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Abstract 
 
 

In the last few decades the puissant desire to miniaturize the digital circuits to achieve 

higher speed and larger density has shaped the evolution of the silicon-based 

technologies. This development opens a new era in the field of millimeter-wave 

electronics in which many low-cost high-yield silicon-based transistors can be used on a 

single chip to enable creation of novel architectures with unique properties not achievable 

with old processes. In addition to this high level of integration capability, the die size of 

comparable or even larger than the wave-length makes it possible to integrate antennas, 

transceivers, and digital circuitry all on a single silicon die. 

 It is important to realize that although smaller parasitic capacitors and shorter 

transistor channels have improved fT and fmax of transistors, extremely thin metal layers, 

highly doped substrates, and low breakdown voltage transistors have severely affected 

the performance of analog and RF building blocks. For example, thin metal layers have 

increased the loss and lowered the quality factor of the building blocks such as capacitors 

and inductors and low breakdown voltage transistors have made the power generation 

quite challenging. Additionally, if not carefully designed, small wave-lengths in the 

millimeter-wave range may cause unintended radiation by on-chip components. In this 

dissertation, we address these issues in design of millimeter-wave silicon-based single-

chip phased-array transceivers with integrated antennas. We also introduce the technique 

of Direct Antenna Modulation (DAM) and implement two proof-of-concept chips 

operating at 60 GHz. 
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We will present the receiver and the on-chip antenna sections of a fully integrated 77 

GHz four-element phased-array transceiver with on-chip antennas in silicon. The receiver 

section of the chip includes the complete down-conversion path comprising low-noise 

amplifier (LNA), frequency synthesizer, phase rotators, combining amplifiers, and on-

chip dipole antennas. The signal combining is performed using a novel distributed active 

combining amplifier at an IF of 26 GHz. In the LO path, the output of the 52 GHz VCO 

is routed to different elements and can be phase shifted locally by the phase rotators. A 

silicon lens on the backside is used to reduce the loss due to the surface-wave power of 

the silicon substrate. Our measurements show a single-element LNA gain of 23 dB and a 

noise figure of 6.0 dB. Each of the four receive paths has a gain of 37 dB and a noise 

figure of 8.0 dB. Each on-chip antenna has a gain of +8 dBi. 

A direct antenna modulation (DAM) technique is also introduced, where the radiated 

far-field signal is modulated by time-varying changes in the antenna near-field 

electromagnetic (EM) boundary conditions. This enables the transmitter to send data in a 

direction-dependent fashion producing a secure communication link. The transmitter 

architecture makes it possible to use narrow-band highly-efficient switching power 

amplifiers to transmit wideband constant and non-constant envelope modulated signals. 

Theoretically, these systems are capable of transmitting independent data in multiple 

directions at full-rate concurrently using a single transmitter. Direct antenna modulation 

(DAM) can be performed by using either switches or varactors. Two proof-of-concept 

DAM transmitters operating at 60GHz using switches and varactors are demonstrated in 

silicon proving the feasibility of this approach. 
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Chapter 1 

Introduction 

“Imagination is more important than knowledge.” 

“The world we have made as a result of the level of thinking we have done thus far 
creates problems we cannot solve at the same level of thinking at which we created 
them.” 

        -Albert Einstein (1879–1955) 

 

Are today’s advancements in the field of wireless communication a result of human 

knowledge or imagination? With remarkable improvements in computational power and 

the existence of sophisticated design tools, brute force, as opposed to creative approaches 

appears to have become the weapon of choice in overcoming challenging problems in the 

field of wireless communication. The prodigious market for digital consumer electronics 

which is the main driving force behind the advancements in process technologies has 

resulted in transistors with higher speeds and larger densities. The same puissant force 

has significantly increased available computational power, making conventional circuit 

design more efficient and reliable through the use of new tools which exploit this 

computational power.  

During my five years of graduate studies at Caltech, I have been a witness to this rapid 

evolution of process technology. In 2003 (when I started my graduate studies) a common 

process technology available to research groups in academia was 0.18 µm CMOS, while 
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today, most of them have access to 65 nm CMOS process. A factor of three improvement 

in size of the transistors during these five years happened due to the enormous global 

investment in silicon-based technologies making faster transistors, which we as circuit 

designers had nothing to do with. During the same period of time, design software, 

electromagnetic simulators, and computational engines became faster and faster (a typical 

personal computer in 2003 was a Pentium 4 with 500MB of RAM while today’s typical 

PC is a dual-core with 4GB of RAM). It seems that, sitting in a well-equipped research 

group and just repeating existing designs in faster processes, it is possible to improve the 

specifications of wireless blocks and publish new papers. At first glance, it seems that 

this magical sheer force of transistor scaling will do everything for us, there is no need 

for creation or imagination, and we just need to rely on our experience or knowledge. But 

this is not true in reality. 

First of all, the evolution of process technology has not always been beneficial to 

analog and RF designers. Although smaller parasitic capacitors and shorter transistor 

channels have improved fT and fmax of the transistors, extremely thin metal layers, highly 

doped substrates, and low breakdown voltage transistors have severely affected the 

performance of analog and RF building blocks. For example, thin metal layers have 

increased the loss and lowered the quality factor of the basic circuit elements such as 

capacitors and inductors. Low breakdown voltage transistors have made power 

generation and stacking of transistors extremely challenging. 

Second, having access to so many high-frequency transistors has opened the door to a 

plethora of new applications not even accessible to compound transistors due to limited 
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yield. The ability to integrate many mm-wave transistors with high yield on a single chip 

provides a new frontier for integrating very complicated systems with previously 

unimaginable levels of complexity, including fully integrated single-chip phased arrays. 

Single-chip phased-array systems, which are discussed in Chapters 4 and 6, impose new 

design challenges, including accurate on-chip phase generation and distribution, as well 

as finding suitable phased-array architecture for specific applications (for example, RF 

phase-shift versus LO phase-shift). Furthermore, tuning and calibration capability 

achieved by co-integration of digital circuitry can be used to significantly improve the 

performance of the critical analog/RF elements. Also the integration of advanced base-

band and signal processing elements enables the realization of novel system architectures 

for existing and emerging mm-wave applications. 

Thirdly and most importantly, the rules of the wireless communications game are 

changing. The age in which analog designers could remain ignorant of the 

electromagnetic and antenna design is gone. At low frequencies (few GHz), RF input and 

output of the transceivers can be connected to on-chip pads and on-chip wafer probing 

can be done to complete the testing of a transceiver. At low frequencies, analog designers 

are not responsible for designing the antennas because the PCB-based standard antennas 

can be used. In this case wirebond or flip-chip technology can be utilized to transfer the 

on-chip RF signal to the PCB-based antenna. On the contrary, in mm-wave frequencies, 

analog designers need to completely understand the details of the antenna design. At 

these frequencies, a 1 mm long wirebond which has about 1 nH of inductance introduces 

a large mismatch between PCB-based antennas and on-chip pads (1 nH at 60 GHz 

translates to 377 Ω imaginary impedance). A 1 mm wirebond at 60GHz can become an 
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undesired radiating element as well. As wavelengths become smaller at higher 

frequencies it is possible to physically fit a half-wavelength antenna on a reasonably 

sized silicon die. Unfortunately, however, placing an antenna on a silicon die does not 

come without its own set of challenges. In order to implement efficient on-chip antennas 

at these frequencies, these challenges must be addressed. For instance, at mm-wave 

frequencies, the high dielectric constant of silicon (εr= 11.7), and substrate thickness 

comparable to the wavelength couple most of the antenna radiated power into the silicon 

substrate in the form of substrate modes which will be discussed in Chapter 2. In 

addition, the inevitable high doping levels of silicon substrates used to implement active 

devices result in a lossy substrate (resistivity of about 10 Ω-cm) and wastes most of the 

substrate coupled power as heat. Thus, as we move into this new frontier, everything is 

getting more complicated and it is the responsibility of the analog designer to take care of 

the details of antenna design as well. The marriage of analog/RF and antenna design is all 

but inevitable. 

Finally, all of these new capabilities make it possible to fundamentally change the 

architectures of wireless systems. Almost everyone in this field knows that with his 

invention of the super-heterodyne receiver in 1918, Armstrong introduced the idea of 

modulating the signal at low frequencies, or baseband, and up-converting it to the RF 

frequency. Since that time, there have been many breakthroughs in related technologies, 

including the invention of the transistor itself in 1947. However, there have been few 

fundamental changes in transceiver architectures; most of today’s high performance 

systems still use ideas based on the heterodyne or homodyne architectures. In Chapter 5, 

we will see that by implementing on-chip antennas and reflectors, as well as digitally 
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controlling the scattering properties of these reflectors, we can directly modulate the 

antennas and implement a wireless transmitter with unique desirable characteristics not 

possessed by conventional (heterodyne or homodyne) schemes. 

To conclude the introduction, it seems that at this state of technology revolution we 

are only limited by our own creativity and imagination. 

1.1 Organization 

In Chapter 2, the fundamental problems involved in designing on-chip antennas are 

discussed. Substrate-modes as an important concept in designing the on-chip antennas is 

reviewed and an optical representation of them is introduced. In this chapter several on-

chip antenna configurations are proposed and their pros and cons are compared. 

Chapter 3 covers the main applications of the mm-wave systems including 

communication, radar, and imaging. 

In Chapter 4 the fundamentals of the phased-array systems are discussed. The first 

fully integrated silicon-based millimeter-wave (77 GHz) phased-array transceiver with 

on-chip antennas is introduced, and details of the design and measurement of this chip are 

included.  

In Chapter 5, a fundamentally new technique for implementing wireless 

communication systems, Direct Antenna Modulation (DAM), is introduced. The unique 

characteristics of this new system are discussed and two proof-of-concept chips operating 

at 60 GHz are designed and measured. 
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Chapter 6 covers the design and measurement of a silicon-based scalable 2×2 60-GHz 

phased-array transmitter with on-chip antennas.  
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Chapter 2 

On-Chip Antennas 

2.1 Introduction 

An antenna converts electrical power in the circuit domain to electromagnetic wave 

radiations in a propagation medium and vice versa. The radiated energy appears as loss if 

looked at from a pure circuit domain perspective and is thus modeled as a resistance1. In 

addition to this so-called “radiation resistance” which is essential to the antenna 

operation, a second resistive part is required to model the physical energy loss in the non-

ideal metals and the dielectrics. For an antenna excited with a current source, loss and 

radiated power can be calculated as, 

 

2

2
2

2

IlossR
lossP

IradR
radP

=

=
                                                               (2.1) 

where Prad is the radiated power, Ploss is the lost power, Rrad is the radiation resistance, 

Rloss is the loss resistance, and I is the antenna current. Obviously, high loss resistance 

wastes power and lowers the overall efficiency. In fact, radiation efficiency is directly 

related to the ratio of loss and radiation resistances. By knowing these two values, 

radiation efficiency can be calculated as, 

                                                            
1 Often a reactive part is also used to account for the resulting phase difference between antenna’s voltage and current. 
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lossRradR
radR

radη
+

=                                                           (2.2) 

We will focus on important antenna parameters such as gain and efficiency and 

compare several antenna configurations suitable for silicon on-chip implementation based 

on these parameters.  

One of the important concepts involved in designing silicon-based on-chip antennas is 

the substrate modes. Due to silicon’s high dielectric constant and die’s comparable 

thickness to the wavelength at millimeter wave frequencies; most of the electromagnetic 

power will be coupled to the substrate modes in unshielded structures. 

Concept of the substrate modes has been studied extensively in literature and is public 

domain material. Kogelnik [1] and Rutledge [2] have done extensive research in this area. 

Section 2.2 uses their approach in explaining the concept. 

 2.2 Substrate Modes 

A complete analysis of substrate modes in planar substrates requires the use of 

Summerfield integrals and asymptotic methods. This section does not cover these 

advanced topics but utilizes the optical theory of dielectric waveguides to explain how 

substrate modes are generated and how to calculate the amount of power coupled to these 

modes. 

One of the important parameters used in analyzing the substrate modes is the effective 

guide thickness. Effective guide thickness depends on the mode of propagation and can 
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be used to calculate the power coupled to each mode. To calculate the effective guide 

thickness let us start with reviewing the propagation of an optical wave in a simple planar 

dielectric waveguide with a cross section shown in Figure 2.1. 

 

Figure 2.1 Dielectric Waveguide [1] 

We assume that dielectric 1 and 3 are both air and dielectric 2 is silicon. Reflection 

and transmission coefficients can be calculated separately for each interface. An interface 

of two lossless, isotropic, homogenous dielectric media of refractive index n1 and n2 is 

shown in Figure 2.2. 

From Snell’s law, 

2211 sinsin θθ nn = .             (2.3) 
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Figure 2.2 Ray optics of reflection and transmission  

The incident, transmitted, and reflected waves have complex amplitude of Ainc, Aref, 

and Atrans, as shown in Figure 2.2. Assuming a complex reflection coefficient of R and 

transmission coefficient of Γ, we have the following equations: 

incref ARA ⋅=               (2.4) 

inctrans AA ⋅= Γ  .             (2.5) 

The reflection and transmission coefficients depend on the incident angle and the 

polarization of the light. These coefficients can be calculated by applying boundary 

conditions for the tangential components of electric field and magnetic field of an 

incident planar wave. For the transverse electric (TE) polarization in which electric field 

is perpendicular to the direction of the incident wave (wave normal) and normal to the 

interface, the reflection coefficient is given by: 
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For the transverse magnetic (TM) polarization, the magnetic field is perpendicular to 

the direction of the incident wave (wave normal) and normal to the interface. In this case 

the reflection coefficient is given by: 
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Based on the equations (2.6) and (2.7), for incident angles smaller than the critical 

angle (θ1 < θc) we have |R| < 1 and R is a real number. For incident angles greater than the 

critical angle (θ1 > θc) we have |R| = 1 and R is a complex number. The critical angle, θc, 

is given by 

1

2sin
n
n

c =θ .              (2.8) 

For incident angles greater than the critical angle (θ1 > θc), R is given by 

φjeR 2=               (2.9) 

where φ  is different for TE and TM modes: 
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Figure 2.3 shows the TEφ  and TMφ for the interface between air and silicon. In this 

case, n2 = 1 and n1 = 11.70.5 = 3.4. 
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Figure 2.3 TEφ  and TMφ versus incident angle (n1 = 3.4 and n2 = 1) 

As is shown in Figure 2.3, the phase shift increases from 0 at the critical angle to 90° 

at the grazing incidence (θ1 = 90°). It increases with infinite slope at θ1 = θc. 

The above discussion helps us understand how a guided mode is created. Imagine the 

dielectric waveguide of Figure 2.4 in which we assume n2 > n1,n3. In this case we will 

have two critical angles θ21, θ23 and we will have a guided mode if θinc > θ21,θ23. Guided 

waves will travel in zig-zag fashion, as shown in Figure 2.4. The fields of these guided 

waves vary as 

)]sincos(exp[ 2 θθ zxjkn +±−          (2.12) 
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where  

c
k ω

λ
π

==
2  .            (2.13) 

 

Figure 2.4 Guided wave 

The effective propagation constant in the Z-direction is given by 

θωβ sin/ 2knv p ==  .          (2.14) 

We realize that only discrete set of angles lead to a self-consistent picture that 

corresponds to what we call the “guided modes”. For a fixed z, let us add up the phase 

shifts that occur as we move up from the lower film boundary (x = 0) with one wave to 

the other boundary (x = h) and then back down again with the reflected wave to where we 

started from. For guided modes, the sum of all these phase shifts must be a multiple of 

2π. This means: 
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πφφθ mhkn 222cos2 312 =−−          (2.15) 

where 12ϕ− and 32ϕ− are phase shifts due to the reflections from dielectrics 1 and 3 and 

m is the mode number.  

