
Appendix A

Dispersion Relations for Metal-Insulator-Metal

Waveguides

In this appendix, we analyze the thin film dispersion relations for a metal-insulator-metal waveg-

uide.1 Both the transverse magnetic and transverse electric conditions will be considered. The

geometry used for this derivation is shown in Figure A.1.
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Figure A.1. The coordinate system used for the following three-layer derivation.

To begin, we first assume the form of the electric and magnetic fields given by:

~E = ~E(z)ei(kxx−ωt) (A.1a)

~B = ~B(z)ei(kxx−ωt) (A.1b)

where we assume there is no y-dependence in either field.

For this derivation, the curl can be written in it’s full form for the any vector ~U as:

∇× ~U =
[
∂Uz
∂y
− ∂Uy

∂z

]
x̂+

[
∂Ux
∂z
− ∂Uz

∂x

]
ŷ +

[
∂Uy
∂x
− ∂Ux

∂y

]
ẑ (A.2)

1This appendix is based on texts by Professor Heinz Raether [97], Professor Stefan Maier [71], notes and discussions

with Jennifer Dionne.
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for for the curl components of ~U in the x̂, ŷ, and ẑ directions respectively.

We then plug the general form of the electric and magnetic fields into Maxwell’s Equations. In

the absence of space charge and currents, we have:

∇ · ~E = 0 (A.3a)

∇ · ~B = 0 (A.3b)

∇× ~E = −1
c

∂ ~B

∂t
(A.3c)

∇× ~B =
1
c
εi(ω)

∂ ~E

∂t
(A.3d)

We see that plugging (A.1a) and (A.1b) into (A.2) yields two sets of equations for either

∇× ~E or ∇× ~B which are given by:

∇× ~E :

x̂ : −∂Ey
∂z

=
iω

c
Bx (A.4a)

ŷ : −∂Ex
∂z

+ ikxEz =
iω

c
By (A.4b)

ẑ : ikxEy =
iω

c
Bz (A.4c)

∇× ~B :

x̂ : −∂By
∂z

= − iω
c
εiEx (A.5a)

ŷ :
∂Bx
∂z

= −ikxBz = − iω
c
εiEy (A.5b)

ẑ : −ikxBy = − iω
c
εiEz (A.5c)

Initially we solve for generally for each component of ~E and ~B. Also note that the sets of

solutions either consist of (Ey, Bx, Bz) or (Ex, Ez, By). To simplify the general solution to solve for

the set of transverse-magnetic (TM) modes, we can set Ey = 0 → Bx = Bz = 0. To simplify the

general solution to solve for the set of transverse-electric (TE) modes, we can set By = 0→ Ex =

Ez = 0.
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A.1 The General Solution

We begin by solving for Ez. This is done by combining (A.4b) and (A.5c) :

∂Ex
∂z

= −ikxEz =
iω

c

(
− ω

ckx

)
εiEz (A.6)

with (A.5a) and (A.5c):

−
∂
(

ω
ckx
· εiEz

)
∂z

=
iω

c
εiEx (A.7a)

⇒ −∂Ez
∂z

= ikxEx (A.7b)

which yields :

Ex =
1
kx

∂Ez
∂z

(A.8)

1
kx

∂2Ez
∂z2

− ikxEz = − i

kx

(ω
c

)2
εiEz (A.9)

∂2Ez
∂z2

− k2
xEz = −

(ω
c

)2
εiEz (A.10)

∂2Ez
∂z2

−
(
k2
x −

(ω
c

)2
εi

)
Ez = 0 (A.11)

Here we use the definition: kz2i ≡ k2
x −

(
ω
c

)2
εi to yield:

∂2Ez
∂z2

− kz2iEz = 0→ λ2 − kz2i = 0→ λ = ±kzi (A.12)

Ez = Aekzi·z ± Be−kzi·z (A.13)

