
I=1

=P (x)W(x).

The solution to equation 2.5 leads to the linear problem,

A(x)a(x) = B(x)u, (2.6)
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giving the unknown coefficients a(x) in terms of the nodal coordinatesu” = [ v, ... uy |

as,

Then, in the spirit of approximations of the form in equation 1.7, the MLS shape functions

can be written as

S50 = Y pilx) (A7 (0B,

= PT(X)Afl(x)Ba,

where m is the order of the polynomial space, p(x). For the specific case, m = 0, the MLS

shape functions reduces to Shepard functions,

By(x) = X X1

B ZJU’(X_XJ)'

2.3.2 Diffuse Element Methods (DEM)

In 1992, Nayroles and co-workers [51] were the first to use moving least square approxi-
mants (MLS) in a Galerkin setting to formulate the diffuse element method (DEM). DEM
was posed as a generalization of the FEM in the sense that replacing the FEM interpolation,
valid on an element, with a weighted least-squares fit based on a variable number of nodes
in a small neighborhood of a point z, one achieves a diffuse interpolation. This led to the
development of shape functions that are identical to MLS approximants.

Furthermore, directly evaluating the first derivative of the MLS approximants gives,

¢r;(x) = (PTA™'By)

J

=PA'B;+P'A'B;+P'A'B,;. (2.7)



32
However, in evaluating the derivatives of field variables using MLS approximants, the DEM
formulation incorrectly assumed that the second two terms of the derivative expression

above were negligible. Thus, the following form of the derivative was employed:

This simplification forces the DEM method to lose linear consistency. Furthermore, the
original DEM method did not enforce essential boundary conditions correctly and incor-

rectly assumed that a low-order quadrature rule was sufficient.

2.3.3 Element-Free Galerkin Methods (EFG)

Building upon the DEM formulation, in 1994 Belytschko and co-workers [52] developed
the element-free Galerkin method (EFG). The EFG method uses MLS approximants for
the trial and test functions in the Galerkin weak form. The EFG method increases the
accuracy of DEM by using the full form of the derivative, i.e., equation 2.7, of the MLS
shape function to restore linear consistency.

In using MLS shape functions, a weighting function must be specified. Here, the main
parameter of concern is the shape and size of the support domain for a given node. In
general, circular or spherical supports are employed to maintain isotropic weights. Fur-
thermore, the choice of weight function and subsequent radius of support has a significant
effect on the solution as it dictates which nodes interact with each other. This support
domain must be large enough to have a sufficient number of nodes to solve the linear sys-

tem for the MLS approximants, equation 2.6. Typically, splines are used for the weighting
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function. One common weighting function used in EFG [53] is a cubic spline of the form:

4
2 2 3 1
5—47" +4T TSE,
w(r) = %—4r+4r2—§r3 s<r<l,
0 r>1,

\

where r = d‘% is a normalized radius giving the ratio of the radius of support for node 7, d;,

to the scaled distance that provide a sufficient number of neighboring nodes for evaluating
equation 2.6.

Since nodal integration schemes were found to be unstable [33], integration of the weak
form, equation 1.3, in EFG is performed by recourse to a background mesh or cells com-
bined with Gaussian quadrature. In [54], it was noted that alignment of the cells with the
support domains of the nodes as well as using high-order Gaussian quadrature rule was
necessary for maintaining accuracy. This can be difficult to ensure, especially for dynamic
simulations. In the search for lower-order quadrature rules for EFG, as well as in an ef-
fort to avoid the difficulties of matching the support and integration domains, recent work
has focused on employing nodal integration with the concept of stress point integration for
stabilization [55, 56].

Using MLS shape functions does not provide the Kronecker-delta property (i.e. ¢;(x)
# 0r7). Thus, implementing essential boundary conditions requires specific attention. Sev-
eral methods have been considered including modifying the weak formulation by using La-

grange multipliers [57] Nitsche’s method [58], and by coupling to finite elements [53, 59].

2.3.4 Partition of Unity Finite Element Methods (PUM)

The set of shape functions {¢;} consistent up to order n can also be viewed as a partition of
unity (PU) of order n. For example, a partition of unity of order n = 0 fulfills the zero order

consistency condition, ) ; ¢;(x)=1. As such, any PU can be used to reproduce constant
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functions (polynomials of order n = 0) exactly. The PU concept can be constructed based
on a mesh, leading to the traditional finite element shape functions, or by using a gridless
approach such as MLS approximants.

In 1997, Babuska and Melenk [60] proposed the concept of the partition of unity finite
element method (PUFEM). In this approach, a domain is covered by a set of overlapping
patches {€2;} that form a cover of the domain 2. Each of these overlapping patches pos-
sesses an associated basis {¢;} that satisfies the zero-order consistency condition. The
essence of the PUFEM is to take a partition of unity and multiply it with another inde-
pendent basis to enrich, or provide higher consistency to, the approximation scheme. This
allows one to directly build in any a priori knowledge of the solution into the approxi-
mation scheme. Specifically, in some circumstances, essential boundary conditions can be
enforced by choosing the local approximation spaces to satisfy them inherently. PUMs em-
ploy an extrinsic basis {p;(x)} in addition to the intrinsic basis {¢;(x)}, which is chosen

to satisfy the partition of unity. Here, the approximation in equation 1.7 takes the form:

where, v;; = (a1, a;o, ..., a;). Here, the extrinsic basis, p(x), may consist of monomials,
Taylor polynomials, Lagrange polynomials, or any other convenient functions. In the case
where Lagrange polynomials are used for the extrinsic basis, the approximation scheme
possesses the Kronecker delta property, which, as noted previously, facilitates imposing es-
sential boundary conditions in a trivial manner. If the solution is known a priori, then this
information can be built into the extrinsic basis to enhance the function and improve the ac-
curacy. For example, in [60], the extrinsic basis, p' = [1,z, ..., 2'7% sinh(nz), cosh(nz)]
was used to demonstrate the ability to improve the accuracy of the solution to the Helmholtz
equation in one dimension, as compared with a polynomial basis. The original PUM used

Shepard functions ¢?(x) for the partition of unity and employed an extrinsic basis to enrich
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the consistency of the approximation.

2.3.5 Hp-Cloud Methods

In 1996, Duarte and Oden [61] proposed the Ap-cloud method which draws on the PUM by
building a partition of unity using MLS shape functions of order k. Here the approximation

in equation 1.7 takes the form,

where p;(x) can be any monomial basis of order greater than k. The major advantage of this
framework is to enable the extrinsic basis to vary from node to node in an effort to achieve
hp-adaptivity. Here, h-refinement is achieved by adding smaller sub-domain coverings, or
clouds, while keeping the same degree of consistency for the cloud shape functions. Also,
p-enrichment follows either by increasing the order of the polynomial used or by adding
a priori knowledge of the solution into the construct of the extrinsic basis (cloud shape

functions) while maintaining a constant number of clouds.

2.3.6 Meshless Local Petrov-Galerkin Methods (MLPG)

In 1998, Atluri and Zhu [62] developed the meshless local Petrov-Galerkin method (MLPG),
which considers the local weak form built over local sub-domains. In the MLPG method,
the nodal trial and test functions are chosen to be different, in a Petrov-Galerkin sense.
Here, the local weak forms are generated on overlapping sub-domains, Q;, rather than with
global weak forms. In relation to the other meshfree methods, the MLPG can be viewed as
a concept rather than a method itself. While the MLPG does not introduce or generate new
meshfree shape functions, any convenient meshfree approximants and test function can be
employed in the scheme. Since the formulation is over local domains, the MLPG method

only requires a local mesh for performing the numerical integration over the sub-domain.
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Thus, MLPG shares a close resemblance to FVM or other sub-domain collocation meth-
ods [62, 63]. For this type of formulation, the proponents claim that it is more natural to
perform integration over these overlapping regular-shaped domains rather than on a back-
ground mesh. This assertion led to the claim that the MLPG is a “truly meshfree” method
[64]. Here the integration weights, for numerical integration on the sub-domains, are given
by computing the areas (two dimensions) or volumes (three dimensions) for the overlap-
ping, regular-shaped (i.e. circular or spherical) regions. A complete analysis of the MLPG
method can be found in the monograph [65]. Also, applications of the MLPG method for

numerical simulations of incompressible fluid flows are presented in [63].

2.3.7 Natural Element Methods (NEM)

The natural element method (NEM), developed in 1998 by Sukumar and co-workers [66],
is a Galerkin-based meshfree method that uses polygonal interpolation (i.e natural neigh-
bor interpolation) as shape functions. Sibson introduced a natural neighbor interpolation
scheme for data fitting and smoothing that uses a weighted average to compute the inter-
polating function. Using these natural neighbor interpolants, the weak form integration
for NEM, i.e., equation 1.3, is carried out by recourse to a background Delaunay triangu-
lation. Recently, the connection between this type of interpolation as a special variety of
maximum-entropy interpolation has been made in [67].

Other methods including the meshless finite element method (MFEM) [68] and its vari-
ation (i.e. particle finite element method (PFEM) [69]) use similar polygonal interpolation
with schemes to speed up the computation of the shape functions as well as algorithms to

resolve “sliver” elements (elements with poor aspect ratio, i.e., small area/volume ratios).

Sibson Interpolation

Sibson interpolation uses the second-order Voronoi diagram of the domain for defining the

shape functions. As depicted in figure 2.1, given a distribution of nodes (in a plane for
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Figure 2.1: Voronoi cell [1]

simplicity), the Voronoi cell for a given node represents the domain that is closer to the
node in Euclidean distance than any other node.