The Goos-Hanchen Shift and the Effective Guide Thickness [1] 

Here we compare the phase-shift due to the total reflection for two rays with z-

component wave vectors of β-Δβ and β+Δβ. In this case, we are dealing with total 

complex amplitude of Ainc,total given by: 

zjzjzj
incinctotalinc ezeeAAA ββΔββΔβ

βΔββΔβ βΔ −+−−−
−− =+=+= )cos(2)()(

,,,          (2.16) 

and Aref,total can be calculated by (for small Δβ) 

)2)(()2)((
,,,

βΔββΔβ φβΔβφβΔβ
βΔββΔβ

+− −+−−−−
+− +=+=

zjzj
refreftotalref eeAAA  

)2(
1

)2()2()2( ))2(cos()( φβφβφΔβΔφΔβΔ βΔ −−−−−−− −=+= zjzjzjzj ezzeee      (2.17) 

where 

β
φ

d
dz =1             (2.18) 



15 

 

 

Figure 2.5 Lateral shift of the wave packet in reflection 

where z1 represents the lateral shift of the wave packet as shown in Figure 2.5. From 

equations (2.10), (2.11), and (2.14), we can derive the following expressions for the TE 

and TM modes [1]: 

θtan)( 2/12
1

2
1

−−= nNkz           (2.19) 

)1/(tan)( 2
2

2

2
1

2
2/12

1
2

1 −+−= −

n
N

n
NnNkz θ         (2.20) 

where N is the “effective guide index” given by: 

θβ sin/ 2nkN ==  .           (2.21) 

Based on Figure 2.5, later shift of z1 is translated to the penetration depth of x1 given 

by: 

θtan/11 zx =  .           (2.22) 
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Based on the electromagnetic theory of waveguides, x1 is closely related to the decay 

constant of the evanescent fields in the substrate [1]. 

Now let us study a configuration similar to Figure 2.6 in which n2 > n1,n3. In this case 

a guided wave can be generated inside the dielectric 2. From Figure 2.6 we can calculate 

the effective guide thickness: 

31 xxhheff ++=  .           (2.23) 

 

Figure 2.6 Three dielectrics n1, n2 and n3 (n2 > n1,n3) 

If we assume the material associated with n1 and n3 is air and solve the complete 

electromagnetic problem inside the waveguide, we will have the following results [2]: 

for TE modes:  
α
1

0 =z          (2.24) 

for TM modes: 1
2
0
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0 )1)(1( −−+=
kk

z
d
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α

       (2.25) 
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where z0 is the effective penetration depth,  β is the guide propagation constant, and 

2
0

2 k−= βα            (2.26) 

0
0

2
λ
π

=k             (2.27) 

d
dk

λ
π2

=             (2.28) 

where λ0 is the wavelength in air and λd is the wavelength in the dielectric. 

For slabs without a ground plane on either side, we can write 

02zhheff +=             (2.29) 

where h is the physical thickness of the substrate. For slabs with a ground plane on one 

side, we can write 

0zhheff +=  .            (2.30) 

And for slabs with ground planes on both sides, 

hheff =  .            (2.31) 

TEM mode is the only special case in which we have [2] 

hheff 2=  .            (2.32) 

We study the heff because we can use it to relate heff to the power per width in all of the 

above modes by the following equation [2], 
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4
effEHh

P =             (2.33) 

where E and H are the maximum transverse electrical and magnetic fields amplitudes. 

Figure 2.7 shows how heff varies for the different modes and substrate thicknesses when 

εr=4 [2]. For ungrounded substrate and grounded substrate heff has a minimum where the 

surface-wave power is largest. For very thin dielectric guides, heff becomes very large and 

surface-wave losses go to zero. For parallel-plate guides, heff goes to zero as the guide 

becomes thin, and the losses are large. The guide modes can be excited depending on εr, 

h, and whether or not there are ground planes on each side of the substrate.  
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Figure 2.7 heff versus substrate thickness for different guide modes (εr = 4) [2] 
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Figure 2.7 also shows that by increasing the substrate thickness a greater number of 

substrate modes get excited. A silicon chip placed on a metallic substrate (the most 

common configuration) shapes a grounded substrate. As seen in Figure 2.7, for this 

configuration the TM0 mode gets excited before the TE0 mode. In the next section, we 

will review different possible solutions for implementing on-chip antennas in standard 

silicon processes and discuss their pros and cons. 

 

2.3 On-Chip Antennas and Silicon Processes 

In a standard silicon process the substrate resistivity is typically between 1 Ω.cm and 

10 Ω.cm. The main reason for this low resistivity is the high level of doping used in these 

processes. Due to this low resistivity of the silicon substrate, most of the energy coupled 

to the substrate modes gets wasted as heat and reduces the overall antenna efficiency. The 

remaining part of the energy coupled to these substrates modes reaches the edge of the 

chip, couples to the air, and interferes with the main beam of the antenna. In a well-

designed on-chip antenna we would like to minimize these substrate modes to increase 

the antenna efficiency and achieve a predictable antenna pattern. In the following section 

we compare different options in designing on-chip antennas and discuss their pros and 

cons.    

 

 



20 

 

A. Radiating from topside without ground shield 

The most obvious choice for on-chip antennas is to implement them as metal lines on 

top of the substrate and radiate upward into the air. In this subsection, we show why this 

may not be an effective solution by looking at a dipole antenna placed at the boundary of 

semi-infinite regions of air and dielectric (Figure 2.8). 

 

Figure 2.8 Radiating from top side without any ground shield 

Although this over-simplified configuration does not correspond to the practical 

setting, it guides us to better understand the effects of silicon high dielectric constant on 

antenna radiation pattern and efficiency. For a dipole antenna seeing the vacuum (or air) 

on one side and a dielectric on the other side, the ratio of the power coupled into air to the 

total radiated power is approximated2 by [2], 

2/3

1

dtotal

air

εP
P

=                                                                    (2.34) 

                                                            
2 Within a factor of 2 
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where Pair is the radiated power into air, Ptotal is the total radiated power, and εd is the 

dielectric constant. From this formula for silicon dielectric (εd ~ 11.7) a very small 

portion of the power radiates into the air (about 3%) and the rest of it couples into silicon. 

This demonstrates that without any mechanism to reroute the power coupled into silicon 

substrate, it is not possible to implement a high-efficiency antenna on silicon this way.  

 

B. Radiating from topside with on-chip ground shield 

Another possible option is to incorporate an on-chip ground shield and try to reflect 

the radiated energy upward, thus preventing it from coupling into silicon, as shown in 

Figure 2.9. 

 

Figure 2.9 Radiating from top side with an on-chip ground shield 

In the case of an on-chip ground shield, the on-chip antenna and the ground shield 

have to be placed inside the SiO2 due to process limitations. For such a configuration the 

distance of the antenna and the ground shield affects the antenna-ground coupling and 

determines the radiation resistance. Unfortunately the distance between the bottom of the 
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top metal layer and the top of the lowest metal layer rarely exceeds 15 μm in today’s 

process technologies. This small antenna-ground spacing causes a strong coupling 

between the antenna and the ground layer which lowers the all-important radiation 

resistance. Figure 2.10 shows the results of the electromagnetic simulations of a copper 

dipole antenna placed over a metal ground plane with a SiO2 dielectric of thickness, h, 

sandwiched in between [3]. The dipole dimensions are 4 μm × 20 μm × 1150 μm and a 

moment-based EM simulator, IE3D [9], is used to perform the simulations. The dipole-

length is equal to a length of a resonant dipole at 77 GHz which is placed in the boundary 

of semi-infinite regions of air and SiO2. Based on this simulation, for a spacing of 15 μm 

between the antenna and the ground layer, the radiation resistance is very small (0.1 Ω) 

hence the total resistance is dominated by the ohmic loss of the copper, resulting in a 

radiation efficiency of less than 5%.  

 

Figure 2.10 Dipole radiation resistance and efficiency 
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An option to increase the efficiency of the antenna seems to be the implementation of 

an off-chip ground shield to increase the distance between the antenna and its ground 

layer. We will discuss this case in the next subsection.  

C. Radiating from topside with off-chip ground shield 

As shown in Figure 2.11, an off-chip ground shield can be placed underneath the 

silicon substrate. In this case the silicon substrate thickness is much larger than the SiO2 

layer and effectively we are dealing with a high dielectric constant substrate (ε = 11.7). 

Unfortunately, because of the high dielectric constant of silicon and the large substrate 

thickness (100 μm or more) most of the power couples into substrate modes. 

 

Figure 2.11 Radiating from top side with an off-chip ground shield 

If we assume the thickness of SiO2 is negligible compared to that of silicon, then the 

substrate modes’ power can be numerically calculated. Based on these results, 

normalized radiated power and surface-wave power (substrate modes’ power) are plotted 
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in Figure 2.12 and Figure 2.13, respectively. These quantities are normalized to dipole’s 

free space radiated power given by [2]: 

πεμω 12/222/1
0

2/3
0

2
0 dIP =                                              (2.35) 

where I is the current, ω is the angular frequency, and d is the effective length of the 

dipole. As is shown in Figure 2.12, at 77 GHz the maximum radiated power, which is 

around 1.3 P0, occurs at the silicon substrate thickness of 290 μm (h = 0.075λ0). 

However, at this substrate thickness, the power in all the surface wave modes is more 

than 3.5 P0 (Figure 2.13), which indicates that even in the case of lossless silicon 

substrate, the power wasted in the surface wave modes is 2.7 times greater than the useful 

radiated power. It is important to realize that for a lossy and finite-dimensional substrate, 

the surface-wave power is either dissipated due to the substrate conductivity or radiated 

from the edge of the chip, and that often results in an undesirable radiation pattern. 
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Figure 2.12 Normalized radiated power for a grounded dipole [2] 
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Figure 2.13 Surface wave power for a grounded dipole [2] 

D. Radiating from the planar back side 

Following the prior discussion we attempt to determine what happens if we remove 

any ground shield and radiate from the backside of the chip (see Figure 2.14). In this 

case, based on numerical calculations [2], the normalized radiated and surface-wave 

powers are plotted in Figure 2.15 and Figure 2.16, respectively. At 77 GHz the total 

radiated power, the sum of the power radiated from the air side and the substrate side, 

peaks at the silicon substrate thickness of 580 μm (h = 0.15λ0) and approaches P0. At this 

substrate thickness, the total surface-wave power is around 3.4 P0 which is 3.4 times 

greater than the power radiated from the air side and the substrate side combined. 
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Figure 2.14 Radiating from planar back side 
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Figure 2.15 Normalized radiated power for an ungrounded dipole [2] 
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Surface Wave Power versus Substrate Thickness
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Figure 2.16 Surface wave power for an ungrounded dipole [2] 

 

E. Radiating from the back side using a dielectric lens 

Fortunately the amount of the total power absorbed into surface-waves depends on the 

geometry of the substrate. A hemispherical silicon lens with a matching layer can convert 

the surface-wave power to a useful radiated power [2]–[8]. This configuration is 

illustrated in Figure 2.17. A quarter-wave-length matching layer can be used to match the 

silicon impedance (Zsi = 110 Ω) to air impedance (Zair = 377 Ω) [2].  

In most of the designs discussed in the subsequent chapters we have used the silicon lens 

without the matching layer due to the fabrication limitations. Details of these designs are 

explained in Chapters 3 and 4. 
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Figure 2.17 Radiating from back side using a silicon lens 

2.4 Chapter Summary 

In this chapter we reviewed the concept of the substrate modes. Substrate modes 

significantly affect the antenna performance including its gain, efficiency, and 

impedance. In a well-designed on-chip antenna structure, these modes should be carefully 

analyzed and understood. We have reviewed different on-chip antenna configurations and 

compared their pros and cons. A silicon lens is used to minimize the substrate modes and 

convert them to useful radiating modes. 
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Chapter 3 

Millimeter-Wave Applications 

3.1 Introduction 

In this chapter the main applications of the millimeter wave transceivers are discussed. 

These include wireless communication, automotive radar, and imaging (for medical and 

security). One of the important characteristics of the millimeter waves which makes them 

suitable for a particular applications is the level of attenuation in different environments. 

Amazingly, the plot of the attenuation (by atmospheric gases) versus frequency is a 

highly variant non-monotonous curve, as shown in Figure 3.1 with a red color. As shown 

in this figure, in the millimeter-wave band (which is shown in the green area), the 

attenuation is around 15 dB/km at 60 GHz (due to the absorption of Oxygen molecules 

O2), and less than 0.5 dB/km at 94 GHz. This makes the 60 GHz band suitable for indoor 

communication and the 94 GHz band suitable for ground to space communication. In the 

sub-millimeter range, the attenuation level reaches to 1000 dB/km, and in the infrared 

range it goes down to 0.05 dB/km. 

Beside the attenuation, the other factor determining the applications for a specific 

frequency in the millimeter-wave range is the availability of low-cost active devices in 

that particular frequency. With today’s low-cost CMOS and SiGe technologies, it is 

possible to implement active devices to amplify signals with frequency of less than 
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200GHz. In the following sections, we will review some of these applications in more 

detail. 

 

Figure 3.1 Attenuation of millimeter waves by atmospheric gases (red curve), rain, and 
fog [10] 

 

3.2 Wireless Communication 

Among several frequency bands in the millimeter wave range approved by Federal 

Communications Commission (FCC), 24-24.25GHz3, 57-64GHz, and 92-95GHz bands 

are chosen to be used for communication purposes. 

24–24.25 GHz [11]— In this band, point-to-multipoint systems, omnidirectional 

applications, and multiple co-located intentional radiators transmitting the same 

                                                            
3 Although technically speaking the millimeter frequency range starts at 30GHz the behavior and general considerations for 24GHz 

systems are close enough to 30GHz to be considered in that category for the purposes of our discussions. 
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information are not allowed. Fixed, point-to-point operation is permitted in the 24.05–

24.25 GHz band subject to the following conditions: 

1) The field strength of emissions in this band shall not exceed 2500 millivolt/meter4. 

2) The frequency tolerance of the carrier signal shall be maintained within + 0.001% of 

the operating frequency over a temperature variation of –20°C to +50°C at normal supply 

voltage. 

3) Antenna gain must be at least 33 dBi. Alternatively, the main lobe beam-width must 

not exceed 3.5 degrees. The beam-width limit shall apply to both the azimuth and 

elevation planes. 

 57–64 GHz— In 2001, the Federal Communications Commission (FCC) allocated 7 

GHz in the 57–64 GHz band for unlicensed use. Table 3.1 shows the frequency band and 

the output power in different regions [12]. 

Region Output power Other considerations 

Australia (59.4–62.9 GHz) 

Canada and USA (57–64 GHz)

10 mW into antenna,       

500 mW peak 

150 W peak EIRP  

min. BW = 100 MHz 

Japan (59–66 GHz) 10 mW into antenna 47 dBi max. ant. Gain 

Europe (57–66 GHz) +57 dBm EIRP min. BW = 500 MHz 

Table 3.1 Spectrum and Emission Power [12] 

                                                            
4 Field strength limits are specified at a distance of 3 meters. 
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FCC sets the following rules for the 57–64 GHz band [11]: 

1) The band cannot be used for equipment used on aircraft or satellites and field 

disturbance sensors, including vehicle radar systems. 

