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Abstract

In the field of source coding over networks, a central goal is to understand the best

possible performance for compressing and transmitting dependent data distributed

over a network. The achievable rate region for such a network describes all link ca-

pacities that suffice to satisfy the reproduction demands. Here all the links in the

networks are error-free, the data dependency is given by a joint distribution of the

source random variables, and the source sequences are drawn i.i.d. according to the

given source distribution. In this thesis, I study the achievable rate regions for gen-

eral networks, deriving new properties for the rate regions of general network source

coding problems, developing approximation algorithms to calculate these regions for

particular examples, and deriving bounds on the regions for basic multi-hop and

multi-path examples.

In the first part, I define a family of network source coding problems. That fam-

ily contains all of the example networks in the literature as special cases. For the

given family, I investigate abstract properties of the achievable rate regions for gen-

eral networks. These properties include (1) continuity of the achievable rate regions

with respect to both the source distribution and the distortion constraint vector and

(2) a strong converse that implies the traditional strong converse. Those properties

might be useful for studying a long-standing open question: whether a single-letter

characterization of a given achievable rate region always exists.

In the second part, I develop a family of algorithms to approximate the achievable

rate regions for some example network source coding problems based on their single-

letter characterizations by using linear programming tools. Those examples contain

(1) the lossless coded side information problem by Ahlswede and Körner, (2) the
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Wyner-Ziv rate-distortion function, and (3) the Berger et al. bound for the lossy

coded side information problem. The algorithms may apply more widely to other

examples.

In the third part, I study two basic networks of different types: the two-hop and

the diamond networks. The two-hop network is a basic example of line networks with

single relay node on the path from the source to the destination, and the diamond

network is a basic example of multi-path networks that has two paths from the source

to the destination, where each of the paths contains a relay node. I derive performance

bounds for the achievable rate regions for these two networks.
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Chapter 1

Introduction

In the point-to-point communication, when a data sequence is drawn i.i.d. according

to a given probability distribution, the optimal lossless and lossy source coding per-

formances are represented by the entropy function H(X) for lossless source coding

and the rate distortion function RX(D) for lossy source coding. These results were

derived by Shannon in [1]. We wish to describe and calculate the achievable rate

regions for generalizations of this problem where dependent data is described over

a network of noiseless links. For each network source coding problem, which is de-

fined formally in Section 2.2, we consider three types of achievable rate regions: the

zero-error rate region, lossless rate region, and lossy rate region. The zero-error rate

region contains all rate vectors R such that there exists a sequence of n-dimensional

variable-length codes each of which achieves error probability precisely equal to zero

with average expected description length vectors converging to R. The lossless rate

region contains all the rate vectors R such that there exists a sequence of length-n,

rate-R block codes whose error probabilities can be made arbitrarily small when n

grows without bound. The lossy rate region contains all the rate vectors R such that

there exists a sequence of length-n, rate-R block codes that satisfy a given collection

of distortion constraints asymptotically. In this thesis, we consider the scenario where

the finite-alphabet sources are memoryless but not necessarily independent.

The vast majority of information theory research in the field of source coding over

networks has focused on deriving single-letter bounds on the achievable rate regions.

For example, the work of Slepian and Wolf treats the lossless source coding problem
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for the two-terminal network where the two source sequences are separately encoded

and the decoder combines the two encoded messages to losslessly reproduce both of

the two source sequences [2]. Gray and Wyner found an exact single-letter charac-

terization for both lossless and lossy rate regions on a related “simple network” [3].

Ahlswede and Körner derived a single-letter characterization for the two-terminal net-

work where the decoder needs to reconstruct only one source sequence losslessly [4];

that characterization employs an auxiliary random variable to capture the decoder’s

incomplete knowledge of the source that is not required to reconstruct. Wyner and

Ziv derived a single-letter characterization of the optimal achievable rate for lossy

source coding in the point-to-point network when side information is available only

at the decoder [5]. Berger et al. derived an achievable region (inner bound) for the

lossy two-terminal source coding problem in [6]. That region is known to be tight in

some special cases [7]. Heegard and Berger found a single-letter characterization by

using two auxiliary random variables for the network where side information may be

absent [8]. Yamamoto considered a cascaded communication system with multi-hop

and multi-branches [9]. For larger networks, Ahlswede et al. derived an optimal rate

region for any network source coding problem where there is one source node that

observes a collection of independent source random variables, all of which must be

reconstructed losslessly by a family of sink nodes [10]; Ho et al. proved the cut-set

bound is tight for multi-cast network with arbitrary dependency on the source random

variables [11]; Bakshi and Effros generalized Ho’s result to show the cut-set bound

is still tight when side information random variables are available only at the end

nodes [12].

In this thesis, I extend the prior results to study the rate regions for a wider family

of network source coding problems. I investigate theoretical properties of rate regions,

develop algorithms of approximating rate regions for particular network source coding

problems, and derive inner and outer bounds for two basic examples.

In Chapters 2 and 3, I study the abstract properties of rate regions and their impli-

cations. In Chapter 2, I define a family of network source coding problems that con-
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tains the example networks and also the functional source coding problems [13, 14, 15]

as special cases. I classify the problems in that family into four categories determined

by separating lossless from lossy source coding and by distinguishing between what

I call canonical source codes and problems that do not meet the canonical source

coding definition, which are here called non-canonical source codes. Treating lossless

and lossy rate regions as functions, I investigate the continuity properties of rate re-

gions with respect to the source distribution and the distortion vector. The continuity

results are critical for understanding whether rate regions for empirical distributions

necessarily approximate the rate regions for the true underlying distribution. Early

results of this material appear in [16, 17, 18].

I introduce a strong converse in Chapter 3. That strong converse implies the

traditional strong converses for i.i.d. sources in the point-to-point [19], coded-side

information [20], Slepian-Wolf [21] source coding problems. The proposed strong

converse applies both to the problems mentioned above and to any multicast network

with side information at the end nodes.

In Chapter 4, I develop a family of algorithms to approximate the rate regions for

example distributions based on their single-letter characterizations. For rate regions

characterized by auxiliary random variables, rate region calculation requires solution

of an optimization problem. While derivation of rate regions has been a key area

of research focus, the question of how to solve the underlying optimization problems

has received far less attention. Rate region calculation turns out to be surprisingly

difficult optimization problems since many regions are neither convex nor concave

in the distributions of their auxiliary random variables. The well-known Arimoto-

Blahut algorithm [22, 23] for calculating the channel capacity and the rate-distortion

function and its extension [24] for calculating the Wyner-Ziv rate distortion function

are iterative techniques for performing such optimizations. I propose an alternative

approach for approximating the achievable rate region by first quantizing the space

of possible distributions and then solving a finite linear programing whose solution

is guaranteed to differ from the rate region by at most a factor of (1 + ε) such that
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(1 + ε)-approximation is guaranteed. This approach can be applied to a wider family

of network source coding problems and may provide new tools useful for understand-

ing some long-standing open problems, for instance, the tightness of Berger et al.

bound [6]. I presented early results for the Ahlswede-Körner problem in [25, 26] and

for the lossy coded side information problem in [27].

I study two basic example networks in Chapter 5: The two-hop line network and

the diamond network. The two-hop line network is the simplest nontrivial example

of network source coding for nodes in series. The diamond network is the simplest

nontrivial example of network source coding across links in parallel. I derive inner

and outer bounds for both of the problems by applying the techniques used in the

literature. Parts of this work originally appeared in [28, 29, 30].



5

Chapter 2

A Continuity Theory

2.1 Introduction

Characterization of rate regions for source coding over networks is a primary goal

in the field of source coding theory. Given a network and a collection of sources

and demands, the lossless and lossy rate regions generalize Shannon’s source cod-

ing and rate-distortion theorems [1] to describe, respectively, the set of achievable

rate vectors for which the error probability can be made arbitrarily close to zero as

block length grows without bound and the set of achievable rate vectors for which a

given distortion constraint is asymptotically satisfied as block length grows without

bound. The zero-error rate region is denoted by RZ(PX,Y), the lossless rate region

is denoted by RL(PX,Y), and the lossy rate region is denoted by R(PX,Y,D), where

PX,Y is the source and side-information distribution, here assumed to be stationary

and memoryless, and D is the vector of distortion constraints.

In this chapter, which extends our works from [17] and [18], we investigate the

continuity of RZ(PX,Y) and RL(PX,Y) with respect to PX,Y and R(PX,Y,D) with

respect to both PX,Y and D for both canonical and non-canonical source codes. Here

a network source coding problem is canonical if and only if every demand func-

tion can be written as a linear combination over some finite field of functions that

can be calculated at some source nodes. Understanding the continuity properties of

RZ(PX,Y), RL(PX,Y), and R(PX,Y,D) is important because continuity is required to
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guarantee that a reliable estimation of PX,Y results in a reliable estimation of its rate

regions. While proofs of continuity are straight forward when single-letter character-

izations are available, we here study continuity for a general class of network source

coding problems defined in Section 2.2. Proof of continuity is difficult in this case

because single-letter characterizations are not available, optimal coding strategies are

not known, and demonstrating continuity from limiting characterizations seems to be

difficult.

A number of examples of single-letter rate region characterizations appear in the

literature. In [2], Slepian and Wolf derive RL(PX,Y) for the two-terminal problem

that has two separate encoders and one decoder interested in reproducing both of

the source sequences. The given inequalities describe the cut-set bounds, which are

tight for this network by [2], for all other multicast networks with independent and

dependent sources by [10] and [11], respectively, and for multicast networks with

receiver side information by [12]. The work in [4] introduces an auxiliary random

variable in the single-letter characterization of RL(PX,Y) for a network similar to the

one studied by Slepian and Wolf. Other examples of single-letter characterizations

of RL(PX,Y) and R(PX,Y,D) for non-functional source coding problems include [3,

5, 7, 8, 31, 32]. In each of these examples, the rate region is a continuous function

of the source and side-information distribution when all random variables involved

have finite alphabets. Rate region characterizations for the simplest lossless and

lossy functional source coding problem appear in [14]. While these rate regions are

also continuous in the source and side information distribution, RL(PX,Y) is not

continuous in PX,Y for all functional source coding problems by [33].

A function is continuous if and only if it is both inner and outer semi-continuous.

Chen and Wagner demonstrated the inner semi-continuity of rate regions with re-

spect to covariance matrix for Gaussian multi-terminal source coding problems and

applied that result to investigate the tightness of some earlier derived bounds [34].

We consider only finite-alphabet source and side-information random variables.

We show that for any PX,Y, R(PX,Y,D) is continuous in D when (a) the network
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source coding problem N is canonical; or (b) N is non-canonical and D > 0, i.e., the

components of D are all non-zero. We prove that RL(PX,Y) is continuous in PX,Y

when N is canonical and show that R(PX,Y,D) is continuous in PX,Y when (a) N is

canonical; or (b) N is non-canonical and D > 0.

A rate region, regarded as a function of distribution PX,Y, is s-continuous if and

only if for all distributions PX,Y and QX,Y with the same support, the rate regions

for PX,Y and QX,Y are sufficiently close when PX,Y and QX,Y are sufficiently close.

(See Definition 2.2.15.) We show that RZ(PX,Y), RL(PX,Y), and R(PX,Y,D) for

all D are all outer semi-continuous and s-continuous in PX,Y, which implies that

the approximation of the rate regions for PX,Y by the rate region for its empirical

distribution is reliable. The s-continuity of RZ(PX,Y) further implies that some graph

entropies introduced in [35, 36]1 are continuous when support of the distribution is

fixed.

The remainder of this chapter is structured as follows. We formulate the general

network source coding problem and define continuity and s-continuity in Section 2.2.

In Section 2.3, we derive some basic properties for non-functional and canonical source

coding over networks. In Section 2.4, we show the continuity of R(PX,Y,D) with

respect to D for all D in the canonical source coding case, and for D > 0 in the

non-canonical source coding case.

Section 2.5 treats continuity with respect to PX,Y. In Section 2.5.1, we show that

RL(PX,Y) is inner semi-continuous for canonical source coding and R(PX,Y,D) is

inner semi-continuous when (a) N is canonical or (b) N is non-canonical and D > 0.

In Section 2.5.2, we show that RZ(PX,Y), RL(PX,Y), and R(PX,Y,D) for all D are all

outer semi-continuous in PX,Y. In Section 2.6, we show that RZ(PX,Y), RL(PX,Y),

and R(PX,Y,D) for all D are all s-continuous in PX,Y.

1The zero-error codes here are in the unrestricted-inputs scenario as defined in [35].
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2.2 Formulation

Here we define a general network source coding problem and its zero-error, lossless,

and lossy rate regions. Let Z = (Z1, . . . , Zr) be a random vector with finite alphabet
∏r

i=1Zi. We assume without loss of generality that |Z| = m for all i ∈ {1, . . . , r}
but Zi need not be the same set as Zj for i 6= j ∈ {1, . . . , r}. Let ϑ be a finite set

that contains ∪r
i=1Zi as a subset and Θ denote the set of functions from

∏r
i=1Zi to

ϑ.2 Since ∪r
i=1Zi ⊆ ϑ, for each i ∈ {1, . . . , r}, the function θi(z1, . . . , zr) = zi for

all (z1, . . . , zr) ∈
∏r

i=1Zi is in Θ. For simplicity, we abbreviate the given functions

to Zi = θi for all i ∈ {1, . . . , r}. This notation is useful later for discussing func-

tional source coding. The sequence Z1, Z2, . . . is drawn i.i.d. according to a generic

distribution PZ of Z, which describes all network inputs.

Fix a distortion measure d : ϑ × ϑ → [0,∞). Define dmin = mina6=b d(a, b) and

dmax = maxa 6=b d(a, b). We assume that d(a, b) = 0 if and only if a = b, which

implies dmin > 0.We further assume that dmax < ∞. The distortion between any

two sequences a = (a1, . . . , an) and b = (b1, . . . , bn) in ϑn is defined as d(a,b) =
∑n

i=1 d(ai, bi).

A directed network is an ordered pair (V , E) with vertex set V and edge set E ⊆
V ×V . Vector (v, v′) ∈ E if and only if there is a directed edge from v to v′. For each

edge e = (v, v′) ∈ E , we call v the tail of e and v′ the head of e, denoted by v = tail(e)

and v′ = head(e), respectively. The set of edges that end at vertex v is denoted by

ΓI(v) and the set of edges that begin at v is denoted by ΓO(v), i.e.,

ΓI(v) := {e ∈ E : head(e) = v}
ΓO(v) := {e ∈ E : tail(e) = v}.

Let G = (V , E) be a directed acyclic network.3 A network source coding problem

2Notice that ϑ can be designed to include all functions of the form φ(i1,...,i`)(z) = (zi1 , . . . , zi`
)

for all ` ∈ {1, . . . , r} and 1 ≤ i1 < . . . < i` ≤ r.
3For any network with cycles, we design the codes in a chronological order and consider a cor-

responding acyclic network that matches the given chronological order. An example can be found
in [37].
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N is defined as N = (G,S,D). Here sets S and D describe the random variable

availabilities and demands, respectively. The random variable availability set S is a

subset of V × {Z1, . . . , Zr} such that Zi (1 ≤ i ≤ r) is available at node v ∈ V if and

only if (v, Zi) ∈ S. The demand set D is a subset of V × Θ such that node v ∈ V
demands function θ ∈ Θ if and only if (v, θ) ∈ D. Let k denote the total number

of reproduction demands, i.e., k = |D|. For each v ∈ V , sets Sv ⊆ {Z1, . . . , Zr} and

Dv ⊆ Θ summarize the random variable availabilities and demands, respectively, at

node v, giving

Sv = {Zi : (v, Zi) ∈ S}
Dv = {θ : (v, θ) ∈ D}.

For any set I ⊆ {1, . . . , r} and any z ∈ ∏r
i=1Zi, let zI = (zi | i ∈ I) and

zIc = (zi | i /∈ I). We use zIzIc interchangeably with z. For any θ ∈ Θ, we define

I(θ) to be the smallest set I for which θ(zI , zIc) = θ(zI , z
′
Ic) for every zI ∈

∏
i∈I Zi

and every zIc , z′Ic ∈ ∏
i/∈I Zi. Thus θ(z) is independent of zi for all i /∈ I(θ).

Definition 2.2.1 Let N be a network source coding problem. Random variable Zi

is called a source random variable if and only if there exists a demand pair (v, θ) ∈ D
for which i ∈ I(θ). Otherwise, Zi is called a side-information random variable.

Let 1 ≤ s ≤ r be the number of source random variables, and let t = r− s denote the

number of side-information random variables. Henceforth, we use X = (X1, . . . , Xs)

to describe the source random vector, Y = (Y1, . . . , Yt) to specify the side-information

vector, and PX,Y = PZ to denote the probability mass function on the source and

side-information vector. Adjusting this new notation, for every θ ∈ ∪vDv, I(θ) is now

a subset of {1, . . . , s} and xI(θ) = (xi | i ∈ I(θ)) are the symbols which θ relies. Let

Xi and Yj denote the alphabet sets of Xi and Yj, respectively, for every i ∈ {1, . . . , s}
and every j ∈ {1, . . . , t}. Let

A =
s∏

i=1

Xi ×
t∏

j=1

Yj



10

denote the set of alphabet for (X,Y).

We assume that for each demand pair (v′, θ) ∈ D and each i ∈ I(θ), there exists

a pair (v, Xi) ∈ S such that there is a path from v to v′.

The following definition defines two types of network source coding problems,

called non-functional and functional network source coding problems.

Definition 2.2.2 Let N be a network source coding problem. If all the demands are

sources, i.e., ∪vDv ⊆ {X1, . . . , Xs}, then N is called a non-functional network source

coding problem. Otherwise, N is called a functional network source coding problem.

Definition 2.2.3 Let R = (Re)e∈E be a rate vector. A rate-R, length-n block code C
for N contains a set of encoding functions {fe | e ∈ E} and a set of decoding functions

{gv,θ | (v, θ) ∈ D}.

(i) For each e ∈ E , the encoding function is a map

fe :
∏

e′∈ΓI(tail(e))

{1, 2, . . . , 2nRe′} ×
∏

i:Xi∈Stail(e)

X n
i ×

∏
j:Yj∈Stail(e)

Yn
j

→ {1, 2, . . . , 2nRe}.

(ii) For each (v, θ) ∈ D, the decoding function is a map

gv,θ :
∏

e∈ΓI(v)

{1, 2, . . . , 2nRe} ×
∏

i:Xi∈Sv

X n
i ×

∏
j:Yj∈Sv

Yn
j → ϑn.

We next define the class of variable-length codes considered in this chapter for net-

work N . Inorder to make arbitrary ` copies of every variable-length code in this class

well-defined, the variable-length codes discussed in this chapter satisfy the “uniquely

encodable” property described in Definition 2.2.5. Roughly speaking, the uniquely

encodable property means that for any positive integer ` and every node v, the en-

coded codeword vector observed at v when applying a variable-length code ` times

can be uniquely decomposed into ` codeword vectors of the same code. The definition
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of the uniquely encodable property relies on the uniquely decodable property for sets

of codeword vectors.

For any finite set S, let S∗ = ∪∞n=1S
n denote the set of finite-length sequences

drawn from S. Without loss of generality, we treat only binary variable-length codes.

Definition 2.2.4 Let n be a positive integer and S1, . . . , Sn be finite sets. A set

C ⊂ ∏n
i=1 Si is called a uniquely decodable set if and only if for every positive integer

`, the map

φ` : C` →
n∏

i=1

S∗i

defined by

φ`

(
(b

(1)
1 , . . . , b(1)

n ), . . . , (b
(`)
1 , . . . , b(`)

n )
)

:=
(
(b

(1)
1 , . . . , b

(`)
1 ), . . . , (b(1)

n , . . . , b(`)
n )

)

for all (b
(1)
1 , . . . , b

(1)
n ), . . . , (b

(`)
1 , . . . , b

(`)
n ) ∈ C is a one-to-one map.

Definition 2.2.5 A dimension-n variable-length code C for N contains a collection

of codebooks {Ce | Ce ⊂ {0, 1}∗ ∀e ∈ E}, a set of encoding functions {fe | e ∈ E},
and a set of decoding functions {gv,θ | (v, θ) ∈ D}. C satisfies the properties below.

(i) For each e ∈ E , the encoding function fe is a map

fe :
∏

e′∈ΓI(tail(e))

Ce′ ×
∏

i:Xi∈Stail(e)

X n
i ×

∏
j:Yj∈Stail(e)

Yn
j → Ce.

(ii) For each (v, θ) ∈ D, the decoding function is a map

gv,θ :
∏

e∈ΓI(v)

Ce ×
∏

i:Xi∈Sv

X n
i ×

∏
j:Yj∈Sv

Yn
j → ϑn.

(iii) For every e ∈ E and every (xn,yn) ∈ An, let ce(x
n,yn) ∈ Ce denote the

codeword on edge e using code C when the input sequence is (xn,yn). For each

v ∈ V , the codebook consisting of all possible messages received by v, defined
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by

C[v] := {((ce(z
n))e∈ΓI(v), (x

n
i )i:Xi∈Sv , (y

n
j )j:Yj∈Sv) | (xn,yn) ∈ An}

⊆
∏

e∈ΓI(v)

Ce ×
∏

i:Xi∈Sv

X n
i ×

∏
j:Yj∈Sv

Yn
j ,

is a uniquely decodable set.4

For each (xn,yn) ∈ An, let Le(x
n,yn) denote the length of the codeword on e and

let L(xn,yn) = (Le(x
n,yn))e∈E denote the length vector using code C when input

sequence is (xn,yn).

A function of X is called a canonical function if and only if it is either a source

random variable or can be rewritten as a linear combination of functions of individual

symbols. The next definition formalizes this idea. For any prime power q, we fix a

finite field with q elements and denote it by Fq. Notice that Fq is unique up to

isomorphisms.

Definition 2.2.6 A function θ of X in Θ is called a canonical function if and only

if there exist a prime power q ≥ m, a map φi from Xi to Fq for each i ∈ I(θ), and a

one-to-one map ψ from the output alphabet of θ to Fq such that

ψ(θ(x)) =
∑

i∈I(θ)

φi(xi) ∀ x ∈
s∏

i=1

Xi. (2.1)

Definition 2.2.7 If all demands of network source coding problem N are canonical

functions, then N is called a canonical network source coding problem.

By definition, every non-functional network source coding problem is canonical.

Hence the family of canonical network source coding problems contains the family of

non-functional network source coding problems and some functional network source

coding problems.

4For each ` ∈ N, the code constructed by applying C ` times is well-defined under this setting.
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Definition 2.2.8 Let N be a network source coding problem.

(a) A rate vector R is zero-error-achievable on pmf PX,Y if and only if there exists

a sequence of dimension-n , zero-error, variable-length codes {Cn}∞n=1 whose

average expected length vectors with respect to PX,Y are asymptotically no

greater than R. That is, for any (v, θ) ∈ D, let

θ̂n(v) := gv,θ((ce(X
n))e∈ΓI(v), (X

n
i )Xi∈Stail(e), (Y

n
j )Yj∈Stail(e))

denote the reproduction of θn(Xn) = (θ(X1), . . . , θ(Xn)) at node v using code

Cn. Then R is zero-error-achievable on PX,Y if and only if

PXn,Yn

(
θn(Xn) 6= θ̂n(v) ∀ (v, θ) ∈ D

)
= 0

lim sup
n→∞

1

n
EP d [Ln(Xn,Yn)] ≤ R,

where EP is the expectation with respect to PX,Y. The closure of the set of

zero-error-achievable rate vectors (on PX,Y) is called the zero-error rate region,

denoted by RZ(N , PX,Y).

(b) A rate vector R is losslessly-achievable if and only if there exists a sequence

of rate-R, length-n block codes {Cn}∞n=1 whose symbol error probabilities are

asymptotically zero. That is, for any e ∈ E , let Fe denote the encoded message

carried over edge e, and for any (v, θ) ∈ D, let

θ̂n(v) := gv,θ((Fe)e∈ΓI(v), (X
n
i )Xi∈Stail(v)

, (Y n
j )Yj∈Stail(v)

)

denote the reproduction of θn(Xn) = (θ(X1), . . . , θ(Xn)) at node v using code

Cn. Then R is losslessly-achievable if and only if

lim
n→∞

PXn,Yn

(
θn(Xn) 6= θ̂n(v)

)
= 0

for all (v, θ) ∈ D. The closure of the set of losslessly-achievable rate vectors is
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called the lossless rate region, denoted by RL(N , PX,Y).

(c) Let D = (Dv,θ)(v,θ)∈D be a k-dimensional vector whose components are non-

negative real numbers. Rate vector R is said to be D-achievable if and only if

there exists a sequence of rate-R, length-n block codes {Cn}∞n=1 such that the

distortion constraint is asymptotically satisfied. That is, for every (v, θ) ∈ D,

let θ̂n(v) denote the reproduction of θn(Xn) = (θ(X1), . . . , θ(Xn)) at node v by

Cn. Then R is D-achievable if and only if

lim sup
n→∞

1

n
EP d

(
θn(Xn), θ̂n(v)

)
≤ Dv,θ

for all (v, θ) ∈ D. The closure of the set of D-achievable rate vectors R is called

the rate-distortion region, denoted by R(N , PX,Y,D).

In this chapter, we often abbreviate RZ(N , PX,Y), RL(N , PX,Y), and R(N , PX,Y,D)

to RZ(PX,Y), RL(PX,Y), and R(PX,Y,D) when the network N is clear in the given

context.

Let M denote the set of all probability distributions on A. For any set A, we use

2A to denote the power set of A, i.e., the set of all subsets of A. Let IR+ denote the

set of nonnegative real numbers. Define

IRD
+ := {D = (D(v,θ))(v,θ)∈D | D(v,θ) ≥ 0 ∀ (v, θ) ∈ D}

to be the set of all distortion vectors D, and

IRE
+ := {R = (Re)e∈E | Re ≥ 0 ∀ e ∈ E}

to be the set of all rate vectors. For all PX,Y ∈ M, R(PX,Y,D) is a subset of IRE
+;

therefore,R(PX,Y,D) can be considered as a function fromM×IRD
+ to 2IRE+ . Similarly

both RZ(PX,Y) and RL(PX,Y) can be considered as functions from M to 2IRE+ .

Before defining the continuity property, we introduce the definitions of set opera-
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tions in IRE
+ and distances5 on M and 2IRE+ used in this chapter.

Definition 2.2.9 Let A and B be two subsets of the n-dimensional Euclidean space

IRn.

(a) For any n-dimensional vector v ∈ IRn, define the set

A + v := {a + v | a ∈ A}.

(b) For any λ, µ ∈ IR+ ∪ {0}, define the set

λA + µB := {λa + µb | a ∈ A, b ∈ B}.

Definition 2.2.10 Given a positive integer n. Define

1 := (1, . . . , 1) ∈ IRn and 0 := (0, . . . , 0) ∈ IRn.

Definition 2.2.11 Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two n-dimensional

real vectors.

(a) We say that a is greater than or equal to b, denoted by a ≥ b, if and only if

ai ≥ bi for all i ∈ {1, . . . , n}.

(b) We say that a is greater than b, denoted by a > b, if and only if ai > bi for all

i ∈ {1, . . . , n}.

The distances on M and 2RE+ used in this chapter are as follows.

Definition 2.2.12 Let A and B be two subsets of the n-dimensional Euclidean space

IRn. We use ||x|| to denote the L2-norm of x ∈ IRn. For any ε > 0, sets A and B are

said to be ε-close (ε > 0) if and only if

5The distance used between any two subsets in IRE+ is not a metric. It is equivalent to the
Hausdorff distance, which is used for compact subsets of IRn and gives a way to measure the difference
between two subsets in IRE+.
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(a) For every a ∈ A, there exists some b0 ∈ B such that ||a− b0|| ≤ ε
√

n.

(b) For every b ∈ B, there exists some a0 ∈ A such that ||b− a0|| ≤ ε
√

n.

This notion of the distance between two subsets in IRn leads to the definitions of

continuity of regions RZ(PX,Y) (with respect to PX,Y), RL(PX,Y) (with respect to

PX,Y), and R(PX,Y,D) (with respect to both PX,Y and D).

