

**Development of the Enantioselective Oxidation of Secondary
Alcohols and Natural Products Total Synthesis**

Thesis by

Jeffrey T. Bagdanoff

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Thesis Defended August 5, 2005)

© 2005

Jeffrey Thomas Bagdanoff

All Rights Reserved

For
Claire Weatherhead

Acknowledgements

The Stoltz group has collaborated to establish a work environment alive with creativity, based in mutual respect, and fortified with an amazing work ethic. It has been a truly rewarding experience to watch the lab grow from a group of friends, unsure of our common purpose but eager to find out, into a mature research force.

I'd like to first thank Brian for providing me with an excellent example of exactly what a successful, well-balanced scientist is. He has been a great motivator, mentor, teacher and friend over the years and I am constantly impressed at his ability to develop his students. That man knows what he is doing.

While every member of the group, past and present, has had an impact on me in my time here I would like to single out a few people. I'd like to thank all of my collaborators over the years, including Doug Behenna and, more recently, Jen Stockdill, for their diligent work on zoanthenol. While a number of people have contributed to various aspects of a rich palladium program, I'd like especially to thank Eric Ferriera, Raissa Trend, and Dave Ebner for keeping oxidation exciting and expanding my understanding of palladium catalysis. I'd like to thank Eric Ashley for pretending to not have a photographic memory and brightly outshining me during those early years as my baymate. (I was probably "in over my head" when I first got here.) I'd like to thank Uttam Tambar, Ryan Zeidan, Yeeman Ramtohul, and the Reverend Joel Austin for the many adventurous nights that made my last few years of bachelorhood here at Caltech memorable.

Which brings me to my bride-to-be. I need to thank Claire for standing by my side during the challenging times and lighting my way. I have the deepest gratitude for the love, patience and support she has given to me. I will work hard to return those gifts in our new life together.

Finally, I would like to thank my dad for setting the bar high, and my mom for helping my chin to reach it during my earliest years.

Abstract

Oxidation is a fundamental process in chemistry and biology. In synthetic chemistry, there are several methods for the asymmetric oxidation of organic substrates. Classically, these methods have focused on the delivery of a heteroatom from a reagent or catalyst to a prochiral substrate. What have historically been underdeveloped are enantioselective oxidation methods that do not involve the transfer of a heteroatom, but rather are defined by the enantioselective dehydrogenation of an organic substrate. This type of oxidative transformation was investigated using a palladium(II) catalyst system.

A palladium-catalyzed oxidative kinetic resolution of secondary alcohols was developed. Key features of the catalytic system include the use of (–)-sparteine as the source of chiral relay, and molecular oxygen as the sole stoicheometric oxidant. Under the described catalytic system, a number of benzylic and allylic alcohols have been oxidized in an enantioselective manner, to provide a ketone and residual alcohol in high enantiomeric excess and excellent yield.

Subsequent to the original system, the systematic investigation of a number of mechanistic hypotheses involving the role of exogenous bases and H-bonding additives prompted the discovery of new reaction conditions displaying greatly enhanced reactivity, selectivity, atom economy, and generality. The net result of these improvements was a catalytic system effective in oxidative desymmetrization of a number of complex *meso*-diols. Ultimately, these advances have permitted our method to be applied towards a number of synthetic endeavors, including the key step in the total synthesis of the natural product alkaloid (–)-lobeline.

Table of Contents

Acknowledgements.....	iv
Abstract.....	vi
Table of Contents.....	vii
List of Schemes.....	xi
List of Figures.....	xiv
List of Tables.....	xxi
Abbreviations.....	xxii

Section I.

Chapter 1 Progress Toward the Total Synthesis of Zoanthenol

I. Introduction.....	1
<i>Zoanthid natural products</i>	1
<i>Background</i>	2
<i>Retrosynthesis</i>	6
<i>Mechanistic Considerations</i>	8
II. Results and Discussion	9
<i>Retrosynthetic analysis of the DEFG ring precursor</i>	9
<i>Synthetic Route from the Chiral Pool</i>	10
<i>Synthetic Route from Glycidol</i>	11

<i>Synthetic Route from a Hetero-Diels-Alder Reaction</i>	13
<i>Endgame for the Total Synthesis</i>	14
III. Conclusion	15
IV. Experimental Section	16
<i>Materials and Methods</i>	16
<i>Preparative Procedures</i>	17
IV. Notes and References	23
V. Appendix.....	25

Section II.