2) Emission levels shall not exceed 9 μW/cm2 (EIRP of 10.2 W), as measured 3 meters 

from the radiating structure. 

Standardization— One of the completed standards for high-speed radio 

communication which supports data rates of up to 4 Gbps is WirelessHD [13]. 

WirelessHD is designed to replace the wires in the High Definition Multimedia Interface 

(HDMI) with radio links, and is designed to handle high-definition television (HDTV) 

video streams between AV equipment. The target is defined as handling full HD (1080 p) 

video without high-efficiency coding. Existing technologies such as wireless local area 

network (LAN; 20 Mbps to 30 Mbps) and Ultra Wide-Band (UWB; about 200 Mbps) 

cannot handle 1080 p without using high-efficiency coding.  

3.3 Automotive Radar 

Automobile radar operating in the 77 GHz frequency band is one such application as 

the 76~77 GHz band has been allocated for this purpose in many countries around the 

world [3]. Also, the Electronic Communications Committee (ECC) within the European 

Conference of Postal and Telecommunications Administrations has allocated the 77~81 

GHz window for automotive UWB short-range radar [14]. Compared to the radar bands 

at lower frequencies, such as the 24 GHz band, operating at the 77 GHz band is more 

compatible with other applications in the nearby frequency spectrum.  
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One of the applications of 76–77 GHz band is the Automotive Cruise Control (ACC) 

for vehicles. ACC systems are used to relieve the driver of part of his task of keeping 

distance and warn him in critical situations, thus making driving less strenuous, 

especially in flowing traffic. ACC can be activated typically at speeds of 30 km/h to 180 

or 200 km/h. ACC systems are usually mounted in the radiator-grill or front bumper, and 

operate in the 77 GHz band. 

FCC has approved unlimited use of the 24 GHz band for short range automotive 

applications but in Europe, The European Commission approved the decision on 

allocation of the 24 GHz frequency band for automotive short-range radar from only 

2005 until 2013. From mid-2013 new cars have to be equipped with SRR sensors which 

operate in the frequency range between 77–81 GHz (79 GHz band).  

Short Range Radar (SRR) can be used to monitor the surroundings of cars and gather 

useful information for safety and comfort applications. Radar appears to be the best 

sensor principle, because alternatives like video, laser, and ultrasound may have 

difficulties under bad weather conditions, when they are needed most. Additionally radar 

offers the vehicle manufacturers a stylistic advantage of mounting behind a plastic 

bumper that can be considered nearly transparent to the radar signal without requiring 

specific cut-outs or similar accommodations. 

Some of the applications of the SRR are the following [16]: 

1) ACC support with stop & go functionality 

2) Collision warning 
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3) Collision mitigation 

4) Blind spot monitoring 

5) Parking aid (forward and reverse) 

6) Lane change assistant 

7) Rear crash collision warning 

Especially the combination of LRR and SRR provides valuable data for advanced driver 

assistance systems (ADAS). Figure 3.2 illustrates some of these applications. 

 

Figure 3.2 Applications of automotive radar [15] 
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3.4 Medical and Security Imaging 

Passive and active techniques can be used in millimeter-wave imaging. In the passive 

millimeter-wave (PMMW) imaging, the receiver works as an infrared camera measuring 

the black body radiation in the millimeter-wave range. Active millimeter-wave imaging 

systems transmit mm-wave signals to an object and receive the scattered signals. The 

scattered data can be used to form the mm-wave picture of the object. 

MM-wave systems are able to form images during the day or night; in clear weather or 

in low-visibility conditions, such as haze, fog, clouds, smoke, or sandstorms; and even 

through clothing. In the far IR and sub-millimeter-wave regime, significant attenuation 

occurs from water vapor. Conversely, in the millimeter-wave regime, there are 

propagation windows at 35, 94, 140, and 220 GHz, where the attenuation is relatively 

modest in both clear air and fog. Even taking into account the much higher blackbody 

radiation at IR and visible frequencies, millimeter waves give the strongest signals in fog 

when propagated over distances of useful interest (Figure 3.3). In fact, millimeter-wave 

radiation is attenuated millions of times less in clouds, fog, smoke, snow, and sandstorms 

than visual or IR radiation. This is the critical advantage of PMMW imagery [10]. 

Figure 3.4 compares the quality of the image of a runway taken by a visible and 

passive microwave camera. As seen in the picture, the quality of the image taken with 

visible camera is significantly deteriorated in foggy weather, whereas the quality of the 

image taken by a passive microwave camera is not changed significantly. 
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It is important to realize that by increasing the aperture size, the quality of the image is 

improved. Figure 3.5 compares three images taken by a passive scanning system with 

different aperture sizes. As expected, the quality of the scanning system with larger 

aperture size is better than the one taken by a smaller aperture. 

One of the important characteristics of the millimeter imaging (especially active 

imaging) is the penetration. This can be used in several applications including concealed 

weapon detection for security purposes and tumor detection for medical purposes. Figure 

3.6 shows a picture taken by a passive camera and Figure 3.7 shows the one taken by an 

active camera. In both cases, it is clear that the person in the picture is carrying a weapon. 

Figure 3.8 shows one of the medical applications. In this figure, a picture of a breast 

tumor taken by an active camera is shown.  

 

Figure 3.3 The effect of fog on the blackbody radiation intensity of the sun (6,000 K) and 
a ground object (~ 300 K) as a function of wavelength. Curves are shown for both objects 
without fog and with the effect of 1 km of fog. [10] 
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Figure 3.4 PMMW images of a runway: (a) and (c) show visible images in clear and 
foggy weather; (b) and (d) show the corresponding PMMW images. [10] 

 

Figure 3.5 The airport scene in visible light (a) with varying aperture sizes for the 94 
GHz PMMW scanning system: (b) 48 in, (c) 24 in, and (d) 12 in [10] 
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Figure 3.6 Concealed weapon detection with PMMW [16] 

 

 

Figure 3.7 Concealed weapon detection with active imaging [16] 
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Figure 3.8 Active microwave detection of breast tumor [16] 

 

3.5 Chapter Summary 

In this chapter, we reviewed some of the millimeter waves’ applications. These 

include high-speed wireless communication, accurate radar systems, and security and 

medical imaging. Penetration and ability to perform in bad weather are the unique 

characteristics of these systems, which are extremely important for radar and imaging 

applications. 
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Chapter 4 

A 77 GHz 4-Channel Phased-Array Transceiver 
with On-Chip Antennas in Silicon 

4.1 Introduction 

Silicon technology has entered the realm of millimeter wave frequencies by the sheer 

force of transistor scaling, unmatched levels of integration, low cost, and high yield. This 

has opened the door to a plethora of new applications, formerly accessible only to 

compound semiconductors. Although compound semiconductor technologies, such as 

GaAs and InP, provide better single device performance, they do not provide the same 

large-scale integration capabilities in terms of yield and cost. High yield integration of 

silicon based technologies lowers the cost of the production and at the same time makes it 

possible to integrate billions of transistors on the same die to form RF systems enabling 

an unprecedented level of functionality and flexibility. Tuning and calibration capability 

achieved by co-integration of digital circuitry improves the performance of the critical 

analog/RF elements and makes it possible to use silicon devices which have traditionally 

had poor modeling quality.  More importantly, integration of advanced base-band and 

signal processing elements enables the realization of novel system architectures for 

existing and emerging mm-wave applications.  

To be able to compete with compound technologies in terms of performance, some 

key problems need to be addressed. Low breakdown voltage transistors in silicon-based 
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processes make power generation more challenging and poor metal conductivity makes it 

less efficient. Lossy silicon substrate and low conductivity interconnect make the 

integration of passive elements, such as inductors, capacitors, and transmission lines, less 

effective by significantly reducing the quality factor (Q) of these passive structures. 

While GaAs and InP-based technologies provide relatively high substrate resistance (107 

to 109 Ω-cm), the silicon bulk used in today’s standard processes limits the substrate 

resistivity to less than 10 Ω-cm, mainly due to the high level of doping required to avoid 

transistor latch-up. 

These problems limit the efficiency and maximum output power of the PAs on the 

transmitter side, increases the noise figure (NF) of the LNA, and thus lowers its 

sensitivity and gain on the receiver side. However, higher levels of integration enable 

implementation of low-cost highly integrated phased arrays which can alleviate both of 

these problems. Phased arrays which are discussed in Section 4.1.1 increase the 

transmission Effective Isotropically Radiated Power (EIRP) and improve the system 

Signal-to-Noise Ratio (SNR) on the receiving side.  

In this chapter, we will present the first fully integrated W-band on-chip radar which 

includes a four-channel phased-array transmitter, four-channel phased-array receiver, 

frequency synthesizer, phase shifters, and on-chip antennas [3] , [17]. 
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4.1.1 Phased-Array Systems 

Multiple antennas with appropriate phase and amplitude adjustments can be used to 

shape the effective radiation pattern of the whole antenna array. Figure 4.1 shows N 

linear receiving antenna elements located on the x-axis. Assuming an individual antenna 

gain of Gk(θ), phase delay of φ k(θ), and amplitude adjustment of Ak(θ) for antenna k, the 

array pattern of )(θΨ on the x-y plane can be calculated as 

∑
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+−
=
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k

x
j

kk

k
keAG

1

)
sin
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)()()( λ

θ
πφ

θθθΨ            (4.1) 

where xk is the location of the antenna k and λ is the free-space wavelength.  

 

Figure 4.1 Receiving antenna array 
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Due to the reciprocity theorem of linear time independent systems (LTI), the 

transmitting array pattern can also be calculated by equation (4.1). A sample of a 

transmitting array is illustrated in Figure 4.2. 

 

Figure 4.2 Transmitting antenna array 

In most of the conventional phased arrays, the spacing between adjacent antenna 

elements is chosen to be about λ/2, gain factor (Ak) to be constant across elements, and 

φ k-φ k-1 = φ 0 = constant. With this choice of parameters, and assuming an isotropic single 

element pattern for each antenna, there will be a single main lobe with minimized side 

lobes. In this case, the magnitude of the array pattern can be calculated by 
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and power gain in dB will be 

))((log10)( 2
10 θΨθ ⋅=pG  .                       (4.3) 

It is important to mention that the advantage of phased-array receivers is not limited to 

the capability of shaping the array pattern. On the receiver side, a phased array system 

can improve the signal-to-noise ratio (SNR) of the receiver. This is because of the fact 

that signals at each element combine coherently but noise combines incoherently [18]. 

Thus, the signal power increases by a factor of N2 while noise amplifies by a factor of N, 

hence the SNR improves by a factor of N (10·log10(N) in dB). For example, for an array 

size of N = 8, the SNR improves by a factor of 9dB. 

On the transmitter side, phased array can alleviate the problems involved in designing 

a high power PA. The EIRP of a single PA connected to an isotropic antenna while 

transmitting power P can be calculated as 

PEIRPs =  .              (4.4) 

However, the EIRP of an array of PAs each connected to an isotropic antenna and 

each transmitting power (P/N) can be calculated as 

NPNPNEIRParray == )/(2  .            (4.5)  

From the above equations, we see that to achieve the same EIRP, each PA in the array 

has to transmit N2 times less power than the single PA connected to an isotropic antenna. 
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4.2 A 77 GHz Phased-Array Transceiver 

In this section, we will go through the details of the design, layout, and measurement 

of the 77 GHz transceiver. 

Process— The chip is implemented in the IBM 130 nm Silicon Germanium BiCMOS 

process. This process has substrate resistivity of about 10 Ω.cm and five levels of copper 

metal layers, including M1, M2, M3, M4, each with a thickness of 0.32 µm, and M5, with a 

thickness of 0.55 µm, as well as two levels of aluminum with thicknesses of 1.25 µm and 

4 µm. The process also provides 120 nm NPN bipolar transistors with peak fT of 200 

GHz. 

4.2.1 Receiver Block Diagram 

The 77 GHz 4-element phased-array transceiver integrates multiple signal 

transmission elements, receiving elements, signal distribution and combination, LO 

signal generation and distribution, phase shifters, and 77 GHz antennas on a single silicon 

die [3] , [17]. In this section, we describe the block diagram of the 77 GHz 4-element 

phased-array receiver. The transmitter and LO generation circuits are discussed in [17]. 

Figure 4.3 shows the architecture of the receiver chip. It adopts a two-step down-

conversion scheme with an RF frequency of 76~81 GHz and an IF in the 25~27 GHz. 

This frequency plan enables us to generate the first and second LO signals off of a single 

frequency synthesizer. It is also noteworthy to mention that the IF is located in the 22~29 

GHz radar band, hence a dual-mode radar chip can be potentially developed by bypassing 
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the RF front-end. Each receiver front-end consists of an on-chip dipole antenna coupled 

to a dielectric lens, an LNA, an RF mixer, and a dual-mode IF amplifier. The gain of the 

IF amplifier can be varied by 15 dB using a single digital control bit. 
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Figure 4.3 77 GHz phased-array receiver system architecture [3] , [17]5 

4.2.2 The 77GHz On-chip Dipole Antenna Design 

In Chapter 2, the concept of the substrate modes is introduced and the power coupled 

into the substrate modes is calculated for several configurations, including the planar 

substrates and the substrates with hemispherical lens. As mentioned in Chapter 2, the 

planar substrate behaves as a dielectric waveguide and converts the radiated power into 

                                                            
5Designed by Aydin Babakhani, Xian Guan, Abbas Komijani, and Arun Natarajan. 
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the substrate modes. In this section we will review the electromagnetic simulation results 

for on-chip antennas operating at 77 GHz. 

Figure 4.4 shows an on-chip dipole antenna with a length of 688 µm placed on a 

planar silicon substrate. The simulation is performed for four different cases including 

doped (lossy) grounded, doped (lossy) ungrounded, un-doped (non-loss) grounded, and 

un-doped (non-loss) ungrounded silicon substrates. 

 

Figure 4.4 An on-chip dipole antenna on a 400 µm thick silicon substrate. The bottom 
face of the silicon substrate is a perfect electric conductor. 

Figure 4.5 shows the magnitude of the electric field on the E- and H-planes of the 

dipole antenna placed on an un-doped (non-loss) grounded substrate. Figure 4.6 shows 

the simulation result for a doped (lossy) substrate. 
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Figure 4.5 Magnitude of the electric field for an un-doped (non-loss) grounded substrate 

 

Figure 4.6 Magnitude of the electric field for a doped (lossy) grounded substrate 
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As seen in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10, most of the dipole 

power is coupled to the substrate modes. The substrate waves travel inside the silicon 

slab and reach to the edges of the chip resulting in an undesirable radiation pattern. In the 

case of a lossy substrate (Figure 4.8 and Figure 4.10), most of the substrate modes’ power 

is wasted as heat. That is why the strength of the electric field in Figure 4.8 and Figure 

4.10 is weaker than that in Figure 4.7 and Figure 4.9. 

 

Figure 4.7 Magnitude of electric field for an un-doped (non-loss) grounded substrate         
(H-plane) 

  

Figure 4.8 Magnitude of the electric field a doped (lossy) grounded substrate (H-plane) 
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Figure 4.7 and Figure 4.8 show the magnitude of the electric field on the H-plane (YZ) 

while Figure 4.9 and Figure 4.10 show the magnitude of the electric field on the E-plane 

(XZ). In all of these simulations, the bottom face of the silicon substrate is assumed to be 

a perfect electric conductor (grounded substrate). 