In other words, given a bounded domain {2 in d dimensions that is discretized by a set
of m nodes, N = {nq,na,...,n,}, the first-order Voronoi diagram V(NN is the set of the

Voronoi cells, V' (n;), associated with the point n;, defined by,

V() ={x € R : dx,x;) < d(x,x;) Vj # i}

,where d(x, x;) is the appropriate metric, in this case the Euclidean norm. If, instead of
considering those points that are closest to a given node, considering those locations that
are closest to a pair of nodes defines the second-order Voronoi cell, V;; corresponding to
the two nodes. This concept is depicted in figure 2.2. Mathematically, the second-order

Voronoi cell is given by

Vij={x € R? : d(x,x;) < d(x,%;) < d(x,x},) Vk # 1,7}

Constructing the second order Voronoi cell at a node, n,, can be used to define the
natural neighbors for interpolation. Specifically, the natural neighbor shape function for a

node, n,, with respect to a natural neighbor, n;, is defined as the ratio of the area of the
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Figure 2.2: Ordinary Voronoi diagram (dashed lines) and second order Voronoi diagram
(solid lines) generated from the same set of points[1].

second-order Voronoi cell, Ay, to the total area of the first-order Voronoi cell of n,, A(z,).

Thus, the natural neighbor Sibson interpolation takes the form

¢1(x) = il((;)) C AR =) Alx),

where n is the number of neighbors in the polyhedral cell. With this definition, the numer-

ical approximation (i.e. equation 1.7) assumes the form:

W) = 3 6rx)ur,

which can be shown to satisfy linear consistency as well as define a partition of unity
[66]. Combined with these shape functions, NEM uses a Delaunay triangulation as the
background cells for performing the numerical integration of the weak form, i.e., equation

1.3.



39
2.3.8 Local Maximum-Entropy Approximation Schemes (LME)

In 2006, Arroyo and Ortiz [4] introduced local maximum-entropy approximation schemes
(LME), which arise from the competing objectives of achieving an unbiased statistical in-
ference and least-width (or local) shape functions. Here, the objective of statistical infer-
ence, based on the nodal data, is classically governed by Jaynes’ principle of maximum
entropy in information theory. Furthermore, local shape functions are found to be affine
shape functions supported on a Delaunay triangulation of the node set. LME shape func-
tions are derived to be Pareto optimal for these competing objectives and can be viewed
as a smoothing or thermalization of the Delaunay triangulation of the node distribution.
For a distribution of nodes where the Delaunay triangulation is not unique, LME schemes
converge to a unique generalized (in the limit) Delaunay triangulation that maximizes the
entropy of the approximation. Since the degree of thermalization is based on a single pa-
rameter, (3, LME shape functions can be used to blend these nonlocal shape functions with
localized finite element shape functions. In this way LME can be used to seamlessly tran-
sition from meshfree schemes to finite elements. In addition, LME shape functions belong
to the set of convex approximations and inherit the weak Kronecker-delta property at the
boundary. This is particularly important for imposing essential boundary conditions and
represents a significant advantage over MLS and other proposed meshfree shape functions.
Here, a brief overview of the development of local maximum-entropy shape functions is

presented. A complete treatment of the concepts is formulated in [4].

Convex Approximation Schemes

Convex approximation schemes are characterized by the positivity of the shape functions
and by being exact on affine functions. Consider a set of nodes, X = {x,,a=1,...,N} C

R?. Then, the convex hull is defined by

conv X = {xeRd|x:X)\(x), A(x) ERf, 1-\(x)= 1},
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where Rf is the non-negative orthant, 1 represents the vector of size RY with unit entries,
and X is the d X /N matrix whose columns are the coordinates of the position vectors of the
nodes in the set, X. Since X is finite, conv X represents a compact convex polyhedron or
polytope. Letu : conv X — R be a function whose values at the nodes {u,,a = 1,..., N}
are known. In terms of the shape functions, p, : conv X — R, the approximation, u"(x),
for u(x) is given by

N
W'(%) =) uapa(x). (2.8)
a=1

Enforcing the zero and first order consistency conditions, as well as positivity, amounts

to the following conditions:

N
Zpa(x) =1 Vxe&convX

a=1

N
Zxapa(x) =x Vxe&convX
a=1

Pa(x) >0 VxeconvX, a=1,...,N

Here, the positivity requirement and partition of unity properties give the interpretation
of the shape functions as coefficients of convex combinations. Since these conditions do
not uniquely define the shape functions, additional constraints must be imposed to define a
specific approximation scheme. In general, convex approximation schemes do not satisfy
a strong Kronecker-delta property (i.e. u"(x,) = u,), but rather satisfy a weak Kronecker-
delta property at the boundary. That is, if F' is a face of conv X and the node x, ¢ F, then
po = 0 on F. This feature makes imposing boundary conditions trivial and analogous to

finite element methods.

Global Maximum Entropy Schemes

As mentioned above, the requirements for a convex approximation scheme do not lead

to unique approximants. In [4], a constraint involving the entropy of the approximation
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scheme is imposed. As an example of this constraint, consider a random variable that
can take values given in a set of events {A;, As,..., A, } with associated probabilities
{p1,p2. ..., pn}. Then, the set of events and the associated probabilities jointly define a

finite scheme, A:

. A, Ay oo A,

pr P2 - Dn

For concreteness, consider two finite schemes:

Ay Ay Ay Ay
and

0.5 0.5 0.99 0.01

Here, the first scheme carries more uncertainty than the second one, since the outcome
is almost certainly A; for the second scheme. The uncertainty associated with a finite
scheme can also be interpreted as the amount of information gained by the realization of a
random variable, which, in turn, eliminates the uncertainty completely. In 1948, Shannon

[70], introduced the following measure of uncertainty or information entropy:

H(A) = H(p1,...,pn)

= - Zpa logpm
a=1

with the extension 0log0 = 0 by continuity. Here, the function H(A) is non-negative,
symmetric, continuous, strictly concave and possesses the usual properties consistent with
a measure of uncertainty.

Every convex approximation scheme can be characterized by its information entropy.
As an example of biased schemes, consider an approximation scheme in one dimension
with two nodes and associated shape functions p;(X), p2(X) at a point X. If we design our
shape functions in such a way that p; (%) = 0.99 and p,(X) = 0.01 and use equation 2.8 for

approximating a function u" (%), then, by design, it is tacitly assumed that the solution u(%X)
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is heavily influenced by the data at point x; rather than by the data at point x,. However,
if we had chosen p;(X) = 0.5 and py(%) = 0.5, then as little bias as possible would
have been placed on the relative influence of the nodes at point X. Indeed, constructing
an approximation scheme such that the entropy, H(A), is maximized intrinsically leads to
a least-biased approximation scheme. As shown in [4], imposing this constraint leads to
the unique approximation scheme given by the solution of the following maximum entropy

(ME) program:

N
(MFE) maximize H(p) = — Zpa log p,,
a=1

subjectto p, >0,a=1,...,N

N
Zpa =1
Na:l
Z XaPa = X
a=1

From a purely information-theoretical viewpoint, shape functions p, resulting from the ME
program are optimal, in a least-biased sense, convex approximation schemes. Since this
program maximizes the information entropy throughout the domain, the resulting shape

functions, p,, are called global maximum-entropy shape functions.

Local Maximum Entropy Schemes

While global maximum-entropy shape functions are optimal in a least-biased sense, when
some information about the solution is known it is convenient to incorporate this infor-
mation into the approximation scheme. In particular, while the ME shape functions are
completely nonlocal, from the point of view of basic physics it is tacitly understood that
the state at a given point is more strongly influenced by those neighbors in close proxim-

ity rather than those further away. In continuum mechanics this concept amounts to the
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principle of Saint-Venant. In an attempt to embed this concept of locality into the approx-
imation scheme, in [4], the following measure, defining a width for a shape function, p,,

was introduced:

wpa] = /pa(x)|x — x,|%dx, (2.9)
Q

where 2 = conv X. Here, equation 2.9 amounts to the second moment of the shape
function, p,, about x,. Then the most local approximation scheme is that which minimizes

the total width given by

N

W[p] = Z w[pa]

a=1
N
_ / S pa(x)[x — x,[2dx, (2.10)
Q a=1

subject to the zero and first order consistency constraints in equation 1.9. Since the func-
tional in equation 2.10 does not involve the shape function derivatives, its minimization can
be performed pointwise. This results in the following linear program attributed to Rajan

[71]:

N
(RAJ) For fixed x minimize U(x,p) = Zpa\x — X, |?
a=1

subjectto p, >0, a=1,....N

In [71] it was demonstrated that the program (RAJ) has a solution if and only if x €
conv X. Here, the function U(x, ) is not strictly convex (it is linear) and the solution is

not, in general, unique. Furthermore, in [71], it was noted that if the nodes are in gen-
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eral positions (i.e. none of the (dim + 1) nodes in X are cospherical), then the program
(RAJ) has a unique solution. This solution corresponds to piecewise affine shape functions
supported on the unique Delaunay triangulation of the node set X.

In general it is not possible to achieve both goals of maximizing the entropy while
minimizing the width for a convex approximation scheme. However, one can construct
the LME approximation schemes as the Parefo optima between these competing objectives
of maximizing both the entropy and locality for the approximation scheme. Here, Pareto
optima is taken in the sense that there is no better optima than the selected solution. This

leads to the program

(LME), For fixed x minimize f3(x,p) = SU(x,p) — H(p),

subjectto p, >0, a=1,..., N,

N
Zpa =1,
a=1
N
Z XaPa = X,
a=1

where (3 € [0, o0 is the Pareto optimal parameter. Here, larger values of (3 lead to more
local shape functions. For the extreme case, J = oo, one recovers the linear program
(RAJ). Also, for 3 = 0 the (ME) program is recovered. In [4], by considering the dual
of the problem the following proposition provides a practical method for evaluating the

(LME) shape functions.

Proposition 2.1: Let aff X be the affine hull of X. Suppose affX = R¢, x € int(conv X),

and 3 € [0, 00). Then the unique solution of the local max-ent problem (LM E)g is

1

Ppa(T) = mexp [—ﬁ|x — X, PN (x) - (x— xa)] ,a=1,...,N,
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where

N(x) = in log Z(x, A
(%) = arg min log Z(x, A),

and Z(x, \) is the partition function given as

Z(x,)) = Zexp 8% — x> + A(x) - (x — x;)] -

In addition, in [4], it was demonstrated that the minimizer A*(x) is unique and that the solu-
tion to this program, (LM E) 3, for the shape functions is efficient and robust. Furthermore,
consider Fig. 2.3, which shows the effect of the parameter 1 = (3h? on the locality of the
shape functions. Specifically, note that as the locality of the approximation increases with
increasing the user defined parameter, (3. Thus, using the parameter, 3 provides a seamless
manner for coupling non-local shape functions with localized finite element shape func-

tions.

