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Abstract

In the field of source coding over networks, a central goal is to understand the best
possible performance for compressing and transmitting dependent data distributed
over a network. The achievable rate region for such a network describes all link ca-
pacities that suffice to satisfy the reproduction demands. Here all the links in the
networks are error-free, the data dependency is given by a joint distribution of the
source random variables, and the source sequences are drawn i.i.d. according to the
given source distribution. In this thesis, I study the achievable rate regions for gen-
eral networks, deriving new properties for the rate regions of general network source
coding problems, developing approximation algorithms to calculate these regions for
particular examples, and deriving bounds on the regions for basic multi-hop and
multi-path examples.

In the first part, I define a family of network source coding problems. That fam-
ily contains all of the example networks in the literature as special cases. For the
given family, I investigate abstract properties of the achievable rate regions for gen-
eral networks. These properties include (1) continuity of the achievable rate regions
with respect to both the source distribution and the distortion constraint vector and
(2) a strong converse that implies the traditional strong converse. Those properties
might be useful for studying a long-standing open question: whether a single-letter
characterization of a given achievable rate region always exists.

In the second part, I develop a family of algorithms to approximate the achievable
rate regions for some example network source coding problems based on their single-
letter characterizations by using linear programming tools. Those examples contain

(1) the lossless coded side information problem by Ahlswede and Korner, (2) the
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Wyner-Ziv rate-distortion function, and (3) the Berger et al. bound for the lossy
coded side information problem. The algorithms may apply more widely to other
examples.

In the third part, I study two basic networks of different types: the two-hop and
the diamond networks. The two-hop network is a basic example of line networks with
single relay node on the path from the source to the destination, and the diamond
network is a basic example of multi-path networks that has two paths from the source
to the destination, where each of the paths contains a relay node. I derive performance

bounds for the achievable rate regions for these two networks.
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Chapter 1

Introduction

In the point-to-point communication, when a data sequence is drawn i.i.d. according
to a given probability distribution, the optimal lossless and lossy source coding per-
formances are represented by the entropy function H(X) for lossless source coding
and the rate distortion function Ry (D) for lossy source coding. These results were
derived by Shannon in [1]. We wish to describe and calculate the achievable rate
regions for generalizations of this problem where dependent data is described over
a network of noiseless links. For each network source coding problem, which is de-
fined formally in Section 2.2, we consider three types of achievable rate regions: the
zero-error rate region, lossless rate region, and lossy rate region. The zero-error rate
region contains all rate vectors R such that there exists a sequence of n-dimensional
variable-length codes each of which achieves error probability precisely equal to zero
with average expected description length vectors converging to R. The lossless rate
region contains all the rate vectors R such that there exists a sequence of length-n,
rate-R block codes whose error probabilities can be made arbitrarily small when n
grows without bound. The lossy rate region contains all the rate vectors R such that
there exists a sequence of length-n, rate-R block codes that satisfy a given collection
of distortion constraints asymptotically. In this thesis, we consider the scenario where
the finite-alphabet sources are memoryless but not necessarily independent.

The vast majority of information theory research in the field of source coding over
networks has focused on deriving single-letter bounds on the achievable rate regions.

For example, the work of Slepian and Wolf treats the lossless source coding problem
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for the two-terminal network where the two source sequences are separately encoded
and the decoder combines the two encoded messages to losslessly reproduce both of
the two source sequences [2]. Gray and Wyner found an exact single-letter charac-
terization for both lossless and lossy rate regions on a related “simple network” [3].
Ahlswede and Korner derived a single-letter characterization for the two-terminal net-
work where the decoder needs to reconstruct only one source sequence losslessly [4];
that characterization employs an auxiliary random variable to capture the decoder’s
incomplete knowledge of the source that is not required to reconstruct. Wyner and
Ziv derived a single-letter characterization of the optimal achievable rate for lossy
source coding in the point-to-point network when side information is available only
at the decoder [5]. Berger et al. derived an achievable region (inner bound) for the
lossy two-terminal source coding problem in [6]. That region is known to be tight in
some special cases [7]. Heegard and Berger found a single-letter characterization by
using two auxiliary random variables for the network where side information may be
absent [8]. Yamamoto considered a cascaded communication system with multi-hop
and multi-branches [9]. For larger networks, Ahlswede et al. derived an optimal rate
region for any network source coding problem where there is one source node that
observes a collection of independent source random variables, all of which must be
reconstructed losslessly by a family of sink nodes [10]; Ho et al. proved the cut-set
bound is tight for multi-cast network with arbitrary dependency on the source random
variables [11]; Bakshi and Effros generalized Ho’s result to show the cut-set bound
is still tight when side information random variables are available only at the end
nodes [12].

In this thesis, I extend the prior results to study the rate regions for a wider family
of network source coding problems. I investigate theoretical properties of rate regions,
develop algorithms of approximating rate regions for particular network source coding
problems, and derive inner and outer bounds for two basic examples.

In Chapters 2 and 3, I study the abstract properties of rate regions and their impli-

cations. In Chapter 2, I define a family of network source coding problems that con-
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tains the example networks and also the functional source coding problems [13, 14, 15]
as special cases. I classify the problems in that family into four categories determined
by separating lossless from lossy source coding and by distinguishing between what
I call canonical source codes and problems that do not meet the canonical source
coding definition, which are here called non-canonical source codes. Treating lossless
and lossy rate regions as functions, I investigate the continuity properties of rate re-
gions with respect to the source distribution and the distortion vector. The continuity
results are critical for understanding whether rate regions for empirical distributions
necessarily approximate the rate regions for the true underlying distribution. Early
results of this material appear in [16, 17, 18].

I introduce a strong converse in Chapter 3. That strong converse implies the
traditional strong converses for i.i.d. sources in the point-to-point [19], coded-side
information [20], Slepian-Wolf [21] source coding problems. The proposed strong
converse applies both to the problems mentioned above and to any multicast network
with side information at the end nodes.

In Chapter 4, I develop a family of algorithms to approximate the rate regions for
example distributions based on their single-letter characterizations. For rate regions
characterized by auxiliary random variables, rate region calculation requires solution
of an optimization problem. While derivation of rate regions has been a key area
of research focus, the question of how to solve the underlying optimization problems
has received far less attention. Rate region calculation turns out to be surprisingly
difficult optimization problems since many regions are neither convex nor concave
in the distributions of their auxiliary random variables. The well-known Arimoto-
Blahut algorithm [22, 23] for calculating the channel capacity and the rate-distortion
function and its extension [24] for calculating the Wyner-Ziv rate distortion function
are iterative techniques for performing such optimizations. I propose an alternative
approach for approximating the achievable rate region by first quantizing the space
of possible distributions and then solving a finite linear programing whose solution

is guaranteed to differ from the rate region by at most a factor of (1 + €) such that
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(1 4 €)-approximation is guaranteed. This approach can be applied to a wider family
of network source coding problems and may provide new tools useful for understand-
ing some long-standing open problems, for instance, the tightness of Berger et al.
bound [6]. I presented early results for the Ahlswede-Korner problem in [25, 26] and
for the lossy coded side information problem in [27].

I study two basic example networks in Chapter 5: The two-hop line network and
the diamond network. The two-hop line network is the simplest nontrivial example
of network source coding for nodes in series. The diamond network is the simplest
nontrivial example of network source coding across links in parallel. I derive inner
and outer bounds for both of the problems by applying the techniques used in the
literature. Parts of this work originally appeared in [28, 29, 30].



Chapter 2

A Continuity Theory

2.1 Introduction

Characterization of rate regions for source coding over networks is a primary goal
in the field of source coding theory. Given a network and a collection of sources
and demands, the lossless and lossy rate regions generalize Shannon’s source cod-
ing and rate-distortion theorems [1] to describe, respectively, the set of achievable
rate vectors for which the error probability can be made arbitrarily close to zero as
block length grows without bound and the set of achievable rate vectors for which a
given distortion constraint is asymptotically satisfied as block length grows without
bound. The zero-error rate region is denoted by Rz(Px.y), the lossless rate region
is denoted by R.(Px.y), and the lossy rate region is denoted by R(Px y,D), where
Px v is the source and side-information distribution, here assumed to be stationary
and memoryless, and D is the vector of distortion constraints.

In this chapter, which extends our works from [17] and [18], we investigate the
continuity of Rz(Pxy) and Rp(Pxy) with respect to Pxy and R(Pxy,D) with
respect to both Px y and D for both canonical and non-canonical source codes. Here
a network source coding problem is canonical if and only if every demand func-
tion can be written as a linear combination over some finite field of functions that
can be calculated at some source nodes. Understanding the continuity properties of

Rz(Pxy), Ri.(Pxy), and R(Px v, D) is important because continuity is required to
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guarantee that a reliable estimation of Px y results in a reliable estimation of its rate
regions. While proofs of continuity are straight forward when single-letter character-
izations are available, we here study continuity for a general class of network source
coding problems defined in Section 2.2. Proof of continuity is difficult in this case
because single-letter characterizations are not available, optimal coding strategies are
not known, and demonstrating continuity from limiting characterizations seems to be
difficult.

A number of examples of single-letter rate region characterizations appear in the
literature. In [2], Slepian and Wolf derive R (Px y) for the two-terminal problem
that has two separate encoders and one decoder interested in reproducing both of
the source sequences. The given inequalities describe the cut-set bounds, which are
tight for this network by [2], for all other multicast networks with independent and
dependent sources by [10] and [11], respectively, and for multicast networks with
receiver side information by [12]. The work in [4] introduces an auxiliary random
variable in the single-letter characterization of R (Px y) for a network similar to the
one studied by Slepian and Wolf. Other examples of single-letter characterizations
of Rp(Pxy) and R(Px y,D) for non-functional source coding problems include |3,
5, 7,8, 31, 32]. In each of these examples, the rate region is a continuous function
of the source and side-information distribution when all random variables involved
have finite alphabets. Rate region characterizations for the simplest lossless and
lossy functional source coding problem appear in [14]. While these rate regions are
also continuous in the source and side information distribution, R.(Pxy) is not
continuous in Px y for all functional source coding problems by [33].

A function is continuous if and only if it is both inner and outer semi-continuous.
Chen and Wagner demonstrated the inner semi-continuity of rate regions with re-
spect to covariance matrix for Gaussian multi-terminal source coding problems and
applied that result to investigate the tightness of some earlier derived bounds [34].
We consider only finite-alphabet source and side-information random variables.

We show that for any Px v, R(Px y,D) is continuous in D when (a) the network
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source coding problem A is canonical; or (b) A is non-canonical and D > 0, i.e., the
components of D are all non-zero. We prove that R (Pxy) is continuous in Pxy
when A is canonical and show that R(Px v, D) is continuous in Px y when (a) N is
canonical; or (b) A is non-canonical and D > 0.

A rate region, regarded as a function of distribution Px y, is s-continuous if and
only if for all distributions Px y and ()x y with the same support, the rate regions
for Px vy and ()x vy are sufficiently close when Px y and @x y are sufficiently close.
(See Definition 2.2.15.) We show that Rz(Pxy), Ri.(Pxy), and R(Pxy,D) for
all D are all outer semi-continuous and s-continuous in Pxy, which implies that
the approximation of the rate regions for Pxy by the rate region for its empirical
distribution is reliable. The s-continuity of R z(Px y) further implies that some graph
entropies introduced in [35, 36]! are continuous when support of the distribution is
fixed.

The remainder of this chapter is structured as follows. We formulate the general
network source coding problem and define continuity and s-continuity in Section 2.2.
In Section 2.3, we derive some basic properties for non-functional and canonical source
coding over networks. In Section 2.4, we show the continuity of R(Px y,D) with
respect to D for all D in the canonical source coding case, and for D > 0 in the
non-canonical source coding case.

Section 2.5 treats continuity with respect to Px y. In Section 2.5.1, we show that
Ri(Pxy) is inner semi-continuous for canonical source coding and R(Px vy, D) is
inner semi-continuous when (a) N is canonical or (b) N is non-canonical and D > 0.
In Section 2.5.2, we show that Rz (Pxv), R.(Pxy), and R(Px y,D) for all D are all
outer semi-continuous in Pxy. In Section 2.6, we show that Rz(Pxy), Rr(Px.y),

and R(Px v, D) for all D are all s-continuous in Px y.

!The zero-error codes here are in the unrestricted-inputs scenario as defined in [35].



2.2 Formulation

Here we define a general network source coding problem and its zero-error, lossless,
and lossy rate regions. Let Z = (7, ..., Z,) be a random vector with finite alphabet
[I;-, Zi- We assume without loss of generality that |Z| = m for all i € {1,...,r}
but Z; need not be the same set as Z; for i # j € {1,...,7}. Let ¥ be a finite set
that contains U]_, Z; as a subset and © denote the set of functions from [[;_, Z; to

9.2 Since Ul_,Z; C 9, for each i € {1,...,r}, the function 6;(z1,...,2.) = z for

all (z1,...,2.) € [[;_; Zi is in ©. For simplicity, we abbreviate the given functions
to Z; = 0; for all i € {1,...,r}. This notation is useful later for discussing func-
tional source coding. The sequence Zi, Zo, ...is drawn i.i.d. according to a generic

distribution Pz of Z, which describes all network inputs.

Fix a distortion measure d : ¢ x ¢ — [0,00). Define dpy, = min,, d(a,b) and
dmax = max,zpd(a,b). We assume that d(a,b) = 0 if and only if @ = b, which
implies dp;,, > 0.We further assume that d,.x < co. The distortion between any
two sequences a = (ai,...,a,) and b = (by,...,b,) in ¥" is defined as d(a,b) =
> imy d(ai, by).

A directed network is an ordered pair (V, ) with vertex set V and edge set £ C
VY x V. Vector (v,v’) € £ if and only if there is a directed edge from v to v’. For each
edge e = (v,0v') € €, we call v the tail of e and v’ the head of e, denoted by v = tail(e)
and v' = head(e), respectively. The set of edges that end at vertex v is denoted by
[';(v) and the set of edges that begin at v is denoted by I'p(v), i.e.,

I'/(v) :={e€ & : head(e) = v}
Fo(w) :={ee€& : tail(e) = v}.

Let G = (V,€) be a directed acyclic network.®> A network source coding problem

2Notice that ¥ can be designed to include all functions of the form Biryie) (@) = (Ziy, -0y 24,)
forall£e{l,...,r}and 1 <i; <...<ip <.

3For any network with cycles, we design the codes in a chronological order and consider a cor-
responding acyclic network that matches the given chronological order. An example can be found
in [37].
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N is defined as N = (G,S,D). Here sets S and D describe the random variable
availabilities and demands, respectively. The random variable availability set S is a
subset of V x {Z;,...,Z.} such that Z; (1 <i <) is available at node v € V if and
only if (v,7;) € §. The demand set D is a subset of V x O such that node v € V
demands function 6 € O if and only if (v,0) € D. Let k denote the total number
of reproduction demands, i.e., k = |D|. For each v € V, sets S, C {Z1,...,Z,} and
D, C © summarize the random variable availabilities and demands, respectively, at

node v, giving

S, = {Z:(v,Z;) €S}
D, = {6:(v,0) € D}.

For any set I C {1,...,r} and any z € [[._, Z;, let z; = (2; | ¢ € I) and
zre = (z; | i ¢ I). We use zyzc interchangeably with z. For any 6 € O, we define
I(0) to be the smallest set I for which 0(z;,z;c) = 0(zr,2z}.) for every z; € [[,; 2
and every zje, z}. € [[;4; Z;. Thus 6(z) is independent of z; for all i ¢ 1(6).

Definition 2.2.1 Let N be a network source coding problem. Random variable Z;
is called a source random variable if and only if there exists a demand pair (v, ) € D

for which i € 1(0). Otherwise, Z; is called a side-information random variable.

Let 1 < s < r be the number of source random variables, and let t = r — s denote the
number of side-information random variables. Henceforth, we use X = (Xj,..., X;)
to describe the source random vector, Y = (Y7, ..., Y;) to specify the side-information
vector, and Pxy = Pz to denote the probability mass function on the source and
side-information vector. Adjusting this new notation, for every 6 € U,D,,, I1(0) is now
a subset of {1,...,s} and x;9) = (2; | ¢ € I(6)) are the symbols which 6 relies. Let
AX; and Y; denote the alphabet sets of X; and Y}, respectively, for every i € {1,...,s}
and every j € {1,...,t}. Let

s t

A:HXiXHyj

i=1 j=1
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denote the set of alphabet for (X,Y).
We assume that for each demand pair (v/,6) € D and each i € (), there exists
a pair (v, X;) € § such that there is a path from v to v'.
The following definition defines two types of network source coding problems,

called non-functional and functional network source coding problems.

Definition 2.2.2 Let N be a network source coding problem. If all the demands are
sources, i.e., U,D, C {Xi,..., X}, then N is called a non-functional network source

coding problem. Otherwise, N is called a functional network source coding problem.

Definition 2.2.3 Let R = (R.)c.ce be a rate vector. A rate-R, length-n block code C

for N contains a set of encoding functions {f. | e € £} and a set of decoding functions

{900 | (v,0) € D}.

(i) For each e € £, the encoding function is a map

fe : H {1,2,...,2"R€/}>< H XinX H yjn

e/ €Ty (tail(e)) 1: X €ESyail(e) J:Y;€Sai(e)

—{1,2,...,2"MY,

(ii) For each (v,0) € D, the decoding function is a map

Guo - H {1,2,...,2"Re}>< H X" x H V- 9"

e€l'r(v) :X,E€S8y Jj:Y;E€Sy

We next define the class of variable-length codes considered in this chapter for net-
work A. Inorder to make arbitrary £ copies of every variable-length code in this class
well-defined, the variable-length codes discussed in this chapter satisfy the “uniquely
encodable” property described in Definition 2.2.5. Roughly speaking, the uniquely
encodable property means that for any positive integer ¢ and every node v, the en-
coded codeword vector observed at v when applying a variable-length code ¢ times

can be uniquely decomposed into ¢ codeword vectors of the same code. The definition
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of the uniquely encodable property relies on the uniquely decodable property for sets
of codeword vectors.
For any finite set S, let S* = U2 ,S™ denote the set of finite-length sequences

drawn from S. Without loss of generality, we treat only binary variable-length codes.

Definition 2.2.4 Let n be a positive integer and Sy, ..., S, be finite sets. A set
C C 1}, Si is called a uniquely decodable set if and only if for every positive integer
¢, the map

¢y : C'— ﬁSZ*
i=1

defined by

¢f <(b§1)7"’7bTL1)>’"'7(b§£)7"'7b7/f))> = <<b§1)7"'7b§€))7'"7(b'I(’L1)7"'7b7(’LZ)>>
for all (b(ll), . bSP), e (b@, - ,bg)) € C is a one-to-one map.

Definition 2.2.5 A dimension-n variable-length code C for N contains a collection
of codebooks {C, | C. C {0,1}* Ve € &}, a set of encoding functions {f. | e € £},
and a set of decoding functions {g,¢ | (v,0) € D}. C satisfies the properties below.

(i) For each e € &, the encoding function f, is a map

for JI Cex I Aarx [] y—c.

e’ely(tail(e)) 1:X; €Stail(e) JY;E€Sail(e)

(ii) For each (v,0) € D, the decoding function is a map

gve - H Ce x H Xinx H )@”—w?”

e€l'r(v) :X; €Sy J:Y;ES,

(iii) For every e € &€ and every (x",y") € A", let c.(x",y") € C. denote the
codeword on edge e using code C when the input sequence is (x",y™). For each

v € V, the codebook consisting of all possible messages received by v, defined
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Clol = {((ce(z"))eer, ), (77)ixies,, (U] )ivies,) | (x",¥") € A"}

- H(CXHX"XHyJ”,

eclr(v) 1:X;€Sy J:Y;€Sy
is a uniquely decodable set.*

For each (x",y") € A", let L.(x",y") denote the length of the codeword on e and
let L(x",y") = (Le(x™,¥"))eecs denote the length vector using code C when input

sequence is (x",y").

A function of X is called a canonical function if and only if it is either a source
random variable or can be rewritten as a linear combination of functions of individual
symbols. The next definition formalizes this idea. For any prime power ¢, we fix a
finite field with ¢ elements and denote it by F,. Notice that IF, is unique up to

isomorphisms.

Definition 2.2.6 A function 6 of X in © is called a canonical function if and only
if there exist a prime power ¢ > m, a map ¢; from X; to IF, for each i € I(f), and a

one-to-one map 1 from the output alphabet of 8 to IF, such that

= ¢ilx; verX (2.1)

1€1(0)

Definition 2.2.7 If all demands of network source coding problem N are canonical

functions, then N is called a canonical network source coding problem.

By definition, every non-functional network source coding problem is canonical.
Hence the family of canonical network source coding problems contains the family of
non-functional network source coding problems and some functional network source

coding problems.

4For each ¢ € N, the code constructed by applying C ¢ times is well-defined under this setting.
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Definition 2.2.8 Let N be a network source coding problem.

()

(b)

A rate vector R is zero-error-achievable on pmf Px y if and only if there exists
a sequence of dimension-n , zero-error, variable-length codes {C,}>, whose
average expected length vectors with respect to Pxy are asymptotically no

greater than R. That is, for any (v,0) € D, let

~

Hn(v> = gv,9<<ce(Xn))e€F1(v)7 (X;L)Xiestan(eﬁ (Y}H)YjGStail(@»

denote the reproduction of 0"(X") = (6(X4),...,0(X,,)) at node v using code

Cn. Then R is zero-error-achievable on Px vy if and only if

Pxnyn <0”(X”) £8(0) Y (0,6) € D) —0

1
limsup —Fpd [L, (X", Y")] <R,

n—oo T

where Ep is the expectation with respect to Px y. The closure of the set of

zero-error-achievable rate vectors (on Px y ) is called the zero-error rate region,

denoted by Rz (N, Pxy).

A rate vector R is losslessly-achievable if and only if there exists a sequence
of rate-R, length-n block codes {C,}5°, whose symbol error probabilities are
asymptotically zero. That is, for any e € £, let F, denote the encoded message

carried over edge e, and for any (v,0) € D, let

o~

Qn(v> = gv,@((Fe)EGFI(v)a (X?)Xiestail(v)’ (}/}n)Y7EStai1(v))

denote the reproduction of 0"(X") = (6(X;),...,0(X,)) at node v using code
Cn. Then R is losslessly-achievable if and only if

lim Pynyn (en(xn) ”] é%)) =0

n—oo

for all (v,0) € D. The closure of the set of losslessly-achievable rate vectors is
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called the lossless rate region, denoted by Rp(N, Pxy).

(c¢) Let D = (Dyg)wgep be a k-dimensional vector whose components are non-
negative real numbers. Rate vector R is said to be D-achievable if and only if
there exists a sequence of rate-R, length-n block codes {C,}°, such that the
distortion constraint is asymptotically satisfied. That is, for every (v,0) € D,
let 9" (v) denote the reproduction of 6"(X") = (8(X1),...,0(X,)) at node v by
C,. Then R is D-achievable if and only if

1 .
lim sup — Epd <9”(X"), 9”(1})) < D,y

n—oo n

for all (v,0) € D. The closure of the set of D-achievable rate vectors R is called

the rate-distortion region, denoted by R(N, Pxy, D).

In this chapter, we often abbreviate Rz(N, Pxv), R.(N, Pxvy), and R(N, Px y,D)
to Rz(Px,y), Ri(Pxy), and R(Pxy,D) when the network A is clear in the given
context.

Let M denote the set of all probability distributions on A. For any set A, we use
24 to denote the power set of A, i.e., the set of all subsets of A. Let IR, denote the

set of nonnegative real numbers. Define
RY := {D = (Dv.0)) v0)ep | Divigy = 0V (v,0) € D}
to be the set of all distortion vectors D, and
R = {R = (Re)ece | Re >0V ec€ &}

to be the set of all rate vectors. For all Pxy € M, R(Pxy,D) is a subset of IRfr;
therefore, R(Px,y, D) can be considered as a function from M xR to 2R Similarly
both Rz(Pxy) and Rp(Pxy) can be considered as functions from M to oRE

Before defining the continuity property, we introduce the definitions of set opera-
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tions in ]Rf_ and distances® on M and 2B% used in this chapter.

