

**Electronic Structure and Photochemical Reactivity
of Binuclear Metal Complexes**

Thesis by

David Charles Smith

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted February 20, 1989)

To Mom, Dad, and Gunilla

Acknowledgments

Well, it is finally over. All that remains for me to do is to acknowledge the many people who have enriched my experience at Cal Tech.

I first must thank Harry and Bill for giving me the opportunity (and the money) to explore my own interests. The freedom you gave me has taught me how to develop and pursue an idea, and my interaction with you has been invaluable. You have shown me what it takes to be a great scientist. Harry has also shown me that one should not take life too seriously.

While I have valued my independence, I could not have achieved the end result without numerous interactions. Vinny Miskowski and Tad Fox have been through thick and thin with me for the past years: Vinny showing me the ins and outs of electronic spectroscopy; Tad being a friend with whom I have shared many experiences. Bill Schaefer and Dick Marsh have been invaluable for all of the crystallographic work that was necessary for the research. I have come away from this interaction with a deep appreciation and respect for those who still approach x-ray crystallography as an art form and not simply as another analytical tool. Special thanks go to Roy Mason and Tom Loehr, those voices on the other end of the telephone line, who provided some of the crucial data for this work. I owe special thanks to Adria McMillan. Thanks for caring, taking time out to sit and listen, and to ask how things were going. Other comrades in arms whom I would like to mention and thank are Tony Vlcek (he taught me a lot about inorganic photochemistry), John Brewer, Miriam Zeitlow, Adel Naylor, Mary Selman, Janet Marshall (thanks for the Schlenk line), Cindy St. Clair, Mike Hopkins, Walther Ellis (ligand field theory forever), Al Stiegman, Catherine May, Ged Parkin, Rita Upmacis, Mark Brusich, John Low, and Tom Zeitlow. These are but a few of the people who were part of the Cal Tech experience.

Special thanks go to Mark Neifeld. He has been a true friend and a good roommate.

All that I have accomplished here at Cal Tech could not have been realized without the help of three very special people. My parents have stood by me for the many long years with words of encouragement and support. Gunilla Persson has made these past four years at Cal Tech my happiest. I do not know how I could have survived the ordeal of graduate school without the love and encouragement she has offered so unselfishly.

I would also like to acknowledge the financial support of the Sun Oil Company and the National Science Foundation.

Abstract

A valence bond (VB) "weak coupling" model of the electronic structure for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ is developed and generalized to the class of dimeric systems in which the metals are nonbonded, in a formal sense, and can be viewed as weakly coupled. With the VB model, the energies and widths of the previously observed optical absorption bands can be rationalized; in addition, plausible assignments are made for bands that were not interpreted satisfactorily or not observed in earlier work. The VB model does not change any of the molecular orbital-based interpretations of the thermal chemistry, photochemistry, or photophysics of these systems.

Photophysical characterization of the $^1\text{d}\sigma^*\text{p}\sigma$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ finds a system quite comparable to other binuclear d^8 complexes. Both fluorescence ($\lambda_{\text{max}} 735 \text{ nm}$, $\tau \sim 70 \pm 30 \text{ ps}$) and phosphorescence ($\lambda_{\text{max}} 1080 \text{ nm}$, $\tau = 210 \pm 20 \text{ ns}$) are observed.

The relatively long lifetime of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ suggests that it should be able to participate in bimolecular photochemical reactions. The diradical-like structure of the excited state, an electron (or oxidizing hole) localized on the exterior of the M_2 unit (the $\text{d}\sigma^*$ orbital) and an electron localized in the interior of the dimer cage (the $\text{p}\sigma$ orbital), implies that one-electron chemistry will be observed. Reactions of the ground state follow two-electron pathways, similar to those observed for mononuclear d^8 complexes.

The $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ is found to be a powerful reductant, $E^0(\text{Ir}_2(\text{TMB})_4^{3+}/^3(\text{Ir}_2(\text{TMB})_4^{2+})^*) \sim -1.0 \text{ V (SSCE)}$. Excited-state electron-transfer quenching by pyridinium acceptors is observed to follow classical Marcus theory for outer-sphere electron transfer. No "inverted" behavior is found. The bimolecular electron-transfer reaction is highly nonadiabatic, $\kappa \sim 0.0001$, because of the large donor-acceptor separation, $\sim 8 \text{ \AA}$. The results for $\text{Ir}_2(\text{TMB})_4^{2+}$ are discussed in comparison to those for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$.

$\text{Ir}_2(\text{TMB})_4^{2+}$ is found to react photochemically with alkyl halides. Although the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is a good reductant, outer-sphere electron transfer seems unlikely ($E^0(\text{RX}/\text{RX}^{\cdot-}) < -1.5$ V (SSCE)). An $\text{S}_{\text{RN}1}$ pathway has been suggested to explain the alkyl halide photoreduction reaction observed for metal complexes with $E^0(\text{M}_2^+/\text{M}_2^{\cdot+}) < -1.5$ V (SSCE); however, atom transfer to the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is the favored reaction mechanism for the alkyl halide photoreduction reaction of $\text{Ir}_2(\text{TMB})_4^{2+}$. The generality of this reaction is discussed.

While there is some ambiguity as to the primary photoprocess for alkyl halide photoreactivity, $^3(\text{d}\sigma^*\text{p}\sigma)$ excited-state hydrogen-atom transfer has been established as the mechanism of the reaction of $\text{Ir}_2(\text{TMB})_4^{2+}$ and a number of organic substrates. The atom-transfer reactivity of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is attributed to the presence of a hole in the $\text{d}\sigma^*$ orbital, analogous to the $^3\text{n}\pi^*$ state of organic ketones. Interaction of the oxidizing hole with the electron pair of the C-H bond is the presumed pathway.

Electrochemical oxidation of $\text{Rh}_2(\text{TMB})_4^{2+}$ generates the $\text{d}^8\text{-d}^7$ species $\text{Rh}_2(\text{TMB})_4^{3+}$. This complex reacts with 1,4-cyclohexadiene to abstract a hydrogen atom mimicking the initial step of the $^3(\text{d}\sigma^*\text{p}\sigma)$ photoreaction. The importance of this result is discussed in terms of energy storage systems and extension of the range of hydrocarbon oxidations with binuclear d^8 complexes.

The $\text{d}^7\text{-d}^7$ dihydride product obtained from the photoreaction of $\text{Ir}_2(\text{TMB})_4^{2+}$ and 1,4-cyclohexadiene is isolated and characterized. In addition to NMR, UV-Vis, IR, and Raman spectra, the complex is characterized crystallographically. The reactivity of this complex is also discussed.

Table of Contents

Acknowledgments	iii
Abstract	v
List of Figures	x
List of Tables	xix
Chapter 1 Introduction	1
References	19
Chapter 2 Structure, Optical Absorption Spectrum, and Photophysics of $\text{Ir}_2(\text{TMB})_4^{2+}$	23
Introduction	24
Experimental	25
Results and Discussion	35
Crystal Structure	35
Electronic Spectroscopy	44
Photophysics	57
Vibrational Spectroscopy	70
References and Notes	77
Chapter 3 Detailed Study of the Electronic Spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$	81
Introduction	82
Experimental Section	83
Results and Discussion	90
Crystal Structure of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ $\cdot \text{CH}_3\text{C}_6\text{H}_5$	90
Electronic Spectrum of $\text{Ir}(\text{CN-}t\text{-butyl})_4^+$	93

Valence-Bond Model	94
Solution Electronic Absorption and MCD Spectra	104
Single-Crystal Polarized Spectra of [Ir ₂ (TMB) ₄](B(C ₆ H ₅) ₄) ₂ ·CH ₃ C ₆ H ₅	117
Assignments	125
Conclusions	128
References and Notes	130
Chapter 4	135
Thermal Reactivity of Ir ₂ (TMB) ₄ ²⁺	136
Introduction	137
Experimental	139
Results and Discussion	143
Thermal Reactivity	143
Ir-H Chemical Shifts	155
Electronic Spectra of d ⁷ -d ⁷ Complexes of Ir ₂ (TMB) ₄ ²⁺	155
Electrochemistry	168
Photochemical and Electrocatalytic Reactions of Binuclear d ⁸ Complexes	178
Introduction	179
Experimental	191
Results and Discussion	199
Homogeneous Electron Transfer	199
Alkyl-Halide Photoredox	241
Hydrogen-Atom Transfer	247
Electrocatalysis	277
References and Notes	286

Chapter 5 Synthesis and Characterization of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$	294
Introduction	295
Experimental	295
Results and Discussion	309
Crystal Structure	309
Spectroscopy	316
Reactivity	329
References and Notes	332
Chapter 6 <i>Ab Initio</i> Calculations of $\text{Re}_2\text{Cl}_8^{2-}$	334
Introduction	335
Calculational Details	341
Modified Generalized Valence Bond Method	344
Method of Correction	346
References	348
Bond Energy and Other Properties of the Re-Re Quadruple Bond	349
Appendix 1	353
Appendix 2	383
Appendix 3	389

List of Figures**Chapter 1**

Figure 1.1. General Structure for a face-to-face binuclear d⁸ complex. Bidentate ligands are diisocyanoalkanes or P₂O₅H₂⁴⁻ (e.g., Rh₂b₄²⁺ (b = 1,3-diisocyano propane), Rh₂(TMB)₄²⁺ (TMB = 2,5-diisocyano-2,5-dimethylhexane), Pt₂(P₂O₅H₂)₄⁴⁻). For A-frame d⁸ complexes two bridging ligands (e.g., [Ir(μ -pz)COD]₂, pz = pyrazole, COD = 1,5-cyclooctadiene). 2

Figure 1.2. Molecular orbital diagram for the interaction of two square planar d⁸ metal ions. 4

Figure 1.3. Pictorial representation of the M₂-localized hole in a ³(d σ ^{*}p σ) state. 7

Figure 1.4. SRN1 mechanistic scheme for halocarbon photooxidative addition to binuclear d⁸ complexes. 12

Figure 1.5. Atom-transfer mechanism for halocarbon photooxidative addition. 14

Chapter 2

Figure 2.1. View of the structure of Ir₂(TMB)₄²⁺. 36

Figure 2.2. View of the structure of Ir₂(TMB)₄²⁺ viewed down the Ir-Ir vector. 38

Figure 2.3. View of the unit cell with B(C₆H₅)₄⁻ and CH₃CN molecules removed. 42

Figure 2.4. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C.

45

Figure 2.5. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in a glassy matrix of $\text{CH}_3\text{CH}_2\text{CN}/2\text{-MeTHF}$ (1:2 volume ratio) at 77 K.

47

Figure 2.6. MO diagram showing the effects on the energy of the $d\sigma$ and $p\sigma$ levels for a binuclear complex with an increase or a decrease in the metal-metal interaction.

51

Figure 2.7. Qualitative valence bond state diagram for weak d/p interaction of two d^8 monomers. The energies of the ${}^1\text{A}_{2u}$ states are dependent on the amount of stabilization, contraction along the metal-metal coordinate.

58

Figure 2.8. Emission spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in 2-MeTHF/Propionitrile at 298 K and 77 K. Taken from Reference 1.

61

Figure 2.9. Transient difference spectrum for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C. Taken from Reference 1.

68

Figure 2.10. Resonance Raman spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$: (a) CH_3CN solution, $\lambda_{\text{ex}} = 568.2$ nm; (b) CH_3CN solution, $\lambda_{\text{ex}} = 647.1$ nm; (c) K_2SO_4 pellet, $\lambda_{\text{ex}} = 647.1$ nm; (d) Time resolved, CH_3CN solution, $\lambda_{\text{ex}} = 565$ nm, 10 scans; (e) Time resolved, CH_3CN solution, $\lambda_{\text{ex}} = 565$ nm, 10 scans, 2 mJ/P; (f) Time resolved, $\lambda_{\text{ex}} = 565$ nm, 10 scans, 5 mJ/P.

71

Chapter 3

Figure 3.1. Projection of Ir-Ir units onto the (010) plane. Ir position indicated by o. The two metal atoms of a dimer unit are connected by a solid line.

91

Figure 3.2. Electronic absorption spectrum of $[\text{Ir}(\text{CN-t-butyl})_4]\text{BF}_4$ in CH_3CN at 25 °C.

95

Figure 3.3. Qualitative VB state diagram for weak d/p interaction of two Rh(I) or Ir(I) monomers. See text. Note that for the strong interaction case, state energies are implicitly for the equilibrium bond distance of each individual state.

98

Figure 3.4. Electronic absorption (lower curves) and MCD (upper curves) spectra of $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C. Note that the MCD scales in the regions 210 - 295 nm, and 400 - 600 nm have been expanded fivefold; similarly, the absorptivity scale has been expanded fivefold in the 325 - 400 nm region. $\Delta\epsilon$ has units of $(\text{M cm T})^{-1}$.

105

Figure 3.5. Electronic absorption (lower curve) and MCD (upper curves) spectra of $[\text{Ir}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C. Note that the MCD scale has been expanded fivefold in the 700 - 500 nm region. $\Delta\epsilon$ has units of $(\text{M cm T})^{-1}$.

111

Figure 3.6. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in a glassy matrix of $\text{CH}_3\text{CH}_2\text{CN}/2\text{-MeTHF}$ (1:2 volume ratio) at 77 K.

115

Figure 3.7. Polarized single-crystal absorption spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 25 °C. The $\parallel a$ base line is vertically offset by 20 ϵ units.

118

Figure 3.8. Polarized single-crystal absorption spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 24 K. The $\parallel a$ base line is vertically offset by 100 ϵ units. 120

Figure 3.9. Polarized single-crystal absorption spectra of a thicker crystal of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 22 K. 123

Chapter 4

Figure 4.1. NMR spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene (a) prior to thermolysis, and (b) after 12 hrs thermolysis in 80 °C oil bath. 144

Figure 4.2. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C. 148

Figure 4.3. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C. 151

Figure 4.4. Observed thermal reactions of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$. 153

Figure 4.5. Electronic absorption spectra of
 (a) $[\text{Ir}_2(\text{TMB})_4\text{Cl}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN ,
 (b) $[\text{Ir}_2(\text{TMB})_4\text{I}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN ,
 (c) $[\text{Ir}_2(\text{TMB})_4(\text{H})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN ,
 (d) $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN ,
 (e) $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , and
 (f) $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN . 158

Figure 4.6. Molecular orbital diagram for interaction of M_2^{4+} with two σ -donor axial ligands. 166

Figure 4.7. Cyclic voltammogram of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ (1 mM) in CH_3CN (0.1 M TBAPF_6). 169

Figure 4.8. Modified Latimer diagrams for $\text{Ir}_2(\text{TMB})_4^{2+}$ describing the reduction energies for the $^1(\text{d}\sigma^*\text{p}\sigma)$ and $^3(\text{d}\sigma^*\text{p}\sigma)$ excited states.	173
Figure 4.9. Reduction potentials for the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of binuclear d^8 complexes and alkyl halides.	176
Figure 4.10. Schematic orbital diagram showing the decrease in the ionization potential and increase in the electron affinity upon excitation of a molecule.	180
Figure 4.11. Pictorial representation of the M_2 -localized hole in a $^3(\text{d}\sigma^*\text{p}\sigma)$ state.	183
Figure 4.12. SRN1 mechanistic scheme for halocarbon photooxidative addition to binuclear d^8 complexes.	185
Figure 4.13. Atom-transfer mechanism for halocarbon photooxidative addition.	187
Figure 4.14. Stern-Volmer plot for the oxidative quenching of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ by methyl viologen di(hexafluorophosphate) (0.1 M TBAPF ₆ , CH ₃ CN).	201
Figure 4.15. (a) Emission spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH ₃ CN (0.1 M TBAPF ₆). (b) Emission spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH ₃ CN (0.1 M TBAPF ₆) with 4-CN- <i>N</i> -methylpyridinium.	206
Figure 4.16. Stern-Volmer plot of oxidative quenching of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ by 4-CN- <i>N</i> -benzylpyridinium (0.1 M TBAPF ₆ , CH ₃ CN).	209

Figure 4.17. Kinetic scheme for the electron-transfer quenching of ${}^*\text{M}_2$ by pyridinium acceptors.

212

Figure 4.18. Plot of $\text{RTIn}(k_q')$ (V) versus $E^0(\text{A}^{+/0})$ (V) for the electron-transfer quenching of ${}^3(\text{Ir}_2(\text{TMB})_4{}^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1 \text{ M}$ TBAPF_6 , CH_3CN).

218

Figure 4.19. Plot of $\text{RTIn}(k_q')$ (V) versus $E^0(\text{A}^{+/0})$ (V) for the electron-transfer quenching of ${}^3(\text{Ir}_2(\text{TMB})_4{}^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1 \text{ M}$ TBAPF_6 , CH_3CN). Diffusion-limited rate shown as the horizontal dashed line. Two linear fits to the activated region are shown.

220

Figure 4.20. Plot of $\text{RTIn}(k_q')$ (V) versus $E^0(\text{A}^{+/0})$ (V) for the electron-transfer quenching of ${}^3(\text{Ir}_2(\text{TMB})_4{}^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1 \text{ M}$ TBAPF_6 , CH_3CN). Three-parameter, nonlinear-least-squares fit using Marcus formalism (dashed curve) and Rehm-Weller (solid curve).

223

Figure 4.21. Influence of λ on $\log(k_q)$ versus ΔG plots.

226

Figure 4.22. Plot of $\text{RTIn}(k_q')$ versus $E^0(\text{A}^{+/0})$ for the electron-transfer quenching of ${}^3[\text{Ir}(\mu\text{-pz})\text{COD}]_2^*$ (curve a) and ${}^3(\text{Ir}_2(\text{TMB})_4{}^{2+})^*$ (curve b) by the pyridinium acceptors. Diffusion-limited rate horizontal dashed line.

228

Figure 4.23. Plot of $\text{RTIn}(k_q')$ (V) versus $E^0(\text{A}^{+/0})$ (V) for the electron-transfer quenching of ${}^3(\text{Ir}_2(\text{TMB})_4{}^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1 \text{ M}$ TBAPF_6 , CH_3CN). Two-parameter, nonlinear-least-squares fits using Marcus formalism for (a) $\lambda = 0.5 \text{ eV}$, (b) $\lambda = 0.6 \text{ eV}$, (c) $\lambda = 0.7 \text{ eV}$, and (d) $\lambda = 0.8 \text{ eV}$.