Figure 2.3: Local maximum-entropy shape functions and spatial derivatives (arbitrary
scale) for a two-dimensional arrangement of nodes using several values of ;1 = 3h2.
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2.4 Summary

While the area of particle and meshfree method has been an active area of research for
several decades, the state of mathematical understanding in terms of completeness and
convergence is still in an infancy stage. While many methods have been proposed, the lack
of maturity and acceptance of meshfree methods is due to several open questions regarding
numerical integration of the Galerkin weak form, imposing essential boundary conditions,
as well as the lack of mathematical proofs for convergence and stability. Practical issues
involving numerical integration, handling boundary conditions, as well as other method-
specific requirements are highly active areas of numerical research. In chapter 4, a novel
meshfree method founded in the theory of optimal transportation is presented. In this OTM
method, LME shape functions are chosen due to their noted salient features.

Numerical integration in meshfree methods has been an active topic of research. In
contrast to finite elements, integration in meshfree methods is not exact. Methods that are
based on the weak form typically use one of three different types of integration schemes:
nodal integration, stress-point integration, or integration based on a background mesh (i.e.
Gauss quadrature). From a computational point of view, nodal integration is the easiest and
cheapest way to formulate the discrete equations. However, as noted for the SPH and EFG
method, nodal integration leads to a tensile instability emanating from rank deficiency (as
in reduced finite elements) [30]. While adding stress points for numerical integration has
been found to alleviate tensile instabilities for Lagrangian kernels, introducing stress points
requires some notion of a mesh [57] and hence constrains the allowable deformation. In
general, the most accurate way to obtain the governing equations is by recourse to a grid-
based numerical quadrature rule (i.e. Gauss quadrature). Typically, meshfree methods
use a background mesh for numerical integration typically with more quadrature points as
compared with Gaussian integration for finite elements [50].

Since, meshfree shape functions do not, in general, possess the Kronecker-delta prop-
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erty (i.e. ¢;(x;) = &;7), imposing essential boundary conditions poses a significant chal-
lenge. Many methods for enforcing essential boundary conditions have been suggested, in-
cluding applying Lagrange multipliers [52] in the variational weak form, penalty methods
[72], coupling to finite elements [59, 58, 73], as well as employing Nitsche’s method (i.e.
restore consistency to penalty formulation) [74, 75, 76]. In stark contrast, since LME shape
functions possess a weak Kronecker-delta property, applying essential boundary conditions
is analogous to the FEM and trivial to implement.

Coupling particle or meshfree methods with finite elements, if robust, provides an ideal
framework for solving strongly coupled fluid-structure interaction problems. In addition
to FSI simulations there are a number of applications (i.e. fracture or crack propagation)
where coupling meshfree methods with finite elements is advantageous. While comput-
ing FEM shape functions is faster than meshfree shape functions, meshfree methods can
provide additional versatility to traditional numerical methods (i.e. FEM) in areas of antic-
ipated crack propagation, large deformations, or other discrete phenomenon where a mesh
is inconvenient. Indeed, there has been significant attention attributed to coupling meshfree
methods, specifically the SPH and EFG methods, with finite elements [77, 78, 35]. Here,
the approaches are analogous to the methods employed in enforcing essential boundary
conditions (i.e. penalty method, Lagrange multipliers, Nitsche’s method). Often, transition
regions are specified by the user a priori, where special rules are employed for blending
the shape functions via ramp functions to restore consistency [53]. Again, this is in sharp
contrast with LME, which by choosing the parameter [ large enough (i.e. consider Fig.
2.3), or by using exactly d + 1 nodes (where d is the dimension) for constructing the shape
function, LME shape functions either seamlessly blends with or reduces to linear finite

elements.
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Chapter 3

Optimal Mass Transportation

This chapter reviews the key concepts of optimal mass transportation theory to provide a
background for the extension to fluid flows, detailed in the next chapter. In addition to
detailing the basic equations, the discrete forms are derived to provide a basis for present-
ing the intricacies of the discretization imparted for fluid flows. In the next chapter, the
Benamou-Brenier variational formalism is extended to general fluid flows leading to the
development of a new meshfree method: the OTM method.

The analysis of mass transportation was first considered from a civil engineering point
of view by Monge in 1781 [79]. Here, the problem was formulated in [2] as a means
of obtaining the best manner (relative to a specified cost) of displacing parcels of mass
from one point to another. For example, consider figure 3.1, which depicts the concept of
transporting mass (i.e. moving a pile of dirt to fill a hole).

Following the work of Kantorovich in 1942 [80] a significant amount of attention has

Figure 3.1: Mass transportation problem [2].
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been garnered toward this optimal mass transport problem including [81, 82, 83, 84, 85,

86, 87].

3.1 Mass Transportation Problem

We begin by considering the motion of non-interacting particles to present the connection
between optimal transportation and Lagrangian dynamics of continuous distributions of
mass. In particular, we draw from the theory of optimal transportation to formulate the
kinetic energy of the system and, by extension, the action directly in terms of its mass den-
sity. This defines a minimum principle whose minimizers are the time histories of the mass
density. From this minimum variational principle, a temporal and spatial discretization for
the non-interacting flow of particles is introduced leading to the discrete set of equations of

motion.

3.1.1 Optimal Mass Transportation

Optimal transportation theory derives its importance from the fact that it supplies a pow-
erful and useful mathematical foundation for a number of areas of mechanics and physics.
A thorough and rigorous account of the theory may be found in the monographs of Evans
[88] and Villani [2]. Here, for simplicity, mass densities are formally used in lieu of more
rigorous measure-theoretical notation, which is nevertheless evident from the expressions.

Consider the transportation of mass as the flow of an inviscid fluid comprised of non-
interacting particles in R™ at zero temperature. Then, the motion of the fluid over a time

interval [a, b] is governed by the coupled equations:

9p _
5 TV (v) =0, (3.1a)
Av) L g (wev) =0, (3.1b)

ot
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Here, p is the mass density of the fluid and v is the velocity field. equation 3.1a is the
equation of conservation of mass and equation 3.1b is the equation of conservation of linear

momentum. Furthermore, assume that the fluid has finite total mass,

M= / pdx, (3.2)
and that mass does not leak to infinity,
lim pv -ndr =0, 3.3)

where Bp, is the ball of radius 1. Then, in considering the time rate of change of mass,

M = lim 9 ix — — lim V- (pv)dx = — lim pv-ndx =0. (3.4)
R—oo Bgr t R—o0 Br R—o0 OBRr

It follows that the total mass of the fluid, M, remains constant during the flow. Further-

more, assume that the initial and final mass densities are specified by

p(x,a) = pu(z), (3.5a)

p(x,b) = py(x). (3.5b)

Then, this outlined problem is analogous to the transportation problem of finding the

flow that transports the initial mass density, p,, to the final one, p,.

3.1.2 Benamou-Brenier Variational Formulation

The transportation problem just enunciated can be recast as an optimal transportation prob-

lem. Benamou and Brenier [89] noted that problem in equations 3.1, and 3.5 admits the
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variational characterization:

inf A(p,v 3.6a

(pv)EX (p ) ( )
. dp

subject to: e +V-(pv) =0, (3.6b)

where the action over the time interval (a, b) is given by,

b
A(p,v) :/ K(p,v)dt 3.7
, in terms of the kinetic energy,
. P12
K(p,v) = /§|V| dx. (3.8)

Here, the natural space of solutions is
X ={(p.v) € C([a.b); L'(R™:[0,00))) x C ([a, ]; L*(R™;R")) } .

Recall that L'(R") is the Lebesgue space of integrable functions over R”. Thus {du =
pdzr, p € L'(R™;[0,00))} is the set of measures that are absolutely continuous with re-
spect to the Lebesgue measure. Physically, the restriction of p to L'(R"; [0,00))) ensures
that every subset of R™ with a well-defined volume can be assigned a well-defined, non-
negative mass. In addition, L?(IR"; R") is the Lebesgue space of square-integrable vector-
valued functions over R™. Physically, the restriction of v to L*(R";R"), in conjunction
with the restriction of p to L'(R™; [0, 00)), ensures that the velocity fields have finite ki-
netic energy. Finally,C'([a, b]; L'(R";[0,00))) and C([a,b]; L*(R™; R")) are the space of
time-continuous functions taking values in L'(R"; [0, 00)) and L*(R™; R™), respectively.

The minimization problem, equation 3.6, can be formally verified to be equivalent to
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equations 3.1 and 3.5). To this end, the constraint, in equation 3.1b, in enforced by means

of a Lagrange multiplier, ¢. This leads to the extended action given by,

Alp,v,¢) = /ab {/ [glv|2 + (pt +V - (pv))d)} dx} dt. (3.9)

Rendering the action, A, stationary with respect to the three fields (p, v, ¢) yields

0=0A(p,v,¢) = /b {/ {%W + (0p, +V - (5pv))gz§} dx} dt+

a

/ab {/ [(pv v+ V- (P5V)¢)]dx} dt+/ab {/ [(p,t 4V - (,ov))5¢] dx} dt

Integrating by parts, with the aid of equation 3.3, and rendering all admissible variations

(3.10)

stationary gives,

S — 60 ~Vo v =0, (.11a)
pv —pVo =0, (3.11b)
% + V.- (pv)=0. (3.11¢c)

The third of these equations is the continuity equation 3.1b. In addition, from equation

3.11b it follows that

v = V¢ in suppp. (3.12)

Here, supp f denotes the support of a measurable function f. Thus, the stationary
points of the action equation 3.9 correspond to potential flow. Using this relation, equation

3.11a simplifies to



— 4+ =|v[*=0. (3.13)

Then, equation 3.1b can be readily verified by taking gradients of equation 3.13, multi-
plying by p and using equations 3.11c and 3.12.