Definition 2.2.9 Let A and B be two subsets of the n-dimensional Euclidean space

R"™.

(a) For any n-dimensional vector v € IR*, define the set

A+v:={a+v]|aec A}

(b) For any X\, € IRy U {0}, define the set

M+ pB:={)la+ub|ac A, be B}

Definition 2.2.10 Given a positive integer n. Define
1:=(1,...,1) e R" and 0 := (0,...,0) € R".
Definition 2.2.11 Let a = (ay,...,a,) and b = (by,...,b,) be two n-dimensional

real vectors.

(a) We say that a is greater than or equal to b, denoted by a > b, if and only if

a; > b; for alli € {1,...,n}.

(b) We say that a is greater than b, denoted by a > b, if and only if a; > b; for all
ie{l,...,n}.

The distances on M and 275 used in this chapter are as follows.

Definition 2.2.12 Let A and B be two subsets of the n-dimensional Euclidean space
IR™. We use ||x|| to denote the Ly-norm of x € IR". For any ¢ > 0, sets A and B are

said to be e-close (¢ > 0) if and only if

5The distance used between any two subsets in IRi is not a metric. It is equivalent to the
Hausdorff distance, which is used for compact subsets of IR" and gives a way to measure the difference
between two subsets in IRi.
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(a) For every a € A, there exists some by € B such that ||a — byg|| < ey/n.
(b) For every b € B, there exists some ag € A such that ||b — ag|| < ey/n.

This notion of the distance between two subsets in IR® leads to the definitions of
continuity of regions Rz(Px,y) (with respect to Pxy), Rr(Px,y) (with respect to
Pxy), and R(Px,y,D) (with respect to both Px y and D).

Definition 2.2.13 Fix Pxy € M. R(Pxy,D) is continuous in D over set Dy C D
if and only if for any D € Dy and € > 0, there exists some § > 0 such that R(Px v, D)
and R(Px y,D’) are e-close for all D' € Dy satisfying ||D — D’|| < §. If the choice of
€ and § can be independent of Px vy, then R(Px y,D) is said to be continuous in D

independently of Px y.

We define continuity and s-continuity with respect to Px y here. Let A(Pxy) C
RS be a function with a subset outcome. For example, A(Pxy) may be the zero-

error, lossless, or lossy rate region.

Definition 2.2.14 Function A(Pxy) C R is continuous in Px y if and only if for
any Pxy and € > 0, there exists some ¢ > 0 such that A(Pxy) and A(Qxy) are

e-close for all Qx vy € M satistying ||Px v — @x.y|| < 9.

Definition 2.2.15 Function A(Pxy) is s-continuous in Px y if and only if for any
Pxvy € M and € > 0, there exists some 6 > 0 such that A(Pxy) and A(Qxy) are

e-close for all Qx y € M satistying

1
(1 - 5)PX,Y(X7 Y) S QX,Y(Xa Y) S T(SPX,Y(Xv Y) v (Xv y) € A

Rz(Px y) is known not to be continuous in Px y. An example is shown in [14]. In
this chapter, we show Rz(Px,y) is outer semi-continuous and s-continuous in Px y.
(See Section 2.5.2 for the definition of outer semi-continuity.)

It is tempting to assume the continuity of R(Px vy, D) and R.(Pxy) on general

networks by analogy to the very limited collection of problems where rate regions are
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fully characterized and continuity is easy to check. Since this assumption is known
to be incorrect by the earlier cited example of Han and Kobayashi, we reproduce
that example here to demonstrate the complexity of the problem even in very small,

simple networks.

Example 2.2.16 [33, Remark 1]Consider the network source coding problem in
Fig. 2.1. The function f(X;, X3) is defined as

f(0,0) = £(0,1) =0, f(1,0) =1, f(1,1) = 2.
For € > 0, consider the distribution

1
Py, x,(0,20) = 5 € V xy € {0,1}

Py, x,(1,29) = e V 25 € {0,1}.
By [33, Theorem 1],
m R (Py, x,) = {(B1, Rz) | 1 >0, Ry >log(2)}.
On the other hand, when € = 0, f = 0 with probability 1 and hence
Ri(P%, x,) = {(Ry, Ry) | R1 >0, Ry >0}.

This shows that

=

y_I)%RL<P)E(17X2) - RL(ngl,Xz)'

The demand function in the above example is not canonical, and the lossless rate
region is not inner semi-continuous. (See Definition 2.5.2.) We show in Corollary 2.5.7
that the lossless rate region for any canonical network source coding problem is inner
semi-continuous in Px y, which implies that the behaviors of lossless rate regions for

canonical and non-canonical network source coding problems are different. A key
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Xy

f(Xl’ X2>
Xo

Figure 2.1: A functional two-terminal lossless problem where R (Px, x,) is not con-
tinuous.

idea needed to prove the s-continuity result for canonical networks is captured in
Lemma 2.2.18, which is proven using the technique introduced in the proof of [38,

Theorem 1] together with the following theorem, which was proven in [39].

Theorem 2.2.17 Let N be the lossless source coding problem shown in Fig. 2.2 and
let ¢ be a one-to-one map from X to IF,. For any € > 0, there exists a sequence of
rate-(H(X|Y') + €), length-n block codes that encode ¥™(X™) linearly over finite field
IF, such that the sequence of the corresponding decoding error probabilities converges

to 0 as n grows without bound.

R
Y

Figure 2.2: The lossless source coding problem with side information at the decoder.

Lemma 2.2.18 Let N be the lossless multiterminal functional source coding prob-
lem shown in Fig. 2.3. Suppose that 6 is a canonical function of X. Then the rate

vector (H(0|Y') + €) - 1 is achievable for all € > 0.

Proof. Let ¢ > m be a prime power, 1 be a one-to-one map from the output
alphabet of 6 to F,, and let ¢; be a map from &; to F, for each ¢ € I(6) such that
equation (2.1) from Definition 2.2.6 holds, viing ¥(6(x)) = >_7_, ¢i(z;). For any
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e >0, let {C,} be a sequence of rate-(H(0|Y) + ¢€), length-n block codes that
linearly encode 9" (6" (X"™)) over F, using encoders 7;, and linearly decode the

encoded message with optimal decoders 0 to achieve error probability

P = min Py (en(xn) £ 0" (T, ("™ (0™ (X™)), Y"))
satisfying
lim P™ = 0.

€
n—oo

For each n, we construct a rate-((H(0|Y) + ¢€) - 1), length-n block code for N by
applying T, o ¢! on source sequence X" for each i € {1,...,s}. The end node
receives the encoded messages T, (47 (XT)), - .., Tn(¢2(X?)) and calculates

2 iz Ta(@i(X7). Since T, (47 (0™(X"))) = 325y Tu(#i(X]")) by (2.1) and the
linearity of T,,, the rate vector (H(0]Y) +€) - 1 is losslessly achievable for N.

oV

O

Figure 2.3: The lossless multiterminal functional source coding problem with side

information at the decoder.

Remark 2.2.19 By definition, it may seems more general to consider the rate regions

achieved by the class of variable-length codes for all of our problems. In reality, for

canonical lossless, canonical lossy, and functional lossy source coding on memoryless

sources there is no loss of generality in restricting our attention to fixed-rate codes.

We sketch the proof as follows. Since canonical lossless source coding is a special

case of canonical lossy source coding (see Theorem 2.3.5) and canonical lossy source

coding is a special case of functional lossy source coding, we sketch the proof for only

functional lossy source coding.
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For any fixed D € IRE, let R be a rate vector such that there exists a sequence of

dimension-n variable-length codes {C,,} such that

1
limsup —Fd(L,(X",Y")) <R
n

1 .
lim sup EEd(Q"(X”), 0"(v)) < Dy V (v,0) € D,
where 6"(v) is the reproduction of 6"(X") at node v using C,, and L, (X", Y™) is the

length vector of C,, for all n. For any € > 0, there exists an n > 0 such that

1
—Ed(L,(X",Y") <R+e-1
n

L B (X, 8" (v)) < Dyy + € ¥ (0,6) € D.

n

By the weak law of large numbers, there exists an [ > 0 such that

l
i=1

Pxnyn (i: d(6"(X7),07(v)) > In(Dyg + 2€) ¥ (v,6) € D) <e  (23)
i=1

where X" = (Xy,...,X;), Y = (Yy,...,Y)), and @"(v) is the reproduction of
0™(X) at node v for alli € {1,...,l} and (v,0) € D.

Let Cp,, be the (In)-dimensional code achieved by applying C, on (X7,Y?7), ...,
(X7, Y]") sequentially. By (2.2), the variable-length code Cin has length vector no
greater than In(R + 2¢-1) with probability 1 —e. We next construct a block code Cin
based on an as follows. For each e € &, if the code length for the encoded message
on e is greater than In(R. + 2¢), then we truncate the code such that the resulting
code length is In(R. + 2¢); if the code length for the encoded message on e is less
than In(R. + 2¢), then we add a string of zeros after the encoded message to give a

code with length equal to In(R. + 2¢). By construction, the modified block code CAln
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has rate R + 2¢. Further, the probability of the set of all (x™,y™) satisfying

l
> L}y <In(R+e-1)

i=1

D d(0"(x}), 6 (v) < In(Dyg +€) ¥ (0,0) €D

is greater than 1 — 2e by (2.2) and (2.3). Hence the expected distortion vector D(Cp,)

for CAln satisfies
D(Cpn) < In((1—2€)(D + 2€- 1) + (2ediay) - 1) .

Since € > 0 is arbitrary, R is D-achievable. 0

2.3 Source Independence and the Relationship Be-
tween Lossless and Lossy Source Coding

We begin by proving that when all the source random variables are independent, the
lossless rate region R (Px) for the non-functional case depends only on the entropies
of X;fori € {1,...,s}. Furthermore, we show that in this case, the lossless rate region
is a continuous function of the entropy vector (H(Xy),. .., H(X;)). This implies that
when sources are independent, separation of network coding and source coding is
optimal. (This separation is not optimal in general by [40].)

We next show that Rp(Pxy) = R(Px,y,0) when A is canonical. Note that
by definition, R (Pxv) C R(Px,y,0) since lossless coding requires arbitrarily small
block error probability, while lossy coding with O-distortion requires only arbitrarily
small average symbol error probability. This property demonstrates the relationship
between lossless and lossy source coding: for canonical source codings, lossless source

coding is a special case of lossy source coding. This property relies on our prior
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assumption that the distortion measure satisfies

d(a,b) =0 if and only if a = b (2.4)
0 < dmin < d(a,b) < dyax <00V a#b. (2.5)

2.3.1 Ry(Px) for Independent Sources

Lemma 2.3.1 shows that introducing a side information vector Y which is independent
of X cannot improve the lossless and lossy rate regions. More precisely, R (Pxy) =

RL(Px) and R(Pxy,D) = R(Px,D) when X is independent of Y.

Lemma 2.3.1 Assume that Y is independent of X and N is a functional or non-

functional network source coding problem. Then
RL(PX,Y) = RL(P)() and R(P)gy, D) = R(Px, D)

Proof. Notice that by definition R (Px) C R.(Px,y) since the code for Pxy can
ignore source Y and achieve performance identical to that achieved in the same
network when Y is not known. Hence it suffices to show that R.(Px) 2 Ri(Px.v)-
For any rate vector R in the interior of Rz (Px v), let {C,} be a sequence of rate-R,
length-n block codes such that Px» yn(E,) converges to 0 as n grows without
bound; here E,, is the event of decoding error using C,. For any n and any y”, let
Pxnjyn(E,|Y™ =y™) be the conditional error probability given Y™ = y", and let y}

be an instance of Y” that minimizes Pxny»(E,[Y" =y"), i.e.,
Pxniyn (Ep|Y" =y7) = n;}ln Pxnpyn (ER|Y™" =y").
Now

PXn,Yn(En) = Z Pxn|Y"(En|Yn =y")Pyx(y")
yn
> Pxnyn(En|Y" =y7).
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Define C,(y?) as the block code C,, when Y" = y”. Since X and Y are independent,

Pxnpyn (x"|yy) = Pxn(x") V X"

Hence the sequence of rate-R, length-n block codes {C,(y?)} for source X has error
probabilities going to 0 as n grows without bound. Therefore, R € R(Px). Notice
that this argument relies on our assumption to guarantee that C,(y”) has the same
rate as C,,.

A similar argument demonstrates that R(Pxy,D) = R(Px,D) when X and Y are
independent. Here R(Px,D) C R(Px,y,D) is immediate, so we need only show
R(Pxv,D) C R(Px,D). Fix € > 0, and let R be D-achievable for Pxy. Let C, be
a rate-R, length-n block code such that for any (v, ) € D,

1 N
ZEd(0"(X"),0"(v)) < Dy + €.
n

By the weak law of large numbers®, when [ is sufficiently large, there exist y7,. ..,
y}' such that for all (v,0) € D

1 .

LS B (X0, 7)Y = )

n
=1

1 ~
= . > Pyn(y")Ed(0"(X7). 0" (0)[Y" = y") + €
yn

= %Ed(&"(X"), 0" (v)) + €

IN

Dy, + 2e. (2.6)

Notice that since X and Y are independent, the term

> Ed(0"(X"),0"(v)[Y" =y7)

i=1

6If there is only one demand, then we can simply choose a best y” that makes the distortion
value minimal without applying the weak law of large numbers.
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is indeed the expected distortion vector according to the distribution Pxn.
Consider the rate-R, length-In code composed sequentially from C,(y7), ..., Co(¥7),
where for each i € {1,...,1}, C,(y?) is the code C, when Y" = y. Since € > 0 is
arbitrary, by inequality (2.6), R is D-achievable. Thus R(Pxy,D) C R(Px,D). O

Theorem 2.3.2 shows that when N is non-functional and sources X, ..., X,
are independent, R (Px) C R.(Qx) whenever two distributions Px and Qx satisfy
Hp(X;) > Ho(X;) for all i € {1,...,s}; here Hp(X;) and Hg(X;) are the entropies
of source X; for distributions Px and Qx, respectively. For each i € {1,...,s}, we

denote by P; and (); the marginal distributions on X; using Px and (Jx, respectively.

Theorem 2.3.2 Let N be a non-functional network source coding problem without
side information. Let Px = [[_; P, and Qx = [[;_; Qi be two distributions for

independent source X such that

Then R (Px) C Ri(Qx).

Proof. This proof relies on the observations that since Hgo(X;) < Hp(X;), the
typical set Agg (X;) of X; corresponding to ) has smaller size than the typical set
AETL}(XZ-) corresponding to P. Since X7, ..., X, are independent, by constructing
one-to-one maps from Ai’g(Xl) to AETL;(XZ-) for each 7 € {1,...,s} we can construct
a one-to-one map from the typical set AE"C%(X) of (X1,...,X;) corresponding to @
to the typical set AE"}(X) corresponding to P directly. We prove only the special
case when P; = (); for all © > 2. The general case can be proven by applying the
result of this special case inductively. In this proof, we use these two observations to
build a code C, for the distribution Qx = Q [[;_, P; from a code C, for the
distribution Px = [[;_, P

Let Hp = Hp(X,) and Hg = Ho(X;). Let AU)(X;) and A")(X;) denote the
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typical sets for X; with respect to P; and @)y, respectively. It suffices to show

Rr(Px) € Rr (@x)

for two distributions P, and @)y of X such that Hp > Hg > 0.
Given any losslessly achievable rate vector R for Px, let ¢ > 0 be a nonnegative

number such that ¢ < min{1/10, Hg}. Choose n sufficiently large so that

PMATN(X)) = 1 (2.7)
Q AV (X)) =1~ (2.8)

every element z7 € AE?;(Xl) satisfies Py'(z]) < 4, and there exists a rate-R,
length-n block code C,, with Pxn(E,) < €; here E, is the event of a decoding error

using C,, when the source distribution is Px. For any z] € A7, let
S
E(z}) € H X
=2

be the collection of vectors (27, ...,z%) for which an error occurs when
(X7, X2, ..., X)) = (2,28, ...,27). Then by definition,

rrs

s

> > PRy = P(En) < c.

P eAT) (Xy) (@t t)EE]) =

Let L = \AEZL(XM, and enumerate the typical sequences as x}(1),...,27(L). For
each j € {1,..., L}, let

€j = > 12 @r ),
) i=2

(23, ) EE (2] (7

and choose the order of the enumeration so that

61§€2§'~<€L.
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For each j € {1,..., L}, set p; = P{"(27(j)). Since p; < g for all 1 < j < L by

assumption, there exists 1 <[ < L for which

L
<> i<
j=l+1

e~ =
N —

Then
L L
€ > ijejZ (Z pj>€l
j=1+1 j=l+1
which implies that
e < ———— < de. (2.9)
Zj:l—f—l Dj
Now since 27 "Hr+0) < p, < 27nHr=0) for all 1 < j < L,
! L
1 1 L
Hp E) > - - - Hp+6)
FAmE Ty
Hence
l Z L2—2n€—1 Z (1 _ €)2nHP_3nE_1.
Partition the typical set A (Xl)
(2.10)

such that |A,| =1for 1 <r < K —1and |Ag| <. Then

dne+1
+ 1.

1—c¢

‘Ainc)Q (Xl) ’ 2n(fagto 3ne+1
K_{ z <A oopmn? LS

Let ¢(2}) = r if and only if 2} € A,. Set B := {z}(1),...,27(l)}. For each

K}, arbitrarily define a one-to-one function 7, from A, to B. For each

redl,...,
n-(z7}) where r = (7). Finally, define the function

27 € AUD(X)), let n(y) =

¢: AU (X)) —{1,.... K} x B



27

¢(xy) = (e(a1), n(=7)).

By construction, ¢ is a one-to-one function.

Now construct a new code C’ for the source distribution QXx as follows. First, for
source sequence (z%, ..., z¥) such that z € AE%(X 1), we apply code C,, on

(p(xh), 2y, ..., 2"%), and then transmit the index ¢(x7) to every node in the network.
For every (v, X;) € D with i # 1, we use C, to reproduce z?". If (v, X;) € D, we first
apply the decoding function of C, to get ¥} (v), the reproduction of n(z}). If

m(v) € AS;(X), then we recover 27 by applying the inverse map ¢! (c(x7), 27 (v)).
Otherwise, we declare an error.

The code C/, has rate no greater than

1 2n4s+1
R+ - <log + 1) 1
n 1

— €

and error probability Q [[;_, P;(E,) bounded by

Q (X1 ¢ ALY(X)) + D0 Qi (@) &5 < e

=1
by (2.8) and (2.9). Since € > 0 is arbitrary, R € R (Q1[[/_, Pi). O

The argument in the proof of Theorem 2.3.2 works only for independent sources

since (¢(z7), 2y, ..., x5

rrn

) need not be typical for Qx when (z7,...,z") is typical for

Px in general. Also the argument cannot be directly applied to the functional case
since the functional demands cannot be calculated locally. By applying the result of

Theorem 2.3.2, we have the following corollary.

Corollary 2.3.3 Let N be a non-functional network source coding problem without
side information. If two distributions Px = [[;_, P; and Qx = [[;_, Q: for indepen-
dent source X satisfy Hp(X;) = Ho(X;) Vi€ {1,...,s}, then R(Px) = Rp(Qx).
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The proof technique from Theorem 2.3.2 can also be applied to show that R ([];_, P)

is continuous in the entropy vector of the independent sources X1, ..., X,. Since each
entropy Hp(X;) is continuous in P; for i € {1,...,s}, this implies that R.([[;_, F;)

is continuous in (P, ..., P;) when N is non-functional, as shown in Theorem 2.3.4.

Theorem 2.3.4 Let N be a non-functional network source coding problem and let

Px =[1;_, P.. Then Ry (Px) is continuous in the entropy vector
(HP<X1)7 R HP<XS))

In other words, for any € > 0 and any Px = [[;_, P, and Qx = [[;_, Qi, there exists
a d > 0 such that R (Px) and R.(Qx) are e-close whenever |Hp(X;) — Ho(X;)| < 0
for alli e {1,...,s}.

Proof. 1t suffices to consider the case
Hp(X;) = Ho(X;) Vie {2,...,s}.
Let Hp = Hp(X;) and Hg = Hp(X;) and suppose that
Ho < Hp < Hy+6

for some § > 0. Then R (Px) C Rr(Qx) by Theorem 2.3.2. For any achievable rate
vector R € Rp(Qx), let {C,} be a sequence of rate-R, length-n codes such that the
error probability with respect to ()x tends to zero as n grows without bound. For

any 7 > 0 and n > %, since Hp < Hg + §, we partition the set AS?])D(Xl) as
Agll)?(Xl) = Uz‘L:IAz(n)’

where L = 2"00*27) such that each AE") has size smaller than or equal to Ainc)g (X1).

By building injections from Agn) to Ag"gg(X 1) as in the proof of Theorem 2.3.2 and
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sending additional rate

1 2n(6+27)+1

AR =—log— -1

n 1—7
throughout the network to distinguish the sets A§”), . A%n) , we get a sequence of
new codes {C!} of rate R + AR whose error probabilities with respect to Px tend
to zero as n grows without bound. That shows R (Px) and R.(Qx) are

(0 + 37 —log(1 — 7))-close. This completes the proof. O

2.3.2 Comparing RL(PX,Y) and R(PX’Y, 0)

In this section, we compare R, (Px y), which requires asymptotically negligible block
error probability, and R(Px v, D), which requires asymptotically negligible per-symbol
distortion. We first prove that R.(Pxy) = R(Px,y,0) for the canonical case. We

then explain why this property may not hold for non-canonical coding case.

Theorem 2.3.5 If N is canonical, then for all Pxy eM
R(Pxy,0) = Rp(Pxy)-

Proof. We begin by proving that the desired result holds for distortion measure d if
and only if it holds for the Hamming distortion measure dy. We then show that if a
reproduction with sufficiently low Hamming distortion is available at a demand
node, then the additional rate required to achieve a lossless description at that node
is negligible.

Let dg denote the Hamming distance. Recall that distortion measure d satisfies
Aimin < d(a,b) < dpax for all a # b in ¥ by assumption, where d,;, > 0 and

Amax < 00. Thus, for any n > 0 and any a, b € 97,

dmin : dH(aa b) S d(a, b) S dmax : dH(a7 b)
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Thus, for any two sequences {a, }°°; and {b,}>2,,

1
lim —d((ay,...,an),(b1,...,b,)) =0

n—oo N

if and only if
1
lim —dg((ay,...,an), (b1,...,b,)) =0.

n—oo N,

As a result, if R(Pxy,0) = Rp(Pxy) when d = dp, then the result applies to all
distortion measures in the given class.
By definition, R.(Pxy) € R(Pxy,0). We therefore need only prove that
R(Pxv,0) C R.(Pxy) Let R € R(Px,y,0) be arbitrary. We next show that for
any € > 0, the rate vector R +€-1is in Ry (Px,;y). Choose a rate-(R + 5 - 1),
length-n block code C such that for any (v',0) € D, the reproduction é\”(v’ ) of
0™ (X™) at v’ satisfies

%EdH(G"(X”),@\”(v’)) <7,

where 7 is chosen to satisfy

ks(H(r) + 7 log(m® — 1)) < %
Here we recall that k is the total number of reproduction requests, that is, £k is the
number of pairs (v/,0) € D and that for any § € ©, I(0) is the subset of {1,...,s}
such that 6 is a non-degenerate function of Xy ). For any (v',0) € D and every
i € I(0), choose a vertex v(i,0) € V such that X; can be observed by v and there is
a path from v(i,0) to v'. We use P(v',0,1) to denote this path. By assumption and
Corollary A.2 in Appendix (notice that the alphabet size of § is no greater than m?®),

%H(&”(X”)\@\"(v’)) < H(7) + 7log(m® —1).