230

Figure 4.24. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of $^3[\text{Ir}(\mu\text{-pz})\text{COD}]_2^*$ by the pyridinium acceptors. Three-parameter, nonlinear-least-squares fit using Marcus formalism (dashed curve) and Rehm-Weller (solid curve). 238

Figure 4.25. Spectral changes upon irradiation of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 604$ nm. 242

Figure 4.26. Spectral changes upon irradiation of $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 500$ nm. 244

Figure 4.27. Spectral changes upon irradiation of $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 400$ nm. 248

Figure 4.28. Spectral changes upon irradiation of an acetonitrile solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene. 251

Figure 4.29. NMR spectrum of an acetonitrile- d_3 photolysis solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene. 253

Figure 4.30. Spectral changes upon irradiation of an acetonitrile solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 1,4-cyclohexadiene. 255

Figure 4.31. NMR spectrum of an acetonitrile- d_3 photolysis solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 1,4-cyclohexadiene. 257

Figure 4.32. Stern-Volmer plot for hydrogen atom-transfer quenching of the $^3(\text{d}\sigma^* \text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ for a series of hydrocarbons. 261

Figure 4.33. Plot of $\log(k_q)$ versus the C-H bond dissociation energy ($D(\text{C-H})$) of the hydrogen atom-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the hydrocarbon substrates. 265

Figure 4.34. (a) Stereoview of the x-ray structure of 1,4-cyclohexadiene. (b) Structure of cyclohexene; (i) stereo representation, (ii) conventional symbolism. 268

Figure 4.35. Possible limiting mechanism of atom transfer. (a) Heterolytic R-X bond cleavage and M-X bond formation followed by electron transfer. (b) Synchronous electron transfer, R-X bond cleavage, and M-X bond formation. (c) Electron transfer followed by R-X⁻ heterolytic cleavage and M-X bond formation. 271

Figure 4.36. Plot of $\log(k_q)$ versus the C-H bond dissociation energy ($D(\text{C-H})$) of the hydrogen atom-transfer quenching of $^3\text{M}_2^*$ by the hydrocarbon substrates, $\text{Ir}_2(\text{TMB})_4^{2+}$ open squares and $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ solid diamonds. 274

Figure 4.37. Cyclic voltammograms of a dichloromethane solution (0.1 M TBAPF₆) of (a) $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ (1 mM, $i_a = 5 \mu\text{A}/\text{cm}$) with (b) a twentyfold excess of 1,4-cyclohexadiene ($i_a = 10 \mu\text{A}/\text{cm}$). 278

Figure 4.38. (a) Pictorial representation of an electrocatalytic cycle which regenerates the Rh_2^{2+} complex. (b) Atom-transfer pathway for electrochemical oxidation of 1,4-cyclohexadiene. 281

Figure 4.39. Pictorial representation of chemical step following charge separation to trap the charge-transfer state. 284

Chapter 5

Figure 5.1. View of the structure of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$. 310

Figure 5.2. View of the structure of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ viewed down the Ir-Ir vector. 313

Figure 5.3. Infrared spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$. 319

Figure 5.4. Raman spectra of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$:
(a) Solid, 90 K, $\lambda_{\text{ex}} = 488$ nm; (b) Solid, 90 K, $\lambda_{\text{ex}} = 647.1$ nm. 321

Figure 5.5. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C. 325

Figure 5.6. ^1H NMR spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$ in CD_3CN at 20 °C. 327

Scheme 5.1. Observed reactivity of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$. Iridium containing by-product not characterized, "Ir". 330

Chapter 6

Figure 6.1. d-d overlaps between two metal atoms. 335

Figure 6.2. d orbitals for M_2 and M_2X_8 . 336

List of Tables

Chapter 2

Table 2.1. Crystal Data for $[\text{Ir}_2(\text{C}_{10}\text{H}_{16}\text{N}_2)_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot 2\text{CH}_3\text{CN}$.	27
Table 2.2. Final Parameters ($x, y, z \times 10^4$).	29
Table 2.3. Selected Distances and Angles.	32
Table 2.4. Torsion Angles.	40
Table 2.5. Best plane fit of $\text{Ir}(\text{CN})_4$ units.	41
Table 2.6. Absorption maxima for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$, $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$, and $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C.	49
Table 2.7. $^1(\text{d}_z^2 \rightarrow \text{p}_z)$ transition energies for d^8 complexes.	54
Table 2.8. Crystallographically determined metal-metal distances for $\text{Rh}(\text{I})$ and $\text{Rh}(\text{II})$ complexes.	55
Table 2.9. $^1(\text{d}_z^2 \rightarrow \text{p}_z)$ transition energies for d^8 complexes.	60
Table 2.10. Photophysical data for $\text{Ir}_2(\text{TMB})_4^{2+}$, $\text{Rh}_2(\text{TMB})_4^{2+}$, and $\text{Rh}_2\text{b}_4^{2+}$.	64
Table 2.11. Radiative rates (k_r) and nonradiative rates (k_{nr}) for the $^1\text{A}_{2u}$ and $^3\text{A}_{2u}$ excited states of $\text{Ir}_2(\text{TMB})_4^{2+}$, $\text{Rh}_2(\text{TMB})_4^{2+}$, and $\text{Rh}_2\text{b}_4^{2+}$.	65
Table 2.12. Observed metal-metal vibrational frequencies and calculated force constants. Observed metal-metal distances and calculated metal-metal distances using Woodruff's relationship.	75

Chapter 3

Table 3.1. Crystal and Intensity Collection Data.	8 6
Table 3.2. Coordinates of the Iridium Atoms.	8 7
Table 3.3. Absorption spectral data for $[\text{Ir}(\text{CN-t-butyl})_4]\text{BF}_4$ measured in CH_3CN at 25 °C.	9 7
Table 3.4. Metal-to-metal charge transfer transition energies.	10 1
Table 3.5. Absorption maxima for $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Ir}_2(\text{TMB})_4^{2+}$. The convention we adopt in this and the following table is that the previously adopted MO $d\sigma^* \rightarrow p\sigma$ assignments are retained for such excitations, but other transitions are labeled either as single-center excitations (e.g., $d_{xz,yz} \rightarrow p_z$) or MMCT.	10 8

Table 3.6. Absorption maxima for polarized single-crystal spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$.	12 6
---	------

Chapter 4

Table 4.1. Ir-H Chemical Shifts.	15 6
Table 4.2. Electronic absorption data for $\text{Ir}_2(\text{TMB})_4\text{XY}^{2+}$ complexes.	15 7
Table 4.3. Excited state reduction potentials for binuclear d ⁸ complexes.	17 5
Table 4.4. Measured rate constant for the reaction ${}^3\text{M}_2^* + \text{MV}^{2+} \rightarrow \text{M}_2^+ + \text{MV}^+$ or $\text{M}^* + \text{MV}^{2+} \rightarrow \text{M}^+ + \text{MV}^+$.	20 3
Table 4.5. Reduction Potentials of the Pyridinium Quenchers.	20 5

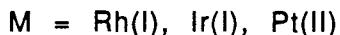
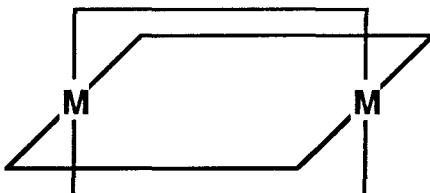
Table 4.6. Rate constants for the electron-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by pyridinium acceptors in acetonitrile solution.	211
Table 4.7. Values for $\text{RTln}(\text{K}_{\text{Kv}})$, $E^0(\text{Ir}_2^{3+}/^3(\text{Ir}_2^{2+})^*)$, and λ for $\text{Ir}_2(\text{TMB})_4^{2+}$ obtained from three-parameter, nonlinear-least-squares fits.	225
Table 4.8. Values for $\text{RTln}(\text{K}_{\text{Kv}})$ and $E^0(\text{Ir}_2^{3+}/^3(\text{Ir}_2^{2+})^*)$ for $\text{Ir}_2(\text{TMB})_4^{2+}$ obtained from two-parameter, nonlinear-least-squares fits to Marcus equation with fixed λ values.	235
Table 4.9. Values for $\text{RTln}(\text{K}_{\text{Kv}})$, $E^0(\text{Ir}_2^{3+}/^3(\text{Ir}_2^{2+})^*)$, and λ for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ obtained from three-parameter, nonlinear-least-squares fits.	237
Table 4.10. Observed photochemical reactivity of hydrocarbons with $\text{Ir}_2(\text{TMB})_4^{2+}$.	260
Table 4.11. Stern-Volmer quenching rate constants for $\text{Ir}_2(\text{TMB})_4^{2+}$ and $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$.	263

Chapter 5

Table 5.1. Crystal data for $[\text{Ir}_2(\text{C}_{10}\text{H}_{16}\text{N}_2)_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$.	300
Table 5.2. Final Parameters (x, y, z and $U_{\text{eq}} \times 10^4$).	302
Table 5.3. Bond lengths and angles.	305
Table 5.4. Comparison of geometric parameters of Ir_2H_2 to other binuclear d^8 and d^7 complexes.	312
Table 5.5. Best plane fit of $\text{Ir}(\text{CN})_4$ units.	315

Table 5.6. Infrared vibrational frequencies.	317
Table 5.7. Raman vibrational frequencies.	318

Appendix 1



Table A1.1. Hydrogen Coordinates $\times 10^4$.	354
Table A1.2. Anisotropic Thermal Parameters $\times 10^4$.	357
Table A1.3. More Distances and Angles.	358
Table A1.4. Structure Factors.	361

Appendix 3

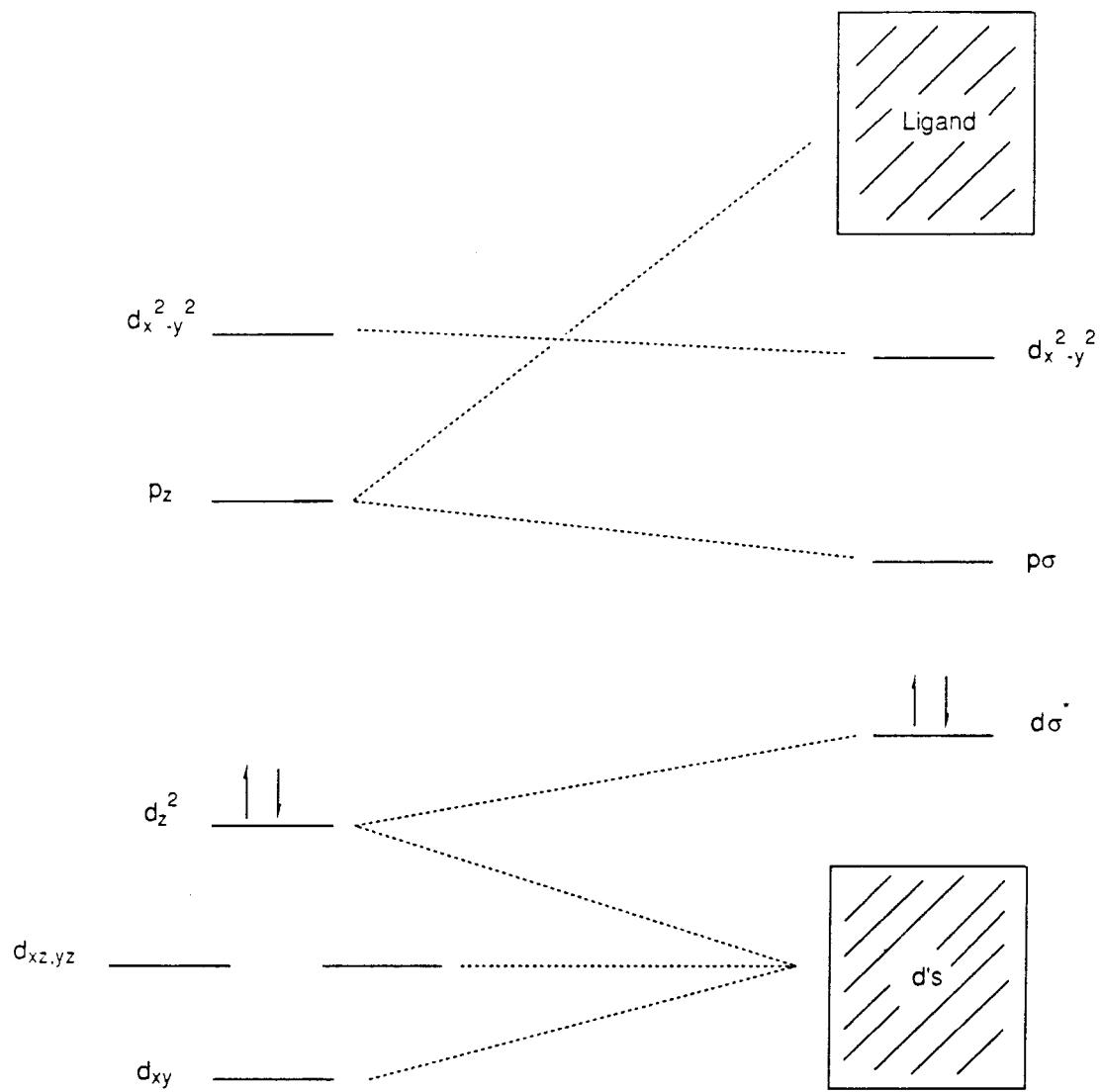
Table A3.1. U_{ij} 's, Ir atoms.	390
Table A3.2. Hydrogen coordinates.	391
Table A3.3. Structure Factors.	394

Chapter 1
Introduction

Binuclear metal complexes are attractive systems for the activation of organic and inorganic substrates because they offer the possibility of cooperative involvement of their active sites: multiple binding sites for substrates; multielectron redox capabilities; and for heteronuclear complexes, distinct metal centers that can interact differently with a given substrate.¹⁻⁵ Numerous studies have focused on the thermal reactivity of binuclear complexes with a variety of substrates, with less attention having been given to the activation of substrates by the electronic excited states of these complexes.⁶⁻⁸ Since a photoexcited molecule is best envisioned as a new species possessing physical and chemical properties distinct from its corresponding ground state molecule, photoexcited binuclear complexes may possess reactivity very different from the ground state.^{9,10} It is therefore of interest to investigate the possibility of the conversion of light to net chemical energy through a photochemical process.¹¹⁻¹³ Binuclear d⁸ complexes with the general structure shown in Figure 1.1 have been

Figure 1.1. General Structure for a face-to-face binuclear d⁸ complex. Bidentate ligands are diisocyanoalkanes or P₂O₅H₂⁴⁻ (e.g., Rh₂b₄²⁺ (b = 1,3-diisocyano propane), Rh₂(TMB)₄²⁺ (TMB = 2,5-diisocyano-2,5-dimethylhexane), Pt₂(P₂O₅H₂)₄⁴⁻). For A-frame d⁸ complexes two bridging ligands (e.g., [Ir(μ-pz)COD]₂, pz = pyrazole, COD = 1,5-cyclooctadiene).

studied for several years because of their unique spectral properties, thermal reactivity, and photochemical reactivity. The work in this area grew out of studies of the spectroscopic properties of Rh(I) isocyanide complexes.

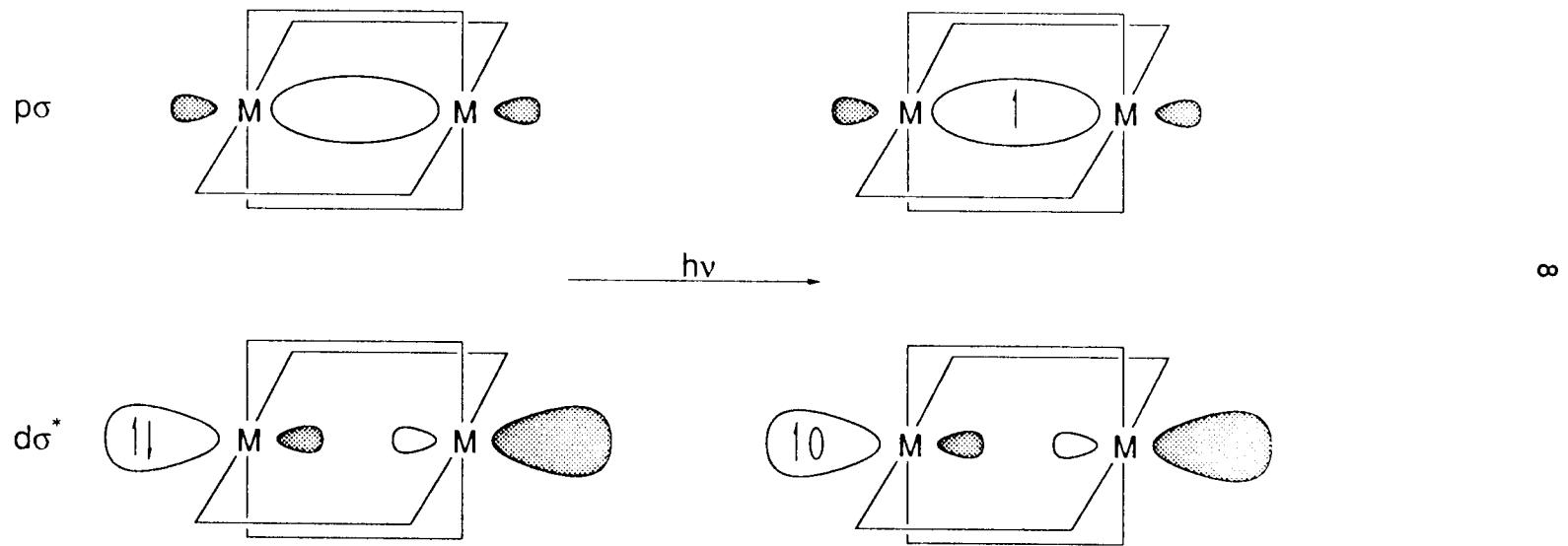

For years Rh(I) and Ir(I) isocyanide complexes have been suspected of existing as oligomers owing to the intense color, uncharacteristic of d^8 complexes possessing π -acceptor ligands.^{14,15} It was not until Mann demonstrated that the bands in the visible and near-infrared region of the spectrum for $\text{Rh}(\text{CNC}_6\text{H}_5)_4^+$ were not linearly related to the concentration of monomer but to some root (e.g., square, cubic, etc.) of monomer concentration that the extent of oligomerization was realized.¹⁶ The existence of discrete species was later confirmed by x-ray diffraction analysis.^{17,18}

Stacking of square planar d^8 complexes has been observed in the solid state.¹⁹ Electrostatic binding (attraction of oppositely charged, square planar units) was thought to be the important interaction. Oligomerization of similarly charged, square planar units could be understood to occur only from some favorable metal-metal interaction. Metal-metal interactions for the stacked linear chain complexes have been discussed in reference to the d/p band structure and the observed electrical conductivities. The dark colors of the linear chain salts and the solid-state emission are discussed in terms of $d \rightarrow p$ transitions.²⁰

Binuclear Rh species were later synthesized using a series of diisocyanoalkanes, ligands chosen to favor formation of dimeric complexes.^{21,22} Characterization of these complexes found them to be analogous to the oligomeric Rh species studied earlier.