The Benamou and Brenier variational characterization, i.e., equation 3.6, of the trans-
port problem in equations 3.1 and 3.5 admits a compelling reformulation within the context
of the Monge-Kantorovich optimal transportation framework. Specifically, Benamou and
Brenier [89, 2], showed that the minimizers of the action in equation 3.7 are given in terms

of McCann’s displacement interpolation [2]:

b—t t—a

gp(x,t):b_ax—i—b_aT(X), (3.14)
through the relations,
dp, 4
v(x,t) = 5(@ (x,1),t), (3.15a)
p(x,t) = pa(p” (x, 1))/ det (Vop(p ! (x,1),1)) (3.15b)

where T' = (-, b) is the optimal transference mass of p, into p; in the sense of the cost

function

1T) = [ 1) = xPp(x) . (3.16)

1.e.,

T5(pas pp) = inf {I(T) : T measurable, p,(x) = pp (T'(x)) det (VT'(x))}

= inf {(b—a)A(p,v) : (p,V) € V(pa, )},

(3.17)
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where V' (pq, py) is the set of pairs (p,v) € X such that Uscj, psupp p(-,t) is bounded.
Furthermore, equation 3.1a is satisfied weakly in a distributional sense, i.e., p(-,a) = p,
and p(-, b) = p.
Considering equation 3.17, the minimum cost of transportation is directly related to the

Wasserstein distance:

1/2
dW(pa,pb):{ inf )//]x—y[za(x,y)dxdy} , (3.18)

UEF(Pme
where the infimum is taken over the space of Radon measures of mass, M, with finite

second moments and marginals:

/U(X, y)dy = pa(x), (3.19a)

[ ot yix=ny) (3.19b)
Then, from equation 3.18

T5(Pas pb) = iy (Pas po)- (3.20)

Thus, the minimum cost of optimal transportation is given directly by the Wasserstein
distance between the initial and final mass densities.

A theorem by Ambrosio in [2] demonstrates how to take variations of the minimum
cost of transportation 73(p,, pp) With respect to p,. Specifically, suppose that p,, p, €
L'(R™; [0, 00)) and have finite second moments. Let p(x, 1), € (b — ¢, b+ ¢€), be a path in
L'(R™;[0,00)) of mass densities with finite second moments such that p(-,0) = p;. Then,
consider the continuity equation for some velocity field ¢ that is C! and globally bounded,

given by



55

dp B

Then,

G Tn im0 =2 [ (1) — 2, 6T @)hipula) (3.22)

where 7' is the optimal transference mapping from p, to py.

3.2 Numerical Discretization

This section provides the numerical discretization for the optimal mass transportation scheme
presented above. As expected for non-interacting masses, the scheme leads to the evolu-
tion of the position and velocity as a purely ballistic update. Building on the method for
discretizing the optimal transportation of mass, chapter 4 extends these developments to
numerical simulations of general fluid flows. In this sense, the developments in this section
are used for motivating the intricacies involved in extending the discretization scheme to

general fluid flows.

3.2.1 Time Discretization

First, we turn to the question of time discretization of the action in equation 3.7. To this
end, letty = a < t; < --- < ty = b be a discretization of the time interval [a, b]. Also,
recall that (1/2)d%,(pa, po)/ (b — a) gives the exact minimum of the action A(p, v) over the
entire time interval [a, b]. Building upon this identity, we can define the semidiscrete action

directly in terms of densities as:

N-1

1T,
Adpr,. o) = Y 3 PP Pe), (3.23)
o k+1 — Lk

If no further approximation is introduced, then the infimum of A over {p1,...,pn_1} €
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[LY(R™; [0, 00))]V¥ ! is equivalent to (1/2)73(pa, p»)/(b — a) as expected. Furthermore,
this scheme is exact! Here, the discrete motion consists of incremental transference maps
Ok k41 transporting py into py 1 over the time internal [ty ¢4 1] in an optimal, with respect
to the cost function equation 3.16, sense.
Then, the discrete equations of motion follow by rendering the discrete action station-
ary. Taking variations of equation 3.23 with respect to py, with the aid of equation 3.22,

leads to

(6Aq, &) = / {Pk (Sokﬂk+1(x) - X . Pr—k—1(X) — X) 'fk} de, (3.24)

tpy1 — t b — th—1

where,

Ohoko1 = Pr 1 pe (3.25)

In equation 3.24, ¢ ;.1 denotes the optimal transference mapping from py to pi1.

Then, the mass-density update is defined as

Pk+1 © Pr—k1 = pi/ det (V%Hkﬂ)- (3.26)

Here, it is specifically noted that these mass-density updates sharply differ from conven-
tional Eulerian algorithms, which rely on some direct time-discretization of the continuity
equation. Specifically, the mass-density updates in equation 3.26 are geometrically exact!

Integrating by parts equation 3.24, using equation3.3, and enforcing stationarity with

respect to to the variations in & gives:

- —id o1 —id
o <90k k+1 n Pk—k—1 ) —0, (3.27)
ler1 — t le — 1

where id is the identity mapping. These equations are jointly satisfied by setting



57

Pri+1(X) = 0071 (%, ), trr), (3.28)

where ¢ is given McCann’s displacement interpolation in equation 3.14. This shows, as

expected, that the discretization in equation 3.24 is indeed exact.

3.2.2 Spatial Discretization

Next, we turn to the question of spatial discretization of the semidiscrete action given in
equation 3.23. A natural and computationally convenient spatial discretization may be

imparted by considering mass densities of the type
M
phi(X) = Z mnké(x — XPJC), (3.29)
p=1

where x,,;, represents the position at time ¢ of a material point with mass m,, and 6 (x —
xp’k) is the Dirac-delta distribution centered at x, ;. Then, from [2], a fully discrete ac-
tion is obtained by inserting equation 3.29 into equation 3.23. This, in turn, provides the
definition of the discrete transportation problem.

By considering mass distributions of the form equation 3.29, the original space of so-
lutions L'(R™; [0, c0)) has been expanded to a larger space, M(R™), of Radon measures.
In computing the minimum cost of transportation 75(py, k, P k+1) between two consecutive
discrete mass densities, the incremental optimal transference mappings ¢, ;541 trans-
porting pj, ;, Into pp 41 are interpreted simply as rearrangements of the point in the set
{X1 k.-, X} into the point set {Xy g1, .., Xark+1}- In addition, the incremental mass
conservation relation in equation 3.26 must be understood in a weak or distributional sense.

Specifically, we require that, for all test functions 7,

/ pr(X)1(x) dx = / P (V) (0r i (7)) dy (3.30)
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For discrete mass distributions of the form in equation 3.29 the above requirement reduces

to

M M
Z My 1) (Xp k) = Z My k11 (Xp.k:)» (3.31)
p=1 p=1

which must be satisfied for all test functions 7). This furnishes the relation:
Mp ke = Mp k1 = M. (3.32)

Thus, the material points must have constant mass. Then, the fully discrete action takes the

form:
N-1 M m,, |x X, 42
K+1 k
Anlpn, - opnya) = ) Y PR (3.33)
=0 p—1 k41 k

providing the semi-discrete action of a system of non-interacting mass particles. Finally,

the corresponding discrete Euler-Lagrange equations are given by,

Xpk+1 — Xpk  Xpk — Xpk-1

=0, (3.34)
b1 — tg by — tp—1
or, equivalently:
X k X k—
Xpk+1 = Xpk + (tk+1 - tk)pt—tpl (335)
k— Uk—1

Equation 3.35 provides an update for the positions of the material points. In this update the

velocity of material point, located at x,,, at time ¢}, is given by,

Vo = Xpk ~ Xpk-L (3.36)
U — k-1
Using this definition, equation 3.35 reduces to the particularly simple form:
Xp k1 = Xp g + (L1 — L) Vp k- (3.37)

Simply stated, the update in equation 3.37 defines the ballistic motion of a material point.
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Specifically, the ballistic update linearly projects the initial positions x,, ¢ to the final posi-
tions x,, y through the material point’s velocity, v,,.

The next chapter extends the concepts outlined in this chapter to general fluid flows.
While the evolution of the equations of motion for the optimal transportation of non-
interacting mass is consistent with ballistic motion, introducing equations of states for
modeling general fluid flows effectively changes the update to derive from the competition
between inertia and internal energy. Furthermore, deriving the discrete forms, combined
with the use of LME shape functions leads to the formulation of the OTM method for

numerically simulating general fluid flows.
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Chapter 4

The Optimal Transportation Meshfree
(OTM) Method for Fluid Flows

This chapter develops the proposed OTM method for numerically simulating generalized
fluid flows. By generalizing the Benamou-Brenier [89] differential formulation for opti-
mal mass transportation, we extend the optimal mass transportation framework for non-
interacting fluids, developed in chapter 3, to model compressible Euler and Navier-Stokes
fluid flows. For these systems, inertia competes with free energy and viscosity in determin-
ing the flow. Conveniently, the free energy of a fluid can be expressed directly in terms of
its mass density and, in the case of non-interacting fluids, equation 3.23. Thus, the resulting
semidiscrete action can be expressed directly in terms of the mass density.

The proposed OTM framework leads to a multi-field variational characterization of fluid
flows including viscosity, equations of state, as well as general geometries and boundary
conditions. Specifically, the governing variational principle is well suited to discretization
by a combination of conforming interpolation of the velocity field and pointwise sampling
of the local material state. Due to the salient attributes presented in chapter 2, LME shape

functions are chosen for interpolating the velocity field.