Thus by Lemma 2.2.18, the additional rates along paths P(v',0,1) (for i € 1(60))

required to achieve a lossless description of 0"(X™) at v" are asymptotically
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negligible. Since k and s are finite, repeating this argument for each (v/,0) € D

yields a total rate bounded as

R’ < R+§+k(H(T)+Tlog(m—1))-1
< R+e-1.
Hence R +€-1 € R(Pxy) for all e >0, and R(Px,y,0) C R.(Px,vy)- O

The argument in the proof of Theorem 2.3.5 cannot be directly applied to the
non-canonical source coding case since even when the average conditional entropy
of the demanded function sequence given its reproduction is arbitrarily small, the
additional rate used to achieve lossless reproduction of that function is not known to
be arbitrarily small; the problem is that the demanded function cannot be written as

a linear combination of locally calculable functions at source nodes.

2.4 Continuity of R(Pxy,D) with Respect to D

We next study the continuity of R(Px v, D) with respect to D. Since R(Px vy, D) is
convex in D, a naive idea is to apply convexity to show the continuity with respect to
D as in the real-valued function case. Here we aim to prove a stronger continuity, that
is, we show that the continuity is independent of Px y and uniform over D, which
means that the choice of € and § in Definition 2.2.13 can be made independent of the
values of Pxy and D. We treat the canonical and non-canonical cases separately.
In the non-canonical ones, it is not clear that whether the choice of € and d can be
independent of Px y when D is on the boundary of IRE, i.e., when some components

of D are zero.

2.4.1 N is Canonical

Theorem 2.4.1 shows that when N is canonical, R(Px v, D) is uniformly continuous

in D and the continuity is independent of Pxy. The central insight of the proof is
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captured in a sequence of intermediate results (Lemmas A.1 - A.4 which culminate
in Lemma A.5), all of which are stated and proved in Appendix A. The key idea of
the proof is that since applying only convexity and monotonicity is not sufficient to
prove the continuity of R(Pxy,D) at D for those D on the boundary of RY, we
increase D slightly to D + 6 - 1 and show that when 6 > 0 is sufficiently small, the
difference between R(Px v, D) and R(Px y,D+d-1) can be made arbitrarily small
D

(see Lemma A.5). Since D + 0 - 1 is not a boundary point of IRY, we then directly

apply convexity and monotonicity to show the desired result.

Theorem 2.4.1 Let N be a canonical network source coding problem. Then R(Px y,D)

is uniformly continuous in D. This continuity is further independent of Px y.

Proof. 'To prove the desired result, we show that for any € > 0, there exists some
§ > 0 such that for any Pxy € M, and any D,D’ € R?, if ||D — D'|| < 4, then
R(Pxv,D) and R(Px y,D’) are e-close.

By Lemma A.5, for any € > 0, there exists a 6 > 0 such that for all Px y € M and
any D € R?, R(Pxy,D) and R(Pxy,D +§ - 1) are ¢/2-close. For any

D = (Dy)xep and D’ = (D.,)ep in IRY such that |[|D — D'[| < 4, let

Dy := min{D, D’} = (min{D,, D.}).ep-
Then ||[D — Dg|| < § and ||D’ — Dg|| < 4. Thus

Dy<D<Dy+d-1

Dy <D <Dy+6-1.
Since

R(Pxy,Dog) CR(Pxyv,D) CR(Pxyy,Do+9-1)

R(Pxv,D¢) C R(Pxy,D’) CR(Pxy,Do+0-1),

Lemma A.5 implies that both R(Px y,D) and R(Px y,D’) are €/2-close to
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R(Pxv,Do). So R(Pxy,D) and R(Px y,D’) are e-close. O

2.4.2 N is Non-Canonical

The argument in the proof of Theorem 2.4.1 cannot be directly applied to the non-
canonical case since the behavior of non-canonical source coding is much different
from that of canonical case when one or more distortions is precisely equal to zero.
Hence the Px y-independence of the uniform continuity of R(Px y,D) can be proved
for only those D in the interior of IRE, i.e., for those D with all non-zero components.
In Theorem 2.4.2, we prove this result by using a different metric on IR?, showing
that for all Pxy, whenever D and D’ are sufficiently close in the Ly-norm sense and

have the same supports, the corresponding rate regions are arbitrarily close even if

D has some zero components.

Theorem 2.4.2 Let N' be a non-canonical network source coding problem. Let
D € RY\{0}. For any € > 0, there exists a & > 0 such that for any Pxy € M and
any D' € RY satisfying (1—6)D <D’ < (14 4)D, R(Px,y,D) and R(Px y,D’) are

e-close.

Proof. For any € > 0, let 6 > 0 be sufficiently small so that dklog(m) < e. Then for
any D’ € R? such that (1 — §)D <D’ < (14 4)D,

R(Pxy,(1—=0)D) C R(Px,y,D') C R(Pxy,(1+4)D).

By concavity,

1 B
mR(PXX, (1+6)D) + 1—+5R(PX,Y, 0) C R(Pxy,D)

(1—6)R(Pxy,D) + 0R(Px.y,0) C R(Pxy, (1 —06)D).
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Therefore,

1 1)
—R(P; D’ —R(P 0) CR(P D
T (Pxy, )+1+5 (Pxy,0) C R(Pxy,D)

(1-6)R(Pxy,D) + 0R(Pxy,0) C R(Pxy,D').
Since R(Px,y,D) C aR(Px,y,D) for all 0 < a <1 and for all D € R?,

!/ 1 /
C— R(Px+v.D
R(Pxvy,D’) C 174 (Pxy,D’)

R(Pxv,D) C (1-46)R(Pxy,D),

and hence

1)
R(Pxvy,D’) + mR(PX,Ya 0) C R(Pxv,D)

R(Pxvy,D)+ 0R(Pxy,0) C R(Pxvy,D’).
Now, klog(m) -1 € R(Pxy,0) and dklog(m) < ¢, together imply

)
e-1e (1——|—(5R(PX’Y’ 0)) N ((SR(ny', 0)) .
Therefore, R(Px,y,D) and R(Px v, D’) are e-close. O

Notice that by definition of R(Px vy, D),
R<PX,Y7 D) = mD’ZDR<PX,Y7 D/)

Additionally, the space Rf is compact under Lo-norm. Therefore, Corollary 2.4.3

follows.

Corollary 2.4.3 Let N be a network source coding problem. Fix distribution Px y.

The lossy rate region R(Px y,D) is uniformly continuous in D € IR?.
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2.5 Continuity with Respect to Pxy

In this section, we investigate the continuity of R.(Pxy) and R(Px y,D) with re-

spect to Px y. We begin by defining inner semi-continuity and outer semi-continuity.

Definition 2.5.1 For any sequence of sets {A¢}32,, define

liminf A, := UZ’L Ni>¢ Ay
{—o0 -

limsup Ay := N2, Uisr Ay

{—00

If both liminf, .., Ay and limsup,_, ., Ay exist and limsup,_, ., Ay = liminf, . A; =
A* for some A*, we say that lim,_, ., A, exists and define

Khm Ag = A,
Definition 2.5.2 Set function A(Pxy) C IR is inner semi-continuous in Pxy € M
if and only if for every Pxy € M and any sequence {P)(é)Y} C M that converges to

Px vy

A(Pxy) € liminf A(PEy).

Definition 2.5.3 Set function A(Pxy) C IR is outer semi-continuous in Pxy € M
if and only if for every Pxy € M and any sequence {P)(([)Y} C M that converges to

Px vy

A(Pxy) 2 limsup A(P)(é)y).

t—o0
By definition, A(Px y) is continuous in Pxy € M if and only if it is both inner
and outer semi-continuous in Px y.
Note that when the alphabet size is infinite, R (Px v) is not necessarily contin-
uous in Pxy even for the point-to-point network with a single source, as shown in

Example 2.5.4.

Example 2.5.4 Consider the point-to-point network with a single source, shown in

Fig. 2.4. For this network, N' = (V,&€,8,D) = (({v1,v2}, {(v1,v2)}), {(v1, X1) }, {(ve, X1)})
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X0 ——(— X,

Figure 2.4: The point-to-point network

and X = X;. Let the source alphabet X} be the non-negative integers Z,. By Shan-
non’s source coding theorem, Rp(Px) = { R, ) : R ) = H(X)}. When Px is
the distribution that places probability 1 on the symbol 1, R(Px) = [0,00). Let
M > 0 be fixed. We next demonstrate the existence of a sequence { P}, for which
lim; o, Pk = Px while Ry (P%) C [M,o0) for all I. To show such a sequence exists,
we show that for any € > 0, there exists a finite-support distribution Py on Z., the
set of nonnegative integers, such that y .- |Px (i) — Px(i)| < 2¢ and H(Pg) > M.
This shows that the entropy for the distribution Px can be arbitrarily large even
when the distance between Py and Px is small.

Given any finite-support distribution q = (q1, ¢z, . . .), consider the random vari-

able X with probability distribution p = (po, p1,...) defined by

po=1—¢€, p; =e€q fori>1.

Then

H(X)=(1-¢)log <1i6) e (gq"log (%))

= H(e) + eH(q).

Let M’ = max{M, H(e) + 1}. If we can find some finite-support distribution q such
that

then Py = p satisfies both H(Pg) > M and )_.°, |Px(i) — Px(i)| = 2¢ as desired.
To construct such a distribution q, let L = [2M'=H(D/<] and q; = L forall 1 <i < L

and q; = 0 otherwise. O
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2.5.1 Inner Semi-Continuity

For any length-n block code C,, and for every edge e € £ and demand (v, 0) € D, let
F, denote the random variable that represents the encoded message on e and 5”(@)
denote the reproduction of §"(X") at node v using the block code C,,. Recall that for
each (v,0) € D and each ¢ € I(#), there exist a pair (v/, X;) € S and a path, denoted
by P(v,6,1), that starts from v and ends at v. If i ¢ I(6), we define P(v,6,i) = ()
for all v € V. For every e € £, every i € {1,...,s}, and any D = (D,).ep € RZ, let

w(e7i7D) = {(U79) € D | €€ P(U707Z’) a‘nd -D('u,@) = 0}

We start by proving inner semi-continuity of R(Px y,D) with respect to Pxy.

For every subset A of IRi, let A denote the Euclidean closure of A in Ri. Define

R (Pxy,D) = (R =(Rc)eese | Re > % Hp(Fe) + Z Z Hp (6707 (v))

i=1 (v,0)cw(e,i,D)

1 Py
EEpd(Q”(X”), 6n(v)) < Dy V(v,0) € D such that D,y # 0

for some length-n block code C}.

In Lemma 2.5.5, we show that R(Px y,D) = R*(Px,y,D) when N is canonical and
when N is non-canonical but D > 0. In the proof, we apply the fact that R*(Px y, D)
is itself continuous in D. Since the proof technique for the continuity of R*(Px v, D)

with respect to D is similar to Section 2.4, we state it without proof in Appendix B.

Lemma 2.5.5 Let N be a network source coding problem and fix D € IRE. If N is

canonical and D is arbitrary or N is non-canonical and D > 0, then
R(Pxv,D)=R"(Pxy,D).

Proof. Let D € R?. If \V is non-canonical, let D > 0, otherwise let D be arbitrary.
Let R be any D-achievable rate vector. Then by definition of R(Px v, D), for any
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€ > 0, there exists a rate-R, length-n block code C such that
1 -
—Ed(0"(X"),0"(v)) < Dyg+¢eV(v,0) € D.
n

For every (v,0) € D such that D,y =0,

L ) < H ( d;n) Y

by Corollary A.2. Thus,

R(Pxvy,D) + k <H ( ¢

T )—I— ‘ log(ms—l)) -1 C R (Pxy,D+e-1) Ve > 0.

dmin

By Lemma B.1,

Hence

R(Pxv,D) C R*(Pxy,D).

On the other hand, any R in the interior of R*(Px v, D) is D-achievable. (This
follows from Lemma 2.2.18 when N is canonical and D has zero components.) Thus

R(Pxvy,D) 2 R*(Pxy,D). 0

We next use R*(Px .y, D) to prove that R(Px y,D) is inner semi-continuous in Px y

when N is canonical or when N is non-canonical and D > 0.

Theorem 2.5.6 Fix D € RY. If N is canonical and D is arbitrary or N is non-

canonical and D > 0, then R(Px y,D) is inner semi-continuous in Px y.

Proof. The proofs of the two cases are similar. We give details only for the canonical
case. Let R=(R.)cce€ R(Px v, D). By Lemma 2.5.5, for any € > 0, there exist an n
and a length-n block code C,, such that

Re+€ Z % HP(Fe)"i_i Z Hp(ém|§n(1)>)

=1 (v,0)€w(e,i,D)
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and for all (v,0) € D such that D,y # 0

1 ~
—Epd(0™(X"),0"(v)) < Dyg + €.
n

For this code C,, the transition probability Pg,x»y» for all e € £ is fixed. For all

e € &, since limy_. P)(()Y = Px vy, the joint probability

() -
PX”,Y”,FE . PX”,Y"PFHX”,Y”

satisfies

éli{gop)((l Y™ F, — PX" Y™ Fes
where

PX?’L7YTL’FE = PXn7Y7LPFe|Xn7Yn.
Thus,

lim 2 Hpo (F,) = ~ Hp(F) (2.11)

Jim, o (F) = SHE (R '
Likewise,

Jim © S Y Hu i %Z Z Hp<e”|5"<v>>

=1 (v,0)ew(e,i,D) =1 Ew(ey

lim L B (07(X™), 8" (v)) < Dyy ¥(v,0) €D
—00 N

by a similar argument. Hence there exists an integer ¢’ such that for all £ > ¢,

1 - ~
R, + 2¢ > E Hpu)(Fe) —I—Z Z HP(e>(9”\6"(v)) Vee &
=1 (v,0)€w(e,i,D)

1 ~
EEP(z)d(H”(X"), 0"(v)) < Dy +2¢ Y(v,0) €D.

By Lemma 2.5.5,

R+2-1€(R(PY,D+2-1).
>0
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By Theorem 2.4.2, when e > 0 is sufficiently small,

R+3e-1¢€(|R(PY,D).
o>

Therefore,

R(P,D) C liminf R(P"“, D).

{—00

O
Corollary 2.5.7 If N is canonical, then R (Px y) is inner semi-continuous in Px y.

Proof. The result follows immediately from Theorem 2.5.6 and Theorem 2.3.5. OJ

2.5.2 Outer Semi-Continuity

We next study outer semi-continuity with respect to source distribution Pxy. We

use the intermediate network source coding problem N defined below.

Definition 2.5.8 Let N = (G, S, D) be a fixed network source coding problem with
s source and t side-information random variables. Define N' = (G,8,D) to be the
network source coding problem with graph G, demand D, and s source and 2t + s

side-information random variables given by

S = 8su | {wvu U {w Y}
(v,Y;)eS (v,X;)ES
An example of A" and N is in Fig. 2.5.
Theorems 2.5.9 - 2.5.11 show the outer semi-continuity with respect to Px y for

the lossless, lossy, and zero-error rate regions. The proof of Theorem 2.5.9 relies on

Lemmas C.1 and C.2.

Theorem 2.5.9 Rate region R(Pxy,D) is outer semi-continuous in Pxy for all

De ]Rf when N is canonical or non-canonical.
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Yy Y1,Ys

X1
X1
Yo

Y2 Y2, Yy

(a) N (b) N
Figure 2.5: The diamond network A/ and it corresponding network N

Proof. Let Px y € M and {P)(f)Y}gil C M be a sequence of distributions such that

lim PY, = Px y. 2.12
XY ,

{—o0

We aim to show that for any € > 0, there exists an integer ¢y such that
R(Px,D)+e-1C R(Pxy,D)
for all £ > ¢y. For e > 0, let £ be sufficiently large such that
Py (x,y) > (1 - )Pxy(x,y) ¥ (x,y) € A. (2.13)

By Lemma C.1 in Appendix C, there exists a distribution T)(fy)yvx,y, such that the
marginal of T)(({)Y,XCY’ on (X,Y) is P)(é)Y, the conditional distribution on (X,Y)
given the event {(X,Y) = (X', Y')} is Pxy, and T)(é)Y’X,’Y, (X,Y) # (X,Y)) =e.
We next use this joint distribution T)(é)Y’X,X, to compare the rate regions

RN, Pxy,D), R, P{%, D), and R(N, Ty, y: x» D). By definition,
RN, P, D) Cc RN, T D 2.14
(N, Pxy,D) C RN, Tx 'y v x/, D) (2.14)

since network /\7 has more side-information random variables than A and has the

same demands as A. By Lemma C.2 in Appendix C,

1
1— 2e¢

1

RN, Ty yrx» D) € RN, Pxy, o

D). (2.15)
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Together, (2.14) and (2.15) imply that

1

R(N, Py, D) C (1-2¢)R(N, Pxy, —5.D).
This completes the proof by Theorem 2.4.2. 0

Theorem 2.5.10 R (Px,y) is outer semi-continuous in Pxy when N is canonical

or non-canonical.

Proof. The proof is similar to that of Theorem 2.5.9. Let Px y € M and

{P)(é)y}g’il C M be a sequence of distributions such that

Jim Py = Pxxy. (2.16)

We aim to show that for any € > 0, there exists an integer [y such that
RL(P)(({)Y) +e-1 g RL(PX,Ya)

for all £ > ¢y. For € > 0, let ¢ be sufficiently large such that (2.13) holds. By
Lemma C.1, there exists a distribution T)(f’)yyx,’y, such that the marginal of
T)(ie,)Y,X/,Y’ on (X,Y) is P)(f’)y, the conditional distribution on (X,Y) given
(X,Y)=(X"Y') is Pxy, and T)(f’)ny/’Y,((X,Y) # (X',Y')) = e. We next use this

joint distribution T)(é)y’x,y, to compare the rate regions R (N, Pxy),

Rr(WN, P)(f’)Y), and R (N, T)(é)Y7Y,7X,). By definition,
RN, PO C RN, T 2.17
L( ) X,Y) = L( ) X,Y,Y’,X’) ( : )
since network /\7 has more side-information random variables than N and has the

same demands as N. By Lemma C.3,

1

— 2€RL(J\7, Ty yix) € Ri(N. Pxy). (2.18)
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Together, (2.17) and (2.18) imply that

RL(N, P)((EV)Y) g (1 — QG)RL(N, Px;y).

0

Theorem 2.5.11 R (Pxy) is outer semi-continuous in Pxy when N is canonical

or non-canonical.

Proof. The proof is similar to that of Theorem 2.5.9. Let Px y € M and

{P)(é)y}g’il C M be a sequence of distributions such that

Jim Py = Pxxy. (2.19)

We aim to show that for any e > 0, there exists [y such that
,R’Z(P)((E,)Y) +e-1 g RZ(PX,Ya)

for all £ > ¢y. For € > 0, let ¢ be sufficiently large such that (2.13) holds. By
Lemma C.1, there exists a distribution T)(f’)yyx,’y, such that the marginal of
T)(ie,)Y,X/,Y’ on (X,Y) is P)(f’)y, the conditional distribution on (X,Y) given
(X,Y)=(X"Y') is Pxy, and T)(f’)ny/’Y,((X,Y) # (X',Y')) = e. We next use this

joint distribution T)(é)y’x,y, to compare the rate regions Rz (N, Pxy),

Rz(N, P)(f’)Y), and Rz (N T)(é)Yvy,jx,). By definition,
RN, PO € RN, TV 2.20
Z( ) X,Y) = Z( ) X,Y,Y/,X') ( : )
since network /\7 has more side-information random variables than N and has the

same demands as N. By Lemma C.4,

1

— 2€722(/\7, Ty yrx) € Rz(N, Pxy). (2.21)
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Together, (2.20) and (2.21) imply that

Rz(N, P)((EV)Y) g (1 — QE)Rz(N, Px7y).

0

Corollary 2.5.12 If N is canonical and D € ]Ri or N is non-canonical and D > 0,

then R(Px v, D) is continuous in Px vy.
Proof. The result follows immediately from Theorems 2.5.6 and 2.5.9. 0J
Theorem 2.5.13 If N is canonical, then Ry (Pxy) is continuous in Pxy.

Proof. The result follows immediately from Theorem 2.3.5 and Corollary 2.5.12. [

2.6 S-Continuity with Respect to Pxy

Using the results from Section 2.5.2, we next show that R.(Pxy) and R(Px vy, D)
for canonical AV and any D € ]RE are s-continuous in Pxy. We next show that

R(Px v, D) for non-canonical N and any D > 0 is s-continuous in Pxy.

Theorem 2.6.1 Rz(Pxy) is s-continuous in Pxy for any network source coding

problem N

Proof. Suppose for all (x,y) € A,
1
(1-e)Pxy(x,y) <@xy(xy) < 1—_€PX,Y(X> y)-
By the argument of Theorem 2.5.11,

Rz(Qxvy) C (1 —2¢)Rz(Pxy)
Rz(P)gy) g (1 — ZE)RZ(QX,Y)~

This completes the proof. O
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The proofs of Theorems 2.6.2 and 2.6.3 are almost identical to that of Theorem 2.6.1.

Theorem 2.6.2 R, (Pxy) is s-continuous in Pxy for any network source coding

problem N

Theorem 2.6.3 R(Pxy,D) is s-continuous in Pxy for all D € RY and for any

network source coding problem N

2.7 Summary

In this chapter, we introduce a family of finite-alphabet network source coding prob-
lems that includes prior example problems as special cases. We define the zero-error
rate region Rz(Px v ), lossless rate region R (Px v), and lossy rate region R(Px y, D)
for all the members in the family and then study the continuity and s-continuity
properties of those objects. We began by proving the continuity of R(Px y,D) with
respect to D when (a) A is canonical or (b) A is non-canonical and D > 0. We
proved that Rz(Pxy), Ri(Pxy), R(Pxy,D) (for all D) are all s-continuous with
respect to Pxy for any network source coding problem N. We summarize our re-
sults on the continuity with respect to Px y in the following tables. The two entries

marked “?” remain open problems.

Canonical | Non-canonical
Inner Semi-continuous No No
Outer Semi-continuous Yes Yes
Continuous No No
S-continuous Yes Yes

Table 2.1: Continuity of Rz(Px,y) with respect to Px y.
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Canonical | Non-canonical
Inner Semi-continuous Yes No
Outer Semi-continuous Yes Yes
Continuous Yes No
S-continuous Yes Yes

Table 2.2: Continuity of R (Px y) with respect to Px y.

Non-canonical Non-canonical
Canonical . (with D on boundary
(with D > 0) o
of IRY)
|
. nne'r Yes Yes ?
Semi-continuous
Out
. " e.r Yes Yes Yes
Semi-continuous
Continuous Yes Yes ?
S-continuous Yes Yes Yes

Table 2.3: Continuity of R(Px v, D) with respect to Px y.
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Chapter 3

A Strong Converse

3.1 Introduction

In the traditional source coding scenario, here called the point-to-point network,
comprised of one source node describing source X to one sink node across a single
link, strong converses for both lossless source coding and lossy source coding have
previously appeared in the literature. For example, [19] treats i.i.d. finite-alphabet
source sequences, and [41], [42], and [43] treat more general source sequences. While
the lossless source coding theorem describes the family of rates that can be achieved
with arbitrarily small error probability, the strong converse states that for any rate
outside the rate region, the probability of a correct reconstruction approaches 0 as the
blocklength grows without bound. Similarly, the rate-distortion theorem describes the
set of rates that can be achieved with expected distortion no greater than D while its
strong converse demonstrates that the probability of observing distortion less than D
at any rate outside this region approaches 0 as the blocklength grows without bound.