Where the A = B condition yields the even (symmetric) solutions and the A = -B conditions yields

the odd (anti-symmetric) solutions. To solve for Ex, we combine this result with that of (A.7b) to

get:
∂Ez
∂z

= −ikxEx = Akziekzi·z ∓ Bkzie−kzi·z (A.14)

Ex = −kzi
ikx

(
Aekzi·z ∓ Be−kzi·z

)
(A.15)
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Finally, to solve for Ey, we combine (A.4a), (A.5b), and (A.4c) to obtain:

Bx = − c

iω

∂Ey
∂z

(A.16)

∂Bx
∂z
− ikxBz = − iω

c
εiEy (A.17)

∂
(
− c
iω ·

∂Ey
∂z

)
∂z

− ikx
(
ckx
ω

)
Ey = − iω

c
εiEy (A.18)

− c

iω
· ∂

2Ey
∂z2

+
c

iω
· k2

xEy +
iω

c
εiEy = 0 (A.19)

∂2Ey
∂z2

−

(
k2
x +

(
iω

c

)2

εi

)
Ey = 0 (A.20)

∂2Ey
∂z2

−
(
k2
x −

(ω
c

)2
εi

)
Ey = 0 (A.21)

Here we use the definition β2
i ≡ −k2

x +
(
ω
c

)2
εi → βi ≡ ikzi to obtain:

∂2Ey
∂z2

+ β2
i Ey = 0 (A.22)

Ey = Ceiβi·z ±De−iβi·z = Ce−kzi·z ±Dekzi·z (A.23)

To obtain the z-component of ~B, we use the fact that ikxEy = iω
c Bz from (A.4c). It then follows

that:

Bz =
ckx
ω

(
Ceiβi·z ±De−iβi·z

)
=
ckx
ω

(
Ce−kzi·z ±Dekzi·z

)
(A.24)

and from (A.4a) it follows that:

− ∂Ey
∂z

= −Cβieiβi·z ±Dβie−iβi·z =
iω

c
·Bx (A.25)

Bx =
c

ω
βi

(
−Ceiβi·z ±De−iβi·z

)
(A.26)

Finally, using the fact that ikxBy = − iω
c · εiEz from (A.5c) we obtain:

By = −ω
c

(
1
kx

)
εi

(
Aekzi·z ∓ Be−kzi·z

)
(A.27)

Now that we have each component of ~E and ~B, we introduce the boundary conditions necessary
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for the metal-insulator-metal waveguide structure. We know that outside the waveguide, both ~E

and ~B must decay to 0 as z → ∞; however, within the waveguide, no such restrictions exist. For

the general solution, we have A = B for the even (symmetric) solutions and A = -B for the odd

(anti-symmetric) solutions. Combining these assumptions we get two sets of equations for the

general solution for waves either inside, or outside of the layered, waveguide structure.

Inside the waveguide:

Ex = −kz1
ikx

(
ekz1z ∓ e−kz1z

)
(A.28a)

Ey = e−kz1z ± ekz1z (A.28b)

Ez = ekz1z ± e−kz1z (A.28c)

Bx =
ic

ω
kz1

(
−e−kz1z ± ekz1z

)
(A.28d)

By = −ω
c

(
1
kx

)
εl

(
ekz1z ∓ e−kz1z

)
(A.28e)

Bz =
ckx
ω

(
e−kz1z ± ekz1z

)
(A.28f)

Outside the waveguide:

Ex = −kz2
ikx

(
∓Be−kz2z

)
(A.29a)

Ey = Ce−kz2z (A.29b)

Ez = ±Be−kz2z (A.29c)

Bx = − ic
ω
kz2Ce−kz2z (A.29d)

By = −ω
c

(
1
kx

)
εl

(
∓Be−kz2z

)
(A.29e)

Bz =
ckx
ω
Ce−kz2z (A.29f)

A.2 Boundary Conditions

For all solutions, we assume that:

• Ex and Dz are continuous at z = ±d
2
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• Ey is continuous at z = ±d
2

• Bz is continuous at z = ±d
2

• 1
µBx is continuous at z = ±d

2

• 1
µBy is continuous at z = ±d

2

A.2.1 Ex and Dz are continuous:

From (A.28a) and (A.29a) we have:

ikz1
kx

(
ekz1z ∓ e−kz1z

)
= ±kz2

ikx

(
Be−kz2z

)
(A.30)

From (A.28c) and (A.29c) we have:

ε1

(
ekz1z ± e−kz1z

)
= ±ε2

(
Be−kz2z

)
(A.31)

and combining the two we derive:

ikz1

(
ekz1z ∓ e−kz1z

)
=
kz2
i

(
ε1
ε2

)(
ekz1z ± e−kz1z

)
(A.32)

− ε2kz1
(

ekz1z ∓ e−kz1z
)

= ε1kz2

(
ekz1z ± e−kz1z

)
(A.33)

− ε2kz1 = ε1kz2

coth(kz1d/2)

tanh(kz1d/2)

 (A.34)

which yields the transverse-magnetic dispersion relation:

ε1kz2 + ε2kz1

coth(kz1d/2)

tanh(kz1d/2)

 = 0 (A.35)

Here, the “coth” function represents the symmetric plasmon modes and the “tanh” function rep-

resents the antisymmetric modes.
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A.2.2 Ey is continuous:

From (A.28b) and (A.29b) we have:

e−kz1z ± ekz1z = Ce−kz2z (A.36)

which yields:

C = ekz2d/2
(

e−kz1d/2 ± ekz1d/2
)

(A.37)

A.2.3 Hz, Hy, and Bz are continuous:

From (A.28e) and (A.29e) we have:

− ω

c

(
1
kx

ε1
µ1

)(
ekz1d/2 ∓ e−kz1d/2

)
= −ω

c

(
1
kx

ε2
µ2

)(
∓Be−kz2d/2

)
(A.38)

ε1µ2

(
ekz1d/2 ∓ e−kz1d/2

)
= ε2µ1

(
∓Be−kz2d/2

)
(A.39)

which yields:

B =
ε1µ2

ε2µ1
ekz2d/2

(
ekz1d/2 ∓ e−kz1d/2

)
(A.40)

From (A.28f) and (A.29f) we have:

ckx
ω

(
e−kz1d/2 ± ekz1d/2

)
=
ckx
ω
Ce−kz2d/2 (A.41)

C = ekz2d/2
(

e−kz1d/2 ± ekz1d/2
)

(A.42)

From (A.28d) and (A.29d) we have:

ickz1
ωµ1

(
−e−kz1d/2 ± ekz1d/2

)
= − ickz2

ωµ2
Ce−kz2z (A.43)

C = −kz1
kz2

µ2

µ1
ekz2d/2

(
−e−kz1d/2 ± ekz1d/2

)
(A.44)

From this we can infer that:

− kz1
kz2

(
−e−kz1d/2 ± ekz1d/2

)
= e−kz1d/2 ± ekz1d/2 (A.45)

125



kz1µ2

kz2µ1

(
e−kz1d/2 ∓ ekz1d/2

)
=
(

e−kz1d/2 ± ekz1d/2
)

(A.46)

∓ kz1µ2

(
ekz1d/2 ∓ e−kz1d/2

)
= ±kz2µ1

(
ekz1d/2 ± e−kz1d/2

)
(A.47)

∓ kz1µ2 = ±kz2µ1

coth(kz1d/2)

tanh(kz1d/2)

 (A.48)

which yields the transverse-electric dispersion relation:

±µ1kz2 ± µ2kz1

tanh(kz1d/2)

coth(kz1d/2)

 = 0 (A.49)

Thus, by comparing (A.35) and (A.49) we see that the sets of solutions either consist of

(Ey, Bx, Bz) or (Ex, Ez, By) as was stated at the beginning of the Appendix. From here it can be

shown, [71], that there are no non-zero modal solutions to the transverse-electric modes operat-

ing within this structure. As a result, we can state that surface plasmon polaritons are strictly

transverse-magnetic.
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