61
4.1 Barotropic Fluid Flows

For simplicity, we shall assume that the flow is barotropic in that there is a functional

relation between P and p independent of temperature of the form

— 27
P=ry, (n), 4.1)

for some potential function f(p).
For example, an isothermal flow is barotropic with f(p) = e(p, 6). For barotropic flows

we introduce the dual function,

f*(k) = sup {p(r — f(p)) }, (4.2)
p=0
with the property that
_or
p= () 4.3)

4.1.1 Ideal Gas Equation of State

For an ideal gas, the incomplete equation of state is given by,
pV =nRO = Nkgb, 4.4)

where n is the number of moles, R = 8.3145 J/mol K is the universal gas constant, NV is the
number of molecules, kz = 1.38066 x 1072 J/K = 8.617385 x 107° eV/K, k = R/N is
Boltzmann’s constant, and N4 = 6.0221 x 10?3 /mol is Avogadro’s number. Alternatively,
the ideal gas relation is given by,

kg0
p="22p, (4.5)
m
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where m is the mass of one molecule of gas. Integrating, the free energy density per unit

mass of an ideal gas follows as:

kg0
e(p,0) = % log %. (4.6)

4.1.2 Isothermal Fluid Flows

Thus, for isothermal flows the barotropic potential is given by

kro
flp) = 210g 2, @4.7)

m Po

where the temperature, 6, remains constant. Then, the Euler-Lagrange equation corre-

sponding to equation4.2 is given by

8 ]{339 P
—A{p(k — =Kk——(log—+1) =0, (4.8)
5, Pl = F(0)} y (log -+ 1)
or,
Po mK
== — ] >0. 4.
p eeXp<k39)_O 4.9)
Finally, the dual is given by
krbpg mk
(k) = . 4.1
J7(R) = =2 exp ( kBQ) (4.10)

4.1.3 Adiabatic Fluid Flows

For reversible, adiabatic flows (i.e. isentropic) of an ideal gas, the following polytropic

relationship characterizes the behavior of the fluid:

p=Cp’, p>0 4.11)
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Here, C'is a constant related to the initial state and v = ¢,/c, = 1 + R/¢, is the ratio of

specific heats, ¢, andc, (constant pressure and constant volume, respectively). Examples

of poytropic processes include the compression and expansion of an ideal gas. In this case,

which leads to,

[(y = D/ (Cy)]V07Y itk >0,
p —=
0, otherwise.

Then, the dual is given by

Cl(y — Dr/(CHOY | ifk >0,
() = [(v = D)r/(C7)] >

0, otherwise.

4.1.4 Incompressible Fluid Flow

For an incompressible fluid, the potential function is given by

[ (k) = pok,

where py is the constant mass density. This fact can be verified by noting,

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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4.2 OTM Method for Euler Fluid Flows

We begin by considering the flow of a compressible inviscid fluid in R". The motion of the

fluid over a time interval [a, b] is governed by the coupled equations

dp

- . = 4.1
2 TV (pv) =0, (4.18a)
0

%+V-(pv®v+p1) = pb, (4.18b)

where p is the pressure, b are body forces. As in the previous optimal transportation prob-
lem in equation 3.1 we assume that mass does not leak to infinity, equation 3.3. Also, from
equation 4.18a it follows that the total mass of the system remains constant throughout the
flow. Again, we suppose that the initial and final mass densities are provided as in equa-
tion 3.5. Then, this problem translates to a transportation problem of finding the flow that
transports the initial mass density, p,, to the final one, p,.

In addition, we assume that the body forces derive from a scalar potential, u, given by:
b = Vu. (4.19)

Under these conditions, the action of the fluid differs from the bare action, i.e., equation
3.7, in that the fluid has a free energy and moves under the action of a body-force potential.

Adding the corresponding terms to equation 3.7 the action assumes the form:

Ay = [ { EGEGED] dx}dt. (4.20)

In analogy to the case of optimal transportation of non-interacting mass, we expect the flow
to render the action in equation 4.20 stationary (no longer necessarily a minimum!) under

the constraint of the continuity equation, equation 4.18a. This defines the stationary-point



65
problem given by,

dA(p,v) =0, (4.21a)
subject to: % +V-(pv)=0 (4.21b)

For the OTM method, this stationarity principle replaces the Benamou and Brenier
minimum principle equation 3.6. The stationary-point problem, equation 4.21, is equivalent
to equations 3.5 and 4.18, which can be verified by enforcing the continuity constraint in

equation 4.18a using a Lagrange multiplier, ¢. This process leads to the extended action:

Alp,v, ) = / b { / [gw —p(f(p) —u) + (pu+V - <pv))¢>} dx} dt.  (4.22)

Then, rendering this functional stationary gives

0=0A(p,v,¢) =

/ab{/ [(pv-varV-(Pév)¢)}dx}dt+/ab {/ [(po +V - (p0))56] dx}dt.

Integrating by parts, with the aid of equation 3.3, and rendering all admissible variations

stationary gives,

1

—Iv\z—f—ngru—qﬁ,t —V¢-v=0, (4.24a)
2 ap

pv —pVeo =0, (4.24b)
.. (pv) = 0. (4.24¢)

ot
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The third of these equations is the continuity equation 4.18a. In addition, from equation
4.24b it follows that:

v = V¢ in suppp. (4.25)

Thus, the stationary points of the action, equation 4.22, correspond to potential flow. Taking
gradients in equation 4.24a and multiplying by p gives,

ov of _
(E +v- Vv) + pV (pa—p + f) = pb. (4.26)

In addition, equation 4.1 provides the identity:

of of of of
p (,0 ap> ( p)pa +p ( Paop) = F ap+f (4.27)
Inserting this identity into equation 4.26 gives Euler’s equation of motion, i.e., equation

4.18b, as required.

4.2.1 Time Discretization

Now, the aim is to formulate a time discretized, or semidiscrete, approximate action for
compressible Euler flows that extends the semi-discrete action in equation 3.23 for non-
interacting flows to general fluid flows. Specifically, the free energy of the fluid and the
body-force distribution are the additional terms considered in this extension. Using a trape-
zoidal approximation rule for the corresponding action terms provides a semi-discrete ac-

tion of the form:

— 172 Lok, pr1) 1
Aa(prs - pN—1) — 5[U(pk) + Ulprs1)] ¢ (tesr — te), (4.28)

— 2 (g1 — tk) 2
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which is expressed directly in terms of densities. Here, U is the total internal energy of the
fluid given by,
Uto) = [ ot(p) ~ wax. (4.29)

Then, the discrete equations of motion follow by rendering the semi-discrete, equation
4.28, action stationary. Taking variations of equation 4.28 with respect to p; with the aid
of equation 3.22 gives

(A4 &) = / {pk (‘Pkﬂlﬁl(x) —X | Peokm1(X) X) &

tet1 — tk b — th—1

(4.30)

= B 1)~ ulx ]9 - (080 |

where ;.11 1S a transference map transporting pj into pi1 optimally over the time
interval [ty,tx,1]. Here, we adopt the notation in equation 3.25, such that the identity
in equation 3.26 holds. Integrating by parts equation 4.30, using equation 3.3 and the
identities equations 4.19 and 4.27 we obtain

(044,64 = / {pk (@k—>k+1(x) —X | Pk (X) X) £

tet1 — tk U — th—1

4.31)

t — tp_
+ %[VPQ)I@) - pkbk] : ﬁk} dx.

Here, we write b, (-) = b(+, ). Enforcing stationarity with respect to to all variations,

&k, gives

20 (@kaJrl —id I id

Ve = pibr, 432
P e ) + Vpr = prby 4.32)

le+1 — k-1
where, again, we write pi(-) = p(-,%x). In comparing equation 4.32 with equation 3.27, it
is noted that the discrete motion now results from the competition between the inertia and
internal energy of the fluid. Specifically, the inertia of the fluid, represented by the first term
in equation 4.32, aims to transport pj, into pi.; over the time internal [ty, t; ;] optimally
with respect to the cost function in equation 3.16. Unlike the optimal transportation of

non-interacting mass, for general fluid flows the internal energy of the fluid provides a
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competing objective for the transportation cost. Thus, compared with non-interacting mass
transportation, the internal energy of the fluid introduces discrete percussions at discrete
times that cause the trajectory to deviate from the inertia-driven, ballistic path, for non-

interacting mass.

4.2.1.1 OTM Update

Equation 4.32 defines a semidiscrete central-difference scheme that can be solved forward

explicitly. Specifically, the forward solution takes the form:

(i) Initialization: Set k£ = 0, pg = pq.

(i) Given py, solve (4.32) for the incremental deformation mapping ¢x_.x+1, With the

result:

id — r—k—1  ter1 — te—1 prbr — Vg
b — tp—1 2 Pk

Pk—k+1 — ld -+ (tk+1 — tk> { } (433)

(iii)) Update the mass density according to identity (3.26).

(iv) Reset k «— k + 1. If k = N exit. Otherwise go to (ii).

This forward solution has the usual structure of explicit time-integration schemes in
that the incremental deformation mapping ¢ _.x+1 is computed directly from the initial

conditions at the beginning of the time step, including the velocity estimate,

v = = orn Phok1 (4.34)

by — th—1

and the out-of-balance forces pybr, — Vpi. However, as noted earlier, this time-integration
algorithm, i.e., equations 3.26 and 4.33 differs from conventional Eulerian algorithms,
which rely on some direct time-discretization of the continuity equation. Specifically, the

mass density update, given in equation 3.26, is geometrically exact!
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4.2.2 Spatial Discretization

In order to obtain a fully discrete action for computations, we proceed to effect a spatial
discretization of the semi-discrete action in equation 4.28. In particular, we wish to ex-
tend the material-point formalism introduced in section (3.2.2) for non-interacting fluids to
the current setting of fluids with equations of state. Recall that, material points were intro-
duced by adopting concentrated mass densities of the form in equation 3.29. In the previous
chapter, the operation of inserting these mass densities into the semi-discrete action, equa-
tion 3.23, or directly into the semi-discrete Euler-Lagrange equation, equation 3.24, was
mathematically well-defined since, for a non-interacting fluid, the mass density entered the
variation of the action linearly. However, for a compressible fluid the mass density enters
non-linearly in the variation of the semi-discrete action, equation 4.30. Thus, the insertion
of equation 3.29 directly into equation 4.30 no longer makes sense mathematically.