In this paper, we derive a strong converses for three problems: the Ahlswede-
Kérner (coded side information) problem, lossless source coding for multicast net-
works with side-information at the end nodes, and the Gray-Wyner problem. The
source sequences are drawn i.i.d. according to a finite-alphabet source distribution.
Generalized from the strong converse for lossy source coding of the point-to-point

network in [19], the strong converses of interest state that for any distortion vec-
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tor D when a rate vector R is not in the D-achievable rate region, the probability
of observing distortion at most D with a rate-R code decreases exponentially to 0
as the blocklength n grows without bound. We call such a result an exponentially
strong converse to emphasize the speed of convergence of the correct probabilities
for the rate vectors outside the rate region. The exponentially strong converse for
a network source coding problem is useful for a variety of applications beyond ba-
sic understanding of how achievable error probability varies with rate. For example,
when the exponentially strong converse holds, we can show that any demands that
can be achieved across a network with rate 0 across a given link can also be achieved
when that link is absent [18]. This property is actually quite subtle since it requires
demonstrating that asymptotically small rates across the given link are never critical
to that network’s operation. Notice that this property is not trivial since single-letter
characterizations of the network with that additional link may not be available even
when a single-letter characterization of the network without the 0-rate link is known.
As mentioned above, the exponentially strong converse holds for the point-to-point
network. For the point-to-point lossless case, the intuition is that the probability of
the strongly typical set A (X) for the finite-alphabet source X increases exponen-
tially to 1 as the length n grows without bound. We denote exponent by 7(¢) > 0. Let
B™ denote the intersection of A7 (X) and the correct event for a given sequence of

codes. When the code’s probability of correctness equals 2" for some ¢(n) — 0,

1A (X))
— 108 )
n 1B

can be made arbitrarily small when € > 0 is sufficiently small and n is sufficiently large.
This means that the rate R that is sufficient to describe the set B is asymptotically
at least +log 1A (X)),

We prove that the exponentially strong converse holds for the lossless coded side
information problem [4], lossless source coding for the family of multicast networks
with side information at the end nodes, and the Gray-Wyner problem [3]. The

cut-set bound is tight for multicast networks with side information at the end nodes
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by [12], and this family includes the family of multicast networks [11] as a subfamily,
which includes the Slepian-Wolf problem [2] as a special case. The strong converse has
been proven for the coded side information problem in [20] and for the Slepian-Wolf
problem in [21]. Neither of these results shows exponential decay.

The remainder of this paper is structured as follows. We define the exponentially
strong converse in Section 3.2. We briefly explain an application in Section 3.3. We
show that the exponentially strong converse is true for the coded side information
problem in Section 3.4. In Section 3.5, we prove the exponentially strong converse for
the family of multicast networks with side information at the end nodes. Finally, we

prove the exponentially strong converse for the Gray-Wyner problem in Section 3.6.

3.2 Definition and Problem Statement

Here we define the the exponentially strong converse for general non-functional lossless
source coding problems defined in Section 2.2. For simplicity, when s = 1 (resp.
t =1), X (resp. Y1) will abbreviated by X (resp. Y). We first define the family of

multicast networks with side information at the end nodes.

Definition 3.2.1 A network source coding problem N is a multicast network with

side information at the end nodes if and only if for every v € V
1. D,=0 or D, ={Xy,..., X}
2. If (v,Y;) € S for some j € {1,...,t}, then (v,v') ¢ € for allv' € V.

Any multicast network A is a member of this family since in multicast networks there
is no side information (¢ = 0).

We next define the cut-set bound. A subset is any set A C V.

Definition 3.2.2 Let N be a non-functional network source coding problem. The

cut-set bound is a set of inequalities for rate vector R defined as

Ra> H(Xp(A)[Xs(A9), Ys(A%) VACY, (3.1)
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where for any A C V,

RA = Z R(’Uﬂ}/)

(vu")e€wveA
Xs(AY) = {X;]| (v,X;) €S for some v € A}
Ys(A°) = {Y; ]| (v,Y;) €S for some v € A}
Xp(A) = {X;| (v,X;) € D for some v € A°}.

Finally we define the exponentially strong converse.

Definition 3.2.3 We say that the exponentially strong converse holds for lossy net-
work source coding problem N if and only if for any Pxy, any rate vector R, and
any distortion vector D, R ¢ R(Px,y,D) if and only if for any sequence of rate-R,
length-n block codes {C,} the probability of observing distortion less than or equal

to D decreases exponentially to 0, i.e.,

n—oo

1 1 ~
lim inf —— log Pxn yn (—d(Xan<U/)) <DV (V, X;) € D> > 0,
n n

where for all (v/, X;) € D, X*(v') is the reproduction of X™ at node v' using C,.

Our approach relies on strong typicality. We briefly mention some properties that
are useful here and fix the notation as follows. Let W be a finite-alphabet random
variable. For any integer n and positive number ¢ > 0, let A:(n)(W) denote the
strongly typical set. (For example, see [44].) Lemma 3.2.4 states that the probability

*

of the atypical set (Ae (n)(W))C decreases exponentially to 0 as n grows without bound

with exponent greater than or equal to 7(¢) that depends only on the distribution of

W and e. We state Lemma 3.2.4 without proof.

Lemma 3.2.4 For any € > 0, when n is sufficiently large
Pr(A™W(W)) >1 -2

for some 7(€) > 0.
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Let Z be another finite-alphabet random variable. For z™ € Z™, let AE")(W]Z =z")

denote the set of sequences w"™ € W" that are strongly jointly typical with z".

3.3 An Application

Consider the following problem: for a given network source coding problem N =
(V,€),8,D), let N = ((V,&),S,D) be the network source coding problem that is
identical to A except that €& = £\{€} for some € € £. Given any R = (R, | e € £) in
the achievable rate region for N, we wish to know whether Rz = 0 implies that the
rate vector R = (R,),..z is in the achievable rate region for N.

Note that by the definition of rate Rz = 0 implies only that the number of bits
transmitted across € grows sublinearly in the blocklength n; it does not imply that
zero bits are sent across €. So the key concern is whether a gap can arise in the limit
as Rg approaches 0.

One way to study this question is as follows. Let {C,} be a sequence of length-
n rate-(R + ¢(n) - 1) block codes for N for which the probability of satisfying the
distortion constraint goes to 1 as n grows without bound. Here 1 is the vector with
all components equal to 1 and {c(n)} is a sequence of non-negative numbers such
that lim, . ¢(n) = 0. Choose n such that C,, satisfies the distortion constraint with
probability P](Dn) > 1/2. The rate of code C,, on edge € is c¢(n). Let C,, be the code that
is identical to C,, except that no message is transmitted across edge € and all functions
that rely on that message treat the value as a constant. Then the probability Pp
that C,, satisfies the distortion constraint is bounded as Pp > 27 "<(W)~1 — 9-n(c(n)+1/n)
using the best guess for the missing message across the edge €. If the exponentially

strong converse holds for A/, then this implies that the rate vector R is achievable for

N.
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3.4 The Lossless Coded Side Information Problem

We prove the exponentially strong converse for the coded side information problem [4].
(See Figure 3.1.) Our proof follows the approach in [20], where the strong converse
theorem for this particular network source coding problem is proven with a slower

rate of convergence. We start with some simplifications of definitions from [20] that

Figure 3.1: The coded side information problem.

are useful in this section.

Definition 3.4.1 For any positive integer n, positive number 6 > 0, and set B C X",
define
Us(B) = {y" | Pr(X" € B|Y" =y") > 27"},

Definition 3.4.2 For any ¢ > 0, € > 0, and § > 0, define

1.
~ 1
Sn(c,€,0) ;== —log min | B,
n

where the min is taken over all subsets B C X™ such that

—% log Pr (Y™ € 15(B) N A;™(Y)) < c.

T(c) := min H(X|U),

where the min is taken over all random variables U such that X — Y — U

forms a Markov chain and

I(Y;U) <ec.
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Theorem 3.4.3 [20, Theorem 1]For alle > 0, 6 > 0, and ¢ > 0

lim §n(c,e, J) = f(c)

n—oo

Theorem 3.4.4 The exponentially strong converse holds for the coded side informa-

tion problem.

Proof. Let (Rx, Ry) be a rate pair such that there exists a sequence of length-n
rate-(Rx, Ry) block codes {C,,}3°, such that the correct probability

Pr(X" = )/f") = 27" for some sequence {c(n)} satisfying lim,, .., c(n) = 0. Here
fin, fon, and g, are the encoding and decoding functions of C,, (as shown in

Figure 3.1) and
X" = gu(fra(X™), fon(Y™)

is the reproduction of X™ using code C,,. We want to show that (Rx, Ry) is
achievable, i.e., that there exists a random variable U such that X — Y — U forms

a Markov chain and that
Ry > H(X|U), Ry > I(Y;U).
For any particular value u € {1,2,...,2"} of the encoding function fs,, define
O™ (u) = {a" | 2" = ga(fra(2"), w)}.
By assumption,
27 <y Pr(Y" = ") PO (fan(y™) | Y =y,
yneyn

Fix € > 0. By Lemma 3.2.4,

Pr(A:™(X,Y)) > 1 -2



o4

for some 7(€) > 0. Therefore when n is sufficiently large,

S P = ) PO (fon(y) | Y =y
yreAl™ ()
> 9—ne(n) _ 9—nT(e) > 9—b(1€) (32)

for some sequence of positive numbers {b(n, €)} such that lim, . b(n,€) = 0 for all

€>0. Let S(n,e) C A:(n)(Y) be the set of all y" € Axm) (Y) such that
Pr(C (fon(y") | Y7 = y") > 272,
Then (3.2) implies
Pr(S(n, €)) + (1 — Pr(S(n, €)))27"2me) > g=nblne)

which leads to

2fnb(n,e)

fn<b(n,e)+%)
= 1 +2—n2b(n,e) > 2

Pr(5(n,¢€))
when n is sufficiently large. Now by definition
S, €) € |J (Ym0 (€ (w)) N AL(Y))

Hence

S Pr (Y0 (C0) () 1 AT (Y)) = 27700 +3),

where the summation is taken over all u € {1,...,2"® } Thus there exists an index

u* such that

Pr (%b(me)(C(”) (")) N A:(n) (y)) > 2—n(b(n,e)+%+Ry)‘



55
By the definition of §n,

1 ~ 1
L 1og [C(u)| 2 5, (b0 + -+ R 2n,6) ).
n n
Choose n sufficiently large so that % + b(n,€) < e. By Theorem 3.4.3,
1 ™ ()] > T
Elog|C’ ()| >T (e+ Ry)+e

when n is sufficiently large. Since O (u*) is the set of 2™ that can be correctly

decoded when f,,,(Y") = u*, |C™ (u*)] < 2"Fx and hence
Ry >T(e+Ry)+e

when n is sufficiently large. By the definition of T , there exists an auxiliary random

variable U such that X — Y — U and
Rx > H(X|U)+¢€ Ry > 1(Y;U) +e.

Letting € — 0 completes the proof. O

3.5 Multicast networks with Side Information at

the End nodes

In this section, we consider the family of multicast networks with side information
at the end nodes. The cut-set bounds for this network are tight by [12]. This result
can be treated as a generalization of multicast capacity [11]. The simplest interesting
example in this family is the problem of lossless source coding with side information
at the decoder. (See Figure 3.2.) The infinium of the set of losslessly achievable rates
is H(X|Y'), which corresponds to one of the two corner points in the rate region of

the Slepian-Wolf problem. We prove the exponentially strong converse for this basic
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example and then use it to conclude that the exponentially strong converse holds for
those network source coding problems where the cut-set bound is tight. This implies
that the exponentially strong converse is true for the family of multicast networks
with side information at the end nodes. Lemma 3.5.1 treats the simplest example,

where a single encoder describes X to a decoder that knows Y.

R
Y

Figure 3.2: The lossless source coding problem with side information at the decoder.

Lemma 3.5.1 The exponentially strong converse holds for the lossless source coding

problem with side information at the decoder.

Proof. Let R > 0. Suppose that there exists a sequence of length-n rate- R block
codes C,, with correct probability

Pr(X" = X"(X",Y™)) = 27"

for some sequence {c(n)} such that lim, .., ¢(n) = 0, where )?"(X”, Y™) is the
reproduction of X™ using code C,. We want to show that R is in the lossless rate
region by showing that R > H(X|Y).

For any positive integer n and positive real number € > 0, let
Be(”) = A:(”)(X, Y)n{(z",y") 2" = )A(”(x”, y")}

be the set of strongly typical pairs (2", y™) such that 2" is correctly decoded.
Lemma 3.2.4 implies that

Pr(A™(X,Y)) >1—-2"
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for some 7(€) > 0, so
PI‘(Be(n)) > 2—nc(n) . 2—nT(e) _ 2—nb(n,e) (33)

when n is sufficiently large for some sequence of positive numbers {b(n, €)} such that

lim,, o b(n,€) = 0 for all € > 0. Now

Pr(BM) = ) Pr(Y"=y")Pr(BUY" =y")
yreAl™(v)
> anb(n,e)

Hence there exists a y! € A7™ (V) such that
Pr(BM™y™ = y2t) > 27m(ne), (3.4)
Since for all 2" € AX™ (X|Y™ = y)
Pr(X" =z"Y" =y5) < o nHXY)=e)

(3.4) implies that
B (Y™ = g} = 2 ebn) (35)

Since C,, has rate R and B! N {Y" = yi'} is by definition the set of pairs
(™ yy) € Ar (X,Y) such that 2" can be correctly decoded when Y™ = y{,

2% > [BM N {Y™ = yp}l.

Thus (3.5) implies that
R>H(X|Y)—e—b(n,e)

for all n and e. Since € > 0 is arbitrary, letting n — oo gives

R> H(X|Y).
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U

Lemma 3.5.2 relates our condition on the probability of correct decoding to the

tightness of the cut-set bound.

Lemma 3.5.2 Let N be a network source coding problem and let R be a rate vector.
For all (v, X;) € D, let X*(v') be the reproduction of X" at node v' € V. If there

exists a sequence of length-n rate-R block codes such that the correct probability is
Pr (Xg = X"V (v, X)) € D) — gnen)

for some sequence {c(n)} such that lim,_ .. c(n) = 0, then R satisfies the cut-set

bound of N.

Proof. For any cut A € A, since A° demands the sources X 4 which are available in
A and (X(A°), Y (A°)) is available in A°, each cut A corresponds a lossless source
coding problem with side information on the decoder side as in Figure 3.2. Hence
by Lemma 3.5.1, the overall rate R4 from A to A° must satisfy (3.1) for all A € A.

This completes the proof. 0]

Theorem 3.5.3 concludes this section.

Theorem 3.5.3 The exponentially strong converse holds for the multicast network

with side information at the end nodes.

Proof. The result a direct consequence of Lemma 3.5.2 and the tightness of the
cut-set bound [12]. O

3.6 Lossy Source Coding for the Gray-Wyner Net-
work

Given D = (D, D3) > 0. Recall that the lossy rate region for the Gray-Wyner

problem shown in Figure 3.3 is the closure of the set of all (Ry, Ry, R2) for which
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D
XY — ¢

=)

9~y

Figure 3.3: The Gray-Wyner network.

there exists a random variable U with alphabet size [U| < |X;||Xs] + 2, such that
RO > I(X7 U)a Rl > RX1|U(D1>’ R2 > RXQ\U(D2)7 (36)

where X = (Xj, X3) denotes the source vector and Ry, (D;) is the conditional rate-
distortion function for distortion D; for i € {1,2}.

Theorem 3.6.2 shows that the exponentially strong converse holds for the lossy
Gray-Wyner Problem. The idea of the proof is that since the exponent of the prob-
ability of meeting the distortion constraints is asymptotically zero, the given rate
vector is D-achievable for another distribution X that is close to Px. The approach
follows the method of proving the converse of the region (3.6) in [3] that turns the
dimension-n description of the rate vectors into a single-letter form. Hence a similar

approach can be applied to prove Theorem 3.4.4. Lemma 3.6.1 is useful for proving

Theorem 3.6.2.

Lemma 3.6.1 Let W be a random variable with alphabet VV and distribution Py .
Let {B™} be a sequence of sets B™ C W™ such that Py«(B™) = 277%™ for
some sequence of non-negative numbers {b(n)}5°, satisfying lim, ., b(n) = 0. Then
there exist a sequence {a(n)}°, of non-negative numbers and a sequence {Qg})n} of

distributions on W" such that

lim a(n) =0
lim Q. (B™) =1

27 Py (w™) < Qun (w™) < 2”“(")1315{,2 (w™) Yw™ € W".
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Proof. Define

n(b(n)+—=) n

g;)n(wn) = b 1 2 i PW"(w ) ) if w" € B(n)v

2" Py (B®) + (1 — Py (BM))
Pyn (w"

YO T St g B

2"t 75 P (B + (1 — Py (B™))
Then
Q%;V)n(B(n)) > ST —lasn— o0

1 1

27" P (w") < QW (w") < 2" By (w) ¥ w” € W

O

Theorem 3.6.2 The exponentially strong converse holds for the lossy Gray-Wyner

problem.

Proof. Let R = (Ry, Ry, R2) be a rate vector and Px denote the source distribution.

Suppose that there exists a sequence of length-n, rate-R block codes such that

1 ~
lim —— Pr (Ed(XZ”,Xi") <D;Vie {172}> =0,

n—oo N

where X 1 and )A(Q are reproductions of X7 and X7 at nodes v; and vy, respectively.
We want to show that R is in the region described in (3.6).

For € > 0, let
B = A X) N {x" € AT < A | X" = (R (x"), X3 (x"))}
Then the same argument used to prove (3.3) leads to
Pr(B™) = 279 (3.7)

for some sequence of non-negative numbers {b(n, €)} such that lim, . b(n,e) =0
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for all € > 0.
By Lemma 3.6.1, there exists a sequence of non-negative numbers {a(n,€)}>°; and a
sequence of distributions {Qg?,’f)} such that for all € > 0,

llm a(n7€) — 0’ hm Qg?;f)(B(n)) = 17

€
n—oo n—oo

and

2—na(n,e)PXn (Xn) < ngz;f) (Xn) < Qna(n,e)PXn (Xn> vV x" e Xln X in (3.8)

Let n(e ) be a positive integer such that a(n(e),¢) < € and Qg?i??e’f))(Be("(e))) >1—c¢

Let Q' . denote the distribution Q(n(e ) Hence by the continuity of the lossy rate

Xn(e) Xn (e)

region with respect to the distortion vector, there exists a function 7 (€) with
lim, ., 71(€) = 0 such that the rate vector n (R + 71(€) - 1) is in the D-achievable

region for the Gray-Wyner problem with respect to distribution Q Hence there

Xn(e) "

exist random variables U, X , and X 9 such that

1
R n(e). (e)
2 o5 <JQ<€)(X ), Rty (n(€) D1, QU),

Ry (n(e)D2, Q)

R+7(e)-1

where I« and R "<f)|U(Di7 Q) (for i € {1,2}) are the mutual information and

conditional rate-distortion functions evaluated according to distribution Q Let

Xn(e) "

J(€) be an independent random variable uniformly distributed over {1,...,n(e)}.
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Define U; = (U, X} !) for all i € {1,...,n(¢)}. Then

n(e)
1 1 ;
T Xn(e)U — T Xi.sz—l
n(e) Q()( y ) n(o? U( 3 ‘ 1 )
1 n(e)
= — Iy (X U, XY — T (X X1
n(e) :l(Q()< y Yy 431 ) Q(>( k| ))
- il X;: Uy) — — §H (x,) + a0 X"
T g e g 2 e B T
H o (X9)
= [Q()(XJ UJ(é ’J( )) - HQ(E)(XJ(E)‘J(E» + n(e)
H o) (X))
= —Hyo(X € €)» <
0 (XU, J(€)) + (e
H (6)(Xn(€))
= IQ()(XJ UJ(6 J( ))+ Qn(e) —HQ(e)(XJ(E))

Similarly, let Vi1 = (U, X{7") and Vo, = (U, X37") for i € {1,...,n(e)}. Then

1

n(e)
1

n(e)

RXf<e>|U(”(€)D17 Q(e)) > RXLJ@ |Us(ey»J (€) (D, Q(E))

RX;(5)|U(TL(E)D27 Q(e)) Z RXQ,J(€)‘UJ(€>,J(€) (D27 Q(E))

Since X j() has finite alphabet &} x X, there exists a conditional distribution

Qv,, X, for random variable V) with alphabet size |X||Xs| 4 2 such that

[Q( )(XJ UJ J(G)) = [Q(e) (XJ(E)a Vn(e))
RXLJ(EHUJ(E):J(G)(DM Q(E)) > RXl,J(e)Wn(e)(Dl’ Q(E))

RX2,J(5)‘UJ(E)7J(€) (D2> Q(E)) > R—XQ,J(E)lvn(e) (DQ’ Q(E))‘
We next show that

hm QXJ( )( x)=Px(x) Vxe X x X (3.9)

i a0 (X7
SO

— Hoo (X)) = 0. (3.10)
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First, for all x"(© ¢ A9 x a7

Y

(€) ne_ e _|{Z|Xl:a}|
an()(X-](e _&’X ())_TVOCEX1 XX2.

Hence for all x™(©) ¢ Bg(n(e)) C A:(n(e))(X),

‘an( [ (X = o] X" = x"9) — Px(a)] < Va € X x A.

€
ReyRe
The fact that Q;?n(e) (B > 1 — € leads to

€
||| A

|Q§)n(s) (XJ(E) =a) — Px(a)| < +eVaed xX,

which proves (3.9). By the uniform continuity of mutual information and entropy

functions on finite-alphabet random variables, (3.9) implies that

[Hgo (X)) — Hp(X)| < 72(€)

oo (X3 Vae) — Ip(X; Vi) < 72(€)

1R, Vi (D1 Q) — Rx, v, (D1, P)| < 72(€)
R, 50 Vi e)(D27Q )) — Rx, v, (., (D2, P)| < 72(e)

for some 7y (€) such that lim._., 2(¢) = 0, and Ip and Hp are mutual information
and entropy functions evaluated according to the distribution Px v, ., = PxQv, x
Hence for proving (3.10), it remains to show that
H o (X9
lim 0 X" _ Hp(X).

e—00 n(e)

By (3.8), for all x9 € B ¢ A" (x),

1 1
| — ——log Qo (x"©) + —— log P ()| < a(n, ) < e

n(e) n(e)
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and

1
|% log Pxn(o) (x"(e)) — Hp(X)| < 73(€)

for some 73(¢€) such that lim, . 73(¢) = 0. Let
T4(€) := € + 13(€) + €log | X1 || Xa.

Since Qg?n(e)(BE(n(e))) >1—c¢,

1
|@HQ(6)(X7@(S)) — Hp(X)| < m4(e),

which proves (3.10). Hence the rate vector
R+ (1(e) + 72(e) +7a(€)) - 1

is in the achievable rate region of the Gray-Wyner problem w.r.t. the distribution

Px, which proves the desire result by letting ¢ — 0. U
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Chapter 4

Algorithms for Approximating
Achievable Rate Regions

4.1 Introduction

The derivation of rate regions for lossless and lossy source coding problems is a cen-
tral goal of network source coding theory research. While a network source coding
problem is often considered to be solved once an achievable rate region and matching
converse are demonstrated, these results become useful in practice only when we can
evaluate them for example sources. For some problems, like Slepian and Wolf’s loss-
less multiple access source coding problem [2], evaluating the optimal rate region for
example sources is trivial since the information theoretic bound gives an explicit rate
region characterization. For other problems, including lossy source coding, lossless
source coding with coded side information at the receiver [4],! and the family of lossy
source coding problems described by Jana and Blahut in [45], the information theo-
retic characterization describes an optimization problem whose solution is the desired
bound. These optimization problems are often difficult to solve for example sources.

While single-letter characterizations and alphabet-size bounds for auxiliary ran-
dom variables are often motivated by concerns about rate region evaluation, the eval-
uation problem itself has received surprisingly little attention in the literature. Most

existing algorithms follow the strategy proposed by Blahut [23] and Arimoto [22].

'Source coding with coded side information at the receiver may be viewed as a type of lossy
coding problem since perfect reconstruction of the side information is not required.
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When applied to rate-distortion bound evaluation, this iterative descent approach
progressively updates solutions for the marginal p(z) on the reproduction alphabet
and the conditional p(z|x) on the reproduction given the source. The convexity of the
objective function results in the algorithm’s guaranteed convergence to the optimal
solution [46]. Calculating the algorithmic complexity of this approach would require
a bound on the number of iterations required to achieve convergence to the optimal
solution (or a sufficiently accurate approximation).