Chapter 2 Development and Application of the Oxidative Kinetic Resolution of 2°-Alcohols by Catalytic Palladium

I. Introduction	55
<i>Enantioselective Oxidation Background</i>	55
<i>The Original Oxidative Kinetic Resolution (OKR)</i>	57
II. Results and Discussion	59

<i>The Role of Exogenous Base and Alcohol Additives</i>	59
<i>The Mechanistic Role of Potential H-Bond Donors</i>	72
<i>Application to the Desymmetrization of Complex Meso-Diols</i>	82
<i>Application to Pharmaceutical Intermediates</i>	89
<i>L-Type Ligand Studies</i>	90
<i>X-Type Ligand Studies</i>	98
III. Conclusion	106
IV. Experimental Section	108
<i>Materials and Methods</i>	108
<i>General Procedures</i>	110
<i>Preparative Procedures</i>	116
V. Notes and References	139
VI. Appendix	145
Chapter 3 Total Synthesis of (–)-Lobeline and (–)-Sedamine by	
Palladium-Catalyzed Enantioselective Oxidation	
I. Introduction	230
<i>Enantioselective Oxidation</i>	230

<i>Piperidine Natural Products</i>	232
<i>Proposed Biogenesis</i>	233
<i>Retrosynthesis</i>	235
<i>Results and Discussion</i>	236
<i>Preliminary Results</i>	236
<i>Revised Retrosynthesis</i>	241
<i>Total Synthesis of (–)-Lobeline</i>	241
<i>Features of the Oxidative Desymmetrization</i>	253
<i>Total Synthesis of (+)-Sedamine and (–)-Sedamine</i>	256
<i>Acidic Polonovski-Type Demethylation</i>	258
II. Conclusion	262
III. Experimental Section	
<i>Materials and Methods</i>	264
<i>Preparative Procedures</i>	266
IV. Notes and References	301
IV. Appendix	304

List of Schemes

Chapter 1

Scheme 1.	Miyashita's intramolecular Diels-Alder reaction	2
Scheme 2.	Synthesis of the Diels-Alder substrate	3
Scheme 3.	Endgame for Miashitas' norzoanthamine synthesis	4
Scheme 4.	Williams' synthetic studies on norzoanthamine AB-rings	4
Scheme 5.	Williams' tandem aminal cyclization	5
Scheme 6.	Degradation of a sugar	10
Scheme 7.	Synthetic route from glycidol.....	11
Scheme 8.	Advancing to the final retron.....	12
Scheme 9.	Enantioselective hetero-Diels-Alder reaction	13
Scheme 10.	Advancing enantiopure synthetic intermediates	14
Scheme 11.	Endgame for zoanthenol	14

Chapter 2

Scheme 1.	Uemuras' protocol for the oxidation of alcohols	55
Scheme 2.	β -Silicon effect in cation stabilization	65
Scheme 3.	Tandem oxidation/intermolecular Si-transfer	65
Scheme 4.	Formation of a (sp)Pd(II)carbonate complex	72
Scheme 5.	Retrosynthesis of a polymethoxydiene	83
Scheme 6.	Variable ether arrays from a common source	84

Scheme 7.	Advancing the <i>anti</i> -ether array	85
Scheme 8.	Advancing the <i>syn</i> -ether array	86
Scheme 9.	Establishing relative stereochemistry	86
Scheme 10.	Enantioselective oxidative <i>meso</i> -diol desymmetrization	87
Scheme 11.	Homologation to the skipped framework	88
Scheme 12.	Regioselective formation of a palladium-alkoxide	100
Scheme 13.	A palladium phenoxide	102