In order to overcome this difficulty, we note that equation 3.29 combines two mathe-
matically distinct operations that become blurred in the context of non-interacting fluids
but that can be carefully separated for general fluid flows.

The first operation is the approximation of the usual Lebesgue measure of volume £ by

the discrete measures,

M
Lok =Y Vorla,,, (4.35)

p=1
that are concentrated at the material points locations, x, , with a corresponding discrete

volume, V}, .. Thus, for any smooth function f we have

M
/ falnk =Y fxpr) Vo (4.36)
p=1
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In addition, the usual push-forward operation for measures, given by

/ n(y)dy = / N(r—r1(x)) det (Vpr_pi1(x)) dx, (4.37)

now becomes

M M
> ki) Vorsr = Y 0@kt (Xp)) det (Veor_pe1 (X)) Vi (4.38)
p=1 p=1

However, the material points are convected by the flow, which amounts to the condition:

Xphtl = Phok1(Xp)- (4.39)

Inserting this identity into equation 4.38 and noting that 7 is arbitrary defines the material-

point volume update as

Vo1 = det (Vor_ps1(@pr)) Vo (4.40)

The second operation subsumed in equation 3.29 is the identification of discrete mass
distributions as measures that are absolutely continuous with respect to the discrete volume
measure Ly, with Radon-Nykodim density pj, i, in the same manner as continuous mass
distributions are defined by measures that are absolutely continuous with respect to the
Lebesgue measure, £, with density p;. Owing to the discreteness of Ly, i, the correspond-
ing mass densities py, ;, are defined simply by assigning mass density values p, ;. to every

material point:

M
(%) =D PV (X — Xp1). (4.41)

p=1

Comparing equation 4.41) and equation 3.29 provides the identity:

My = Pk Vok, (4.42)
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or,
mp

S 4.43
Pp,k V;, . ( )

Equation 4.47 provides the relationship between the mass density of the material point
located at x,, ;, with respect to its mass and volume.

The identities in equations 4.39, 4.40, and 4.47) provide the update algorithm for the
position, volume, and mass density of the material points. However, it should be noted that
the gradient of the transference map ;1 appears explicitly in equation 4.40. Therefore,
in contrast to the case of non-interacting fluids, where it suffices to track the motion of the

material points, now the transference maps ¢j_.x+1 must be approximated by conforming

interpolations of the form:

N
O p—hr1(X) = Zxa,k+1Na7k(X). (4.44)

a=1
Here, {X,x+1, a = 1,..., N} are coordinates of nodes on the configuration at time ¢4

and N, ,(x) are conforming shape functions defined over the configuration at time ¢; with

the properties consistent with exact interpolation of linear functions, namely,

N
D Nap(x) =1, (4.452)
a=1

N
D XakNak(x) = x. (4.45b)
a=1

For discrete transference maps of the form equation 4.44, the material-point update equa-

tion 4.39 is given by
N

Xpkt1 = O Xaki1 Nak(Xp). (4.46)

a=1

Here, the linear consistency conditions in equation 4.45 leaves considerable latitude

in the choice of shape functions. In the OTM method LME shape functions [4], computed
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from convected nodal coordinates are employed for the salient features presented in chapter
2. Also, the shape functions are denoted as backward compatible if the following condition

holds:
N

Xpk1 = > Xak1Nak(Xp). (4.47)

a=1

Furthermore, a convenient strategy for implementing the updates in equation 4.40 is to
initialize the material point volumes and densities by means of an initial triangulation of
the domain.

Inserting the preceding approximations into equation 4.28 gives the discrete action:

=2

-1
1)%pse1 — Xpi)?
Ah(ph,1, . noh,N—l) = Zmp{§ égtk; _ t:)Z

0 p=1

b
Il

(4.48)

= 51 ona) = uy)) + (F(apass) = ulpeen))] | (s = 1),

where equation 4.47 is tacitly understood to be in force. Taking variations of A;, gives the

discrete Euler-Lagrange equations:

N-1 M
X - X Xpk — Xp e
<5Ah>5h> = Zmp{ ( pt,k+1 — tp,k + pt,k — tp,k 1) . fh,k(xp,k)
P g k+1 — Lk k— lk—1 (4.49)
tet1 — t—
e~ [p%yv Enx o) + (3] .wxpvk)} }
p?
Here, £, (x) are discrete admissible virtual displacements given by,
N
Enn(¥) =D EarNap(x). (4.50)
a=1

Also, note that equation 4.49 can be obtained, alternatively, by inserting the spatial dis-

cretization into the semi-discrete Euler-Lagrange equations, i.e., equation 4.30, directly.
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Enforcing stationarity with respect to to all variations, &, gives:

2 X —X
(M AR k) = f,, (4.51)
U1 — tp—1 ler1 — Uk
where, y = {%14,...,2n} is the nodal coordinate array at time ¢, and the linear mo-
mentum of node a at time ¢, is given by,
X , — X k—1
Z e e i A G (4.52)
U — tk—1

Furthermore, the consistent mass matrix box for nodes a and b at time ¢, is given by,
M
Myap =Y My Na (%) Nok () I. (4.53)
p=1
The out-of-balance nodal forces are given by,
M
Z pkP(Pp) V Na g (Xp.x) + mpbr(Xp 1) Nak (Xp,)] - (4.54)

In the special case of backward-compatible shape functions (i.e. equation 4.47), equation

4.51 provides the central difference scheme:

2 X — X Xp — Xp_
2\ ( fe+1 ko Xk k 1) _f, (4.55)
let1 — th—1 Tet1 — tk by — th-1

4.2.2.1 OTM Update

The above equations define a finite-dimensional semi-discrete central-difference scheme
that can be solved forward explicitly. Then, the forward solution is given by the following

scheme:

(i) Initialization: Set k£ = 0, initialize material point volumes, densities, shape functions.
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(11) Given xj_1, Xg, Pk, solve (4.51) for the updated nodal coordinates, with the result:

b1 — tr—1
+—fk)

Xpr1 = X + (tep1 — ) M, (Pr + 5

(4.56)

(iii)) Update the material point coordinates, volumes, mass densities according to the iden-

tities:

Tpt1 = Ph—k+1(Xp k) (4.57a)

Vo1 = Vory1 det Voop g1 (Xp0) (4.57b)
m

Priil = 37 L (4.57¢)
p,k+1

(iv) Calculate shape functions N, j11(x, +1) and derivatives VN, j41(Xp 5+1)

(v) Reset k «— k + 1. If £ = N exit. Otherwise go to (ii).

4.2.3 The OTM Method for Navier-Stokes Fluid Flows

This section extends the OTM to fluids with dissipation (i.e. viscosity). Following the de-
velopments in [90], we add viscosity to the formulation by reformulating the semi-discrete

equations of motion as a minimum principle:

D(pp_ps1) — inf! (4.58)

For conservative systems, (i.e. Euler fluid flow), [90] gives the incremental potential energy

by,

| 2

|<10k—>k: 1 _SOPf
(p(gok_}kﬂ):/{@ + k—k+1

2 (tpa1 — tr)? + w(VSOIHkH)} dz. (4.59)

Here, ©P™ is a predictor incremental deformation mapping and we write
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w(Vpppi1) = % (px (f (o) — ur) + prsr (fF(Pr41) — i) -

Minimization of this incremental potential energy, ®(¢x_.1+1), gives the Euler-Lagrange

equations:

pre
Prk—k+1 — Pr_kt1
(th1 — t)?

Pk + Vi, = prby. (4.60)

Here, the predictor P can be chosen such that equation 4.60 matches equation 4.32 for

the semi-discrete Euler-Lagrange equation, with the result:

2 . .
e (tr+1 — ti) ((Pk—ﬂf—l-l —id L Ph—k—1 — ld> ‘

= Pkl — 2
" (trt1 — te—1) Tor1 — T tp — th—1

In order to add viscous dissipation to the OTM formulation for Euler fluid flows, let

¢(pr_r+1) be a material frame indifferent function such that
2,0 A 2 2
(D ¢(id)d, d) = St(d)” + plld]",

where A\ and g are viscosities. In the following calculations, ¢ is chosen to be of the
Hadamard form (i.e. a neo-Hookean potential extended to the compressible range). Then,
the incremental strain energy density that serves as a joint potential for the pressure and the

viscous forces, extended from [90, 91], is given by

0 (VSOk—JcH) .

w(Veproni1) = pi (f(or) = ur) + pegr (F(Or4r) — i) + PR
k1 — ti

In terms of this extended energy-dissipation density, the incremental viscous problem
retains the same form as equations 4.58 and 4.59 presented for the conservative problem.

Furthermore, the spatial discretization retains the same form as the conservative case.
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Chapter 5

Numerical Examples

This chapter demonstrates the use of the OTM method for numerical simulations of Euler
and Navier-Stokes fluid flows. In an effort to numerically validate the OTM method, the
classical Riemann numerical benchmark test is simulated. Specifically, the Riemann nu-
merical benchmark test verifies the ability of the numerical code to capture shock waves.
Following this benchmark test, an illustrative FSI example is presented to highlight the
ability of the OTM method. Here, the inspiration for this particular example is provided by
the continued success of inflatable structures for space-based structures. Specifically, this
FSI example is motivated by NASA’s use of inflated networks of airbags, surrounding the

lander, to dissipate the energy of impact for previous Mars missions.

5.1 Numerical Benchmark Test: Riemann Problem

The Riemann benchmark problem provides one of the most popular and classical numer-
ical benchmark tests for evaluating the capability and accuracy of a given gas-dynamics
code or numerical method. The Riemann problem tests the accuracy of a method related
to solving the one-dimensional time dependent Euler equations combined with an ideal
equation of state and discontinuous initial conditions. This example is especially conve-
nient for assessing the accuracy of the numerical solution since the Riemann problem has

an exact mathematical solution. This numerical benchmark problem received significant
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Figure 5.1: A general schematic for the problem and the resulting waves generated upon
rupturing the diaphragm.
attention by Sod in 1978 [92]. Thus, in the context of the parameters used in this example
the Riemann problem is synonymous with the Sod test problem.