The electronic structure of binuclear d^8 complexes has been understood in terms of a simple molecular orbital (MO) model (Figure 1.2).¹⁶ Starting from a monomer orbital scheme, two square planar units are brought together in a face-to-face orientation. The orbitals perpendicular to the molecular plane, d_z^2 and p_z , interact strongly, yielding $d\sigma/\sigma^*$ and $p\sigma/\sigma^*$ orbitals. To a first approximation the ground state is expected to be nonbonding since both the $d\sigma$ and $d\sigma^*$ orbitals are filled. However,

Figure 1.2. Molecular orbital diagram for the interaction of two square planar d^8 metal ions.


extensive spectroscopic studies of binuclear complexes have established that the metal-metal interaction in the ${}^1A_{1g}(d\sigma^*)^2$ ground state is weakly bonding.^{23,24}

Perturbational mixing of orbitals of the same symmetry will stabilize the lower set and destabilize the upper ones; stabilization of the filled lower set is viewed as a source of metal-metal bonding.

As suggested by the MO model and well established for numerous other studies, the lowest energy transition is $d\sigma^* \rightarrow p\sigma$.^{22,25} This excitation results in formation of a metal-metal single bond in the excited state. The spectral and photophysical properties of all binuclear d⁸ complexes are found to be dominated by the large contraction along the metal-metal coordinate that occurs upon excitation.²⁵⁻²⁷ The $d\sigma^* \rightarrow p\sigma$ transition is metal-localized and can be viewed as movement of an electron from an orbital localized on the exterior of the M₂ unit (the $d\sigma^*$ orbital) to an orbital localized in the interior of the dimer cage (the $p\sigma$ orbital). The excitation results in hole formation on a metal center at an open coordination site (Figure 1.3). The diradical picture of the excited state is important in discussing the photochemistry and the electrochemistry of these systems.

Additional studies of the binuclear Rh(I) complexes revealed that the lowest energy singlet and triplet excited states derived from the $(d\sigma)^2(d\sigma^*)^1(p\sigma)^1$ electronic configuration are luminescent at ambient temperatures in fluid solution.^{22-24,28} (For stacked linear chain complexes luminescence has been observed in the solid state and discussed in terms of a dp excited state.)²⁰ The ${}^1(d\sigma^*p\sigma)$ excited-state lifetime, in most cases, is less than 1 ns. The ${}^3(d\sigma^*p\sigma)$ excited-state lifetime is found to range from 30 ns to 10 μ s. Ground-state and excited-state Raman studies found that the metal-metal vibrational frequency increases upon excitation, an increase in the metal-metal bond strength.²⁶ The increased metal-metal interaction is also manifest in the low-temperature absorption spectra.^{25,27} The band at 670 nm in the spectrum of Rh₂b₄²⁺

Figure 1.3. Pictorial representation of the M_2 -localized hole in a ${}^3(d\sigma^* p\sigma)$ state.

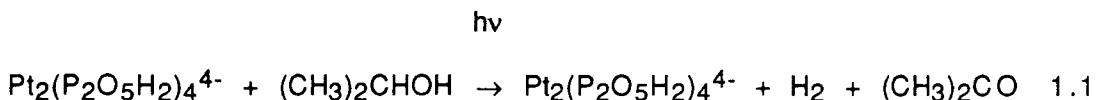
assigned to the ${}^1\text{A}_{1\text{g}} \rightarrow {}^3\text{E}_{\text{u}}$ transition shows a vibrational progression in a frequency of $\sim 150 \text{ cm}^{-1}$, consistent with the Rh-Rh stretching frequency of 144 cm^{-1} obtained from the Raman studies. (The ground-state Rh-Rh vibrational frequency is 79 cm^{-1} .) Analysis of the band shape suggests that the Rh-Rh distance decreases 0.3 \AA in the ${}^3(\text{d}\sigma^*\text{p}\sigma)$ excited state, consistent with the increased metal-metal bonding interaction in the excited state.

The MO picture also yields insight into the chemistry of these systems. For monomeric d^8 complexes, the predominant mode of reaction is oxidative addition.²⁹ The chemistry is controlled by the $(\text{d}_z^2)^2$ electron configuration, and while most reactions are classified as oxidative addition, the pathways followed are electron transfer, nucleophilic attack by the metal center, or acid/base. For binuclear d^8 complexes, the chemistry of the ground state is expected to be controlled by the $(\text{d}\sigma^*)^2$ electron configuration. Similar to the monomeric species, the binuclear complexes, undergo oxidative addition reactions. Many complexes have been found to undergo two-electron oxidative addition reactions with dihalides and alkyl halides.^{21,30,31} The pathway for these reactions are not well understood. In analogy to the monomeric complexes, the dimers are expected to undergo electron transfer, nucleophilic attack by the metal, and acid/base reactions. The transfer of two $\text{d}\sigma^*$ electrons results in the formation of a metal-metal single bond. The presence of this bond has been verified by x-ray diffraction.^{32,33} Other manifestations of the metal-metal bond have been observed spectroscopically.³⁴

The lifetime of the ${}^3(\text{d}\sigma^*\text{p}\sigma)$ excited state, normally in between 100 ns and $10 \mu\text{s}$, makes binuclear d^8 complexes attractive for bimolecular photoprocesses. An electronic excited state of a metal complex is both a stronger reductant and a stronger oxidant than the ground state.¹⁰ Excitation of an electron from a low-energy to a high-energy orbital reduces the ionization potential and increases the electron affinity of a molecule. Therefore, binuclear d^8 complexes with relatively long-lived excited states

can participate in intermolecular electron-transfer reactions that are uphill for the corresponding ground-state species. Such excited-state electron-transfer reactions often play key roles in multistep schemes for the conversion of light to chemical energy.⁹

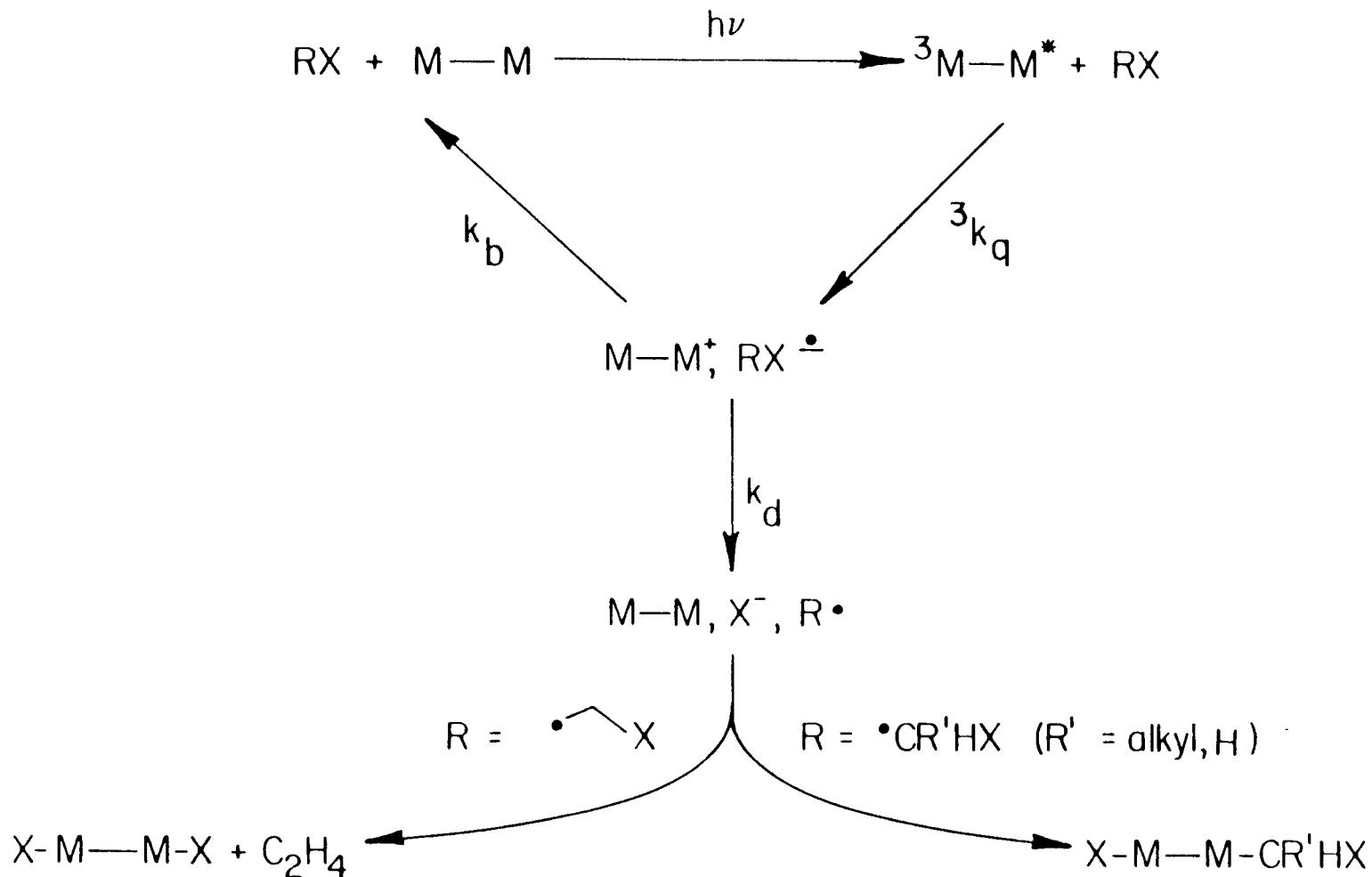
While electron-transfer processes are common in inorganic photochemistry, excited-state atom transfer is limited to a small class of inorganic complexes. For UO_2^{2+} , the diradical excited state ($\bullet\text{U-O}\bullet$) is active in alcohol oxidation.³⁵ The primary photoprocess is hydrogen atom abstraction by the oxygen-centered radical. Photoaddition to a metal center via atom transfer has been observed for binuclear metal complexes such as $\text{Re}_2(\text{CO})_{10}$.³⁶⁻³⁹ The primary photoprocess is metal-metal bond homolysis. The photogenerated metal radical undergoes thermal atom-abstraction reactions. Until recently, atom transfer to a metal-localized excited state had not been observed.

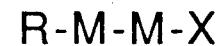
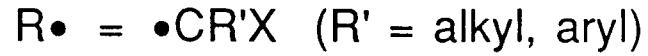
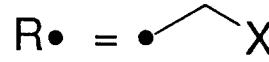

Atom transfer to a metal complex is facilitated if localized electron or hole generation occurs at one or more open coordination sites. Binuclear d^8 complexes have been found to undergo photochemical atom transfer to one of the metal centers.⁴⁰⁻⁴³ These complexes possess open coordination sites in addition to an electronic structure that localizes the electron (hole) necessary for atom transfer to the metal center.

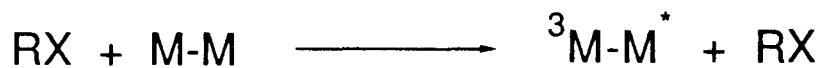
The initial interest in the binuclear d^8 complexes was stimulated by observations of their photochemical electron-transfer reactivity.⁴¹ From spectroscopic and electrochemical studies, the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is predicted to be a powerful reductant, with $E^0(\text{M}_2^+/\text{M}_2^*)$ estimated to range from -0.8 to -2.0 V vs SSCE in CH_3CN . That this state is a powerful reductant has been confirmed by investigation of the electron-transfer quenching of $^3\text{M}_2^*$ by a series of pyridinium acceptors with varying reduction potentials. For several binuclear complexes, the excited-state reduction potential cannot be calculated accurately because of the irreversibility of the

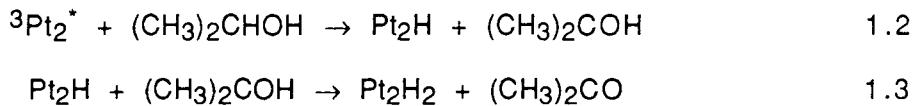
ground-state electrochemistry, but it can be estimated from bimolecular electron-transfer quenching experiments.

For systems that are powerful excited-state reductants, photoreduction of alkyl halides is observed.^{41,44} This reaction was initially interpreted to be an outer-sphere electron transfer to form an alkyl-halide radical anion, which rapidly decomposes to yield R· and X·. Subsequent thermal reactions give the observed products, an SRN1 mechanism (Figure 1.4). While such a mechanism, SRN1, appears plausible for a metal complex with $E^0(M_2^+/M_2^{\cdot}) < -1.5$ V (SSCE), it seems unlikely for complexes with $E^0(M_2^+/M_2^{\cdot}) > -1.0$ V (SSCE). Reduction potentials for alkyl halides of interest are generally more negative than -1.5 V (SSCE).⁴⁵ An alternative pathway to outer-sphere electron transfer, which yields similar photoredox products with alkyl halides, is excited-state atom transfer (Figure 1.5).


Although the primary photoprocess for alkyl-halide photoreduction may not be atom transfer in all cases, $^3(d\sigma^*p\sigma)$ excited-state hydrogen atom transfer has been established as the mechanism of the reaction between $Pt_2(P_2O_5H_2)_4^{4-}$ and a number of organic and organometallic substrates.⁴⁰⁻⁴³ Initial work in this area focused on the catalytic conversion of isopropanol to acetone (Equation 1.1).⁴⁶


From detailed studies of this system, it was concluded that the primary photoprocess is abstraction of the α -hydrogen by the $^3Pt_2^{\cdot}$ to form a monohydride species (directly observed by transient absorption spectroscopy for a number of substrates) and the organic radical (Equation 1.2), with the final photoproduct being Pt_2H_2 and acetone (Equation 1.3). The Pt_2H_2 complex has been characterized by NMR, UV-Vis, and IR (but has not been successfully isolated).⁴⁷


Figure 1.4. S_{RN1} mechanistic scheme for halocarbon photooxidative addition to binuclear d⁸ complexes.

13

Figure 1.5. Atom-transfer mechanism for halocarbon photooxidative addition.

To further extend the understanding of the chemistry and spectroscopy of binuclear d⁸ complexes, an Ir(I) analog of the Rh(I) species was prepared, Ir₂(TMB)₄²⁺.³⁰ This complex was found to compare well to the Rh(I) dimers with the expected red shift of the dσ* → pσ transition. The ³(dσ* pσ) excited state was found to have a temperature-independent lifetime of approximately 200 ns.

The crystal structure of the B(C₆H₅)₄⁻ salt of Ir₂(TMB)₄²⁺ is described in Chapter 2. The optical absorption spectrum is presented and discussed in reference to a large number of binuclear d⁸ complexes. Photophysical characterization of the emissive 1,3(dσ* pσ) excited states is reported along with Raman vibrational data for the ground state and the ³(dσ* pσ) excited state.

A detailed study of the electronic spectrum of Ir₂(TMB)₄²⁺ is presented in Chapter 3. A change in the metal from rhodium to iridium should perturb the electronic structure, thereby altering the characteristic d⁸-d⁸ electronic spectrum and allowing key aspects of the MO model to be tested. Electronic absorption and magnetic circular dichroism spectra of Rh₂(TMB)₄²⁺ and Ir₂(TMB)₄²⁺ are reported along with polarized single-crystal absorption spectra of [Ir₂(TMB)₄](B(C₆H₅)₄)₂·CH₃C₆H₅.

Earlier work found that Rh₂b₄²⁺, Rh₂(TMB)₄²⁺, Pt₂(P₂O₅H₂)₄⁴⁻, and [Ir(μ-pz)COD]₂ react with dihalides to yield the corresponding d⁷-d⁷ dimer, X-M-M-X.^{21,40,31} Pt₂(P₂O₅H₂)₄⁴⁻ and [Ir(μ-pz)COD]₂ were also found to oxidatively add CH₃I to yield CH₃-M-M-I. It was found that Ir₂(TMB)₄²⁺ oxidatively adds dihalides (Cl₂, Br₂, I₂), CH₃I, HCl, and CH₂(CN)₂ to yield the corresponding d⁷-d⁷ complex, X-M-M-Y (X = Y, Cl₂, Br₂, I₂; X = I, Y = CH₃; X = Cl, Y = H; X = CH(CN)₂, Y = H).³⁰ Because of the greater reactivity expected for Ir and the interest in the

photochemical reactivity of the excited states of $\text{Ir}_2(\text{TMB})_4^{2+}$, extension of the thermal chemistry was pursued. Thermal reactions with nonpolar and low-polarity reagents (H_2 , R_3CH , R_3SiH , R_3SnH), and electrophilic reagents (X_2 , RX , HX , CH_3COCl) are discussed in Chapter 4.

The relatively long lifetime of the ${}^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ in fluid solution suggests that it should be able to participate in bimolecular photochemical reactions. In light of the favorable absorption and emission properties of this complex, it is of interest to examine the possibility of the conversion of visible light to net chemical energy through a photochemical process, either electron transfer or atom transfer. The excited-state electron-transfer reactivity of $\text{Ir}_2(\text{TMB})_4^{2+}$ with pyridinium acceptors is reported and analyzed in the context of classical Marcus theory for outer-sphere electron transfer in Chapter 4. The photochemical reactions of $\text{Ir}_2(\text{TMB})_4^{2+}$ with alkyl halides and hydrogen-atom donors are reported.