We offer an alternative approach for rate region calculation. The proposed algo-
rithm involves building a linear program whose solution approximates the optimal
rate region to within a guaranteed factor of (1 + ¢€) times the optimal solution. The
goal of achieving (1 4 €)-accuracy using a polynomial-time algorithm is related to
Csiszar and Korner’s definition of computability, which they propose as a critical
component of any future definition for a single-letter characterization [19, p.259-260].
Our algorithm gives a (1 + €)-approximation of the rate region for lossless source cod-
ing with coded side information at the decoder [4]; this approach can be generalized
to a lossy incast source coding problem described by Jana and Blahut in [45] and
the achievable rate region for the lossy coded side information problem described by
Berger et al. in [6]. Incast problems are multiple access source coding problems with
one or more transmitters and a single receiver that wishes to reconstruct all sources
in the network. (Reconstruction of possible receiver side information is trivial.) The
lossy incast problem from [45], differs from traditional incast problems in that the
sources may be statistically dependent and exactly one source is reconstructed with
loss (subject to a distortion constraint) while the other source reconstructions are loss-
less. The lossy source coding and Wyner-Ziv problems meet this model of lossy incast
problems. The rate region for this lossy incast problem relies on a single auxiliary
random variable [45]. The achievable rate region for the lossy coded side information
problem relies on a pair of auxiliary random variables [6].

Section 4.2 describes the algorithmic strategy. Section 4.4 describes the approx-

imation algorithm for our lossy incast problem. Since describing the problem in its
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most general form increases notational complexity without adding much insight, we
give details only for the Wyner-Ziv problem. Section 4.5 tackles the lossy coded side

information achievability bound using tools developed for the incast problem.

4.2 Qutline of Strategy

In all of the problems studied here, we begin with known information theoretic de-
scriptions that rely on one or more auxiliary random variables. Optimization of each
auxiliary random variable requires optimization of that variable’s conditional distri-
bution given one or more source random variables. Direct optimization is difficult
since the desired rates are not convex or concave in the conditional distributions.

The central observation for our algorithm is that for any fixed conditional distri-
bution on the source given a single auxiliary random variable, all rates and distortions
are linear in the auxiliary random variable’s marginal distribution. As a result, for
any given conditional distribution, we can efficiently optimize the marginal on the
auxiliary random variable using a linear program. Since the true conditional distri-
bution of the source given the auxiliary random variable is unknown, we quantize
the space of conditional distributions and find the best marginal with respect to a
conditional distribution that exhibits each of these quantized distributions as the con-
ditional given some value z € Z. The solution is at least as good as the solution that
would be obtained if we were to first quantize the optimal conditional distribution
and then run the linear program for that quantized conditional. As a result, to prove
that the algorithm yields a (1 + €) approximation, we need only show that quantizing
the optimal conditional distribution on the source given the auxiliary random variable
would yield performance within a factor (1 + €) of the optimum.

For any finite alphabet A, we quantize distribution {g(a)}.ca to distribution
{q(a)}aca as follows. First, fix parameters §,n > 0 and ¢ := 1+ n/|A|. These

parameters are related to the approximation constant ¢ in a manner described in
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later sections. Fix ay € argmax,e 4 q(a). Then

0 if a # ap and q(a) < 0

N c" if a # ag, q(a) > 6, and

o) = 1)
c S q(a) < c*ﬂ‘i’l

L= s, dla) if a = ag.

\

Then distribution ¢(a) can take on N (0,7, |A|) values, where

|A]—1
—logé
N6, Al) < |A] (m * 1) '
A

This approach quantizes smaller probability values more finely than larger probability
values but maps the smallest probability values to zero. The impact of quantizing the
smallest values of g(a) to zero is limited since qlog(1/q) approaches 0 as ¢ approaches

0. The variation in the quantization cell size for ¢(a) is motivated by Lemma 4.2.1.

Lemma 4.2.1 Given distributions {q(a)}se 4 and {G(a)}aca on finite alphabet A. If
lg(a) — q(a)] < eq(a) for all a € A, then

|H(q) = H(@)| < eH(g) + elog —

Proof. Given any x € X. By the mean-value theorem, there is some

re € [(1 —€)p(x), (1 + €)p(z)] such that

1 1
|p(1’)1nm —q(z) 1ﬂm| = [p( )—Q(ﬂﬁ)Hln—x -1
1 1
S 6p(x) max{\lnm\,|lne(l_e)p(x)’}

1 1
< ep(a)In—7 +ep(w) +ep(z) In

p()

= ep(z)ln ﬁ + ep(z) In

e
1—¢€

So the result follows. O
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X—ENC X X—ENCHDEC~X X —ENCHDECX

y —ENC— Tty Y y —ENCG— By
(a) (b) (c)

Figure 4.1: The (a) lossless coded side information, (b) Wyner-Ziv, and (c) lossy
coded side information problems.

4.3 The Lossless Coded Side Information Region

Let X and ) denote the finite alphabets for the source X and side information
Y, respectively. The lossless rate region for the coded side information problem [4]

contains all the rate pairs (Rx, Ry) satisfying
Ry > H(X|U), Ry = I(Y;U)

for some U such that X — Y — U forms a Markov chain. (See Figure 4.1(a).) The
Lagrangian

Ji(N) = HX|U) + AI(Y;U) (4.2)

captures the desired constrained optimization.
Let U = {1,...,N(d,n,|X|)} be the alphabet for auxiliary random variable U,
and for each v € U let {Qy v (y|u)}yey be a distinct distribution from our quantized

collection (4.1). We wish to find the marginal {Py(u)} that minimizes J;(\) for any

A > 0. Since
H(X|U) =Y Py(u)H(X|U = u)
ueU
I(Y;U)=H(Y) - H(Y|U) = )= > Pu(w)HY|U = u)

ueU

and the constraints

ZPU(U) = 1,
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Py(u) >0 for all w € U, and

Z Py (u)Qyu( (yu) = p(y) (4.3)

ueU

for all y € Y are all linear functions of Py (u), we optimize { Py (u)}yey for the family
of conditionals {Qyu(y|u)}(yueyxu using linear programming. Notice that in the
linear program, a constraint in (4.3) can be removed, and hence there are |Y| — 1
constraints in (4.3). Since the lossless coded side information problem is a special
case of the lossy coded side information problem that is discussed in Section 4.5, we

state Theorem 4.3.1 without proving it.

Theorem 4.3.1 The proposed algorithm yields a (1 + €)-approximation algorithm
for the lossless coded side information rate region in time O(e~*(V*1)) as e approaches

0.

No matter what the initial size of U/, the solution to the linear program satisfies
Py(u) = 0 for all but |Y| values of u € U by the following argument. The linear
program has |U| variables and || 4 U] constraints. Since there exists a solution for
any linear program at a boundary point, there exists an optimal marginal { P} (u)}
for which || constraints are satisfied with equality. At most |Y| — 1 are constraints
of the form ) ., P (u)Qyw(y|u) = p(y) for some y € Y, and one constraint ensures
that > oy, Pr(u) = 1. The remaining || — )| constraints take the form Py (u) = 0.

Figure 4.2 shows the lossless coded side information rate region (solid line) and
our algorithm’s (1 + €)-approximation (circles) when X = Y = {0,1} with joint

distribution
Pxy(0,0) = 0.06, Pxy(0,1) =0.24, Pxy(1,0) =0.42, Pxy(1,1) =0.28

and € = 0.1. The example demonstrates that the approximation is often tighter
than the (1 + €) worst-case guarantee. While the lossless coded side information

region is not difficult to calculate for these simple binary sources, the difficulty of the
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Figure 4.2: Example (1 + €) approximations for the lossless coded side information
rate region.

calculation increases with the alphabet size.

4.4 The Wyner-Ziv Rate Region

Let X and Y denote the finite alphabets for sources X and Y. The Wyner-Ziv

rate-distortion bound

Rxiy(D) = Zegl(i)l(ly)f(X;ZW)
U(X,Y) = {Z‘Z—>X—>Y,

3¢ s.t. Bd(X,9(Y, Z)) < D},

specifies the minimal rate for describing source X to a receiver that knows side infor-
mation Y and reconstructs X with expected distortion no greater than D [5]. (See

Figure 4.1(b).) The Lagrangian
Jo(N) = 1(X; Z]Y) +)\H}binEd(X,w(Y, 7)) (4.4)

captures the desired constrained optimization.

Let Z = {1,...,N(6,n,|X]|)} be the alphabet for auxiliary random variable Z,
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and for each z € Z let {Qx|z(x|2)}zex be a distinct distribution from our quantized
collection (4.1). We wish to find the marginal {P;(z)} that minimizes J(\) for any
A > 0. Since I(X; Z|Y) = H(X|Y) — H(X|Y, Z) and

min Ed(X, 0(Y, 7))

= mlznZPZ(Z)E[d(X,ﬁb(Y, Z))’Z = Z]

and the constraints
Z Pz(Z) = 1,

Py(z) > 0 for all z € Z, and

Z Pz(2)Qxz(x|z) = p(x)

Z2EZ
for all x € X are all linear functions of Pz(z), we optimize {Pz(2)},cz for the
family of conditionals {Q x|z (%|2)}(z,:)cxxz using linear programming. The proof of

Theorem 4.4.1 appears in the Appendix.

Theorem 4.4.1 The proposed algorithm yields a (1 + €)-approximation algorithm

for the Wyner-Ziv rate region in time O(e~*(*+1)) as ¢ approaches 0.

No matter what the initial size of Z, the solution to the linear program satisfies
Pz(z) = 0 for all but |X| values of z € Z by the following argument. The linear
program has | Z| variables and |X| + | Z] constraints. Since there exists a solution for
any linear program at a boundary point, there exists an optimal marginal {P}(2)}
for which | Z] constraints are satisfied with equality. At most |X| — 1 are constraints
of the form ), - P;(2)Qxz(x|z) = p(z) for some x € X, and one constraint ensures
that ) ., P7(2) = 1. The remaining |Z| — [X| constraints take the form P;(z) = 0.

Figure 4.3 shows the Wyner-Ziv rate region (solid line) and our algorithm’s (14¢)-
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Figure 4.3: Example (1 + €) approximations for the Wyner-Ziv and Berger et al.
achievable rate regions.

approximation (circles) when X =) = {0, 1} with joint distribution
Pxy(0,0) = 0.06, Pxy(0,1) = 0.24, Pyy(1,0) = 0.42, Pxy(1,1) = 0.28,

Hamming distortion measure, and ¢ = 0.1. Again, the approximation is tighter than
the (1 + €) worst-case guarantee. While the Wyner-Ziv region is not difficult to
calculate for these simple binary sources, the difficulty of the calculation increases

with the alphabet size.

4.5 The Lossy Coded Side Information Region

In [6], Berger et al. derive an achievability result for the lossy coded side-information
problem illustrated in Figure 4.1(c). Let &} and X denote the finite alphabets for
sources X; and Xs, respectively. The region proposed by Berger et al. is the convex
hull of the rates

Ry > I(Xy; 211 Z,), R > 1(Xy; Z2),
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for (71, Z,) € ¥(X1, Xs), where

(X, X)) = {(Zl, Z)

Z1—>X1—>X2—>Z2,
) s.t. Bd(X, (21, Z,)) < D}.

We find the desired lower convex hull using Lagrangian

Jg(/\l, /\2, /\3) = )\1](X1, Zl|ZQ) + )\QI(XQ, Zg)
+A3 ngn Ed(X1,9(Z1, Zs)).

Calculating the optimal rate region for a given pair of sources (X7, Xs) requires

joint optimization of conditionals

{QZi\Xi(Zi|xi)}($i,zi)6%><2w (&S {172}

where Z; and Z, are the alphabets for auxiliary random variables Z; and Z5. Since
joint optimization of these conditional distributions is tricky, we define a sequence of
conditional distributions {Q z,|x,(22]%2) } (zs,20)c x5 x 2, from the quantized class defined
in (4.1) and then optimize {Qz, x,(21|%1)}(z1,21)ex,x2, for each. Comparing these
optimal solutions yields the best pair of conditionals among all possible solutions in
the class considered.

The number of possible conditionals on Z given X, in the quantized class is
N(8,1,|&,|)#1l. To make this value as small as possible, we begin by bounding the
alphabet size | Z,|. For any fixed conditional distributions {Qz,x, (21]71) }(z1,21)ex1 x 2,
and {Qx,|z,(72|22) }z2,20)cxox 2,5 POth J3(A1, A2, Ag) and the distribution constraints
are linear in {Pyz,(22)}.,,e2,- An argument analogous to the one in Section 4.4 then
demonstrates that there exists an optimal solution to this linear equation in which
Py, (29) = 0 for all but at most |X,| values of 25 — giving |Zs| < |Xy|. 2
Let 2 = {1,...,N(d,n,|A1|)}, and for each 21 € Z; let {Qx,|z, (x1]21)}zex, be

2We can similarly show that |Z;| < |X1|, though that result is not applied in the argument that
follows.
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a distinct distribution from our quantized collection (4.1). Let Zy = {1,...,|X3|}.
For each of the N (4,7, |X|)*2 conditionals {Qx,|z, (¥2]22) }(z2,20)canx 2, in the class
defined by (4.1), we run a linear program to optimize J3(A1, A2, A3) subject to the
distribution constraints. The algorithm output is the best of these solutions. The

proof of Theorem 4.5.1 appears in the Appendix.

Theorem 4.5.1 The proposed algorithm runs in time O (e (X112 +1)) and guar-

antees a (1 + €)-approximation.

The broken lines in Figure 4.3 show our algorithm’s (1 + €)-approximation for the
achievable rate region from [6] for the example considered in the previous section.
Each curve plots rate R; against distortion for a fixed value of R,. In this case, the
optimal region is not easily available, but the given solution is guaranteed to meet

our (1 + €)-approximation bound.

4.6 Summary

The proposed family of algorithms enables systematic calculation of the rate regions
for a large class of source coding problems. The ability to calculate these regions is
useful because it allows us to determine the limits of what is possible in a variety of
applications — thereby enabling an objective assessment of the performance of source
coding algorithms.

The given approach may also be useful for resolving theoretical questions. The
coded side-information problem provides a potential example. In [47], Berger and
Tung derive an inner bound (here called the Berger-Tung bound) for the lossy multiple
access source coding problem. While the formulations are quite different, in [48] Jana
and Blahut prove the equivalence of the inner bounds from [6] and [47]. A long-
standing open question is whether the bound is tight. One possible means of proving
the looseness of the bound would be to calculate it for random variables (X,Y)
and compare the resulting region to the normalized region for the random variables

(X™, Y"™) where (X;,Y;) are drawn i.i.d. according to the same distribution as (X, Y).
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If these values differ for any n, then the region is not tight. (The experiment would
be inconclusive if the values are the same.) Since direct calculation of these values is

difficult even for n = 2, the proposed algorithm may enable a solution to this problem.
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Chapter 5

The Two-Hop Network and the
Diamond Network

5.1 Introduction and Problem Statement

One of the central goals in network source coding theory is to bound rate-distortion
regions for source coding in a given network. It is well-known that for the point-
to-point network, where the source sequence is drawn i.i.d. according to a known
probability mass function, the minimal rate required to describe the source with
an arbitrarily small error probability of reproduction is the entropy of the source
random variable. Rate distortion theory also gives a formula for R(D), the minimal
rate required to achieve an expected per-symbol distortion no larger than D between
the source and its reproduction.

The lossless rate regions and rate-distortion regions for source coding of i.i.d. ran-
dom variables in more general networks are apparently harder to describe. While
complete, one-letter characterizations of the rate-distortion regions for some regions
are known (for example, see [4], [3], [8], and [49]), many of these results incorporate
auxiliary random variables to describe achievable rate vectors; in these cases, char-
acterizing the lossless rate region or rate-distortion region for an example random
variable requires solution of a typically non-trivial optimization problem. Lossless
rate regions and rate-distortion regions for far more networks remain entirely un-

solved.
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To date, source coding theory has concentrated primarily on bounds for single-hop
networks, assuming that every source has a direct connection to each destination.
Many of today’s networking applications involve multihop networks, where a data
source may be separated from its destination by one or more intermediate nodes,
each of which may make its own source requests. While single-hop network source
coding solutions can be applied in multihop networks, such applications require ex-
plicit rate allocation for each source-destination pair, and the resulting solutions may
be suboptimal. As a result, the study of source coding for multihop networks is an
important, largely open area for investigation.

Multihop networks exhibit a variety of characteristics absent from prior single-hop
networks: (1) a single source description may take multiple paths to its destination;
(2) multiple source descriptions may share a single link en route to different destina-
tions; and (3) intermediate nodes may process incoming descriptions and send partial
descriptions on to subsequent nodes in the network. The network under investiga-
tion here concentrates on the latter two properties. To the authors’ knowledge, the
only prior rate-distortion theory investigations of multihop networks are Yamamoto’s
rate-distortion region for a single-path two-hop network without side information [9],
where the network focuses on property (3), and bounds on the rate-distortion region

for a two-path multihop network [28], the second network we study in this chapter.

Ry

XYf ]

N/
N
l~<

Figure 5.1: The two-hop network.

Figure 5.1 and 5.2 are two multi-hop networks of interest in this chapter, here
called the two-hop network and the diamond network respectively. The first network,
here called the “two-hop network”, is chosen to focus on properties (2) and (3);

the second example, here called the “diamond network”, generalizes the two-hop



Figure 5.2: The diamond network.

network to introduce property (3). Throughout this chapter, in-arrows designate
source observations, out-arrows designate source requests, and all the links are error
free and directed. The goal is to study the rate-distortion regions for these two
networks. Rate regions for networks with links in series and networks with links in
parallel are obvious first steps in understanding rate regions for general networks.
Section 5.2 includes definitions and basic properties that are applied in bounding
rate regions of the networks we investigate in this chapter. Section 5.3 derives inner
and outer bounds for the rate-distortion region for the two-hop network. This network
includes the one introduced by Yamamoto in [9] as a special case. The given derivation
is similar to the derivation of the rate-distortion region for a network with unreliable
side information at the decoder [8]. Section 5.4 applies the result of Section 5.3
to derive two inner bounds and one outer bound of the rate-distortion region for
the diamond network. Section 5.5 further investigates these bounds under several

assumptions on the diamond network’s source random variables.

5.2 Basic Properties

In this section, we list background that is useful in the derivations that follow.
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X — Enc Dec —> X

Figure 5.3: Lossy source coding for the point-to-point network.

Rate Distortion Functions
The rate-distortion function for the point-to-point network of Figure 5.3 is

R(D) = min 1(X: X).
p(X|X):B(d(X,X))<D

R .
X Enc Dec X

U

Figure 5.4: Lossy source coding with side information at the encoder and decoder.

If we modify the traditional source coding problem to allow side information U at
both the encoder and the decoder, as shown in Figure 5.4, then the optimal source

coding performance is the conditional rate distortion function of X given U [5]

Rxu(D)= _  min _ I(X;X|U). (5.1)

p(X|X,U):E(d(X,X))<D
Detailed discussions of conditional rate distortion functions appear in [50], [51], [52],
and [3]. We here state several properties that are particularly useful for our analysis.

First, from [52], for any D > 0,

R (D) = > Pl = u} = (D) (52)

{DU}uGL{ E(DU)<D

where for each u € U, RXW:U(Du) is the rate distortion function with respect to

probability distribution Pyjy—.(z) on alphabet X. Second, given side information
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sources U and V, for any D > 0,
Rxjuv(D) < Rxjp(D). (5.3)

The third property is stated in Lemma 5.2.1.

Lemma 5.2.1 [3] Let Uy,...,U, be n random variables with mutually disjoint al-
phabets Uy, ..., U,. Let {D1,...,D,}be a collection of n distortions, where D; > 0
for all i. Let Xy,..., X, be drawn i.i.d. according to distribution Px(-) on alphabet
X. Let ) be a random variable uniformly distributed on {1,...,n}. Define X := Xg
and U := (Ug, Q). Then

n

1 1 <
R — D; | <— Rx.u.(D;).
X|U (nz >_n; xiju, (Ds)

=1
Strong Typicality

We use strong typicality (see, for example, [44]) to prove achievability results for
the networks of interest in this chapter. We use strong typicality rather than weak
typicality to take advantage of tighter available bounds on the size of the strongly
typical set and the Markov property described in Lemma 5.2.6 below. We here set up
notation and summarize a few useful results. Assume B is a finite-alphabet random
variable. Let N((|b") denote the number of appearances of symbol 3 in string b".
We use the notation A: (n)(B) to denote the strongly typical set for random variable
B on alphabet B, where A:(”)(B) is the set of sequences b € B" satisfying

()

’N(ﬁlb”)

n

—p(ﬁ)‘ < 18]

for every 8 € B with p(3) > 0.

(b) N(B|b") =0 for all 5 € B with p(3) = 0.
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If C' is another random variable and ¢" € A:(")(C), define
A™(B|c") = {b" € B"|(b", ") € A ™(B,C)}.
Lemma 5.2.2 [44] For any € > 0 and n € N. If 2" € A" (X)), then

2n(H(Y\X)7e’) < ’A:(n) (Y’LE“)’ < 2TL(H(Y|X)+€/)’

where €' can be made arbitrarily small by making n sufficiently large and e sufficiently

small.

Remark 5.2.3 For any random variables W, W with bounded distortion measure
d:WxW — [0, dimae] and every jointly strongly typical pair (w™, @w™) € W™ X wr,
]_ Y —~

—d(w",w") — Ed(W, W)‘

n

| v (N“”mw“ﬁ”—pww%)ﬂmﬁ>

. n
aEW,BEW
€
< oo Y —
aEW,BEW (Wi
=€ dpax.

The proofs of Corollaries 5.2.4 and 5.2.5 follow from counting arguments based on

Lemma 5.2.2.

Corollary 5.2.4 Given a probability distribution p(x,y,w), fix any pair (", w") €
A (X, W), and choose a sequence Y™ uniformly at random from the set A:"™ (Y |w™).
Then

Pr(Y™ € A1) (Y|(a",u")) > 2 IO se),

where €, can be made arbitrarily small by making n sufficiently large and e sufficiently

small.
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Corollary 5.2.5 Given a probability distribution p(x,y,w) and a sequence w™ &€
Az(n)(W), independently choose 2™ sequences YY", Y3',. .., Y., from the set A (Y|w™).
When R > I(X;Y|W),

Pr ((X™, Y, w") € AX"W(X,Y, W)

for some i € {1,2,...,2”3}) —1

asn — oQ.

Lemma 5.2.6 [44, Lemma 14.8.1] Let X — Y — Z form a Markov chain. If, for
a given (y",z") € AX"(Y, Z), X" is chosen uniformly at random from the set of 2™

that are jointly typical with y™, then
PriX" e AXW(X|y", 2"} > 1 —¢

for sufficiently large n.

5.3 Source Coding for the Two-Hop Network

Consider the network source coding problem for the two-hop network shown in Fig-
ure 5.1. The random sequence (Xi,Y7,7Z1),(Xs,Ys, Z5), ... is drawn i.i.d. according
to joint probability mass function p(x,y, z) on finite alphabet X x ) x Z. The trans-
mitter observes sources X and Y and describes them at rate R; to the middle node.
The middle node uses its received description to build a reconstruction X of source X
and to create a rate-Ry description (Ry < R;) for transmission to the final receiver.
The final receiver combines its received description with observed side information Z
to build a reconstruction Y of source Y. We measure the accuracy of reconstructions
X and Y using distortion measures dy : X x X — [0,00) and dy : Y x Y — [0, 00).
We assume that all source random variable alphabets X, ), and Z are finite. We
also drop the subscripts from d for notational simplicity and use d.x to denote the

maximal distortion value. In this section, we bound this rate-distortion region. The
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proof that follows combines ideas from Wyner-Ziv coding and coding with unreliable
side information [8].
The proposed inner bound appears in Theorem 5.3.1 in Section 5.3.1. The pro-
posed outer bound appears in Theorem 5.3.3 in Section 5.3.2. In addition to its direct
interest, the given result can serve as a stepping stone for understanding more general

multihop source coding problems.