 

Figure 4.9 Magnitude of the electric field for an un-doped (non-loss) grounded substrate      
(E-plane) 

 

Figure 4.10 Magnitude of the electric field for a doped (lossy) grounded substrate              
(E-plane) 
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Figure 4.11 to Figure 4.16 show the simulation results for an ungrounded silicon 

substrate. In these cases the perfect-E boundary is removed from the bottom face of the 

substrate. 

 

Figure 4.11 Magnitude of the electric field for an un-doped (non-loss) ungrounded 
substrate 

 

Figure 4.12 Magnitude of the electric field for a doped (lossy) ungrounded substrate 



52 

 

As seen in Figure 4.13 to Figure 4.16, most of the power is radiated from the back side 

(bottom) of the substrate instead of the top side. In this case, a significant portion of the 

power is coupled to the substrate modes. This power travels to the chip edge, couples into 

the air, and interferes with the power radiated from the bottom side, resulting in an 

undesired radiation pattern. 

 

Figure 4.13 Magnitude of the electric field for an un-doped (non-loss) ungrounded 
substrate (H-plane) 

 

Figure 4.14 Magnitude of the electric field for a doped (lossy) ungrounded substrate          
(H-plane) 
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Figure 4.14 and Figure 4.16 show the simulation results for a doped (lossy) substrate. 

In these cases, most of the power coupled into the substrate modes is wasted as heat. 

 

Figure 4.15 Magnitude of the electric field for an un-doped (non-loss) ungrounded 
substrate (E-plane) 

E-plane (XZ)

 

Figure 4.16 Magnitude of the electric field for a doped (lossy) ungrounded substrate          
(E-plane) 
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As mentioned in Chapter 2, the amount of the total power coupled into the substrate 

modes depends on the substrate geometry. By placing an un-doped (non-loss) 

hemispherical silicon lens on the backside of the substrate (Figure 4.17), most of the 

substrate modes’ power will travel inside the silicon lens and couple into the air. Due to 

the impedance mismatch between the silicon and air, about 30% of the power is reflected 

from the silicon-air boundary. Figure 4.18 to Figure 4.20 show the magnitude of the 

electric field inside the silicon substrate and the silicon lens. The magnitude of the 

electric field on the H-plane is shown in Figure 4.19, whereas the magnitude of the 

electric field on the E-plane is shown in Figure 4.20. 

Radiation Boundary 
(r=6mm)

Silicon Substrate                
(x=4mm, y=4mm, z=0.4mm)

Hemispherical Silicon Lens 
(r=4mm)

Dipole Antenna                   
(x=0.688mm, y=0.01mm, z=0.002mm)

 

Figure 4.17 An on-chip dipole antenna on a 400 µm thick un-doped silicon substrate 
which is placed on a hemispherical silicon lens (lens and substrate are both un-doped) 
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Figure 4.18 Magnitude of the electric field in the substrate and the silicon lens 

 

Figure 4.19 Magnitude of the electric field on the E-plane 
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H-plane (YZ)

 

Figure 4.20 Magnitude of the electric field on the H-plane 

In the real implementation, antennas are fabricated by using bottom metal layers to 

minimize the distance to the substrate. A parallel combination of three bottom metal 

layers maintains high antenna metal conductivity. To further reduce the substrate loss, the 

silicon chip is thinned down to 100 μm. This minimizes the path length through which 

the radiated wave travels inside the lossy doped substrate. Due to layout limitations in our 

design, antennas are placed at the edge of the chip and a slab of un-doped silicon is 

abutted to the substrate to maintain a uniform dielectric constant substrate underneath the 

antenna (Figure 4.21). For mechanical stability, a 500 μm thick un-doped silicon wafer is 

placed underneath the chip and the silicon lens is mounted on the back side seen in Figure 

4.21. All of the low frequency connections are brought to the chip by board metal traces 
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and wire-bond connections. As this setup is highly compatible with flip-chip technology, 

all of these low frequency signals can be carried by flip-chip connections as well. 

Silicon chip
77GHz 

receiver chip

un-doped 
silicon wafer

silicon lens

wire bond
board

Un-doped 
silicon slab

Un-doped 
silicon slab

I

Q

 

Figure 4.21 Board setup configuration 

 

4.2.3 Receiver Circuits Schematics 

77 GHz LNA Design— A differential two-stage LNA is designed and implemented. 

The LNA amplifies a differential signal received at the port of the on-chip dipole antenna 

and couples the differential signal to the down-converter mixer. One of the main 

challenges of the design is achieving a relatively high Common-Mode Rejection Ratio 

(CMRR) at millimeter-wave frequencies. The limitation is coming from the parasitic 

capacitance of the current source in the differential pair of the LNA. Figure 4.22 shows 

this parasitic capacitance. 
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Figure 4.22 A differential pair in the LNA 

 The CMRR of the LNA can be calculated as: 

|)(1| 1
1

−+= ωpm jCgCMRR  .            (4.6) 

At 77 GHz, a parasitic capacitance of 20 fF is translated to an impedance of about 103 

Ω. This low impedance of the current source significantly limits the CMRR by increasing 

the common-mode gain without changing the differential gain. To alleviate this problem, 

the architecture of the conventional design needs to be modified in a way to increase the 

common-mode gain without changing the differential gain. In our design, we have 

reduced the common-mode gain with the following methods: 

I— Instead of using two single-ended transmission lines, a differential coupled-wire 

transmission line is designed to carry the differential signal. This differential T-line 

introduces a differential impedance of 100 Ω to keep a good match for the differential 
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signal, but introduces a large mismatch for the common-mode signal. Figure 4.23 

illustrates this technique. 

CMRR

G S
G

G S
G

G S1S2
G

Zeven=50Ω, Zodd=50Ω Zeven=50Ω, Zodd=50Ω

 

Figure 4.23 Coupled-wire transmission line 

 

Figure 4.24 Cascode-node biasing 

II— To further minimize the common mode signal and increase the CMRR, the 

cascode node of the differential pair is not directly connected to a bias voltage. As is 

shown in Figure 4.24, this bias voltage goes through a series resistor to increase the base 

resistance of the differential pair for the common-mode signal. In this case, the common-

mode voltage applied to the emitter of the differential pair gets divided between the base-

source junction of the transistor and the series resistor shown in Figure 4.24. 

Consequently, this common-mode voltage is incapable of generating a strong common-
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mode current at the cascode transistor. The following equations show the relation 

between the current of the cascode transistor and the common-mode voltage of the 

emitter node: 

2
22

2
2 /1 e

bm

m
c v

Rg
g

i
β+

−=   (with the series base resistance(Rb))       (4.7) 

222 emc vgi −=   (with-out the series base resistance) .         (4.8) 

By using the above methods, the CMRR of the LNA is increased by a factor of 20 dB. 

The schematic of the two-stage LNA is shown in Figure 4.25(a). This differential cascode 

LNA driven by a differential dipole antenna uses shunt and series t-lines for impedance 

matching. The differential input impedance of the LNA and its differential output 

impedance are designed to be 50 Ω and 100 Ω respectively at 77 GHz. To bias the drain 

of the cascode transistors and base of the differential pairs, the stub transmission line is 

used. The VDD voltage is brought off-chip by using wire bonds, and bias voltage is 

generated by using a diode-connected transistor, as shown in Figure 4.25(a). To minimize 

the effect of the wirebond, on-chip MIM capacitors are used at the end of the stub 

transmission lines to introduce short impedance to ground at 77 GHz. The size of each 

capacitor is about 1 pF. To be able to independently bias the two stages, AC-coupling 

MIM capacitors are used, as shown in Figure 4.25(a). In order to characterize LNA 

performance independently, a single-ended-to-differential converter (balun) following a 

λ/4 t-line is placed at the front of the standalone LNA test structure, as shown in Figure 

4.25(b). This combined structure converts the differential 50 Ω input impedance of the 
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LNA to single-ended 50 Ω impedance which can be easily driven by a single-ended 50 

Ω waveguide probe. 
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Figure 4.25 (a) 77 GHz LNA schematic. (b) Schematic of the 77 GHz balun 
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In the millimeter frequencies, it is very important to carefully calculate all of the 

parasitic capacitances and inductances. At 77 GHz, a 20 fF parasitic capacitance is 

equivalent to an imaginary impedance of –100Ω which can significantly affect the 

matching. At this frequency, a 100 pH parasitic inductance translates to an imaginary 

impedance of 50 Ω. To extract the parasitic capacitance of the transistors and metal 

layers, we have used Cadence [20], but to simulate the transmission line structures, IE3D 

[9] is used. The S-parameters of the EM-structures extracted from IE3D are inserted in 

Cadence and the complete LNA including the parasitic elements is simulated using 

Cadence. 

Figure 4.26 shows the IE3D layout of the inter-stage transmission lines and Figure 

4.27 shows the current density on these lines. Six ports are defined at the input, output, 

and biasing nodes of the inter-stage transmission lines. The 6×6 S-parameter matrix 

generated by IE3D is imported into Cadence. In Figure 4.26, ports 1 and 2 are the input 

ports (output of the 1st stage), ports 3 and 4 are the output ports (input of the 2nd stage), 

and ports 5 and 6 are used to supply the bias voltage (Vb3 in Figure 4.25(a)). 

The IE3D layout and the current density of the output transmission lines are shown in 

Figure 4.28 and Figure 4.29, respectively. In Figure 4.28, ports 1 and 2 are the input ports 

(ouput of the second stage), ports 3 and 4 are the output ports (output of the LNA), and 

ports 5 and 6 are connected to VDD. MIM capacitors are used to connect ports 5 and 6 to 

the ground. For DC signals, these nodes are connected to VDD but for RF signals, these 

nodes are shorted to the ground. Output of the LNA, ports 3 and 4 in Figure 4.28, which 
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has a differential impedance of 100 Ω, is matched to the 100 Ω differential input 

impedance of the mixer. 

  

Figure 4.26 IE3D layout of the inter-stage transmission lines 

 

Figure 4.27 Current density on the inter-stage transmission lines 
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Figure 4.28 IE3D layout of the output transmission lines 

 

Figure 4.29 Current density on the output transmission lines 
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Figure 4.30 shows the IE3D layout of the on-chip dipole antenna and the input pads. 

The LNA is modeled as a large sheet of ground layer. The input of the LNA is connected 

to the on-chip dipole antenna as well as the input pads. To characterize the performance 

of the receiver using wafer probing, laser trimming is used to disconnect the dipole 

antenna from the LNA input and the on-chip pads. To measure the receiver performance 

with on-chip dipole antennas, laser trimming is used to disconnect the on-chip pads. 

 

Figure 4.30 Dipole antenna with on-chip pads 
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Figure 4.31 shows the simulated input conductance of the antenna for the 

configuration shown in Figure 4.30. In this simulation, the on-chip pads are included in 

the measurement but they are not electrically connected to the dipole input. Based on this 

simulation, at 80 GHz, the on-chip antenna has a real input impedance of about 40 Ω. 

C
on

du
ct

an
ce

(Ω
-1

)

 

Figure 4.31 Input conductance of the dipole antenna 

Distributed Active Combiner6 [19]— The 4-path 26-GHz signals are combined 

through a distributed active combining amplifier, as shown in Figure 4.32. Emitter 

resistive degeneration is implemented at the input transconductors to improve the 

linearity, and accordingly the dynamic range, of the system. The current outputs of the 

transconductors are routed to the combining node via a symmetric two-stage binary 

structure. A pair of cascode transistors is inserted at each combining junction to isolate 

the input and output ports, thereby improving the overall stability of the amplifier. The 
                                                            

6Designed by Dr. Xian Guan. 



67 

 

total length of each routing transmission line, T1, is 340 µm and that of T2 is roughly 2.55 

mm. Both T1 and T2 use a differential T-line structure with ground and side metal shields 

to minimize the substrate loss and cross coupling. Matched transmission line terminations 

are obtained by choosing the appropriate bias current so that the conductance gm of the 

cascade transistors is matched to the real t-line conductance. For the operating frequency 

of ω0, the imaginary part of the emitter-base admittance, jω0Cπ , is much smaller than gm 

if the transistor transition frequency ωT is much higher than ω0. Therefore, a matched 

termination can be achieved even without additional passive tuning. In this work, we 

dedicated 1 mA dc bias current to each branch. T1 is designed to exhibit 64 Ω odd-mode 

impedance, while T2 has an odd impedance of 32 Ω. Simulations show that the return loss 

is better than 10 dB at the terminations of the transmission lines at both levels. The 

differential output of the amplifier is loaded with an LC tank with parallel resistors to 

improve the bandwidth. 
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Figure 4.32 A 26 GHz combining amplifier [19] 
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Down-converter Mixer7[19]— A pair of double-balanced mixers driven by 

quadrature LO signals are used to perform frequency translation from 26 GHz to 

baseband, one of which is shown in Figure 4.33. The 26 GHz signals are coupled into the 

mixer transconductance stage through 0.9 pF MIM capacitors. The input differential pair 

is degenerated with 30 Ω resistors at the emitter to improve linearity. 

LO+

IF-

LO-

100Ω

LO  Buffer

Vbias3

Vbias4 Vbias4

Vdd

Vbias1 Vbias1
Vbias2

Vbias2

Vdd

BB+

IF+

BB-

26-GHz-to-baseband 
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Figure 4.33 26-GHz-to-baseband mixer and 26 GHz LO buffer [19] 

The LO port of the mixer is fed by a 26 GHz buffer, which is used to compensate the 

LO signal loss through the distribution network, ensuring the differential LO amplitude 

applied to the mixer is larger than 200 mV so that the mixer gain is saturated. The input 

matching of the LO buffer is provided by an explicit 100 Ω resistor directly connected 

between the differential inputs. Although a matching network composed of inductors and 

                                                            
7Designed by Dr. Xian Guan. 
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capacitors can provide additional voltage gain, this solution is prohibited by the limited 

silicon area. The LO buffer is loaded with 0.6 nH spiral inductors and 320 Ω de-Q 

resistors, providing a gain of 15 dB. With 280 Ω load resistor, the second mixer achieves 

6 dB conversion gain and 8 GHz IF-referred bandwidth. The mixer core consumes 4 mA 

dc current and the LO buffer drains 1 mA. 

An on-chip differential voltage-controlled oscillator generates the first LO signals at 

52 GHz, which are symmetrically distributed to each RF mixer using differential 

transmission lines (T-line). A network of LO buffers is used for LO signal distribution to 

compensate for the T-line loss and to ensure hard switching of the mixers. The 

continuous analog phase shifting is performed locally at each RF mixer by an analog 

phase rotator, which realizes continuous beam steering while accurately compensating for 

the phase and amplitude deviations. The quadrature second LO is obtained by dividing 

the first LO frequency by 2. A frequency divider chain is used to further divide the 

second LO frequency down to 50 MHz to be locked to an external reference frequency. 