Hydrogen-atom transfer has been established as an important reaction pathway for the triplet $\text{d}\sigma^*\text{p}\sigma$ excited state of binuclear d^8 complexes. Substrates that serve as hydrogen-atom donors include hydrocarbons (e.g., cyclohexene and 1,4-cyclohexadiene), alcohols with $\alpha(\text{C}-\text{H})$ bonds, and triorganosilanes, -germanes, and -stannanes. Irradiation of the metal complex in the presence of these substrates produces complexes of the type M_2H_2 . Earlier work has characterized the product formed with $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ as the binuclear platinum(III) dihydride, $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4\text{H}_2^{4-}$ (Pt_2H_2). In Chapter 5, the characterization of the dihydride of $\text{Ir}_2(\text{TMB})_4^{2+}$ (Ir_2H_2) is reported. In addition to NMR, UV-Vis, IR, and Raman spectra, the complex has been characterized crystallographically. The reactivity of Ir_2H_2 is also reported.

Theoretical studies have also contributed to the study of the electronic structure and the spectral properties of metal dimers.^{48,49} Results of *ab initio* calculations of $\text{Re}_2\text{Cl}_8^{2-}$ designed to provide accurate bond energies and torsion barriers as well as

accurate shapes for the potential curves are reported in Chapter 6. These studies use the generalized valence bond (GVB) approach in which electron correlations are included for all eight electrons available for the quadruple bond, while solving self-consistently for all orbitals.

References

1. Poilblanc, R. *Inorg. Chim. Acta* **1982**, *62*, 75-78, and references therein.
2. Halpern, J. *Inorg. Chim. Acta* **1982**, *62*, 31-37, and references therein.
3. Poilblanc, R. *Nouv. J. Chim.* **1978**, *2*, 145-150.
4. McCleverty, J.A. *Inorg. Chim. Acta* **1982**, *62*, 67-73.
5. Chisholm, M.H. *ACS Symp. Ser.* **1980**, *155*, 17-39.
6. Wrighton, M.S.; Graff, J.L.; Luong, J.C.; Reichel, C.L.; Robbins, J.L. *ACS Symp. Ser.* **1980**, *155*, 85-110.
7. Nocera, D.G.; Maverick, A.W.; Winkler, J.R.; Che, C.-M.; Gray, H.B. *ACS Symp. Ser.* **1983**, *211*, 21-33.
8. Gray, H.B.; Maverick, A.W. *Science* **1981**, *214*, 1201-1205.
9. Balzani, V.; Scandola, F. In *Energy Resources through Photochemistry and Catalysis*; Gratzel M., Ed.; Academic Press: New York, 1983; Chapter 1.
10. Balzani, V.; Bolletta, F.; Gandolfi, M.T.; Maestri M. *Top. Curr. Chem.* **1978**, *75*, 1-64.
11. Rabani, J., Ed. *Photochemical Conversion and Storage of Solar Energy*; Weizmann Science Press: Jerusalem, 1982.
12. Gratzel, M., Ed. *Energy Resources through Photochemistry and Catalysis*; Academic Press: New York, 1983.
13. Connolly, J.S., Ed. *Photochemical Conversion and Storage of Solar Energy*; Academic Press: New York, 1981.

14. Kawakami, K.; Haga, M.-A.; Tanaka, T. *J. Organomet. Chem.* **1973**, *60*, 363-373.
15. Malatesta, L.; Bonati, F. *Isocyanide Complexes of Metals*; Wiley: New York, 1969.
16. Mann, K.R.; Gordon, J.G. II; Gray, H.B. *J. Am. Chem. Soc.* **1975**, *97*, 3553-3555.
17. Mann, K.R.; Lewis, N.S.; Williams, R.M.; Gray, H.B.; Gordon, J.G., II *Inorg. Chem.* **1978**, *17*, 828-834.
18. Endres, H.; Gottstein, N.; Keller, H.J.; Martin, R.; Rodemer, W.; Steiger, W. *Z. Naturforsch.* **1979**, *34B*, 827-833.
19. Miller, J.S., Ed. *Extended Linear Chain Compounds*; Plenum Press: New York, 1982, and references therein.
20. Moreau-Colin, M.L. *Struct. Bonding* **1972**, *10*, 167-190.
21. Lewis, N.S.; Mann, K.R.; Gordon, J.G. II; Gray, H.B. *J. Am. Chem. Soc.* **1976**, *98*, 7461-7463.
22. Mann, K.R.; Thich, J.A.; Bell, R.A.; Coyle, C.L.; Gray, H.B. *Inorg. Chem.* **1980**, *19*, 2462-2468.
23. Mann, K.R.; Gray, H.B. *Adv. Chem. Ser.* **1979**, *173*, 225-235.
24. Rice, S.F.; Milder, S.J.; Goldbeck, R.A.; Kliger, D.S.; Gray, H.B. *Coord. Chem. Rev.* **1982**, *43*, 349-354.
25. Rice, S.F.; Miskowski, V.M.; Gray, H.B. *Inorg. Chem.* **1988**, *27*, 4704-4708.
26. Dallinger, R.F.; Miskowski, V.M.; Gray, H.B.; Woodruff, W.H. *J. Am. Chem. Soc.* **1981**, *103*, 1595-1596.
27. Rice, S.F.; Gray, H.B. *J. Am. Chem. Soc.* **1981**, *103*, 1593-1595

28. Miskowski, V.M.; Nobinger, G.L.; Kliger, D.S.; Hammond, G.S.; Lewis, N.S.; Mann, K.R.; Gray, H.B. *J. Am. Chem. Soc.* **1978**, *100*, 485-488.

29. Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, California, 1987.

30. Smith, T.P., Ph.D. Dissertation, California Institute of Technology, 1982.

31. Marshall, J.L., Ph.D. Dissertation, California Institute of Technology, 1987.

32. Mann, K.R.; Bell, R.A.; Gray, H.B. *Inorg. Chem.* **1979**, *18*, 2671-2673.

33. Maverick, A.W.; Smith, T.P.; Maverick, E.F.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 4336-4341.

34. Miskowski, V.M.; Smith, T.P.; Loehr, T.M.; Gray, H.B. *J. Am. Chem. Soc.* **1985**, *107*, 7925-7934.

35. Bergamini, P.; Sostero, S.; Traverso, O. In *Fundamental and Technological Aspects of Organo-f-Element Chemistry*; Marks, T.J.; Fragala, I.L., Eds.; D. Reidel: Boston, 1985; pp. 361-385.

36. Stiegman, A.E.; Tyler, D.R. *Comm. Inorg. Chem.* **1986**, *5*, 215-245.

37. Hanckel, J.M.; Lee, K.-W.; Rushman, P.; Brown, T.L. *Inorg. Chem.* **1986**, *25*, 1852-1856.

38. Wayland, B.B.; Del Rossi, K.J. *J. Organomet. Chem.* **1984**, *276*, C27-C30.

39. Tyler, D.R. *Prog. Inorg. Chem.* **1988**, *36*, 125-194.

40. Roundhill, D.M.; Gray, H.B.; Che, C.-M. *Accts. Chem. Res.*, in press.

41. Marshall, J.L.; Stiegman, A.E.; Gray, H.B. In *Excited States and Reactive Intermediates*; Lever, A.B.P., Ed.; ACS Symp. Ser. 307; American Chemical Society: Washington, D.C., 1986; pp 166-176.
42. Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 286-287.
43. Vlcek, A., Jr.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 1997-2001.
44. Caspar, J.V.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 3029-3030.
45. Hawley, M.D. In *Encyclopedia of Electrochemistry of the Elements*. Vol. XIV; Bard, A.J., Ed.; Marcel Dekker: New York, 1980; pp. 1-135.
46. Roundhill, D.M. *J. Am. Chem. Soc.* **1985**, *107*, 4354-4356.
47. Harvey, E.L.; Stiegman, A.E.; Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 5233-5235.
48. Cotton, F.A.; Walton, R.A. *Multiple Bonds Between Metal Atoms*; Wiley: New York, 1982.
49. Hoffman, D.M.; Hoffmann, R. *Inorg. Chem.* **1981**, *20*, 3543-3555.

Chapter 2**Structure, Optical Absorption Spectrum, and Photophysics of
 $\text{Ir}_2(\text{TMB})_4^{2+}$**

Introduction

Extensive studies of binuclear d⁸ complexes have revealed a class of compounds that are spectroscopically unique and chemically very interesting. The ground state of these complexes, while formally nonbonding, does possess a weak metal-metal bond. The electronic excited states have a formal metal-metal single bond. This arises from excitation of an electron from the dσ* orbital to the pσ orbital. Such a nonbonding-to-bonding transition is unique among inorganic complexes. In studying binuclear d⁸ complexes, one wishes to understand how the metal-metal interaction in the ground state and excited states influence the spectroscopy and chemistry.

Many of the binuclear d⁸ complexes are found to be emissive. Excited states formed by absorption of a photon rather than merely by undergoing thermal deactivation to the ground state decay by emission of a photon. The emissive states have been shown to be the 1,3(dσ*pσ) excited states. The 1(dσ*pσ) excited state lifetime, in most cases, is less than 1 ns. The 3(dσ*pσ) lifetime is found to range from 30 ns to 10 μs. The structure and properties of these excited states have been the focus of much work. One would like to characterize these states much as one would characterize the ground state.

To further extend the understanding of the chemistry and spectroscopy of binuclear d⁸ complexes, a study of an Ir(I) complex, Ir₂(TMB)₄²⁺, was undertaken. The synthesis and preliminary characterization of Ir₂(TMB)₄²⁺ has been reported.¹ The crystal structure of the B(C₆H₅)₄⁻ salt of Ir₂(TMB)₄²⁺ is presented. The optical absorption spectrum of Ir₂(TMB)₄²⁺ is discussed in reference to a large number of binuclear d⁸ complexes. It is shown that the energy of the 1(dσ* → pσ) transition is dictated by excited-state properties, not by ground-state interactions as prescribed by the MO model. Photophysical characterization of the emissive 1,3(dσ*pσ) excited states is reported along with Raman vibrational data for the ground state and the 3(dσ*pσ) excited state.

Experimental

Synthesis

All synthetic procedures were carried out with standard Schlenk techniques. All solvents were from freshly opened bottles with no further purification. All solvents were Schlenk-degassed prior to use. Standard procedures were used to prepare 2,5-diisocyano-2,5-dimethylhexane (TMB)² and $[\text{Ir}(\text{COD})\text{Cl}]_2$ (COD = 1,4-cyclooctadiene)³. All other chemicals were of reagent grade or comparable quality and were used as received. The ^1H NMR spectra were obtained on a 400-MHz JNM-GX400 FT NMR spectrometer. The IR spectra were measured on a Beckman IR 4240.

$[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$

To a filtered acetonitrile solution of $[\text{Ir}(\text{COD})\text{Cl}]_2$ (0.1 g in 10 ml CH_3CN), a filtered solution of TMB (0.1g in a minimum of CH_3CN) was added with stirring. The solution immediately turned dark blue. The mixture was allowed to stir for approximately 15 minutes, at which time the solvent and COD were removed under vacuum. The resulting metallic-brown solid was dissolved in methanol. A filtered methanol solution of $\text{NaB}(\text{C}_6\text{H}_5)_4$ (0.11g, 10 ml) was added to the stirred methanol solution of $[\text{Ir}_2(\text{TMB})_4]\text{Cl}_2$. Immediate precipitation of a blue solid occurred. The solution was filtered and the blue powder washed with cold methanol. The solid could be recrystallized from acetone or acetonitrile. Yields were quite variable. Calculated for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$: C, 62.91; H, 6.24; N, 6.67. Found: C, 62.61; H, 6.43; N, 6.40. NMR: δ (CD_3CN , 20 °C); 1.49 (broad singlet, CH_3 , 48H), 1.86 (broad singlet, CH_2 , 16H), 6.83(triplet-of-triplets, 8H), 6.98 (triplet, 16H), 7.25 (multiplet, 16H). IR: ν , cm^{-1} (Nujol mull, NaCl plates); 2140 (vs, N≡C). Free ligand IR: ν , cm^{-1} (Nujol mull, NaCl plates); 2120 (vs, N≡C).

**X-ray Data Collection and Reduction for
 $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot 2\text{CH}_3\text{CN}$**

Crystal data are given in Table 2.1. Oscillation and Weissenberg photographs showed monoclinic symmetry. Bright-blue crystals, freshly grown from acetonitrile, were cut to size with a razor blade. An irregular chunk was glued to a glass fiber and then quickly covered with epoxy glue to retard decomposition. It was centered on a Nonius CAD-4 diffractometer equipped with graphite-monochromated $\text{MoK}\alpha$ radiation, and the cell dimensions plus an orientation matrix were obtained from the setting angles of 25 reflections with $22^\circ < 2\theta < 25^\circ$. Two crystals were used to measure 6332 reflections with an ω scan. A scale factor relating the two data sets was calculated from the three check reflections, which were measured every 10,000 seconds of x-ray exposure. These showed a linear decay of about 9% in I for each crystal, and the data were corrected for this decay. Backgrounds were measured for each reflection at each end of the scan; an average background as a function of 2θ was calculated and used to correct the measured scan counts. Absences in the data of $0k0$, $k=2n+1$ and $h0l$, $h+l=2n+1$ identify the space group as $P2_1/n$, #14. After deleting space-group absences and merging equivalent reflections, 5562 reflections used in the structure solution and refinement remained, of which 5116 had $F_o^2 > 0$ and 4333 had $F_o^2 > 3\sigma(F_o^2)$. The data were corrected for Lorentz and polarization factors but not for absorption; the epoxy glue on the crystals prevented their measurement and identifying the crystal faces. Variances of the individual reflections were assigned, based on counting statistics plus an additional term, $0.014I^2$. Variances for the merged reflections were obtained by standard propagation of error plus another additional term, $0.014I^2$. Scattering factors were taken from Reference 4.

The coordinates of the iridium atoms were obtained from a Patterson map and the remaining nonhydrogen atoms were found with successive structure factor-Fourier calculations. After three cycles of full-matrix least squares, minimizing $\Sigma w(F_o^2 - F_c^2)^2$,

Table 2.1. Crystal Data for $[\text{Ir}_2(\text{C}_{10}\text{H}_{16}\text{N}_2)_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot 2\text{CH}_3\text{CN}$.

Formula: $\text{Ir}_2\text{C}_{92}\text{H}_{110}\text{N}_{10}\text{B}_2$	Formula Wt.: 1761.99
$a = 17.053(2)$ Å	Space Group $\text{P}2_1/\text{n}$ (#14)
$b = 32.481(11)$ Å	
$c = 17.616(5)$ Å	$T: 22$ °C
$\beta = 115.59(2)$ °	
$V = 8800(5)$ Å ³	$\lambda \text{ MoK}\alpha = 0.71073$ Å
$\mu = 32.56$ cm ⁻¹	$d_{\text{calc}} = 1.329$ g cm ⁻³
Crystal irregular, max. dim. ~0.4 mm	
$F(000) = 3548$ electrons	

$F_c^2)^2$, hydrogen atoms were introduced at calculated positions, assuming a C-H distance of 0.95 Å and staggered geometries. Each hydrogen atom was given an isotropic thermal parameter 10% greater than that of the carbon atom to which it was bonded. The least-squared converged (iridium atoms and methyl carbon atoms of the ligands anisotropic, the remaining atoms isotropic: 106 nonhydrogen atoms, 515 parameters, plus 104 hydrogen atoms) with $R(=\Sigma(F_o-F_c)/\Sigma F_o)$ of 0.062 for all reflections with $F_o^2 > 0$ and 0.050 for the reflections with $F_o^2 > 3\sigma(F_o^2)$. The goodness-of-fit, $[\Sigma w(F_o^2 - F_c^2)^2/(n-p)]^{1/2}$, was 2.64. The final parameters are given in Table 2.2 and selected distances and angles in Table 2.3. The structure factors, hydrogen parameters and further distances and angles are given in Appendix 1.

A final difference Fourier map showed excursions of +1.00 and -1.12 electrons /Å³ (e/Å³) in the vicinity of the iridium atoms, two peaks of 1.15 and 0.97 e/Å³ along the Ir-Ir vector, 3.2 Å from the Ir atoms, and several peaks of about 0.75 e/Å³ in the vicinity of the acetonitrile molecules. The general noise level of the map was ±0.4 e/Å³. The large excursions near the iridium atoms, as well as the two axial peaks, are caused by the inability to correct for absorption. The peaks near the acetonitrile molecules probably represent different orientations of partial solvent molecules, but they could not be interpreted in any chemically reasonable way. The rather high goodness-of-fit is the result of both of these factors.

The lack of an absorption correction has caused some of the carbon atoms to be mispositioned, particularly those bonded to iridium. The wide range of Ir-C distances (>0.1 Å) is surely not real but is a result of the least squares moving the carbon atoms to minimize the peaks around the iridium atoms caused by the absorption. This is also the reason that two of the carbon atoms, C11 and C31, have thermal parameters that are too small: the least squares is adjusting them so as to compensate as much as possible for the absorption effects.

Table 2.2. Final Parameters (x,y,z $\times 10^4$).

