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ABSTRACT

RNA is a rich and versatile substrate for the construction of information
processing devices. These devices detect the levels of specified intracellular biomolecules
and control cellular behavior accordingly. With few superficial constraints on the identity
of the recognized biomolecule or the targeted gene, RNA-based information processing
devices can be rapidly implemented toward various applications in medicine and
biotechnology. To advance the design and implementation of RNA-based information
processing devices, we delineated general design principles and applied these principles
to the construction of devices that operate through RNA interference (RNA1).

RNALI represents an endogenous enzymatic pathway present in humans and other
eukaryotes that mediates targeted gene silencing. The pathway has garnered recent
interest as a revolutionary biological research tool and as a targeted therapeutic strategy.
While RNAi has left an indelible mark on the scientific community, exerting greater
control would advance the applicability and safety of this already impressive gene
silencing mechanism. Toward this goal, we engineered ligand control of three types of
RNAI effectors in mammalian cells: small interfering (si)RNAs, small hairpin (sh)RNAs,
and microRNAs (miRNAs). Engineering frameworks enabled facile replacement of the
biomolecule sensory and gene targeting domains, thus lending to rapid implementation as
biosensors or autonomous control devices. Experimental and computational
characterization studies provided a comprehensive understanding of device behavior,

thereby facilitating forward design.
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Naturally-occurring analogs of RNA-based information processing devices are
riboswitches. Riboswitches predominantly mediate dynamic feedback in metabolism and
share many traits with current examples of engineered information processing devices.
Various experimental characterization studies of riboswitches showed that kinetics
underlying events such as conformational switching and ligand binding have a substantial
impact on device performance, although these factors remain to be comprehensively
evaluated or considered when formulating design principles for synthetic riboswitch
construction. We explored the contribution of kinetic factors to riboswitch performance
in silico, where model predictions matched experimental observations, including results
from our ligand-responsive RNAi effectors. From our modeling results, we developed a

general set of design principles that guide riboswitch assembly and performance tuning.
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