5.3.1 Inner Bound

Theorem 5.3.1 Rate vector (Ry, Ry) is (Dx, Dy)-achievable for the two-hop net-

work if there exist finite-alphabet, auxiliary random variables U and V' for which

R, > RX|U<D)()+I(X,Y,U)+](X,Y,V|U,Z)
Ry > I(X,Y;U|Z)+I(X.Y;V|U,Z)

and
(i) Z — (X,Y) — (U,V) forms a Markov chain.

(i) There exists a function Y (U,V, Z) such that

E(d(Y,Y(U,V, 2))) < Dy.

Proof. Let (U, V) be a pair of random variables satisfying conditions (i) and (ii) in
Theorem 5.3.1. To prove achievability, it suffices to show that for any 6 > 0, the
vector (R1(0), Ra(6)) defined by

Ry(8) = Ryw(Dx) + I(X,Y;U) + I(X,Y;V|U, Z) + 36
Ro(6) = I(X,Y ;U V|U, Z) + 25

is achievable.

Fix n € N. Let X be a random variable defined by a conditional probability
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distribution p(Z|z, u) such that I(X; X|U) = Rxju(Dx) +9/2 and
E(d(X,X)) < Dx. Define

S = on(I(X,Y;V|U)+9) Sy 1= on(I(X,Y;V|U,Z)+20)
M, = 2n(I(X,Y;U)+5) M, = 2n(I(X,Y;U\Z)+25)
T .— nU(X;X|U)+6)

Generate the codebook as follows:

1. Draw M; sequences U"(1),...,U"(M;) i.i.d. according to probability mass
function [, p(w).

2. Color, uniformly and at random, each m; € {1,..., M;} one of M, distinct
colors, denoting the color of my by v(m;). Notice that U — (X,Y) — Z
implies My < M.

3. For each my € {1,..., My}, draw Sy sequences V"(mq,1),...,V"™(my, S1)
uniformly at random from the set A:™ (VU™ (my)).

4. Color, uniformly and at random, each s; € {1,...,5;} one of Sy distinct
colors, denoting the color of s by 7(s1). Notice that U — (X,Y) — Z implies
Sy < 5.

5. For each my € {1,..., M}, draw T sequences )?”(ml, 1),... ,)/(\'"(ml, T)
uniformly at random from the set AX™ (X|U™(my)).

Let (z™,y"™) and 2" be the source pair to be transmitted and the observed side
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information, respectively. We use the following functions in defining the encoders

Yz, y") = min [{M;}U{m € {1,...,M;}:
(", y", U"(ma)) € AL (X, Y, U)}].
pla™y™) = min[{S;}u{je{l,....%}:
(=", y" U™ ((2",y"), V" (¥ (2", y"), 7))
e AM(X,U,V)}].
o(z",y") = min[{TYU{te{1,2,...,T}:
(", U (@ (", y™)), X" (", "), )
e A" (X, U, )?)}] .

m(z"y") = (", y")).

The purpose of the function 7 is as follows. S; is the number of V-sequences needed
to cover all strongly typical (X", Y") pairs when U is known. Sy is the number of
V-sequences needed to cover all strongly typical (X", Y™) pairs when both U™ and
Z" are known. We randomly bin the index j that specifies V™ into one of the S,
slots. Since the decoder has access to the side information Z”, it is possible to
recover (with high probability) j from 7(j). The reason for using the function v is
similar.

Finally, we define the encoders as

f@™y") = @@ y"), (", y"), (=", y"))
g(f(@",y") = (w((a",y")), 72", y")).

The decoder at the middle node maps index (mq,p,t), the received string from the

encoding function f, to reconstruction

~

X;(ml,t)
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When receiving (ms, p), the decoder at the final receiver begins by finding m; from

{1,..., M;} such that
(U™ (i), Z27) € AU, Z)

(5.4)
and v(my) = ma.
Define the function ¢; mapping {1,..., My} to {1,..., My} as follows
my, if my is the unique index satisfying (5.4)
t1(mg) ==
1, otherwise.
Then the decoder finds j from {1,...,5;} such that
(U (12(m2)), V" (11 (m2). 3), 2") € AL(U.V, 2) 5.5

and 7(7) = p.
Define the function ¢ty mapping {1,..., My} x {1,...,S5} to {1,...,S5;} as follows

7, if 7 is the unique index satisfying (5.5)
1

%) (m27 p) =
, otherwise.

The final receiver then builds its reconstruction for Y™ as

?n(Un(h (ma)), V" (t1(ma), t2(m2,p)), Z").

Analysis of performance:
For simplicity, we denote by ¥, u, ¢, ¢, and 7 the evaluated values of the

corresponding functions on (x™,y™). Define the following error events:
1. Ey: (a",y", 2") ¢ A'(X,Y, Z).

2. Ey: Forallie{1,2,..., M} and for all j € {1,2,...,T},

(", ", 2", U™0), Vi, j)) ¢ AX™(X,Y, Z,U,V).
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3. Ex : Forallie{l1,2,...,T},

(a", U™(¢), X" (¢,9)) ¢ A (X, U, X).

4. Eyz : Ef; happens and there exists a m; such that m; # 1 and
(U™ (m),2") € AU, Z)

and v(my) = v(¢).

5. Ey : Ef happens and there exists a j such that j # p and
(U™ (@), V(& 4),2") € AL (U, V. Z)

and 7(j) = 7.
6. Eeror = o U By U Ex U Byz U Ey.

Let C,, denote the ensemble for all such codes of length n. We prove the existence of
achievable codes of the given rates by showing that lim,, ., Ec, [Pr(Feror)] = 0.
First, from the basic property of typical sets, Pr(Fy) can be made arbitrarily small
as n grows without bound. By Corollary 5.2.5 and Lemma 5.2.6, Pr(Ey) and
Pr(Ex) can also be made arbitrarily small as n grows without bound. When

e Af (")(Z ), the probability that a randomly chosen sequence u" is jointly

1(U;2)—5/2

strongly typical with 2" is bounded by 2~ ) when n is sufficiently large.

Hence when n is sufficiently large,

E(Cn [PI"(EUz)]
= FEg, [Pr(Uu”eB(u(d))) Pr(u" € Az(n)(U|Zn)))}
< Be, (|Br()]) Be, [Pr(u" € A (U]2"))]

< 2M1—M22—n(I(U;Z)—g) _ 2_ng’
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where B(v (1)) is the set of indices m; € {1,..., M} such that v(m,) = v(¥).
Therefore, lim,,_,., E[Pr(Eyz)] = 0.
Finally, by the similar argument, when (U"(1)), ") € A:"(U, Z), since the
probability that a randomly chosen sequence v™ € Az(n)(V|U "(¢))) is jointly strongly
typical with (U (), 2") is bounded by 277U (ViZlU)=0/2) "the expectation of the

probability of the event Ey can be bounded (for n large enough) by

Ec, [Pr(Ey)] < Eg, [|C(w)|] 2 "0 (V:Z10)=5)

— 2517522*”(1(V§Z|U)*%)

Y

where C(m) is the set of indices j € {1,...,51} such that 7(j) = 7. Since

I[(X,Y:V|U) - I(X,Y:V|U,Z2)

= (H(V|U)-H\VI|UX,Y))— (H(V|U,Z)
—H(V|X,Y,U,2))

= H(V|U)-H(V|U,Z)
+HH(VIX,Y,U,Z) — H(V|U,X,Y))

= I(V;Z|U),

Ec, [Pr(Ey)] can also be made arbitrarily small as n grows without bound. Thus by

the union bound,

lim Eg, [Pr(Femor)] = 0.

n—oo

Now fix a code of length n (for sufficiently large n) such that Pr(Feqroy) < €. From

Remark 5.2.3, the average distortion between any pair of jointly typical sequences is
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close to the expected distortion. Therefore,

|Ed(X", X"(1,¢)) — Dx|
Pr(Efer) [ B (A(X", K70, 0)| Efrer ) — Dx]
+ Pr(Feror) [E (d(X", X" (1, ¢)|Eemr) - DX} ‘

Pl"( grror) t€- dmaX + Pr<Eerror> : dmax
€-d

IN

IN

max +e€- dmax

for n sufficiently large. Similarly,

|EA(Y™, Y™ (U™(4), V"(3b, (4, 7)), Z") — Dy

< 2€dmax

for n sufficiently large. Since € > 0 can be made arbitrarily small, this coding

scheme satisfies the distortion requirement (Dx, Dy ). This completes the proof. [

The following corollary is a direct consequence from Theorem 5.3.1 for the case of

lossless source coding.

Corollary 5.3.2 Rate vector (Ry, Ry) is in the achievable rate region for lossless
source coding in the two-hop network if there exists a finite-alphabet, auxiliary

random variable U for which

Ry

v

H(X|U)+ I(X,Y;U)+ H(Y|U, Z)
Ry, > I(X,Y;U|Z)+H(Y|U,Z)

and Z — (X,Y) — U forms a Markov chain.

Intuitively, auxiliary random variable U represents the common information that is
useful to both the middle node without use of side information Z and the final
receiver with use of side information Z. Auxiliary random variable V' represents the

private information that is accessible only to the final receiver, which uses its
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knowledge of side information Z to describe the useful portion of V. In the lossy
bound, the final node uses the knowledge of U and Z to reconstruct }A/; the lossless
bound replaces condition (ii) with an explicit inclusion of any additional rate

H(Y|U, Z) that may be required to reconstruct Y given the knowledge of U and Z.

5.3.2 Outer Bound

Theorem 5.3.3 If the rate vector (Ry, Ry) is (Dx, Dy)-achievable for the two-hop
network, then for any € > 0, there exists a finite-alphabet, auxiliary random variable

U for which

Ry

v

I[(X,Y;U)+ I(X,Y;V|U, 2)
R, > I(X,Y;V|Z)

and
(i) Z — (X,Y) — (U, V) forms a Markov chain.

(ii) There exists a function X (U) such that

BE(d(X,X(U))) < Dx +e.

(iii) There exists a function Y (V, Z) such that

E(d(Y,Y(U,Z))) < Dy +e.

Proof. Consider a sequence {C,, }5°; of block length-n codes. Let

fo @ AT XYM {1,..., 2"

gn {1,020y L1 2Ry

denote the rate-R; encoder at the transmitter and rate- Ry encoder at the middle
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node, respectively. Suppose that the distortions of the given codes approach Dy
and Dy as n grows without bound. Then for any € > 0, there exists an n sufficiently
large such that the distortions achieved by code C, are no greater than Dx + € and
Dy +e¢ Let X" and Y™ be the corresponding reproductions. For i € {1,... n},
define Dy ; := E[d(X;, )?Z)] and Dy, := E[d(Y;,f/Z)] By assumption,

—ZE (X, X)) ZDngDXH
=t (5.6)
_ZE (Y;, V)] ZDYZSDY+5

For random source sequences (X", Y"), let F = f,,(X",Y") and G = g,(F)
represent the random variables transmitted through the first and second links
respectively. Further, define U; := (F, Z1) and V; := (F, Zr 1, Z7 ) for 1< i <.
Then
H(F) = (X", Y™ F)

= (X" Y F.Z") — (X", Y™ Z"|F)
S ILC DI VA S

=1

—I(X™,Y™ Z;|F, Z{™)]

n

n
(2

= S IV B2 XYY
i=1

(X, Y XL Y

—I(X™, Y™ Z|F, Z{ )],

where the first equality follows from the fact that F' is a deterministic function of

X™ and Y. Now since for each 4, (X;,Y;) is independent of (X{~ ', Y1),

(X, Y XY =0
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and so

I(X;, Vi F, 2 X7 Y ) — I(X, Yy X h Y
=I(X;,Y; F, 2" Xy

> (X3, Y I, Z7).

On the other hand, for every i, the Markov chain condition

(X;,Y3)jzi, F, Z771) — (X,,Y;) — Z; implies that

(X", Y™ Z,|F, Zi™Y)
= H(Zle, Ziil) - H<Z7,’X17K7F7 Zi ! (XJ7Y7)J7E’L)

= H(Z|F, Zi™Y) — H(Z|X,,Y;, F, Zi7Y)
= I(X:, Y Zi| F, Z7Y).

Therefore,
H(F) > > I(X.,YsF. 27", Z, Z},)
=1
= I(X.,Y5 Zi|F 27
=1
= > (X, Y5 UL Vi, Z) — 1(X:, Y5 Zi|UY))
=1
= 3 [ U + 1XYW, ZU)
=1
—](Xz‘yyi;ZﬂUi)]
= > (X, Yo U + I(X;, Yy ViU Z2).
=1
Thus

nRy > H(F Z (X3, Y5 Us) + (X, Y5 ViU, Z3)
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For every i € {1,2,...,n}, define V; := (G, Z%%;, Z;~"). Then we have

nRy > H(G)> H(G|Z") = (X", Y™ G|Z")

Xz XYY

=1

= D (XY G XL YL 2 20 2Z)

=1

Vv

S (XY G 27 20 Z)

S XY viZ),

=1

Now since (G is a deterministic function of F, ‘A/Z is a deterministic function of V; and

hence
iz(xi,n; VilUi, Z:) = il()@,n; V., ViU, Z:)
i=1 i=1
> S I i ViIUL Z).
i=1
Therefore,

nR1>Z (X3, Y3 Uy) + 1(X3, Y ViU, Z9).

Let @ denote a random variable uniformly distributed on {1,2,...,n} that is
independent of (X", Y™, Z"). Define U := (Ug, Q) and V := (V, Q). Since
(X, Y, Z;), 1 € {1,2,....,n}, is drawn i.i.d., the joint distribution of (X, Yy, Zg) is
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the same as that of (X, Y, Z). Furthermore, () is independent of (Xq, Yy, Zg), hence

1 n
" Z I(X,Y3; Us) = 1(Xq, Yo Ugl@Q)
i=1

= H(Xq,YqlQ) — H(Xq, Yq|Uq, Q)
= H(Xq,Yq) — H(Xq,Yq|U)
= 1(Xq, Yo U).

Similarly, one can show that

1 n
— E I(X;, Y3 VilUs, Z;) = 1(Xq, Yo VIU, Zg)
n

=1

and
n

1
= (X, Y3 Vil Z)) = 1(Xq, Yo; VI Zg).
n

=1

Redefine X = X¢, Y =Yy, and Z = Zg. Then X, Y, and Z have the same joint
distribution p(z,y, z). Therefore,

Ry

v

I(X,Y;U)+ I(X,Y;V|U,Z)
R, > I(X,Y;V|2).

Given the definition (U;, Vi) == (G, X7 LY/, Z17', Z1), Zi — (X,,Y:) — (U, Vi)
forms a Markov chain, as does Z — (X,Y) — (U, V).

It remains to check conditions (ii) and (iii) in the statement of the theorem. First,
since X; is a function of F for every i € {1,2,...,n}, by defining X = )A(Q, (i) is

immediate.

For condition (iii), since the reproduction Y™ of Y™ is a deterministic function of

(G,Z™), we have

0=HY"G, 2" =Y HY[Y] ™G 2",
=1
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which implies that

H(2|?11_17U2a‘/5721)
S H(}?Z'D/}lii%G? Z{;l?Z@'?ZinJrl) =0

for all : € {1,2,...,n}. Fori=1, H()71|U1, Vi, Z1) = 0 implies that Y, is a
deterministic function of (Uy, Vi, Z1). For i > 1, assume that ?J is a function of

(U;,V;, Z;) for all j <i. Then since for all j < i,

(Uzav;aZz) = (Fa G7Zn) = <F7 G7 Zn)
= (U;,V;, Z),

}/}j is also a function of (U;, V;, Z;). Therefore,
0=HY,[Y{"\U,V,, Z)) = HY;|U,, Vi, Zy).

Thus by induction on 4, }//\; is a function of (U;,V;, Z;). By defining Y= ?Q, Yisa
function of (U,V, Z) and
E(d(Y,Y)) < Dy +e.

5.4 Performance Bounds for the Diamond Net-
work

Using techniques similar to those of Section 5.3, we next derive one outer bound
and two inner bounds for the rate distortion region R(D;, Dy, Dy) with distortion
constraints Dy, Dy, and Dy for the diamond network in Figure 5.2. In this diamond
network, node 0 observes samples of sources X;, Xs,and Y which are independent

and identically distributed (i.i.d.) according to distribution p(z1,xs,y). As shown
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in Figure 5.2, nodes 1, 2, and 3 are required to reproduce sources X, Xy, and Y,
respectively, with corresponding distortion requirements Dy, Do, and Dy. Each rate
value is a vector (R, Re, R3, Ry4) describing the rates traversing edges (0,1), (0,2),
(1,3), and (2,3), respectively. The description of Y can take two possible paths to
node 3, passing either through node 1 or node 2 or both. We define R(D;, D5, Dy ) as
the closure of the set of achievable rate vectors that satisfy the distortion constraint
(D1, Da, Dy). We aim to bound the rate distortion-region R (D1, Dy, Dy) of the
diamond network.

Similar to Section 5.3, we make an assumption that all source random variable
alphabets X}, X5, and ) are finite. Also, for notational simplicity, d denotes the

distortion measure and d,,,, denotes the maximal distortion value.

5.4.1 Outer Bound

Theorem 5.4.1 If (Ry, Ry, R3, R4) is a (Dy,Ds,Dy)-achievable rate region for the
diamond network, then for any € > 0, there exist finite-alphabet random variables U,

and U, defined by conditional probability mass function Py, 1,x, x,y such that

Ri > Rx v, (D1 +¢€) + 1( X1, X5, Y Uy)
Ry > Rx, v, (D2 +€) + I( X1, X2, Y Us) (5.7)
Rs > I(X1,X,,Y; Uy)

Ry > I1(X1, X5, Y Us)
and that there exists a function Y of Ui, Us satisfying Ed(?, Y) < Dy +e.

Proof. Let (Ry, R, R3, Ry) be a (Dy, Dy, Dy )-achievable rate vector. For any € > 0,
we choose sufficiently large n and dimension n encoded functions (f1, fa, g1, g2), with
rate (R, Rq, R3, R4) and with distortion no greater than (D + €, Dy + €, Dy + €).
Let X7 = ()?M)?:l, Xr = ()?2’1')?:1, and Y™ = (Y;)™, be the corresponding
reproductions. For i € {1,...,n} and for j € {1,2}, define D;; := E(d(X;;, )?JZ))
and Dy, := E(d(Y;,Y)). Let Fy = fi(XI, X3, Y™), Fy = fo(XP, X2, Y™),
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G1 = g1(Fy), and Gy = g2(F») denote the random variables representing the

encoding messages. By assumption,
1§n E(d(Xy;, X1,) 1§n:D < Dy +
- i A1) = — i = €
[ e e " 1
1§n:E(d(X X,,) 1§n:D < Dy +
= is X)) = — i S ¢
n 2,5 X2, " 2, 2

=1 i=1

—ZE (Y;,Y5)) ZDylgDy—f—e

For each i € {1,2,...,n}, define Uy ; := ((X1,;,X2;,Y; )] L Gy) and Uy, =
((X1,4,X2;,Y;)521, G2). Then

H(Gy) = (G X7, X5, Y™)

- H(X%X;’Yn) - H(X{L’X;L:Yn|G1>

= Y [H(X1 Xoy, Yil(X15, X5, Y5)120)
=1
—H (X1, X, Yil (X1, Xo,3, Y5) 721, G
= Y [H(X14, X2, V) — H(X1;, Xa,,Yi| Uy )]
i=1
= Z[(Xl,iaXZi?Y;;Ul,i)
=1

and similarly,

H(Gs) > Z I( Xy, X4, Yi; Usy).

i=1

(5.8)
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The conditional entropy H ()A( 1G1) satisfies

H()A(NGD > I(XT; )?{’|G1)
- H(XﬁGl) - H(X{L’X{La Gl)

3 X)L Gy (5.10)
=1
—H(X4](X1,)8, X1.6)|

> i [H(Xl,i“/l,i) — H(Xl,il)?l,ia Vu)}
=1

> zn:I(Xu;)A(uWLz‘) > zn:Rxl,ivl,i(Dl,i)
=1 i=1

> En:RXMUM(DLz‘), (5.11)
=1

where Vi ; = ((X1;)Z},G1) and (5.11) follows from (5.3) since

j:17

Ui = Vi, (Xay, Y);;ll) Now since )A({L and G are deterministic functions of Fj,

H(X",G1|Fy) = 0 and

nRy > H(F)=HF)+H(X!, G|F) (5.12)
= H(X! F,G) > HX!G)
— H(X}|G)+ H(G)

> Z(Rxl,,-lUlﬂ-(Dl,i) + I( X1, Xoyg, Yi; Ury))
i=1
nRy > H(G1)>> (X1 X0, Y5 Ury). (5.13)

=1

Similarly,

1 n
Ry > - Z(RXQ,AUQJ(DM) + (X4, X, Yis Ui Ui )
= (5.14)
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Let @ denote a random variable uniformly distributed on {1,2,...,n} that is
independent of (X7, X2, Y™). From Lemma 5.2.1, for j =1 or 2,

1 & 1
n Z Rx;oi4(Dii) 2 Bxjo.0U50.0 (ﬁ Z DM)
i=1 —

= RXj,Q|Uj,Q,Q(Dj + 5)7

where the last inequality follows from (5.8) and the fact that Ry, ., ,.0(D) is a

nonincreasing function of D. Then (5.13) and (5.14) become

Ry > Rx, v, 0.0(D1 +€) + 1(X1,0, X1, Yo; U10|@)
Ry > Rx, o|t5.0.0(D2 +€) + 1(X1,g, X2,0, Yo; U2,0|Q)
Ry > I(X1,, X2, Yo; Ui0|Q)
)-

Ry > I(X1.0,X20,Y0; Usg|@Q

Define U1 = (ULQ? Q) and U2 = (UQ’Q, Q) Since (Xl’i,XQ,“)/;:), 1€ {1,27 o ,TL} is
drawn i.i.d., the joint distribution of (X g, X2 ¢, Yy) is the same as that of

(X1, X5,Y). Thus for j =1or 2, if Z; = (X109, X209, Yg), since Z; is independent of
Q,

1(Zo;UjolQ) = H(Zo|Q) — H(Zo|Ujq, Q)

= (H(Zq) — H(Zg|Us,Q)) — (H(Zg) — H(Zo|Q))
= 1(Zg:Ujq,Q) — 1(Z4;: Q)

= 1(Zq:Ujq, @) = 1(Zo; Uj).

Let X; = X9, Xo = X509, Y =Y. Then X, X5, and Y have the same joint
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distribution p(z1, z2,y). Therefore,

R1 Z RX1|U1(D1 + E) + I(Xl,XQ,Y; Ul)
Ry > Rx,u, (D2 + €) + I(Xy, X5, Y Us)
R3 > I(X1, Xo,Y;Uy), Ry > I(X1, X0, Y Us).

5.4.2 Inner Bounds

We propose two inner bounds in Theorems 5.4.2 and 5.4.4. To prove the first achiev-
ability result, we apply the coding scheme introduced in the proof of Theorem 5.3.1.

We use four auxiliary random variables to characterize this inner bound.

Theorem 5.4.2 (Inner bound 1) Let the sources X1, Xo, and Y be finite-alphabet
discrete random variables. Given D1 > 0, Dy > 0 and Dy > 0. If the rate vector
(R1, Ro, R3, Ry) satisfies

Ry >Ry, (D1) + 1(X1, X2, Y5 Ur)
+[<X17X27Y;‘/1‘U17U2)
Ry >Rx,u,(D2) + 1(X1, X5,Y; Us)
(5.15)
+I<X17X27Y;‘/2|U17U2)
Ry >1(X1, X0, Y Uy) + (X1, Xo, Y; Vi |Uy, Us)

Ry >1(X1, X5,Y; Us) + 1(X1, Xy, Y Va|Uy, Us)
for some auxiliary random variables Uy, Uy, V;, and V5 such that
(i) (U, V1) — (X1, Xo,Y) — (U, Vo) forms a Markov chain

(ii) there exists a function Y of Uy, Uy, Vi, and V5 such that

Ed(Y (Uy, Uy, Vi, V5),Y) < Dy,
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then (Ry, Ry, Rs, Ry) is (D1, D, Dy )-achievable.