Atom	x	y	z	B
Ir1	1252(0.4)	648(0.2)	1031(0.4)	338(2)*
Ir2	1457(0.4)	1628(0.2)	1084(0.4)	330(2)*
C1	-20(11)	660(5)	415(10)	3.6(4)
N1	-760(9)	660(4)	82(8)	3.8(3)
C2	-1695(10)	738(5)	-391(10)	2.9(4)
C3	-2182(10)	468(5)	-41(12)	674(62)*
C4	-1937(10)	611(5)	-1293(9)	621(59)*
C5	-1829(10)	1197(5)	-287(10)	3.7(4)
C6	-1689(10)	1338(5)	570(10)	3.4(4)
C7	-1284(10)	1767(5)	826(10)	3.4(4)
C8	-1790(10)	2105(5)	198(12)	724(63)*
C9	-1227(11)	1885(5)	1708(10)	650(56)*
N2	-389(8)	1757(4)	898(8)	3.3(3)
C10	306(10)	1704(5)	968(10)	3.5(4)
C11	1398(8)	629(4)	-28(9)	1.1(3)
N3	1518(8)	629(4)	-588(9)	3.9(3)
C12	1621(12)	663(6)	-1387(11)	4.0(4)
C13	2533(13)	598(7)	-1201(13)	962(69)*
C14	1050(15)	320(6)	-1978(12)	1141(88)*
C15	1269(11)	1087(6)	-1770(11)	4.9(4)
C16	348(11)	1183(6)	-1987(11)	5.1(5)
C17	160(11)	1616(6)	-1802(12)	4.2(4)
C18	455(11)	1949(5)	-2206(10)	593(59)*
C19	-773(10)	1676(6)	-1978(12)	866(68)*
N4	635(8)	1670(4)	-889(10)	4.3(3)
C20	965(10)	1657(5)	-180(12)	3.9(4)
C21	2495(11)	596(5)	1679(11)	4.1(4)
N5	3224(9)	562(4)	2058(8)	4.2(3)
C22	4201(11)	542(6)	2566(12)	4.6(5)
C23	4344(12)	485(7)	3497(11)	1060(84)*
C24	4542(11)	174(5)	2280(12)	839(70)*
C25	4561(11)	953(5)	2490(11)	4.8(4)
C26	4458(11)	1066(6)	1596(12)	5.5(5)
C27	4216(11)	1499(5)	1326(11)	4.2(4)
C28	4860(11)	1814(6)	1945(13)	989(73)*
C29	4140(13)	1567(6)	431(12)	971(64)*
N6	3346(9)	1577(4)	1291(8)	3.8(3)
C30	2633(10)	1599(5)	1206(10)	3.5(4)
C31	1060(8)	641(4)	2079(9)	0.9(3)
N7	929(8)	645(4)	2632(9)	3.3(3)
C32	761(10)	705(5)	3382(10)	2.5(4)
C33	1177(11)	350(5)	3973(10)	671(55)*
C34	-183(10)	714(6)	3110(11)	800(58)*
C35	1149(10)	1116(5)	3764(10)	4.3(4)

Atom	x	y	z	B
C36	2113(10)	1162(5)	4093(10)	4.7(4)
C37	2455(11)	1576(6)	3953(11)	4.4(4)
C38	3429(10)	1586(6)	4335(11)	887(70)*
C39	2041(13)	1924(6)	4206(12)	1021(83)*
N8	2163(8)	1619(4)	3021(10)	4.9(4)
C40	1866(10)	1632(5)	2322(11)	3.7(4)
B1	8189(11)	1149(6)	4764(12)	3.0(4)
C41	7796(10)	944(5)	3829(10)	3.1(4)
C42	7949(11)	1122(6)	3176(12)	4.8(4)
C43	7651(12)	940(6)	2366(12)	5.6(5)
C44	7254(11)	571(6)	2211(12)	5.5(5)
C45	7098(12)	376(6)	2834(13)	6.7(5)
C46	7371(11)	571(6)	3621(11)	4.8(4)
C51	7949(9)	1623(5)	4734(10)	3.2(4)
C52	8273(11)	1854(6)	5486(12)	5.8(5)
C53	8073(13)	2269(7)	5549(13)	7.4(6)
C54	7495(13)	2458(6)	4827(14)	7.4(5)
C55	7111(12)	2245(6)	4061(13)	6.9(5)
C56	7362(11)	1839(6)	4031(11)	5.1(4)
C61	7755(10)	932(5)	5329(10)	3.0(4)
C62	6868(12)	963(5)	5068(11)	5.1(5)
C63	6432(13)	825(6)	5539(14)	7.3(5)
C64	6926(12)	606(6)	6272(12)	5.9(5)
C65	7808(12)	562(6)	6576(12)	5.7(5)
C66	8221(10)	721(5)	6092(11)	4.5(4)
C71	9245(9)	1062(5)	5174(9)	3.0(4)
C72	9897(12)	1367(6)	5464(11)	5.6(5)
C73	10795(12)	1257(6)	5844(12)	6.3(5)
C74	10997(12)	865(6)	5934(12)	5.6(5)
C75	10424(12)	553(6)	5657(12)	5.9(5)
C76	9535(10)	660(5)	5269(10)	4.1(4)
B2	9643(11)	3681(5)	2539(11)	2.2(4)
C81	10406(9)	3388(5)	2499(9)	3.1(4)
C82	10348(10)	2973(5)	2411(10)	4.0(4)
C83	11047(14)	2737(7)	2423(13)	7.5(6)
C84	11804(12)	2904(6)	2494(12)	5.9(5)
C85	11883(11)	3314(6)	2570(11)	5.4(5)
C86	11197(11)	3553(5)	2611(10)	4.2(4)
C91	8837(9)	3393(5)	2464(10)	3.0(4)
C92	8576(10)	3340(5)	3108(11)	4.7(4)
C93	7879(11)	3086(5)	3004(12)	5.0(5)
C94	7426(11)	2861(5)	2293(12)	4.4(4)
C95	7650(11)	2920(5)	1650(11)	4.8(4)
C96	8330(10)	3176(5)	1734(11)	3.8(4)

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>B</i>
C101	10039(9)	3924(5)	3435(10)	3.0(4)
C102	10591(10)	3715(5)	4174(11)	4.3(4)
C103	10848(11)	3908(6)	4978(12)	5.7(5)
C104	10581(12)	4290(6)	5002(13)	6.2(5)
C105	10050(14)	4518(7)	4331(15)	7.8(6)
C106	9775(11)	4310(6)	3513(12)	5.1(5)
C111	9277(9)	4017(5)	1764(10)	2.7(4)
C112	9691(10)	4137(5)	1256(10)	3.5(4)
C113	9359(11)	4449(5)	666(11)	4.5(4)
C114	8628(10)	4653(5)	526(10)	3.8(4)
C115	8171(10)	4536(5)	971(11)	4.1(4)
C116	8492(10)	4216(5)	1556(10)	3.2(4)
N9	5818(18)	2289(9)	265(18)	14.7(9)
C200	5212(22)	2497(10)	-279(21)	12.2(9)
C201	4554(19)	2675(9)	-915(19)	12.2(9)
N10	-174(18)	2691(9)	-956(20)	16.0(9)
C203	340(26)	2825(12)	-271(28)	16.3(12)
C204	881(19)	2990(9)	389(20)	12.0(9)

* $U_{eq} \times 10^4$

$$U_{eq} = \frac{1}{3} \sum_i \sum_j [U_{ij}(a_i^* a_j^*)(\vec{a}_i \vec{a}_j)]$$

Table 2.3. Selected Distances and Angles.

Atom	Atom	Distance (Å)	
Ir1	Ir2	3.199(1)	
Ir1	C1	1.962(17)	
Ir1	C11	1.986(14)	
Ir1	C21	1.932(18)	
Ir1	C31	2.008(14)	
Ir2	C10	1.900(17)	
Ir2	C20	2.015(18)	
Ir2	C30	1.924(17)	
Ir2	C40	1.981(17)	
C1	N1	1.14(2)	
C11	N3	1.09(2)	
C21	N5	1.13(2)	
C31	N7	1.09(2)	
C10	N2	1.15(2)	
C20	N4	1.13(2)	
C30	N6	1.16(2)	
C40	N8	1.11(2)	
Atom	Atom	Atom	Angle(Deg.)
Ir1	C1	N1	177.6(15)
Ir1	C11	N3	176.2(14)
Ir1	C21	N5	179.2(16)
Ir1	C31	N7	177.4(13)
Ir2	C10	N2	178.8(15)
Ir2	C20	N4	175.3(16)
Ir2	C30	N6	178.9(15)
Ir2	C40	N8	173.6(16)

Spectroscopic Measurements

All solvents were dried and degassed by standard methods.^{5,6} Absorption spectra were recorded with a Cary 17 spectrophotometer. Spectra were obtained of solutions prepared on a high-vacuum line in a cell consisting of a 10 ml Pyrex bulb, a 1 cm pathlength quartz cell, and a Teflon vacuum valve.

Electronic Emission Spectroscopy

Electronic emission spectra were measured using an emission spectrophotometer constructed at CalTech that has been described previously.⁷ Spectra recorded at ambient temperatures were obtained for solutions that were prepared on a high-vacuum line in a cell consisting of a 10 ml Pyrex bulb, a 1 cm pathlength quartz cell, and a Teflon vacuum valve. For the measurements at 77 K, solutions were prepared in the same manner in a glass NMR tube attached to a Teflon vacuum valve. Solvent was bulb-to-bulb distilled into the cell or tube containing the compound from the appropriate solvent storage flask. For the 77 K emission measurements, the NMR tubes were held in a liquid-nitrogen-filled quartz finger dewar.

Emission Lifetime Measurements

Emission lifetime measurements were conducted with a Nd:YAG pulsed laser system that has been described previously using 532 nm excitation.⁸ The solutions for the measurements at ambient temperatures were prepared by the procedure used for the emission measurements. The solutions for 77 K lifetime measurements were prepared in NMR tubes by the same procedure. All emission intensity decays exhibited first-order kinetics over at least 3 half-lives. For the measurements at 77 K, the NMR tubes were held in a liquid-nitrogen-filled quartz finger dewar. The laser was operated at a low-power output to minimize local sample heating.

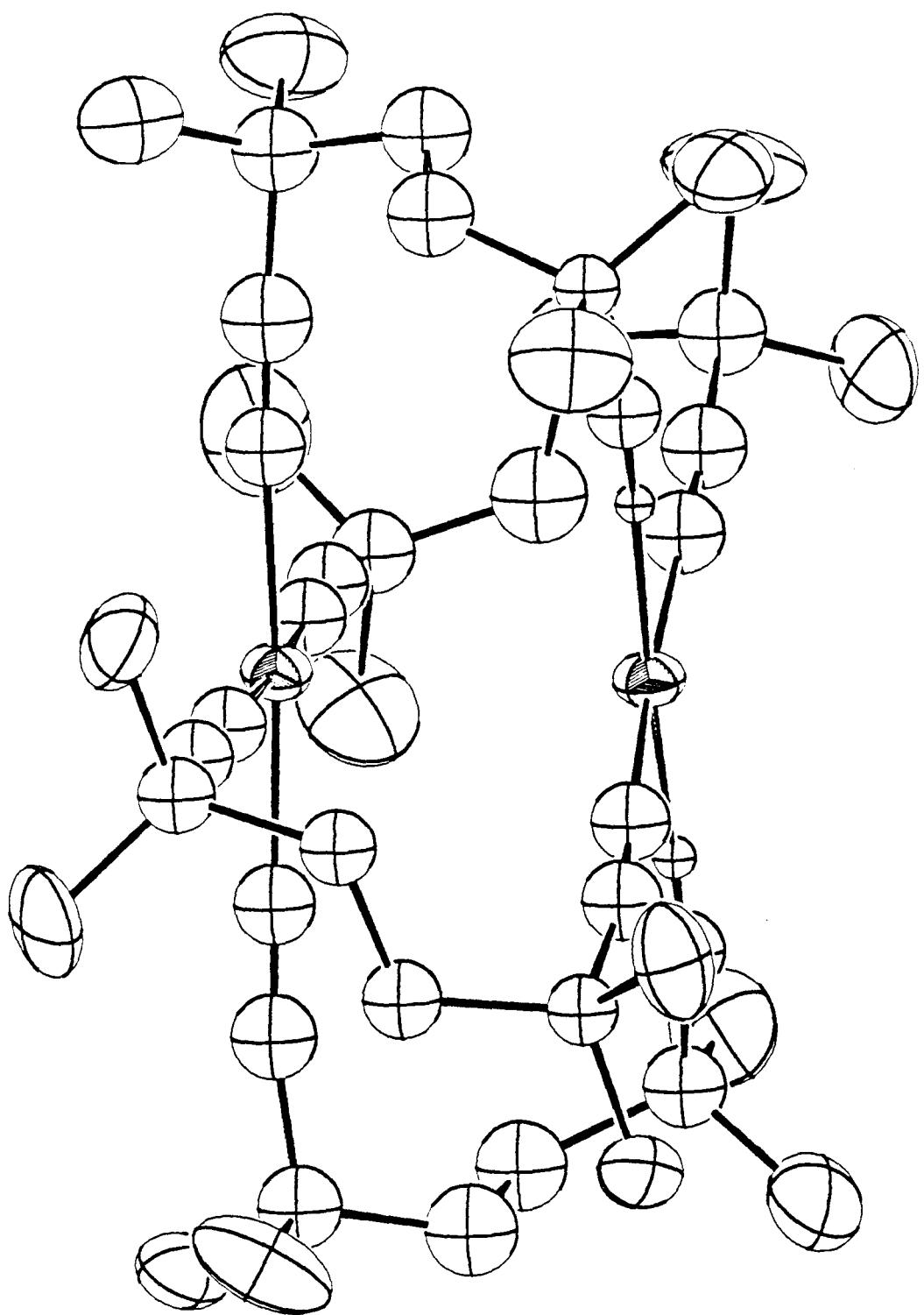
Resonance Raman Spectroscopy

Resonance Raman spectra were measured by Dr. Thomas Loehr at the Oregon Graduate Center and by Dr. R.F. Dallinger at Los Alamos National Laboratory. Time-resolved resonance Raman spectra were measured by Dr. R.F. Dallinger at Los Alamos National Laboratory.

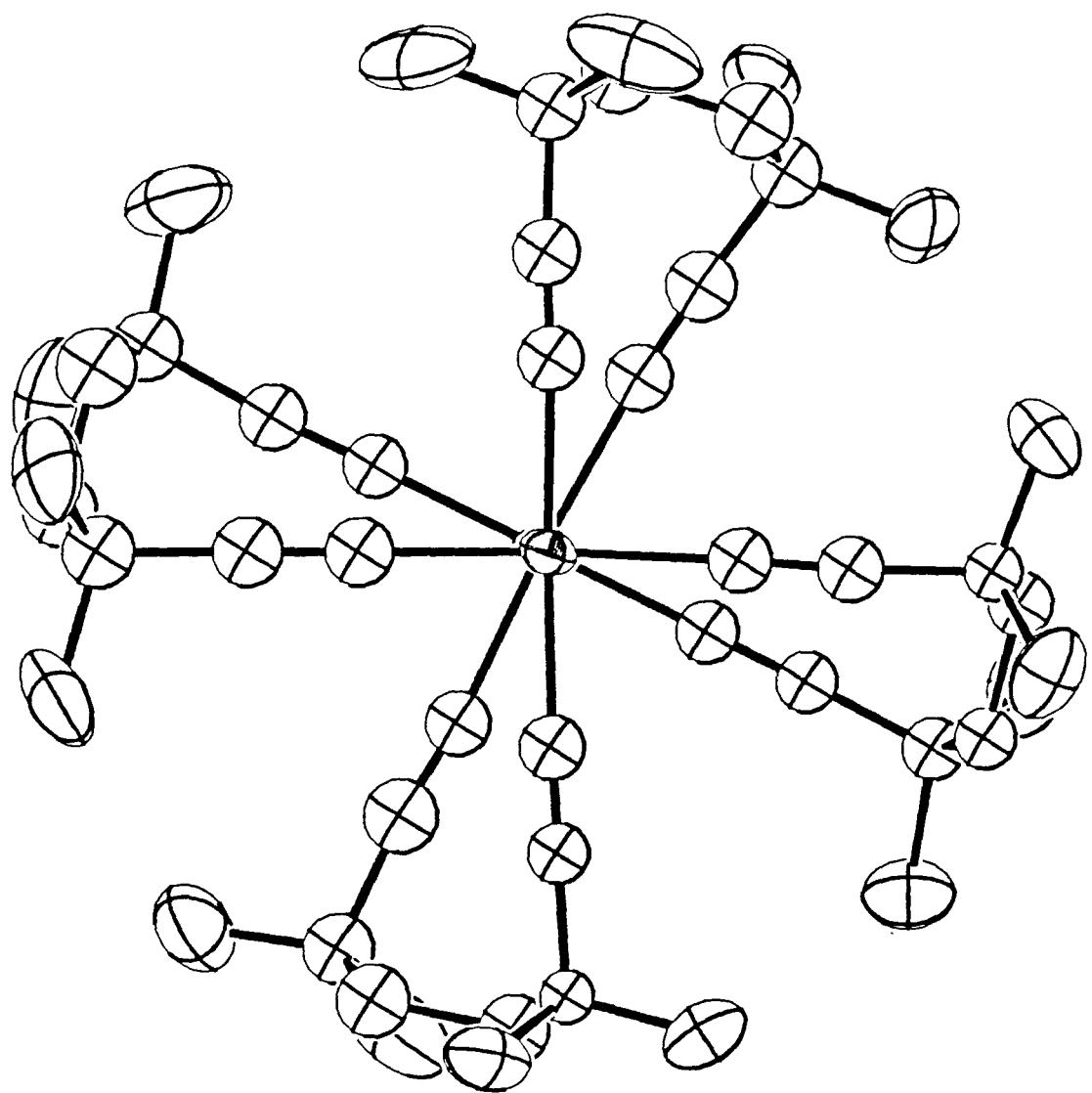
Additional Measurements

Elemental analyses were obtained at the CalTech Analytical Laboratory.

