

Engineering Ligand Control of RNA Interference

Thesis by

Chase Lawrence Beisel

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended May 14th, 2009)

© 2009

Chase Lawrence Beisel

All Rights Reserved

Dedicated in loving memory to my mother

Joanne Hendlar Heltzer

ACKNOWLEDGEMENTS

The work described in this thesis represents five years of dedication, sweat, toil, and sacrifice – most of which from those who deserve recognition. First and foremost, I want to thank my thesis advisor, Prof. Christina Smolke. Financial support aside, Christina has patiently shown me the ways of science and offered a consistent source of reason and insight through my own uncertainties and far-fetched project ideas. I will forever benefit from her critical eye and willingness to improve how I communicate my ideas to the world.

Other various professors have made immeasurable contributions to whom I am grateful and now excitedly pursue a career in academia: Prof. Julie Kornfield for her kindness, humility, and willingness to provide aid; Prof. Peter Reilly at Iowa State University for introducing me to scientific research, the joys of a professorial lifestyle, and the global scale of science; Profs. Vassily Hatzimanikatis at the EPFL and Jacqueline Shanks at Iowa State University for their friendship and pointed advice through the highs and lows of my undergraduate and graduate career; Prof. Garrett Soukup at Creighton University for his fascination with RNA and corresponding willingness to fuel my own excitement; and Dr. Michael Vicic (a full-fledged professor in my mind) for personally demonstrating that the Ph.D. is merely a tool in which to engage life's questions and challenges – whether it be topics in fluid mechanics or devising and marketing an online television show database.

This thesis (and my mostly intact sanity) would not have been possible without my treasured friends in the Smolke lab: Dr. Travis Bayer for his willingness to take me

under his wing, his honest excitement about scientific discovery, his positive and outgoing demeanor even in the face of adversity, and his uncanny ability to find an appropriate baseball analogy for any conceivable situation; Dr. Kristy Hawkins for her compassion and unparalleled work ethic; Dr. Kevin Hoff for his limitless academic knowledge and refreshing sense of perspective; and Stephanie Culler for her love of music, wine, movies, alternative splicing, and all things Southern California.

My church community has kept me fully grounded and focused on the most important pursuits in life: Jim, my classmate and former roommate, who first invited me to Warehouse and has been one of my references for a Christ-centered life; my Jr. High group, who taught me about the unlimited potential (and untamed energy) of youth; and my dear friends Mike, Melissa, Todd, Joe, Becca, Katie, Kate, Melinda, and Casey.

Finally, I want to thank my family. My father, Kirk, and stepmother, Maryann, have constantly extended love and encouragement, especially in times when I was filled with self-doubt and despair. My mother, Joanne, instilled in me the importance of contentment and serving others, even when terminally ill. In the same right, my stepfather Dale showed me what unfailing devotion looks like even under extreme duress. Finally I want to thank my wife, Amy. She first entered my life during candidacy and undoubtedly saw the worst of me during those first few months. To my amazement and gratitude, she still pursued the relationship. Since then, she has outpoured love, support, and friendship to which I am forever in her debt. Thankfully she has given me a lifetime to repay and I couldn't be happier.

ABSTRACT

RNA is a rich and versatile substrate for the construction of information processing devices. These devices detect the levels of specified intracellular biomolecules and control cellular behavior accordingly. With few superficial constraints on the identity of the recognized biomolecule or the targeted gene, RNA-based information processing devices can be rapidly implemented toward various applications in medicine and biotechnology. To advance the design and implementation of RNA-based information processing devices, we delineated general design principles and applied these principles to the construction of devices that operate through RNA interference (RNAi).

RNAi represents an endogenous enzymatic pathway present in humans and other eukaryotes that mediates targeted gene silencing. The pathway has garnered recent interest as a revolutionary biological research tool and as a targeted therapeutic strategy. While RNAi has left an indelible mark on the scientific community, exerting greater control would advance the applicability and safety of this already impressive gene silencing mechanism. Toward this goal, we engineered ligand control of three types of RNAi effectors in mammalian cells: small interfering (si)RNAs, small hairpin (sh)RNAs, and microRNAs (miRNAs). Engineering frameworks enabled facile replacement of the biomolecule sensory and gene targeting domains, thus lending to rapid implementation as biosensors or autonomous control devices. Experimental and computational characterization studies provided a comprehensive understanding of device behavior, thereby facilitating forward design.