4.2.4 Transmission-Line-Based Design 

The conductor-backed coplanar waveguide (CBCPW) structure, shown in Figure 4.34, 

is used for impedance matching. The use of vias to connect back and side ground planes 

eliminates unwanted parallel-plate modes. Figure 4.35 shows the magnetic field 

distribution in the transmission line, simulated with Ansoft HFSS 3-D field solver. The 

characteristic impedance of the transmission line in this simulation is 50 Ω. The bottom 

plate carries very little current (small tangential component of the magnetic field) while 

the side shield carries most of the return current.  
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Figure 4.34 On-chip transmission line 

 

Figure 4.35 Magnetic field distribution in the tub transmission line 

The tub shape reduces surface wave propagation in the silicon substrate, improving 

isolation between lines. Figure 4.36 shows the isolation between two adjacent 50 Ω lines 

versus their center-to-center spacing, simulated using IE3D [9]. The lines are 

implemented using the top three metals of the process. The side shields increase isolation 

by more than 20 dB. The coupling in the secondary line is larger in the direction opposite 
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to the wave direction of the primary line. There is a trade-off between the isolation of 

lines and their insertion loss. Since the side-shield increases unit length capacitance, in 

order to keep the characteristic impedance constant, the width of the line should be 

reduced. This increases the loss of the transmission line. The 50 Ω line with shield has a 

loss of 0.75 dB/mm and a quality factor of 10 at 77 GHz. 
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Figure 4.36 Isolation between two lines (with shield and without shield) 
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4.2.5 LNA Layout  

Figure 4.37 shows the standalone LNA layout. Parasitic capacitances of the transistors 

are carefully calculated. Transmission lines and MIM capacitors are used for matching 

purposes. Due to the low quality factor of inductors at these frequencies and their 

coupling to the substrate, no inductor is used. LNA transmission lines are meandered to 

minimize the area and ease the floor-planning of the whole transceiver chip. 

 

Figure 4.37 77 GHz LNA layout 

The 1st and 2nd stages of the LNA are shown in Figure 4.37. Coupled-wire 

transmission lines carry the differential signal from the first stage to the second one, and 

single-wire transmission lines behave as stub lines maintaining the impedance match. 
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4.2.6 System Layout 

Layout of the system is shown in Figure 4.38. The system is designed to enable an 

independent test of the transmitter and receiver. Biasing pins of the transmitter are 

located at the receiver as well as at the top and bottom sides of the chip. In the setup used 

for transmitter measurement, there are no wire-bonds on the transmitter side of the chip 

and high-frequency probes can easily couple the W-band signal to the pads on the 

transmitter side of the chip. On the other side, biasing pins of the receiver are located at 

the transmitter, as well as the top and bottom of the chip (Figure 4.38). This eases the 

receiver measurement in which there are no wire bonds on the receiver side of the chip 

and high-frequency probes can couple the signal to the pads on the receiver side. 
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Figure 4.38 77 GHz system layout 
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4.3 Measurement of the 77 GHz Phased Array Receiver 

The 77 GHz phased array is fabricated in a 130 nm SiGe BiCMOS process with a fT of 

200 GHz for SiGe HBT devices. The receiver section occupies roughly 9 mm2 of the 

6.8mm × 3.8mm total chip. Figure 4.39 shows the die micrograph. 
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Figure 4.39 77 GHz chip micrograph 

To accurately characterize the receiver performance, a stand-alone LNA with 

integrated balun is measured. One of the important parameters necessary for accurate de-

embedding of the stand-alone LNA measurements is the loss of the balun and the 

following λ/4 t-line. Two identical baluns including the matching transmission lines are 

designed and connected together at their differential nodes, as shown in Figure 4.40.  
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Figure 4.40 77 GHz LNA with on-chip balun 

The loss of the two series identical structures is expected to be twice that of a single 

one. The measured balun loss and the LNA performance versus frequency are shown in 

Figure 4.41 and Figure 4.42, respectively.  
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Figure 4.41 Measured on-chip balun loss 
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Figure 4.42 LNA gain and noise figure 
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Standalone LNA peak gain of 23.8 dB is measured at 77 GHz with a 3 dB bandwidth 

of more than 6 GHz, while the lowest noise figure of 5.7 dB is measured at 75.7 GHz. 

The LNA consumes 17.5 mA from a 3.5 V supply. 

Figure 4.43 illustrates the test setup for measuring the receiver gain. The input signal 

at 77 GHz range is provided by a Spacek frequency quadrupler capable of delivering 

output frequency from 60–90 GHz. The input of the frequency quadrupler is supplied by 

signal generator working up to 26.5 GHz. The power of the input signal can be adjusted 

by a variable linear attenuator. A WR-12 planar wafer probe is used to feed the single-

ended signal to the LNA input. The external connections between W-band components 

are built using WR-12 waveguides. The microwave input power is calibrated up to the 

probe tip using Agilent E4418B power meter with a W-band power sensor. An exclusive 

OR (XOR) logic gate acting as a phase detector and a first-order RC low-pass filter 

complete the PLL which locks the phase and frequency of the 52 GHz VCO to a 50 MHz 

reference provided by signal generator. The baseband outputs are characterized using 

Agilent 4448A spectrum analyzer. The same setup is also used for receiver noise figure 

measurement except the RF inputs are replaced with a W-band noise source. 
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Figure 5.11: Receiver test setup  

Figure 4.43 Receiver test setup 

The stand-alone electrical performance of the receiver is characterized after laser 

trimming the antennas. A 37 dB single-path receiver gain (Figure 4.44) is measured at 

79.8 GHz with a 2 GHz bandwidth, corresponding to an inferred array gain of 49 dB. The 

minimum receiver noise figure is measured to be 8 dB (at 78.8 GHz).  
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Figure 4.44 Single-path receiver gain and noise figure 

Antenna Measurement— The chip micrograph and a magnified picture of the layout 

of the phased array transceiver with integrated antennas and the pads are shown in Figure 

4.45. 

 
Figure 4.45 Chip micrograph and integrated antennas 

A 2-axis spherical far field measurement technique is utilized to measure the radiation 

pattern while a W-band horn antenna is used to irradiate the integrated dipoles. The 3-D 
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measured patterns of two middle antennas are shown in Figure 4.46 where -40° < θ < 40° 

and 0° < φ < 180°. In this plot X=Sin(θ)×Cos(φ), Y= Sin(θ)×Sin(φ), and Z=Gain(dB).  

Maximum peak gain of about +8 dB is achieved in this measurement. As seen in Figure 

4.46 due to the off-axis properties, [7], the peaks of two antennas occur at two different 

directions. 
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Figure 4.46 Radiation pattern (X=Sin(θ)×Cos(φ), Y= Sin(θ)×Sin(φ), and Z=Gain(dB)) 

Figure 4.47 shows the E-plane pattern of the two middle antennas. The effective radius 

and extension length of the lens are 12.7 mm and 1.6 mm respectively (Figure 4.48). Due 

to the off-axis properties, these two peaks occur at different angles with spacing of about 

25°. The theoretical value [7] of this spacing is 24° which is very similar to what we 

measured. Based on the measured results, the lens improves the antenna gain by a factor 

of 10 dB. 
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Figure 4.47 E-plane pattern of two middle antennas 

 

Figure 4.48 Lens dimensions 
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4.4 Chapter Summary 

In this chapter, phased array systems are reviewed and some of the important 

characteristics of these systems are explained. The details of the design, layout, and 

measurement the first fully integrated 77 GHz 4-channel phased-array transceiver with 

on-chip antennas is presented. In the receiver, a two-step down-conversion scheme is 

used with a single VCO. The signal combining is performed using a novel distributed 

active combining amplifier at IF. In the LO path, a cross-coupled quadrature injection 

locked frequency divider (QILFD) divides the 52 GHz VCO frequency by a factor of 2 

and is followed by a divide-by-512 divider chain. Conversion gain of more than 37 dB, 2 

GHz band-width, and 8 dB NF are achieved. W-band integrated dipole antennas and a 

four-channel phased transceiver are implemented in IBM 130 nm silicon germanium 

BiCMOS process. The chip requires no high-frequency electrical connection to the 

outside world. It includes the complete receiver, transmitter, signal generation blocks, 

phase shifters, and on-chip dipole antennas. A hemispherical silicon lens with a diameter 

of about one inch is used to minimize the substrate modes. Receiver gain is measured 

separately using on-chip probing. A maximum antenna gain of about +8 dB is achieved 

in this measurement. 
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Chapter 5 

Transmitter Architectures Based on Direct 
Antenna Modulation (DAM) 

5.1 Introduction 

In the late 1800s and early 1900s, wireless transmission of information started its 

journey. During this period, inventors such as David E. Hughes, Heinrich Hertz, Nikola 

Tesla, Guglielmo Marconi, Reginald Fessenden, and Edwin H. Armstrong had to work 

with long wavelengths due to the lack of high frequency amplifiers [21], [22]. At 

frequencies smaller than 10 GHz, the size of an efficient antenna is much larger than the 

size of the active devices used. The practical issues involved in implementing such large 

antennas limited the number of effective solutions for designing wireless transceivers. 

Among these solutions, we can mention the invention of the regenerative, heterodyne, 

and homodyne receivers [21] , [22]. With his invention of super-heterodyne receiver in 

1918, Armstrong introduced the idea of modulating the signal at low frequencies, or 

baseband, and up-converting it to the RF frequency. Since that time, there have been 

many breakthroughs in related technologies including the invention of the transistor itself 

in 1947. However, there have been few fundamental changes in transceiver architectures 

despite the availability of revolutionary supporting technologies; most of today’s high-

performance systems still use ideas based on the heterodyne or homodyne architectures. 

Today’s silicon technologies provide transistors with unity-current-gain frequencies (fT) 

of greater than 200 GHz, which make it possible to implement mm-wave integrated 
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transceivers on a single chip [23] – [29]. At these frequencies, wavelengths are 

comparable to the die size and orders of magnitude smaller than those used by Armstrong 

to implement his first heterodyne receiver (for instance, a simple half-wavelength dipole 

antenna is 2.5 mm long at 60 GHz). Access to faster transistors and the ability to 

implement antennas on the same die as analog, RF, and digital circuits is motivation 

enough to reevaluate classical receiver architectures and investigate new and 

fundamentally different architectures that deal with system problems across multiple 

levels of abstraction. 

Figure 5.1 shows the block diagram of a conventional direct-conversion transmitter. In 

this architecture, the in-phase (I) and quadrature (Q) signals are modulated at base-band 

and then up-converted to radio frequency (RF). The modulated RF signal goes through a 

power amplifier (PA) which drives the antenna. It is noteworthy that in this conventional 

transmitter architecture, the already modulated signal couples to the antenna. As seen in 

Figure 5.1, in a mostly line-of-sight scheme, a receiver sitting in a side lobe of the 

antenna receives the same information as the receiver located at the antenna’s main beam. 

The only differences between the receiver data at different directions are the signal power 

and a time shift.  Therefore, given a high-sensitivity receiver it would be possible for a 

receiver in an unintended direction to eavesdrop on the communication. 
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 Figure 5.1 Conventional transmitter architecture  

We will see in the rest of this chapter how DAM can be used to overcome the security 

challenge using a direction-dependent information transmission. In Section 5.2 we will 

discuss the new direct antenna modulation (DAM) approach. In Sections 5.3 and 5.4 we 

will discuss the switch-based DAM, while in Section 5.5 we will investigate the varactor-

based version. We will review the circuit level details in Section 5.6.  

5.2 Concept of Direct Antenna Modulation 

Figure 5.2 illustrates modulation at base band. In the absence of multipath, any change 

at the base band appears in the desired direction as well as the undesired direction (the 

only difference is the power level and a delay), as illustrated symbolically by the move 

from point 1 to point 2. This is because the signal is already modulated before the 

antenna and because the antenna pattern does not change quickly.  
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Figure 5.2 Modulation at base band 

The proposed direct antenna modulation (DAM) technique, illustrated in Figure 5.3, is 

fundamentally different from the one shown in Figure 5.2. The DAM transmitter utilizes 

only a locked RF signal source and a PA to drive the antenna. In this scheme we 

modulate the phase and amplitude by changing the antenna characteristics and hence its 

pattern at the symbol transmission rate. As a result, we are able to transmit different 

signals independently to the desired and the undesired directions, unlike the conventional 

architectures. It is important to realize that we need to change the antenna characteristics, 

its near field and far field, at the rate of the symbol rate in order to properly modulate the 

signal. Next, we introduce two alternative techniques to vary the antenna boundary 

conditions thereby changing the phase and amplitude of the antenna far-field pattern. 



88 

 

 

Figure 5.3 Modulation after the antenna 

5.3 Switch-Based DAM 

A toy example of this technique is shown in Figure 5.4. On the left side of Figure 5.4, 

we show a dipole antenna with an adjacent reflector. The reflector is composed of two 

metal pieces connected with an ideal switch. Let us say the main dipole antenna radiates a 

signal )cos( 00 ϕω +tA  in the z-direction, normal to the plane (bore-sight). Some part of 

the main signal couples to the adjacent reflector in the near field of the antenna, causing 

the reflector to scatter a signal )cos( 11 ϕω +tA in the z direction. By closing the switch, 

we can change the reflector’s effective length and scattering properties, which cause the 

reflected signal to have a different phase and amplitude, )cos( 22 ϕω +tA . In these two 

cases the far-field signal in the z-direction can be calculated as, 

Open switch: )cos()cos()cos( 1100 ϕωϕωϕω ′+′=+++ tAtAtA              (5.1) 

Closed switch: )cos()cos()cos( 2200 ϕωϕωϕω ′′+′′=+++ tAtAtA  .             (5.2) 
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The real and imaginary parts of the combined signal in the far-field are shown on the 

signal constellation diagram (Figure 5.4). The example above shows how a simple switch 

can change the characteristics of the reflector and hence modulate the signal.  

Bit=0

A0cos(ωt+φ0)
Main Signal

A1cos(ωt+φ1)
Reflected Signal

A0cos(ωt+φ0)+A1cos(ωt+φ1)=A’cos(ωt+φ’)
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Antenna Reflector

Switching

A0cos(ωt+φ0)
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A2cos(ωt+φ2)
Reflected Signal

A0cos(ωt+φ0)+A2cos(ωt+φ2)=A”cos(ωt+φ”)

Signal Constellation

I

Q

Z-direction

 

Figure 5.4 Signal modulation using switches on the reflectors 

Consider a practical system in which more than two constellation points are required 

in order to transmit the signal at an acceptable bit-rate. The number of points on the 

constellation diagram can be increased by introducing multiple reflectors, each with 

multiple switches, as shown in Figure 5.5. For N total switches, 2N constellation points 

can be generated. Thus, if we have a sufficiently large number of switches, it is possible 

to generate a very large number of constellation points. This is illustrated in Figure 5.6, 

where 10,000 random switching combinations are simulated and real and imaginary parts 

of the induced voltage on a receiving dipole antenna located at the far field are plotted. 

Five reflectors are placed at each side of the antenna and 9 ideal switches are placed on 
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each reflector. Based on this simulation, it is possible to cover all of the four quadrants on 

the signal constellation diagram. 

 

Figure 5.5 Arbitrary signal modulation 

It should be noted that only the carrier signal goes through the PA, so there is no need 

to design a broad-band PA. A locked oscillator generates an un-modulated sinusoidal 

signal that drives the PA. As a result, this system is capable of transmitting broad-band 

information while using a narrow-band PA. This system also can utilize highly efficient 

switching PA in transmission of constant and non-constant envelope-modulated signals.  