Results and Discussion


Crystal Structure

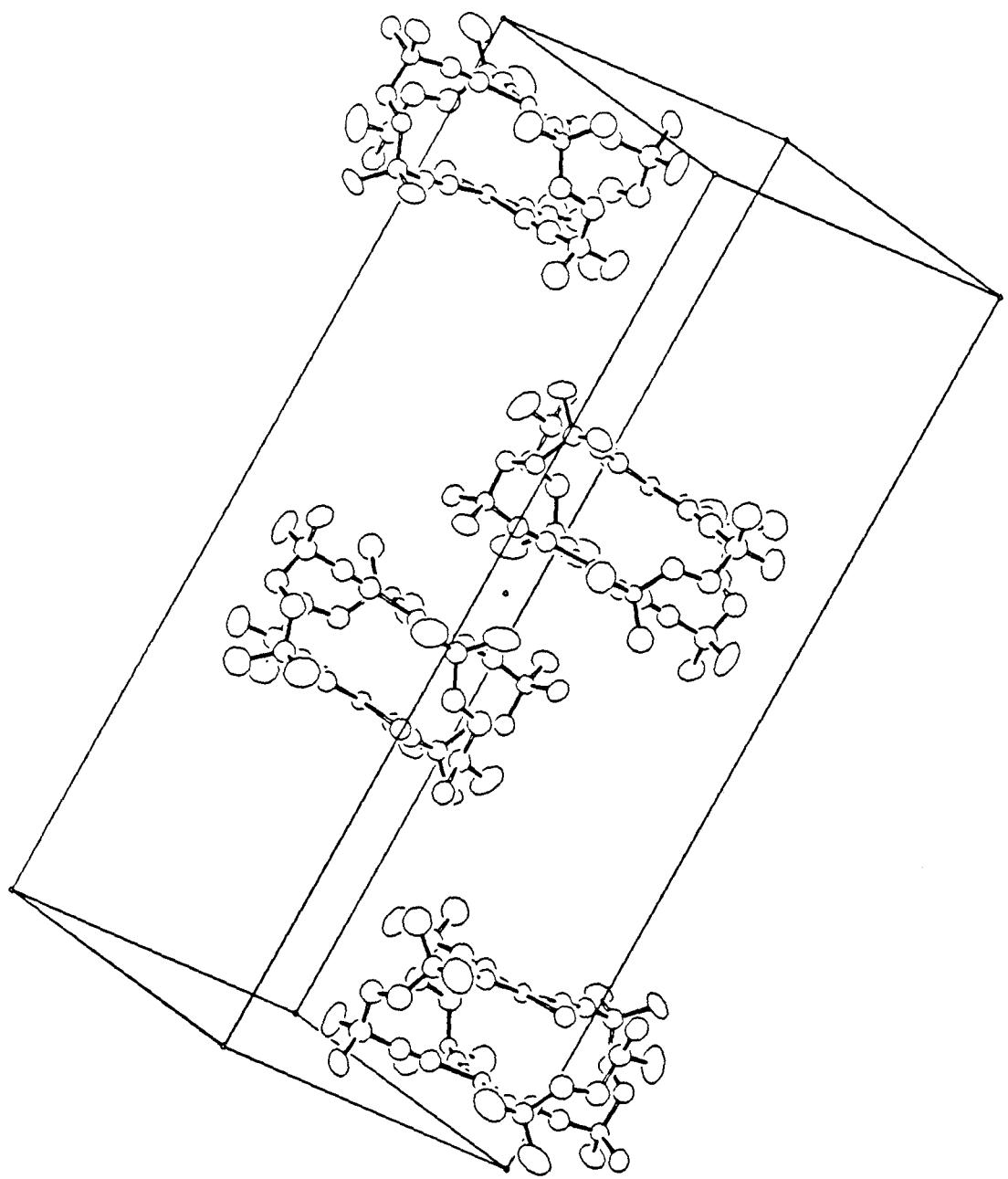
The structure of $\text{Ir}_2(\text{TMB})_4^{2+}$ is shown in Figure 2.1. The Ir-Ir distance of 3.119(1) Å is shorter than the metal-metal separation found for the analogous Rh(I) dimers ($\text{Rh}_2(\text{CNC}_6\text{H}_5)_8^{2+}$, 3.193(0) Å; $\text{Rh}_2\text{b}_4^{2+}$, 3.242(1) Å; $\text{Rh}_2(\text{TMB})_4^{2+}$, 3.262(1) Å).^{2,9} The shorter metal-metal separation may be indicative of a stronger metal-metal interaction (metal-metal bond) in $\text{Ir}_2(\text{TMB})_4^{2+}$ in comparison to the Rh complexes.


The most striking feature of the structure is the twist of the two $\text{Ir}(\text{CN})_4$ units (Figure 2.2). The four TMB ligands are arranged as a four-bladed propeller about the Ir-Ir axis, giving the two $\text{Ir}(\text{CN})_4$ units a partially staggered conformation. The torsional angle, N-M-M-N, is 28(4)° (Table 2.4), similar to the torsion angle observed for $\text{Rh}_2(\text{TMB})_4^{2+}$, 31°.² The pitch of the blade is 27(3)° as measured from $\text{C}_\beta\text{-Ir-Ir-C}_\beta$. A best-fit plane of the $\text{Ir}(\text{CN})_4$ units shows a slight distortion (Table 2.5). Each Ir experiences a small pyramidal distortion with the metal displaced toward the center of the cation. For $\text{Rh}_2\text{b}_4^{2+}$, a similar pyramidal distortion is observed with all four CN groups displaced toward the center of the dimer.² A tetrahedral distortion about the Rh atom is observed for $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Rh}_2(\text{CNC}_6\text{H}_5)_8^{2+}$.^{2,9} The average bond lengths and angle for the $\text{Ir}(\text{CN})_4$ units are unexceptional and compare well with other Ir(I) and Rh(I) isocyanide complexes.^{2,10,11} The overall structure of the TMB ligand is quite similar to that observed in $\text{Rh}_2(\text{TMB})_4(\text{PF}_6)_2 \cdot 2\text{CH}_3\text{CN}$.²

One of the interesting features of this structure is the arrangement of the cations in the unit cell. An ORTEP drawing of the unit cell, with the counter ions and solvent molecules removed for clarity, is given in Figure 2.3. The Ir-Ir vectors are aligned almost parallel to the b axis. Such an arrangement makes this crystal morphology ideally suited for polarized single-crystal spectroscopy.^{12,13} However, the

Figure 2.1. View of the structure of $\text{Ir}_2(\text{TMB})_4^{2+}$.

Figure 2.2. View of the structure of $\text{Ir}_2(\text{TMB})_4^{2+}$ viewed down the Ir-Ir vector.


Table 2.4. Torsion Angles.

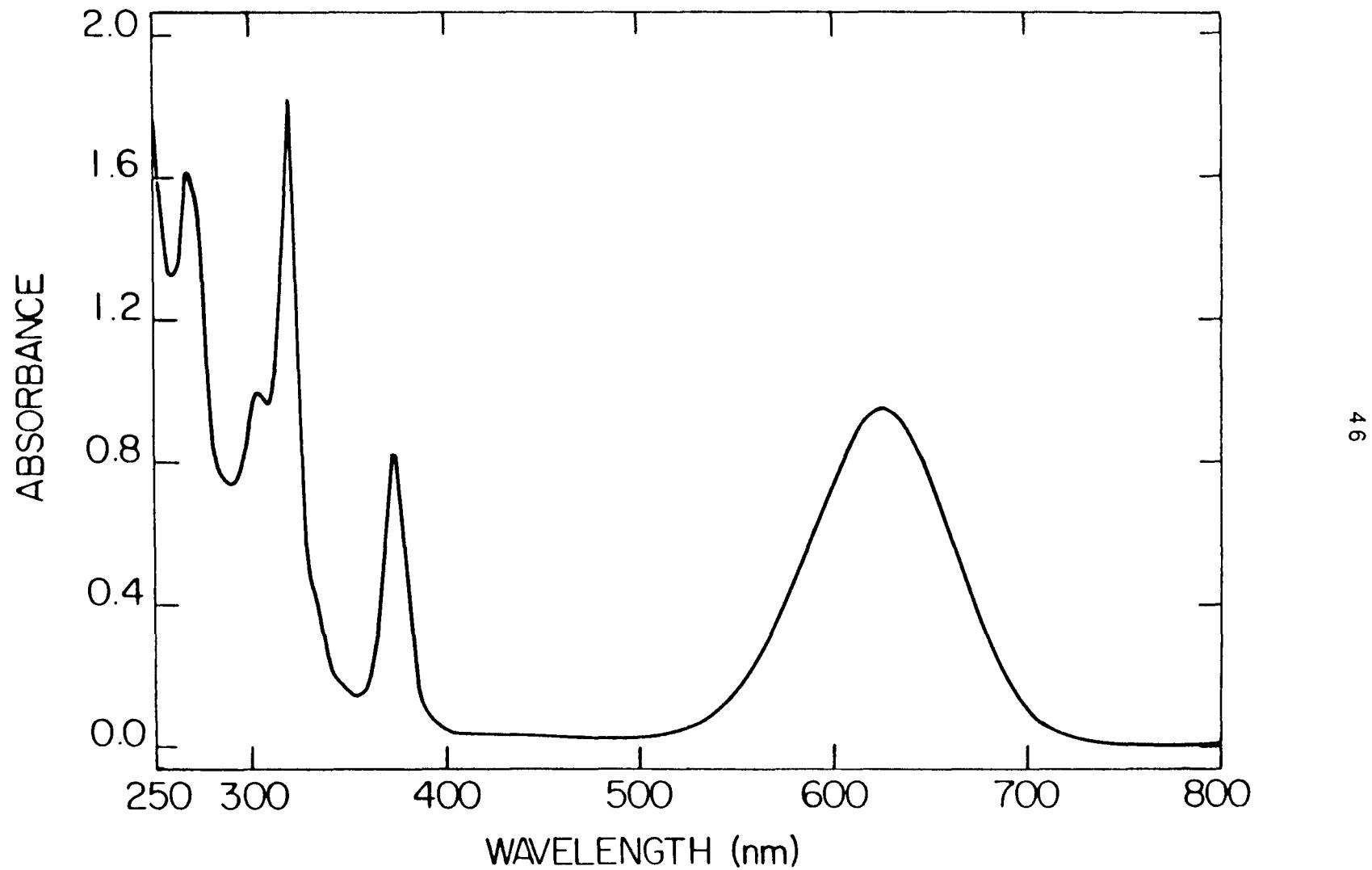
Atom	Atom	Atom	Atom	Angle (Deg.)
N1	Ir1	Ir2	N2	23.5(4)
N3	Ir1	Ir2	N4	31.6(4)
N5	Ir1	Ir2	N6	26.1(4)
N7	Ir1	Ir2	N8	29.7(4)
C2	Ir1	Ir2	C7	24.5(3)
C12	Ir1	Ir2	C17	32.6(3)
C22	Ir1	Ir2	C27	29.3(3)
C32	Ir1	Ir2	C37	27.3(3)

Table 2.5. Best plane fit of Ir(CN)₄ units.

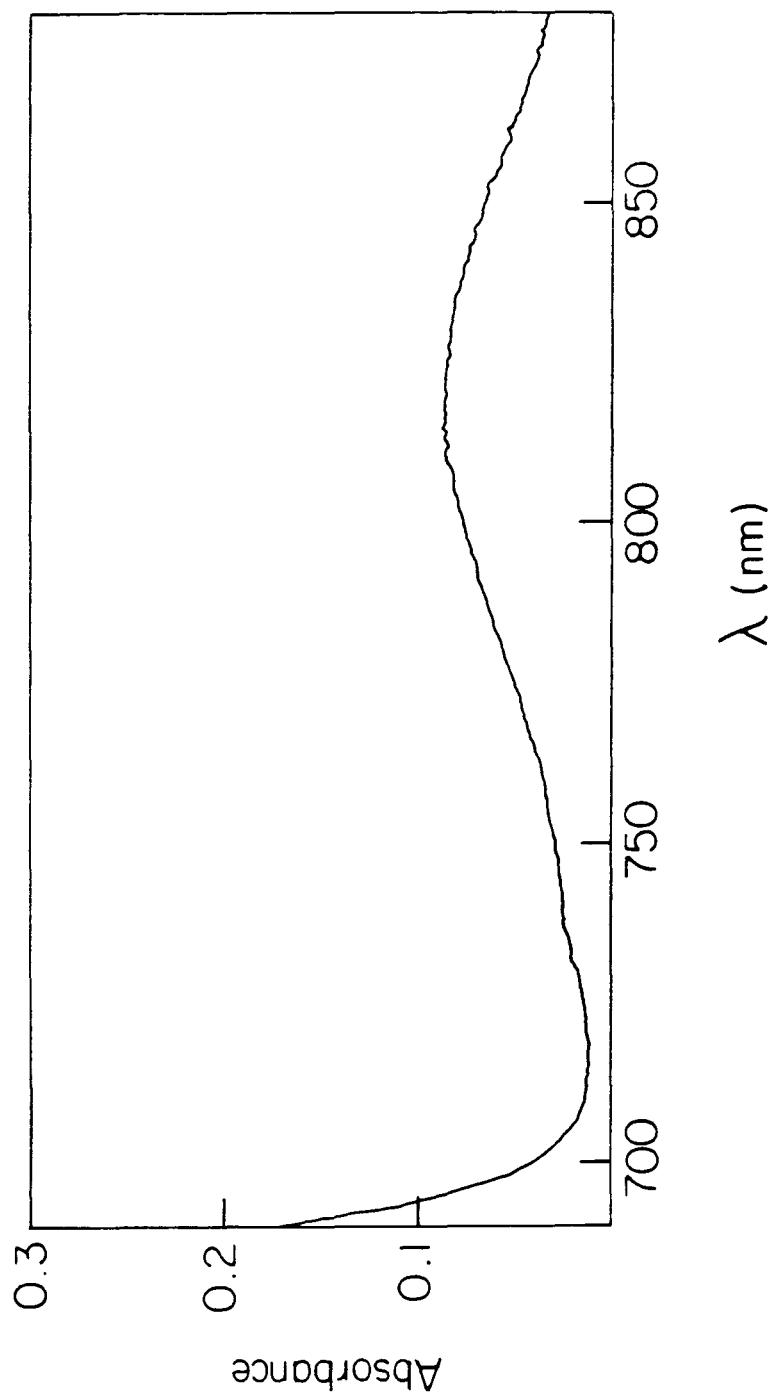
Atom	Deviation (Å)	Atom	Deviation (Å)
Ir1	0.068	Ir2	-0.074
C1	0.004	C10	-0.005
N1	-0.055	N2	0.061
C11	0.018	C20	-0.033
N3	0.031	N4	-0.026
C21	0.001	C30	0.011
N5	-0.053	N6	0.048
C31	0.027	C40	-0.022
N7	0.028	N8	-0.034

Figure 2.3. View of the unit cell with $\text{B}(\text{C}_6\text{H}_5)_4^-$ and CH_3CN molecules removed.

macroscopic features of the crystals (large chunky blue-black crystals, far too thick for spectroscopy) make such a study impractical.


Electronic Spectroscopy

A brief discussion of the spectroscopy and photophysics of $\text{Ir}_2(\text{TMB})_4^{2+}$ has already been presented.¹ A detailed analysis of the optical absorption spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ is presented in Chapter 3.


The electronic absorption spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ is shown in Figure 2.4. In analogy to $\text{Rh}_2(\text{TMB})_4^{2+}$,¹⁴ the intense absorption centered at 625 nm ($\epsilon = 11200 \text{ M}^{-1} \text{cm}^{-1}$) is assigned to the $1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition ($^1\text{A}_{1g} \rightarrow ^1\text{A}_{2u}$). The intense features below 300 nm, having maxima at 318 nm ($\epsilon = 22000 \text{ M}^{-1} \text{cm}^{-1}$) and 372 nm ($\epsilon = 9750 \text{ M}^{-1} \text{cm}^{-1}$), are assigned to $\text{d}_{xz,yz} \rightarrow \text{p}_z$ transitions ($^1\text{A}_{1g} \rightarrow ^1\text{E}_{1u}, ^3\text{E}_{1u}$). To lower energy of the 625 nm band in both single crystal and concentrated solution, a feature centered at 820 nm ($\epsilon = 150 \text{ M}^{-1} \text{cm}^{-1}$) is observed (Figure 2.5). This feature is assigned to the $3(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition.

The electronic absorption spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ is summarized and compared to the spectra of $\text{Ir}(\text{CN}-t\text{-butyl})_4^+$ and $\text{Rh}_2(\text{TMB})_4^{2+}$ in Table 2.6.¹⁵ The large red shift of the $\text{d}_z^2 \rightarrow \text{p}_z$ transition in going to the dimer has been understood to be a consequence of the smaller d-p gap inferred from the MO model. The greater width of the $\text{A}_{2u}(^1\text{A}_{2u})$ and $\text{E}_u(^3\text{A}_{2u})$ bands is a result of the greater metal-metal bonding in the excited state. Promotion of an electron from the $\text{d}\sigma^*$ orbital to the $\text{p}\sigma$ orbital results in a large molecular distortion, contraction along the metal-metal coordinate. While the $1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition is shifted to the red of the monomer $\text{d}_z^2 \rightarrow \text{p}_z$ transition, the $\text{d}\pi \rightarrow \text{p}\sigma$ transitions of the dimer have energies and widths almost coincident with the monomer transitions; this observation is general to $\text{d}^8\text{-d}^8$ complexes. Explanations for the dichotomy of transition types have been presented but none is very satisfying.¹⁴ The VB model, as discussed in Chapter 3, does accommodate both transition types. In comparison

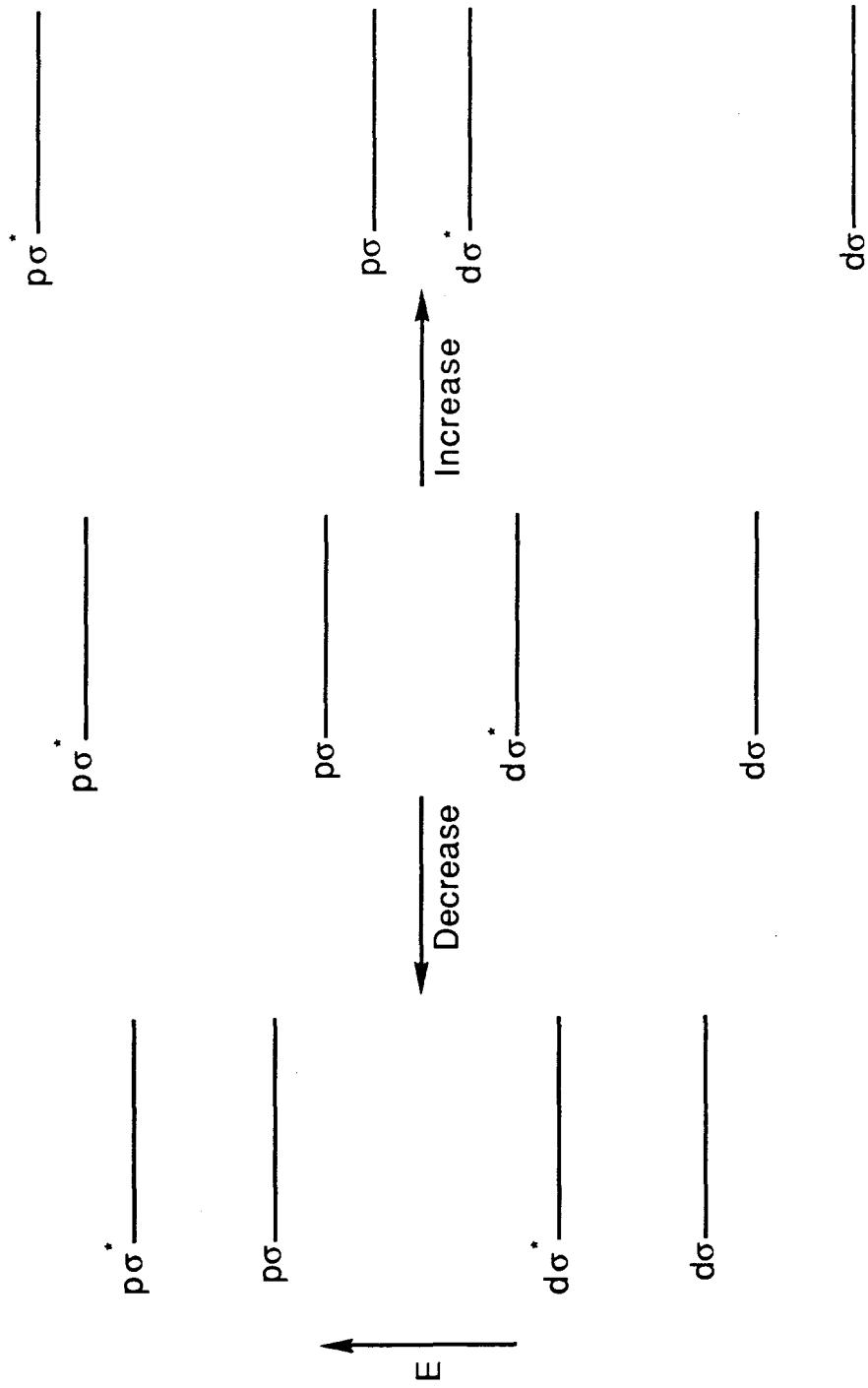
Figure 2.4. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C.

