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ABSTRACT 

 

RNA is a rich and versatile substrate for the construction of information 

processing devices. These devices detect the levels of specified intracellular biomolecules 

and control cellular behavior accordingly. With few superficial constraints on the identity 

of the recognized biomolecule or the targeted gene, RNA-based information processing 

devices can be rapidly implemented toward various applications in medicine and 

biotechnology. To advance the design and implementation of RNA-based information 

processing devices, we delineated general design principles and applied these principles 

to the construction of devices that operate through RNA interference (RNAi). 

RNAi represents an endogenous enzymatic pathway present in humans and other 

eukaryotes that mediates targeted gene silencing. The pathway has garnered recent 

interest as a revolutionary biological research tool and as a targeted therapeutic strategy. 

While RNAi has left an indelible mark on the scientific community, exerting greater 

control would advance the applicability and safety of this already impressive gene 

silencing mechanism. Toward this goal, we engineered ligand control of three types of 

RNAi effectors in mammalian cells: small interfering (si)RNAs, small hairpin (sh)RNAs, 

and microRNAs (miRNAs). Engineering frameworks enabled facile replacement of the 

biomolecule sensory and gene targeting domains, thus lending to rapid implementation as 

biosensors or autonomous control devices. Experimental and computational 

characterization studies provided a comprehensive understanding of device behavior, 

thereby facilitating forward design.  



 vii

Naturally-occurring analogs of RNA-based information processing devices are 

riboswitches. Riboswitches predominantly mediate dynamic feedback in metabolism and 

share many traits with current examples of engineered information processing devices. 

Various experimental characterization studies of riboswitches showed that kinetics 

underlying events such as conformational switching and ligand binding have a substantial 

impact on device performance, although these factors remain to be comprehensively 

evaluated or considered when formulating design principles for synthetic riboswitch 

construction. We explored the contribution of kinetic factors to riboswitch performance 

in silico, where model predictions matched experimental observations, including results 

from our ligand-responsive RNAi effectors. From our modeling results, we developed a 

general set of design principles that guide riboswitch assembly and performance tuning. 
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