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Abstract

This thesis is concerned with the problem of extending methods for force-detected

nuclear magnetic resonance (NMR) to the nanoscale regime. A magnetic mechanical

resonator can be used both as a sensitive detector of spins and a means of inducing

spin relaxation between detected transients. At the mK temperatures achievable in a

dilution refrigerator, spin-lattice interactions are "frozen out," and resonator-induced

relaxation can replace spin-lattice relaxation in returning the spins to equilibrium

between detected transients. We analyze resonator-induced spin relaxation and the

sensitivity of schemes which use a nanoscale mechanical resonator to detect spins.

Relaxation equations are derived from first principles, and a physical interpre-

tation of the processes contributing to resonator-induced relaxation is given. The

intrinsically quantum mechanical nature of the relaxation is highlighted by compar-

ing the quantum mechanical relaxation equations with analogous equations derived

using a semiclassical model in which all spin components have a definite value simul-

taneously. In the case where the spins all experience the same field, the semiclassical

spins cannot become polarized as a result of their interaction with the resonator, and

a quantum mechanical model is necessary even for a qualitative description of the

polarization process.

Resonator-induced relaxation of spin systems is complicated by the fact that an

indirect spin-spin interaction is present when all spins are coupled to the same res-

onator, since the resonator’s field at a given spin is determined by the interactions

which have occurred between the resonator and the other spins of the system. This

indirect interaction can prevent the spins from relaxing to a thermal state character-

ized by a spin temperature. We present a physical interpretation of the mechanism
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by which an indirect spin-spin torque develops during resonator-induced relaxation,

and we estimate the magnitude of this torque and the time Tcorr required for it to

induce strong spin-spin correlations. A perturbation in the spin Hamiltonian which

periodically reverses the direction of the indirect torques within a time period shorter

than Tcorr will prevent the development of resonator-induced correlations and allow

the spins to relax to a thermal state.

The mechanisms by which the spin Hamiltonian Hs modifies resonator-induced

relaxation are characterized. In the case where the eigenstates of Hs are weakly per-

turbed from product states, the systemwill relax exponentially to thermal equilibrium

with the resonator, provided that resonator-induced couplings between populations

and certain zero-quantum coherences are suppressed by terms in Hs which shift the

frequencies of these coherences sufficiently far from zero. Analysis of longitudinal re-

laxation in example systems containing three dipole-dipole coupled spins shows that

the relaxation occurs in two stages governed by different physical processes, and the

three-spin systems do not relax to a thermal state. For substantially larger dipole-

dipole coupled system (e.g., N = 50), we propose the hypotheses that the secular

dipolar Hamiltonian will quickly equalize the population of states which lie in the

same eigenspace of Iz. Simulations of the longitudinal relaxation predicted by this

hypothesis suggest that a single resonator could efficiently relax dipole-dipole coupled

systems to a thermal state.

Arguments based on general properties of the master equation suggest that the

transverse relaxation induced by the mechanical resonator could occur on a shorter

time scale than that of the longitudinal relaxation. We derive conditions which guar-

antee that the time constant for transverse relaxation will be 2/Rh, where 1/Rh is the

time constant for resonator-induced longitudinal relaxation of a single-spin sample to

thermal equilibrium. Under these conditions, transverse relaxation can be interpreted

as the "lifetime broadening" associated with the shortened lifetime of energy eigen-

states due to coupling with the resonator. For a two-spin system, however, we show

analytically that "turning on" the dipolar coupling can accelerate resonator-induced

transverse relaxation, and we give an interpretation of the mechanism by which this
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occurs. Simulations of four-spin systems also show that the presence of dipolar cou-

plings can substantially accelerate resonator-induced transverse relaxation, and that

this accelerated relaxation can be distinguished from so-called radiation damping. In

addition, we find that spin-locking limits the rate of resonator-induced transverse re-

laxation. In the case where the spin-locking field is large enough to average the dipolar

Hamiltonian and the superoperator responsible for resonator-induced relaxation, we

have T1ρ = 2/Rh.

We propose a general definition of signal-to-noise ratio (SNR) which can be used

to compare the sensitivity of methods that measure the amplitude of a signal with the

sensitivity of methods that yield a continuous record of a signal. This definition is used

to compare the sensitivity of three schemes for detecting the NMR signal of a sample

consisting of a few spins: spin-locked detection of a transverse dipole, detection of

a freely-precessing dipole, and detection of a correlated product hIx (t1) Ix (0)i. The

dependence of SNR and acquisition time on resonator parameters is analyzed. We

find that when the time constant for decay of the signal during the detection period is

2/Rh, with instrument noise substantially larger than spin noise, the only resonator

parameter which appears in the SNR expressions is ωh/Th, where ωh is the mechanical

frequency and Th is the temperature. This result suggests, in particular, that SNR

for spin-locked detection will be insensitive to details of resonator design.

A torsional mechanical resonator design is presented. We discuss the advantages

of using soft magnetic material and eliminating relative motion between the sample

and the resonator, as well as the validity of the models used to characterize the

resonator. The possibility of using non-metallic magnetic material as the source of

the resonator’s magnetic field is introduced. A numerical example is presented for

which the calculated time constant for the longitudinal relaxation of a single-spin

sample is 1/Rh = 0.77 s. Simulations of detected NMR spectra for two-spin samples

suggest the possibility of chemical studies in which force-detected NMR spectroscopy

is used with single-spin sensitivity.

The final chapter studies the possibility of using hyperpolarized spins to cool a

single mechanical mode. Numerical examples suggest that cooling would be negligible
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for resonators of size scale ∼ 10μm or larger. In the regime characterized by these

examples, substantial cooling requires sufficiently strong spin-resonator coupling that

neither a mechanical mode nor a spin mode can be distinguished in the spin-resonator

system; instead, the modes of the system include equal contributions from the spins

and the mechanical resonator. The spin-resonator correlations responsible for cooling

make a significant contribution to the symmetric correlation function of the resonator

coordinate, with the result that the noisy "thermal torque" acting on the resonator

is increased rather than diminished by the presence of the hyperpolarized spins.
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