Figure 2.5. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in a glassy matrix of $\text{CH}_3\text{CH}_2\text{CN}/2\text{-MeTHF}$ (1:2 volume ratio) at 77 K.

Table 2.6. Absorption maxima for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$, $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$, and $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C.

${}^1\text{A}_{1g} \rightarrow$	$\text{Ir}_2(\text{TMB})_4^{2+}$	$\text{Ir}(\text{CN-}t\text{-butyl})_4^+$	$\text{Rh}_2(\text{TMB})_4^{2+}$
${}^3\text{A}_{2u}$	820 nm	489 nm	a
${}^1\text{A}_{2u}$	625	423	520
${}^3\text{E}_u(\text{E}_u)$	372	373	342
${}^3\text{E}_u(\text{A}_{2u})$	333	a	a
${}^1\text{E}_u$	318	308	316
${}^3\text{B}_{1u}$	305	291	290

a. Not observed.


to $\text{Rh}_2(\text{TMB})_4^{2+}$, the $^1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ and $^3(\text{d}\pi \rightarrow \text{p}\sigma)$ for $\text{Ir}_2(\text{TMB})_4^{2+}$ are red-shifted some 3000 cm^{-1} . The widths of all transitions are quite comparable, indicating that a similar molecular distortion is occurring for both complexes upon excitation.

Earlier works have correlated the energy of the d-p transition for binuclear d^8 complexes with the ground-state metal-metal separation.¹⁶ Within the MO formalism, variation in the metal-metal separation will yield variation in the metal-metal interaction in the ground state. An increase in the metal-metal interaction in the ground state will serve to decrease the d-p gap, thereby shifting the $\text{d}\sigma^* \rightarrow \text{p}\sigma$ transition to the red. A blue shift in the transition energy is predicted for a decrease in the metal-metal interaction (Figure 2.6). This analysis has been extended to include variations in the metal.¹⁶ A change in metal, Rh to Ir, generally yields a large red shift in the $^1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition. The variation in transition energy with metal has been presented as another example of the shift in energy of the $\text{d}_z^2 \rightarrow \text{p}_z$ transition with change in metal-metal interaction, with the metal-metal interaction increased upon going from Rh to Ir.

The premise of the arguments for the shift in the $^1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition energy is that the ground-state metal-metal interaction, as described by the MO model, controls the electronic transitions; that is, the excited states are well described within the ground-state MO formalism.

As will be discussed in detail in Chapter 3, the electronic structure of binuclear d^8 complexes is more accurately described by a VB "weak-coupling" model. In this model, the ground state and various excited states are best described as weakly coupled monomers with the excitation localized on one center. For some states, it will be advantageous to increase the metal-metal one-electron interaction (shorten the metal-metal distance); this shortening of the metal-metal distance will result in an increased mixing of the covalent state with the higher-energy ionic state. This mixing will result in a lowering of the state energy relative to the weak coupling limit. Thus, unlike the ground-state MO model, the transition energies within the VB model are controlled by

Figure 2.6. MO diagram showing the effects on the energy of the $d\sigma$ and $p\sigma$ levels for a binuclear complex with an increase or a decrease in the metal-metal interaction.

excited-state properties, the amount of stabilization gained by increasing the metal-metal interaction.

Table 2.7 lists the $^1(d\sigma^* \rightarrow p\sigma)$ transition energies for several binuclear isocyanide complexes. The crystallographically determined metal-metal separations are tabulated along with the $^1(d_z^2 \rightarrow p_z)$ transition energies for the appropriate monomer model. For the series $\text{Rh}_2(\text{TMB})_4^{2+}$, $\text{Rh}_2\text{b}_4^{2+}$, and $\text{Rh}_2(\text{CNC}_6\text{H}_5)_8^{2+}$, a decrease in the metal-metal separation and coincident bathochromic shift of the $d\sigma^* \rightarrow p\sigma$ transition is observed. However, when considering the shift from the corresponding $d_z^2 \rightarrow p_z$ monomer excitation, a comparable red shift is observed, a varying reference point. For the series of Rh(I) arylisocyanide complexes ($L = \text{CNC}_6\text{H}_5$, $\text{CN}-p\text{-C}_6\text{H}_4\text{F}$, and $\text{CN}-p\text{-C}_6\text{H}_4\text{NO}_2$), a systematic increase in the Rh-Rh distance is observed with a systematic **red shift** of the transition energy. A result contrary to the earlier reasoning, an increase in the metal-metal separation yields a decrease in metal-metal interaction and results in a blue shift of the $^1(d\sigma^* \rightarrow p\sigma)$ transition. Comparing $[\text{Rh}(2,6\text{-diMe-4-BrC}_6\text{H}_2\text{NC})_3\text{Cl}]_2^{2+}$ to $\text{Rh}_2(\text{CNC}_6\text{H}_5)_8^{2+}$, a blue shift of only 640 cm^{-1} is observed for the $^1(d\sigma^* \rightarrow p\sigma)$ transition for an increase of 0.258 \AA in the Rh-Rh separation, a surprisingly small change in energy for such a large variation in metal-metal distance. If one, instead, compares the energy of the $d\sigma^* \rightarrow p\sigma$ excitation to the monomer $d_z^2 \rightarrow p_z$ transition, a shift of $\sim 6500 \text{ cm}^{-1}$ is observed for all Rh(I) isocyanide complexes except $\text{Rh}_2\text{b}_4^{2+}$. Thus, comparisons of transition energies for a series of metal dimers can be misleading in that the absolute energies of the transitions may not be comparable. The true reference point for each complex (the monomer excitation) may vary through the series. For the binuclear Rh(I) complexes, while the metal-metal separation varies dramatically in the ground state, the shift in the energy of the $d_z^2 \rightarrow p_z$ transition is quite constant. The amount of stabilization in the $^1(d\sigma^* p\sigma)$ excited state is comparable through the series of Rh(I) complexes. For those systems for which Rh(II)-Rh(II) species are known (Table 2.8), it is observed that a comparable, short metal-metal

Table 2.7. $^1(d_z^2 \rightarrow p_z)$ transition energies for d^8 complexes.

Metal Complex	$d_z^2 \rightarrow p_z$, nm ^a	ΔE , cm ⁻¹ ^b	M-M, Å ^c	Ref.
Rh(CN-ethyl) ₄ ⁺	380			17
Rh ₂ b ₄ ²⁺	553	8200	3.242(1)	2,18
Rh(CN- <i>t</i> -butyl) ₄ ⁺	386			9
Rh ₂ (TMB) ₄ ²⁺	520	6700	3.262(1)	2
Ir(CN- <i>t</i> -butyl) ₄ ⁺	423			15
Ir ₂ (TMB) ₄ ²⁺	625	7600	3.199(1)	
Rh(CNC ₆ H ₅) ₄ ⁺	411			9
Rh ₂ (CNC ₆ H ₅) ₈ ²⁺	568	6700	3.193(0)	9
Rh(CN- <i>p</i> -FC ₆ H ₄) ₄ ⁺	d			
[Rh(CN- <i>p</i> -FC ₆ H ₄) ₄] ₂ ²⁺	597		3.207(2)	19
Rh(CN- <i>p</i> -NO ₂ C ₆ H ₄) ₄ ⁺	d			
[Rh(CN- <i>p</i> -NO ₂ C ₆ H ₄) ₄] ₂ ²⁺	606		3.25(1)	19
Rh(2,6-diMe-4-BrC ₆ H ₂ NC) ₃ Cl ⁺	408			20
[Rh(2,6-diMe-4-BrC ₆ H ₂ NC) ₃ Cl] ₂ ²⁺	548	6300	3.451(2)	20

a. For mononuclear d^8 complexes, λ_{\max} for the $^1(d_z^2 \rightarrow p_z)$ transition. For binuclear d^8 complexes, λ_{\max} for the $^1(d\sigma^* \rightarrow p\sigma)$ transition.

b. Red shift of the $^1(d_z^2 \rightarrow p_z)$ transition in going from monomer to dimer.

$\Delta E = E(^1(d_z^2 \rightarrow p_z)) - E(^1(d\sigma^* \rightarrow p\sigma))$.

c. Crystallographically determined metal-metal separation.

d. Not known.

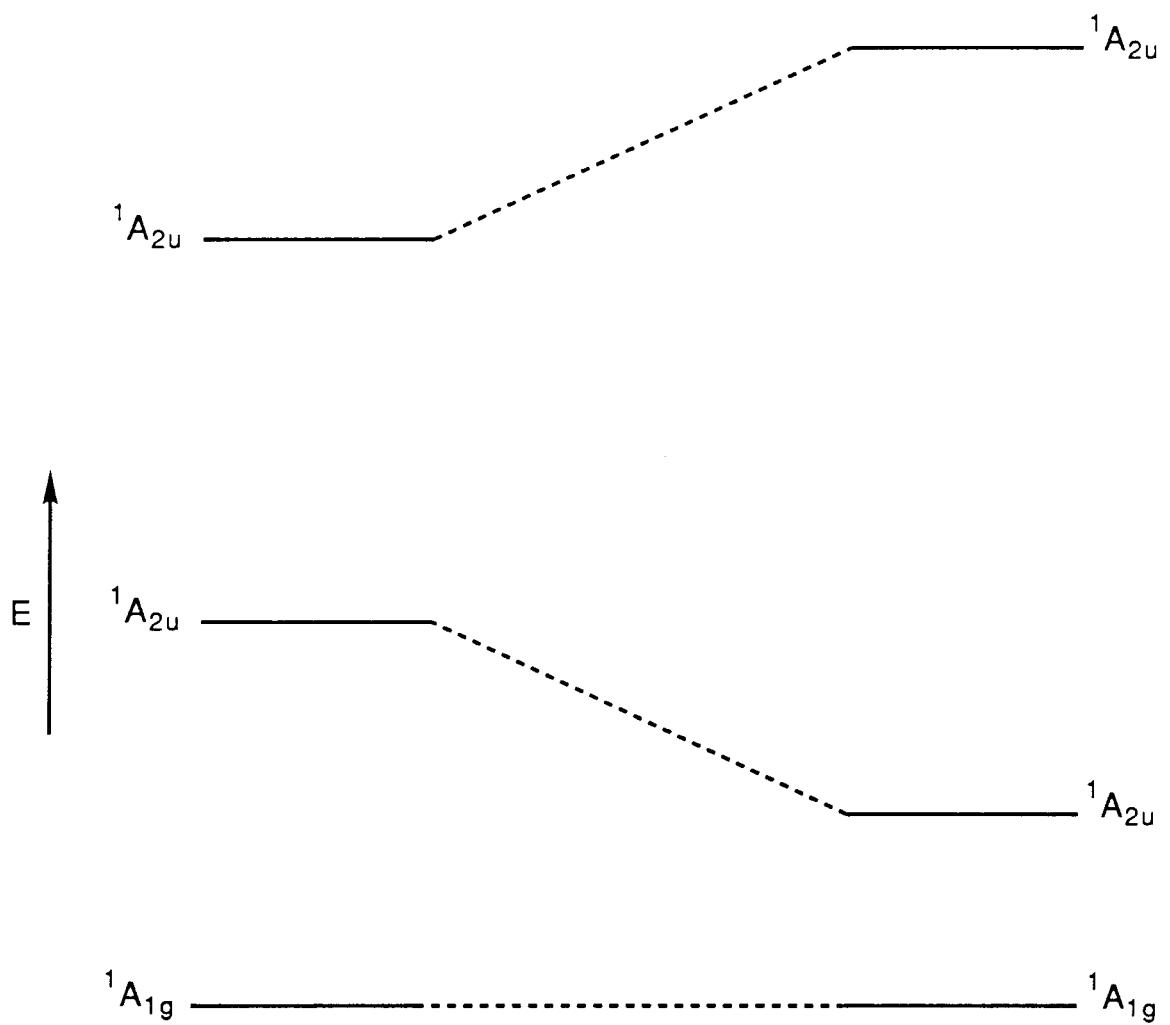
Table 2.8. Crystallographically determined metal-metal distances for Rh(I) and Rh(II) complexes.

d ⁸ -d ⁸ complex	M-M, Å	Ref.	d ⁷ -d ⁷ complex	M-M, Å	Ref.
Rh ₂ b ₄ ²⁺	3.242	2	Rh ₂ b ₄ Cl ₂ ²⁺	2.837	21
Rh ₂ (TMB) ₄ ²⁺	3.262	2	Rh ₂ (TMB) ₄ Cl ₂ ²⁺	2.770	22
Rh ₂ (CNC ₆ H ₅) ₈ ²⁺	3.193	8			
Rh ₂ (CN-p-CH ₃ C ₆ H ₄) ₈ ²⁺	a		Rh ₂ (CN-p-CH ₃ C ₆ H ₄) ₈ I ₂ ²⁺	2.785	23

a. Not known.

separation can be accommodated for all the complexes. This observation implies that the ground-state potential surface is quite soft and can accommodate a large range of metal-metal separations without a significant change in energy. The excited state surface, possessing a formal, metal-metal single bond, allows for only a small variation in metal-metal separation.

For $\text{Ir}_2(\text{TMB})_4^{2+}$, the $^1(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition is to lower energy of the transition for $\text{Rh}_2(\text{TMB})_4^{2+}$. However, the $\text{d}_z^2 \rightarrow \text{p}_z$ transition for the Ir(I) monomer is also to lower energy of the Rh(I) monomer transition, a shift in reference point. In comparing the monomer-to-dimer shifts, the bathochromic shift observed for Ir(I) is larger than for Rh(I), 7600 cm^{-1} compared to 6700 cm^{-1} . The energy separation of the covalent and ionic states is less for Ir than for Rh, allowing for a greater mixing of the higher-energy states, yielding a greater stabilization of the $^1(\text{d}\sigma^* \text{p}\sigma)$ excited state.


Within the series of complexes discussed, $\text{Rh}_2\text{b}_4^{2+}$ appears to be an anomaly. The monomer-to-dimer shift of the $\text{d}_z^2 \rightarrow \text{p}_z$ transition is much larger than that seen for analogous Rh(I) isocyanide complexes and is, in fact, larger than the shift observed for $\text{Ir}_2(\text{TMB})_4^{2+}$. This surprising result can be understood if one reasons that the bridge ligand destabilizes the $\text{d}^8\text{-d}^8$ ground state in favor of the contracted single-bonded Rh complex. The spectral band widths and Stokes shift observed for $\text{Rh}_2\text{b}_4^{2+}$ are less than for $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Rh}_2(\text{CNC}_6\text{H}_5)_8^{2+}$, indicating that the molecular distortion upon excitation is less.² This observation could be understood as a result of unfavorable ligand interactions at shorter Rh-Rh distances. The oxidation potential for $\text{Rh}_2\text{b}_4^{2+}$ is estimated to be 500 mV less positive of $\text{Rh}_2(\text{TMB})_4^{2+}$, making the complex more easily oxidized than $\text{Ir}_2(\text{TMB})_4^{2+}$.²⁴ This result indicates that the $\text{Rh}_2\text{b}_4^{2+}$ ground state is destabilized relative to the ground state of other binuclear d^8 complexes. Therefore, the shift of the $\text{d}_z^2 \rightarrow \text{p}_z$ transition for $\text{Rh}_2\text{b}_4^{2+}$ is a combination of ground state and excited-state effects.

The important point of the above discussion is that the energy of the $d\sigma^* \rightarrow p\sigma$ transition is governed by the ability of the excited state, rather than being controlled by ground-state effects, to undergo a contraction along the metal-metal coordinate. Another way of describing the phenomenon is that at the weak coupling limit, the excited state appears as an excited monomer coupled to a ground-state monomer. Increasing the metal-metal interaction serves to delocalize the excitation over the entire complex, lowering the energy of the state (Figure 2.7). This concept appears to be general to the large class of binuclear metal complexes. For the series of complexes $\text{Rh}_2(\text{CNR})_4(\text{dppm})_2^{2+}$ (Table 2.9), the increased ability of the complex to accommodate a smaller Rh-Rh separation results in a systematic red shift of the $d\sigma^* \rightarrow p\sigma$ transition energy (the monomer reference point does not vary with variation in the alkyl isocyanide). One final point that should be emphasized is that only the shift in the $d_z^2 \rightarrow p_z$ transition energy between monomer and dimer is comparable within a series of complexes. Comparison of absolute transition energies for a series of complexes can lead to erroneous results.

Photophysics

Excitation into the 625 nm band of $\text{Ir}_2(\text{TMB})_4^{2+}$ at room temperature in fluid solution results in two emissions (Figure 2.8). The higher-energy band centered at 735 nm is quite short-lived (< 2 ns) and is assigned to the fluorescence $^1\text{A}_{2u} \rightarrow ^1\text{A}_{1g}$. The second band centered at 1080 nm is assigned to the phosphorescence $^3\text{A}_{2u} \rightarrow ^1\text{A}_{1g}$ with a temperature-independent lifetime of 210 ± 20 ns. No vibronic structure has been resolved in emission or absorption even at very low temperatures; therefore, the λ_{00} transition for the $^1,^3\text{A}_{2u}$ states can be estimated only from either the overlap of the absorption and the emission spectra or by averaging the absorption and the emission maxima.³² Either estimate places the λ_{00} transition for the $^3\text{A}_{2u}$ state at 940 nm and at

Figure 2.7. Qualitative valence bond state diagram for weak d/p interaction of two d^8 monomers. The energies of the $^1A_{2u}$ states are dependent on the amount of stabilization, contraction along the metal-metal coordinate.