Definition 2.2.13 Fix PX,Y ∈M. R(PX,Y,D) is continuous in D over set D0 ⊆ D
if and only if for any D ∈ D0 and ε > 0, there exists some δ > 0 such that R(PX,Y,D)

and R(PX,Y,D′) are ε-close for all D′ ∈ D0 satisfying ||D−D′|| < δ. If the choice of

ε and δ can be independent of PX,Y, then R(PX,Y,D) is said to be continuous in D

independently of PX,Y.

We define continuity and s-continuity with respect to PX,Y here. Let A(PX,Y) ⊆
IRE

+ be a function with a subset outcome. For example, A(PX,Y) may be the zero-

error, lossless, or lossy rate region.

Definition 2.2.14 Function A(PX,Y) ⊆ IRE
+ is continuous in PX,Y if and only if for

any PX,Y and ε > 0, there exists some δ > 0 such that A(PX,Y) and A(QX,Y) are

ε-close for all QX,Y ∈M satisfying ||PX,Y −QX,Y|| < δ.

Definition 2.2.15 Function A(PX,Y) is s-continuous in PX,Y if and only if for any

PX,Y ∈ M and ε > 0, there exists some δ > 0 such that A(PX,Y) and A(QX,Y) are

ε-close for all QX,Y ∈M satisfying

(1− δ)PX,Y(x,y) ≤ QX,Y(x,y) ≤ 1

1− δ
PX,Y(x,y) ∀ (x,y) ∈ A.

RZ(PX,Y) is known not to be continuous in PX,Y. An example is shown in [14]. In

this chapter, we show RZ(PX,Y) is outer semi-continuous and s-continuous in PX,Y.

(See Section 2.5.2 for the definition of outer semi-continuity.)

It is tempting to assume the continuity of R(PX,Y,D) and RL(PX,Y) on general

networks by analogy to the very limited collection of problems where rate regions are
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fully characterized and continuity is easy to check. Since this assumption is known

to be incorrect by the earlier cited example of Han and Kobayashi, we reproduce

that example here to demonstrate the complexity of the problem even in very small,

simple networks.

Example 2.2.16 [33, Remark 1]Consider the network source coding problem in

Fig. 2.1. The function f(X1, X2) is defined as

f(0, 0) = f(0, 1) = 0, f(1, 0) = 1, f(1, 1) = 2.

For ε ≥ 0, consider the distribution

P ε
X1,X2

(0, x2) =
1

2
− ε ∀ x2 ∈ {0, 1}

P ε
X1,X2

(1, x2) = ε ∀ x2 ∈ {0, 1}.

By [33, Theorem 1],

lim
ε→0

RL(P ε
X1,X2

) = {(R1, R2) | R1 ≥ 0, R2 ≥ log(2)}.

On the other hand, when ε = 0, f = 0 with probability 1 and hence

RL(P 0
X1,X2

) = {(R1, R2) | R1 ≥ 0, R2 ≥ 0}.

This shows that

lim
ε→0

RL(P ε
X1,X2

) ( RL(P 0
X1,X2

).

The demand function in the above example is not canonical, and the lossless rate

region is not inner semi-continuous. (See Definition 2.5.2.) We show in Corollary 2.5.7

that the lossless rate region for any canonical network source coding problem is inner

semi-continuous in PX,Y, which implies that the behaviors of lossless rate regions for

canonical and non-canonical network source coding problems are different. A key
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f(X1, X2)
j
*

-

-

-

X1

X2

Figure 2.1: A functional two-terminal lossless problem where RL(PX1,X2) is not con-
tinuous.

idea needed to prove the s-continuity result for canonical networks is captured in

Lemma 2.2.18, which is proven using the technique introduced in the proof of [38,

Theorem 1] together with the following theorem, which was proven in [39].

Theorem 2.2.17 Let N be the lossless source coding problem shown in Fig. 2.2 and

let ψ be a one-to-one map from X to Fq. For any ε > 0, there exists a sequence of

rate-(H(X|Y ) + ε), length-n block codes that encode ψn(Xn) linearly over finite field

Fq such that the sequence of the corresponding decoding error probabilities converges

to 0 as n grows without bound.

X - R- - X
6

Y

Figure 2.2: The lossless source coding problem with side information at the decoder.

Lemma 2.2.18 Let N be the lossless multiterminal functional source coding prob-

lem shown in Fig. 2.3. Suppose that θ is a canonical function of X. Then the rate

vector (H(θ|Y ) + ε) · 1 is achievable for all ε > 0.

Proof. Let q ≥ m be a prime power, ψ be a one-to-one map from the output

alphabet of θ to Fq, and let φi be a map from Xi to Fq for each i ∈ I(θ) such that

equation (2.1) from Definition 2.2.6 holds, viing ψ(θ(x)) =
∑s

i=1 φi(xi). For any
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ε > 0, let {Cn} be a sequence of rate-(H(θ|Y ) + ε), length-n block codes that

linearly encode ψn(θn(Xn)) over Fq using encoders Tn and linearly decode the

encoded message with optimal decoders θ̂ to achieve error probability

P (n)
e := min

θ̂n

PXn,Yn

(
θn(Xn) 6= θ̂n (Tn(ψn(θn(Xn))), Y n)

)

satisfying

lim
n→∞

P (n)
e = 0.

For each n, we construct a rate-((H(θ|Y ) + ε) · 1), length-n block code for N by

applying Tn ◦ φn
i on source sequence Xn

i for each i ∈ {1, . . . , s}. The end node

receives the encoded messages Tn(φn
1 (Xn

1 )), . . . , Tn(φn
s (Xn

s )) and calculates
∑s

i=1 Tn(φi(X
n
i )). Since Tn(ψn(θn(Xn))) =

∑s
i=1 Tn(φi(X

n
i )) by (2.1) and the

linearity of Tn, the rate vector (H(θ|Y ) + ε) · 1 is losslessly achievable for N . ¤

Xs
-

µ

...

X1
-

R - θ
6
Y

Figure 2.3: The lossless multiterminal functional source coding problem with side
information at the decoder.

Remark 2.2.19 By definition, it may seems more general to consider the rate regions

achieved by the class of variable-length codes for all of our problems. In reality, for

canonical lossless, canonical lossy, and functional lossy source coding on memoryless

sources there is no loss of generality in restricting our attention to fixed-rate codes.

We sketch the proof as follows. Since canonical lossless source coding is a special

case of canonical lossy source coding (see Theorem 2.3.5) and canonical lossy source

coding is a special case of functional lossy source coding, we sketch the proof for only

functional lossy source coding.
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For any fixed D ∈ IRD
+, let R be a rate vector such that there exists a sequence of

dimension-n variable-length codes {Cn} such that

lim sup
n→∞

1

n
Ed(Ln(Xn,Yn)) ≤ R

lim sup
n→∞

1

n
Ed(θn(Xn), θ̂n(v)) ≤ Dv,θ ∀ (v, θ) ∈ D,

where θ̂n(v) is the reproduction of θn(Xn) at node v using Cn and Ln(Xn,Yn) is the

length vector of Cn for all n. For any ε > 0, there exists an n > 0 such that

1

n
Ed(Ln(Xn,Yn)) ≤ R + ε · 1

1

n
Ed(θn(Xn), θ̂n(v)) ≤ Dv,θ + ε ∀ (v, θ) ∈ D.

By the weak law of large numbers, there exists an l > 0 such that

PXn,Yn

(
l∑

i=1

Ln(Xn
i ,Yn

i ) > ln(R + 2ε · 1)

)
< ε (2.2)

PXn,Yn

(
l∑

i=1

d(θn(Xn
i ), θ̂n

i (v)) > ln(Dv,θ + 2ε) ∀ (v, θ) ∈ D
)

< ε, (2.3)

where Xnl = (X1, . . . ,Xl), Ynl = (Y1, . . . ,Yl), and θ̂n
i (v) is the reproduction of

θn(Xn
i ) at node v for all i ∈ {1, . . . , l} and (v, θ) ∈ D.

Let C̃ln be the (ln)-dimensional code achieved by applying Cn on (Xn
1 ,Y

n
1 ), . . . ,

(Xn
l ,Yn

l ) sequentially. By (2.2), the variable-length code C̃ln has length vector no

greater than ln(R+2ε ·1) with probability 1− ε. We next construct a block code Ĉln

based on C̃ln as follows. For each e ∈ E , if the code length for the encoded message

on e is greater than ln(Re + 2ε), then we truncate the code such that the resulting

code length is ln(Re + 2ε); if the code length for the encoded message on e is less

than ln(Re + 2ε), then we add a string of zeros after the encoded message to give a

code with length equal to ln(Re + 2ε). By construction, the modified block code Ĉln
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has rate R + 2ε. Further, the probability of the set of all (xnl,ynl) satisfying

l∑
i=1

L(xn
i ,y

n
i ) ≤ ln(R + ε · 1)

l∑
i=1

d(θn(xn
i ), θ̂n

i (v)) ≤ ln(Dv,θ + ε) ∀ (v, θ) ∈ D

is greater than 1−2ε by (2.2) and (2.3). Hence the expected distortion vector D(Ĉln)

for Ĉln satisfies

D(Ĉln) ≤ ln ((1− 2ε)(D + 2ε · 1) + (2εdmax) · 1) .

Since ε > 0 is arbitrary, R is D-achievable. ¤

2.3 Source Independence and the Relationship Be-

tween Lossless and Lossy Source Coding

We begin by proving that when all the source random variables are independent, the

lossless rate region RL(PX) for the non-functional case depends only on the entropies

of Xi for i ∈ {1, . . . , s}. Furthermore, we show that in this case, the lossless rate region

is a continuous function of the entropy vector (H(X1), . . . , H(Xs)). This implies that

when sources are independent, separation of network coding and source coding is

optimal. (This separation is not optimal in general by [40].)

We next show that RL(PX,Y) = R(PX,Y,0) when N is canonical. Note that

by definition, RL(PX,Y) ⊆ R(PX,Y,0) since lossless coding requires arbitrarily small

block error probability, while lossy coding with 0-distortion requires only arbitrarily

small average symbol error probability. This property demonstrates the relationship

between lossless and lossy source coding: for canonical source codings, lossless source

coding is a special case of lossy source coding. This property relies on our prior
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assumption that the distortion measure satisfies

d(a, b) = 0 if and only if a = b (2.4)

0 < dmin ≤ d(a, b) ≤ dmax < ∞ ∀ a 6= b. (2.5)

2.3.1 RL(PX) for Independent Sources

Lemma 2.3.1 shows that introducing a side information vector Y which is independent

of X cannot improve the lossless and lossy rate regions. More precisely, RL(PX,Y) =

RL(PX) and R(PX,Y,D) = R(PX,D) when X is independent of Y.

Lemma 2.3.1 Assume that Y is independent of X and N is a functional or non-

functional network source coding problem. Then

RL(PX,Y) = RL(PX) and R(PX,Y,D) = R(PX,D).

Proof. Notice that by definition RL(PX) ⊆ RL(PX,Y) since the code for PX,Y can

ignore source Y and achieve performance identical to that achieved in the same

network when Y is not known. Hence it suffices to show that RL(PX) ⊇ RL(PX,Y).

For any rate vector R in the interior of RL(PX,Y), let {Cn} be a sequence of rate-R,

length-n block codes such that PXn,Yn(En) converges to 0 as n grows without

bound; here En is the event of decoding error using Cn. For any n and any yn, let

PXn|Yn(En|Yn = yn) be the conditional error probability given Yn = yn, and let yn
∗

be an instance of Yn that minimizes PXn|Yn(En|Yn = yn), i.e.,

PXn|Yn(En|Yn = yn
∗ ) = min

yn
PXn|Yn(En|Yn = yn).

Now

PXn,Yn(En) =
∑
yn

PXn|Yn(En|Yn = yn)PYn(yn)

≥ PXn|Yn(En|Yn = yn
∗ ).
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Define Cn(yn
∗ ) as the block code Cn when Yn = yn

∗ . Since X and Y are independent,

PXn|Yn(xn|yn
∗ ) = PXn(xn) ∀ xn.

Hence the sequence of rate-R, length-n block codes {Cn(yn
∗ )} for source X has error

probabilities going to 0 as n grows without bound. Therefore, R ∈ RL(PX). Notice

that this argument relies on our assumption to guarantee that Cn(yn
∗ ) has the same

rate as Cn.

A similar argument demonstrates that R(PX,Y,D) = R(PX,D) when X and Y are

independent. Here R(PX,D) ⊆ R(PX,Y,D) is immediate, so we need only show

R(PX,Y,D) ⊆ R(PX,D). Fix ε > 0, and let R be D-achievable for PX,Y. Let Cn be

a rate-R, length-n block code such that for any (v, θ) ∈ D,

1

n
Ed(θn(Xn), θ̂n(v)) ≤ Dv,θ + ε.

By the weak law of large numbers6, when l is sufficiently large, there exist yn
1 ,. . . ,

yn
l such that for all (v, θ) ∈ D

1

ln

l∑
i=1

Ed(θn(Xn), θ̂n(v)|Yn = yn
i )

≤ 1

n

∑
yn

PYn(yn)Ed(θn(Xn), θ̂n(v)|Yn = yn) + ε

=
1

n
Ed(θn(Xn), θ̂n(v)) + ε

≤ Dv,θ + 2ε. (2.6)

Notice that since X and Y are independent, the term

l∑
i=1

Ed(θn(Xn), θ̂n(v)|Yn = yn
i )

6If there is only one demand, then we can simply choose a best yn that makes the distortion
value minimal without applying the weak law of large numbers.
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is indeed the expected distortion vector according to the distribution PXn .

Consider the rate-R, length-ln code composed sequentially from Cn(yn
1 ), . . . , Cn(yn

l ),

where for each i ∈ {1, . . . , l}, Cn(yn
i ) is the code Cn when Yn = yn

i . Since ε > 0 is

arbitrary, by inequality (2.6), R is D-achievable. Thus R(PX,Y,D) ⊆ R(PX,D). ¤

Theorem 2.3.2 shows that when N is non-functional and sources X1, . . . , Xs

are independent, RL(PX) ⊆ RL(QX) whenever two distributions PX and QX satisfy

HP (Xi) ≥ HQ(Xi) for all i ∈ {1, . . . , s}; here HP (Xi) and HQ(Xi) are the entropies

of source Xi for distributions PX and QX, respectively. For each i ∈ {1, . . . , s}, we

denote by Pi and Qi the marginal distributions on Xi using PX and QX, respectively.

Theorem 2.3.2 Let N be a non-functional network source coding problem without

side information. Let PX =
∏s

i=1 Pi and QX =
∏s

i=1 Qi be two distributions for

independent source X such that

HP (Xi) ≥ HQ(Xi) ∀i ∈ {1, . . . , s}.

Then RL(PX) ⊆ RL(QX).

Proof. This proof relies on the observations that since HQ(Xi) ≤ HP (Xi), the

typical set A
(n)
ε,Q(Xi) of Xi corresponding to Q has smaller size than the typical set

A
(n)
ε,P (Xi) corresponding to P . Since X1, . . . , Xs are independent, by constructing

one-to-one maps from A
(n)
ε,Q(Xi) to A

(n)
ε,P (Xi) for each i ∈ {1, . . . , s} we can construct

a one-to-one map from the typical set A
(n)
ε,Q(X) of (X1, . . . , Xs) corresponding to Q

to the typical set A
(n)
ε,P (X) corresponding to P directly. We prove only the special

case when Pi = Qi for all i ≥ 2. The general case can be proven by applying the

result of this special case inductively. In this proof, we use these two observations to

build a code C ′n for the distribution QX = Q
∏s

i=2 Pi from a code Cn for the

distribution PX =
∏s

i=1 Pi.

Let HP = HP (X1) and HQ = HQ(X1). Let A
(n)
ε,P (X1) and A

(n)
ε,Q(X1) denote the
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typical sets for X1 with respect to P1 and Q1, respectively. It suffices to show

RL(PX) ⊆ RL (QX)

for two distributions P1 and Q1 of X1 such that HP ≥ HQ > 0.

Given any losslessly achievable rate vector R for PX, let ε > 0 be a nonnegative

number such that ε < min{1/10, HQ}. Choose n sufficiently large so that

P n(A
(n)
ε,P (X1)) ≥ 1− ε (2.7)

Qn(A
(n)
ε,Q(X1)) ≥ 1− ε, (2.8)

every element xn
1 ∈ A

(n)
ε,P (X1) satisfies P n

1 (xn
1 ) ≤ 1

8
, and there exists a rate-R,

length-n block code Cn with PXn(En) < ε; here En is the event of a decoding error

using Cn when the source distribution is PX. For any xn
1 ∈ X n

1 , let

E(xn
1 ) ⊆

s∏
i=2

X n
i

be the collection of vectors (xn
2 , . . . , x

n
s ) for which an error occurs when

(Xn
1 , Xn

2 , . . . , Xn
s ) = (xn

1 , x
n
2 , . . . , x

n
s ). Then by definition,

∑

xn
1∈A

(n)
ε,P (X1)

∑

(xn
2 ,...,xn

s )∈E(xn
1 )

s∏
i=1

P n
i (xn

i ) = PX(En) < ε.

Let L = |A(n)
ε,P (X1)|, and enumerate the typical sequences as xn

1 (1), . . . , xn
1 (L). For

each j ∈ {1, . . . , L}, let

ej =
∑

(xn
2 ,...,xn

s )∈E(xn
i (j))

s∏
i=2

P n
i (xn

i (j)),

and choose the order of the enumeration so that

e1 ≤ e2 ≤ · · · ≤ eL.
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For each j ∈ {1, . . . , L}, set pj = P n
1 (xn

1 (j)). Since pj ≤ 1
8

for all 1 ≤ j ≤ L by

assumption, there exists 1 ≤ l ≤ L for which

1

4
≤

L∑

j=l+1

pj ≤ 1

2
.

Then

ε >

L∑

j=l+1

pjej ≥
(

L∑

j=l+1

pj

)
el,

which implies that

el <
ε∑L

j=l+1 pj

≤ 4ε. (2.9)

Now since 2−n(HP +ε) ≤ pj ≤ 2−n(HP−ε) for all 1 ≤ j ≤ L,

l2−n(HP−ε) ≥
l∑

j=1

pj ≥ 1

2
≥ 1

2

L∑
j=1

pj ≥ L

2
2−n(HP +ε).

Hence

l ≥ L2−2nε−1 ≥ (1− ε)2nHP−3nε−1.

Partition the typical set A
(n)
ε,Q(X1) as

A
(n)
ε,Q(X1) = A1 ∪ A2 ∪ · · · ∪ AK (2.10)

such that |Ar| = l for 1 ≤ r ≤ K − 1 and |AK | ≤ l. Then

K =

⌈
|A(n)

ε,Q(X1)|
l

⌉
≤ 2n(HQ+ε)

(1− ε)2n(HP )
23nε+1 + 1 ≤ 24nε+1

1− ε
+ 1.

Let ι(xn
1 ) = r if and only if xn

1 ∈ Ar. Set B := {xn
1 (1), . . . , xn

1 (l)}. For each

r ∈ {1, . . . , K}, arbitrarily define a one-to-one function ηr from Ar to B. For each

xn
1 ∈ A

(n)
ε,Q(X1), let η(xn

1 ) = ηr(x
n
1 ) where r = ι(xn

1 ). Finally, define the function

φ : A
(n)
ε,Q(X1) → {1, . . . , K} ×B
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as

φ(xn
1 ) = (ι(xn

1 ), η(xn
1 )).

By construction, φ is a one-to-one function.

Now construct a new code C ′ for the source distribution QX as follows. First, for

source sequence (xn
1 , . . . , xn

s ) such that xn
1 ∈ A

(n)
ε,Q(X1), we apply code Cn on

(η(xn
1 ), xn

2 , . . . , x
n
s ), and then transmit the index ι(xn

1 ) to every node in the network.

For every (v, Xi) ∈ D with i 6= 1, we use Cn to reproduce xn
i . If (v, X1) ∈ D, we first

apply the decoding function of Cn to get x̂n
1 (v), the reproduction of η(xn

1 ). If

x̂n
1 (v) ∈ A

(n)
ε,P (X), then we recover xn

1 by applying the inverse map φ−1(ι(xn
1 ), x̂n

1 (v)).

Otherwise, we declare an error.

The code C ′n has rate no greater than

R +
1

n

(
log

2n4ε+1

1− ε
+ 1

)
1

and error probability Q
∏s

i=2 Pi(En) bounded by

Q
(
Xn

1 /∈ A
(n)
ε,Q(X1)

)
+

l∑
j=1

Q1 (xn
1 (j)) ej ≤ 5ε

by (2.8) and (2.9). Since ε > 0 is arbitrary, R ∈ RL(Q1

∏s
i=2 Pi). ¤

The argument in the proof of Theorem 2.3.2 works only for independent sources

since (φ(xn
1 ), xn

2 , . . . , x
s
n) need not be typical for QX when (xn

1 , . . . , x
n
s ) is typical for

PX in general. Also the argument cannot be directly applied to the functional case

since the functional demands cannot be calculated locally. By applying the result of

Theorem 2.3.2, we have the following corollary.

Corollary 2.3.3 Let N be a non-functional network source coding problem without

side information. If two distributions PX =
∏s

i=1 Pi and QX =
∏s

i=1 Qi for indepen-

dent source X satisfy HP (Xi) = HQ(Xi) ∀ i ∈ {1, . . . , s}, then RL(PX) = RL(QX).
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The proof technique from Theorem 2.3.2 can also be applied to show thatRL(
∏s

i=1 Pi)

is continuous in the entropy vector of the independent sources X1, . . . , Xs. Since each

entropy HP (Xi) is continuous in Pi for i ∈ {1, . . . , s}, this implies that RL(
∏s

i=1 Pi)

is continuous in (P1, . . . , Ps) when N is non-functional, as shown in Theorem 2.3.4.

Theorem 2.3.4 Let N be a non-functional network source coding problem and let

PX =
∏s

i=1 Pi. Then RL(PX) is continuous in the entropy vector

(HP (X1), . . . , HP (Xs)).

In other words, for any ε > 0 and any PX =
∏s

i=1 Pi and QX =
∏s

i=1 Qi, there exists

a δ > 0 such that RL(PX) and RL(QX) are ε-close whenever |HP (Xi)−HQ(Xi)| < δ

for all i ∈ {1, . . . , s}.

Proof. It suffices to consider the case

HP (Xi) = HQ(Xi) ∀i ∈ {2, . . . , s}.

Let HP = HP (X1) and HQ = HQ(X1) and suppose that

HQ ≤ HP ≤ HQ + δ

for some δ > 0. Then RL(PX) ⊆ RL(QX) by Theorem 2.3.2. For any achievable rate

vector R ∈ RL(QX), let {Cn} be a sequence of rate-R, length-n codes such that the

error probability with respect to QX tends to zero as n grows without bound. For

any τ > 0 and n > 1
τ
, since HP ≤ HQ + δ, we partition the set A

(n)
τ,P (X1) as

A
(n)
τ,P (X1) = ∪L

i=1A
(n)
i ,

where L = 2n(δ+2τ), such that each A
(n)
i has size smaller than or equal to A

(n)
τ,Q(X1).

By building injections from A
(n)
i to A

(n)
τ,Q(X1) as in the proof of Theorem 2.3.2 and
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sending additional rate

∆R =
1

n
log

2n(δ+2τ)+1

1− τ
· 1

throughout the network to distinguish the sets A
(n)
1 , . . . , A

(n)
L , we get a sequence of

new codes {C ′n} of rate R + ∆R whose error probabilities with respect to PX tend

to zero as n grows without bound. That shows RL(PX) and RL(QX) are

(δ + 3τ − log(1− τ))-close. This completes the proof. ¤

2.3.2 Comparing RL(PX,Y) and R(PX,Y,0)

In this section, we compare RL(PX,Y), which requires asymptotically negligible block

error probability, andR(PX,Y,D), which requires asymptotically negligible per-symbol

distortion. We first prove that RL(PX,Y) = R(PX,Y,0) for the canonical case. We

then explain why this property may not hold for non-canonical coding case.

Theorem 2.3.5 If N is canonical, then for all PX,Y ∈M

R(PX,Y,0) = RL(PX,Y).

Proof. We begin by proving that the desired result holds for distortion measure d if

and only if it holds for the Hamming distortion measure dH . We then show that if a

reproduction with sufficiently low Hamming distortion is available at a demand

node, then the additional rate required to achieve a lossless description at that node

is negligible.

Let dH denote the Hamming distance. Recall that distortion measure d satisfies

dmin ≤ d(a, b) ≤ dmax for all a 6= b in ϑ by assumption, where dmin > 0 and

dmax < ∞. Thus, for any n > 0 and any a,b ∈ ϑn,

dmin · dH(a,b) ≤ d(a,b) ≤ dmax · dH(a,b).
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Thus, for any two sequences {an}∞n=1 and {bn}∞n=1,

lim
n→∞

1

n
d((a1, . . . , an), (b1, . . . , bn)) = 0

if and only if

lim
n→∞

1

n
dH((a1, . . . , an), (b1, . . . , bn)) = 0.

As a result, if R(PX,Y,0) = RL(PX,Y) when d = dH , then the result applies to all

distortion measures in the given class.

By definition, RL(PX,Y) ⊆ R(PX,Y,0). We therefore need only prove that

R(PX,Y,0) ⊆ RL(PX,Y). Let R ∈ R(PX,Y,0) be arbitrary. We next show that for

any ε > 0, the rate vector R + ε · 1 is in RL(PX,Y). Choose a rate-(R + ε
2
· 1),

length-n block code C such that for any (v′, θ) ∈ D, the reproduction θ̂n(v′) of

θn(Xn) at v′ satisfies
1

n
EdH(θn(Xn), θ̂n(v′)) < τ,

where τ is chosen to satisfy

ks(H(τ) + τ log(ms − 1)) <
ε

2
.

Here we recall that k is the total number of reproduction requests, that is, k is the

number of pairs (v′, θ) ∈ D and that for any θ ∈ Θ, I(θ) is the subset of {1, . . . , s}
such that θ is a non-degenerate function of XI(θ). For any (v′, θ) ∈ D and every

i ∈ I(θ), choose a vertex v(i, θ) ∈ V such that Xi can be observed by v and there is

a path from v(i, θ) to v′. We use P(v′, θ, i) to denote this path. By assumption and

Corollary A.2 in Appendix (notice that the alphabet size of θ is no greater than ms),

1

n
H(θn(Xn)|θ̂n(v′)) ≤ H(τ) + τ log(ms − 1).

Thus by Lemma 2.2.18, the additional rates along paths P(v′, θ, i) (for i ∈ I(θ))

required to achieve a lossless description of θn(Xn) at v′ are asymptotically
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negligible. Since k and s are finite, repeating this argument for each (v′, θ) ∈ D
yields a total rate bounded as

R′ ≤ R +
ε

2
+ k (H(τ) + τ log(m− 1)) · 1

≤ R + ε · 1.

Hence R + ε · 1 ∈ RL(PX,Y) for all ε > 0, and R(PX,Y,0) ⊆ RL(PX,Y). ¤

The argument in the proof of Theorem 2.3.5 cannot be directly applied to the

non-canonical source coding case since even when the average conditional entropy

of the demanded function sequence given its reproduction is arbitrarily small, the

additional rate used to achieve lossless reproduction of that function is not known to

be arbitrarily small; the problem is that the demanded function cannot be written as

a linear combination of locally calculable functions at source nodes.

2.4 Continuity of R(PX,Y,D) with Respect to D

We next study the continuity of R(PX,Y,D) with respect to D. Since R(PX,Y,D) is

convex in D, a naive idea is to apply convexity to show the continuity with respect to

D as in the real-valued function case. Here we aim to prove a stronger continuity, that

is, we show that the continuity is independent of PX,Y and uniform over D, which

means that the choice of ε and δ in Definition 2.2.13 can be made independent of the

values of PX,Y and D. We treat the canonical and non-canonical cases separately.

In the non-canonical ones, it is not clear that whether the choice of ε and δ can be

independent of PX,Y when D is on the boundary of IRD
+, i.e., when some components

of D are zero.