Naturally-occurring analogs of RNA-based information processing devices are riboswitches. Riboswitches predominantly mediate dynamic feedback in metabolism and share many traits with current examples of engineered information processing devices. Various experimental characterization studies of riboswitches showed that kinetics underlying events such as conformational switching and ligand binding have a substantial impact on device performance, although these factors remain to be comprehensively evaluated or considered when formulating design principles for synthetic riboswitch construction. We explored the contribution of kinetic factors to riboswitch performance *in silico*, where model predictions matched experimental observations, including results from our ligand-responsive RNAi effectors. From our modeling results, we developed a general set of design principles that guide riboswitch assembly and performance tuning.

TABLE OF CONTENTS

Acknowledgements	iv
Abstract	vi
Table of Contents	viii
List of Figures	x
List of Tables	xiii
Chapter 1: Introduction	1
References	12
Chapter 2: Design of Ligand-Responsive Small Interfering RNAs	16
Abstract	17
Introduction	18
Results and Discussion	19
Materials and Methods	30
References	33
Chapter 3: Design of Ligand-Responsive Small Hairpin RNAs	36
Abstract	37
Introduction	38
Results	41
Discussion	65
Materials and Methods	69
Acknowledgements	73
References	74
Supplementary information	78

Chapter 4: Design of Ligand-Responsive MicroRNAs	108
Abstract	109
Introduction	110
Results	112
Discussion	136
Materials and Methods	139
Acknowledgements	144
References	144
Supplementary information	149
Chapter 5: Design Principles for Riboswitch Function	157
Abstract	158
Introduction	159
Results	162
Discussion	187
Materials and Methods	195
References	197
Acknowledgements	197
Supplementary information	202
Chapter 6: Conclusions and Future Prospects	221
References	227

LIST OF FIGURES

Figure 1.1	General schematic of riboswitch function	4
Figure 1.2	Number of RNAi publications each year since the discovery of RNAi in 1998	7
Figure 1.3	RNAi processing pathway and post-transcriptional gene silencing mechanism in mammals	9
Figure 2.1	Design schemes for ligand-regulated siRNAs or siSwitches	21
Figure 2.2	Length of the competing stem affects the extent of binding and Dicer processing in vitro	23
Figure 2.3	Relative EGFP knockdown by T7-transcribed siRNAs in HEK293T tTA-d2EGFP	27
Figure 2.4	Endogenously-expressed long siRNAs induce greater EGFP knockdown than regular siRNAs	29
Figure 3.1	Design and characterization of an shRNA switch platform	42
Figure 3.2	Model predicts tuning of the shRNA switch transfer function through variation of identified tuning parameters	47
Figure 3.3	Experimental validation of competing strand tuning strategies	48
Figure 3.4	Experimental validation of aptamer tuning strategies	51
Figure 3.5	Programming transfer functions through combinatorial design strategies	55
Figure 3.6	Extended model enables sequence-to-transfer function prediction and guides the forward design of optimized shRNA switches	59
Figure 3.7	Model application guides the forward design of shRNA switches targeting an endogenous gene	64
Figure S3.1	Theophylline dependence of in-line cleavage at C56 and C74 of S4t	78
Figure S3.2	Antisense inhibition of guide strand activity represses RNAi-mediated silencing of GFP	79
Figure S3.3	Functionality of shRNA switches in different cell lines	80