Chapter 3

Scheme 1.	Epimerization pathway	234
Scheme 2.	Attempted ring hydrogenation route	237
Scheme 3.	Attempted tropenone route	239
Scheme 4.	Small quantities of a key intermediate	239
Scheme 5.	Diastereoselective reduction	240
Scheme 6.	Retrosynthesis of (–)-lobeline	241
Scheme 7.	Advancing the piperidine	242
Scheme 8.	Functionalizing the piperidine ring	243
Scheme 9.	Completion of the <i>meso</i> -diol	244
Scheme 10.	OKR on an advanced lobeline intermediate	246
Scheme 11.	Attempted methylation	246
Scheme 12.	Dynamic precipitation of (–)-lobeline	250
Scheme 13.	Derivatization to a HPLC tractable analogue	251
Scheme 14.	Previous enantioselective synthesis.....	257

Scheme 15.	OKR of a sedamine intermediate	257
Scheme 16.	Demethylation problem	259
Scheme 17.	Mechanism for the Polonovski demethylation	259
Scheme 18.	Modified Polonovski demethylation	260
Scheme 19.	Lobeline demethylation	262

List of Figures

Chapter 1

Figure 1.	Zoanthamine natural products	1
Figure 2.	Retrosynthetic analysis of zoanthenol.....	7
Figure 3.	A reasonable mechanism for the cyclization	8
Figure 4.	Retrosynthesis of caprolactam 33	11
Figure 5.	X-ray structure of phthalamide adduct 57	12
Figure 6.	Hetero-Diels-Alder catalyst	13

Appendix 1

Figure A1.1	^1H NMR (300 MHz, CDCl_3) of compound 63	27
Figure A1.2	Infrared spectrum (thin film/NaCl) of compound 63	28
Figure A1.3	^{13}C NMR (125 MHz, CDCl_3) of compound 63	28
Figure A1.4	^1H NMR (300 MHz, CDCl_3) of compound 37	29
Figure A1.5	Infrared spectrum (thin film/NaCl) of compound 37	30
Figure A1.6	^{13}C NMR (125 MHz, CDCl_3) of compound 37	30
Figure A1.7	^1H NMR (300 MHz, CDCl_3) of compound 64	31
Figure A1.8	Infrared spectrum (thin film/NaCl) of compound 64	32
Figure A1.9	^{13}C NMR (125 MHz, CDCl_3) of compound 64	32
Figure A1.10	^1H NMR (300 MHz, CDCl_3) of compound 65	33
Figure A1.11	Infrared spectrum (thin film/NaCl) of compound 65	34
Figure A1.12	^{13}C NMR (125 MHz, CDCl_3) of compound 65	34
Figure A1.13	^1H NMR (300 MHz, CDCl_3) of compound 57	35
Figure A1.14	Infrared spectrum (thin film/NaCl) of compound 57	36
Figure A1.15	^{13}C NMR (125 MHz, CDCl_3) of compound 57	36
Figure A1.16	^1H NMR (300 MHz, CDCl_3) of compound 58	37
Figure A1.17	Infrared spectrum (thin film/NaCl) of compound 58	38
Figure A1.18	^{13}C NMR (125 MHz, CDCl_3) of compound 58	38
Figure A1.19	^1H NMR (300 MHz, CDCl_3) of compound 59	39
Figure A1.20	Infrared spectrum (thin film/NaCl) of compound 59	40
Figure A1.21	^{13}C NMR (125 MHz, CDCl_3) of compound 59	40
Figure A1.22	^1H NMR (300 MHz, CDCl_3) of compound 33	41

Figure A1.23	Infrared spectrum (thin film/NaCl) of compound 33	42
Figure A1.24	^{13}C NMR (125 MHz, CDCl_3) of compound 33	42
X-ray crystal structure report 1	43	