2.4.1 N is Canonical

Theorem 2.4.1 shows that when N is canonical, R(PX,Y,D) is uniformly continuous

in D and the continuity is independent of PX,Y. The central insight of the proof is
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captured in a sequence of intermediate results (Lemmas A.1 - A.4 which culminate

in Lemma A.5), all of which are stated and proved in Appendix A. The key idea of

the proof is that since applying only convexity and monotonicity is not sufficient to

prove the continuity of R(PX,Y,D) at D for those D on the boundary of IRD
+, we

increase D slightly to D + δ · 1 and show that when δ > 0 is sufficiently small, the

difference between R(PX,Y,D) and R(PX,Y,D + δ · 1) can be made arbitrarily small

(see Lemma A.5). Since D + δ · 1 is not a boundary point of IRD
+, we then directly

apply convexity and monotonicity to show the desired result.

Theorem 2.4.1 LetN be a canonical network source coding problem. ThenR(PX,Y,D)

is uniformly continuous in D. This continuity is further independent of PX,Y.

Proof. To prove the desired result, we show that for any ε > 0, there exists some

δ > 0 such that for any PX,Y ∈M, and any D,D′ ∈ IRD
+, if ||D−D′|| < δ, then

R(PX,Y,D) and R(PX,Y,D′) are ε-close.

By Lemma A.5, for any ε > 0, there exists a δ > 0 such that for all PX,Y ∈M and

any D ∈ IRD
+, R(PX,Y,D) and R(PX,Y,D + δ · 1) are ε/2-close. For any

D = (Dκ)κ∈D and D′ = (D′
κ)κ∈D in IRD

+ such that ||D−D′|| ≤ δ, let

D0 := min{D,D′} = (min{Dκ, D
′
κ})κ∈D.

Then ||D−D0|| ≤ δ and ||D′ −D0|| ≤ δ. Thus

D0 ≤ D ≤ D0 + δ · 1
D0 ≤ D′ ≤ D0 + δ · 1.

Since

R(PX,Y,D0) ⊆ R(PX,Y,D) ⊆ R(PX,Y,D0 + δ · 1)

R(PX,Y,D0) ⊆ R(PX,Y,D′) ⊆ R(PX,Y,D0 + δ · 1),

Lemma A.5 implies that both R(PX,Y,D) and R(PX,Y,D′) are ε/2-close to
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R(PX,Y,D0). So R(PX,Y,D) and R(PX,Y,D′) are ε-close. ¤

2.4.2 N is Non-Canonical

The argument in the proof of Theorem 2.4.1 cannot be directly applied to the non-

canonical case since the behavior of non-canonical source coding is much different

from that of canonical case when one or more distortions is precisely equal to zero.

Hence the PX,Y-independence of the uniform continuity of R(PX,Y,D) can be proved

for only those D in the interior of IRD
+, i.e., for those D with all non-zero components.

In Theorem 2.4.2, we prove this result by using a different metric on IRD
+, showing

that for all PX,Y, whenever D and D′ are sufficiently close in the L2-norm sense and

have the same supports, the corresponding rate regions are arbitrarily close even if

D has some zero components.

Theorem 2.4.2 Let N be a non-canonical network source coding problem. Let

D ∈ IRD
+\{0}. For any ε > 0, there exists a δ > 0 such that for any PX,Y ∈ M and

any D′ ∈ IRD
+ satisfying (1− δ)D ≤ D′ ≤ (1 + δ)D, R(PX,Y,D) and R(PX,Y,D′) are

ε-close.

Proof. For any ε > 0, let δ > 0 be sufficiently small so that δk log(m) < ε. Then for

any D′ ∈ IRD
+ such that (1− δ)D ≤ D′ ≤ (1 + δ)D,

R(PX,Y, (1− δ)D) ⊆ R(PX,Y,D′) ⊆ R(PX,Y, (1 + δ)D).

By concavity,

1

1 + δ
R(PX,Y, (1 + δ)D) +

δ

1 + δ
R(PX,Y,0) ⊆ R(PX,Y,D)

(1− δ)R(PX,Y,D) + δR(PX,Y,0) ⊆ R(PX,Y, (1− δ)D).
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Therefore,

1

1 + δ
R(PX,Y,D′) +

δ

1 + δ
R(PX,Y,0) ⊆ R(PX,Y,D)

(1− δ)R(PX,Y,D) + δR(PX,Y,0) ⊆ R(PX,Y,D′).

Since R(PX,Y,D) ⊆ aR(PX,Y,D) for all 0 ≤ a ≤ 1 and for all D ∈ IRD
+,

R(PX,Y,D′) ⊆ 1

1 + δ
R(PX,Y,D′)

R(PX,Y,D) ⊆ (1− δ)R(PX,Y,D),

and hence

R(PX,Y,D′) +
δ

1 + δ
R(PX,Y,0) ⊆ R(PX,Y,D)

R(PX,Y,D) + δR(PX,Y,0) ⊆ R(PX,Y,D′).

Now, k log(m) · 1 ∈ R(PX,Y,0) and δk log(m) < ε, together imply

ε · 1 ∈
(

δ

1 + δ
R(PX,Y,0)

)
∩ (δR(PX,Y,0)) .

Therefore, R(PX,Y,D) and R(PX,Y,D′) are ε-close. ¤

Notice that by definition of R(PX,Y,D),

R(PX,Y,D) = ∩D′≥DR(PX,Y,D′).

Additionally, the space RD
+ is compact under L2-norm. Therefore, Corollary 2.4.3

follows.

Corollary 2.4.3 Let N be a network source coding problem. Fix distribution PX,Y.

The lossy rate region R(PX,Y,D) is uniformly continuous in D ∈ IRD
+.
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2.5 Continuity with Respect to PX,Y

In this section, we investigate the continuity of RL(PX,Y) and R(PX,Y,D) with re-

spect to PX,Y. We begin by defining inner semi-continuity and outer semi-continuity.

Definition 2.5.1 For any sequence of sets {A`}∞`=1, define

lim inf
`→∞

A` := ∪∞`=1 ∩l≥` Al

lim sup
`→∞

A` := ∩∞`=1 ∪l≥` Al.

If both lim inf`→∞ A` and lim sup`→∞ A` exist and lim sup`→∞ A` = lim inf`→∞ A` =

A∗ for some A∗, we say that lim`→∞ A` exists and define

lim
`→∞

A` := A∗.

Definition 2.5.2 Set function A(PX,Y) ⊆ IRE is inner semi-continuous in PX,Y ∈M
if and only if for every PX,Y ∈ M and any sequence {P (`)

X,Y} ⊂ M that converges to

PX,Y

A(PX,Y) ⊆ lim inf
`→∞

A(P
(`)
X,Y).

Definition 2.5.3 Set function A(PX,Y) ⊆ IRE is outer semi-continuous in PX,Y ∈M
if and only if for every PX,Y ∈ M and any sequence {P (`)

X,Y} ⊂ M that converges to

PX,Y

A(PX,Y) ⊇ lim sup
`→∞

A(P
(`)
X,Y).

By definition, A(PX,Y) is continuous in PX,Y ∈ M if and only if it is both inner

and outer semi-continuous in PX,Y.

Note that when the alphabet size is infinite, RL(PX,Y) is not necessarily contin-

uous in PX,Y even for the point-to-point network with a single source, as shown in

Example 2.5.4.

Example 2.5.4 Consider the point-to-point network with a single source, shown in

Fig. 2.4. For this network,N = (V , E ,S,D) = (({v1, v2}, {(v1, v2)}), {(v1, X1)}, {(v2, X1)})



36

v1 -X1
- v2 - X1

Figure 2.4: The point-to-point network

and X = X1. Let the source alphabet X1 be the non-negative integers Z+. By Shan-

non’s source coding theorem, RL(PX) = {R(v1,v2) : R(v1,v2) ≥ H(X)}. When PX is

the distribution that places probability 1 on the symbol 1, RL(PX) = [0,∞). Let

M > 0 be fixed. We next demonstrate the existence of a sequence {P l
X}∞l=1 for which

liml→∞ P l
X = PX while RL(P l

X) ⊂ [M,∞) for all l. To show such a sequence exists,

we show that for any ε > 0, there exists a finite-support distribution P ε
X on Z+, the

set of nonnegative integers, such that
∑∞

i=0 |PX(i) − P ε
X(i)| ≤ 2ε and H(P ε

X) ≥ M .

This shows that the entropy for the distribution P ε
X can be arbitrarily large even

when the distance between P ε
X and PX is small.

Given any finite-support distribution q = (q1, q2, . . .), consider the random vari-

able X with probability distribution p = (p0, p1, . . .) defined by

p0 = 1− ε, pi = εqi for i ≥ 1.

Then

H(X) = (1− ε) log

(
1

1− ε

)
+ ε

( ∞∑
i=1

qi log

(
1

εqi

))

= H(ε) + εH(q).

Let M ′ = max{M, H(ε) + 1}. If we can find some finite-support distribution q such

that

H(q) ≥ M ′ −H(ε)

ε
,

then P ε
X = p satisfies both H(P ε

X) ≥ M and
∑∞

i=1 |P ε
X(i) − PX(i)| = 2ε as desired.

To construct such a distribution q, let L = d2(M ′−H(ε))/εe and qi = 1
L

for all 1 ≤ i ≤ L

and qi = 0 otherwise. ¤
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2.5.1 Inner Semi-Continuity

For any length-n block code Cn and for every edge e ∈ E and demand (v, θ) ∈ D, let

Fe denote the random variable that represents the encoded message on e and θ̂n(v)

denote the reproduction of θn(Xn) at node v using the block code Cn. Recall that for

each (v, θ) ∈ D and each i ∈ I(θ), there exist a pair (v′, Xi) ∈ S and a path, denoted

by P(v, θ, i), that starts from v′ and ends at v. If i /∈ I(θ), we define P(v, θ, i) = ∅
for all v ∈ V . For every e ∈ E , every i ∈ {1, . . . , s}, and any D = (Dκ)κ∈D ∈ IRD

+, let

ω(e, i,D) := {(v, θ) ∈ D | e ∈ P(v, θ, i) and D(v,θ) = 0}.

We start by proving inner semi-continuity of R(PX,Y,D) with respect to PX,Y.

For every subset A of IRE
+, let A denote the Euclidean closure of A in IRE

+. Define

R∗(PX,Y,D) :=



R = (Re)e∈E | Re ≥ 1

n


HP (Fe) +

s∑
i=1

∑

(v,θ)∈ω(e,i,D)

HP (θn|θ̂n(v))




1

n
EP d(θn(Xn), θ̂n(v)) ≤ Dv,θ ∀(v, θ) ∈ D such that Dv,θ 6= 0

for some length-n block code C}.

In Lemma 2.5.5, we show that R(PX,Y,D) = R∗(PX,Y,D) when N is canonical and

whenN is non-canonical but D > 0. In the proof, we apply the fact thatR∗(PX,Y,D)

is itself continuous in D. Since the proof technique for the continuity of R∗(PX,Y,D)

with respect to D is similar to Section 2.4, we state it without proof in Appendix B.

Lemma 2.5.5 Let N be a network source coding problem and fix D ∈ IRD
+. If N is

canonical and D is arbitrary or N is non-canonical and D > 0, then

R(PX,Y,D) = R∗(PX,Y,D).

Proof. Let D ∈ IRD
+. If N is non-canonical, let D > 0, otherwise let D be arbitrary.

Let R be any D-achievable rate vector. Then by definition of R(PX,Y,D), for any
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ε > 0, there exists a rate-R, length-n block code C such that

1

n
Ed(θn(Xn), θ̂n(v)) ≤ Dv,θ + ε ∀(v, θ) ∈ D.

For every (v, θ) ∈ D such that Dv,θ = 0,

1

n
H(θn|θ̂n(v)) ≤ H

(
ε

dmin

)
+

ε

dmin

log(ms − 1)

by Corollary A.2. Thus,

R(PX,Y,D) + k

(
H

(
ε

dmin

)
+

ε

dmin

log(ms − 1)

)
· 1 ⊆ R∗(PX,Y,D + ε · 1) ∀ε > 0.

By Lemma B.1,

lim
ε→0

R∗(PX,Y,D + ε · 1) = R∗(PX,Y,D).

Hence

R(PX,Y,D) ⊆ R∗(PX,Y,D).

On the other hand, any R in the interior of R∗(PX,Y,D) is D-achievable. (This

follows from Lemma 2.2.18 when N is canonical and D has zero components.) Thus

R(PX,Y,D) ⊇ R∗(PX,Y,D). ¤

We next use R∗(PX,Y,D) to prove that R(PX,Y,D) is inner semi-continuous in PX,Y

when N is canonical or when N is non-canonical and D > 0.

Theorem 2.5.6 Fix D ∈ IRD
+. If N is canonical and D is arbitrary or N is non-

canonical and D > 0, then R(PX,Y,D) is inner semi-continuous in PX,Y.

Proof. The proofs of the two cases are similar. We give details only for the canonical

case. Let R=(Re)e∈E∈ R(PX,Y,D). By Lemma 2.5.5, for any ε > 0, there exist an n

and a length-n block code Cn such that

Re + ε ≥ 1

n


HP (Fe) +

s∑
i=1

∑

(v,θ)∈ω(e,i,D)

HP (θn|θ̂n(v))



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and for all (v, θ) ∈ D such that Dv,θ 6= 0

1

n
EP d(θn(Xn), θ̂n(v)) ≤ Dv,θ + ε.

For this code Cn, the transition probability PFe|Xn,Yn for all e ∈ E is fixed. For all

e ∈ E , since lim`→∞ P
(`)
X,Y = PX,Y, the joint probability

P
(`)
Xn,Yn,Fe

:= PXn,YnPFe|Xn,Yn

satisfies

lim
`→∞

P
(`)
Xn,Yn,Fe

= PXn,Yn,Fe ,

where

PXn,Yn,Fe := PXn,YnPFe|Xn,Yn .

Thus,

lim
`→∞

1

n
HP (`)(Fe) =

1

n
HP (Fe). (2.11)

Likewise,

lim
`→∞

1

n




s∑
i=1

∑

(v,θ)∈ω(e,i,D)

HP (`)(θn|θ̂n(v))


 =

1

n




s∑
i=1

∑

(v,θ)∈ω(e,i,D)

HP (θn|θ̂n(v))




lim
`→∞

1

n
EdP (`)(θn(Xn), θ̂n(v)) ≤ Dv,θ ∀(v, θ) ∈ D

by a similar argument. Hence there exists an integer `′ such that for all ` ≥ `′,

Re + 2ε ≥ 1

n


HP (`)(Fe) +

s∑
i=1

∑

(v,θ)∈ω(e,i,D)

HP (`)(θn|θ̂n(v))


 ∀e ∈ E

1

n
EP (`)d(θn(Xn), θ̂n(v)) ≤ Dv,θ + 2ε ∀(v, θ) ∈ D.

By Lemma 2.5.5,

R + 2ε · 1 ∈
⋂

`≥`′
R(P (`),D + 2ε · 1).
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By Theorem 2.4.2, when ε > 0 is sufficiently small,

R + 3ε · 1 ∈
⋂

`≥`′
R(P (`),D).

Therefore,

R(P,D) ⊆ lim inf
`→∞

R(P (`),D).

¤

Corollary 2.5.7 If N is canonical, then RL(PX,Y) is inner semi-continuous in PX,Y.

Proof. The result follows immediately from Theorem 2.5.6 and Theorem 2.3.5. ¤

2.5.2 Outer Semi-Continuity

We next study outer semi-continuity with respect to source distribution PX,Y. We

use the intermediate network source coding problem N̂ defined below.

Definition 2.5.8 Let N = (G,S,D) be a fixed network source coding problem with

s source and t side-information random variables. Define N̂ = (G, Ŝ,D) to be the

network source coding problem with graph G, demand D, and s source and 2t + s

side-information random variables given by

Ŝ := S ∪
⋃

(v,Yj)∈S
{(v, Yj+t)} ∪

⋃

(v,Xi)∈S
{(v, Y2t+i)}.

An example of N and N̂ is in Fig. 2.5.

Theorems 2.5.9 - 2.5.11 show the outer semi-continuity with respect to PX,Y for

the lossless, lossy, and zero-error rate regions. The proof of Theorem 2.5.9 relies on

Lemmas C.1 and C.2.

Theorem 2.5.9 Rate region R(PX,Y,D) is outer semi-continuous in PX,Y for all

D ∈ IRD
+ when N is canonical or non-canonical.
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Figure 2.5: The diamond network N and it corresponding network N̂

Proof. Let PX,Y ∈M and {P (`)
X,Y}∞`=1 ⊂M be a sequence of distributions such that

lim
`→∞

P
(`)
X,Y = PX,Y. (2.12)

We aim to show that for any ε > 0, there exists an integer `0 such that

R(P
(`)
X,Y,D) + ε · 1 ⊆ R(PX,Y,D)

for all ` > `0. For ε > 0, let ` be sufficiently large such that

P
(`)
X,Y(x,y) ≥ (1− ε)PX,Y(x,y) ∀ (x,y) ∈ A. (2.13)

By Lemma C.1 in Appendix C, there exists a distribution T
(`)
X,Y,X′,Y′ such that the

marginal of T
(`)
X,Y,X′,Y′ on (X,Y) is P

(`)
X,Y, the conditional distribution on (X,Y)

given the event {(X,Y) = (X′,Y′)} is PX,Y, and T
(`)
X,Y,X′,Y′ ((X,Y) 6= (X′,Y′)) = ε.

We next use this joint distribution T
(`)
X,Y,X′,Y′ to compare the rate regions

R(N , PX,Y,D), R(N , P
(`)
X,Y,D), and R(N̂ , T

(`)
X,Y,Y′,X′ ,D). By definition,

R(N , P
(`)
X,Y,D) ⊆ R(N̂ , T

(`)
X,Y,Y′,X′ ,D) (2.14)

since network N̂ has more side-information random variables than N and has the

same demands as N . By Lemma C.2 in Appendix C,

1

1− 2ε
R(N̂ , T

(`)
X,Y,Y′,X′ ,D) ⊆ R(N , PX,Y,

1

1− 2ε
D). (2.15)
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Together, (2.14) and (2.15) imply that

R(N , P
(`)
X,Y,D) ⊆ (1− 2ε)R(N , PX,Y,

1

1− 2ε
D).

This completes the proof by Theorem 2.4.2. ¤

Theorem 2.5.10 RL(PX,Y) is outer semi-continuous in PX,Y when N is canonical

or non-canonical.

Proof. The proof is similar to that of Theorem 2.5.9. Let PX,Y ∈M and

{P (`)
X,Y}∞`=1 ⊂M be a sequence of distributions such that

lim
`→∞

P
(`)
X,Y = PX,Y. (2.16)

We aim to show that for any ε > 0, there exists an integer l0 such that

RL(P
(`)
X,Y) + ε · 1 ⊆ RL(PX,Y, )

for all ` > `0. For ε > 0, let ` be sufficiently large such that (2.13) holds. By

Lemma C.1, there exists a distribution T
(`)
X,Y,X′,Y′ such that the marginal of

T
(`)
X,Y,X′,Y′ on (X,Y) is P

(`)
X,Y, the conditional distribution on (X,Y) given

(X,Y) = (X′,Y′) is PX,Y, and T
(`)
X,Y,X′,Y′((X,Y) 6= (X′,Y′)) = ε. We next use this

joint distribution T
(`)
X,Y,X′,Y′ to compare the rate regions RL(N , PX,Y),

RL(N , P
(`)
X,Y), and RL(N̂ , T

(`)
X,Y,Y′,X′). By definition,

RL(N , P
(`)
X,Y) ⊆ RL(N̂ , T

(`)
X,Y,Y′,X′) (2.17)

since network N̂ has more side-information random variables than N and has the

same demands as N . By Lemma C.3,

1

1− 2ε
RL(N̂ , T

(`)
X,Y,Y′,X′) ⊆ RL(N , PX,Y). (2.18)
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Together, (2.17) and (2.18) imply that

RL(N , P
(`)
X,Y) ⊆ (1− 2ε)RL(N , PX,Y).

¤

Theorem 2.5.11 RZ(PX,Y) is outer semi-continuous in PX,Y when N is canonical

or non-canonical.

Proof. The proof is similar to that of Theorem 2.5.9. Let PX,Y ∈M and

{P (`)
X,Y}∞`=1 ⊂M be a sequence of distributions such that

lim
`→∞

P
(`)
X,Y = PX,Y. (2.19)

We aim to show that for any ε > 0, there exists l0 such that

RZ(P
(`)
X,Y) + ε · 1 ⊆ RZ(PX,Y, )

for all ` > `0. For ε > 0, let ` be sufficiently large such that (2.13) holds. By

Lemma C.1, there exists a distribution T
(`)
X,Y,X′,Y′ such that the marginal of

T
(`)
X,Y,X′,Y′ on (X,Y) is P

(`)
X,Y, the conditional distribution on (X,Y) given

(X,Y) = (X′,Y′) is PX,Y, and T
(`)
X,Y,X′,Y′((X,Y) 6= (X′,Y′)) = ε. We next use this

joint distribution T
(`)
X,Y,X′,Y′ to compare the rate regions RZ(N , PX,Y),

RZ(N , P
(`)
X,Y), and RZ(N̂ , T

(`)
X,Y,Y′,X′). By definition,

RZ(N , P
(`)
X,Y) ⊆ RZ(N̂ , T

(`)
X,Y,Y′,X′) (2.20)

since network N̂ has more side-information random variables than N and has the

same demands as N . By Lemma C.4,

1

1− 2ε
RZ(N̂ , T

(`)
X,Y,Y′,X′) ⊆ RZ(N , PX,Y). (2.21)
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Together, (2.20) and (2.21) imply that

RZ(N , P
(`)
X,Y) ⊆ (1− 2ε)RZ(N , PX,Y).

¤

Corollary 2.5.12 If N is canonical and D ∈ IRE
+ or N is non-canonical and D > 0,

then R(PX,Y,D) is continuous in PX,Y.

Proof. The result follows immediately from Theorems 2.5.6 and 2.5.9. ¤

Theorem 2.5.13 If N is canonical, then RL(PX,Y) is continuous in PX,Y.

Proof. The result follows immediately from Theorem 2.3.5 and Corollary 2.5.12. ¤

2.6 S-Continuity with Respect to PX,Y

Using the results from Section 2.5.2, we next show that RL(PX,Y) and R(PX,Y,D)

for canonical N and any D ∈ IRD
+ are s-continuous in PX,Y. We next show that

R(PX,Y,D) for non-canonical N and any D > 0 is s-continuous in PX,Y.

Theorem 2.6.1 RZ(PX,Y) is s-continuous in PX,Y for any network source coding

problem N .

Proof. Suppose for all (x,y) ∈ A,

(1− ε)PX,Y(x,y) ≤ QX,Y(x,y) ≤ 1

1− ε
PX,Y(x,y).

By the argument of Theorem 2.5.11,

RZ(QX,Y) ⊆ (1− 2ε)RZ(PX,Y)

RZ(PX,Y) ⊆ (1− 2ε)RZ(QX,Y).

This completes the proof. ¤
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The proofs of Theorems 2.6.2 and 2.6.3 are almost identical to that of Theorem 2.6.1.

Theorem 2.6.2 RL(PX,Y) is s-continuous in PX,Y for any network source coding

problem N .

Theorem 2.6.3 R(PX,Y,D) is s-continuous in PX,Y for all D ∈ IRD
+ and for any

network source coding problem N .

2.7 Summary

In this chapter, we introduce a family of finite-alphabet network source coding prob-

lems that includes prior example problems as special cases. We define the zero-error

rate regionRZ(PX,Y), lossless rate regionRL(PX,Y), and lossy rate regionR(PX,Y,D)

for all the members in the family and then study the continuity and s-continuity

properties of those objects. We began by proving the continuity of R(PX,Y,D) with

respect to D when (a) N is canonical or (b) N is non-canonical and D > 0. We

proved that RZ(PX,Y), RL(PX,Y), R(PX,Y,D) (for all D) are all s-continuous with

respect to PX,Y for any network source coding problem N . We summarize our re-

sults on the continuity with respect to PX,Y in the following tables. The two entries

marked “?” remain open problems.

Canonical Non-canonical
Inner Semi-continuous No No
Outer Semi-continuous Yes Yes

Continuous No No
S-continuous Yes Yes

Table 2.1: Continuity of RZ(PX,Y) with respect to PX,Y.
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Canonical Non-canonical
Inner Semi-continuous Yes No
Outer Semi-continuous Yes Yes

Continuous Yes No
S-continuous Yes Yes

Table 2.2: Continuity of RL(PX,Y) with respect to PX,Y.

Canonical
Non-canonical
(with D > 0)

Non-canonical
(with D on boundary

of IRD
+)

Inner
Semi-continuous

Yes Yes ?

Outer
Semi-continuous

Yes Yes Yes

Continuous Yes Yes ?
S-continuous Yes Yes Yes

Table 2.3: Continuity of R(PX,Y,D) with respect to PX,Y.
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Chapter 3

A Strong Converse

3.1 Introduction

In the traditional source coding scenario, here called the point-to-point network,

comprised of one source node describing source X to one sink node across a single

link, strong converses for both lossless source coding and lossy source coding have

previously appeared in the literature. For example, [19] treats i.i.d. finite-alphabet

source sequences, and [41], [42], and [43] treat more general source sequences. While

the lossless source coding theorem describes the family of rates that can be achieved

with arbitrarily small error probability, the strong converse states that for any rate

outside the rate region, the probability of a correct reconstruction approaches 0 as the

blocklength grows without bound. Similarly, the rate-distortion theorem describes the

set of rates that can be achieved with expected distortion no greater than D while its

strong converse demonstrates that the probability of observing distortion less than D

at any rate outside this region approaches 0 as the blocklength grows without bound.

In this paper, we derive a strong converses for three problems: the Ahlswede-

Körner (coded side information) problem, lossless source coding for multicast net-

works with side-information at the end nodes, and the Gray-Wyner problem. The

source sequences are drawn i.i.d. according to a finite-alphabet source distribution.

Generalized from the strong converse for lossy source coding of the point-to-point

network in [19], the strong converses of interest state that for any distortion vec-



48

tor D when a rate vector R is not in the D-achievable rate region, the probability

of observing distortion at most D with a rate-R code decreases exponentially to 0

as the blocklength n grows without bound. We call such a result an exponentially

strong converse to emphasize the speed of convergence of the correct probabilities

for the rate vectors outside the rate region. The exponentially strong converse for

a network source coding problem is useful for a variety of applications beyond ba-

sic understanding of how achievable error probability varies with rate. For example,

when the exponentially strong converse holds, we can show that any demands that

can be achieved across a network with rate 0 across a given link can also be achieved

when that link is absent [18]. This property is actually quite subtle since it requires

demonstrating that asymptotically small rates across the given link are never critical

to that network’s operation. Notice that this property is not trivial since single-letter

characterizations of the network with that additional link may not be available even

when a single-letter characterization of the network without the 0-rate link is known.

As mentioned above, the exponentially strong converse holds for the point-to-point

network. For the point-to-point lossless case, the intuition is that the probability of

the strongly typical set A
∗(n)
ε (X) for the finite-alphabet source X increases exponen-

tially to 1 as the length n grows without bound. We denote exponent by τ(ε) > 0. Let

B
(n)
ε denote the intersection of A

∗(n)
ε (X) and the correct event for a given sequence of

codes. When the code’s probability of correctness equals 2−nc(n) for some c(n) → 0,

1

n
log

|A∗(n)
ε (X)|
|B(n)

ε |

can be made arbitrarily small when ε > 0 is sufficiently small and n is sufficiently large.

This means that the rate R that is sufficient to describe the set B
(n)
ε is asymptotically

at least 1
n

log |A∗(n)
ε (X)|.

We prove that the exponentially strong converse holds for the lossless coded side

information problem [4], lossless source coding for the family of multicast networks

with side information at the end nodes, and the Gray-Wyner problem [3]. The

cut-set bound is tight for multicast networks with side information at the end nodes
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by [12], and this family includes the family of multicast networks [11] as a subfamily,

which includes the Slepian-Wolf problem [2] as a special case. The strong converse has

been proven for the coded side information problem in [20] and for the Slepian-Wolf

problem in [21]. Neither of these results shows exponential decay.

The remainder of this paper is structured as follows. We define the exponentially

strong converse in Section 3.2. We briefly explain an application in Section 3.3. We

show that the exponentially strong converse is true for the coded side information

problem in Section 3.4. In Section 3.5, we prove the exponentially strong converse for

the family of multicast networks with side information at the end nodes. Finally, we

prove the exponentially strong converse for the Gray-Wyner problem in Section 3.6.