Proof. 'To prove the achievability of this region, it suffices to show that for any
d > 0 and any (Uy, Uy, Vi, V) satisfying conditions (i) - (ii) above, the rate vector
(R1, R, R3, Ry) defined by

Ri(8) = Rx,un(Dy)+ I(X1, Xo,Y;Uy)
FI(X1, Xo, Y VAU, Us) + 36

Ry(8) = Ryyun(Da) + 1(X1, X, Y Us)
FI(X1, Xo, Y Va|UL, Us) + 36

Ry(6) = I(Xy, X0, Y:U)) + (X1, X, Y: Vi|Uy, Us)
+26

Ry(6) = I(Xy, X5, Y:Us) + (X1, Xo,Y: Va|Uy, Us)

+26

is (D1, Do, Dy )-achievable.

Fix n e N. For k =1,2, let X x be a random variable defined by a conditional
probability distribution p(Zx|z, we) such that I(Xg; Xp|Up) < Rx, v, (D) + ¢ and
E(d(Xy, X1,)) < Dy. Set

Sk = 2n(I(X1,X2,Y;Vk‘Uk)+6) Mk = 27’L(I(X1,X2,Y;Uk)+5)

Ty, = 2n(I(Xk;)?k|Uk)+6)7 N, = on(I(X1,X2,Y;Vi|U1,U2)+6)

Generate the codebook for k = 1,2 as follows:

1. Randomly choose M}, typical sequences U (1), UP(2), ..., U} (M) i.i.d.

according to the probability distribution [];_, p(ug.,)-

2. For each m € {1,2,..., M}, choose Sy sequences V;*(m,1), ..., V;*(m,Sk)
uniformly at random from the set AX™ (V|U7(m)).
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3. For each m € {1,2,..., M}, choose T} sequences )A(}j(m, 1), )?,?(m, 2), ...,
X"(m,T},) uniformly at random from the set Artm (XU (m)).

For k=1,2 and j € {1,..., Sk}, draw 74(j) uniformly at random from {1,..., Ny}.
Let (z7,x%,y™) be the source vector to be transmitted. We use the following

functions in defining the encoders :

(2}, 2y, y") ;== min [{Mk} U{me{l,...,M}:
(z, 25, y", U (m)) € A" (X, X,,Y, Ur)}] -
pe (@}, 2y, y") ;= min [{Sp} U {s € {1,..., S} :
(@), 25, 4", Up (et 23, 9")), Vil (et 73, 9"), 5))
€ A (X1, Xo, Y, Uy, Vi) }]
(2, 28, y") = min [{TR} U {t € {1,2,...,T}} :
(o, UR (e 23, ), K7 (e, 23, 57), 1))
€ AL (X, Uy, i)}

ﬂ-k(x?u 373, yn> = Tk(:uk(x?7 x37 yn>>

Finally, we define the encoders as

fk(x?7xg7yn> = <¢kaﬁk7¢k)<x?;x§;yn)

ge(fe(z), 25, y")) = (Up, m) (), 25, y").

The decoding strategy is stated as follows:

1. Reproducing X' for k = 1,2 : The decoder at node k£ maps the indices

(Mg, P, tx) to the reproduction )A(,?(mk, tr).

2. Reproducing Y™: At node 3, find J; (k=1,2) from {1,..., Sk} such that

Ul'(mq), U (m ,V”m,} €
(U1 (ma), U3 (ma), Vi (my, kZ) (5.16)
A:(n)(Ul, UQ, Vk) and Tk(jk) = Pk-
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For k = 1,2, define the function ¢, mapping from {1,..., M} x {1,..., Ny} to
{1,...,5} as

Jr,  if ji is the unique index satisfying (5.16)
L (M, pr) =
1,  otherwise.

The receiver at node 3 builds its reconstruction for Y as

?n<U{1(m1)> U2n(m2)> V1n(m1, L1<mlap1))7

V3! (ma, ta(my, p2))).

Analysis of performance:
For simplicity, we denote by px, ¢, tx, and 7 the evaluated values of the
corresponding functions on (x7,x%,y™) for k = 1,2. Define the following atypicality

events:
1. Ey: (27,27, y") ¢ Ar™ (X1, X,,Y).

2. By, for k=1,2: Forallme {1,..., M} and all s € {1,..., S},
(x7, 2%, y™, Ur(m), V{"(m, s)) is not jointly typical in A:™ (X1, X, Y, Uk, V).

3. BEx, for k=1,2: Forallt € {1,2,...,T,},
(@}, UP(n), X (U, 1) & AZ (X, Up, Xi).

4. By, : (Ur'(n), U (v2)) € Ay, Us,) and there exists
Vi (Y, 3) # Vi (¥, px) such that

(U y), Ug (1), Vi (y, 5)) € AX(Uy, Uy, Vi)

and 7x(j) = 7.

5. Erp v (a7, 25, y", Ul (1), VI" (¥1, ), V' (o, p2)) ¢ Az(n) or
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(@7, 2,y U (), Vit (r, i ), V3t (s, 2)) & AL
6. E=FEyUEy, UEy, UEx, UEy,UEy, UEy,UE;.

From the basic property of typical sets, Pr(Ey) can be made arbitrarily small as n
grows without bound. By Corollary 5.2.5 and Lemma 5.2.6, Pr(Ey, ), Pr(Ey,),
Pr(FEx,), Pr(Ey,), and Pr(F12) can also be made arbitrarily small as n grows
without bound. Finally, for £ = 1,2, when knowing (U7 (¢1),U5 (2))

€ A: () (U1, Usy), since the probability that a randomly chosen sequence

o e AL (V|UR () is jointly strongly typical with (U (i), UP(1hs)) is
approximately 2™ (VisUs-xlUk) " the probability of the event Ey, can be bounded (when

n is large enough) by

Pr(Ev,) < |Bi(py)|2"0ViVs-slUi)=3)

_ & x 2n(](Vk;U3—k|Uk)_g),
Ny

where By(p) is the set of indices j € {1,..., Sk} such that 7(j) = px. Since

I( X1, X0, Y Vi|Ux) — I( X1, Xo, Y Vi|Ug, Us_i)
= (H(Vk|Ux) — H(Vi|Uy, X1, X2,Y))
—(H(Vi|Uy, Up) — H(Vi| X1, Xo, Y, Uy, Us))
= H(Vi|Uy) — H(Vi|U1, Us)
+(H(Vi| X1, Xo,Y, Uy, Uy) — H(Vi|Uy, X1, X5,Y))
= I(Vi; Us_|Uyx) + 0,

Pr(Ey,) can also be made arbitrarily small as n grows without bound. Hence

lim,, o Pr(E) = 0. From Remark 5.2.3, the average distortion between any pair of
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jointly typical sequences is close to the expected distortion. Therefore, for k =1, 2,

|Bd(X}, X} (e, &) — Dil
Pr(E%) |E (d(Xit, X} (e 60) | E°) = Di]
+Pr(E) | B (X}, K¢, 0| E) = Dy |

S Pr(EC> c€- dma.x + PI‘(E) : dmax S € dmax +€- dmax

for n sufficiently large. Similarly,

|BA(Y™, Y™ (U7 (1), Ug (¢2), Vi (1, ta (1, 1))
) ‘/Qn(¢27 L2(¢27 7T2)))| < 2e- dmax

for n sufficiently large. Since € > 0 can be chosen arbitrarily small, this coding

scheme satisfies the distortion requirement (Dy, Dy, Dy ).

By setting V; and V5 to be constants, we have the following.

Corollary 5.4.3 Let the sources X1, Xa, and Y be finite-alphabet discrete random
variables. Given Dy > 0, Dy > 0 and Dy > 0. If the rate vector (R, Ry, Rs, Ry)

satisfies

Ry > Rx, v, (D1) + I1(X1, X5, Y Uh)
Ry > RXQ‘UQ(DQ) + I(Xl, XQ, Y; UQ)

Ry > I(X1, X5, Y Uh), Ry > 1( Xy, X2, Y3 Uy)

for some auxiliary random variables U; and U, such that

(i) Uy — (X1, Xs,Y) — U, forms a Markov chain

(i) there exists a function Y of Uy, Uy such that

Ed(?v Y) < DYv
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then (Ry, Ry, Rs, Ry) is (D1, D, Dy )-achievable.

The second inner bound is stated in the following theorem. As in Corollary 5.4.3,
we use two auxiliary random variables. Instead of assuming Markov conditions, we
here use additional rate to guarantee that the sequences we pick in the encoding
process associated with these two auxiliary random variables are jointly strongly

typical with the source sequence.

Theorem 5.4.4 (Inner bound 2) Let the sources Xy, Xs,Y be finite-alphabet dis-
crete random variables. Given D; > 0, Dy > 0 and Dy > 0. If the rate vector

(R1, R, R3, Ry) satisfies

Ry > Rx, v, (Dh) + 1(X1, X5, Y Uh)
Ry > Rx,\u,(D2) + I1(X1, X5, Y; Us)
Rs > I(X1, X5, Y; Uq)
Ry > I1(X1, X5,Y; Us)
Ry + Ry > Rx,ju,(D1) + I1(X1, X5, Y; Uy, Us) (5.17)
+1(Uy; Us)
Ry + R3 > Rx,ju,(D2) + I(X1, X2, YUy, Uy)
+1(U1; Us)
Ry + Ry > [(Xy, Xo,Y; Uy, Uy) + I(Uy; Uy)

for some auxiliary random variables U, and U, such that there exists a function Y of
U1 and U2 with
Ed(Y (Uy,U,),Y) < Dy,

then (Ry, Ry, R3, Ry) is (D, Do, Dy )-achievable.
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Proof. 1t is enough to show that for any 6 > 0 and A € [0, 1], the rate vector (R} (9),
R,(6), R5(0), Ry(9)) is (Dy, Dy, Dy )-achievable, where

R1(0) = Rx,jv, (D1) + I(X1, X5, Y;Uh) + AA 4+ 26
Ry(6) = Rxy v, (D2) + I1(X1, X2, Y Us) + (1 — AN)A + 20
RL(6) = (X1, X, Y;Uy) + AMA+ 6

Ry(0) = (X1, X2, Y Us) + (1 — A +6

and

A = max([(Xy, Xy, Y; U1, Usp) + I(Uy; Uy)
—1(Xy, X, Y5 Uh) — I(X4, X, Y Us) +0,0).

For k =1,2, let X r be a random variable defined by a conditional probability
distribution p(Zy|zk, ug) such that I(Xk;)A(k|Uk) < Rx,v,(Dy) + 6 and
E(d(Xy, X)) < Dy. Set

Ml — 2”(1(X1,X2,Y;U1)+/\A+5)
M2 = 2n(I(X17X27YyU2)+(1—)\)A+5)

T, = Qn(I(Xl;)A(1|U1)+§) Ty = 2n(I(X2;)A(2\U2)+6)'

Generate the codebook for k = 1,2 as follows:

1. Randomly choose M}, typical sequences U (1), UP(2), ..., U} (M) according
to the probability distribution [[;_; p(uk;).

2. For each m € {1,2,..., My}, randomly choose T} sequences )/(\'g(m, 1),
)A(,’j(m, 2), ..., )A(,?(m,Tk) uniformly at random from the set A:(n)(X|U,?(m)).

Let (2, x5, y") be the source to be transmitted. We use the following functions in



109

defining the encoders:

Ur(x, af,y") = min [{M} U {m e {1,..., My} :
(7,25, y", Up(m)) € A:(X1, Xa, Y, Uk)}] -

(2, 2l y") = min [{TR, U {t € {1,2,...,T}} :
(ap, U (n(af, 23, y™), Xp (il 25, y™), 1)

e A (X, Uy, X)} -
Finally, we define the encoders as

fk(xrlla fL’g, yn) = (Qbk, ¢k)(x?) :Eg, yn)

The decoder at node k (k = 1,2) maps the indices (tx, my) to the reproduction

)A(,?(mk, tr). At node 3, the decoder maps the indices (my,m2) to the reproduction

~

YUY (ma), Ug (ma)).

Analysis of performance:
For simplicity, we use g, ¢r to denote the evaluated values of the corresponding

functions on (27,24, y") for k = 1,2. Define the following error events:
1. Byt (2f,23,y") ¢ ALY(X1, X2, Y).

2. By, for k=1,2: Forall me {1,..., M},
($?>$g7yn> Ul?(m)) ¢ A:(n)(XlaX%Ya Uk:)
3. Ex, for k=1,2: Forallte{1,2,...,T;},

(@}, UP(r), X2 (U, 1) & AZ (X, Up, Xi).
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4. B (27,23, 9", Up (), Uy (12)) ¢ AL (X1, Xo, Y, UL, Us).

5. Eeror = EoU By, U By, U Ex, U Ex, U Es.

The same argument as in Theorem 5.4.2 shows that Pr(Ey), Pr(Ey,), Pr(Ey,),
Pr(Ex,), Pr(Ex,), and Pr(FE;3) can be made arbitrarily small as n grows without

bound. Since we have the following inequality

I(Xl,XQ,Y; Ul) + [(Xl,Xg,Y; Ug) —|— 25 —|— A
> (X1, X0, Y;Ur, Us) + 1(Uy; Us),

the same argument as in [53] shows that lim,,_,., Pr(E12) = 0. Consequently, we
have lim,, o Pr(Eeror) = 0. From Remark 5.2.3, the average distortion between any
pair of jointly typical sequences is close to the expected distortion. Therefore, for

k=1,2,

| Bd(X}, X7 (¥r, ¢r)) — Dyl
Pr(Efer) | B (X0 K0 (0, 60)| Efor ) — D
4 Pr(Borer) [ B (X7, K (b, 60)| Beror ) = Di |

PI‘( grror) c € dmax + Pr(Eerror) : dmax
-d

IA

S € max + Pr(Eerror) : dmax-

Similarly,

|EA(Y™, Y™ (U (1), Up (1)) — Dy|

<e€- dmax + Pr(-Eerror) ° dmax‘

Since € > 0 is chosen arbitrarily and Pr(£) can be made arbitrarily small for n
sufficiently large, this coding scheme matches the distortion requirement

(D1>D27DY)-
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Remark 5.4.5 1. The region given in Theorem 5.4.4 may not be convex, so the

inner bound derived in Theorem 5.4.4 is actually the convex closure of the set

described in (5.17).

5.5 Special Cases

Two special cases of this diamond network are discussed in this section. We have one-
letter characterizations of the corresponding rate-distortion regions that are induced
from the inner bounds in Section 5.4. We investigate the roles of the auxiliary random

variables used in describing their rate-distortion regions.

5.5.1 Special Case 1

When sources X; and X; are constant (X; = C; and Xy = Cy with probability one)
and R; = R3 and Ry = Ry, the diamond network becomes a point-to-point network
with two paths between the transmitter and the receiver, as shown in Figure 5.5.
Clearly, the rate distortion region R4 (D) in this case is the set of vectors (Ry,Rs)e R3
satisfying Ry + Ry > Rx (D), where

Rx(D)= min I(X;X)
X:Ed(X,X)<D
is the rate distortion function. Although the achievable rate pairs for this trivial case
are easily described, we here use the above characterization to show that our previous

solutions, based on auxiliary random variables U; and Us, give the optimal solution

in this special case.

X—— Enc Dec —— X

Figure 5.5: The two-path point-to-point network.
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Given D > 0, define two sets of pairs of auxiliary random variables

( 3\

U — X — U, is a Markov
chain and 3 X : Uy X Uy
— X such that

Ed(X,X) < D.

(I)l(D) = (Ul,Ug)

and
E|X2U1XZ/{2—>X

(DQ(D) = (Ul, Ug) R
such that Fd(X, X) < D.

Consider the following two sets of rate pairs

RiD) = | (Romy| TG0
(U1,U2)€®1 (D) Ry > I(X; Uy)
( Ry > I(X;0), |
Ry > I(X;Us)
R0y = Y (R1,Ro) | Ry + Ry > ,
(U1,U2)€e®@2(D) I(X’ Uh U2)
\ + I(Uy; Us)

where for any set A C R*, A denotes convex closure of A. Note that for any (U, Us) €

ch(D)?

I(X;U1) + 1(X;Us)
= (H(U\) + H(U)) — (H(UL|X) + H(U| X))
2 H(Ul, UQ) — H<U17U2|X) = I()(7 U17U2>
> [(X; X (U1, Us)) > Rx (D).

Hence R3(D) € Ry(D). To see the converse, given any € > 0, choose X satisfying

I(X:X) < Rx(D)+e¢, Ed(X,X)<D.
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Then by letting (Uy, Us) = (X, c¢), one has (Rx(D) + ¢,0) € Ry(D), where ¢ is a
constant. Similarly, (0, Rx(D)+¢) € R1(D). Then by convexity of Ry(D), Rq1(D) C

Lemma 5.5.1 R,(D) = R;(D).

Since any rate pair in R;(D) can be obtained using time-sharing, it is sufficient to
pick Uy and U; of alphabet sizes |X| + 1.

Next we look at R;*(D). By Theorem 5.4.4, Ri*(D) C Ry(D). Following the
same argument as above, we have that (0, Rx(D)) and (Rx(D),0) are in R;*(D),

giving the following lemma.

Lemma 5.5.2 R,(D) = R{*(D).

5.5.2 Special Case II

Ry = R3(92) y
XY Enc — Dec
4\ g1
<f) Enc 2 f
Rs ~
X
Dec 21—

Figure 5.6: Special case II.

As a second special case, let X; = C with probability 1 and set Ry = Rs3, but
allow X5 to be an arbitrary finite-alphabet random variable. The result is the network
shown in Figure 5.6. In this network, there are one middle node at the top link and
a direct link from the transmitter to the receiver. Let (D;, Dy) be the distortion
requirements for reproducing (X,Y). Our purpose is to show that a rate vector

(R1, R3, Ry) is in the rate distortion region if and only if

Ry = R3 > Ryjy(Dy)
RQ Z R)(|U<D1> + I(X, Y; U)
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for some random variable U. To prove the converse, from Theorem 5.4.1, it suffices
to check that Ry > Ryjy(Dy). Let f, g1, and g, be the encoding functions as
indicated in Figure 5.6 and let F' = f(X™ Y"), G; = ¢1(F), and go = Go(X",Y™)
denote the encoding messages. Then, following the approach used in (5.11), we have

H(}/}”|G1) > nRyy(Dy), where Y™ is the reproduction of Y. Hence

nRy > H(Gy) > H(G2|Gy) = H(G,|Gy) + H(Y™"|Gy,Gs)
= H(Y",G5|Gy) > HY"|GY)
Z nRy‘U(Dy).

To show the achievability, the idea is basically the same as the proof of Theorem
5.4.2, so we briefly describe it. Let U be given and > 0 be arbitrary. Pick random
variables X and Y satisfying

[(X; X|U) < Rxp(Dy) + 6, Ed(X,X) < D,
I(Y;Y|U) < Ryw(Dy) + 6, Ed(Y,Y) < Dy.

Let n be given. We generate the codebook as follows:
1. Randomly generate U™(1), ..., U"(M) , where M = 2nU(XY5U)+9),

2. For any i € {1,..., M}, randomly generate )A(”(z, 1), ..., )A("(i, T) from the set
A (X |UM1)), where T = 2nU(GXID)+9),

3. For any i € {1,..., M}, randomly generate )A/"(z, 1), ..., EA/"(@', S) from the set
A (Y |UM(i)), where § = 2nU(ViVIU)+9),

If (2", y") is the source sequence, the transmitter finds the indices s € {1,...,5},

te{l,....t},and m € {1,..., M} such that
(2", y", U™(m), X"(m,t),Y"(s,t)) € A (X,Y,U, X,Y).

Then he transmits s through the top link and (m,t) through the bottom link. The

encoder at the middle node then transmits m to the receiver. If (m,t) is observed
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at the middle node, the decoder then naturally reproduces X" as X "(m,t). If sis
received from the top link and ¢ is observed from the bottom at receiver, the decoder
reproduces Y" as }/}(3, t). By using this coding scheme, the same argument as in the
proof of Theorem 5.4.2 implies that when n is sufficiently large, one has that with

sufficiently high probability,
(2", X" (m, 1)) € A (X, X)

and

(y", Y"(s,1)) € AZ(Y,Y).

Then the reproductions X "(m,t) and }A/”(s, t) will match the distortion requirements

(Dy, Dy).
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Chapter 6

Conclusions and Future Works

We proved that the lossless rate region for canonical source coding and the lossy
rate region for both canonical and non-canonical source coding are continuous in
distribution in Chapter 2. Although a counterexample shows that the lossless rate
region for non-canonical source coding may not be continuous in distribution, it is
s-continuous, meaning that as long as two distributions are sufficiently close and have
the same support, the lossless rate regions can be arbitrarily close. We also proved
that the zero-error rate region is s-continuous.

The exponentially strong converse is proved for coded-side information problem,
lossless source coding for multicast network with side information at the end nodes,
and lossy source coding for the point-to-point communication in Chapter 3.

Chapter 4 introduces a family of algorithms to approximate the rate regions for
some example network source coding problems that guarantees (1 €)-approximation
including the lossless rate region for the coded side information problem, the Wyner-
Ziv rate distortion function, and the Berger et al. bound for the lossy coded side
information problem. The proposed algorithms that approximate the rate regions
based on their single-letter characterizations may be improved by cleverly choosing
the family of quantized conditional distributions of auxiliary random variables given
the source random variables.

By applying the techniques used to solving the simple network source coding prob-
lems in the literature, we use auxiliary random variables to bound the rate regions

for two basic network source coding problems that capture some important char-
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acteristics of general networks: the lined two-hop and the diamond networks. The
performance bounds provide a way to bound larger networks by decomposing them
into basic components.

The results in this thesis may provide a method to understand some theoretical
problems in the field of source coding over networks, for instance, the existence of
single-letter characterizations, tightness of some early derived bounds, and the be-
haviors of the achievable rate regions as functions of the source distribution and the
distortion vector. Some techniques may apply to the study of the capacity regions

for channel coding over networks.
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Chapter 7
APPENDIX

A Lemmas for Theorem 2.4.1

The following sequence of Lemmas builds to Theorem 2.4.1, which proves that for
the canonical source coding problem R(Px y, D) is uniformly continuous in D. First,
Lemma A.1 and Corollary A.2 bound the conditional entropy of one random vector

given the other as a function of Hamming distance between them.

Lemma A.1 Let V" = (V},V,,..., V) be a random vector in 9" and let w be the

per symbol expected Hamming weight of V"
1 1 ,
w=—FEdy(V",0)=—-E|{i|V; # 0}
n n

Then
H(V™) <n(H(w)+ wlog(m® —1)).

Proof. First notice that since V™ € ©", there are at most m® possible values for V;
for every i € {1,...,n}. For every i € {1,...,n}, let {a;p,...,a;ims—1} be the set of
possible values for V;. For each i € {1,...,n} and each j € {0,...,m* — 1}, let p; ;
denote the probability Pr(V; = a; ;). Then

n m°—1

1

=1 j=1
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Let w; := st_l pij. The maximal entropy H(V;) over all distributions with the

j=1
same values (wy,...,w,) occurs when p;o =1 —w; and p; ; = —5 for each j # 0.
Hence
w; w;
HV)<H(1—-w, ——, ..., .
() < ( T ms — 1>

= H(w;) + w; log(m® — 1).

Therefore, by the convexity of the entropy function,

n

H(V™) < Z H(V;) < Z [H (w;) + w; log(m® — 1)]

< n(H(w) + wlog(m® —1)).

U
For any V"™ € ©", the set {a € ¥ | Pr(V™ = a)} is called the support set of V™.

Corollary A.2 Let V™ and W™ be two random vectors in 9" with the same support

set. Then
%H(V”WV") < H(7) + 7log(m® — 1) = O(7log(1/7)),
where
T:=F {ldH(V",W”)} :
n
Proof. Apply Lemma A.1 to the random vector V" — W™, O

For any a € R? and any 0 > 0, define a5 := (as)sep where for each k € D,

0, if a, <9,
A5y 1= (A-1)

a,, otherwise.