Chapter 2

Figure 1.	Principles of an oxidative kinetic resolution.....	56
Figure 2.	X-Ray crystal structure of $\text{Pd}(\text{sp})\text{Cl}_2$	58
Figure 3.	Plausible mechanism for Pd catalyzed oxidation.....	60
Figure 4.	The potential role of Cs_2CO_3	64
Figure 5.	Crystal structure of $(\text{sp})\text{Pd}(\text{CO}_3)$	73
Figure 6.	Plausible mechanism involving H-bonding species	74
Figure 7.	Resolution vs. desymmetrization	83
Figure 8.	The chirality of (–)-sparteine	91
Figure 9.	Synthetic diamine vs. natural (–)-sparteine chiral pocket.....	92
Figure 10.	Bispinidones, bispinidines, and (–)-sparteine	93
Figure 11.	Calculated lowest energy pathway	98
Figure 12.	A model for asymmetric induction	101
Figure 13.	Crystal structure of $(\text{sp})\text{Pd}^{\text{II}}(\text{pentafluoropenoxide})$	103
Figure 14.	Experimental setup	110

Appendix 2

Figure A2.1	^1H NMR (300 MHz, CDCl_3) of compound 72	146
Figure A2.2	Infrared spectrum (thin film/NaCl) of compound 72	147
Figure A2.3	^{13}C NMR (125 MHz, CDCl_3) of compound 72	147
Figure A2.4	^1H NMR (300 MHz, CDCl_3) of compound 88	148

Figure A2.5	Infrared spectrum (thin film/NaCl) of compound 88	149
Figure A2.6	¹³ CNMR (125 MHz, CDCl ₃) of compound 88	149
Figure A2.7	¹ HNMR (300 MHz, CDCl ₃) of compound 96	150
Figure A2.8	Infrared spectrum (thin film/NaCl) of compound 96	151
Figure A2.9	¹³ CNMR (125 MHz, CDCl ₃) of compound 96	151
Figure A2.10	¹ HNMR (300 MHz, CDCl ₃) of compound 98	152
Figure A2.11	Infrared spectrum (thin film/NaCl) of compound 98	153
Figure A2.12	¹³ CNMR (125 MHz, CDCl ₃) of compound 98	153
Figure A2.13	¹ HNMR (300 MHz, CDCl ₃) of compound 99	154
Figure A2.14	Infrared spectrum (thin film/NaCl) of compound 99	155
Figure A2.15	¹³ CNMR (125 MHz, CDCl ₃) of compound 99	155
Figure A2.16	¹ HNMR (300 MHz, CDCl ₃) of compound 100	156
Figure A2.17	Infrared spectrum (thin film/NaCl) of compound 100	157
Figure A2.18	¹³ CNMR (125 MHz, CDCl ₃) of compound 100	157
Figure A2.19	¹ HNMR (300 MHz, CDCl ₃) of compound 101	158
Figure A2.20	Infrared spectrum (thin film/NaCl) of compound 101	159
Figure A2.21	¹³ CNMR (125 MHz, CDCl ₃) of compound 101	159
Figure A2.22	¹ HNMR (300 MHz, CDCl ₃) of compound 102	160
Figure A2.23	Infrared spectrum (thin film/NaCl) of compound 102	161
Figure A2.24	¹³ CNMR (125 MHz, CDCl ₃) of compound 102	161
Figure A2.25	¹ HNMR (300 MHz, CDCl ₃) of compound 103	162
Figure A2.26	Infrared spectrum (thin film/NaCl) of compound 103	163
Figure A2.27	¹³ CNMR (125 MHz, CDCl ₃) of compound 103	163
Figure A2.28	¹ HNMR (300 MHz, CDCl ₃) of compound 104	164
Figure A2.29	Infrared spectrum (thin film/NaCl) of compound 104	165
Figure A2.30	¹³ CNMR (125 MHz, CDCl ₃) of compound 104	165
Figure A2.31	¹ HNMR (300 MHz, CDCl ₃) of compound 105	166
Figure A2.32	Infrared spectrum (thin film/NaCl) of compound 105	167
Figure A2.33	¹³ CNMR (125 MHz, CDCl ₃) of compound 105	167
Figure A2.34	¹ HNMR (300 MHz, CDCl ₃) of compound 106	168
Figure A2.35	¹ HNMR NOE1 (300 MHz, CDCl ₃) of compound 106	169
Figure A2.36	¹ HNMR NOE2 (300 MHz, CDCl ₃) of compound 106	170
Figure A2.37	Infrared spectrum (thin film/NaCl) of compound 106	171
Figure A2.38	¹³ CNMR (125 MHz, CDCl ₃) of compound 106	171
Figure A2.39	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-107	172
Figure A2.40	Infrared spectrum (thin film/NaCl) of compound (-)-107	173
Figure A2.41	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-107	173
Figure A2.42	¹ HNMR (300 MHz, CDCl ₃) of compound 107a	174
Figure A2.43	Infrared spectrum (thin film/NaCl) of compound 107a	175
Figure A2.44	¹³ CNMR (125 MHz, CDCl ₃) of compound 107a	175
Figure A2.45	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-108	176
Figure A2.46	Infrared spectrum (thin film/NaCl) of compound (-)-108	177
Figure A2.47	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-108	177
Figure A2.48	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-109	178
Figure A2.49	Infrared spectrum (thin film/NaCl) of compound (-)-109	179
Figure A2.50	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-109	179