In a silicon implementation of the switch-based DAM scheme, the switches can be 

implemented using small-feature-size MOS transistors. 
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Figure 5.6 Simulation results of the switch-based DAM transmitter (10,000 points) 

 

Figure 5.7 Communication security 

Secure communication link— As mentioned earlier, one of the unique characteristics of 

this system is its ability to transmit independent signals in different directions, as depicted 

in Figure 5.7. To see how this is achieved, assume a set of switching combinations has 
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been found which generates a 16 QAM at the bore-sight (Figure 5.7). If we look at the 

modulation points at a direction different than the bore-sight, we will see that the 

constellation points are translated from their original locations to seemingly random 

locations, causing a scrambled set of points on the signal constellation diagram. This 

happens because the scattering properties of the reflectors and hence the phase and 

amplitude of the reflected signal vary with angle. The scrambling property prevents 

undesired receivers from properly demodulating the signal. At larger angles, some of 

these constellation points move to adjacent cells (Figure 5.8) and introduce error. Figure 

5.8 shows the simulated error rate versus angle in the E-plane (parallel to dipole) and the 

H-plane (normal to dipole) of an on-chip dipole antenna. In this simulation, 210 equally 

spaced constellation points at the bore-sight are selected and viewed at different angles 

on the E- and H-planes of the antenna. In the H-plane, error rate rises rapidly and reaches 

~ 50% at an offset angle of 2–3 degrees. In the E-plane, error rate reaches ~ 50% at an 

offset angle of 6–7 degrees off from the bore-sight. Receivers located at angles +/- 1° can 

completely recover the modulated signal without any error in the absence of noise and 

other channel non-idealities. In other words, receivers located within the information 

beam-width of the antenna can properly recover the signal. Thus, it is necessary to define 

the information beam-width in addition to the power beam-width for such systems. The 

radiation pattern beam-width represents the power directionality of the beam while the 

information beam-width refers to the information directionality of the beam.  



93 

 

Error Rate versus Angle

-30 -20 -10 0 10 20 30
Angle(deg)

E
rro

r R
at

e(
%

)

80

20

40

60

0

100

SER(%)(H-plane)

SER(%)(E-Plane)

Desired Direction
A Different Angle

 

Figure 5.8 Information beam-width 

It is noteworthy that each complete DAM system including all the reflectors and 

switches can serve as a single element in a phased-array made of such elements. The 

phased array allows us to create a narrow power beam-width in addition to the narrow 

information beam-width achieved via the DAM transmitter, as illustrated in Figure 5.9. 
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Figure 5.9 DAM transmitter in a phased-array configuration 

 Redundancy and added security— It was mentioned that by adding each switch the 

total number of the switching combinations is doubled (2N combinations for N switches). 

In our switch-based DAM transmitter prototype design, we have ten reflectors each with 

nine switches, totaling N = 90 switches. This results in 290~1027 combinations. Obviously, 
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it is not necessary to use all of these combinations, but this large number of combinations 

creates so much redundancy that can be utilized in a productive way. 

It is possible to generate a desired phase and amplitude in a given direction using so 

many different switch combinations. For a large enough number of combinations, it is 

possible to find different switch combinations that produce the same point in a given 

direction while generating widely scattered points in a different direction (Figure 5.10). 

This property of the system allows the transmission of a set of pre-defined modulation 

points in a desired direction while simultaneously randomly changing the pattern of the 

constellation points in the undesired directions, thus making it even more challenging for 

unintended receivers to find a one-to-one mapping between the received signal at the 

desired direction and the undesired directions. 

 

Figure 5.10 Enhancing security by leveraging redundancy 
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Redundancy and multiple beam transmission— The aforementioned redundancy may 

be used to transmit two or more independent streams of information to two or more 

different directions simultaneously using a single transmitter at its full rate. For a 

reasonably chosen set of symbols, a large enough number of switches, under the right set 

of EM conditions and switch properties, it is possible to find a switch combination that 

generates two arbitrarily selected symbols in two sufficiently different directions. Under 

these circumstances it will be possible to transmit two independent streams of symbols in 

two directions at full rate without having to resort to time-, frequency-, or code-division 

multiple-access approaches. In fact, it can be viewed as an electromagnetic-domain 

multiple-access scheme. Figure 5.11 conceptualizes this functionality, where the 

transmitter sends a 16 PSK modulated signal to the right side and a 16 QAM signal to the 

left side. 
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Figure 5.11 Multiple beam transmission by using a single transmitter 



97 

 

Spectral control—  In most communication transmitters, not only should one adhere to 

the specifications on the transmitted signal in the frequency band of interest, but it is also 

necessary to control the out-of-band EM emission radiated by the antenna. This is often 

done through spectral control at base band (e.g., via pulse shaping) which needs to be 

maintained through the transmit chain (including the PA). This requirement generally 

translates to a tight specification on the linearity of the transmit path, in particular the PA.  

It is important for any alternative signal modulation scheme to offer an effective method 

to control this out-of-band emission of the signal.  

The spectral control requirement can be translated to trajectory control in the I-Q plane 

of the signals. A very large number of combinations (e.g., 1027 in our prototype) allows 

coverage of most of the constellation points. This full coverage enables the control of 

out-of-band emissions as illustrated in Figure 5.12. As shown in this figure, instead of 

directly moving a point on the signal constellation diagram from A to B and generating 

high levels of out-of-band emissions, the intermediate steps of 1, 2, and 3 can be taken, 

thereby reducing unwanted out-of-band emissions. In general, as long as we have enough 

redundancy to have a good coverage of the signal constellation, it will be possible to 

render any trajectory in the I-Q plane using multiple intermediate points to achieve 

spectral control. 

 
Figure 5.12 Spectral control 
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5.4 A Switch-Based DAM 60 GHz Transmitter 
Architecture 

As a proof of concept, a 60 GHz transmitter has been implemented in the IBM 130 nm 

BiCMOS SiGe (8HP) process. Figure 5.13 shows the block diagram of this transmitter 

[29]. As shown in this figure, a PA driven by a locked oscillator sends a differential un-

modulated sinusoidal signal to a shielded differential transmission line which carries the 

signal to the on-chip dipole antenna. The dipole has a length of 835 µm and a width of 20 

µm. The differential transmission line uses top metal layer M7 for the signal line, M6 for 

the bottom ground line, and M7 for the side ground shield. The on-chip dipole antennas 

and reflectors are all implemented on lower metal layers M1, M2, and M3. Five reflectors 

are placed at each side of the antenna and 9 switches are placed on each reflector 

resulting in a total number of 90 switches. The antenna and reflectors occupy an area of 

1.3×1.5 mm2. As shown in Figure 5.13, the base-band data goes through a digital control 

unit which controls the state of the switches. 
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Figure 5.13 Details of the switch-based DAM transmitter architecture 

 In the switch-based DAM architecture, one of the important parameters that needs to 

be optimized is the distance of the reflectors from the antenna. If the reflectors are placed 

too far from the main antenna, the reflected signal will be very weak and it will not 

change the phase and amplitude of the main signal significantly. On the other hand, if we 

place reflectors too close to the antenna the size of the aperture will be very small and the 

system will not be able to excite a sufficient number of radiation modes to transmit 

independent information to several directions simultaneously. In this design, the location 

of the reflectors and their distance to the main antenna have been optimized. In addition, 

an optional coarse control unit was implemented as shown in Figure 5.14. This optional 
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unit can be used as a quadrant selector with control signals A and B taking values 1 and -

1. In this mode of operation, switches on the reflectors can be used to generate the 

constellation points inside each quadrant and the optional coarse control unit can be used 

to choose the quadrant on the signal constellation diagram. 

PA 0º

180º

Reflectors Reflectors
Dipole

Digital Control UnitBase-Band

A

90º
VCO

B

A,B: Control Signals

Optional Feature

 

Figure 5.14 Optional coarse control unit 

Figure 5.15 shows the design of the switch itself. In order to achieve a low on 

impedance (1–5 Ω) between the drain and the source of the switch in its closed state (vg-ds 

= 1.2V), the switch size cannot be small. This results in large gate-drain, Cgd, and gate-

source, Cgs, capacitances. The NMOS switch used in this design has an effective width of 

150 µm, as shown in Figure 5.15. To resonate out the switch capacitance and achieve 

high impedance in the open state (vg-ds = 0 V), a circular shielded transmission line 

behaving as an inductor is placed between the drain and the source of the switch. This 



101 

 

transmission line resonates with the open-switch capacitance at 60 GHz resulting in a 

maximum impedance of 70 Ω. The circular transmission line has a diameter of 60 µm 

and is implemented on metal layers M2, M3, and M4. 

 

Figure 5.15 A 60 GHz resonant NMOS switch 

One of the main issues which has to be addressed is the transient response of the 

switches and the reflectors. This determines the speed of far-field changes and the 

maximum symbol modulation rate. The limitation comes from two independent factors. 

The first one is related to the finite time which the wave needs to travel between the 

antenna and the reflectors, and the second is related to the transient response of the 

switch. Figure 5.16 shows the simulation results of the far field’s transient response to a 

change in the switching combination when ideal switches are used. As shown in this 

figure, the far field takes less than 200 ps to adapt to a new switching combination. This 

simulation shows that the effective transient response of the whole system is limited by 

the transient time of the switch itself, as the switch response is usually longer than 200 ps. 
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By designing a switch with a transient response of about 800 ps we can achieve a symbol 

rate of better than 1 GS/s. 

 

Figure 5.16 Transient response of the far-field 

One of the important disadvantages of silicon-based on-chip antennas is the low 

antenna efficiency. This is a result of two factors; silicon’s high dielectric constant (11.7), 

and substrate’s low resistivity (1–10 Ω·cm). The high level of doping required to 

fabricate active circuits limits the silicon substrate’s resistivity. Silicon’s high dielectric 

constant and its large substrate thickness (200–300 µm) couple most of the dipole output 

power into substrate-modes in unshielded structures as shown in Figure 5.17 [3]. If we 

use an on-chip ground shield to isolate the on-chip antenna from the lossy substrate, the 

radiation efficiency will be very small (around 1%). In standard silicon processes the 

distance between on-chip metal layers rarely exceeds 15 µm. A ground layer at this 

distance, which is much smaller than the wave-length in mm-wave frequencies (2.5 mm 
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wavelength in SiO2 at 60 GHz), shorts the antenna by introducing a negative image 

current very close to the antenna and hence reduces both the radiation resistance and the 

efficiency. On the other hand, if we do not use an on-chip ground shield, the silicon 

substrate behaves as a dielectric waveguide, generates the substrate modes, and leads the 

power to the chip edges resulting in an undesirable pattern. Due to the silicon substrate’s 

low resistivity, most of the power that couples into substrate-modes disappears as heat 

reducing the overall antenna efficiency [3].  

 

Figure 5.17 Substrate modes [3] 

The amount of total power coupled into the substrate modes depends on the substrate’s 

geometry. If an un-doped silicon hemispherical lens (or a dielectric lens with a dielectric 

constant similar to silicon’s) is attached at the backside of the substrate as shown in 

Figure 5.18, antenna efficiencies up to 10% can be acheived. A Silicon lens takes 

substrate modes and converts them into useful radiated power [2] - [8]. Due to the 

impedance mismatch between the silicon and the air ( Ω
ε
μ

1100 ==
si

siZ  versus 

Ω
ε
μ

377
0

0 ==airZ ) about 30% of the radiated power will be reflected from the silicon-
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air boundary, but this problem can be resolved by using a quarter-wavelength matching 

layer on the boundary of the silicon lens and the air [2] - [8]. In this design a 

hemispherical silicon lens with a diameter of about 1 inch is used to couple the power to 

the air. 

 

Figure 5.18 Silicon lens 

Figure 5.19 shows the micrograph of the chip prototype, which is implemented in IBM 

8HP 130 nm SiGe BiCMOS process. In addition to the dipole and the reflectors which 

occupy an area of 1.3 mm × 1.5 mm, an optional coarse control unit is designed which 

includes the base-band amplifiers, the up-converter mixers, and the PA. We have also 

designed a 60 GHz receiver with on-chip dipole antenna. The receiver is composed of a 

60 GHz LNA, down-converter mixers, and base-band amplifiers. The LO signal is 

generated on-chip by using a V-band VCO. An injection-locked divider and divider chain 

are used to divide down the VCO signal by a factor of 1024. 
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Figure 5.19 Switch-based DAM chip micrograph 

5.5 Varactor-Based DAM 

An alternative to the switch-based DAM approach presented earlier is to use a 

varactor-based approach to change the antenna characteristics and modulate the signal at 

the far-field. Varactors can be used to change the effective capacitive load on the 

reflectors. It is noteworthy that the controlling is still done in a digital fashion by 

switching the capacitance of the varactor between C0 and C1, which are the capacitance 

values for a digital control value of 0 or 1, respectively. 

Figure 5.20 shows the block diagram of the varactor-based DAM system. The 

differential signal goes through a transmission line and drives the dipole antenna. The 

varactor-based DAM system uses 90 differential varactors on 10 reflectors as shown in 

Figure 5.20. In this design, varactors are implemented by using a series combination of 

two NMOS transistors as shown in Figure 5.20 and Figure 5.21. A binary control voltage 
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(“1” = 1.2 V, ” 0 ” = 0 V) is applied to the gate of the NMOS transistors. Depending on 

the control voltage, gate to drain-source voltage of the varactors, Vg-ds, can be either +0.6 

V or -0.6 V.  Each NMOS transistor has a size of 3 × 16 × 5 µm × 240 nm. The whole 

system occupies an area of 2.1 mm × 2.4 mm. A micrograph of the varactor-based DAM 

chip is shown in Figure 5.22, where it is implemented in the 130 nm IBM 8HP SiGe 

BiCMOS process. 

 

Figure 5.20 Varactor-based system’s block diagram (varactor-based DAM) 
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Figure 5.21 Design of the varactors and reflectors 

2.
1 

m
m

 

Figure 5.22 Varactor-based DAM’s chip micrograph 
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One of the important parameters that we would like to maximize is the amount of 

coverage of the signal constellation diagram. In other words, the reflected signals should 

be strong enough to change the phase and amplitude of the main signal to cover the four 

quadrants in the signal constellation diagram without affecting the impedance which the 

PA sees at the antenna port to maintain a high PA efficiency. To maximize the coverage 

of the signal constellation diagram, we choose capacitances C0 and C1 close to the Cmin 

and Cmax of the varactor. 

Usually the ratio of Cmax/Cmin of a varactor is a fixed value and is independent of the 

varactor size. In the process technology used to implement our prototype, the ratio of 

Cmax/Cmin is around 3–4. If we choose very small values for Cmax and Cmin then the 

effective values of the varactors’ impedance will be very high in the frequency of 

interest. For example at fc = 60 GHz, Cmax = 4 fF and Cmin = 1 fF will be equivalent to 

|Zcmax|=(2πfcCmax)-1 = 663 Ω and |Zcmin|=(2πfcCmin)-1 = 2.65 kΩ. Due to the high 

impedance of these varactors, the induced current on the reflectors will be negligible 

compared to the current of the main antenna itself and the reflected signal will be too 

weak to change the phase and amplitude of the main signal. In other words, the varactors 

will behave as open circuits in both cases of Cmin and Cmax, and the phase and amplitude 

of the far field will not change by varying the capacitance of the varactor. On the other 

hand, if we choose very large values for Cmax and Cmin, then the effective values of the 

varactors’ impedance will be very low in the frequency of interest. For example Cmax = 4 

pF and Cmin = 1 pF will result in |Zcmax|=(2πfcCmax)-1 = 0.663 Ω and |Zcmin|=(2πfcCmin)-1 = 

2.65 Ω at fc = 60 GHz. At these values, varactors behave as short circuits for both values 
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of Cmax and Cmin and hence the amplitude and phase of far-field will not change by 

varying the capacitance of the varactors. 