Figure S3.4 Derived model equation and model fit of theophylline response curve for S1 data from Figure 3.1D	81
Figure S3.5 Depiction of methods to calculate ΔG from shRNA switch sequence information	82
Figure S3.6 Alternative methods to relate shRNA switch sequence and in vivo basal expression levels	83
Figure S3.7 Theophylline response curve for the initial and optimized shRNA switches	84
Figure S3.8 Theophylline-mediated gene regulation of endogenous La protein with shRNA switches	85
Figure S3.9 Representative histograms and dot plots for HEK293T tTA-d2EGFP cells transiently transfected with a plasmid expressing DsRed-Express and either a scrambled shRNA (scr), the base shRNA targeting EGFP (sh), or shRNA switch S13	86
Figure 4.1 Extent of structure in the basal segments dictates miRNA processing and target gene silencing	113
Figure 4.2 Ligand-responsive miRNAs enable ligand-mediated regulation of Drosha processing and gene silencing	117
Figure 4.3 Ligand-responsive miRNAs can accommodate different aptamers to tailor the input-responsiveness of the regulatory system	123
Figure 4.4 Synthetic ligand-responsive miRNA clusters allow tuning of the regulatory response	125
Figure 4.5 Ligand-responsive miRNA clusters can effectively control expression of endogenous gene targets	129
Figure 4.6 Ligand-responsive miRNAs can control transgene expression in cis	131
Figure 4.7 Self-targeting miRNAs provide an enhanced regulatory response	133
Figure S4.1 Sequence and secondary structures of miRNAs targeting GFP	150
Figure S4.2 Ligand-responsive miRNAs can accommodate different mature miRNA sequences to tailor the gene silencing output of the regulatory system	151

Figure S4.3 Ligand-responsive miRNAs control gene expression in cis through transcript destabilization	152
Figure S4.4 Flow cytometry histograms for HEK 293-Flp-In cells stably expressing the self-targeting miRNA constructs	153
Figure S4.5 Self-targeting miRNAs confer differential response to cellular stress	154
Figure 5.1 Kinetic models for riboswitches functioning through three distinct regulatory mechanisms	166
Figure 5.2 Thermodynamically-driven riboswitches display similar tuning properties	170
Figure 5.3 Rate competition dictates riboswitch performance	173
Figure 5.4 Rescuing riboswitch performance in the non-functional regime	177
Figure 5.5 Placing an upper limit on the ligand concentration range alters the observed tuning properties	181
Figure 5.6 Mutational analysis of a synthetic riboswitch supports model predictions	186
Figure 5.7 The accessibility of the riboswitch response curve depends on application category and associated system restrictions	191
Figure S5.1 Detailed molecular description of riboswitch function	203
Figure S5.2 Thermodynamically-driven riboswitches exhibiting OFF behavior display similar tuning properties to riboswitches exhibiting ON behavior	205
Figure S5.3 The mechanism-specific regulatory activities dictate differential tuning properties for thermodynamically-driven riboswitches	206
Figure S5.4 Distinction between tuning properties for ON and OFF behaviors for riboswitches functioning through mRNA destabilization	207
Figure S5.5 The dynamic range difference and ratio exhibit qualitatively similar tuning properties	208

LIST OF TABLES

Table 2.1	Sequence of synthesized and T7-transcribed RNAs	33
Table S3.1	shRNA and shRNA switch sequences	88
Table S3.2	Calculated free energies and corresponding expression levels of theophylline-regulated shRNA switches	91
Table S3.3	Description of model parameters	96
Table S4.1	Sequences for ligand-responsive and control miRNAs	155
Table 5.1	Estimated ranges for parameter values based on previous experimental and computational studies	164
Table S5.1	Sequence variants of pSAL8.3 and associated β -Galactosidase levels reported in Miller Units (MU)	209
Table S5.2	Comparison of dynamic range calculations for a thermodynamically-driven riboswitch	212
Table S5.3	Rate constants used in all models	215
Table S5.4	General equations for performance descriptors	216
Table S5.5	Mechanism-specific parameters for translational repression (TR), transcriptional termination (TT), and mRNA destabilization (MD)	217
Table S5.6	Performance descriptors for a non-functional riboswitch functioning through transcriptional termination	219
Table S5.7	Performance descriptors for a thermodynamically-driven riboswitch subjected to a ligand concentration upper limit (L')	220