3.2 Definition and Problem Statement

Here we define the the exponentially strong converse for general non-functional lossless

source coding problems defined in Section 2.2. For simplicity, when s = 1 (resp.

t = 1), X1 (resp. Y1) will abbreviated by X (resp. Y ). We first define the family of

multicast networks with side information at the end nodes.

Definition 3.2.1 A network source coding problem N is a multicast network with

side information at the end nodes if and only if for every v ∈ V

1. Dv = ∅ or Dv = {X1, . . . , Xs}.

2. If (v, Yj) ∈ S for some j ∈ {1, . . . , t}, then (v, v′) /∈ E for all v′ ∈ V .

Any multicast network N is a member of this family since in multicast networks there

is no side information (t = 0).

We next define the cut-set bound. A subset is any set A ⊆ V .

Definition 3.2.2 Let N be a non-functional network source coding problem. The

cut-set bound is a set of inequalities for rate vector R defined as

RA ≥ H(XD(A)|XS(Ac),YS(Ac)) ∀ A ⊆ V , (3.1)
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where for any A ⊆ V ,

RA :=
∑

(v,v′)∈E:v∈A
R(v,v′)

XS(Ac) := {Xi | (v,Xi) ∈ S for some v ∈ A}
YS(Ac) := {Yj | (v, Yj) ∈ S for some v ∈ A}
XD(A) := {Xi | (v,Xi) ∈ D for some v ∈ Ac}.

Finally we define the exponentially strong converse.

Definition 3.2.3 We say that the exponentially strong converse holds for lossy net-

work source coding problem N if and only if for any PX,Y, any rate vector R, and

any distortion vector D, R /∈ R(PX,Y,D) if and only if for any sequence of rate-R,

length-n block codes {Cn} the probability of observing distortion less than or equal

to D decreases exponentially to 0, i.e.,

lim inf
n→∞

− 1

n
log PXn,Yn

(
1

n
d(XnX̂n(v′)) ≤ D ∀ (v′, Xi) ∈ D

)
> 0,

where for all (v′, Xi) ∈ D, X̂n
i (v′) is the reproduction of Xn

i at node v′ using Cn.

Our approach relies on strong typicality. We briefly mention some properties that

are useful here and fix the notation as follows. Let W be a finite-alphabet random

variable. For any integer n and positive number ε > 0, let A
∗(n)
ε (W ) denote the

strongly typical set. (For example, see [44].) Lemma 3.2.4 states that the probability

of the atypical set (A
∗(n)
ε (W ))c decreases exponentially to 0 as n grows without bound

with exponent greater than or equal to τ(ε) that depends only on the distribution of

W and ε. We state Lemma 3.2.4 without proof.

Lemma 3.2.4 For any ε > 0, when n is sufficiently large

Pr(A∗(n)
ε (W )) ≥ 1− 2−nτ(ε)

for some τ(ε) > 0.
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Let Z be another finite-alphabet random variable. For zn ∈ Zn, let A
(n)
ε (W |Z = zn)

denote the set of sequences wn ∈ Wn that are strongly jointly typical with zn.

3.3 An Application

Consider the following problem: for a given network source coding problem N =

((V , E),S,D), let N = ((V , E),S,D) be the network source coding problem that is

identical to N except that E = E\{e} for some e ∈ E . Given any R = (Re | e ∈ E) in

the achievable rate region for N , we wish to know whether Re = 0 implies that the

rate vector R = (Re)e∈E is in the achievable rate region for N .

Note that by the definition of rate Re = 0 implies only that the number of bits

transmitted across e grows sublinearly in the blocklength n; it does not imply that

zero bits are sent across e. So the key concern is whether a gap can arise in the limit

as Re approaches 0.

One way to study this question is as follows. Let {Cn} be a sequence of length-

n rate-(R + c(n) · 1) block codes for N for which the probability of satisfying the

distortion constraint goes to 1 as n grows without bound. Here 1 is the vector with

all components equal to 1 and {c(n)} is a sequence of non-negative numbers such

that limn→∞ c(n) = 0. Choose n such that Cn satisfies the distortion constraint with

probability P
(n)
D ≥ 1/2. The rate of code Cn on edge e is c(n). Let Cn be the code that

is identical to Cn except that no message is transmitted across edge e and all functions

that rely on that message treat the value as a constant. Then the probability PD

that Cn satisfies the distortion constraint is bounded as PD ≥ 2−nc(n)−1 = 2−n(c(n)+1/n)

using the best guess for the missing message across the edge e. If the exponentially

strong converse holds for N , then this implies that the rate vector R is achievable for

N .
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3.4 The Lossless Coded Side Information Problem

We prove the exponentially strong converse for the coded side information problem [4].

(See Figure 3.1.) Our proof follows the approach in [20], where the strong converse

theorem for this particular network source coding problem is proven with a slower

rate of convergence. We start with some simplifications of definitions from [20] that

X -
f1,n(RX)

- - X
6

f2,n(RY )
-Y

Figure 3.1: The coded side information problem.

are useful in this section.

Definition 3.4.1 For any positive integer n, positive number δ > 0, and set B ⊆ X n,

define

ψδ(B) := {yn | Pr(Xn ∈ B | Y n = yn) ≥ 2−nδ}.

Definition 3.4.2 For any c > 0, ε > 0, and δ > 0, define

1.

Ŝn(c, ε, δ) :=
1

n
log min |B|,

where the min is taken over all subsets B ⊆ X n such that

− 1

n
log Pr

(
Y n ∈ ψδ(B) ∩ A∗(n)

ε (Y )
) ≤ c.

2.

T̂ (c) := min H(X|U),

where the min is taken over all random variables U such that X → Y → U

forms a Markov chain and

I(Y ; U) ≤ c.
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Theorem 3.4.3 [20, Theorem 1]For all ε > 0, δ > 0, and c > 0

lim
n→∞

Ŝn(c, ε, δ) = T̂ (c).

Theorem 3.4.4 The exponentially strong converse holds for the coded side informa-

tion problem.

Proof. Let (RX , RY ) be a rate pair such that there exists a sequence of length-n

rate-(RX , RY ) block codes {Cn}∞i=1 such that the correct probability

Pr(Xn = X̂n) = 2−nc(n) for some sequence {c(n)} satisfying limn→∞ c(n) = 0. Here

f1,n, f2,n, and gn are the encoding and decoding functions of Cn (as shown in

Figure 3.1) and

X̂n = gn(f1,n(Xn), f2,n(Y n))

is the reproduction of Xn using code Cn. We want to show that (RX , RY ) is

achievable, i.e., that there exists a random variable U such that X → Y → U forms

a Markov chain and that

RX ≥ H(X|U), RY ≥ I(Y ; U).

For any particular value u ∈ {1, 2, . . . , 2nRY } of the encoding function f2,n, define

C(n)(u) := {xn | xn = gn(f1,n(xn), u)}.

By assumption,

2−nc(n) ≤
∑

yn∈Yn

Pr(Y n = yn) Pr(C(n)(f2,n(yn)) | Y n = yn).

Fix ε > 0. By Lemma 3.2.4,

Pr(A∗(n)
ε (X, Y )) ≥ 1− 2−nτ(ε)
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for some τ(ε) > 0. Therefore when n is sufficiently large,

∑

yn∈A
∗(n)
ε (Y )

Pr(Y n = yn) Pr(C(n)(f2,n(yn)) | Y n = yn)

≥ 2−nc(n) − Pr(Y n /∈ A∗(n)
ε (Y ))

≥ 2−nc(n) − 2−nτ(ε) ≥ 2−nb(n,ε) (3.2)

for some sequence of positive numbers {b(n, ε)} such that limn→∞ b(n, ε) = 0 for all

ε > 0. Let S(n, ε) ⊆ A
∗(n)
ε (Y ) be the set of all yn ∈ A

∗(n)
ε (Y ) such that

Pr(C(n)(f2,n(yn)) | Y n = yn) ≥ 2−n2b(n,ε).

Then (3.2) implies

Pr(S(n, ε)) + (1− Pr(S(n, ε)))2−n2b(n,ε) ≥ 2−nb(n,ε)

which leads to

Pr(S(n, ε)) ≥ 2−nb(n,ε)

1 + 2−n2b(n,ε)
> 2−n(b(n,ε)+ 1

n)

when n is sufficiently large. Now by definition

S(n, ε) ⊆
⋃
u

(
ψ2b(n,ε)(C

(n)(u)) ∩ A∗(n)
ε (Y )

)
.

Hence
∑

u

Pr
(
ψ2b(n,ε)(C

(n)(u)) ∩ A∗(n)
ε (Y )

) ≥ 2−n(b(n,ε)+ 1
n),

where the summation is taken over all u ∈ {1, . . . , 2nRY }. Thus there exists an index

u∗ such that

Pr
(
ψ2b(n,ε)(C

(n)(u∗)) ∩ A∗(n)
ε (Y )

) ≥ 2−n(b(n,ε)+ 1
n

+RY ).
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By the definition of Ŝn,

1

n
log |C(n)(u∗)| ≥ Ŝn

(
b(n, ε) +

1

n
+ RY , ε, 2b(n, ε)

)
.

Choose n sufficiently large so that 1
n

+ b(n, ε) < ε. By Theorem 3.4.3,

1

n
log |C(n)(u∗)| ≥ T̂ (ε + RY ) + ε

when n is sufficiently large. Since C(n)(u∗) is the set of xn that can be correctly

decoded when f2,n(Y n) = u∗, |C(n)(u∗)| ≤ 2nRX and hence

RX ≥ T̂ (ε + RY ) + ε

when n is sufficiently large. By the definition of T̂ , there exists an auxiliary random

variable U such that X → Y → U and

RX ≥ H(X|U) + ε, RY ≥ I(Y ; U) + ε.

Letting ε → 0 completes the proof. ¤

3.5 Multicast networks with Side Information at

the End nodes

In this section, we consider the family of multicast networks with side information

at the end nodes. The cut-set bounds for this network are tight by [12]. This result

can be treated as a generalization of multicast capacity [11]. The simplest interesting

example in this family is the problem of lossless source coding with side information

at the decoder. (See Figure 3.2.) The infinium of the set of losslessly achievable rates

is H(X|Y ), which corresponds to one of the two corner points in the rate region of

the Slepian-Wolf problem. We prove the exponentially strong converse for this basic
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example and then use it to conclude that the exponentially strong converse holds for

those network source coding problems where the cut-set bound is tight. This implies

that the exponentially strong converse is true for the family of multicast networks

with side information at the end nodes. Lemma 3.5.1 treats the simplest example,

where a single encoder describes X to a decoder that knows Y .

X - R- - X
6

Y

Figure 3.2: The lossless source coding problem with side information at the decoder.

Lemma 3.5.1 The exponentially strong converse holds for the lossless source coding

problem with side information at the decoder.

Proof. Let R > 0. Suppose that there exists a sequence of length-n rate-R block

codes Cn with correct probability

Pr(Xn = X̂n(Xn, Y n)) = 2−nc(n)

for some sequence {c(n)} such that limn→∞ c(n) = 0, where X̂n(Xn, Y n) is the

reproduction of Xn using code Cn. We want to show that R is in the lossless rate

region by showing that R ≥ H(X|Y ).

For any positive integer n and positive real number ε > 0, let

B(n)
ε := A∗(n)

ε (X,Y ) ∩ {(xn, yn) : xn = X̂n(xn, yn)}

be the set of strongly typical pairs (xn, yn) such that xn is correctly decoded.

Lemma 3.2.4 implies that

Pr(A∗(n)
ε (X, Y )) ≥ 1− 2−nτ(ε)
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for some τ(ε) > 0, so

Pr(B(n)
ε ) ≥ 2−nc(n) − 2−nτ(ε) = 2−nb(n,ε) (3.3)

when n is sufficiently large for some sequence of positive numbers {b(n, ε)} such that

limn→∞ b(n, ε) = 0 for all ε > 0. Now

Pr(B(n)
ε ) =

∑

yn∈A
∗(n)
ε (Y )

Pr(Y n = yn) Pr(B(n)
ε |Y n = yn)

≥ 2−nb(n,ε)

Hence there exists a yn
0 ∈ A

∗(n)
ε (Y ) such that

Pr(B(n)
ε |Y n = yn

0 ) ≥ 2−nb(n,ε). (3.4)

Since for all xn ∈ A
∗(n)
ε (X|Y n = yn

0 )

Pr(Xn = xn|Y n = yn
0 ) ≤ 2−n(H(X|Y )−ε),

(3.4) implies that

|B(n)
ε ∩ {Y n = yn

0 }| ≥ 2n(H(X|Y )−ε−b(n,ε)). (3.5)

Since Cn has rate R and Bn
ε ∩ {Y n = yn

0 } is by definition the set of pairs

(xn, yn
0 ) ∈ A

∗(n)
ε (X, Y ) such that xn can be correctly decoded when Y n = yn

0 ,

2nR ≥ |B(n)
ε ∩ {Y n = yn

0 }|.

Thus (3.5) implies that

R ≥ H(X|Y )− ε− b(n, ε)

for all n and ε. Since ε > 0 is arbitrary, letting n →∞ gives

R ≥ H(X|Y ).
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¤

Lemma 3.5.2 relates our condition on the probability of correct decoding to the

tightness of the cut-set bound.

Lemma 3.5.2 Let N be a network source coding problem and let R be a rate vector.

For all (v′, Xi) ∈ D, let X̂n
i (v′) be the reproduction of Xn

i at node v′ ∈ V . If there

exists a sequence of length-n rate-R block codes such that the correct probability is

Pr
(
Xn

i = X̂n
i (v′) ∀ (v′, Xi) ∈ D

)
= 2−nc(n)

for some sequence {c(n)} such that limn→∞ c(n) = 0, then R satisfies the cut-set

bound of N .

Proof. For any cut A ∈ A, since Ac demands the sources XA which are available in

A and (X(Ac),Y(Ac)) is available in Ac, each cut A corresponds a lossless source

coding problem with side information on the decoder side as in Figure 3.2. Hence

by Lemma 3.5.1, the overall rate RA from A to Ac must satisfy (3.1) for all A ∈ A.

This completes the proof. ¤

Theorem 3.5.3 concludes this section.

Theorem 3.5.3 The exponentially strong converse holds for the multicast network

with side information at the end nodes.

Proof. The result a direct consequence of Lemma 3.5.2 and the tightness of the

cut-set bound [12]. ¤

3.6 Lossy Source Coding for the Gray-Wyner Net-

work

Given D = (D1, D2) > 0. Recall that the lossy rate region for the Gray-Wyner

problem shown in Figure 3.3 is the closure of the set of all (R0, R1, R2) for which
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v0X,Y -
6

v1 -X̂

?-Ŷv2

-

-

Figure 3.3: The Gray-Wyner network.

there exists a random variable U with alphabet size |U| ≤ |X1||X2|+ 2, such that

R0 ≥ I(X; U), R1 ≥ RX1|U(D1), R2 ≥ RX2|U(D2), (3.6)

where X = (X1, X2) denotes the source vector and RXi|U(Di) is the conditional rate-

distortion function for distortion Di for i ∈ {1, 2}.
Theorem 3.6.2 shows that the exponentially strong converse holds for the lossy

Gray-Wyner Problem. The idea of the proof is that since the exponent of the prob-

ability of meeting the distortion constraints is asymptotically zero, the given rate

vector is D-achievable for another distribution X that is close to PX. The approach

follows the method of proving the converse of the region (3.6) in [3] that turns the

dimension-n description of the rate vectors into a single-letter form. Hence a similar

approach can be applied to prove Theorem 3.4.4. Lemma 3.6.1 is useful for proving

Theorem 3.6.2.

Lemma 3.6.1 Let W be a random variable with alphabet W and distribution PW .

Let {B(n)} be a sequence of sets B(n) ⊆ Wn such that PW n(B(n)) = 2−nb(n) for

some sequence of non-negative numbers {b(n)}∞n=1 satisfying limn→∞ b(n) = 0. Then

there exist a sequence {a(n)}∞n=1 of non-negative numbers and a sequence {Q(n)
W n} of

distributions on Wn such that

lim
n→∞

a(n) = 0

lim
n→∞

Q
(n)
W n(B(n)) = 1

2−na(n)PW n(wn) ≤ QW n(wn) ≤ 2na(n)P
(n)
W n(wn) ∀wn ∈ Wn.
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Proof. Define

Q
(n)
W n(wn) =

2
n(b(n)+ 1√

n
)
PW n(wn)

2
n(b(n)+ 1√

n
)
PW n(B(n)) + (1− PW n(B(n)))

, if wn ∈ B(n),

Q
(n)
W n(wn) =

PW n(wn)

2
n(b(n)+ 1√

n
)
PW n(B(n)) + (1− PW n(B(n)))

, if wn /∈ B(n).

Then

Q
(n)
W n(B(n)) ≥ 2

√
n

2
√

n + 1
→ 1 as n →∞

2
−n( 1√

n
+ 1

n
)
PW n(wn) ≤ Q

(n)
W n(wn) ≤ 2

n(b(n)+ 1√
n

)
PW n(wn) ∀ wn ∈ Wn.

¤

Theorem 3.6.2 The exponentially strong converse holds for the lossy Gray-Wyner

problem.

Proof. Let R = (R0, R1, R2) be a rate vector and PX denote the source distribution.

Suppose that there exists a sequence of length-n, rate-R block codes such that

lim
n→∞

− 1

n
Pr

(
Ed(Xn

i , X̂n
i ) ≤ Di ∀ i ∈ {1, 2}

)
= 0,

where X̂n
1 and X̂n

2 are reproductions of Xn
1 and Xn

2 at nodes v1 and v2, respectively.

We want to show that R is in the region described in (3.6).

For ε > 0, let

B(n)
ε := A∗(n)

ε (X) ∩ {xn ∈ X n
1 ×X n

2 | xn = (X̂n
2 (xn), X̂n

2 (xn))}.

Then the same argument used to prove (3.3) leads to

Pr(B(n)
ε ) = 2−nb(n,ε) (3.7)

for some sequence of non-negative numbers {b(n, ε)} such that limn→∞ b(n, ε) = 0
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for all ε > 0.

By Lemma 3.6.1, there exists a sequence of non-negative numbers {a(n, ε)}∞n=1 and a

sequence of distributions {Q(n,ε)
Xn } such that for all ε > 0,

lim
n→∞

a(n, ε) = 0, lim
n→∞

Q
(n,ε)
Xn (B(n)

ε ) = 1,

and

2−na(n,ε)PXn(xn) ≤ Q
(n,ε)
Xn (xn) ≤ 2na(n,ε)PXn(xn) ∀ xn ∈ X n

1 ×X n
2 . (3.8)

Let n(ε) be a positive integer such that a(n(ε), ε) < ε and Q
(n(ε),ε)

Xn((ε)) (B
(n(ε))
ε ) > 1− ε.

Let Q
(ε)

Xn(ε) denote the distribution Q
(n(ε),ε)

Xn(ε) . Hence by the continuity of the lossy rate

region with respect to the distortion vector, there exists a function τ1(ε) with

limε→∞ τ1(ε) = 0 such that the rate vector n (R + τ1(ε) · 1) is in the D-achievable

region for the Gray-Wyner problem with respect to distribution Q
(ε)

Xn(ε) . Hence there

exist random variables U , X̂
n(ε)
1 , and X̂

n(ε)
2 such that

R + τ1(ε) · 1 ≥ 1

n(ε)

(
IQ(ε)(Xn(ε); U), R

X
n(ε)
1 |U(n(ε)D1, Q

(ε)),

R
X

n(ε)
2 |U(n(ε)D2, Q

(ε))
)

,

where IQ(ε) and R
X

n(ε)
i |U(Di, Q

(ε)) (for i ∈ {1, 2}) are the mutual information and

conditional rate-distortion functions evaluated according to distribution Q
(ε)

Xn(ε) . Let

J(ε) be an independent random variable uniformly distributed over {1, . . . , n(ε)}.
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Define Ui = (U,Xi−1
1 ) for all i ∈ {1, . . . , n(ε)}. Then

1

n(ε)
IQ(ε)(Xn(ε); U) =

1

n(ε)

n(ε)∑
i=1

IQ(ε)(Xi; U |Xi−1
1 )

=
1

n(ε)

n(ε)∑
i=1

(
IQ(ε)(Xi; U,Xi−1

1 )− IQ(ε)(Xi;X
i−1
1 )

)

=
1

n(ε)

n(ε)∑
i=1

IQ(ε)(Xi; Ui)− 1

n(ε)

n(ε)∑
i=1

HQ(ε)(Xi) +
HQ(ε)(Xn(ε))

n(ε)

= IQ(ε)(XJ(ε); UJ(ε)|J(ε))−HQ(ε)(XJ(ε)|J(ε)) +
HQ(ε)(Xn(ε))

n(ε)

= −HQ(ε)(XJ(ε)|UJ(ε), J(ε)) +
HQ(ε)(Xn(ε))

n(ε)

= IQ(ε)(XJ(ε); UJ(ε), J(ε)) +
HQ(ε)(Xn(ε))

n(ε)
−HQ(ε)(XJ(ε)).

Similarly, let V1,1 = (U,X i−1
1,1 ) and V2,1 = (U,X i−1

2,1 ) for i ∈ {1, . . . , n(ε)}. Then

1

n(ε)
R

X
n(ε)
1 |U(n(ε)D1, Q

(ε)) ≥ RX1,J(ε)|UJ(ε),J(ε)(D1, Q
(ε))

1

n(ε)
R

X
n(ε)
2 |U(n(ε)D2, Q

(ε)) ≥ RX2,J(ε)|UJ(ε),J(ε)(D2, Q
(ε)).

Since XJ(ε) has finite alphabet X1 ×X2, there exists a conditional distribution

QVn(ε)|XJ(ε)
for random variable Vn(ε) with alphabet size |X1||X2|+ 2 such that

IQ(ε)(XJ(ε); UJ(ε), J(ε)) = IQ(ε)(XJ(ε); Vn(ε))

RX1,J(ε)|UJ(ε),J(ε)(D1, Q
(ε)) ≥ RX1,J(ε)|Vn(ε)

(D1, Q
(ε))

RX2,J(ε)|UJ(ε),J(ε)(D2, Q
(ε)) ≥ RX2,J(ε)|Vn(ε)

(D2, Q
(ε)).

We next show that

lim
ε→0

Q
(ε)
XJ(ε)

(x) = PX(x) ∀ x ∈ X1 ×X2 (3.9)

lim
ε→0

HQ(ε)(Xn(ε))

n(ε)
−HQ(ε)(XJ(ε)) = 0. (3.10)
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First, for all xn(ε) ∈ X n(ε)
1 ×X n(ε)

2 ,

Q
(ε)

Xn(ε)(XJ(ε) = α|Xn(ε) = xn(ε)) =
|{i | xi = α}|

n(ε)
∀α ∈ X1 ×X2.

Hence for all xn(ε) ∈ B
(n(ε))
ε ⊆ A

∗(n(ε))
ε (X),

|Q(ε)

Xn(ε)(XJ(ε) = α|Xn(ε) = xn(ε))− PX(α)| < ε

|X1||X2| ∀α ∈ X1 ×X2.

The fact that Q
(ε)

Xn(ε)(B
(n(ε))
ε ) > 1− ε leads to

|Q(ε)

Xn(ε)(XJ(ε) = α)− PX(α)| < ε

|X1||X2| + ε ∀ α ∈ X1 ×X2,

which proves (3.9). By the uniform continuity of mutual information and entropy

functions on finite-alphabet random variables, (3.9) implies that

|HQ(ε)(XJ(ε))−HP (X)| < τ2(ε)

|IQ(ε)(XJ(ε); Vn(ε))− IP (X; Vn(ε))| < τ2(ε)

|RX1,J(ε)|Vn(ε)
(D1, Q

(ε))−RX1|Vn(ε)
(D1, P )| < τ2(ε)

|RX2,J(ε)|Vn(ε)
(D2, Q

(ε))−RX2|Vn(ε)
(D2, P )| < τ2(ε)

for some τ2(ε) such that limε→∞ τ2(ε) = 0, and IP and HP are mutual information

and entropy functions evaluated according to the distribution PX,Vn(ε)
= PXQVn(ε)|X.

Hence for proving (3.10), it remains to show that

lim
ε→∞

HQ(ε)(Xn(ε))

n(ε)
= HP (X).

By (3.8), for all xn(ε) ∈ B
(n(ε))
ε ⊆ A

∗(n(ε))
ε (X),

| − 1

n(ε)
log QX(ε)(xn(ε)) +

1

n(ε)
log PXn(ε)(xn(ε))| ≤ a(n, ε) < ε
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and

| 1

n(ε)
log PXn(ε)(xn(ε))−HP (X)| < τ3(ε)

for some τ3(ε) such that limn→∞ τ3(ε) = 0. Let

τ4(ε) := ε + τ3(ε) + ε log |X1||X2|.

Since Q
(ε)

Xn(ε)(B
(n(ε))
ε ) > 1− ε,

| 1

n(ε)
HQ(ε)(Xn(ε)) −HP (X)| < τ4(ε),

which proves (3.10). Hence the rate vector

R + (τ1(ε) + τ2(ε) + τ4(ε)) · 1

is in the achievable rate region of the Gray-Wyner problem w.r.t. the distribution

PX, which proves the desire result by letting ε → 0. ¤
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Chapter 4

Algorithms for Approximating
Achievable Rate Regions

4.1 Introduction

The derivation of rate regions for lossless and lossy source coding problems is a cen-

tral goal of network source coding theory research. While a network source coding

problem is often considered to be solved once an achievable rate region and matching

converse are demonstrated, these results become useful in practice only when we can

evaluate them for example sources. For some problems, like Slepian and Wolf’s loss-

less multiple access source coding problem [2], evaluating the optimal rate region for

example sources is trivial since the information theoretic bound gives an explicit rate

region characterization. For other problems, including lossy source coding, lossless

source coding with coded side information at the receiver [4],1 and the family of lossy

source coding problems described by Jana and Blahut in [45], the information theo-

retic characterization describes an optimization problem whose solution is the desired

bound. These optimization problems are often difficult to solve for example sources.

While single-letter characterizations and alphabet-size bounds for auxiliary ran-

dom variables are often motivated by concerns about rate region evaluation, the eval-

uation problem itself has received surprisingly little attention in the literature. Most

existing algorithms follow the strategy proposed by Blahut [23] and Arimoto [22].

1Source coding with coded side information at the receiver may be viewed as a type of lossy
coding problem since perfect reconstruction of the side information is not required.
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When applied to rate-distortion bound evaluation, this iterative descent approach

progressively updates solutions for the marginal p(z) on the reproduction alphabet

and the conditional p(z|x) on the reproduction given the source. The convexity of the

objective function results in the algorithm’s guaranteed convergence to the optimal

solution [46]. Calculating the algorithmic complexity of this approach would require

a bound on the number of iterations required to achieve convergence to the optimal

solution (or a sufficiently accurate approximation).

We offer an alternative approach for rate region calculation. The proposed algo-

rithm involves building a linear program whose solution approximates the optimal

rate region to within a guaranteed factor of (1 + ε) times the optimal solution. The

goal of achieving (1 + ε)-accuracy using a polynomial-time algorithm is related to

Csiszár and Körner’s definition of computability, which they propose as a critical

component of any future definition for a single-letter characterization [19, p.259–260].

Our algorithm gives a (1+ ε)-approximation of the rate region for lossless source cod-

ing with coded side information at the decoder [4]; this approach can be generalized

to a lossy incast source coding problem described by Jana and Blahut in [45] and

the achievable rate region for the lossy coded side information problem described by

Berger et al. in [6]. Incast problems are multiple access source coding problems with

one or more transmitters and a single receiver that wishes to reconstruct all sources

in the network. (Reconstruction of possible receiver side information is trivial.) The

lossy incast problem from [45], differs from traditional incast problems in that the

sources may be statistically dependent and exactly one source is reconstructed with

loss (subject to a distortion constraint) while the other source reconstructions are loss-

less. The lossy source coding and Wyner-Ziv problems meet this model of lossy incast

problems. The rate region for this lossy incast problem relies on a single auxiliary

random variable [45]. The achievable rate region for the lossy coded side information

problem relies on a pair of auxiliary random variables [6].

Section 4.2 describes the algorithmic strategy. Section 4.4 describes the approx-

imation algorithm for our lossy incast problem. Since describing the problem in its
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most general form increases notational complexity without adding much insight, we

give details only for the Wyner-Ziv problem. Section 4.5 tackles the lossy coded side

information achievability bound using tools developed for the incast problem.