Figure A2.51	^1H NMR (300 MHz, CDCl_3) of compound 109a	181
Figure A2.52	Infrared spectrum (thin film/NaCl) of compound 109a	181
Figure A2.53	^{13}C NMR (125 MHz, CDCl_3) of compound 109a	181
Figure A2.54	^1H NMR (300 MHz, CDCl_3) of compound 111	182
Figure A2.55	Infrared spectrum (thin film/NaCl) of compound 111	183
Figure A2.56	^{13}C NMR (125 MHz, CDCl_3) of compound 111	183
Figure A2.57	^1H NMR (300 MHz, CDCl_3) of compound 112	184
Figure A2.58	Infrared spectrum (thin film/NaCl) of compound 112	185
Figure A2.59	^{13}C NMR (125 MHz, CDCl_3) of compound 112	185
Figure A2.60	^1H NMR (300 MHz, CDCl_3) of compound 113	186
Figure A2.61	Infrared spectrum (thin film/NaCl) of compound 113	186
Figure A2.62	^{13}C NMR (125 MHz, CDCl_3) of compound 113	187
Figure A2.63	^1H NMR (300 MHz, CDCl_3) of compound 114	188
Figure A2.64	Infrared spectrum (thin film/NaCl) of compound 114	189
Figure A2.65	^{13}C NMR (125 MHz, CDCl_3) of compound 114	189
Figure A2.66	^1H NMR (300 MHz, CDCl_3) of compound 145	190
Figure A2.67	Infrared spectrum (thin film/NaCl) of compound 145	191
Figure A2.68	^{13}C NMR (125 MHz, CDCl_3) of compound 145	191
Figure A2.69	^1H NMR (300 MHz, CDCl_3) of compound 146	193
Figure A2.70	Infrared spectrum (thin film/NaCl) of compound 146	193
Figure A2.71	^{13}C NMR (125 MHz, CDCl_3) of compound 146	193
Figure A2.72	^1H NMR (300 MHz, CDCl_3) of compound 159	194
Figure A2.73	Infrared spectrum (thin film/NaCl) of compound 159	195
Figure A2.74	^{13}C NMR (125 MHz, CDCl_3) of compound 159	195
X-ray crystal structure report 2.....	196	
X-ray crystal structure report 3.....	208	
X-ray crystal structure report 4.....	218	

Chapter 3

Figure 1.	Structures of piperidine natural products	232
Figure 2.	Proposed biogenesis of (–)-lobeline	234
Figure 3.	Lobeline derived from a <i>meso</i> -diol	235
Figure 4.	Stereochemical rationale for hydride addition	243
Figure 5.	X-ray crystal structure of diol 206 (lobelanine)	245
Figure 6.	Predicted solution phase conformations	247
Figure 7.	Steric congestion about the 3°-amine in (–)-lobeline	249