Physically, the Riemann problem corresponds to a shock tube experiment consisting of
a long tube containing two gases of different properties separated by a thin diaphragm. At
the onset of the experiment, the diaphragm is ruptured and the evolution of the resulting
waves can be tracked. If we use two gases of the same species but with different pressures
and densities, both experiments as well as the exact mathematical solution predict three
waves: a shock wave, contact surface, and a fan of expansion waves emanating from the
rupture point. Figure 5.1 depicts the general experimental setup and the resulting waves in
space-time. A complete analysis and presentation of the Riemann problem and traditional

numerical solvers can in [93].

5.1.1 Model Formulation

Solving the one-dimensional time dependent Euler equations with an ideal gas law amounts
to solving the system of conservation equations (mass, momentum, and energy) combined

with a specific material model.

pt +V-(pv) =0,
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p(v, +v - Vv) + Vp = pb,

E.+V - (v(E+p)) =0,

1
E = p(€+ 5“2)7

where p is the density, v is the velocity, p is the thermodynamic pressure, ' is the total
energy per unit volume, and e is the internal energy per unity mass. If we adopt the equation
of state for an ideal gas:

P = pRT,

where R = %, R is the universal gas constant and M is the molar mass of the gas, then the

internal energy can be written as:

p

e:m.

Furthermore, considering reversible adiabatic (isentropic) processes that, coupled with

the ideal gas equation of state, lead to the following relationship for a polytropic process:

b b2
p_fly = p_ny = Cpolytropica
v

where Cpoiytropic 18 constant for the process of going between states 1 and 2, and +y is the

ratio of specific heats. Furthermore, recall from equation 4.14 that the energy is given by

Cpolytropic (v=1)

W=y
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5.1.2 Analytic Solution

The following system of equations in one dimension can be solved by the method of char-
acteristics. This procedure reveals that there are three characteristics, corresponding to the

eigenvalues

)\1 = u,
A2 = u-+ta,
A3 = u—a,

where a = /’y% is the wave speed. Consider the schematic in figure 5.1, and the four

distinct regions:

e (L) : To the left of the rarefaction waves
e (L,): In between the rarefaction and contact surface
e (R,): In between the contact surface and the shock wave

e (R): To the right of the shock wave

Then, an iterative procedure follows by solving for the unknowns, (py,u, pr,, pr,) With

the provided data (py, pr, pr, pr). Here, p, is found as the root of the equation:

f=fu+ fr+ (U —w),
where, consistent with figure 5.1,

2a . s
fL - [(p_> _1] )
vy—11|\pL

9 3
e e
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Then, the velocity between the expansion waves and the shock wave is evaluated as:

s =l + un) + 5 (alps) = fo(p2).

Subsequently, the following relations hold across the expansion fan in the left region:

2 -1 N\ |71
i = [ )

+1  (y+1)ar
2

—1 T
u*(x,t) = 7+1{GL+72 UL—l—?}

plet) = |2 2 (- 5)

+1 (’Y+1)6LL

Similarly, given the pressure and velocity in the star region, (p,,u,), the relationship
between the density ratio across the shock wave and the shock speed, Sg, (in the stationary

frame) is given by

Px o o=l
OR = pg pR+’Y+1
S =1 px ’

'Y+1PR+1

1

+1 * _1 2

SR = uR—i—aR[fY p——l—fy :| .

2y pr 2y

Finally, the wave speeds are used to update the position of the three waves. Then, we can
recursively apply this algorithm to solve for the evolution of the thermodynamic quantities

in space and time.

5.1.3 Numerical Implementation

This section overviews the implementation of the OTM method for the Riemann numeri-
cal benchmark test. For this application, the OTM method is initialized by specifying the
geometry, spatial discretization, material point elements, gas properties, boundary condi-

tions, initial conditions, and the time step. While the OTM is a meshfree method, we refer
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to material point elements, or simply elements, as the discretized regions associated with a
material point. Compared with traditional finite elements, the material points can be viewed
as a one-point quadrature scheme. However, in sharp contrast with the FEM, the number of
nodes associated with each quadrature point varies at each time-step based on the evolving
neighborhood around the quadrature point.

The geometry for this one-dimensional problem is simply a line of fixed length that is
discretized into IV elements, with N material points placed at the midpoint of the element.
Furthermore, the initial quadrature weight is taken as the initial length of the element.
Initially, d + 1 nodes (d dimension) are associated with each material point. This is chosen
out of convenience for calculating the LME shape functions, since the value of each shape

function is inherently prescribed (i.e. ). In turn, this provides the exact value of A\*(xz,)

7
that is used in the LME shape function calculation. Furthermore, for the evaluation of the
LME shape functions, the parameter [3 is chosen with respect to the average nodal spacing
by specifying the normalized parameter ;1 = (3h2. Here, as displayed in figure 2.3, p
provides a useful indication of the locality of a given LME shape function.

Also, as part of the initialization of the elements, the initial gas parameters (i.e. pz, pr,
Pr» PR, 7Y) are specified for each side of the shock tube. Furthermore, it is assumed that the
gases on both sides of the membrane are initially stationary (i.e. v = 0). Specifying the
pressure, or density, ratio across the diaphragm provides the wave speeds of the resulting
shocks and indeed the complete, analytical solution to compare the numerical results with.

Furthermore, the stable time step for the explicit Nemwark time integration scheme is

determined based on the Courant-Friedrichs-Lewy condition (CFL),

u/\t

NS < C, S.D

where u is the velocity, Ax is the spacing, and C'is a constant chosen based on the type of

PDE considered. For this Riemann problem, the constant is chosen as C' = %. Also, while
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we are interested in the solution before the waves experience reflections, fixed boundary
conditions are applied to the endpoints of the geometry to completely specify the problem.

After initialization, the initial mesh is abandoned. Then, the scheme provided in section
(4.2.2.1) provides the routine for updating the nodal locations, the material point quadrature
weight, and the material point location. Furthermore, at each step in the dynamic simula-
tion the LME shape functions are re-evaluated based on the new distribution of nodes. Due
to numerical limits in precision, in order to avoid errors arising from calculating the ex-
ceedingly small contributions found at the tails of the Gaussian-like LME shape functions,
it is practical to employ a search algorithm to find the nearest neighbors that effectively
contribute to the evaluation of a given LME shape function. Specifically, for this one-
dimension problem, it is sufficient (in terms of speed) to employ an exhaustive search for
finding the neighboring nodes contributing to each LME shape function. Also, since eval-
uating A\*(z4,) for the LME shape functions involves an extremely challenging (from a
numerical standpoint) optimization problem, it is efficient and often necessary (to avoid
termination) to store and use the previous converged value of \*(x,,) in the optimization
routine. Here, recalling that the material point mass remains constant, the LME shape

functions are also used to update the mass for all of the nodes.

Artificial Viscosity

Numerical simulations involving the propagation of discontinuities (i.e. shocks) for invis-
cid fluids require specific care for capturing the behavior on each side of the discontinuity.
Here, the challenge of resolving an infinitesimal discontinuity for inviscid fluids leads to os-
cillations analogous to the Gibbs phenomenon in Fourier series approximations. In an effort
to stabilize the simulation, an artificial viscosity scheme (adapted from [94]) is added to the
model. Here, the principle goal of adding artificial viscosity is to stabilize the simulations
involving steep shocks, whose thickness is too small to be resolved by any discretization.

The addition of artificial viscosity was first proposed in 1950 by Neumann and Richtmyer
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[95]. Here, the intention was to spread the shock front over several grid points without dis-
rupting the structure of the shock (speed, shape, etc.) or introducing spurious oscillations.
In the proposed model of artificial viscosity, the magnitude of the introduced viscosity
depends on grid spacing. This feature ensures that the contributions vanish with decreas-
ing grid size. Furthermore, the model proposed in [94] possesses the salient attributes of
being formulated within a general finite-deformation frame and satisfying material-frame
indifference exactly.

From [94], the effective viscosity coefficient, 7, includes a physical and artificial

component:

Negp =N+ An.

Here, 7 is the physical viscosity and An is the artificial viscosity coefficient. Following

[94], the artificial viscosity coefficient at a given material point assumes the form,

max ((), %lp(clAu — cLa)) Au < 0,
An =

0 Au > 0.

Here, [ is a measure of the size of the element, Aw is a measure of the velocity jump across
the element, a is the characteristic wave speed, and (c;, ¢y are user-defined coefficients. A
convenient way of ensuring that this formulation is material frame indifferent is to specify
Aw as a function of, or the time derivatives of, the Jacobian of the deformation combined

with selecting [ in the following way:

dlog J
Au =1
YT
= (JalK])?,

where d is the dimension and K is the element volume.
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5.1.4 Results

In accordance with the traditional Sod test problem, the following parameters were used

for the initial conditions in the simulation:

pr. = 1.0
pr = 1.0
pr = 0.1
pr = 0.25

The results from this numerical simulation (using 400 nodes) are compared with the ana-
lytical solution and the relevant properties of interest (P and p) are plotted with the exact

solution in figure 5.2 and figure 5.3, respectively.

Pressure Plot

1 Je
o Simulation
— Exact
0.8+
o
O.06r
[0]
5
a
D
o 04r
0.2+
0 I Il Il 1 Il
-1 -0.5 0 0.5 1

Position [m]

Figure 5.2: Pressure profile compared with the exact solution at time, t = 0.25 s.
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Density Plot
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Figure 5.3: Density profile compared with the exact solution at time, t = 0.25 s.
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Figure 5.4: Convergence rate for Riemann benchmark problem.

The results for the pressure and density profiles (figures 5.2 and 5.3) are in excellent
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agreement with the exact solution indicating that the OTM method is exceedingly capable
of capturing expansion and compression shock waves. Furthermore, the convergence plot,
depicted in figure 5.4, indicates that the OTM method provides linear convergence for the

Riemann benchmark problem as expected.