 Figure 5.23 shows how signal constellation coverage changes with the values of Cmax 

and Cmin. In this simulation we simulated 2000 random points, and for each point, for 

each switching combination, we plotted the real and imaginary parts of the voltage of a 

dipole antenna located at the far-field. At each point a Matlab program assigns a random 

binary value for the capacitance Cvar of each varactor, Cvar∈{Cmax, Cmin}, and plots the 

real and imaginary parts of the dipole’s voltage located at the bore-sight. As shown in 

Figure 5.23 (a), for very small varactor sizes and very large ones the spread of the points 

on the signal constellation diagram is very limited. As we mentioned before, this is 

because of the fact that very small varactors behave as open circuits and very large ones 

behave as short circuits at 60 GHz. Figure 5.23 (b) and (c) show the spread of the 

constellation points for varactor sizes (Cmax= 130 fF, Cmin = 44 fF) and (Cmax = 260 fF, 

Cmin = 88 fF). As shown in Figure5.23 (c), with varactor size of (Cmax = 260 fF, Cmin = 88 

fF) it is easily possible to cover all of the four quadrants with binary controlling of the 

varactors (“1” = Cmax, “0” = Cmin). It is important to mention that in the above simulations 

ideal varactors (infinite Q) are used. Simulations results show that varactors with smaller 

quality factor reduce the coverage of the signal constellation diagram. Figure 5.24 shows 

the simulation results for varactors’ size of (Cmax = 260 fF, Cmin = 88 fF) with quality 

factors of 1, 4, and 10. Based on these results, the coverage of the signal constellation 

diagram is a strong function of the varactors’ quality factor, Q. In this simulation a silicon 

lens is used to minimize the substrate modes and efficiently couple the signal to the air. 
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Figure 5.23 Signal constellation coverage for different varactor sizes (ideal varactors) 
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Figure 5.24 Signal constellation coverage for different varactor’s quality factors 

 
5.6 Schematic of the Blocks Used in the Switch-Based 
DAM Transmitter 

V-band amplifier— Figure 5.25 shows the schematic of the V-band amplifier which is 

composed of three differential stages. Stub-tuning and coupled-wire differential 

transmission lines are used for matching purposes. To isolate the differential transmission 

line from the neighboring blocks, adjacent ground shields as well as bottom ground 

shields are used [3] , [17]. To bias the differential pair, a diode-connected transistor with 

a series resistor is designed as shown in Figure 5.25. The base of this transistor is 

connected to a differential transmission line with a length of 225 µm. This transmission 

line carries the biasing DC voltage to the base nodes of the transistors in the differential 
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pair. At RF frequencies, the line behaves as a stub line and, in conjunction with a 40 µm 

series differential transmission line, provides a power match between the output of the 

up-converter mixer and the input of the V-band amplifier. In this design, 150 fF MIM 

capacitors are placed at the output of each differential pair isolating the DC bias of each 

stage from the following one. The 3-stage amplifier provides up to +7 dBm output power. 

 

Figure 5.25 Schematic of the V-band power amplifier 

 Voltage controlled oscillator (VCO)– The schematic of the VCO is shown in Figure 

5.26. A cross-coupled oscillator generates a V-band on-chip LO signal. The oscillation 

frequency is varied by changing the capacitance of the NMOS varactors which have a 

size of 15 µm, as shown in Figure 5.26. A differential coupled-wire transmission line is 

used to behave as an inductor resonating with the parasitic capacitances of the cross-

coupled transistors and the capacitance of the NMOS varactors. The important trade-off 
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in designing the cross-coupled oscillator is the trade-off between the phase-noise and the 

tuning range. The minimum and maximum oscillation frequencies can be calculated by 

)(2
1

maxvar_
min

parasiticCCL
f

+
=

π
           (5.3) 

)(2
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minvar_
max
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f

+
=

π
 .           (5.4) 

To achieve a low phase-noise LO, we need to use a large inductor which limits the 

value of the total capacitance, Ctotal=Cvar+Cparasitic. Due to the fact that the parasitic 

capacitance of the transistor, Cparasitic, ultimately depends on the process and not much 

can be done to minimize it, the only way to reduce the size of the Ctotal is to reduce the 

size of the Cvar. By making Cvar smaller, the tuning range is reduced. To minimize the 

effective Cparasitic at the collector node of the cross-coupled oscillator, instead of directly 

connecting the base of one cross-coupled transistor to the collector of another one, a 

capacitive divider is used, as shown in Figure 5.26. This capacitive divider minimizes the 

total parasitic capacitance seen at the collector node by minimizing the contribution of 

the parasitic capacitors connected to the base of the cross-coupled transistors. The 

capacitive divider also allows a higher voltage swing at the collector node of the 

transistor by isolating that node from the base node of the transistor. The high voltage 

swing improves the phase noise of the oscillator. To further reduce the parasitic 

capacitance at the collector node, the output signal is taken from the base node by 

connecting the load to the base node instead of the collector node. 91 fF AC-coupling 

MIM capacitors are used to connect the output of the oscillator to a following amplifier. 
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To bias the VCO, a current source and a diode-connected transistor are used as shown in 

Figure 5.26. 

LO
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Figure 5.26 Schematic of the V-band VCO 

Injection-locked divider— To divide down the LO signal and lock it to a reference 

signal, we have used an injection-locked divider in combination with a digital divider 

chain. The divider chain with the injection locked divider provides a dividing ratio of 

1024, allowing an off-chip low-frequency signal to be locked with the on-chip LO signal. 

The design of the injection-locked oscillator is similar to that of the VCO but its load is 

tuned to provide a self-oscillation frequency of around fLO/2. The LO signal is injected at 

the current source of the cross-coupled pair, as shown in Figure 5.27. A single-ended 

transmission line with length of 220 µm and an ac-coupling capacitor with size of 148 fF 
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are used to maintain a power match between the divider and the preceding stage. The 

preceding stage is an LO distributor amplifier which is discussed in the next paragraph. 

 

Figure 5.27 Schematic of the V-band injection locked divider 

LO distributor amplifier— Several LO distributor amplifiers are used to provide LO 

signal to the injection-locked divider and up-convertor mixers in the transmitter. The 

schematic of the LO distributor amplifier is shown in Figure 5.28. The LO signal enters 

through a stub-matching network and is amplified by a cascode differential pair. To 

distribute the LO signal, the collector current of the input differential pair is divided 

equally between two identical cascode pairs. These pairs amplify the LO signal and use 

stub-tuning to efficiently deliver the LO power to the following stages. 
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Figure 5.28 Schematic of the LO distributor amplifier 

Up-convertor mixer— As an optional feature in our system, up-convertor mixers are 

designed and used in the optional coarse control unit. The coarse control unit can be used 

as a quadrant-selector on the signal constellation diagram. Figure 5.29 shows the 

schematic of the up-convertor mixer. Differential base-band or control signals are 

connected to the base nodes of the differential pair as shown in Figure 5.29. Stub-tuning 

is used at the RF and LO nodes to maintain a power match between the mixer and the 

adjacent blocks. To amplify the signal at the output of the mixer a differential cascode 

buffer amplifier is designed as shown in Figure 5.29. A 320 µm differential transmission 

line and 148 fF MIM ac-coupling capacitors are used to match the output of the mixer to 

the input of the buffer. 
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Up-convertor Mixer Buffer  

Figure 5.29 Up-converter mixer and buffer (optional feature) 

5.7 Measurement Results 

A block diagram of the measurement setup is shown in Figure 5.30. In the first 

measurement, the on-chip transmitter is disconnected (with laser trimming) from the 

antenna-reflectors combination and the electromagnetic structure itself is tested using an 

Agilent N5250A network analyzer. A LabView program [32] controls the state of the 

switches (switch-based DAM) and varactors (varactor-based DAM) through a data 

acquisition card. The data acquisition card sends the digital stream to the on-chip digital 

control unit and this unit programs the switches and the varactors. After sending the 

desired data streams and programming the chip, the LabView program communicates 

with the network analyzer through a GPIB card. One of the ports of the network analyzer 

sends the V-band signal through a 1.85 mm cable and connectors to the on-chip antenna, 
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and the other port uses a standard horn antenna at the receiving side to accurately 

measure the phase and amplitude of the S21. 

 

Figure 5.30 Measurement setup 

By changing the switching combinations in the switch-based DAM chip we can 

accurately measure the variation in the phase and amplitude of the S21 and plot the real 

and imaginary parts of the S21 on the signal constellation diagram as shown in Figure 

5.31. In this figure we have measured the variations of S21 in two different directions with 

an angular separation of approximately 90 degrees for the same set of switching 

combinations. We have measured about 2000 randomly chosen switching combinations 

and selected the ones which result in 20 equally spaced constellation points in the desired 

direction. As shown in Figure 5.31 the signal constellation points are completely 

scrambled in the undesired direction, proving the functionality of our system. To have a 

better look at the constellation points, we have used vertical color-coding to separate 
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these 20 points into several groups. This color-coding, and also the numbering of the 

constellation points, help us to better understand the scrambling nature of the system. To 

the best of our knowledge, this is the first published measurement result which proves the 

existence of a single transmitter capable of sending direction-dependent data. 
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Figure 5.31 Measured constellation points of the switch-based DAM chip. In this 
measurement only the switches are used. 

 

A picture of the measurement setup is shown in Figure 5.32. The optional quadrant-

selector unit in conjunction with the reflector switching is used to cover the four 

quadrants on the signal constellation diagram. Figure 5.33 shows the measurement results 

of the full coverage of the four quadrants. 

To measure the output power of the transmitter and characterize its linearity, the 

antenna is disconnected from the PA. A 1.85 mm coaxial wafer probe, an Agilent V-band 

power sensor (V8684A), and an Agilent V-band power (E4418B) meter are used to 
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measure the output power of the transmitter. The input signal is generated by an Agilent 

signal source (E8257D) and applied to the input of the transmitter through a wafer probe. 

Figure 5.34 shows the measured output power and gain versus the input power of the 

transmitter. A transmitter output power of +7 dBm, a small-signal gain of 33 dB, and a 

saturated gain of 25 dB are achieved. 

 
 

Figure 5.32 Picture of the measurement setup 

 

Figure 5.33 Measurement results of the four-quadrant coverage of the signal constellation 
space using the optional quadrant-selector and switches (switch-based DAM chip) 
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Figure 5.34 Conversion gain and pout versus input power 

In order to measure the VCO performance, a GSG test pad connecting to an on-chip 

LO signal is designed and used. An Agilent spectrum analyzer (E4448A) and a 

SpacekLabs off-chip down-convertor (GE-590) are used to measure the phase-noise and 

tuning range of the VCO. A phase-noise of -100 dBc at 10 MHz offset and a tuning range 

of more than 2.5 GHz are achieved in the measurement. 

To measure the performance of the varactor-based DAM chip, a setup similar to 

Figure 5.30 is used. Figure 5.35 shows the measured constellation points at the received 

antenna. In this measurement the LabView program changes the pattern of the varactors 

by generating about 1400 random combinations and plots the variations of S21 measured 

by the Agilent N5250A network analyzer. This measurement proves the functionality of 

the varactor-based DAM system. 
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Figure 5.35 Measured constellation points in varactor-based DAM chip 

5.8 Appendix 

In this part we explain a simulation technique used in analyzing an electromagnetic 

structure with many switches or varactors. As mentioned in the discussion related to the 

DAM transmitter architecture, each switching combination defines a unique boundary 

condition around the antenna. In the switch-based DAM design, 90 switches are used 

where each assumes one of two states, on and off. This results in 290 switching 

combinations which correspond to 290 unique boundary conditions.  While we have not 

simulated each unique boundary condition (as doing so is not particularly practical or 

time efficient, and fortunately not necessary),  we have simulated 103 to 105 combinations 

and selected a small set of these combinations to implement an arbitrary digital 

modulation. If we use conventional techniques to treat each switching combination as an 

independent EM problem and use EM solvers such as IE3D [9] or HFSS [33] to calculate 
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the far-field for each switching combination, we will not be able to simulate a large 

enough number of the switching combinations due to the limitation of the simulation 

time. If we choose Method of Moment (MOM) and use IE3D to simulate the structure, 

each simulation takes about 5–10 min. To simulate the EM structure using finite element 

software, such as HFSS, each simulation can take up to 30–60 min. None of these 

techniques can be used to simulate 1000 points in a time-efficient manner. 

To simulate this many points, we extracted a circuit model of the whole EM structure 

and used a combination of circuit software and Matlab code to run each simulation in 10–

100 msec. Here we intend to discuss the details of this technique. Figure 5.36 shows three 

different EM problems. Problem 1 shows a transmitting antenna, such as dipole, with an 

arbitrarily shaped perfect electric conductor (PEC) adjacent to it. We have shown the 

PEC with a thick black curve. This PEC mimics the reflectors adjacent to the antenna. As 

shown in Figure 5.36, we have disconnected the PEC at a couple of locations and placed 

terminations with arbitrary impedances at the discontinuities. These impedances are used 

to model the switches and the varactors. We have also placed a receiving antenna at an 

arbitrary direction at the far field. This antenna is used to probe the far field at a specific 

angle.  
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Figure 5.36 Comparison of two boundary value EM problems 

In problem 2 we change the physical shape of the PEC without changing the 

termination impedances. To calculate the received voltage of the receiving antenna 

located at the far field, we have to run a new EM simulation and cannot use the EM 

simulation results of problem 1 to calculate the far-field pattern of problem 2. In problem 

3 we vary the values of the termination impedances but keep the physical shape of the 

PEC unchanged. To calculate the far field in problem 3, there is no need to run a new EM 

simulation. In fact the simulation results of problem 1 can be used to calculate the voltage 

at the input port of the receiving antenna located at the far field. To do that, we replace 

the termination impedances in problem 1 with localized differential ports. We also place 

localized differential ports at the input ports of the transmitting and the receiving 

antennas. With one receiving antenna, one transmitting antenna, and N-2 terminations on 

the PEC, N independent ports are defined in problem 1. Now we can run the EM 
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simulation for problem 1 and extract an N×N S-parameter matrix containing all the 

information required to solve problem 3. To solve problem 3 we use the S-parameter 

matrix of problem 1 but we change impedance values of the terminations in the circuit 

model (Figure 5.37).  

 

Figure 5.37 S-parameter matrix of problem #1 

A Matlab code extracts the S-parameter data from an EM solver, changes the 

termination impedances or conductances, and computes the far field by calculating the 

voltage at the terminal of the receiving antenna. 

From Figure 5.37, we can write the following equations, 
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In equations (5.5) and (5.6), i1,...,in represent the current values of the ports and v1,...,vn 

represent the voltage values of the ports. Also y1, y3,...,yn-1 represent the conductance of 

the terminations, y2 represents the termination conductance of the receiving antenna, and 

zin represents the impedance seen at the input port of the transmitting antenna. TY is the 

transposed Y-parameter matrix of the system and can be calculated from the S-parameter 

data by the following equation, 

)()( 1
0

1 SISIZY +−= −−  .            (5.7) 

In equation (5.7), Z0 is the nominal impedance (50 Ω), I is the identity matrix, S is the 

S-parameter matrix, and 1−Y is the inverse of the Y-parameter matrix. 