Figure 8.	OKR vs. oxidative desymmetrization	254
Figure 9.	Retrosynthesis of sedamine alkaloids	256
Figure 10.	Proposed mechanism of the modified Polonovski	261
Figure 11.	Experimental setup	286

Appendix 3

Figure A3.1	¹ HNMR (300 MHz, CDCl ₃) of compound (<i>cis:trans</i>)- 162	305
Figure A3.2	IR spectrum (thin film/NaCl) of compound (<i>cis:trans</i>)- 162	306
Figure A3.3	¹³ CNMR (125 MHz, CDCl ₃) of compound (<i>cis:trans</i>)- 162	306
Figure A3.4	¹ HNMR (300 MHz, CDCl ₃) of compound 162	307
Figure A3.5	Infrared spectrum (thin film/NaCl) of compound 162	308
Figure A3.6	¹³ CNMR (125 MHz, CDCl ₃) of compound 162	308
Figure A3.7	¹ HNMR (300 MHz, CDCl ₃) of compound (-)- 163	309
Figure A3.8	Infrared spectrum (thin film/NaCl) of compound (-)- 163	310
Figure A3.9	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)- 163	310
Figure A3.10	¹ HNMR (300 MHz, CDCl ₃) of compound (+)- 163	311
Figure A3.11	Infrared spectrum (thin film/NaCl) of compound (+)- 163	312
Figure A3.12	¹³ CNMR (125 MHz, CDCl ₃) of compound (+)- 163	312
Figure A3.13	¹ HNMR (300 MHz, D ₆ -DMSO) of compound 177	313
Figure A3.14	Infrared spectrum (KBr pellet) of compound 177	314
Figure A3.15	¹³ CNMR (125 MHz, D ₆ -DMSO) of compound 177	314
Figure A3.16	¹ HNMR (300 MHz, CDCl ₃) of compound 180	315
Figure A3.17	Infrared spectrum (thin film/NaCl) of compound 180	316
Figure A3.18	¹³ CNMR (125 MHz, CDCl ₃) of compound 180	316
Figure A3.19	¹ HNMR (300 MHz, CDCl ₃) of compound 182	317
Figure A3.20	Infrared spectrum (thin film/NaCl) of compound 182	317
Figure A3.21	¹³ CNMR (125 MHz, CDCl ₃) of compound 182	318
Figure A3.22	¹ HNMR (300 MHz, CDCl ₃) of compound 186	319
Figure A3.23	Infrared spectrum (thin film/NaCl) of compound 186	319
Figure A3.24	¹³ CNMR (125 MHz, CDCl ₃) of compound 186	320
Figure A3.25	¹ HNMR (300 MHz, CDCl ₃) of compound 187	321
Figure A3.26	Infrared spectrum (thin film/NaCl) of compound 187	322
Figure A3.27	¹³ CNMR (125 MHz, CDCl ₃) of compound 187	322
Figure A3.28	¹ HNMR (300 MHz, CDCl ₃) of compound 188	323
Figure A3.29	Infrared spectrum (thin film/NaCl) of compound 188	324
Figure A3.30	¹³ CNMR (125 MHz, CDCl ₃) of compound 188	324
Figure A3.31	¹ HNMR (300 MHz, CDCl ₃) of compound 190	325
Figure A3.32	Infrared spectrum (thin film/NaCl) of compound 190	326
Figure A3.33	¹³ CNMR (125 MHz, CDCl ₃) of compound 190	326
Figure A3.34	¹ HNMR (300 MHz, CDCl ₃) of compound 191	327