4.2 Outline of Strategy

In all of the problems studied here, we begin with known information theoretic de-

scriptions that rely on one or more auxiliary random variables. Optimization of each

auxiliary random variable requires optimization of that variable’s conditional distri-

bution given one or more source random variables. Direct optimization is difficult

since the desired rates are not convex or concave in the conditional distributions.

The central observation for our algorithm is that for any fixed conditional distri-

bution on the source given a single auxiliary random variable, all rates and distortions

are linear in the auxiliary random variable’s marginal distribution. As a result, for

any given conditional distribution, we can efficiently optimize the marginal on the

auxiliary random variable using a linear program. Since the true conditional distri-

bution of the source given the auxiliary random variable is unknown, we quantize

the space of conditional distributions and find the best marginal with respect to a

conditional distribution that exhibits each of these quantized distributions as the con-

ditional given some value z ∈ Z. The solution is at least as good as the solution that

would be obtained if we were to first quantize the optimal conditional distribution

and then run the linear program for that quantized conditional. As a result, to prove

that the algorithm yields a (1+ ε) approximation, we need only show that quantizing

the optimal conditional distribution on the source given the auxiliary random variable

would yield performance within a factor (1 + ε) of the optimum.

For any finite alphabet A, we quantize distribution {q(a)}a∈A to distribution

{q̂(a)}a∈A as follows. First, fix parameters δ, η > 0 and c := 1 + η/|A|. These

parameters are related to the approximation constant ε in a manner described in
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later sections. Fix a0 ∈ arg maxa∈A q(a). Then

q̂(a) :=





0 if a 6= a0 and q(a) < δ

c−n if a 6= a0, q(a) ≥ δ, and

c−n ≤ q(a) < c−n+1

1−∑
a 6=a0

q̂(a) if a = a0.

(4.1)

Then distribution q̂(a) can take on N(δ, η, |A|) values, where

N(δ, η, |A|) ≤ |A|
(

− log δ

log(1 + η
|A|)

+ 1

)|A|−1

.

This approach quantizes smaller probability values more finely than larger probability

values but maps the smallest probability values to zero. The impact of quantizing the

smallest values of q(a) to zero is limited since q log(1/q) approaches 0 as q approaches

0. The variation in the quantization cell size for q(a) is motivated by Lemma 4.2.1.

Lemma 4.2.1 Given distributions {q(a)}a∈A and {q̂(a)}a∈A on finite alphabet A. If

|q(a)− q̂(a)| ≤ εq(a) for all a ∈ A, then

|H(q)−H(q̂)| ≤ εH(q) + ε log
e

1− ε
.

Proof. Given any x ∈ X . By the mean-value theorem, there is some

rx ∈ [(1− ε)p(x), (1 + ε)p(x)] such that

|p(x) ln
1

p(x)
− q(x) ln

1

q(x)
| = |p(x)− q(x)|| ln 1

rx

− 1|

≤ εp(x) max{| ln 1

e(1 + ε)p(x)
|, | ln 1

e(1− ε)p(x)
|}

≤ εp(x) ln
1

p(x)
+ εp(x) + εp(x) ln

1

1− ε

= εp(x) ln
1

p(x)
+ εp(x) ln

e

1− ε
.

So the result follows. ¤
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Figure 4.1: The (a) lossless coded side information, (b) Wyner-Ziv, and (c) lossy
coded side information problems.

4.3 The Lossless Coded Side Information Region

Let X and Y denote the finite alphabets for the source X and side information

Y , respectively. The lossless rate region for the coded side information problem [4]

contains all the rate pairs (RX , RY ) satisfying

RX ≥ H(X|U), RY ≥ I(Y ; U)

for some U such that X → Y → U forms a Markov chain. (See Figure 4.1(a).) The

Lagrangian

J1(λ) := H(X|U) + λI(Y ; U) (4.2)

captures the desired constrained optimization.

Let U = {1, . . . , N(δ, η, |X |)} be the alphabet for auxiliary random variable U ,

and for each u ∈ U let {QY |U(y|u)}y∈Y be a distinct distribution from our quantized

collection (4.1). We wish to find the marginal {PU(u)} that minimizes J1(λ) for any

λ > 0. Since

H(X|U) =
∑
u∈U

PU(u)H(X|U = u)

I(Y ; U) = H(Y )−H(Y |U) = H(Y )−
∑
u∈U

PU(u)H(Y |U = u)

and the constraints
∑
u∈U

PU(u) = 1,
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PU(u) ≥ 0 for all u ∈ U , and

∑
u∈U

PU(u)QY |U(y|u) = p(y) (4.3)

for all y ∈ Y are all linear functions of PU(u), we optimize {PU(u)}u∈U for the family

of conditionals {QY |U(y|u)}(y,u)∈Y×U using linear programming. Notice that in the

linear program, a constraint in (4.3) can be removed, and hence there are |Y| − 1

constraints in (4.3). Since the lossless coded side information problem is a special

case of the lossy coded side information problem that is discussed in Section 4.5, we

state Theorem 4.3.1 without proving it.

Theorem 4.3.1 The proposed algorithm yields a (1 + ε)-approximation algorithm

for the lossless coded side information rate region in time O(ε−4(|Y|+1)) as ε approaches

0.

No matter what the initial size of U , the solution to the linear program satisfies

PU(u) = 0 for all but |Y| values of u ∈ U by the following argument. The linear

program has |U| variables and |Y|+ |U| constraints. Since there exists a solution for

any linear program at a boundary point, there exists an optimal marginal {P ∗
U(u)}

for which |U| constraints are satisfied with equality. At most |Y| − 1 are constraints

of the form
∑

u∈U P ∗
U(u)QY |U(y|u) = p(y) for some y ∈ Y , and one constraint ensures

that
∑

y∈Y P ∗
U(u) = 1. The remaining |U| − |Y| constraints take the form P ∗

U(u) = 0.

Figure 4.2 shows the lossless coded side information rate region (solid line) and

our algorithm’s (1 + ε)-approximation (circles) when X = Y = {0, 1} with joint

distribution

PX,Y (0, 0) = 0.06, PX,Y (0, 1) = 0.24, PX,Y (1, 0) = 0.42, PX,Y (1, 1) = 0.28

and ε = 0.1. The example demonstrates that the approximation is often tighter

than the (1 + ε) worst-case guarantee. While the lossless coded side information

region is not difficult to calculate for these simple binary sources, the difficulty of the
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Figure 4.2: Example (1 + ε) approximations for the lossless coded side information
rate region.

calculation increases with the alphabet size.

4.4 The Wyner-Ziv Rate Region

Let X and Y denote the finite alphabets for sources X and Y . The Wyner-Ziv

rate-distortion bound

RX|{Y }(D) = min
Z∈Ψ(X,Y )

I(X; Z|Y )

Ψ(X, Y ) :=
{

Z
∣∣∣Z → X → Y,

∃ψ s.t. Ed(X,ψ(Y, Z)) ≤ D} ,

specifies the minimal rate for describing source X to a receiver that knows side infor-

mation Y and reconstructs X with expected distortion no greater than D [5]. (See

Figure 4.1(b).) The Lagrangian

J2(λ) := I(X; Z|Y ) + λ min
ψ

Ed(X, ψ(Y, Z))) (4.4)

captures the desired constrained optimization.

Let Z = {1, . . . , N(δ, η, |X |)} be the alphabet for auxiliary random variable Z,



72

and for each z ∈ Z let {QX|Z(x|z)}x∈X be a distinct distribution from our quantized

collection (4.1). We wish to find the marginal {PZ(z)} that minimizes J2(λ) for any

λ > 0. Since I(X; Z|Y ) = H(X|Y )−H(X|Y, Z) and

min
ψ

Ed(X, ψ(Y, Z))

= min
ψ

∑
z∈Z

PZ(z)E[d(X, ψ(Y, Z))|Z = z]

=
∑
z∈Z

PZ(z) min
ψ

E[d(X,ψ(Y, z))|Z = z],

and the constraints
∑
z∈Z

PZ(z) = 1,

PZ(z) ≥ 0 for all z ∈ Z, and

∑
z∈Z

PZ(z)QX|Z(x|z) = p(x)

for all x ∈ X are all linear functions of PZ(z), we optimize {PZ(z)}z∈Z for the

family of conditionals {QX|Z(x|z)}(x,z)∈X×Z using linear programming. The proof of

Theorem 4.4.1 appears in the Appendix.

Theorem 4.4.1 The proposed algorithm yields a (1 + ε)-approximation algorithm

for the Wyner-Ziv rate region in time O(ε−4(|X |+1)) as ε approaches 0.

No matter what the initial size of Z, the solution to the linear program satisfies

PZ(z) = 0 for all but |X | values of z ∈ Z by the following argument. The linear

program has |Z| variables and |X |+ |Z| constraints. Since there exists a solution for

any linear program at a boundary point, there exists an optimal marginal {P ∗
Z(z)}

for which |Z| constraints are satisfied with equality. At most |X | − 1 are constraints

of the form
∑

z∈Z P ∗
Z(z)QX|Z(x|z) = p(x) for some x ∈ X , and one constraint ensures

that
∑

x∈X P ∗
Z(z) = 1. The remaining |Z| − |X | constraints take the form P ∗

Z(z) = 0.

Figure 4.3 shows the Wyner-Ziv rate region (solid line) and our algorithm’s (1+ε)-
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Figure 4.3: Example (1 + ε) approximations for the Wyner-Ziv and Berger et al.
achievable rate regions.

approximation (circles) when X = Y = {0, 1} with joint distribution

PX,Y (0, 0) = 0.06, PX,Y (0, 1) = 0.24, PX,Y (1, 0) = 0.42, PX,Y (1, 1) = 0.28,

Hamming distortion measure, and ε = 0.1. Again, the approximation is tighter than

the (1 + ε) worst-case guarantee. While the Wyner-Ziv region is not difficult to

calculate for these simple binary sources, the difficulty of the calculation increases

with the alphabet size.

4.5 The Lossy Coded Side Information Region

In [6], Berger et al. derive an achievability result for the lossy coded side-information

problem illustrated in Figure 4.1(c). Let X1 and X2 denote the finite alphabets for

sources X1 and X2, respectively. The region proposed by Berger et al. is the convex

hull of the rates

R1 ≥ I(X1; Z1|Z2), R2 ≥ I(X2; Z2),
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for (Z1, Z2) ∈ Ψ(X1, X2), where

Ψ(X1, X2) :=
{

(Z1, Z2)
∣∣∣Z1 → X1 → X2 → Z2,

∃ψ s.t. Ed(X,ψ(Z1, Z2)) ≤ D} .

We find the desired lower convex hull using Lagrangian

J3(λ1, λ2, λ3) := λ1I(X1; Z1|Z2) + λ2I(X2; Z2)

+λ3 min
ψ

Ed(X1, ψ(Z1, Z2)).

Calculating the optimal rate region for a given pair of sources (X1, X2) requires

joint optimization of conditionals

{QZi|Xi
(zi|xi)}(xi,zi)∈Xi×Zi

, i ∈ {1, 2}

where Z1 and Z2 are the alphabets for auxiliary random variables Z1 and Z2. Since

joint optimization of these conditional distributions is tricky, we define a sequence of

conditional distributions {QZ2|X2(z2|x2)}(x2,z2)∈X2×Z2 from the quantized class defined

in (4.1) and then optimize {QZ1|X1(z1|x1)}(x1,z1)∈X1×Z1 for each. Comparing these

optimal solutions yields the best pair of conditionals among all possible solutions in

the class considered.

The number of possible conditionals on Z2 given X2 in the quantized class is

N(δ, η, |X2|)|Z1|. To make this value as small as possible, we begin by bounding the

alphabet size |Z2|. For any fixed conditional distributions {QZ1|X1(z1|x1)}(x1,z1)∈X1×Z1

and {QX2|Z2(x2|z2)}(x2,z2)∈X2×Z2 , both J3(λ1, λ2, λ3) and the distribution constraints

are linear in {PZ2(z2)}z2∈Z2 . An argument analogous to the one in Section 4.4 then

demonstrates that there exists an optimal solution to this linear equation in which

PZ2(z2) = 0 for all but at most |X2| values of z2 – giving |Z2| ≤ |X2|. 2

Let Z1 = {1, . . . , N(δ, η, |X1|)}, and for each z1 ∈ Z1 let {QX1|Z1(x1|z1)}x1∈X1 be

2We can similarly show that |Z1| ≤ |X1|, though that result is not applied in the argument that
follows.
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a distinct distribution from our quantized collection (4.1). Let Z2 = {1, . . . , |X2|}.
For each of the N(δ, η, |X2|)|X2| conditionals {QX2|Z2(x2|z2)}(x2,z2)∈X2×Z2 in the class

defined by (4.1), we run a linear program to optimize J3(λ1, λ2, λ3) subject to the

distribution constraints. The algorithm output is the best of these solutions. The

proof of Theorem 4.5.1 appears in the Appendix.

Theorem 4.5.1 The proposed algorithm runs in time O(ε−4(|X1|+|X2|2+1)) and guar-

antees a (1 + ε)-approximation.

The broken lines in Figure 4.3 show our algorithm’s (1+ ε)-approximation for the

achievable rate region from [6] for the example considered in the previous section.

Each curve plots rate R1 against distortion for a fixed value of R2. In this case, the

optimal region is not easily available, but the given solution is guaranteed to meet

our (1 + ε)-approximation bound.

4.6 Summary

The proposed family of algorithms enables systematic calculation of the rate regions

for a large class of source coding problems. The ability to calculate these regions is

useful because it allows us to determine the limits of what is possible in a variety of

applications – thereby enabling an objective assessment of the performance of source

coding algorithms.

The given approach may also be useful for resolving theoretical questions. The

coded side-information problem provides a potential example. In [47], Berger and

Tung derive an inner bound (here called the Berger-Tung bound) for the lossy multiple

access source coding problem. While the formulations are quite different, in [48] Jana

and Blahut prove the equivalence of the inner bounds from [6] and [47]. A long-

standing open question is whether the bound is tight. One possible means of proving

the looseness of the bound would be to calculate it for random variables (X, Y )

and compare the resulting region to the normalized region for the random variables

(Xn, Y n) where (Xi, Yi) are drawn i.i.d. according to the same distribution as (X, Y ).



76

If these values differ for any n, then the region is not tight. (The experiment would

be inconclusive if the values are the same.) Since direct calculation of these values is

difficult even for n = 2, the proposed algorithm may enable a solution to this problem.
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Chapter 5

The Two-Hop Network and the
Diamond Network

5.1 Introduction and Problem Statement

One of the central goals in network source coding theory is to bound rate-distortion

regions for source coding in a given network. It is well-known that for the point-

to-point network, where the source sequence is drawn i.i.d. according to a known

probability mass function, the minimal rate required to describe the source with

an arbitrarily small error probability of reproduction is the entropy of the source

random variable. Rate distortion theory also gives a formula for R(D), the minimal

rate required to achieve an expected per-symbol distortion no larger than D between

the source and its reproduction.

The lossless rate regions and rate-distortion regions for source coding of i.i.d. ran-

dom variables in more general networks are apparently harder to describe. While

complete, one-letter characterizations of the rate-distortion regions for some regions

are known (for example, see [4], [3], [8], and [49]), many of these results incorporate

auxiliary random variables to describe achievable rate vectors; in these cases, char-

acterizing the lossless rate region or rate-distortion region for an example random

variable requires solution of a typically non-trivial optimization problem. Lossless

rate regions and rate-distortion regions for far more networks remain entirely un-

solved.
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To date, source coding theory has concentrated primarily on bounds for single-hop

networks, assuming that every source has a direct connection to each destination.

Many of today’s networking applications involve multihop networks, where a data

source may be separated from its destination by one or more intermediate nodes,

each of which may make its own source requests. While single-hop network source

coding solutions can be applied in multihop networks, such applications require ex-

plicit rate allocation for each source-destination pair, and the resulting solutions may

be suboptimal. As a result, the study of source coding for multihop networks is an

important, largely open area for investigation.

Multihop networks exhibit a variety of characteristics absent from prior single-hop

networks: (1) a single source description may take multiple paths to its destination;

(2) multiple source descriptions may share a single link en route to different destina-

tions; and (3) intermediate nodes may process incoming descriptions and send partial

descriptions on to subsequent nodes in the network. The network under investiga-

tion here concentrates on the latter two properties. To the authors’ knowledge, the

only prior rate-distortion theory investigations of multihop networks are Yamamoto’s

rate-distortion region for a single-path two-hop network without side information [9],

where the network focuses on property (3), and bounds on the rate-distortion region

for a two-path multihop network [28], the second network we study in this chapter.

X,Y

X

Z

Y
R1 R2

Figure 5.1: The two-hop network.

Figure 5.1 and 5.2 are two multi-hop networks of interest in this chapter, here

called the two-hop network and the diamond network respectively. The first network,

here called the “two-hop network”, is chosen to focus on properties (2) and (3);

the second example, here called the “diamond network”, generalizes the two-hop
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Ŷ

Figure 5.2: The diamond network.

network to introduce property (3). Throughout this chapter, in-arrows designate

source observations, out-arrows designate source requests, and all the links are error

free and directed. The goal is to study the rate-distortion regions for these two

networks. Rate regions for networks with links in series and networks with links in

parallel are obvious first steps in understanding rate regions for general networks.

Section 5.2 includes definitions and basic properties that are applied in bounding

rate regions of the networks we investigate in this chapter. Section 5.3 derives inner

and outer bounds for the rate-distortion region for the two-hop network. This network

includes the one introduced by Yamamoto in [9] as a special case. The given derivation

is similar to the derivation of the rate-distortion region for a network with unreliable

side information at the decoder [8]. Section 5.4 applies the result of Section 5.3

to derive two inner bounds and one outer bound of the rate-distortion region for

the diamond network. Section 5.5 further investigates these bounds under several

assumptions on the diamond network’s source random variables.

5.2 Basic Properties

In this section, we list background that is useful in the derivations that follow.
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Figure 5.3: Lossy source coding for the point-to-point network.

Rate Distortion Functions

The rate-distortion function for the point-to-point network of Figure 5.3 is

R(D) = min
p(X̂|X):E(d(X,X̂))≤D

I(X; X̂).

Enc DecX

U

R
X̂

Figure 5.4: Lossy source coding with side information at the encoder and decoder.

If we modify the traditional source coding problem to allow side information U at

both the encoder and the decoder, as shown in Figure 5.4, then the optimal source

coding performance is the conditional rate distortion function of X given U [5]

RX|U(D) = min
p(X̂|X,U):E(d(X,X̂))≤D

I(X; X̂|U). (5.1)

Detailed discussions of conditional rate distortion functions appear in [50], [51], [52],

and [3]. We here state several properties that are particularly useful for our analysis.

First, from [52], for any D ≥ 0,

RX|U(D) = min
{DU}u∈U :E(DU )≤D

∑
u

Pr{U = u}RX|U=u(Du), (5.2)

where for each u ∈ U , RX|U=u(Du) is the rate distortion function with respect to

probability distribution PX|U=u(x) on alphabet X . Second, given side information
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sources U and V , for any D ≥ 0,

RX|U,V (D) ≤ RX|U(D). (5.3)

The third property is stated in Lemma 5.2.1.

Lemma 5.2.1 [3] Let U1, . . . , Un be n random variables with mutually disjoint al-

phabets U1, . . . ,Un. Let {D1, . . . , Dn}be a collection of n distortions, where Di ≥ 0

for all i. Let X1, . . . , Xn be drawn i.i.d. according to distribution PX(·) on alphabet

X . Let Q be a random variable uniformly distributed on {1, . . . , n}. Define X := XQ

and U := (UQ, Q). Then

RX|U

(
1

n

n∑
i=1

Di

)
≤ 1

n

n∑
i=1

RXi|Ui
(Di).

Strong Typicality

We use strong typicality (see, for example, [44]) to prove achievability results for

the networks of interest in this chapter. We use strong typicality rather than weak

typicality to take advantage of tighter available bounds on the size of the strongly

typical set and the Markov property described in Lemma 5.2.6 below. We here set up

notation and summarize a few useful results. Assume B is a finite-alphabet random

variable. Let N(β|bn) denote the number of appearances of symbol β in string bn.

We use the notation A
∗(n)
ε (B) to denote the strongly typical set for random variable

B on alphabet B, where A
∗(n)
ε (B) is the set of sequences bn ∈ Bn satisfying

(a) ∣∣∣∣
N(β|bn)

n
− p(β)

∣∣∣∣ <
ε

|B|
for every β ∈ B with p(β) > 0.

(b) N(β|bn) = 0 for all β ∈ B with p(β) = 0.
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If C is another random variable and cn ∈ A
∗(n)
ε (C), define

A∗(n)
ε (B|cn) := {bn ∈ Bn|(bn, cn) ∈ A∗(n)

ε (B,C)}.

Lemma 5.2.2 [44] For any ε > 0 and n ∈ N. If xn ∈ A
∗(n)
ε (X), then

2n(H(Y |X)−ε′) ≤ |A∗(n)
ε (Y |xn)| ≤ 2n(H(Y |X)+ε′),

where ε′ can be made arbitrarily small by making n sufficiently large and ε sufficiently

small.

Remark 5.2.3 For any random variables W , Ŵ with bounded distortion measure

d : W × Ŵ → [0, dmax] and every jointly strongly typical pair (wn, ŵn) ∈ Wn × Ŵn,

∣∣∣∣
1

n
d(wn, ŵn)− Ed(W, Ŵ )

∣∣∣∣

=

∣∣∣∣∣∣
∑

α∈W,β∈Ŵ

(
N(α, β|wn, ŵn)

n
− p(α, β)

)
d(α, β)

∣∣∣∣∣∣

≤ dmax

∑

α∈W,β∈Ŵ

ε

|W||Ŵ|

= ε · dmax.

The proofs of Corollaries 5.2.4 and 5.2.5 follow from counting arguments based on

Lemma 5.2.2.

Corollary 5.2.4 Given a probability distribution p(x, y, w), fix any pair (xn, wn) ∈
A
∗(n)
ε (X, W ), and choose a sequence Y n uniformly at random from the set A

∗(n)
ε (Y |wn).

Then

Pr(Y n ∈ A∗(n)
ε (Y |(xn, wn)) ≥ 2−n(I(X;Y |W )+ε1),

where ε1 can be made arbitrarily small by making n sufficiently large and ε sufficiently

small.



83

Corollary 5.2.5 Given a probability distribution p(x, y, w) and a sequence wn ∈
A
∗(n)
ε (W ), independently choose 2nR sequences Y n

1 , Y n
2 ,. . . , Y n

2nR from the set A
∗(n)
ε (Y |wn).

When R > I(X; Y |W ),

Pr
(
(Xn, Y n

i , wn) ∈ A∗(n)
ε (X, Y, W )

for some i ∈ {1, 2, . . . , 2nR}) → 1

as n →∞.

Lemma 5.2.6 [44, Lemma 14.8.1] Let X → Y → Z form a Markov chain. If, for

a given (yn, zn) ∈ A
∗(n)
ε (Y, Z), Xn is chosen uniformly at random from the set of xn

that are jointly typical with yn, then

Pr{Xn ∈ A∗(n)
ε (X|yn, zn)} > 1− ε

for sufficiently large n.

5.3 Source Coding for the Two-Hop Network

Consider the network source coding problem for the two-hop network shown in Fig-

ure 5.1. The random sequence (X1, Y1, Z1), (X2, Y2, Z2), . . . is drawn i.i.d. according

to joint probability mass function p(x, y, z) on finite alphabet X ×Y ×Z. The trans-

mitter observes sources X and Y and describes them at rate R1 to the middle node.

The middle node uses its received description to build a reconstruction X̂ of source X

and to create a rate-R2 description (R2 ≤ R1) for transmission to the final receiver.

The final receiver combines its received description with observed side information Z

to build a reconstruction Ŷ of source Y . We measure the accuracy of reconstructions

X̂ and Ŷ using distortion measures dX : X × X̂ → [0,∞) and dY : Y × Ŷ → [0,∞).

We assume that all source random variable alphabets X , Y , and Z are finite. We

also drop the subscripts from d for notational simplicity and use dmax to denote the

maximal distortion value. In this section, we bound this rate-distortion region. The
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proof that follows combines ideas from Wyner-Ziv coding and coding with unreliable

side information [8].

The proposed inner bound appears in Theorem 5.3.1 in Section 5.3.1. The pro-

posed outer bound appears in Theorem 5.3.3 in Section 5.3.2. In addition to its direct

interest, the given result can serve as a stepping stone for understanding more general

multihop source coding problems.

5.3.1 Inner Bound

Theorem 5.3.1 Rate vector (R1, R2) is (DX , DY )-achievable for the two-hop net-

work if there exist finite-alphabet, auxiliary random variables U and V for which

R1 > RX|U(DX) + I(X,Y ; U) + I(X,Y ; V |U,Z)

R2 > I(X, Y ; U |Z) + I(X, Y ; V |U,Z)

and

(i) Z → (X,Y ) → (U, V ) forms a Markov chain.

(ii) There exists a function Ŷ (U, V, Z) such that

E(d(Y, Ŷ (U, V, Z))) ≤ DY .

Proof. Let (U, V ) be a pair of random variables satisfying conditions (i) and (ii) in

Theorem 5.3.1. To prove achievability, it suffices to show that for any δ > 0, the

vector (R1(δ), R2(δ)) defined by

R1(δ) = RX|U(DX) + I(X, Y ; U) + I(X,Y ; V |U,Z) + 3δ

R2(δ) = I(X, Y ; U, V |U,Z) + 2δ

is achievable.

Fix n ∈ N. Let X̂ be a random variable defined by a conditional probability
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distribution p(x̂|x, u) such that I(X; X̂|U) = RX|U(DX) + δ/2 and

E(d(X, X̂)) ≤ DX . Define

S1 := 2n(I(X,Y ;V |U)+δ) S2 := 2n(I(X,Y ;V |U,Z)+2δ)

M1 := 2n(I(X,Y ;U)+δ) M2 := 2n(I(X,Y ;U |Z)+2δ)

T := 2n(I(X;X̂|U)+δ).

Generate the codebook as follows:

1. Draw M1 sequences Un(1),. . . ,Un(M1) i.i.d. according to probability mass

function
∏n

i=1 p(ui).

2. Color, uniformly and at random, each m1 ∈ {1, . . . , M1} one of M2 distinct

colors, denoting the color of m1 by ν(m1). Notice that U → (X, Y ) → Z

implies M2 ≤ M1.

3. For each m1 ∈ {1, . . . ,M1}, draw S1 sequences V n(m1, 1), . . . , V n(m1, S1)

uniformly at random from the set A
∗(n)
ε (V |Un(m1)).

4. Color, uniformly and at random, each s1 ∈ {1, . . . , S1} one of S2 distinct

colors, denoting the color of s1 by τ(s1). Notice that U → (X,Y ) → Z implies

S2 ≤ S1.

5. For each m1 ∈ {1, . . . ,M}, draw T sequences X̂n(m1, 1),. . . ,X̂n(m1, T )

uniformly at random from the set A
∗(n)
ε (X|Un(m1)).

Let (xn, yn) and zn be the source pair to be transmitted and the observed side
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information, respectively. We use the following functions in defining the encoders

ψ(xn, yn) := min
[{M1} ∪ {m1 ∈ {1, . . . , M1} :

(xn, yn, Un(m1)) ∈ A∗(n)
ε (X, Y, U)}] .

µ(xn, yn) := min [{S1} ∪ {j ∈ {1, . . . , S1} :

(xn, yn, Un(ψ(xn, yn)), V n(ψ(xn, yn), j))

∈ A∗(n)
ε (X,U, V )}] .

φ(xn, yn) := min [{T} ∪ {t ∈ {1, 2, . . . , T} :

(xn, Un(ψ(xn, yn)), X̂n(ψ(xn, yn), t))

∈ A∗(n)
ε (X,U, X̂)}

]
.

π(xn, yn) := τ(µ(xn, yn)).

The purpose of the function τ is as follows. S1 is the number of V -sequences needed

to cover all strongly typical (Xn, Y n) pairs when U is known. S2 is the number of

V -sequences needed to cover all strongly typical (Xn, Y n) pairs when both Un and

Zn are known. We randomly bin the index j that specifies V n into one of the S2

slots. Since the decoder has access to the side information Zn, it is possible to

recover (with high probability) j from τ(j). The reason for using the function ν is

similar.