In equations (5.5), (5.6), and (5.7) we have 2N unknowns and 2N equations and hence 

have a unique nonzero solution. The unknown parameters are v1,...,vn-1,i1,...,in,zin, and the 

known ones are vn,y1,..,yn-1. vn is the input voltage of the transmitting antenna which is a 

known parameter. Figure 5.38 shows the comparison between the conventional and the 

circuit-model-based optimization techniques in block flowchart form. In the conventional 

scheme, one EM simulation is required for each iteration. However, in the circuit-model-

based technique, we only need to run a single EM simulation for the whole optimization 

problem. Due to the fact that most of the simulation time is consumed by the EM solver, 

the circuit-model-based scheme runs orders of magnitude faster than that of the 

conventional method. 
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Figure 5.38 Comparison of the optimization techniques 

 To highlight the advantage of the above technique we have optimized a simple patch 

antenna by using these two techniques.  Figure 5.39 shows a simple patch optimization 

problem. The edge-fed patch with a ground shield is composed of 9 square metal pieces. 

We have connected these metal squares by using 12 terminations, as shown in Figure 

5.39.  
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Figure 5.39 Patch optimization problem 

The optimization goal is to maximize the patch bandwidth by finding optimum 

impedance values for the terminations. The range of the impedances is chosen based on 

the practical values of the surface mount inductors and capacitors. Our circuit-model-

based Matlab code uses golden section search and parabolic interpolation to find an 

optimal solution for the impedance values of the terminations. Figure 5.40 shows the 

simulation results of the patch S11 versus frequency. By using one microprocessor we 

have achieved a maximum bandwidth of 210 MHz with simulation time of 85 seconds 

and 12986 iterations. A conventional optimization technique based on PSO/FDTD uses 

four processors and achieves a bandwidth of 150 MHz in 16 hours and 200 iterations 

[34]. This conventional technique optimizes the dimensions of the patch and the location 

of its coaxial feed point to maximize the bandwidth. This simple comparison proves the 

power of the circuit-model-based technique in optimizing the EM problems. 
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Figure 5.40 Optimized S11 versus frequency (patch problem) 

5.9 Chapter Summary 

In this chapter, the technique of direct antenna modulation (DAM) is introduced. Two 

different methods for implementing DAM systems are presented. The transmitter 

architectures based on DAM technique are capable of transmitting direction-dependent 

data. These systems can be used to enhance the security of the communication links, 

transmit independent data to multiple directions using a single transmitter, and utilize 

narrow-band highly efficient switching PA in transmission of wide-band constant and 

non-constant envelope-modulated signals. To support the idea, two 60-GHz proof-of-

concept chips are implemented and measured.  
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Chapter 6 

A Scalable 60 GHz Phased-Array Transmitter8  

6.1 Introduction 

This work demonstrates the application of a new circuit approach based on coupled-

oscillator arrays for millimeter-wave phased-array designs in a standard SiGe integrated-

circuit technology. To maintain phase coherence between phased-array elements, 

oscillators on different dies must be phase locked. While coupled phase-locked loop 

architectures can maintain the phase relationship between neighboring oscillators coupled 

oscillators are well suited for fully integrated phased-array circuits [35] – [37]. The 

wavelength at 60 GHz allows for several array elements to be located on a single die. 

Consequently, an oscillator can be placed on each die or at each transmit element. One 

particular advantage of an on-chip coupled-oscillator array is the distribution of the 

carrier frequency between different transmit elements. Global frequency distribution 

becomes increasingly difficult at millimeter frequencies. By co-locating an oscillator at 

each transmit stage, closer control of the delay mismatches between the local oscillator 

and the mixer stage is possible. Scalable architectures are particularly appropriate for 

creating large phased arrays by tiling several dies. In Figure 6.1 scalability is 

demonstrated for a phased-array transmitter [37]. The phased array requires phase 

coherence between all elements. Since each chip requires frequency generation, 
                                                            

8 A joint project by A. Babakhani, J. F. Buckwalter, and A. Komijani. A. Babakhani designed the PA and on-chip antennas, J. F. 
Buckwalter designed the injection locked oscillators, and A. Komijani designed the phase shifters. 
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neighboring chips are injection locked to ensure phase coherence. If oscillators are 

located at each antenna element, injection locking can lock the oscillators both on-chip 

and between chips. This tiling approach is useful not only for phased arrays, but also for 

applications where the separation between antennas might be several wavelengths. 

Consequently, this design approach focuses on an injection-locking scheme appropriate 

for an on- and off-chip coupled-oscillator array. In this transmitter implementation, a 

two-element-by-two-element (2×2) array of transmitter cells is integrated on a single chip 

with antennas.  

 

Figure 6.1 Coupled-oscillator scheme for fully integrated phased-array transmitter [37] 

In this chapter, we will discuss the design and measurement of the 60 GHz power 

amplifier used in the coupled-oscillator phased-array transmitter. The design details of 

the injection-locked oscillator can be found in [37]. 
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6.2 Power Amplifier Design 

The 60 GHz power amplifier is composed of three differential stages. Figure 6.2 

shows the output stage of the PA. Each output transistor has an effective width of 48 µm. 

To increase the stability of the PA, a parallel combination of a 300 Ω resistor and 0.4 pF 

capacitor is placed on the signal path just before the base of the transistor in the 

differential pair. At lower frequencies, the capacitor is almost open and a 300 Ω series 

resistor significantly reduces the gain of the PA. At 60 GHz, the PA gain is not affected 

by this parallel combination due to the small impedance of the capacitor at 60 GHz (6.6 

Ω). 

 

Figure 6.2 Output stage of the PA 

Stub tuning is used at the output of the PA to match the output impedance of the PA to 

the differential 50 Ω impedance of the dipole antenna. Load-pull and source-pull 
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simulations are performed for each stage independently to find optimum load and source 

impedances for each stage. Figure 6.3 shows the load-pull simulation results of the output 

stage. 

 

Figure 6.3 PA output stage load-pull 

In the above figure, the red circles represent the PAE contours, the blue ones show the 

delivered power contours, and the black ones demonstrate the gain contours. At the 

chosen load impedance, simulated PAE of 30%, delivered power of 16 dBm, and power 

gain of 5 dB have been achieved. Figure 6.4 shows the simulated PAE, delivered power, 

and gain of the output stage versus input power at 60 GHz. To maximize the flexibility in 

the measurement, base bias voltage of each differential stage can be controlled 

independently through a separate pad. PA is designed to operate with a supply voltage of 

1.5 V. 
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Figure 6.4 Simulated PAE, delivered power, and gain of the output stage 

Figure 6.5 shows the schematics of the second stage of the PA. Each transistor of the 

differential pair has an effective width of 12 µm. Similar to the output stage; stub tuning 

is used to match the second stage to the output stage. The second stage generates an 

output power of 10 dBm and provides a differential impedance of 100 Ω at its input. 

Simulated Pout, PAE, and power gain of the second stage is shown in Figure 6.6. A 

maximum efficiency of 25% is achieved with input power of about 3.5 dBm. At this 

input level, simulation results show a power gain of 6 dB and delivered power of 9.5 

dBm.  
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Figure 6.5 Second stage of the PA 
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Figure 6.6 Simulated Pout, PAE, and power gain of the second stage 
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Finally, the schematic of the 1st stage is shown in Figure 6.7. In this case, the effective 

width of each transistor in the differential pair is about 6 µm. Differential input 

impedance of this stage is about 100 Ω. 

Figure 6.8 shows the power gain, PAE, and delivered power versus input power for 

the combined three stages. At input power of -5 dBm, simulated output power, PAE, and 

power gain are about 15 dBm, 25%, and 19 dB, respectively. 

 

Figure 6.7 Schematic of the 1st stage 
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Figure 6.8 Simulated Pout, PAE, and power gain of the combined three stages 

 

6.3 Power Amplifier Layout 

Layout of the 60 GHz PA is shown in Figure 6.9. Transmission lines are implemented 

on metal layers AM (M7) and MQ (M5). Signal lines are made on AM and MQ is used as 

a bottom metal layer. To isolate the transmission line from other blocks, adjacent AM 

ground layers are also used to minimize the leakage of the signal power. Output of the 

PA is connected to a differential on-chip dipole antenna, as well as GSGSG pads. To 

characterize the PA parameters using differential probes, laser trimming is used to 

disconnect the PA from the on-chip antennas. In the measurement of the PA using the on-

chip dipole antennas, laser trimming is used to disconnect the pads from the PA. 
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Transmission lines are meandered to minimize the PA area. Due to some layout floor-

planning constraints, the first stage of the PA is rotated by 90 degrees, as shown in Figure 

6.9. 

Figure 6.10 shows the layout of the 60 GHz 2×2 scalable transmitter. Each transmitter 

includes an on-chip dipole antenna, a power amplifier, LO-signal phase rotators, an 

injection locked oscillator, and a DAC for programming the phase rotators. 

 
Figure 6.9 Layout of the 60 GHz PA 
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Figure 6.10 Complete layout of the 60 GHz 2×2 scalable transmitter. 

 

6.4 60 GHz Balun and PA Test Structure 

The V-band power amplifier used in the system has differential input and differential 

output pads. This makes the measurement of the PA very challenging. To be able to 

characterize PA performance independently, we have designed an on-chip 180° hybrid 
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balun which converts the differential signal to a single-ended one. The design of the 

balun is shown in Figure 6.11. In this figure, lengths of transmission lines are shown in 

degrees at 60 GHz. An on-chip 50 Ω resistor is used to terminate the isolated port. 

 

Figure 6.11 60 GHz 180° hybrid balun 

Figure 6.12 shows the layout of the single PA connected to a hybrid 180° balun. The 

balun converts the differential input signal of the PA to a single-ended signal which can 

be easily driven with a single-ended V-band probe. Differential output of the PA is 

connected to a differential on-chip dipole antenna, as well as GSGSG pads. PA ouput 

stage is designed to drive the differential dipole antenna with an input impedance of 50 

Ω. To be able to characterize the PA performance independent of the dipole antenna, 

laser trimming is used to disconnect the dipole antenna from the PA. In this case, an on-

chip 25 Ω resistor is used to terminate one of the PA outputs and the other output is 
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connected to a single-ended V-band probe. By using these probes at the input and output 

of the PA, we can accurately measure the S-parameters of the PA. 

 

Figure 6.12 Stand-alone PA with input balun 

One of the important parameters that needs to be measured is the effective loss of the 

balun. To characterize the balun performance itself, we have designed and connected two 

baluns side by side. In this combination, the differential ports of the balun are connected 

together and single ports are driven with single-ended V-band probes. Figure 6.13 shows 

the layout of these two baluns. Based on the measured results, the effective loss of each 

balun is about 2 dB. Figure 6.14 shows the measurement results of the standalone PA 

performance.  
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Figure 6.13 Layout of two connected baluns 

 

Figure 6.14 Measured power-versus-frequency of the stand-alone PA 

The peak measured power using a probe is about 12 dBm. As mentioned before, the 

PA output is designed to drive an on-chip dipole antenna with input differential 

impedance of 50 Ω and single-ended impedance of 25 Ω. The single-ended probe used in 
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our measurement has an impedance of 50 Ω. Due to the mismatch between the probe 

impedance and the PA output, the measured peak power occurs between 46 GHz and 49 

GHz instead of 60 GHz. At 50 GHz with 0.87 V bias and 0 dBm input power, a PAE of 

21% has been achieved. To the best of our knowledge, this is the highest efficiency 

number ever achieved in a mm-wave PA implemented on a silicon substrate. 

Figure 6.15 shows the die micrograph of the 60 GHz transceiver chip. The on-chip 

dipole antenna is used to feed a silicon hemispherical lens located at the back side of the 

chip. This lens couples the radiated power to the air.  

 

Figure 6.15 Die Micrograph of the 60 GHz scalable transmitter with on-chip antennas 
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6.5 Chapter Summary 

In this chapter, the design of a 60 GHz scalable coupled transmitter phased-array is 

discussed. The technique used in this transmitter can be used to overcome the issues of 

global LO distribution in large arrays. The design and measurement results of a 60 GHz 

PA used in this scalable transmitter are presented. A 180° on-chip hybrid balun is used to 

measure the performance of the stand-alone PA. A hemispherical silicon lens is utilized 

to couple the power efficiently to the on-chip dipole antennas.  
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Chapter 7 

Conclusion 

In this dissertation, the design and implementation of several silicon-based millimeter 

transceivers with on-chip antennas are presented. These include the first fully integrated 

77 GHz four-channel phased-array transceiver with on-chip antennas in silicon, a 60 GHz 

scalable 2×2 phased-array transmitter with on-chip dipole antennas in silicon, and fully 

integrated transmitter architectures based on direct antenna modulation (DAM). 

We have reviewed the concept of the substrate modes and emphasized its importance 

in design of efficient on-chip antennas. In most of the measured chips, a silicon lens is 

used to minimize the power coupled into the substrate modes. In all of the process 

technologies discussed in this thesis, due to the fabrication problems and the necessity of 

using highly doped silicon, substrates become extremely lossy (substrate resistivity of 1–

10 Ω.cm). To minimize the effect of the substrate loss, the silicon die is thinned down to 

100 µm and an undoped silicon wafer is placed underneath the die to ensure the 

mechanical stability of the system. 

 In the receiver of the 77 GHz transceiver, a two-step down-conversion scheme is used 

with a single VCO. The signal combining is performed using a novel distributed active 

combining amplifier at IF. In the LO path, a cross-coupled quadrature injection locked 

frequency divider (QILFD) divides the 52 GHz VCO frequency by a factor of 2 and is 

followed by a divide-by-512 divider chain. Conversion gain of more than 37 dB, 2 GHz 
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BW, and 8 dB noise-figure are achieved. The on-chip antenna gain of 8 dB is achieved in 

the measurement. 

The 60 GHz 2×2 transmitter chip uses an injection locked scheme to solve the global 

LO distribution problems in phased-arrays. Because of the unique configuration, multiple 

copies of this transmitter can be used to implement a scalable two-dimensional phased-

array system. The V-band stand-alone PA provides a peak output power of 12 dBm and a 

PAE of 21%. To the best of our knowledge, this is the highest efficiency number ever 

achieved for a mm-wave PA implemented on a silicon substrate. 

We have introduced the technique of direct antenna modulation (DAM). In the 

transmitter architectures based on DAM, the base-band data controls the state of the 

switches (or varactors) on the reflectors through a digital control unit. In these systems, 

because the modulated signals do not pass through the PA, a narrow-band highly efficient 

switching PA can be used to amplify the locked LO signal while the whole system is 

capable of transmitting wide band arbitrary modulated signals (including non-constant 

envelope signals). Because of the unique characteristic of these systems, it is possible to 

transmit independent signals to different directions using a single transmitter. This 

increases the security of the communication links by transmitting a properly modulated 

signal to a desired direction while scrambling the modulation points on the signal 

constellation diagram in the undesired directions. To prove the concept, two 60 GHz 

DAM chips are designed and tested. One of these chips uses the switches on the 

reflectors to change the scattering properties of the reflectors, change the phase and 

amplitude of the modulated signal in the far field, and hence modulate the far-field signal. 
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The second chip uses NMOS varactors on the reflectors to change the electrical 

properties of the reflectors and modulate the signal. In both of these chips 10 reflectors 

are used and 9 switches (or varactors) are placed on each reflector. We have reported 

successful measurement results and proved the concept. 

As mentioned in the introduction, the fast progress in developing process technologies 

funded by the worldwide consumer electronic market opens a new plethora of 

opportunities for RF/microwave designers doing research in the millimeter and sub-

millimeter wave frequency range. These opportunities carry their own set of challenges, 

which, if properly addressed, can open the door for creation of revolutionary 

technologies. 
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