Figure A3.35	Infrared spectrum (thin film/NaCl) of compound 191	328
Figure A3.36	¹³ CNMR (125 MHz, CDCl ₃) of compound 191	328
Figure A3.37	¹ HNMR (300 MHz, CDCl ₃) of compound 193	329
Figure A3.38	Infrared spectrum (thin film/NaCl) of compound 193	330
Figure A3.39	¹³ CNMR (125 MHz, CDCl ₃) of compound 193	330
Figure A3.40	¹ HNMR (300 MHz, CDCl ₃) of compound 194	331
Figure A3.41	Infrared spectrum (thin film/NaCl) of compound 194	332
Figure A3.42	¹³ CNMR (125 MHz, CDCl ₃) of compound 194	332
Figure A3.43	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-194	333
Figure A3.44	Infrared spectrum (thin film/NaCl) of compound (-)-194	334
Figure A3.45	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-194	334
Figure A3.46	¹ HNMR (300 MHz, CDCl ₃) of compound (+)-195	335
Figure A3.47	Infrared spectrum (thin film/NaCl) of compound (+)-195	336
Figure A3.48	¹³ CNMR (125 MHz, CDCl ₃) of compound (+)-195	336
Figure A3.49	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-195	337
Figure A3.50	Infrared spectrum (thin film/NaCl) of compound (-)-195	338
Figure A3.51	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-195	338
Figure A3.52	¹ HNMR (300 MHz, CDCl ₃) of compound (±)-196	339
Figure A3.53	Infrared spectrum (thin film/NaCl) of compound (±)-196	340
Figure A3.54	¹³ CNMR (125 MHz, CDCl ₃) of compound (±)-196	340
Figure A3.55	¹ HNMR (300 MHz, CDCl ₃) of compound (±)-199	341
Figure A3.56	Infrared spectrum (thin film/NaCl) of compound (±)-199	342
Figure A3.57	¹³ CNMR (125 MHz, CDCl ₃) of compound (±)-199	342
Figure A3.58	¹ HNMR (300 MHz, CDCl ₃) of compound (-)-201	343
Figure A3.59	Infrared spectrum (thin film/NaCl) of compound (-)-201	344
Figure A3.60	¹³ CNMR (125 MHz, CDCl ₃) of compound (-)-201	344
Figure A3.61	¹ HNMR (300 MHz, CDCl ₃) of compound (±)-202	345
Figure A3.62	Infrared spectrum (thin film/NaCl) of compound (±)-202	346
Figure A3.63	¹³ CNMR (125 MHz, CDCl ₃) of compound (±)-202	346
Figure A3.64	¹ HNMR (300 MHz, CDCl ₃) of compound (±)-203	347
Figure A3.65	Infrared spectrum (thin film/NaCl) of compound (±)-203	348
Figure A3.66	¹³ CNMR (125 MHz, CDCl ₃) of compound (±)-203	348
Figure A3.67	¹ HNMR (300 MHz, CDCl ₃) of compound (±)-204	349
Figure A3.68	Infrared spectrum (thin film/NaCl) of compound (±)-204	350
Figure A3.69	¹³ CNMR (125 MHz, CDCl ₃) of compound (±)-204	350
Figure A3.70	¹ HNMR (300 MHz, CDCl ₃) of compound 205	350
Figure A3.71	Infrared spectrum (thin film/NaCl) of compound 205	352
Figure A3.72	¹³ CNMR (125 MHz, CDCl ₃) of compound 205	352
Figure A3.73	¹ HNMR (300 MHz, CDCl ₃) of compound 206	353
Figure A3.74	Infrared spectrum (thin film/NaCl) of compound 206	354
Figure A3.75	¹³ CNMR (125 MHz, CDCl ₃) of compound 206	354
Figure A3.76	¹ HNMR (300 MHz, CDCl ₃) of compound 208	355
Figure A3.77	Infrared spectrum (thin film/NaCl) of compound 208	356
Figure A3.78	¹³ CNMR (125 MHz, CDCl ₃) of compound 208	356
Figure A3.79	¹ HNMR (300 MHz, CDCl ₃) of compound 217	357
Figure A3.80	Infrared spectrum (thin film/NaCl) of compound 217	358