In Lemma A.3, we examine the relationship between R(Px y,D) and R(Px v, Ds).

Lemma A.3 Let N be a canonical network source coding problem. For any € > 0,
there exists 0 > 0 such that for any D € IRE and any Pxy € M, R(Pxy,D) and
R(Px v, Ds) are e-close.
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Proof. For any a € RY and any 6 > 0, let [a]; = ([als)xep be defined as

(algn = 0, if a, <9,
a,, otherwise.

Let € > 0 be given. The majority of the proof works to show that there exists a
§ > 0 such that for any D = (D,).ep € R? and any Pxy € M, R(Pxy,D) and
R(Px v, |D]s) are €/2-close. From this we can observe that both R(Px y,D) and
R(Pxv,Ds) are €/2-close to R(Px v, [D]s), and hence R(Px v, D) and
R(Px v, Ds) are e-close as desired.
To show that R(Px y,D) and R(Px v, [D]s) are €/2-close, note first that [D]; < D
for any § > 0, so R(Px.v, [D]s)C R(Pxy,D). Therefore, we need only to choose an
appropriate 6 > 0 (independent of (X,Y) and D) such that

R(PX,Y, D) + (6/2) -1 Q R(P}gy, [D](;)

For any achievable rate vector R € R(Px y,D), pick a rate-R, length-n block code
C such that for each k = (v,0) € D,

Ed(0™(X"),0"(v)) < Dy + Tduin,
where 5"(1;) is the reproduction of *(X") at v and 7 > 0 is a constant satisfying

sk(H(2T) + 27 logm) <

DO ™

Our goal is to use C to construct another code for which the error probability of the
reproduction for each k € D with D, < can be made arbitrarily small. By
Corollary A.2, for each k = (v,6) € D such that +Ed(6"(X"), 0" (v)) < 27dmin, We
know that

H(0"(X™)[0"(v)) < ne/(2sk).
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Since reproduction o (v) is known at node v, additional rate vector

(SHEO"(X]8" W) +¢/(20)) -1

suffices to describe §™(X") losslessly at node v by Lemma 2.2.18. We therefore
modify code C by adding additional |I(#)| descriptions for reproducing 6" (X")
losslessly given " at node v as described in Lemma 2.2.18. For every (v,0) € D and
every i € I(0), the modified code sends the corresponding additional description
along a path connecting v and some source node that has access to source X;. The
total additional rate vector (for all such pairs of sources and demands) on each link
is less than (€/2) - 1. Therefore, the rate vector R + (¢/2) - 1 is [D]s-achievable. By

letting 6 = Td ., we get the desired result. OJ

Lemma A.4 shows that there exists a rate vector that is D-achievable for any

distribution Px y and any distortion vector D & ]RE.

Lemma A.4

(| R(Pxy.0)#0.

Px yeM

Proof. Since each component of any vector (X,Y) of source and side information
symbols has alphabet size no greater than m, the rate vector k log(m)1€ IRi

achieves 0 distortion for any Pxy € M. OJ

Lemma A.5 combines the results of Lemmas A.1 - A.4 and is applied in the proof

of Theorem 2.4.1.

Lemma A.5 Let N be a canonical network source coding problem. For any € > 0,
there exists a 6 > 0 such that for any Px y € M and any D € R?, R(Pxy,D) and
R(Pxvy,D+6-1) are e-close.

Proof. Given any ¢ > 0. We prove the lemma by first showing that there exists a
7 > 0 such that R(Pxy,D) and R(Px,y, D) are €/2-close for all D € IR?, and
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then showing that there exists a 0 < § < 7 such that
R(Pxvy,Ds+6-1)+ % -1 CR(Pxy,D;).

Together, these results imply that R(Px y,D) and R(Pxy,Ds+ 0 - 1) are e-close

since

R(Pxvy,D) CR(Pxy+Ds+d-1)

R(Pxy,Ds+6-1)+¢-1C R(Pxy,D;)+ % 1 C R(Pxy,D).
This proves the desired result since
R(Pxv,D) CR(Pxy,D+d-1) CR(Pxy,Ds+0-1).

The first result follows immediately from Lemma A.3. Precisely,

(i) there exists a 7 > 0 such that R(Px y,D) and R(Px vy, D,) are ¢/2-close for
all D € RP.

(ii) We next show that there exists a 0 < § < 7 such that for any D € IR? with

D,.>1 for all k € D,
R(Pxy,D+6-1)+ g -1 C R(Pxy,D).

To prove this, first fix Ry € (p, , cp R(Px,v,0); this is possible by
Lemma A.4. For any 0 < 6 < 7, D € R? and D,>7 for all k € D together
imply
o )
1-=)(D+d-1)+—-(7-1)<D
T T
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since for any k € D,

5 5
(1= 2)(Ds+8)+ 25— D,

_ 5-’p.—sa-Pr <o
T T

By the convexity and the monotonicity of R(Px y,D) on D, we have

) )

CR(Pxy,(1— g)(D +0-1)+ é(d 1))

T T

g R(PX,Ya D)7
which implies for all D € R? with D, > 7 for all x € D,
J
R(Pxvy,D+6-1)+ ;RO C R(Pxvy,D).
This together with the definition of D, (A-1) implies that for all D € R”,
J
R(Pxvy,D;+d-1)+ ;RO CR(Pxv,D,).

By the monotonicity of R(Px y, D) in D, the following satisfies for all D? and

forany 0 <6 <7

)
R(Pxvy,Ds+0-1)+ ;RO C R(Pxv,D;).

Thus the desired result holds for all 0 < § < 7 that satisfy

)
-Ro < - 1.
-

[NRINe
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B Continuity of R*(Pxy,D) with respect to D

Lemma B.1 shows that the set R*(Px y,D) is continuous at D when A is non-
canonical and D > 0 or NV is canonical and D > 0. The proof is similar to Theo-

rems 2.4.1 and 2.4.2, hence we state the lemma without a proof.

Lemma B.1 Let N be a network source coding problem. If N is non-canonical and

D > 0 or NV is canonical and D > 0, then R*(Px y, D) is continuous at D.

C Lemmas for Section 2.5.2

In Lemma C.1, we show that when two distributions Px y and ()x y are sufficiently
close and the support of Px y is a subset of that of @)x v, there exists a joint distribu-
tion Tx x/ vy’ with marginal on (X', Y’) equal to Qx vy and conditional distribution
of (X',Y’) given (X,Y) = (X', Y’) equal to Pxy for which (X,Y) equals (X', Y’)
with high probability.

Lemma C.1 For any € > 0 and any two distributions Px y € M and Qxy € M
satisfying that
(]‘ - 6)-PX,Y(X7 y) S QX,Y(Xay) v (X7y) € A7

there exists a joint distribution Tx y x/y» of (X,Y) with alphabet A and (X',Y’)
with alphabet AU {ag}, where aq is an extra symbol not in A, such that
(a) Qx.y = Txy, the marginal of Tx y x'.y» on (X,Y).
(b)
Pxy(x,y) = Tx yj{x,v)=x' vy} (Xy) V (X,y) € A,

where Tx y|{(x,v)=(x',y")}is the conditional distribution of Tx y x/,y» on (X,Y)
given the event

{(X,Y) = (X, Y}
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(c)
Pr((X,Y)=(X,Y)) =1«

Proof. For any (x,y) € A, define

Tx x(x,y) == (1 — €)Px v(x,y)
Txyix v (X, yxy) =1

Txl7yl (CLQ) =€

X, - 1 — € P X,
v i) o= Q6r09) = (L= IPx(y)

All other values of Tx y x .y’ are zero. Then this distribution Tx y x’ vy’ has

marginal on (X,Y) equal to Qx v. Also,

PrX,Y)=(X'Y)= > Txyxyxyxy =1-¢
(x,y)eA
The conditional distribution of (X,Y) = (x,y) given (X,Y) = (X', Y’) for all
(x,y) € Ais
Tx vy x v (X,y)

TX,Y|{(X,Y):(X’,Y’)}(X7 y) = Pr((X,Y) = (X, Y")) = Pxy(x,y).

Lemma C.2 Suppose Pxy, Qx v, and Tx y x/ vy are as described in Lemma C.

Then
1

1—2¢

1

RN, Txxxx,D) C R, Pxy, 1~ 9¢

D).

Proof. The main idea of the proof is as follows. Since the probability of the event
(X,Y) = (X', Y’) is 1 — €, when block length n is sufficiently high, the number of
occurrences that (X;,Y;) = (X}, Y}) in length-n sequence (X", Y") is higher than
n(1 — 2¢) for sufficiently high probability by the weak law of large numbers. We
apply this property to show that any rate-R, length-n block code C,, for N with

O

1.
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source vector X and side-information vector (Y,Y’, X') which achieves D can be

applied to construct a length-n(1 — 2¢) block code for A with source and side

1—2¢)

information vectors X™(1=2¢) and Y™ that has rate no greater than —-R and

satisfies the distortion constraint given by 1525D'

Let 7> 0and R € R(./\A/, Tx vy x,D). Let n be sufficiently large such that there

exists a rate-R, length-n block code C,, which satisfies
Pr(7,)>1-r, (A-2)
where 7, is the event

T, = {%d (9”(X"),§"(v)> < Doy +71V (v,0) € D}

and 6"(v) is the reproduction of #7(X") at node v using C, for all (v,) € RZ.
(A-2) can be achieved by applying the weak law of large numbers on a long code

constructed by repeatedly using a code which achieves Dy, ¢y + 7/2. For any

I C{1,...,n}, define
BIO(I) o= {(x", X", y", y"™) | (x0rys) # (XL y}) if and only if i € I}

Let
L£(I) = {(@" by e A x A1l | a; £b; Viel}.

For any sequence (al/l, blfl) € L£(I), let

Be(n)(L (amv bm)) = {(Xnv va yn7 y/n) ‘ ((X17 YI), (X/D y/1)> = (amv bm)} N Be(n)(j)

denote the set of sequences (x", X", y", y") € Bg(”)(f ) such that
((Xiayi)7 (X;,y;)) = (ai7bi) for all ¢ € I. Let

BM .= U BM(I)

IC{1,...n} |I|<2ne
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denote the set of sequences (x™,x"",y", y"") for which there are at most 2ne indices

i such that (x;,y;) # (x},y:). Since Pr((X,Y) # (X', Y')) =,
Pr(B™)>1-r1
when n is sufficiently large by the weak law of large numbers. By the union bound,
Pr(B"NT,) >1-2r (A-3)
Rewrite inequality (A-3) as

Z Z Pr (B™(1, (al, b)) Pr (T,|B™ (1, (a, b))

IC{1,...,n} [I|<2ne (alll bl)eL(T)
=Pr(B™NT,) >1-2r

Therefore, there exist IcC {1,...,n} and
(al{',bg‘”) = ((x'ojl,yl)”), (xg'”,yg‘”)) € L(I) such that |f| < 2ne and

Pr (T.IBO(T, (o) b)) > 1 - 27 (A-4)
Without loss of generality, suppose that
I={n—|I|+1,...,n}.
For any (x" Iy~ ¢ A=,

Pr (X711, ) = ey ) | (X, ) € BT, b))

= Txnf\l\’Ynf\I\|{(Xn7|1|VX/TL—\I\):(Ynf\I\7Y/n—|1|)}(Xn7 y”)

= PX”*|I|,veCY"*|I| (an|l|7ynf|l\) (A—5>

Let C,_ s be the length-(n — |I]) block code for input sequence (X171, Y7171y by



128

applying code C, to
((X”“”,xg]‘), (Yn—m,ygﬂ)’ (X“—II\,xg‘”), (Yn—u|7 yélll))

By (A-4), the code CAn_| 1) has expected average distortions

1
n— ||

Ed(e" M gr11(v)) < (1 - 27) (%Dw) + me) 27 d s
n — n —

for all (v,0) € RY. Therefore, since |I| < 2ne, CAn_m has rate

n R < 1 R
n— || 1—2¢

and expected average distortion vector no greater than

1 1
1-2 D 7 o
( T)(1—26 +1—2€T)+T

By (A-5), the expected distortion is evaluated according to Px y. Hence by letting

77— 0

1 1
Py v. ———D).
1—26R€RW’ XY 9 )

This completes the proof. ([l

Lemma C.3 Suppose Pxy, Qx v, and Tx y x/ v are as described in Lemma C.1.

Then
1

T 2€RL(/\7, Txyyx)C RN, Pxy).

Proof. The proof is similar to that of Lemma C.2. Let 7 > 0 and
R e 72(1\7 ,ITx vy x,D). Let n be sufficiently large such that there exists a rate-R,
length-n block code C,, which satisfies

Pr (7(X") = 0"(v) ¥(0,6) € D) > 117,
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where é\"(v) is the reproduction of §"(X") at node v using C, for all (v,0) € IRY. Let
E, = {Qn(X”) £ 6" (v) for some (v,0) € D}

denote the event of decoding error using code C,,. Let £(I) (for I C {1,...,n}) and
B™(1, (al, b)) (for (al’l, bl!l) € £(I)) be the sets defined in the proof of

Theorem C.2. The same argument in Theorem C.2 leads to
Pr (BB, (af] b)) > 127 (A-6)

for some I C {1,...,n} and (alof', bg‘) = (1, ¥y, " v 1)) € £(I) such that

|f| < 2ne. Without loss of generality, suppose that
I={n—|I|+1,...,n}.

Let C,_ ) be the length-(n — |I]) block code for input sequence (X171, Y111y by

applying code C,, to
(XM, (71 g, (s ), (0, g ).

By (A-6), the code (?n,| 1) has decoding error probability no greater than 27 and has

rate no greater than
1

R
1— 2e¢

By (A-5), the error probability is evaluated according to Pxy. Hence by letting

T—0

1
1— 2e¢

R € R.(N, Pxy).

This completes the proof. O

Lemma C.4 Suppose Pxy, Qx vy, and Tx y x/y' are as described in Lemma C.1.
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Then
1

1— 2e¢

RZ(/\A/, Txvyyx)CRz(N,Pxy).

Proof. The proof is similar to that of Lemma C.2. Let 7 > 0 and
R e R(./\A/ ,Ix vy x,D). Let n be sufficiently large such that there exists a

dimension-n zero-error variable-length code C, with length vector L(™ which satisfies
Pr(K,) >1—r,

where

K= {%L(”)(X”,Y”) <R+7-1} (A-7)

is the event that the average length vector is no greater than R+ 7-1. (A-7) can be
achieved by applying the weak law of large numbers on a long code constructed by
repeatedly using the codewords of a zero-error variable-length code whose expected
average length vector is no greater than R + (7/2) - 1. Let £(I) (for I C{1,...,n})
and B™(I, (al, b)) (for (al’l, bl!l) € £(I)) be the sets defined in the proof of

Theorem C.2. The same argument in Theorem C.2 leads to
Pr (K, BO(T, (aff b)) > 1— 27 (A-8)

for some I C {1,...,n} and (alof', bg‘) = (1, ¥y, !, y3 1)) € £(I) such that

|f| < 2ne. Without loss of generality, suppose that
I={n—-|Il+1,...,n}.

Let C,_ ) be the length-(n — |I]) block code for input sequence (X171, Y111y by

applying code C,, to

(X ) (Y ), (X, (e ).
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By (A-8), the zero-error variable-length code (i'\n_| 1) has expected average length

vector no greater than

1

T (1 =27)(R+7-1)+ (27(s + 2t)logm) - 1)

>
—1-— 2

(1=27)(R+7-1)+ (27(s+ 2t)logm) - 1),

where the value (s + 2t) logm uppers all possible average lengths over each edge
e € € since for each e € &, there are at most M*+? codewords using C,. By (A-5),

the expected length is evaluated according to Px y. Hence by letting 7 — 0

1
1— 2e¢

R e RZ(N, PX7y).

This completes the proof. O

D Proof of Theorem 4.4.1

Let J5(A) = mingp,(2)}... J2(A) be the optimal value of J5(A) for the Wyner-Ziv rate
region, and let jg()\) be the value computed by the algorithm proposed in Section 4.4.
Then jg()\) > J35()) since the algorithm finds an auxiliary random variable Z achiev-
ing the given Lagrangian. We next find (1, §) to guarantee that Jy(A) < (1+¢€)J5(N).

Recall that J5(X) := I(X; Z|Y)+Aming, Ed(X,¥(Y, Z)). Before bounding Ja(\)—
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J5 (), rewrite Jo(A) as

Jo(N) = HX|Y)-HY|X)+H(Y|Z)—-H(X|Z)
—l—)\mwinEd(X,w(Y, 7))

= H(X|Y)-H(Y|X)+ > Py(2)H(Y|Z = z)

ZEZ

— 5" Py(e) |H(X)Z = 2)
—|—Zp(y|m)QX‘Z(x|z)d(x,¢*(y,z)) )

where 1*(y, 2) is the optimizing reproduction of X given conditional {Q x|z (%|2)} (2 :)cxxz

and (y, z). Fix {QX\Z($|Z)}(x,z)esz and let {@X|Z($|Z)}(:c,z)@cxz be the quantized

conditional. Let

Qviz(ylz) = ZP(QW)QXlZ(ﬂZ)

x

@Y\Z(mz) = Zp(y|93)@X|Z($|Z)

T

be the corresponding conditionals on Y given Z. Then

(1= 0)Qxiz(z]z) =6 < Qxizlalz) < (1+n)Qxz(z]?)

(L=mQviz(ylz) =6 < Qviz(ylz) < (1 +1)Qyz(yl2)

for all x,y,z. Finally, let {P;(z)}.cz be the marginal on auxiliary random vari-
able Z that achieves J3(\) and define 7 := nlog ﬁ By Lemma 4.2.1, when
(max{|X],|V}) dlog L < 7

A

[H(Qxjz—) — H(Qx1z=:)| < nH(Qx|z—:) + 27
|H<©Y|Z:z)_H(QY\Z:z)| < nH(Qyz==)

for every z € Z.
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Let 2’ := ZU{z; }zex and set

1, ift==x

0, otherwise

Qxiz(t]z) = {

~ (1 —n)Pi(2), if ze Z
Px(2) = Y.z Qxiz(2|2)Py(2), if 2 = 2,

{D\(y, )= V(y,z) ifze€eZ

T if 2=z,

Since jQ(A) is optimized over all quantized distributions,
S(A) < L(Mlay b0
Thus

Ta(N) = J5(N)

< [@2n—-n)H(X|Z) =*H(Y|Z)]py .0y,
+(2n =) H(Y|X) +4(1 = n)7 + V|| Z]6(1 — n)
n(2=n)(X]+ V) +8+ [VIIZ])
n(21X]+2\Y| + 8 + V|| 2]).

IN

IN

when 6 <7 <1— ¢ and (max{|X|,|V|})dlog 5 < 7. Define

L*(A):= min (Rxy(D)+ AD)

0<D<Dinax

where Rxy (D) is the conditional rate-distortion function for X given Y. Then

J3(A\) > L*(\) implies

21X+ 21+ 8+ V[[Z])
L¥(N)

B — s < ™ L.
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We therefore wish to choose § and 7 to satisfy

d < L <1-°

= € - -.

RPN R R T
Define f(x) := —xlog(z) for x € [0,1/e). Function f is strictly increasing and

therefore invertible. Setting

min{ L*()\) 1 e}
= 67 _——
" X+ 2PV +8+ 2|7 1

o n{g])) o

yields (max{|X],|V|}) dlog s < 7 as desired and guarantees a (1 + €)-approximation.

(A-9)

The interior-point solver for k variables runs in time O(k*) [54]. Since k = | Z| for
our linear program, our algorithm runs in time O(N (4§, n,|X|)*). Applying the given

choice of § and 7, our algorithm runs in time O(e~*I¥1*1) as ¢ approaches 0.

E Proof of Theorem 4.5.1

Let J5 (A1, A2, A3) = min J5(A1, A2, A3) be the optimal value of J3(A1, Ao, A3) for the
lossy coded side information region, and let jg()q, A2, A3) be the value computed by
the algorithm proposed in Section 4.5. Then jg,()\l, Ao, Az) > J5(A1, A2, A3). We next
find (n,6) such that J5(A1, Az, Az) < (14 €)J5 (A1, Aa, As).

Let 2] = 2y U {2z, },ex, and set

~ 1, if t= T
QX1|Z1 (t|2961) = . .
0, otherwise

Let PEIQ}2|X2 be a distribution on (Z;, Xs) that achieves J5 (A1, A2, A3). Define

(1—=n")P; (2) VzeZ,

P, (2) = " _
’ Py, (1) = 22, Qxyjz(x1]2) Pz (2) V21 € Xy
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Let 7 := n'log % and &' := (|X1|+1)én’ = 3n. Choose § > 0 such that | X; || Z5|d" log 5

1-n
7/. By Lemma 4.2.1, for all 1 € X}, 5 € X5, and 2z, € Z;

|H(Qx\1z1=2) — H(Qx,12-2,)|
< NH(Qx,)z=2) + 27
H(Qx, zaiz1=) — H(Qx, za171=21)
< NH(Qxy 2,212 ) + 27
H(Qzaz1—) — H(Qza/21—2,)]
< NH(Qzyzy=2) + 27
(H(Qzxo2) = H(Qz x50,
< N H(Qzy|xp=a,) + 27

|H(Qz,) — H(Qz)| < WH(Qz,) + 27

where Qx, 7,12,» @7z, and Qz, derive from (Qx,|z,, @z,x,). Let ¥* be the optimal
reproduction function for X; for (PZ’QEQ\ x,)- Extend the function ¢*(21,22) to

* (24, 22) = 1 for all ; € X;. Now

I(Xy1; 21| Z5)
= H(X1|Z) — H(X1|Z41, Z5)
= H(X\|Z) — H(Xy, Z2|Z)) — H(Z3|Z4)
I(Xo; Zy) = H(Zy) — H(Z| X5),
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and hence we have

H(X\|Z) < (1-9*)H"(X1|Z:) +2(1—n)7
H(Xl, ZQ|Zl) Z (1 — T]/)2H*(X1, Z2|Zl) — 2(1 — 7]/)7'/
H(Z|Zy) > (1—0)?H*(Za|Z) —2(1 — )7’
H(Zy|X5) > (1= H*(Z2]X5) — 2(1 — o)1’

Ed(X1,¢" (%1, Z2))p,,

A*
’Q22|X2

= (I=n)Ed(X1,¢" (2, Zs))py

* .
1 ’sz\X2

Since j;()q, >\2, >\3) < j;()\l, )\2, )\3)‘]3217{@X1|21}’@*Z xy by taklng 7]/ <1- i, we have
2| X2

~

J3()\17 )\27 >\3) - J‘;()\l; )\27 )\3)
< A @20 (1%][21]) +122]) + A (0| 22| + 20| 22))
—l—(6>\1 + 4)\2)(1 — 77/)7',

< M (AL 21 4 [21]) 4 32| 22| 4 (1201 + 8)9)) .

Define
L()\l, )\2, )\3) = mDin [min{)\l, )\Z}RXl (D) —|— )\3D] .
Set
. 4—e 6L(>\1,)\2,)\3)
— A-11
" mm{ 12 7 T, o, Ag) } (A-11)
1 - n
y = ——— 1 (—) , A-12
| X1+ 1f 31X || 2] ( )
where
T()\ly )\27 )\3)

= 6A (| X1 21| + | Z1]) + 92| 22| + (36A1 + 24),).
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Then the pair (7, d) satisfies the following inequalities

§ = (x| +1)o

e
N
n n 1

1
‘XlHZQw/lOgE S ’7'/

77/ < 6[4()\1,)\2,)\3)
2X1 (| X[ 21] + | 21]) + 3A2| 22| + (12X1 4 8X2)

which gives

JE (A, A, As) < Js(Ag, Agy Az) < (14 €) 5 (A1, Ag, As).

In this algorithm, there are N (4,7, |X;|) variables in each of the linear programs
in the inner loop, and there are N (6,7, |X,|)*2! quantized conditional probabilities
C/Q\ 7| X, in the outer loop. Applying the given choice of § and 7, our algorithm runs in

time O(e 41X+ a5 ¢ approaches 0.
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