Finally, we define the encoders as

f(xn, yn) := (ψ(xn, yn), π(xn, yn), φ(xn, yn))

g(f(xn, yn)) := (ν(ψ(xn, yn)), π(xn, yn)).

The decoder at the middle node maps index (m1, p, t), the received string from the

encoding function f , to reconstruction

X̂n
j (m1, t).
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When receiving (m2, p), the decoder at the final receiver begins by finding m̂1 from

{1, . . . , M1} such that

(Un(m̂1), Z
n) ∈ A

∗(n)
ε (U,Z)

and ν(m̂1) = m2.
(5.4)

Define the function ι1 mapping {1, . . . , M2} to {1, . . . ,M1} as follows

ι1(m2) :=





m̂1, if m̂1 is the unique index satisfying (5.4)

1, otherwise.

Then the decoder finds ĵ from {1, . . . , S1} such that

(Un(ι1(m2)), V
n(ι1(m2), ĵ), Z

n) ∈ A
∗(n)
ε (U, V, Z)

and τ(ĵ) = p.
(5.5)

Define the function ι2 mapping {1, . . . , M2} × {1, . . . , S2} to {1, . . . , S1} as follows

ι2(m2, p) :=





ĵ, if ĵ is the unique index satisfying (5.5)

1, otherwise.

The final receiver then builds its reconstruction for Y n as

Ŷ n(Un(ι1(m2)), V
n(ι1(m2), ι2(m2, p)), Zn).

Analysis of performance:

For simplicity, we denote by ψ, µ, φ, ι, and π the evaluated values of the

corresponding functions on (xn, yn). Define the following error events:

1. E0 : (xn, yn, zn) /∈ A
∗(n)
ε (X, Y, Z).

2. EU : For all i ∈ {1, 2, . . . , M} and for all j ∈ {1, 2, . . . , T},

(xn, yn, zn, Un(i), V n(i, j)) /∈ A∗(n)
ε (X,Y, Z, U, V ).
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3. EX : For all i ∈ {1, 2, . . . , T},

(xn, Un(ψ), X̂n(ψ, i)) /∈ A∗(n)
ε (X, U, X̂).

4. EUZ : Ec
U happens and there exists a m1 such that m1 6= ψ and

(Un(m1), z
n) ∈ A∗(n)

ε (U,Z)

and ν(m1) = ν(ψ).

5. EV : Ec
U happens and there exists a j such that j 6= µ and

(Un(ψ), V n(ψ, j), zn) ∈ A∗(n)
ε (U, V, Z)

and τ(j) = π.

6. Eerror = E0 ∪ EU ∪ EX ∪ EUZ ∪ EV .

Let Cn denote the ensemble for all such codes of length n. We prove the existence of

achievable codes of the given rates by showing that limn→∞ ECn [Pr(Eerror)] = 0.

First, from the basic property of typical sets, Pr(E0) can be made arbitrarily small

as n grows without bound. By Corollary 5.2.5 and Lemma 5.2.6, Pr(EU) and

Pr(EX) can also be made arbitrarily small as n grows without bound. When

zn ∈ A
∗(n)
ε (Z), the probability that a randomly chosen sequence un is jointly

strongly typical with zn is bounded by 2−n(I(U ;Z)−δ/2) when n is sufficiently large.

Hence when n is sufficiently large,

ECn [Pr(EUZ)]

= ECn

[
Pr(∪un∈B(ν(ψ)) Pr(un ∈ A∗(n)

ε (U |zn)))
]

≤ ECn (|B(ν(ψ))|) ECn

[
Pr(un ∈ A∗(n)

ε (U |zn))
]

≤ 2M1−M22−n(I(U ;Z)− δ
2
) = 2−n δ

2 ,
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where B(ν(ψ)) is the set of indices m1 ∈ {1, . . . , M1} such that ν(m1) = ν(ψ).

Therefore, limn→∞ E[Pr(EUZ)] = 0.

Finally, by the similar argument, when (Un(ψ), zn) ∈ A
∗(n)
ε (U,Z), since the

probability that a randomly chosen sequence vn ∈ A
∗(n)
ε (V |Un(ψ)) is jointly strongly

typical with (Un(ψ), zn) is bounded by 2−n(I(V ;Z|U)−δ/2), the expectation of the

probability of the event EV can be bounded (for n large enough) by

ECn [Pr(EV )] ≤ ECn [|C(π)|] 2−n(I(V ;Z|U)− δ
2
)

= 2S1−S22−n(I(V ;Z|U)− δ
2
),

where C(π) is the set of indices j ∈ {1, . . . , S1} such that τ(j) = π. Since

I(X,Y ; V |U)− I(X,Y ; V |U,Z)

= (H(V |U)−H(V |U,X, Y ))− (H(V |U,Z)

−H(V |X,Y, U, Z))

= H(V |U)−H(V |U,Z)

+(H(V |X,Y, U, Z)−H(V |U,X, Y ))

= I(V ; Z|U),

ECn [Pr(EV )] can also be made arbitrarily small as n grows without bound. Thus by

the union bound,

lim
n→∞

ECn [Pr(Eerror)] = 0.

Now fix a code of length n (for sufficiently large n) such that Pr(Eerror) < ε. From

Remark 5.2.3, the average distortion between any pair of jointly typical sequences is
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close to the expected distortion. Therefore,

|Ed(Xn, X̂n(ψ, φ))−DX |
=

∣∣∣Pr(Ec
error)

[
E

(
d(Xn, X̂n(ψ, φ)|Ec

error

)
−DX

]

+ Pr(Eerror)
[
E

(
d(Xn, X̂n(ψ, φ)|Eerror

)
−DX

]∣∣∣

≤ Pr(Ec
error) · ε · dmax + Pr(Eerror) · dmax

≤ ε · dmax + ε · dmax

for n sufficiently large. Similarly,

|Ed(Y n, Ŷ n(Un(ψ), V n(ψ, ι(ψ, τ)), Zn)−DY |
< 2εdmax

for n sufficiently large. Since ε > 0 can be made arbitrarily small, this coding

scheme satisfies the distortion requirement (DX , DY ). This completes the proof. ¤

The following corollary is a direct consequence from Theorem 5.3.1 for the case of

lossless source coding.

Corollary 5.3.2 Rate vector (R1, R2) is in the achievable rate region for lossless

source coding in the two-hop network if there exists a finite-alphabet, auxiliary

random variable U for which

R1 ≥ H(X|U) + I(X, Y ; U) + H(Y |U,Z)

R2 ≥ I(X, Y ; U |Z) + H(Y |U,Z)

and Z → (X, Y ) → U forms a Markov chain.

Intuitively, auxiliary random variable U represents the common information that is

useful to both the middle node without use of side information Z and the final

receiver with use of side information Z. Auxiliary random variable V represents the

private information that is accessible only to the final receiver, which uses its
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knowledge of side information Z to describe the useful portion of V . In the lossy

bound, the final node uses the knowledge of U and Z to reconstruct Ŷ ; the lossless

bound replaces condition (ii) with an explicit inclusion of any additional rate

H(Y |U,Z) that may be required to reconstruct Y given the knowledge of U and Z.

5.3.2 Outer Bound

Theorem 5.3.3 If the rate vector (R1, R2) is (DX , DY )-achievable for the two-hop

network, then for any ε > 0, there exists a finite-alphabet, auxiliary random variable

U for which

R1 ≥ I(X,Y ; U) + I(X,Y ; V |U,Z)

R2 ≥ I(X,Y ; V |Z)

and

(i) Z → (X,Y ) → (U, V ) forms a Markov chain.

(ii) There exists a function X̂(U) such that

E(d(X, X̂(U))) ≤ DX + ε.

(iii) There exists a function Ŷ (V, Z) such that

E(d(Y, Ŷ (U,Z))) ≤ DY + ε.

Proof. Consider a sequence {Cn}∞n=1 of block length-n codes. Let

fn : X n × Yn → {1, . . . , 2nR1}
gn : {1, . . . , 2nR1} → {1, . . . , 2nR2}

denote the rate-R1 encoder at the transmitter and rate-R2 encoder at the middle
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node, respectively. Suppose that the distortions of the given codes approach DX

and DY as n grows without bound. Then for any ε > 0, there exists an n sufficiently

large such that the distortions achieved by code Cn are no greater than DX + ε and

DY + ε. Let X̂n and Ŷ n be the corresponding reproductions. For i ∈ {1, . . . , n},
define DX,i := E[d(Xi, X̂i)] and DY,i := E[d(Yi, Ŷi)]. By assumption,

1

n

n∑
i=1

E[d(Xi, X̂i)] =
1

n

n∑
i=1

DX,i ≤ DX + ε

1

n

n∑
i=1

E[d(Yi, Ŷi)] =
1

n

n∑
i=1

DY,i ≤ DY + ε.

(5.6)

For random source sequences (Xn, Y n), let F = fn(Xn, Y n) and G = gn(F )

represent the random variables transmitted through the first and second links

respectively. Further, define Ui := (F, Z i−1
1 ) and V̂i := (F,Zn

i+1, Z
i−1
1 ) for 1 ≤ i ≤ n.

Then

H(F ) = I(Xn, Y n; F )

= I(Xn, Y n; F, Zn)− I(Xn, Y n; Zn|F )

=
n∑

i=1

[
I(Xi, Yi; F,Zn|X i−1

1 , Y i−1
1 )

−I(Xn, Y n; Zi|F, Z i−1
1 )

]

=
n∑

i=1

[
I(Xi, Yi; F,Zn, X i−1

1 , Y i−1
1 )

−I(Xi, Yi; X
i−1
1 , Y i−1

1 )

−I(Xn, Y n; Zi|F, Z i−1
1 )

]
,

where the first equality follows from the fact that F is a deterministic function of

Xn and Y n. Now since for each i, (Xi, Yi) is independent of (X i−1
1 , Y i−1

1 ),

I(Xi, Yi; X
i−1
1 , Y i−1

1 ) = 0
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and so

I(Xi, Yi; F,Zn, X i−1
1 , Y i−1

1 )− I(Xi, Yi; X
i−1
1 , Y i−1

1 )

= I(Xi, Yi; F,Zn, X i−1
1 , Y i−1

1 )

≥ I(Xi, Yi; F, Zn).

On the other hand, for every i, the Markov chain condition

((Xj, Yj)j 6=i, F, Zi−1
1 ) → (Xi, Yi) → Zi implies that

I(Xn, Y n; Zi|F,Z i−1
1 )

= H(Zi|F, Zi−1
1 )−H(Zi|Xi, Yi, F, Zi−1

1 , (Xj, Yj)j 6=i)

= H(Zi|F, Zi−1
1 )−H(Zi|Xi, Yi, F, Zi−1

1 )

= I(Xi, Yi; Zi|F, Zi−1
1 ).

Therefore,

H(F ) ≥
n∑

i=1

I(Xi, Yi; F, Z i−1
1 , Zi, Z

n
i+1)

−
n∑

i=1

I(Xi, Yi; Zi|F, Zi−1
1 )

=
n∑

i=1

[I(Xi, Yi; Ui, V̂i, Zi)− I(Xi, Yi; Zi|Ui)]

=
n∑

i=1

[
I(Xi, Yi; Ui) + I(Xi, Yi; V̂i, Zi|Ui)

−I(Xi, Yi; Zi|Ui)]

=
n∑

i=1

[I(Xi, Yi; Ui) + I(Xi, Yi; V̂i|Ui, Zi)].

Thus

nR1 ≥ H(F ) ≥
n∑

i=1

[I(Xi, Yi; Ui) + I(Xi, Yi; V̂i|Ui, Zi)].
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For every i ∈ {1, 2, . . . , n}, define Vi := (G,Zn
i+1, Z

i−1
1 ). Then we have

nR2 ≥ H(G) ≥ H(G|Zn) = I(Xn, Y n; G|Zn)

=
n∑

i=1

I(Xi, Yi; G|Zn, X i−1
1 , Y i−1

1 )

=
n∑

i=1

I(Xi, Yi; G,X i−1
1 , Y i−1

1 , Z i−1
1 , Zn

i+1|Zi)

≥
n∑

i=1

I(Xi, Yi; G,Z i−1
1 , Zn

i+1|Zi)

=
n∑

i=1

I(Xi, Yi; Vi|Zi).

Now since G is a deterministic function of F , V̂i is a deterministic function of Vi and

hence

n∑
i=1

I(Xi, Yi; V̂i|Ui, Zi) =
n∑

i=1

I(Xi, Yi; V̂i, Vi|Ui, Zi)

≥
n∑

i=1

I(Xi, Yi; Vi|Ui, Zi).

Therefore,

nR1 ≥
n∑

i=1

[I(Xi, Yi; Ui) + I(Xi, Yi; Vi|Ui, Zi)].

Let Q denote a random variable uniformly distributed on {1, 2, . . . , n} that is

independent of (Xn, Y n, Zn). Define U := (UQ, Q) and V := (VQ, Q). Since

(Xi, Yi, Zi), i ∈ {1, 2, . . . , n}, is drawn i.i.d., the joint distribution of (XQ, YQ, ZQ) is
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the same as that of (X, Y, Z). Furthermore, Q is independent of (XQ, YQ, ZQ), hence

1

n

n∑
i=1

I(Xi, Yi; Ui) = I(XQ, YQ; UQ|Q)

= H(XQ, YQ|Q)−H(XQ, YQ|UQ, Q)

= H(XQ, YQ)−H(XQ, YQ|U)

= I(XQ, YQ; U).

Similarly, one can show that

1

n

n∑
i=1

I(Xi, Yi; Vi|Ui, Zi) = I(XQ, YQ; V |U,ZQ)

and
1

n

n∑
i=1

I(Xi, Yi; Vi|Zi) = I(XQ, YQ; V |ZQ).

Redefine X = XQ, Y = YQ, and Z = ZQ. Then X, Y , and Z have the same joint

distribution p(x, y, z). Therefore,

R1 ≥ I(X,Y ; U) + I(X,Y ; V |U,Z)

R2 ≥ I(X,Y ; V |Z).

Given the definition (Ui, Vi) := (G, X i−1
1 , Y i−1

1 , Z i−1
1 , Zn

i+1), Zi → (Xi, Yi) → (Ui, Vi)

forms a Markov chain, as does Z → (X,Y ) → (U, V ).

It remains to check conditions (ii) and (iii) in the statement of the theorem. First,

since X̂i is a function of F for every i ∈ {1, 2, . . . , n}, by defining X̂ := X̂Q, (ii) is

immediate.

For condition (iii), since the reproduction Ŷ n of Y n is a deterministic function of

(G,Zn), we have

0 = H(Ŷ n|G,Zn) =
n∑

i=1

H(Ŷi|Ŷ i−1
1 , G, Zn),
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which implies that

H(Ŷi|Ŷ i−1
1 , Ui, Vi, Zi)

≤ H(Ŷi|Ŷ i−1
1 , G, Zi−1

1 , Zi, Z
n
i+1) = 0

for all i ∈ {1, 2, . . . , n}. For i = 1, H(Ŷ1|U1, V1, Z1) = 0 implies that Ŷ1 is a

deterministic function of (U1, V1, Z1). For i > 1, assume that Ŷj is a function of

(Uj, Vj, Zj) for all j < i. Then since for all j < i,

(Ui, Vi, Zi) = (F, G,Zn) = (F,G, Zn)

= (Uj, Vj, Zj),

Ŷj is also a function of (Ui, Vi, Zi). Therefore,

0 = H(Ŷi|Ŷ i−1
1 , Ui, Vi, Zi) = H(Ŷi|Ui, Vi, Zi).

Thus by induction on i, Ŷi is a function of (Ui, Vi, Zi). By defining Ŷ := ŶQ, Ŷ is a

function of (U, V, Z) and

E(d(Y, Ŷ )) ≤ DY + ε.

¤

5.4 Performance Bounds for the Diamond Net-

work

Using techniques similar to those of Section 5.3, we next derive one outer bound

and two inner bounds for the rate distortion region R(D1, D2, DY ) with distortion

constraints D1, D2, and DY for the diamond network in Figure 5.2. In this diamond

network, node 0 observes samples of sources X1, X2,and Y which are independent

and identically distributed (i.i.d.) according to distribution p(x1, x2, y). As shown
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in Figure 5.2, nodes 1, 2, and 3 are required to reproduce sources X1, X2, and Y ,

respectively, with corresponding distortion requirements D1, D2, and DY . Each rate

value is a vector (R1, R2, R3, R4) describing the rates traversing edges (0, 1), (0, 2),

(1, 3), and (2, 3), respectively. The description of Y can take two possible paths to

node 3, passing either through node 1 or node 2 or both. We define R(D1, D2, DY ) as

the closure of the set of achievable rate vectors that satisfy the distortion constraint

(D1, D2, DY ). We aim to bound the rate distortion-region R(D1, D2, DY ) of the

diamond network.

Similar to Section 5.3, we make an assumption that all source random variable

alphabets X1, X2, and Y are finite. Also, for notational simplicity, d denotes the

distortion measure and dmax denotes the maximal distortion value.

5.4.1 Outer Bound

Theorem 5.4.1 If (R1, R2, R3, R4) is a (D1,D2,DY )-achievable rate region for the

diamond network, then for any ε > 0, there exist finite-alphabet random variables U1

and U2 defined by conditional probability mass function PU1,U2|X1,X2,Y such that

R1 ≥ RX1|U1(D1 + ε) + I(X1, X2, Y ; U1)

R2 ≥ RX2|U2(D2 + ε) + I(X1, X2, Y ; U2)

R3 ≥ I(X1, X2, Y ; U1)

R4 ≥ I(X1, X2, Y ; U2)

(5.7)

and that there exists a function Ŷ of U1, U2 satisfying Ed(Ŷ , Y ) ≤ DY + ε.

Proof. Let (R1, R2, R3, R4) be a (D1, D2, DY )-achievable rate vector. For any ε > 0,

we choose sufficiently large n and dimension n encoded functions (f1, f2, g1, g2), with

rate (R1, R2, R3, R4) and with distortion no greater than (D1 + ε,D2 + ε,DY + ε).

Let X̂n
1 = (X̂1,i)

n
i=1, X̂n

2 = (X̂2,i)
n
i=1, and Ŷ n = (Ŷi)

n
i=1 be the corresponding

reproductions. For i ∈ {1, . . . , n} and for j ∈ {1, 2}, define Dj,i := E(d(Xj,i, X̂j,i))

and DY,i := E(d(Yj, Ŷ )). Let F1 = f1(X
n
1 , Xn

2 , Y n), F2 = f2(X
n
1 , Xn

2 , Y n),
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G1 = g1(F1), and G2 = g2(F2) denote the random variables representing the

encoding messages. By assumption,

1

n

n∑
i=1

E(d(X1,i, X̂1,i) =
1

n

n∑
i=1

D1,i ≤ D1 + ε

1

n

n∑
i=1

E(d(X2,i, X̂2,i) =
1

n

n∑
i=1

D2,i ≤ D2 + ε

1

n

n∑
i=1

E(d(Yi, Ŷi)) =
1

n

n∑
i=1

DY,i ≤ DY + ε.

(5.8)

For each i ∈ {1, 2, . . . , n}, define U1,i := ((X1,j,X2,j,Yj)
i−1
j=1, G1) and U2,i :=

((X1,j,X2,j,Yj)
i−1
j=1, G2). Then

H(G1) ≥ I(G1; X
n
1 , Xn

2 , Y n)

= H(Xn
1 , Xn

2 , Y n)−H(Xn
1 , Xn

2 , Y n|G1)

=
n∑

i=1

[
H(X1,i, X2,i, Yi|(X1,j, X2,j, Yj)

i−1
j=1)

−H(X1,i, X2,i, Yi|(X1,j, X2,j, Yj)
i−1
j=1, G1)

]

=
n∑

i=1

[H(X1,i, X2,i, Yi)−H(X1,i, X2,i, Yi|U1,i)]

=
n∑

i=1

I(X1,i, X2,i, Yi; U1,i) (5.9)

and similarly,

H(G2) ≥
n∑

i=1

I(X1,i, X2,i, Yi; U2,i).
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The conditional entropy H(X̂n
1 |G1) satisfies

H(X̂n
1 |G1) ≥ I(Xn

1 ; X̂n
1 |G1)

= H(Xn
1 |G1)−H(Xn

1 |X̂n
1 , G1)

=
n∑

i=1

[
H(X1,i|(X1,j)

i−1
j=1, G1) (5.10)

−H(X1,i|(X1,j)
i−1
j=1, X̂

n
1 , G1)

]

≥
n∑

i=1

[
H(X1,i|V1,i)−H(X1,i|X̂1,i, V1,i)

]

≥
n∑

i=1

I(X1,i; X̂1,i|V1,i) ≥
n∑

i=1

RX1,i|V1,i(D1,i)

≥
n∑

i=1

RX1,i|U1,i
(D1,i), (5.11)

where V1,i = ((X1,j)
i−1
j=1, G1) and (5.11) follows from (5.3) since

U1,i = (V1,i, (X2,j, Yj)
i−1
j=1). Now since X̂n

1 and G1 are deterministic functions of F1,

H(X̂n
1 , G1|F1) = 0 and

nR1 ≥ H(F1) = H(F1) + H(X̂n
1 , G1|F1) (5.12)

= H(X̂n
1 , F1, G1) ≥ H(X̂n

1 , G1)

= H(X̂n
1 |G1) + H(G1)

≥
n∑

i=1

(RX1,i|U1,i
(D1,i) + I(X1,i, X2,i, Yi; U1,i))

nR3 ≥ H(G1) ≥
n∑

i=1

I(X1,i, X2,i, Yi; U1,i). (5.13)

Similarly,

R2 ≥ 1

n

n∑
i=1

(RX2,i|U2,i
(D2,i) + I(X1,i, X2,i, Yi; U2,i|U1,i))

R4 ≥ 1

n

n∑
i=1

I(X1,i, X2,i, Yi; U2,i).

(5.14)
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Let Q denote a random variable uniformly distributed on {1, 2, . . . , n} that is

independent of (Xn
1 , Xn

2 , Y n). From Lemma 5.2.1, for j = 1 or 2,

1

n

n∑
i=1

RXj,i|Uj,i
(Dj,i) ≥ RXj,Q,Q|Uj,Q,Q

(
1

n

n∑
i=1

Dj,i

)

≥ RXj,Q|Uj,Q,Q(Dj + ε),

where the last inequality follows from (5.8) and the fact that RXj,Q|Uj,Q,Q(D) is a

nonincreasing function of D. Then (5.13) and (5.14) become

R1 ≥ RX1,Q|U1,Q,Q(D1 + ε) + I(X1,Q, X1,Q, YQ; U1,Q|Q)

R2 ≥ RX2,Q|U2,Q,Q(D2 + ε) + I(X1,Q, X2,Q, YQ; U2,Q|Q)

R3 ≥ I(X1,Q, X2,Q, YQ; U1,Q|Q)

R4 ≥ I(X1,Q, X2,Q, YQ; U2,Q|Q).

Define U1 := (U1,Q, Q) and U2 := (U2,Q, Q). Since (X1,i, X2,i, Yi), i ∈ {1, 2, . . . , n} is

drawn i.i.d., the joint distribution of (X1,Q, X2,Q, YQ) is the same as that of

(X1, X2, Y ). Thus for j = 1 or 2, if Zj = (X1,Q, X2,Q, YQ), since Zj is independent of

Q,

I(ZQ; Uj,Q|Q) = H(ZQ|Q)−H(ZQ|Uj,Q, Q)

= (H(ZQ)−H(ZQ|Uj,Q, Q))− (H(ZQ)−H(ZQ|Q))

= I(ZQ; Uj,Q, Q)− I(ZQ; Q)

= I(ZQ; Uj,Q, Q) = I(ZQ; Uj).

Let X1 = X1,Q, X2 = X2,Q, Y = YQ. Then X1, X2, and Y have the same joint
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distribution p(x1, x2, y). Therefore,

R1 ≥ RX1|U1(D1 + ε) + I(X1, X2, Y ; U1)

R2 ≥ RX2|U2(D2 + ε) + I(X1, X2, Y ; U2)

R3 ≥ I(X1, X2, Y ; U1), R4 ≥ I(X1, X2, Y ; U2).

¤

5.4.2 Inner Bounds

We propose two inner bounds in Theorems 5.4.2 and 5.4.4. To prove the first achiev-

ability result, we apply the coding scheme introduced in the proof of Theorem 5.3.1.

We use four auxiliary random variables to characterize this inner bound.

Theorem 5.4.2 (Inner bound 1) Let the sources X1, X2, and Y be finite-alphabet

discrete random variables. Given D1 ≥ 0, D2 ≥ 0 and DY ≥ 0. If the rate vector

(R1, R2, R3, R4) satisfies

R1 >RX1|U1(D1) + I(X1, X2, Y ; U1)

+ I(X1, X2, Y ; V1|U1, U2)

R2 >RX2|U2(D2) + I(X1, X2, Y ; U2)

+ I(X1, X2, Y ; V2|U1, U2)

R3 >I(X1, X2, Y ; U1) + I(X1, X2, Y ; V1|U1, U2)

R4 >I(X1, X2, Y ; U2) + I(X1, X2, Y ; V2|U1, U2)

(5.15)

for some auxiliary random variables U1, U2, V1, and V2 such that

(i) (U1, V1) → (X1, X2, Y ) → (U2, V2) forms a Markov chain

(ii) there exists a function Ŷ of U1, U2, V1, and V2 such that

Ed(Ŷ (U1, U2, V1, V2), Y ) ≤ DY ,
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then (R1, R2, R3, R4) is (D1, D2, DY )-achievable.

Proof. To prove the achievability of this region, it suffices to show that for any

δ > 0 and any (U1, U2, V1, V2) satisfying conditions (i) - (ii) above, the rate vector

(R1, R2, R3, R4) defined by

R1(δ) = RX1|U1(D1) + I(X1, X2, Y ; U1)

+I(X1, X2, Y ; V1|U1, U2) + 3δ

R2(δ) = RX2|U2(D2) + I(X1, X2, Y ; U2)

+I(X1, X2, Y ; V2|U1, U2) + 3δ

R3(δ) = I(X1, X2, Y ; U1) + I(X1, X2, Y ; V1|U1, U2)

+2δ

R4(δ) = I(X1, X2, Y ; U2) + I(X1, X2, Y ; V2|U1, U2)

+2δ

is (D1, D2, DY )-achievable.

Fix n ∈ N. For k = 1, 2, let X̂k be a random variable defined by a conditional

probability distribution p(x̂k|xk, uk) such that I(Xk; X̂k|Uk) < RXk|Uk
(Dk) + δ and

E(d(Xk, X̂k)) ≤ Dk. Set

Sk := 2n(I(X1,X2,Y ;Vk|Uk)+δ), Mk := 2n(I(X1,X2,Y ;Uk)+δ)

Tk := 2n(I(Xk;X̂k|Uk)+δ), Nk := 2n(I(X1,X2,Y ;Vk|U1,U2)+δ).

Generate the codebook for k = 1, 2 as follows:

1. Randomly choose Mk typical sequences Un
k (1), Un

k (2), . . ., Un
k (Mk) i.i.d.

according to the probability distribution
∏n

i=1 p(uk,i).

2. For each m ∈ {1, 2, . . . , Mk}, choose Sk sequences V n
k (m, 1), . . ., V n

k (m,Sk)

uniformly at random from the set A
∗(n)
ε (V |Un

k (m)).
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3. For each m ∈ {1, 2, . . . , Mk}, choose Tk sequences X̂n
k (m, 1), X̂n

k (m, 2), . . . ,

X̂n
k (m, Tk) uniformly at random from the set A

∗(n)
ε (X|Un

k (m)).

For k = 1, 2 and j ∈ {1,. . . , Sk}, draw τk(j) uniformly at random from {1,. . . , Nk}.
Let (xn

1 , x
n
2 , y

n) be the source vector to be transmitted. We use the following

functions in defining the encoders :

ψk(x
n
1 , x

n
2 , y

n) := min
[{Mk} ∪ {m ∈ {1, . . . , Mk} :

(xn
1 , x

n
2 , y

n, Un
k (m)) ∈ A∗(n)

ε (X1, X2, Y, Uk)}
]
.