5.2 FSI Numerical Simulation

Deployable structures represent a broad category of structures with applications spanning
many engineering fields. Space science is one area where instrumenting deployable struc-
tures is of particular interest. Here, the size and weight constraints, imposed by limitations
in launch technology, have traditionally stifled the size of telescopes, support structures,
and satellites. In an effort to push the limits of the sizes and capabilities of telescopes and
space-bound instruments, inflatable gossamer structures (i.e. thin-shell structures) present
a particularly attractive concept for space-based applications. Gossamer structures are
lightweight by design, have a small packing volume relative to their deployed volume,
and can assume complex shapes [96]. Once deployed, gossamer structures can provide a
stiff framework for next-generation telescopes, serve as support structures for instruments,
or provide habitats for future space exploration missions [97]. Due to the extravagant costs
associated with current launch technology, estimated between $5,000 and $20,000 per kg
[98], numerical simulations of space-based deployable structures are paramount to devel-
oping viable designs.

Another remarkable use of inflatable space-based structures is demonstrated during the
final stage of NASA’s entry, descent, and landing (EDL) scheme, depicted in figure 5.2,
that was developed for past Mars missions. Prior to impacting the surface, a network of
airbags attached to the lander was inflated in order to dissipate the final amount of energy

imparted during the impact of landing.
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Figure 5.5: Entry, descent and landing (EDL) for Pathfinder landing on Mars [3].

While there is significant interest in modeling this FSI-based landing procedure, nu-
merical studies must rely on commercial software, all of which face the limitations out-
lined with regard to traditional, mesh-based numerical methods. Specifically, the models
embedded in these codes consider the fluid inside the inflatable structure as a single control
volume. However, in doing so, the fluid field variables remains uniform. Thus, the abil-
ity to capture gradients of field values, such as varying pressures or densities, aside from
capturing shocks, is simply lacking. Furthermore, while using other coupled methods (i.e.
IB or ALE methods) may appear attractive, the exceedingly large deformations imparted to
the structure makes this framework undesirable.

In an effort to highlight the salient attributes of the OTM method with respect to the cur-
rent state-of-the-art numerical capabilities, an illustrative FSI example is simulated. Here,
we consider a three-dimensional strongly coupled FSI application consisting of a gas-filled
sphere impacts the ground at high speed. This application is inspired by the success of

NASA’s recent Mars missions using airbag technology to provide the last stage of entry-
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decent and landing shown below in figure 5.2.

5.2.1 Illustrative Application: Impact of a Gas-Inflated Sphere

Given the motivation of simulating a wide-range of FSI problems within the space-science
field, we consider an illustrative example to demonstrate the capability and flexibility of
the OTM method. Here, we consider solving the Navier-Stokes equations of motion for
a compressible, viscous fluid in an arbitrary three-dimensional domain. Specifically, the
sphere is characterized using membrane finite elements, the details of which can be found

in [5], and material model for the membrane is chosen as a classical Neo-hookean material.

5.2.1.1 Model Formulation

Here we specify the material of the membrane to share similar properties with Kapton and
Vectran (used in NASA’s previous airbags). Furthermore, we model the gas as a com-
pressible Newtonian fluid following an ideal equation of state and model the deformation
process of the gas-filled ball as an adiabatic process. In the simulations presented below,

the following parameters for modeling the compressible Newtonian gas are employed:

p = 1.25 kg/m®
P =1.5psi
vy=14
pw=18e"Pas

R=10m.
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Also, the material parameters for the membrane are given as

p = 0.0915 kg/m?,

t = 1 mm.

Here, the stiffness of the membrane is chosen such that the initial configuration is in equi-

librium for a given size ball, density, and pressure of the gas using the relation

PR
E=—.
2t

Furthermore, the timestep is chosen using the CFL condition, equation 5.1, based on the

initial prescribed velocity, wave speeds in the membrane as well as the local wave speed of

Erem P h
Atstable = C min ALY . (52)
Pmem P ‘/;)TESC

In the following simulation the impact of the structure with the ground is modeled by

the gas,

considering the surface of the ground as a spring. Here, the stiffness is chosen to be as
stiff as possible without creating artificial artifacts or diminishing the conservation of total

energy. For this application, the spring stiffness was chosen as,

4 2
KFloorPotential = 5.0 e"N/m~.

Also, the prescribed initial velocity for this simulation was

Vipree = —100 mis.

5.2.1.2 Numerical Implementation

Then, the procedure for initializing the simulation follows as:
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1. Construct a Delaunay triangulation for the sphere. Here, a mesh is created only
as a means of initializing the locations of the material points (at the barycenters of
the elements) and the initial quadrature weight (computed volume). Following this

initialization step, the mesh is no longer required or used in the simulation procedure.

2. Set up the LME shape functions and derivatives. Here, initially we begin with d + 1
nodes as the support neighborhood for the material point. By adopting this initial
configuration one can exactly and explicitly determine \*. Since we will need to
establish neighbor lists during the simulation, as part of the initialization procedure
we adopt a search algorithm. In this case we employ an orthogonal range query
(ORQ), developed by Sean Mauch [99], as our search routine and update the data

structure at each time step during the simulation.

3. Initialize the elements with the appropriate materials. i.e., Neo-hookean for the mem-

brane elements and compressible Navier-Stokes for the material point elements.

4. Establish the time step for the simulation based on the CFL criteria, i.e., equation

5.2

5. At this stage we employ an explicit dynamics routine to evolve the equations of mo-
tion. At each step during the dynamic simulation, we reset the material point quadra-
ture weights and location (using the deformation mapping), evaluate the neighbors
list for each material point, construct the LME shape functions, and update the mass

prior to incrementing the explicit dynamics update.

5.2.2 Results

The procedure outlined above provides update implemented for this application. Here,
figure 5.6 depicts the initial discretized configuration for the membrane (triangulation) and

the fluid (material points) used in the simulation.



91

é
/

¥

4
,_‘.."

]

N
i

A

)
<
%
/7

ayf
NASH
Ly
o
e
12

N

R
Ny

i
A

"r
DX

I
N
°

[ 1
=

i/
L\

Y
S

i
"

’l"’.
o
a7
N
4%

()

ik
i
}:A
3
W

»

i
I
o
¥

=

i

Figure 5.6: Initial configuration of the gas-filled ball.

The following results depict the largest extent of deformation of the sphere during im-
pact. Figure 5.8 depicts the contour levels of the Von Mises stress criteria on the membrane
surface. Figure 5.7 depict the contour levels of the Von Mises stress criteria for the fluid

(i.e. section view).

Figure 5.7: Von Mises stress criteria of gas at impact (midplane section).
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Figure 5.8: Von Mises stress criteria on surface of membrane at impact.

Figure 5.10 depict the contour levels of pressure on the membrane surface. Figure 5.9

depict the contour levels of pressure of the fluid (i.e. section view).

Figure 5.9: Pressure of the gas at impact (midplane section).
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Figure 5.11: Total mass vs time.

Figure 5.10: Pressure on surface of membrane at impact.

Furthermore, the conserved quantities (i.e. mass, energy, linear momentum, angular

momentum) are plotted in figures 5.11, 5.16, 5.13, 5.14, 5.15, and 5.2.2, respectively.
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While there is still room for improvement (mostly by considering larger models with
more neighbors), these results demonstrate first-of-a-kind capabilities of the OTM method
in the sense of the meshfree methods for fluids as well as compared with traditional methods
for coupled FSI calculations. Here, the size of the numerical models is limited by the
calculation of the LME shape functions. Numerical methods for efficiently calculating the
LME shape functions for dynamic simulations remain an open problem requiring additional

developments. Higher resolution results will be presented in the forthcoming publication.
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Chapter 6

Conclusions

This thesis developed the OTM method as a new meshfree method for numerically simu-
lating fluid flows without regard to a numerical mesh. Here, the OTM method represents
one approach within the broad field of particle and meshfree numerical methods. Having
reviewed the current, popular meshfree methods, it is apparent that there is no one best ap-
proach. However, the OTM provides a unique paradigm for meshfree methods by providing
a rigorous mathematical formulation including a number of salient attributes including: ge-
ometrically exact mass density updates, easily implemented essential boundary conditions,
and trivial coupling with finite elements.

By employing LME shape functions the OTM method avoids the inherent obstacle of
enforcing essential boundary conditions found in the other methods. Indeed, the flexibility
and ease with which the OTM couples with the traditional FEM approach is remarkable
when compared with other meshfree methods that require extreme care and consideration
for individual cases of coupling.

Furthermore, the ability to solve Navier-Stokes equations in three dimensions with a
general, moving domain alone makes the OTM method exceedingly desirable. In this the-
sis we verified the ability of the OTM method to capture shock waves by simulating the
standard Riemann benchmark example. In the chapter 5, an illustrative FSI example was
simulated to highlight the ability of the OTM method to simulate three-dimensional com-

pressible Navier-Stokes flows coupled with a deforming membrane boundary modeled by
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finite elements.

Future work

While the initial aim of these simulations was to simulate the complete EDL airbag landing
sequence, the computational expense in the current numerical framework (EUREKA), pro-
hibits large calculations. To move forward with larger calculations (i.e. ~10,000 - 100,000
material points) it is imperative to develop a parallel computational scheme. Specifically,
while the calculation of the LME shape functions entails significant computational costs,
the evaluation of the LME shape functions can be performed in parallel, which would sig-
nificantly speed up the simulation. Furthermore, with regards to the LME shape functions,
there are still many open questions regarding how to efficiently evaluate A*(x,,,) that may
require new or novel combinations of numerical optimization techniques.

Finally, there is a plethora of viable applications. Up to this point we have considered
internal flows, however, there is no requirement placed by the OTM method restricting
simulations involving external flows. With regard to the illustrative FSI example in 5.2.1,
better results will be presented in the forthcoming publicationOverall, the OTM method
represents an exciting new meshfree approach facilitating numerical simulations of general
three-dimensional fluid flows combined with complex, and possibly moving, boundaries

that can be directly coupled with other Lagrangian numerical methods.
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