Figure A3.81	$^{13}\text{CNMR}$ (125 MHz, CDCl_3) of compound 217	358
Figure A3.82	$^1\text{H}\text{NMR}$ (300 MHz, CDCl_3) of compound 218	359
Figure A3.83	Infrared spectrum (thin film/NaCl) of compound 218	360
Figure A3.84	$^{13}\text{CNMR}$ (125 MHz, CDCl_3) of compound 218	360
Figure A3.85	$^1\text{H}\text{NMR}$ (300 MHz, CDCl_3) of compound 219	361
Figure A3.86	Infrared spectrum (thin film/NaCl) of compound 219	362
Figure A3.87	$^{13}\text{CNMR}$ (125 MHz, CDCl_3) of compound 219	362
X-ray crystal structure report 5.....		363

List of Tables

Chapter 2

Table 1.	The original oxidative kinetic resolution.....	57
Table 2.	<i>In situ</i> catalyst formation	59
Table 3.	Additive effects on the OKR.....	61
Table 4.	Effect of excess (–)-sparteine.....	63
Table 5.	Effect of an oxidatively inert alcohol	67
Table 6.	Effect of oxidatively inert alcohols on the OKR.....	68
Table 7.	Cumulative additive effects	70
Table 8.	$\text{Cs}_2\text{CO}_3/t\text{-BuOH}$ -modified OKR	71
Table 9.	Impact of solvent on reaction rate	76
Table 10.	C–D stretch of CDCl_3	77
Table 11.	Scope of the CHCl_3 conditions	79
Table 12.	Comparison of oxidation performance	80
Table 13.	Effect of O_2 concentration	81
Table 14.	Monoamine and diamine ligands	94
Table 15.	Impact of ligand structure on conversion	96
Table 16.	Effect of sodium phenoxide salts on the OKR	104

Chapter 3

Table 1.	Scope of the original palladium catalyzed OKR	230
Table 2.	Evolution of the palladium catalyzed OKR	231
Table 3.	Impact of <i>N</i> -protecting groups on the OKR	236

List of Abbreviations

$[\alpha]_D$	specific rotation at wavelength of sodium D line
aq.	aqueous
Ar	aryl
atm	atmosphere
BBN	borabicyclo[3.3.1]nonane
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
bp	boiling point
br	broad
Bu	butyl
<i>i</i> -Bu	isobutyl
<i>n</i> -Bu	<i>n</i> -butyl
<i>t</i> -Bu	<i>tert</i> -butyl
Bz	benzoyl
<i>c</i>	concentration for specific rotation measurements
° C	degrees Celsius
calc'd	calculated
cat.	catalytic
comp	complex
d	doublet
DCC	dicyclohexylcarbodiimide

DCE	1,2-dichloroethane
DIBAL	diisobutylaluminum hydride
DMAP	4-dimethylaminopyridine
DMF	<i>N,N</i> -dimethylformamide
DMSO	dimethylsulfoxide
dr	diastereomeric ratio
ee	enantiomeric excess
EI	electrospray ionization
equiv	equivalents
Et	ethyl
EtOAc	ethyl acetate
FAB	fast atom bombardment
g	grams
GC	gas chromatography
[H]	reduction
h	hour(s)
$h\nu$	light
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	hertz
Imid.	Imidazole
IR	infrared
<i>J</i>	coupling constant

Kcal	kilocalories
L	liter
LAH	lithium aluminum hydride
M	metal or molar
m	milli or multiplet or meters
<i>m/z</i>	mass to charge ratio
μ	micro
Me	methyl
MHz	megahertz
min	minutes
mol	moles
mmol	millimoles
mp	melting point
MS	molecular sieves
Ms	methanesulfonyl
N	normal
nbd	norbornadiene
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhouser effect
[O]	oxidation
OKR	oxidative kinetic resolution
Ph	phenyl

PhH	benzene
pKa	acidity constant
ppm	parts per million
<i>i</i> -Pr	isopropyl
q	quartet
ref	reference
R _F	retention factor
s	singlet or selectivity factor
sp	(<i>-</i>)-sparteine
t	triplet
TBAF	tetrabutylammonium fluoride
TBS	<i>tert</i> -butyldimethylsilyl
TCA	trichloroacetic acid
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin-layer chromatography
TMS	trimethylsilyl
v/v	volume to volume
w/v	weight to volume