µk(x
n
1 , x

n
2 , y

n) := min [{Sk} ∪ {s ∈ {1, . . . , Sk} :

(xn
1 , x

n
2 , y

n, Un
k (ψk(x

n
1 , x

n
2 , y

n)), V n
k (ψk(x

n
1 , x

n
2 , y

n), s))

∈ A∗(n)
ε (X1, X2, Y, Uk, Vk)}

]

φk(x
n
1 , x

n
2 , y

n) := min [{Tk} ∪ {t ∈ {1, 2, . . . , Tk} :

(xn
k , U

n
k (ψk(x

n
1 , x

n
2 , y

n)), X̂n
k (ψk(x

n
1 , x

n
2 , y

n), t))

∈ A∗(n)
ε (Xk, Uk, X̂k)}

]

πk(x
n
1 , x

n
2 , y

n) := τk(µk(x
n
1 , x

n
2 , y

n)).

Finally, we define the encoders as

fk(x
n
1 , x

n
2 , y

n) := (ψk, πk, φk)(x
n
1 , x

n
2 , y

n)

gk(fk(x
n
1 , x

n
2 , y

n)) := (ψk, πk)(x
n
1 , x

n
2 , y

n).

The decoding strategy is stated as follows:

1. Reproducing Xn
k for k = 1, 2 : The decoder at node k maps the indices

(mk, pk, tk) to the reproduction X̂n
k (mk, tk).

2. Reproducing Y n: At node 3, find ĵk (k = 1, 2) from {1, . . . , Sk} such that

(Un
1 (m1), U

n
2 (m2), V

n
k (mk, ĵk)) ∈

A∗(n)
ε (U1, U2, Vk) and τk(ĵk) = pk.

(5.16)
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For k = 1, 2, define the function ιk mapping from {1, . . . , Mk} × {1, . . . , Nk} to

{1, . . . , Sk} as

ιk(mk, pk) :=





ĵk, if ĵk is the unique index satisfying (5.16)

1, otherwise.

The receiver at node 3 builds its reconstruction for Y n as

Ŷ n(Un
1 (m1), U

n
2 (m2), V

n
1 (m1, ι1(m1, p1)),

V n
2 (m2, ι2(m2, p2))).

Analysis of performance:

For simplicity, we denote by µk, φk, ιk, and πk the evaluated values of the

corresponding functions on (xn
1 , x

n
2 , y

n) for k = 1, 2. Define the following atypicality

events:

1. E0 : (xn
1 , x

n
2 , y

n) /∈ A
∗(n)
ε (X1, X2, Y ).

2. EUk
for k = 1, 2 : For all m ∈ {1, . . . ,Mk} and all s ∈ {1, . . . , Sk},

(xn
1 , x

n
2 , y

n, Un
k (m), V n

k (m, s)) is not jointly typical in A
∗(n)
ε (X1, X2, Y, Uk, Vk).

3. EXk
for k = 1, 2 : For all t ∈ {1, 2, . . . , Tk},

(xn
k , Un

k (ψk), X̂
n
k (ψk, t)) /∈ A∗(n)

ε (Xk, Uk, X̂k).

4. EVk
: (Un

1 (ψ1), U
n
2 (ψ2)) ∈ A

∗(n)
ε (U1, U2) and there exists

V n
k (ψk, j) 6= V n

k (ψk, µk) such that

(Un
1 (ψ1), U

n
2 (ψ2), V

n
k (ψk, j)) ∈ A∗(n)

ε (U1, U2, Vk)

and τk(j) = πk.

5. E12 : (xn
1 , x

n
2 , y

n, Un
1 (ψ1), V

n
1 (ψ1, µ1), V

n
2 (ψ2, µ2)) /∈ A

∗(n)
ε or
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(xn
1 , x

n
2 , y

n, Un
2 (ψ1), V

n
1 (ψ1, µ1), V

n
2 (ψ2, µ2)) /∈ A

∗(n)
ε .

6. E = E0 ∪ EU1 ∪ EU2 ∪ EX1 ∪ EX2 ∪ EV1 ∪ EV2 ∪ E12.

From the basic property of typical sets, Pr(E0) can be made arbitrarily small as n

grows without bound. By Corollary 5.2.5 and Lemma 5.2.6, Pr(EU1), Pr(EU2),

Pr(EX1), Pr(EX2), and Pr(E12) can also be made arbitrarily small as n grows

without bound. Finally, for k = 1, 2, when knowing (Un
1 (ψ1),U

n
2 (ψ2))

∈ A
∗(n)
ε (U1, U2), since the probability that a randomly chosen sequence

vn
k ∈ A

∗(n)
ε (V |Un

k (ψk)) is jointly strongly typical with (Un
1 (ψ1), U

n
2 (ψ2)) is

approximately 2nI(Vk;U3−k|Uk), the probability of the event EVk
can be bounded (when

n is large enough) by

Pr(EVk
) ≤ |Bk(pk)|2n(I(Vk;U3−k|Uk)− δ

2
)

=
Sk

Nk

× 2n(I(Vk;U3−k|Uk)− δ
2
),

where Bk(pk) is the set of indices j ∈ {1, . . . , Sk} such that τ(j) = pk. Since

I(X1, X2, Y ; Vk|Uk)− I(X1, X2, Y ; Vk|Uk, U3−k)

= (H(Vk|Uk)−H(Vk|Uk, X1, X2, Y ))

−(H(Vk|U1, U2)−H(Vk|X1, X2, Y, U1, U2))

= H(Vk|Uk)−H(Vk|U1, U2)

+(H(Vk|X1, X2, Y, U1, U2)−H(Vk|Uk, X1, X2, Y ))

= I(Vk; U3−k|Uk) + 0,

Pr(EVk
) can also be made arbitrarily small as n grows without bound. Hence

limn→∞ Pr(E) = 0. From Remark 5.2.3, the average distortion between any pair of
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jointly typical sequences is close to the expected distortion. Therefore, for k = 1, 2,

|Ed(Xn
k , X̂n

k (ψk, φk))−Dk|
=

∣∣∣Pr(Ec)
[
E

(
d(Xn

k , X̂n
k (ψk, φk)|Ec

)
−Dk

]

+ Pr(E)
[
E

(
d(Xn

k , X̂n
k (ψk, φk)|E

)
−Dk

]∣∣∣

≤ Pr(Ec) · ε · dmax + Pr(E) · dmax ≤ ε · dmax + ε · dmax

for n sufficiently large. Similarly,

|Ed(Y n, Ŷ n(Un
1 (ψ1), U

n
2 (ψ2), V

n
1 (ψ1, ι1(ψ1, π1))

, V n
2 (ψ2, ι2(ψ2, π2)))| < 2ε · dmax

for n sufficiently large. Since ε > 0 can be chosen arbitrarily small, this coding

scheme satisfies the distortion requirement (D1, D2, DY ).

¤

By setting V1 and V2 to be constants, we have the following.

Corollary 5.4.3 Let the sources X1, X2, and Y be finite-alphabet discrete random

variables. Given D1 ≥ 0, D2 ≥ 0 and DY ≥ 0. If the rate vector (R1, R2, R3, R4)

satisfies

R1 > RX1|U1(D1) + I(X1, X2, Y ; U1)

R2 > RX2|U2(D2) + I(X1, X2, Y ; U2)

R3 > I(X1, X2, Y ; U1), R4 > I(X1, X2, Y ; U2)

for some auxiliary random variables U1 and U2 such that

(i) U1 → (X1, X2, Y ) → U2 forms a Markov chain

(ii) there exists a function Ŷ of U1, U2 such that

Ed(Ŷ , Y ) ≤ DY ,
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then (R1, R2, R3, R4) is (D1, D2, DY )-achievable.

The second inner bound is stated in the following theorem. As in Corollary 5.4.3,

we use two auxiliary random variables. Instead of assuming Markov conditions, we

here use additional rate to guarantee that the sequences we pick in the encoding

process associated with these two auxiliary random variables are jointly strongly

typical with the source sequence.

Theorem 5.4.4 (Inner bound 2) Let the sources X1, X2, Y be finite-alphabet dis-

crete random variables. Given D1 ≥ 0, D2 ≥ 0 and DY ≥ 0. If the rate vector

(R1, R2, R3, R4) satisfies

R1 > RX1|U1(D1) + I(X1, X2, Y ; U1)

R2 > RX2|U2(D2) + I(X1, X2, Y ; U2)

R3 > I(X1, X2, Y ; U1)

R4 > I(X1, X2, Y ; U2)

R1 + R4 > RX1|U1(D1) + I(X1, X2, Y ; U1, U2)

+I(U1; U2)

R2 + R3 > RX2|U2(D2) + I(X1, X2, Y ; U1, U2)

+I(U1; U2)

R3 + R4 > I(X1, X2, Y ; U1, U2) + I(U1; U2)

(5.17)

for some auxiliary random variables U1 and U2 such that there exists a function Ŷ of

U1 and U2 with

Ed(Ŷ (U1, U2), Y ) ≤ DY ,

then (R1, R2, R3, R4) is (D1, D2, DY )-achievable.
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Proof. It is enough to show that for any δ > 0 and λ ∈ [0, 1], the rate vector (R′
1(δ),

R′
2(δ), R′

3(δ), R′
4(δ)) is (D1, D2, DY )-achievable, where

R′
1(δ) = RX1|U1(D1) + I(X1, X2, Y ; U1) + λ∆ + 2δ

R′
2(δ) = RX2|U2(D2) + I(X1, X2, Y ; U2) + (1− λ)∆ + 2δ

R′
3(δ) = I(X1, X2, Y ; U1) + λ∆ + δ

R′
4(δ) = I(X1, X2, Y ; U2) + (1− λ)∆ + δ

and

∆ = max(I(X1, X2, Y ; U1, U2) + I(U1; U2)

−I(X1, X2, Y ; U1)− I(X1, X2, Y ; U2) + δ, 0).

For k = 1, 2, let X̂k be a random variable defined by a conditional probability

distribution p(x̂k|xk, uk) such that I(Xk; X̂k|Uk) < RXk|Uk
(Dk) + δ and

E(d(Xk, X̂k)) ≤ Dk. Set

M1 := 2n(I(X1,X2,Y ;U1)+λ∆+δ)

M2 := 2n(I(X1,X2,Y ;U2)+(1−λ)∆+δ)

T1 := 2n(I(X1;X̂1|U1)+δ), T2 := 2n(I(X2;X̂2|U2)+δ).

Generate the codebook for k = 1, 2 as follows:

1. Randomly choose Mk typical sequences Un
k (1), Un

k (2), . . ., Un
k (Mk) according

to the probability distribution
∏n

i=1 p(uk,i).

2. For each m ∈ {1, 2, . . . , Mk}, randomly choose Tk sequences X̂n
k (m, 1),

X̂n
k (m, 2), . . . , X̂n

k (m,Tk) uniformly at random from the set A
∗(n)
ε (X|Un

k (m)).

Let (xn
1 , x

n
2 , y

n) be the source to be transmitted. We use the following functions in
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defining the encoders:

ψk(x
n
1 , x

n
2 , y

n) := min
[{Mk} ∪ {m ∈ {1, . . . , Mk} :

(xn
1 , x

n
2 , y

n, Un
k (m)) ∈ A∗(n)

ε (X1, X2, Y, Uk)}
]
.

φk(x
n
1 , x

n
2 , y

n) := min [{Tk} ∪ {t ∈ {1, 2, . . . , Tk} :

(xn
k , U

n
k (ψk(x

n
1 , x

n
2 , y

n)), X̂n
k (ψk(x

n
1 , x

n
2 , y

n), t))

∈ A∗(n)
ε (Xk, Uk, X̂k)}

]
.

Finally, we define the encoders as

fk(x
n
1 , x

n
2 , y

n) := (φk, ψk)(x
n
1 , x

n
2 , y

n)

gk(fk(x
n
1 , x

n
2 , y

n)) := ψk(x
n
1 , x

n
2 , y

n).

The decoder at node k (k = 1, 2) maps the indices (tk,mk) to the reproduction

X̂n
k (mk, tk). At node 3, the decoder maps the indices (m1,m2) to the reproduction

Ŷ n(Un
1 (m1), U

n
2 (m2)).

Analysis of performance:

For simplicity, we use µk, φk to denote the evaluated values of the corresponding

functions on (xn
1 , x

n
2 , y

n) for k = 1, 2. Define the following error events:

1. E0 : (xn
1 , x

n
2 , y

n) /∈ A
∗(n)
ε (X1, X2, Y ).

2. EUk
for k = 1, 2 : For all m ∈ {1, . . . ,Mk},

(xn
1 , x

n
2 , y

n, Un
k (m)) /∈ A∗(n)

ε (X1, X2, Y, Uk).

3. EXk
for k = 1, 2 : For all t ∈ {1, 2, . . . , Tk},

(xn
k , Un

k (ψk), X̂
n
k (ψk, t)) /∈ A∗(n)

ε (Xk, Uk, X̂k).



110

4. E12 : (xn
1 , x

n
2 , y

n, Un
1 (ψ1), U

n
2 (ψ2)) /∈ A

∗(n)
ε (X1, X2, Y, U1, U2).

5. Eerror = E0 ∪ EU1 ∪ EU2 ∪ EX1 ∪ EX2 ∪ E12.

The same argument as in Theorem 5.4.2 shows that Pr(E0), Pr(EU1), Pr(EU2),

Pr(EX1), Pr(EX2), and Pr(E12) can be made arbitrarily small as n grows without

bound. Since we have the following inequality

I(X1, X2, Y ; U1) + I(X1, X2, Y ; U2) + 2δ + ∆

> I(X1, X2, Y ; U1, U2) + I(U1; U2),

the same argument as in [53] shows that limn→∞ Pr(E12) = 0. Consequently, we

have limn→∞ Pr(Eerror) = 0. From Remark 5.2.3, the average distortion between any

pair of jointly typical sequences is close to the expected distortion. Therefore, for

k = 1, 2,

|Ed(Xn
k , X̂n

k (ψk, φk))−Dk|
=

∣∣∣Pr(Ec
error)

[
E

(
d(Xn

k , X̂n
k (ψk, φk)|Ec

error

)
−Dk

]

+ Pr(Eerror)
[
E

(
d(Xn

k , X̂n
k (ψk, φk)|Eerror

)
−Dk

]∣∣∣

≤ Pr(Ec
error) · ε · dmax + Pr(Eerror) · dmax

≤ ε · dmax + Pr(Eerror) · dmax.

Similarly,

|Ed(Y n, Ŷ n(Un
1 (ψ1), U

n
2 (ψ2)))−DY |

< ε · dmax + Pr(Eerror) · dmax.

Since ε > 0 is chosen arbitrarily and Pr(E) can be made arbitrarily small for n

sufficiently large, this coding scheme matches the distortion requirement

(D1, D2, DY ).

¤
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Remark 5.4.5 1. The region given in Theorem 5.4.4 may not be convex, so the

inner bound derived in Theorem 5.4.4 is actually the convex closure of the set

described in (5.17).

5.5 Special Cases

Two special cases of this diamond network are discussed in this section. We have one-

letter characterizations of the corresponding rate-distortion regions that are induced

from the inner bounds in Section 5.4. We investigate the roles of the auxiliary random

variables used in describing their rate-distortion regions.

5.5.1 Special Case I

When sources X1 and X2 are constant (X1 = C1 and X2 = C2 with probability one)

and R1 = R3 and R2 = R4, the diamond network becomes a point-to-point network

with two paths between the transmitter and the receiver, as shown in Figure 5.5.

Clearly, the rate distortion regionR1(D) in this case is the set of vectors (R1,R2)∈ R2
+

satisfying R1 + R2 ≥ RX(D), where

RX(D) = min
X̂:Ed(X,X̂)≤D

I(X; X̂)

is the rate distortion function. Although the achievable rate pairs for this trivial case

are easily described, we here use the above characterization to show that our previous

solutions, based on auxiliary random variables U1 and U2, give the optimal solution

in this special case.

Enc Dec
R2

R1

X X̂

Figure 5.5: The two-path point-to-point network.
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Given D ≥ 0, define two sets of pairs of auxiliary random variables

Φ1(D) :=





(U1, U2)

U1 → X → U2 is a Markov

chain and ∃ X̂ : U1 × U2

→ X̂ such that

Ed(X, X̂) ≤ D.





and

Φ2(D) :=



 (U1, U2)

∃ X̂ : U1 × U2 → X̂
such that Ed(X, X̂) ≤ D.



 .

Consider the following two sets of rate pairs

R∗
1(D) :=

⋃

(U1,U2)∈Φ1(D)



(R1, R2) |

R1 ≥ I(X; U1)

R2 ≥ I(X; U2)





R∗∗
1 (D) :=

⋃

(U1,U2)∈Φ2(D)





(R1, R2)

R1 ≥ I(X; U1),

R2 ≥ I(X; U2)

R1 + R2 ≥
I(X; U1, U2)

+ I(U1; U2)





,

where for any set A ⊆ R4, A denotes convex closure of A. Note that for any (U1, U2) ∈
Φ1(D),

I(X; U1) + I(X; U2)

= (H(U1) + H(U2))− (H(U1|X) + H(U2|X))

≥ H(U1, U2)−H(U1, U2|X) = I(X; U1, U2)

≥ I(X; X̂(U1, U2)) ≥ RX(D).

Hence R∗
1(D) ⊆ R1(D). To see the converse, given any ε > 0, choose X̂ satisfying

I(X; X̂) ≤ RX(D) + ε, Ed(X, X̂) ≤ D.
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Then by letting (U1, U2) = (X̂, c), one has (RX(D) + ε, 0) ∈ R1(D), where c is a

constant. Similarly, (0, RX(D)+ ε) ∈ R1(D). Then by convexity of R1(D), R1(D) ⊆
R∗

1(D).

Lemma 5.5.1 R1(D) = R∗
1(D).

Since any rate pair in R1(D) can be obtained using time-sharing, it is sufficient to

pick U1 and U2 of alphabet sizes |X |+ 1.

Next we look at R∗∗
1 (D). By Theorem 5.4.4, R∗∗

1 (D) ⊆ R1(D). Following the

same argument as above, we have that (0, RX(D)) and (RX(D), 0) are in R∗∗
1 (D),

giving the following lemma.

Lemma 5.5.2 R1(D) = R∗∗
1 (D).

5.5.2 Special Case II

Enc Dec

Enc 2

Dec 2

(f)

Ŷ

X̂

R1 = R3(g2)

R4(g1)

R2

X, Y

Figure 5.6: Special case II.

As a second special case, let X1 = C1 with probability 1 and set R1 = R3, but

allow X2 to be an arbitrary finite-alphabet random variable. The result is the network

shown in Figure 5.6. In this network, there are one middle node at the top link and

a direct link from the transmitter to the receiver. Let (D1, DY ) be the distortion

requirements for reproducing (X, Y ). Our purpose is to show that a rate vector

(R1, R3, R4) is in the rate distortion region if and only if

R1 = R3 ≥ RY |U(DY )

R2 ≥ RX|U(D1) + I(X, Y ; U)

R4 ≥ I(X,Y ; U)
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for some random variable U . To prove the converse, from Theorem 5.4.1, it suffices

to check that R1 ≥ RY |U(DY ). Let f , g1, and g2 be the encoding functions as

indicated in Figure 5.6 and let F = f(Xn, Y n), G1 = g1(F ), and g2 = G2(X
n, Y n)

denote the encoding messages. Then, following the approach used in (5.11), we have

H(Ŷ n|G1) ≥ nRY |U(DY ), where Ŷ n is the reproduction of Y n. Hence

nR4 ≥ H(G2) ≥ H(G2|G1) = H(G2|G1) + H(Ŷ n|G1, G2)

= H(Ŷ n, G2|G1) ≥ H(Ŷ n|G1)

≥ nRY |U(DY ).

To show the achievability, the idea is basically the same as the proof of Theorem

5.4.2, so we briefly describe it. Let U be given and δ > 0 be arbitrary. Pick random

variables X̂ and Ŷ satisfying

I(X; X̂|U) < RX|U(D1) + δ, Ed(X, X̂) ≤ D1

I(Y ; Ŷ |U) < RY |U(DY ) + δ, Ed(Y, Ŷ ) ≤ DY .

Let n be given. We generate the codebook as follows:

1. Randomly generate Un(1), . . . , Un(M) , where M = 2n(I(X,Y ;U)+δ).

2. For any i ∈ {1, . . . , M}, randomly generate X̂n(i, 1), . . . , X̂n(i, T ) from the set

A
∗(n)
ε (X|Un(i)), where T = 2n(I(X;X̂|U)+δ).

3. For any i ∈ {1, . . . , M}, randomly generate Ŷ n(i, 1), . . . , Ŷ n(i, S) from the set

A
∗(n)
ε (Y |Un(i)), where S = 2n(I(Y ;Ŷ |U)+δ).

If (xn, yn) is the source sequence, the transmitter finds the indices s ∈ {1, . . . , S},
t ∈ {1, . . . , t}, and m ∈ {1, . . . ,M} such that

(xn, yn, Un(m), X̂n(m, t), Ŷ n(s, t)) ∈ A∗(n)
ε (X, Y, U, X̂, Ŷ ).

Then he transmits s through the top link and (m, t) through the bottom link. The

encoder at the middle node then transmits m to the receiver. If (m, t) is observed
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at the middle node, the decoder then naturally reproduces Xn as X̂n(m, t). If s is

received from the top link and t is observed from the bottom at receiver, the decoder

reproduces Y n as Ŷ (s, t). By using this coding scheme, the same argument as in the

proof of Theorem 5.4.2 implies that when n is sufficiently large, one has that with

sufficiently high probability,

(xn, X̂n(m, t)) ∈ A∗(n)
ε (X, X̂)

and

(yn, Ŷ n(s, t)) ∈ A∗(n)
ε (Y, Ŷ ).

Then the reproductions X̂n(m, t) and Ŷ n(s, t) will match the distortion requirements

(D1, DY ).
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Chapter 6

Conclusions and Future Works

We proved that the lossless rate region for canonical source coding and the lossy

rate region for both canonical and non-canonical source coding are continuous in

distribution in Chapter 2. Although a counterexample shows that the lossless rate

region for non-canonical source coding may not be continuous in distribution, it is

s-continuous, meaning that as long as two distributions are sufficiently close and have

the same support, the lossless rate regions can be arbitrarily close. We also proved

that the zero-error rate region is s-continuous.

The exponentially strong converse is proved for coded-side information problem,

lossless source coding for multicast network with side information at the end nodes,

and lossy source coding for the point-to-point communication in Chapter 3.

Chapter 4 introduces a family of algorithms to approximate the rate regions for

some example network source coding problems that guarantees (1+ ε)-approximation

including the lossless rate region for the coded side information problem, the Wyner-

Ziv rate distortion function, and the Berger et al. bound for the lossy coded side

information problem. The proposed algorithms that approximate the rate regions

based on their single-letter characterizations may be improved by cleverly choosing

the family of quantized conditional distributions of auxiliary random variables given

the source random variables.

By applying the techniques used to solving the simple network source coding prob-

lems in the literature, we use auxiliary random variables to bound the rate regions

for two basic network source coding problems that capture some important char-
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acteristics of general networks: the lined two-hop and the diamond networks. The

performance bounds provide a way to bound larger networks by decomposing them

into basic components.

The results in this thesis may provide a method to understand some theoretical

problems in the field of source coding over networks, for instance, the existence of

single-letter characterizations, tightness of some early derived bounds, and the be-

haviors of the achievable rate regions as functions of the source distribution and the

distortion vector. Some techniques may apply to the study of the capacity regions

for channel coding over networks.
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Chapter 7

APPENDIX

A Lemmas for Theorem 2.4.1

The following sequence of Lemmas builds to Theorem 2.4.1, which proves that for

the canonical source coding problem R(PX,Y,D) is uniformly continuous in D. First,

Lemma A.1 and Corollary A.2 bound the conditional entropy of one random vector

given the other as a function of Hamming distance between them.

Lemma A.1 Let V n = (V1, V2, . . . , Vn) be a random vector in ϑn and let w be the

per symbol expected Hamming weight of V n

w =
1

n
EdH(V n,0) =

1

n
E|{i | Vi 6= 0}|.

Then

H(V n) ≤ n(H(w) + w log(ms − 1)).

Proof. First notice that since V n ∈ Θn, there are at most ms possible values for Vi

for every i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n}, let {ai,0, . . . , ai,ms−1} be the set of

possible values for Vi. For each i ∈ {1, . . . , n} and each j ∈ {0, . . . , ms − 1}, let pi,j

denote the probability Pr(Vi = ai,j). Then

w =
1

n
EdH(V n,0) =

1

n

n∑
i=1

ms−1∑
j=1

pi,j.
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Let wi :=
∑ms−1

j=1 pi,j. The maximal entropy H(Vi) over all distributions with the

same values (w1, . . . , wn) occurs when pi,0 = 1− wi and pi,j = wi

ms−1
for each j 6= 0.

Hence

H(Vi) ≤ H

(
1− wi,

wi

ms − 1
, . . . ,

wi

ms − 1

)

= H(wi) + wi log(ms − 1).

Therefore, by the convexity of the entropy function,

H(V n) ≤
n∑

i=1

H(Vi) ≤
n∑

i=1

[H(wi) + wi log(ms − 1)]

≤ n(H(w) + w log(ms − 1)).

¤

For any V n ∈ Θn, the set {a ∈ ϑn | Pr(V n = a)} is called the support set of V n.

Corollary A.2 Let V n and W n be two random vectors in ϑn with the same support

set. Then
1

n
H(V n|W n) ≤ H(τ) + τ log(ms − 1) = O(τ log(1/τ)),

where

τ := E

[
1

n
dH(V n,W n)

]
.

Proof. Apply Lemma A.1 to the random vector V n −W n. ¤

For any a ∈ IRD
+ and any δ > 0, define aδ := (aδ,κ)κ∈D where for each κ ∈ D,

aδ,κ :=





δ, if aκ ≤ δ,

aκ, otherwise.
(A-1)

In Lemma A.3, we examine the relationship between R(PX,Y,D) and R(PX,Y,Dδ).

Lemma A.3 Let N be a canonical network source coding problem. For any ε > 0,

there exists δ > 0 such that for any D ∈ IRD
+ and any PX,Y ∈ M, R(PX,Y,D) and

R(PX,Y,Dδ) are ε-close.



120

Proof. For any a ∈ IRD
+ and any δ > 0, let [a]δ = ([a]δ,κ)κ∈D be defined as

[a]δ,κ =





0, if aκ ≤ δ,

aκ, otherwise.

Let ε > 0 be given. The majority of the proof works to show that there exists a

δ > 0 such that for any D = (Dκ)κ∈D ∈ IRD
+ and any PX,Y ∈M, R(PX,Y,D) and

R(PX,Y, [D]δ) are ε/2-close. From this we can observe that both R(PX,Y,D) and

R(PX,Y,Dδ) are ε/2-close to R(PX,Y, [D]δ), and hence R(PX,Y,D) and

R(PX,Y,Dδ) are ε-close as desired.

To show that R(PX,Y,D) and R(PX,Y, [D]δ) are ε/2-close, note first that [D]δ ≤ D

for any δ > 0, so R(PX,Y, [D]δ)⊆ R(PX,Y,D). Therefore, we need only to choose an

appropriate δ > 0 (independent of (X,Y) and D) such that

R(PX,Y,D) + (ε/2) · 1 ⊆ R(PX,Y, [D]δ).

For any achievable rate vector R ∈ R(PX,Y,D), pick a rate-R, length-n block code

C such that for each κ = (v, θ) ∈ D,

Ed(θn(Xn), θ̂n(v)) ≤ Dκ + τdmin,

where θ̂n(v) is the reproduction of θn(Xn) at v and τ > 0 is a constant satisfying

sk(H(2τ) + 2τ log m) <
ε

2
.

Our goal is to use C to construct another code for which the error probability of the

reproduction for each κ ∈ D with Dκ ≤ δ can be made arbitrarily small. By

Corollary A.2, for each κ = (v, θ) ∈ D such that 1
n
Ed(θn(Xn), θ̂n(v)) ≤ 2τdmin, we

know that

H(θn(Xn)|θ̂n(v)) ≤ nε/(2sk).
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Since reproduction θ̂n(v) is known at node v, additional rate vector

( s

n
H(θn(Xn)|θ̂n(v)) + ε/(2k)

)
· 1

suffices to describe θn(Xn) losslessly at node v by Lemma 2.2.18. We therefore

modify code C by adding additional |I(θ)| descriptions for reproducing θn(Xn)

losslessly given θ̂n at node v as described in Lemma 2.2.18. For every (v, θ) ∈ D and

every i ∈ I(θ), the modified code sends the corresponding additional description

along a path connecting v and some source node that has access to source Xi. The

total additional rate vector (for all such pairs of sources and demands) on each link

is less than (ε/2) · 1. Therefore, the rate vector R + (ε/2) · 1 is [D]δ-achievable. By

letting δ = τdmin, we get the desired result. ¤

Lemma A.4 shows that there exists a rate vector that is D-achievable for any

distribution PX,Y and any distortion vector D ∈ IRD
+.

Lemma A.4
⋂

PX,Y∈M
R(PX,Y,0) 6= ∅.

Proof. Since each component of any vector (X,Y) of source and side information

symbols has alphabet size no greater than m, the rate vector k log(m)1∈ IRE
+

achieves 0 distortion for any PX,Y ∈M. ¤

Lemma A.5 combines the results of Lemmas A.1 - A.4 and is applied in the proof

of Theorem 2.4.1.

Lemma A.5 Let N be a canonical network source coding problem. For any ε > 0,

there exists a δ > 0 such that for any PX,Y ∈M and any D ∈ IRD
+, R(PX,Y,D) and

R(PX,Y,D + δ · 1) are ε-close.

Proof. Given any ε > 0. We prove the lemma by first showing that there exists a

τ > 0 such that R(PX,Y,D) and R(PX,Y,Dτ ) are ε/2-close for all D ∈ IRD
+, and
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then showing that there exists a 0 < δ < τ such that

R(PX,Y,Dδ + δ · 1) +
ε

2
· 1 ⊆ R(PX,Y,Dτ ).

Together, these results imply that R(PX,Y,D) and R(PX,Y,Dδ + δ · 1) are ε-close

since

R(PX,Y,D) ⊆ R(PX,Y + Dδ + δ · 1)

R(PX,Y,Dδ + δ · 1) + ε · 1 ⊆ R(PX,Y,Dτ ) +
ε

2
· 1 ⊆ R(PX,Y,D).

This proves the desired result since

R(PX,Y,D) ⊆ R(PX,Y,D + δ · 1) ⊆ R(PX,Y,Dδ + δ · 1).

The first result follows immediately from Lemma A.3. Precisely,

(i) there exists a τ > 0 such that R(PX,Y,D) and R(PX,Y,Dτ ) are ε/2-close for

all D ∈ IRD
+.

(ii) We next show that there exists a 0 < δ < τ such that for any D ∈ IRD
+ with

Dκ≥τ for all κ ∈ D,

R(PX,Y,D + δ · 1) +
ε

2
· 1 ⊆ R(PX,Y,D).

To prove this, first fix R0 ∈
⋂

PX,Y∈MR(PX,Y,0); this is possible by

Lemma A.4. For any 0 < δ < τ , D ∈ IRD
+ and Dκ≥τ for all κ ∈ D together

imply

(1− δ

τ
)(D + δ · 1) +

δ

τ
(τ · 1) ≤ D
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since for any κ ∈ D,

(1− δ

τ
)(Dκ + δ) +

δ

τ
δ −Dκ

= δ − δ

τ
Dκ = δ(1− Dκ

τ
) ≤ 0.

By the convexity and the monotonicity of R(PX,Y,D) on D, we have

(1− δ

τ
)R(PX,Y,D + δ · 1) +

δ

τ
R(PX,Y, δ · 1)

⊆ R(PX,Y, (1− δ

τ
)(D + δ · 1) +

δ

τ
(δ · 1))

⊆ R(PX,Y,D),

which implies for all D ∈ IRD
+ with Dκ ≥ τ for all κ ∈ D,

R(PX,Y,D + δ · 1) +
δ

τ
R0 ⊆ R(PX,Y,D).

This together with the definition of Dτ (A-1) implies that for all D ∈ IRD
+,

R(PX,Y,Dτ + δ · 1) +
δ

τ
R0 ⊆ R(PX,Y,Dτ ).

By the monotonicity of R(PX,Y,D) in D, the following satisfies for all DD
+ and

for any 0 < δ < τ

R(PX,Y,Dδ + δ · 1) +
δ

τ
R0 ⊆ R(PX,Y,Dτ ).

Thus the desired result holds for all 0 < δ < τ that satisfy

δ

τ
R0 ≤ ε

2
· 1.

¤



124

B Continuity of R∗(PX,Y,D) with respect to D

Lemma B.1 shows that the set R∗(PX,Y,D) is continuous at D when N is non-

canonical and D > 0 or N is canonical and D ≥ 0. The proof is similar to Theo-

rems 2.4.1 and 2.4.2, hence we state the lemma without a proof.

Lemma B.1 Let N be a network source coding problem. If N is non-canonical and

D > 0 or N is canonical and D ≥ 0, then R∗(PX,Y,D) is continuous at D.

C Lemmas for Section 2.5.2

In Lemma C.1, we show that when two distributions PX,Y and QX,Y are sufficiently

close and the support of PX,Y is a subset of that of QX,Y, there exists a joint distribu-

tion TX,X′,Y,Y′ with marginal on (X′,Y′) equal to QX,Y and conditional distribution

of (X′,Y′) given (X,Y) = (X′,Y′) equal to PX,Y for which (X,Y) equals (X′,Y′)

with high probability.

Lemma C.1 For any ε > 0 and any two distributions PX,Y ∈ M and QX,Y ∈ M
satisfying that

(1− ε)PX,Y(x,y) ≤ QX,Y(x,y) ∀ (x,y) ∈ A,

there exists a joint distribution TX,Y,X′,Y′ of (X,Y) with alphabet A and (X′,Y′)

with alphabet A ∪ {a0}, where a0 is an extra symbol not in A, such that

(a) QX,Y = TX,Y, the marginal of TX,Y,X′,Y′ on (X,Y).

(b)

PX,Y(x,y) = TX,Y|{(X,Y)=(X′,Y′)}(x,y) ∀ (x,y) ∈ A,

where TX,Y|{(X,Y)=(X′,Y′)}is the conditional distribution of TX,Y,X′,Y′ on (X,Y)

given the event

{(X,Y) = (X′,Y′)}.
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(c)

Pr ((X,Y) = (X′,Y′)) = 1− ε.

Proof. For any (x,y) ∈ A, define

TX′,Y′(x,y) := (1− ε)PX,Y(x,y)

TX,Y|X′,Y′(x,y|x,y) := 1

TX′,Y′(a0) := ε

TX,Y|X′,Y′(x,y|a0) :=
QX,Y(x,y)− (1− ε)PX,Y(x,y)

ε
.

All other values of TX,Y,X′,Y′ are zero. Then this distribution TX,Y,X′,Y′ has

marginal on (X,Y) equal to QX,Y. Also,

Pr ((X,Y) = (X′,Y′)) =
∑

(x,y)∈A
TX,Y,X′,Y′(x,y,x,y) = 1− ε.

The conditional distribution of (X,Y) = (x,y) given (X,Y) = (X′,Y′) for all

(x,y) ∈ A is

TX,Y|{(X,Y)=(X′,Y′)}(x,y) =
TX,Y,X′,Y′(x,y)

Pr ((X,Y) = (X′,Y′))
= PX,Y(x,y).

¤

Lemma C.2 Suppose PX,Y, QX,Y, and TX,Y,X′,Y′ are as described in Lemma C.1.

Then
1

1− 2ε
R(N̂ , TX,Y,Y′,X′ ,D) ⊆ R(N , PX,Y,

1

1− 2ε
D).

Proof. The main idea of the proof is as follows. Since the probability of the event

(X,Y) = (X′,Y′) is 1− ε, when block length n is sufficiently high, the number of

occurrences that (Xi,Yi) = (X′
i,Y

′
i) in length-n sequence (Xn,Yn) is higher than

n(1− 2ε) for sufficiently high probability by the weak law of large numbers. We

apply this property to show that any rate-R, length-n block code Cn for N̂ with
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source vector X and side-information vector (Y,Y′,X′) which achieves D can be

applied to construct a length-n(1− 2ε) block code for N with source and side

information vectors Xn(1−2ε) and Yn(1−2ε) that has rate no greater than 1
1−2ε

R and

satisfies the distortion constraint given by 1
1−2ε

D.

Let τ > 0 and R ∈ R(N̂ , TX,Y,Y′,X′ ,D). Let n be sufficiently large such that there

exists a rate-R, length-n block code Cn which satisfies

Pr (Tn) > 1− τ, (A-2)

where Tn is the event

Tn :=

{
1

n
d

(
θn(Xn), θ̂n(v)

)
< D(v,θ) + τ ∀ (v, θ) ∈ D

}

and θ̂n(v) is the reproduction of θn(Xn) at node v using Cn for all (v, θ) ∈ IRD
+.

(A-2) can be achieved by applying the weak law of large numbers on a long code

constructed by repeatedly using a code which achieves D(v,θ) + τ/2. For any

I ⊆ {1, . . . , n}, define

B(n)
ε (I) := {(xn,x′n,yn,y′n) | (xi,yi) 6= (x′i,y

′
i) if and only if i ∈ I}.

Let

L(I) := {(a|I|,b|I|) ∈ A|I| ×A|I| | ai 6= bi ∀ i ∈ I}.

For any sequence (a|I|,b|I|) ∈ L(I), let

B(n)
ε (I, (a|I|,b|I|)) :=

{
(xn,x′n,yn,y′n) | ((xI ,yI), (x

′
I ,y

′
I)) = (a|I|,b|I|)

} ∩B(n)
ε (I)

denote the set of sequences (xn,x′n,yn,y′n) ∈ B
(n)
ε (I) such that

((xi,yi), (x
′
i,y

′
i)) = (ai,bi) for all i ∈ I. Let

B(n)
ε :=

⋃

I⊆{1,...,n} |I|<2nε

B(n)
ε (I)
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denote the set of sequences (xn,x′n,yn,y′n) for which there are at most 2nε indices

i such that (xi,yi) 6= (x′i,y
′
i). Since Pr ((X,Y) 6= (X′,Y′)) = ε,

Pr
(
B(n)

ε

)
> 1− τ

when n is sufficiently large by the weak law of large numbers. By the union bound,

Pr
(
B(n)

ε ∩ Tn

)
> 1− 2τ. (A-3)

Rewrite inequality (A-3) as

∑

I⊆{1,...,n} |I|<2nε

∑

(a|I|,b|I|)∈L(I)

Pr
(
B(n)

ε (I, (a|I|,b|I|))
)
Pr

(Tn|B(n)
ε (I, (a|I|,b|I|))

)

= Pr
(
B(n)

ε ∩ Tn

)
> 1− 2τ

Therefore, there exist Î ⊆ {1, . . . , n} and

(a
|Î|
0 ,b

|Î|
0 ) = ((x

|I|
0 ,y

|I|
0 ), (x′0

|I|,y′0
|I|)) ∈ L(I) such that |Î| < 2nε and

Pr
(
Tn|B(n)

ε (Î , (a
|Î|
0 ,b

|Î|
0 ))

)
> 1− 2τ . (A-4)

Without loss of generality, suppose that

I = {n− |I|+ 1, . . . , n}.

For any (xn−|I|,yn−|I|) ∈ An−|I|,

Pr
(
(Xn−|I|,Yn−|I|) = (xn−|I|,yn−|I|) | (Xn,Yn) ∈ B(n)

ε (Î , (a
|Î|
0 ,b

|Î|
0 ))

)

= TXn−|I|,Yn−|I||{(Xn−|I|,X′n−|I|)=(Yn−|I|,Y′n−|I|)}(x
n,yn)

= PXn−|I|,vecY n−|I|(xn−|I|,yn−|I|) (A-5)

Let Ĉn−|I| be the length-(n− |I|) block code for input sequence (Xn−|I|,Yn−|I|) by
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applying code Cn to

((Xn−|I|,x|I|0 ), (Yn−|I|,y|I|0 ), (Xn−|I|,x′0
|I|

), (Yn−|I|,y′0
|I|

)).

By (A-4), the code Ĉn−|I| has expected average distortions

1

n− |I|Ed(θn−|I|, θ̂n−|I|(v)) ≤ (1− 2τ)

(
n

n− |I|D(v,θ) +
n

n− |I|τ
)

+ 2τdmax

for all (v, θ) ∈ IRD
+. Therefore, since |I| < 2nε, Ĉn−|I| has rate

n

n− |I|R ≤ 1

1− 2ε
R

and expected average distortion vector no greater than

(1− 2τ)

(
1

1− 2ε
D +

1

1− 2ε
τ

)
+ 2τdmax

By (A-5), the expected distortion is evaluated according to PX,Y. Hence by letting

τ → 0
1

1− 2ε
R ∈ R(N , PX,Y,

1

1− 2ε
D).

This completes the proof. ¤

Lemma C.3 Suppose PX,Y, QX,Y, and TX,Y,X′,Y′ are as described in Lemma C.1.

Then
1

1− 2ε
RL(N̂ , TX,Y,Y′,X′) ⊆ RL(N , PX,Y).

Proof. The proof is similar to that of Lemma C.2. Let τ > 0 and

R ∈ R(N̂ , TX,Y,Y′,X′ ,D). Let n be sufficiently large such that there exists a rate-R,

length-n block code Cn which satisfies

Pr
(
θn(Xn) = θ̂n(v) ∀(v, θ) ∈ D

)
≥ 1− τ,
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where θ̂n(v) is the reproduction of θn(Xn) at node v using Cn for all (v, θ) ∈ IRD
+. Let

En :=
{

θn(Xn) 6= θ̂n(v) for some (v, θ) ∈ D
}

denote the event of decoding error using code Cn. Let L(I) (for I ⊆ {1, . . . , n}) and

B
(n)
ε (I, (a|I|,b|I|)) (for (a|I|,b|I|) ∈ L(I)) be the sets defined in the proof of

Theorem C.2. The same argument in Theorem C.2 leads to

Pr
(
Ec

n|B(n)
ε (Î , (a

|Î|
0 ,b

|Î|
0 ))

)
> 1− 2τ (A-6)

for some Î ⊆ {1, . . . , n} and (a
|Î|
0 ,b

|Î|
0 ) = ((x

|I|
0 ,y

|I|
0 ), (x′0

|I|,y′0
|I|)) ∈ L(I) such that

|Î| < 2nε. Without loss of generality, suppose that

I = {n− |I|+ 1, . . . , n}.

Let Ĉn−|I| be the length-(n− |I|) block code for input sequence (Xn−|I|,Yn−|I|) by

applying code Cn to

((Xn−|I|,x|I|0 ), (Yn−|I|,y|I|0 ), (Xn−|I|,x′0
|I|

), (Yn−|I|,y′0
|I|

)).

By (A-6), the code Ĉn−|I| has decoding error probability no greater than 2τ and has

rate no greater than
1

1− 2ε
R.

By (A-5), the error probability is evaluated according to PX,Y. Hence by letting

τ → 0
1

1− 2ε
R ∈ RL(N , PX,Y).

This completes the proof. ¤

Lemma C.4 Suppose PX,Y, QX,Y, and TX,Y,X′,Y′ are as described in Lemma C.1.
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Then
1

1− 2ε
RZ(N̂ , TX,Y,Y′,X′) ⊆ RZ(N , PX,Y).

Proof. The proof is similar to that of Lemma C.2. Let τ > 0 and

R ∈ R(N̂ , TX,Y,Y′,X′ ,D). Let n be sufficiently large such that there exists a

dimension-n zero-error variable-length code Cn with length vector L(n) which satisfies

Pr (Kn) > 1− τ,

where

Kn := { 1

n
L(n)(Xn,Yn) ≤ R + τ · 1} (A-7)

is the event that the average length vector is no greater than R + τ · 1. (A-7) can be

achieved by applying the weak law of large numbers on a long code constructed by

repeatedly using the codewords of a zero-error variable-length code whose expected

average length vector is no greater than R + (τ/2) · 1. Let L(I) (for I ⊆ {1, . . . , n})
and B

(n)
ε (I, (a|I|,b|I|)) (for (a|I|,b|I|) ∈ L(I)) be the sets defined in the proof of

Theorem C.2. The same argument in Theorem C.2 leads to

Pr
(
Kn|B(n)

ε (Î , (a
|Î|
0 ,b

|Î|
0 ))

)
> 1− 2τ (A-8)

for some Î ⊆ {1, . . . , n} and (a
|Î|
0 ,b

|Î|
0 ) = ((x

|I|
0 ,y

|I|
0 ), (x′0

|I|,y′0
|I|)) ∈ L(I) such that

|Î| < 2nε. Without loss of generality, suppose that

I = {n− |I|+ 1, . . . , n}.

Let Ĉn−|I| be the length-(n− |I|) block code for input sequence (Xn−|I|,Yn−|I|) by

applying code Cn to

((Xn−|I|,x|I|0 ), (Yn−|I|,y|I|0 ), (Xn−|I|,x′0
|I|

), (Yn−|I|,y′0
|I|

)).
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By (A-8), the zero-error variable-length code Ĉn−|I| has expected average length

vector no greater than

1

1− 2|I| ((1− 2τ)(R + τ · 1) + (2τ(s + 2t) log m) · 1)

≥ 1

1− 2ε
((1− 2τ)(R + τ · 1) + (2τ(s + 2t) log m) · 1) ,

where the value (s + 2t) log m uppers all possible average lengths over each edge

e ∈ E since for each e ∈ E , there are at most M s+2t codewords using Cn. By (A-5),

the expected length is evaluated according to PX,Y. Hence by letting τ → 0

1

1− 2ε
R ∈ RZ(N , PX,Y).

This completes the proof. ¤

D Proof of Theorem 4.4.1

Let J∗2 (λ) = min{PZ(z)}z∈Z J2(λ) be the optimal value of J2(λ) for the Wyner-Ziv rate

region, and let Ĵ2(λ) be the value computed by the algorithm proposed in Section 4.4.

Then Ĵ2(λ) ≥ J∗2 (λ) since the algorithm finds an auxiliary random variable Z achiev-

ing the given Lagrangian. We next find (η, δ) to guarantee that Ĵ2(λ) ≤ (1+ ε)J∗2 (λ).

Recall that J2(λ) := I(X; Z|Y )+λ minψ Ed(X, ψ(Y, Z)). Before bounding Ĵ2(λ)−
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J∗2 (λ), rewrite J2(λ) as

J2(λ) = H(X|Y )−H(Y |X) + H(Y |Z)−H(X|Z)

+λ min
ψ

Ed(X, ψ(Y, Z))

= H(X|Y )−H(Y |X) +
∑
z∈Z

PZ(z)H(Y |Z = z)

−
∑
z∈Z

PZ(z)

[
H(X|Z = z)

+
∑

x

p(y|x)QX|Z(x|z)d(x, ψ∗(y, z))

]
,

where ψ∗(y, z) is the optimizing reproduction of X given conditional {QX|Z(x|z)}(x,z)∈X×Z

and (y, z). Fix {QX|Z(x|z)}(x,z)∈X×Z and let {Q̂X|Z(x|z)}(x,z)∈X×Z be the quantized

conditional. Let

QY |Z(y|z) =
∑

x

p(y|x)QX|Z(x|z)

Q̂Y |Z(y|z) =
∑

x

p(y|x)Q̂X|Z(x|z)

be the corresponding conditionals on Y given Z. Then

(1− η)QX|Z(x|z)− δ ≤ Q̂X|Z(x|z) ≤ (1 + η)QX|Z(x|z)

(1− η)QY |Z(y|z)− δ ≤ Q̂Y |Z(y|z) ≤ (1 + η)QY |Z(y|z)

for all x, y, z. Finally, let {P ∗
Z(z)}z∈Z be the marginal on auxiliary random vari-

able Z that achieves J∗2 (λ) and define τ := η log e
1−η

. By Lemma 4.2.1, when

(max{|X |, |Y|}) δ log 1
δ

< τ

|H(Q̂X|Z=z)−H(QX|Z=z)| ≤ ηH(QX|Z=z) + 2τ

|H(Q̂Y |Z=z)−H(QY |Z=z)| ≤ ηH(QY |Z=z)

for every z ∈ Z.
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Let Z ′ := Z ∪ {zx}x∈X and set

Q̂X|Z(t|zx) =





1, if t = x

0, otherwise

P̂Z(z) =





(1− η)P ∗
Z(z), if z ∈ Z

PX(x)−∑
z∈Z Q̂X|Z(x|z)P̂Z(z), if z = zx.

ψ̂(y, z) =





ψ∗(y, z) if z ∈ Z
x if z = zx

Since Ĵ2(λ) is optimized over all quantized distributions,

Ĵ2(λ) ≤ J2(λ)|Q̂X|Z ,P̂Z ,ψ̂.

Thus

Ĵ2(λ)− J∗2 (λ)

≤ [(2η − η2)H(X|Z)− η2H(Y |Z)]P ∗Z ,QX|Z

+(2η − η2)H(Y |X) + 4(1− η)τ + |Y||Z|δ(1− η)

≤ η ((2− η)(|X |+ |Y|) + 8 + |Y||Z|))
≤ η(2|X |+ 2|Y|+ 8 + |Y||Z|).

when δ < η < 1− e
4

and (max{|X |, |Y|}) δ log 1
δ

< τ . Define

L∗(λ) := min
0≤D≤Dmax

(
RX|Y (D) + λD

)

where RX|Y (D) is the conditional rate-distortion function for X given Y . Then

J∗2 (λ) ≥ L∗(λ) implies

Ĵ2(λ)− J∗2 (λ) ≤ η(2|X |+ 2|Y|+ 8 + |Y||Z|)
L∗(λ)

J∗2 (λ).
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We therefore wish to choose δ and η to satisfy

δ < η =
L∗(λ)

2|X |+ 2|Y|+ 8 + |Y||Z|ε < 1− e

4
.

Define f(x) := −x log(x) for x ∈ [0, 1/e). Function f is strictly increasing and

therefore invertible. Setting

η = min

{
L∗(λ)

2|X |+ 2|Y|+ 8 + |Y||Z|ε, 1−
e

4

}
(A-9)

δ = min

{
η, f−1

(
min

{
η

|X | ,
η

|Y|
})}

(A-10)

yields (max{|X |, |Y|}) δ log 1
δ

< τ as desired and guarantees a (1 + ε)-approximation.

The interior-point solver for k variables runs in time O(k4) [54]. Since k = |Z| for

our linear program, our algorithm runs in time O(N(δ, η, |X |)4). Applying the given

choice of δ and η, our algorithm runs in time O(ε−4(|X |+1)) as ε approaches 0.

E Proof of Theorem 4.5.1

Let J∗3 (λ1, λ2, λ3) = min J3(λ1, λ2, λ3) be the optimal value of J3(λ1, λ2, λ3) for the

lossy coded side information region, and let Ĵ3(λ1, λ2, λ3) be the value computed by

the algorithm proposed in Section 4.5. Then Ĵ3(λ1, λ2, λ3) ≥ J∗3 (λ1, λ2, λ3). We next

find (η, δ) such that Ĵ3(λ1, λ2, λ3) ≤ (1 + ε)J∗3 (λ1, λ2, λ3).

Let Z ′
1 = Z1 ∪ {zx1}x1∈X1 and set

Q̂X1|Z1(t|zx1) =





1, if t = x1

0, otherwise
.

Let P ∗
Z1

Q∗
Z2|X2

be a distribution on (Z1, X2) that achieves J∗3 (λ1, λ2, λ3). Define

P̂Z1(z) =





(1− η′)P ∗
Z1

(z) ∀ z ∈ Z,

PX1(x1)−
∑

z Q̂X1|Z(x1|z)P̂Z1(z) ∀ x1 ∈ X1.
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Let τ ′ := η′ log e
1−η′ and δ′ := (|X1|+1)δη′ = 3η. Choose δ > 0 such that |X1||Z2|δ′ log 1

δ′ ≤
τ ′. By Lemma 4.2.1, for all x1 ∈ X1, x2 ∈ X2, and z1 ∈ Z1

|H(Q̂X1|Z1=z1)−H(QX1|Z1=z1)|
≤ η′H(QX1|Z1=z1) + 2τ ′

|H(Q̂X1,Z2|Z1=z1)−H(QX1,Z2|Z1=z1)|
≤ η′H(QX1,Z2|Z1=z1) + 2τ ′

|H(Q̂Z2|Z1=z1)−H(QZ2|Z1=z1)|
≤ η′H(QZ2|Z1=z1) + 2τ ′

|H(Q̂Z2|X2=x2)−H(QZ2|X2=x2)|
≤ η′H(QZ2|X2=x2) + 2τ ′

|H(Q̂Z2)−H(QZ2)| ≤ η′H(QZ2) + 2τ ′,

where Q̂X1,Z2|Z1 , Q̂Z2|Z1 , and Q̂Z2 derive from (Q̂X1|Z1 , Q̂Z2|X2). Let ψ∗ be the optimal

reproduction function for X1 for (P ∗
Z1

, Q∗
Z2|X2

). Extend the function ψ∗(z1, z2) to

ψ∗(zx1 , z2) = x1 for all x1 ∈ X1. Now

I(X1; Z1|Z2)

= H(X1|Z1)−H(X1|Z1, Z2)

= H(X1|Z1)−H(X1, Z2|Z1)−H(Z2|Z1)

I(X2; Z2) = H(Z2)−H(Z2|X2),
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and hence we have

Ĥ(X1|Z1) ≤ (1− η′2)H∗(X1|Z1) + 2(1− η′)τ ′

Ĥ(X1, Z2|Z1) ≥ (1− η′)2H∗(X1, Z2|Z1)− 2(1− η′)τ ′

Ĥ(Z2|Z1) ≥ (1− η′)2H∗(Z2|Z1)− 2(1− η′)τ ′

Ĥ(Z2|X2) ≥ (1− η′)2H∗(Z2|X2)− 2(1− η′)τ ′

Ed(X1, ψ
∗(Z1, Z2))P̂Z1

,Q̂∗
Z2|X2

= (1− η′)Ed(X1, ψ
∗(Z1, Z2))P ∗Z1

,Q∗
Z2|X2

.

Since Ĵ3(λ1, λ2, λ3) ≤ Ĵ3(λ1, λ2, λ3)|P̂Z1
,{Q̂X1|Z1

},Q̂∗
Z2|X2

, by taking η′ < 1− e
4
, we have

Ĵ3(λ1, λ2, λ3)− J∗3 (λ1, λ2, λ3)

≤ λ1 (2η′ (|X1||Z1|) + |Z2|)) + λ2(η
′|Z2|+ 2η′|Z2|)

+(6λ1 + 4λ2)(1− η′)τ ′

≤ η′ (2λ1(|X1||Z1|+ |Z1|) + 3λ2|Z2|+ (12λ1 + 8λ2)) .

Define

L(λ1, λ2, λ3) := min
D

[min{λ1, λ2}RX1(D) + λ3D] .

Set

η = min

{
4− e

12
,
εL(λ1, λ2, λ3)

T (λ1, λ2, λ3)

}
(A-11)

δ =
1

|X1|+ 1
f−1

(
η

3|X1||Z2|
)

, (A-12)

where

T (λ1, λ2, λ3)

:= 6λ1(|X1||Z1|+ |Z1|) + 9λ2|Z2|+ (36λ1 + 24λ2).
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Then the pair (η, δ) satisfies the following inequalities

δ′ = (|X1|+ 1)δ

η′ = 3η < 1− e

4

|X1||Z2|δ′ log
1

δ′
≤ τ ′

η′ <
εL(λ1, λ2, λ3)

2λ1(|X1||Z1|+ |Z1|) + 3λ2|Z2|+ (12λ1 + 8λ2)
,

which gives

J∗3 (λ1, λ2, λ3) ≤ Ĵ3(λ1, λ2, λ3) ≤ (1 + ε)J∗3 (λ1, λ2, λ3).

In this algorithm, there are N(δ, η, |X1|) variables in each of the linear programs

in the inner loop, and there are N(δ, η, |X2|)|X2| quantized conditional probabilities

Q̂Z2|X2 in the outer loop. Applying the given choice of δ and η, our algorithm runs in

time O(ε−4(|X1|+|X 2
2 |+1)) as ε approaches 0.
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