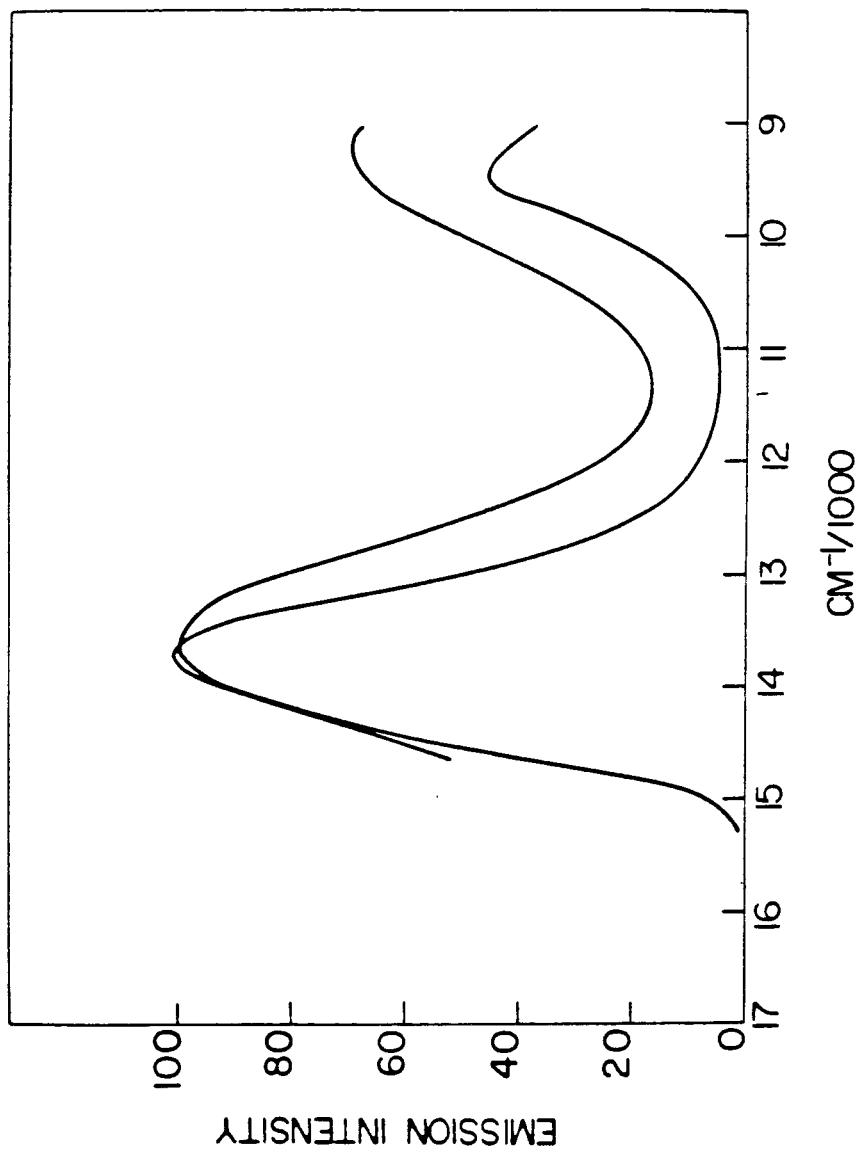
Table 2.9. $^1(d_z^2 \rightarrow p_z)$ transition energies for d^8 complexes.

Metal Complex	$d_z^2 \rightarrow p_z$, nm ^a	ΔE , cm ⁻¹ ^b	M-M, Å ^c	Ref.
Rh(CO)Cl(P(C ₆ H ₅) ₃)	367			30
Rh ₂ (CO) ₂ Cl ₂ (dppm) ₂	442	4600	3.2386(5)	26, 27
Rh(CO)Cl(As(C ₆ H ₅) ₃)	356			25
Rh ₂ (CO) ₂ Cl ₂ (dpam) ₂	466	6600	3.396(1)	26, 27
Rh(CNCH ₃) ₂ (P(C ₆ H ₅) ₃) ⁺	458			29
Rh ₂ (CN-t-butyl) ₄ (dppm) ₂ ²⁺	523	2700	d	29
Rh ₂ (CNC ₆ H ₁₁) ₄ (dppm) ₂ ²⁺	550	3600	d	29
Rh ₂ (CN-n-C ₄ H ₉) ₄ (dppm) ₂ ²⁺	560	4000	d	29
Rh ₂ (CNCH ₃) ₄ (dppm) ₂ ²⁺	573	4400	d	29
Rh ₂ (b) ₂ (dppm) ₂ ²⁺	625	5800	d	30
Rh ₂ (CNC ₆ H ₅) ₄ (dppm) ₂ ²⁺	606	e	d	31

a. For mononuclear d^8 complexes, λ_{\max} for the $^1(d_z^2 \rightarrow p_z)$ transition. For binuclear d^8 complexes, λ_{\max} for the $^1(d\sigma^* \rightarrow p\sigma)$ transition.

b. Red shift of the $^1(d_z^2 \rightarrow p_z)$ transition in going from monomer to dimer.

$$\Delta E = E(^1(d_z^2 \rightarrow p_z)) - E(^1(d\sigma^* \rightarrow p\sigma)).$$


c. Crystallographically determined metal-metal separation.

d. Not known.

e. Not comparable to alkyl isocyanide complexes that are due to shift in reference point.

Spectral data for Rh(CNC₆H₅)₂(P(C₆H₅)₃)₂⁺ not known.

Figure 2.8. Emission spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in 2-MeTHF/Propionitrile at 298 K and 77 K. Taken from Reference 1.

680 nm for the $^1A_{2u}$ state, 1.3 eV (30 kcal/mol) and 1.8 eV (42 kcal/mol) above the $^1A_{1g}$ ground state, respectively.

Table 2.10 summarizes the photophysical data for $\text{Ir}_2(\text{TMB})_4^{2+}$ and compares these data to the analogous Rh(I) complexes. The Stokes shifts and emission band widths are comparable for the series of complexes, indicating a similar molecular distortion that accompanies the $d\sigma^* \rightarrow p\sigma$ excitation. From the emission lifetime (τ) and quantum yield data (Φ_{em} , emission quantum yield), the radiative rate (k_r) and nonradiative rate (k_{nr}) for the $^1A_{2u}$ and $^3A_{2u}$ states can be determined (Table 2.11). The nonradiative rate can be obtained, assuming that the nonradiative processes dominate the excited state deactivation.^{3,34,37,38}

$$\tau = \frac{1}{(k_r + k_{nr})} \quad 2.1$$

$$\tau \approx \frac{1}{k_{nr}} \quad 2.2$$

From the measured quantum yields, the radiative rates can be estimated.

$$^1\Phi_{\text{em}} = \frac{k_r}{(k_r + k_{nr})} \quad 2.3$$

$$^3\Phi_{\text{em}} = \Phi_{\text{isc}} \frac{k_r}{(k_r + k_{nr})} \quad 2.4$$

For $\text{Rh}_2\text{b}_4^{2+}$, the Φ_{isc} (intersystem crossing quantum yield) has been estimated to be 0.8.³⁹ For those systems that lack good quantum yield data, the $^3A_{2u}$ state of $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Ir}_2(\text{TMB})_4^{2+}$, the Strickler-Berg equation can be used to estimate k_r .³⁷

$$k_r = 2.88 \times 10^{-9} (n^2) \langle \nu^{-3} \rangle^{-1} (g_1/g_2) \int \epsilon d\ln \nu \quad 2.5$$

n - refractive index of the medium

Table 2.10. Photophysical data for $\text{Ir}_2(\text{TMB})_4^{2+}$, $\text{Rh}_2(\text{TMB})_4^{2+}$, and $\text{Rh}_2\text{b}_4^{2+}$.

	λ_{max}	τ		Φ_{em}		Stokes shift	Ref.
		nm	298 K	77 K	298 K	77 K	
$\text{Ir}_2(\text{TMB})_4^{2+}$							
	$^1\text{A}_{2u}$	735	$< 2 \text{ ns}$		2.5×10^{-3} a		2400
	$^3\text{A}_{2u}$	1080	$210 \pm 20 \text{ ns}$	$200 \pm 10 \text{ ns}$	10^{-3} b		2900
$\text{Rh}_2(\text{TMB})_4^{2+}$							
64	$^1\text{A}_{2u}$	614	$820 \pm 20 \text{ ps}$		4.6×10^{-2} c		3200
	$^3\text{A}_{2u}$	740	$25 \pm 5 \text{ ns}$	$20.5 \mu\text{s}$	6×10^{-4} d	0.51 c	
$\text{Rh}_2\text{b}_4^{2+}$							
	$^1\text{A}_{2u}$	656	1.3 ns		5.6×10^{-2} c	0.08 c	2800
	$^3\text{A}_{2u}$	810	$8.5 \pm 5 \mu\text{s}$	$12.5 \mu\text{s}$	0.32 c	0.64	2600

a. Error in determination $\pm 50\%$.

b. Error in determination $\pm 100\%$.

c. Error in determination $\pm 15\%$.

d. Estimate, $\Phi_{\text{em}}(298 \text{ K})/\Phi_{\text{em}}(77 \text{ K}) = \tau(298 \text{ K})/\tau(77 \text{ K})$. Assumes Φ_{isc} and k_r to be temperature independent.

Table 2.11. Radiative rates (k_r) and nonradiative rates (k_{nr}) for the $^1A_{2u}$ and $^3A_{2u}$ excited states of $Ir_2(TMB)_4^{2+}$, $Rh_2(TMB)_4^{2+}$, and $Rh_2b_4^{2+}$.

$^1A_{2u}$ excited state			
	$^1k_{nr}$	1k_r	
	298 K	77 K	298 K
$Ir_2(TMB)_4^{2+}$	9.5×10^9		2.3×10^7 a
$Rh_2(TMB)_4^{2+}$	1.2×10^9	3.7×10^8	5.6×10^7
			4.8×10^7 a
$Rh_2b_4^{2+}$	7.7×10^8	5.4×10^8	4.3×10^7
$^3A_{2u}$ excited state			
	$^3k_{nr}$	3k_r	
	298 K	77 K	298 K
$Ir_2(TMB)_4^{2+}$	4.8×10^6	5.0×10^6	4.8×10^3 b
			9×10^4 c
$Rh_2(TMB)_4^{2+}$	4.0×10^7	4.9×10^4	3.0×10^4
$Rh_2b_4^{2+}$	1.2×10^5	8.0×10^4	4.7×10^4
			5.1×10^4

a. Calculated with Equation 2.6.

b. From the measure $^3\Phi_{\text{em}}$.

c. Calculated with Equation 2.6, using 77 K absorption data. This assumes that k_r is temperature-independent.

$\langle v^{-3} \rangle$ - mean of the cube of the reciprocal of the emission frequency

g_1, g_2 - the degeneracies of the lower and upper states

v - the emission maximum

$$k_r = 5 \times 10^{-9} v^2 \epsilon_{\max} \Delta v$$

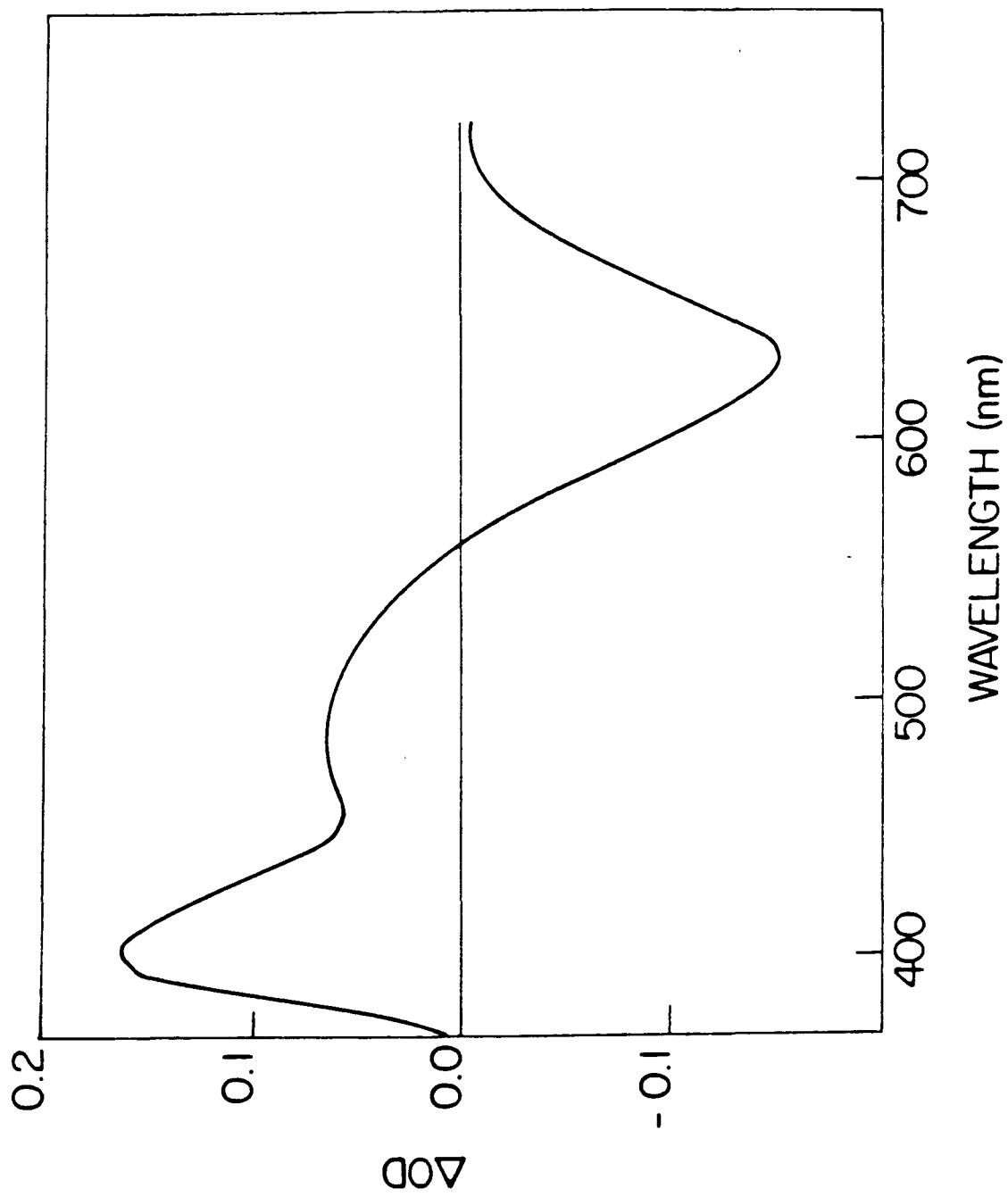
2.6

ϵ_{\max} - extinction coefficient of the absorption band

Δv - absorption band width (full width at half the maximum height)

The radiative rate for the series of complexes is found to be quite constant and temperature-independent. Similar radiative rates are expected for $\text{Rh}_2\text{b}_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$ but is somewhat surprising for $\text{Ir}_2(\text{TMB})_4^{2+}$. One might have expected that the increased spin-orbit coupling for the third-row transition metal would have increased the radiative rate. This increase may be offset by the decrease in emission energy, which also accompanies the change in metal.

The nonradiative rates, unlike the radiative rates, vary through the series. The ${}^1k_{nr}$ changes because of the varying flexibility of the ligand system and the decreased energy gap through the series. For the ${}^3k_{nr}$, the expected linear relationship between $\ln k_{nr}(77 \text{ K})$ and the emission energy (E_{em}) is observed.⁴⁰ At room temperature, the k_{nr} for $\text{Rh}_2(\text{TMB})_4^{2+}$ increases dramatically, while for $\text{Ir}_2(\text{TMB})_4^{2+}$ only a slight variation is observed. This marked temperature dependence of the nonradiative rate for $\text{Rh}_2(\text{TMB})_4^{2+}$ has been studied previously.^{34,41}

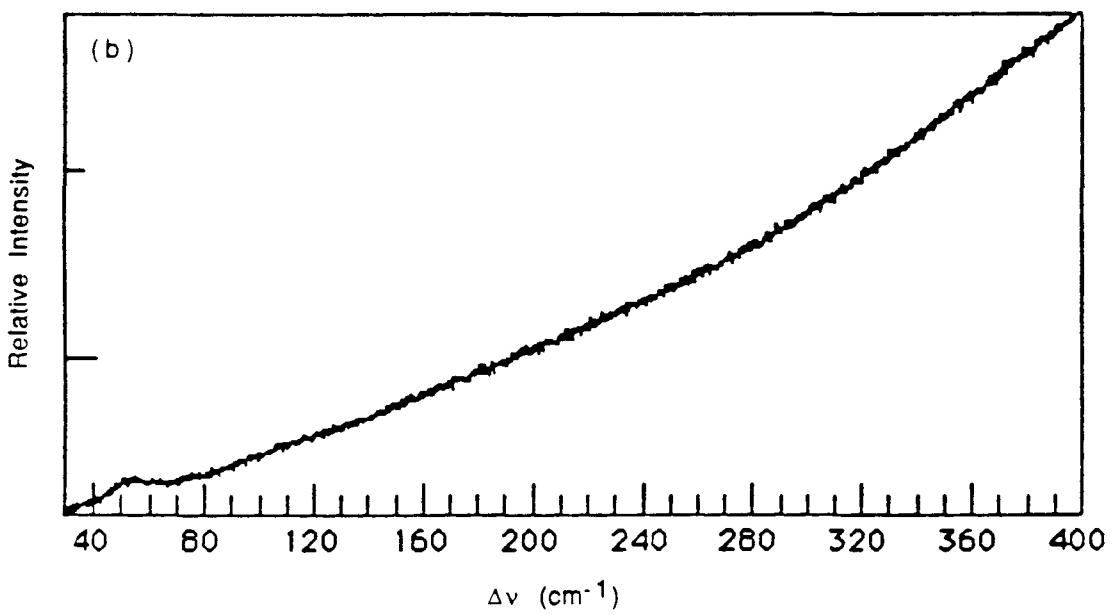
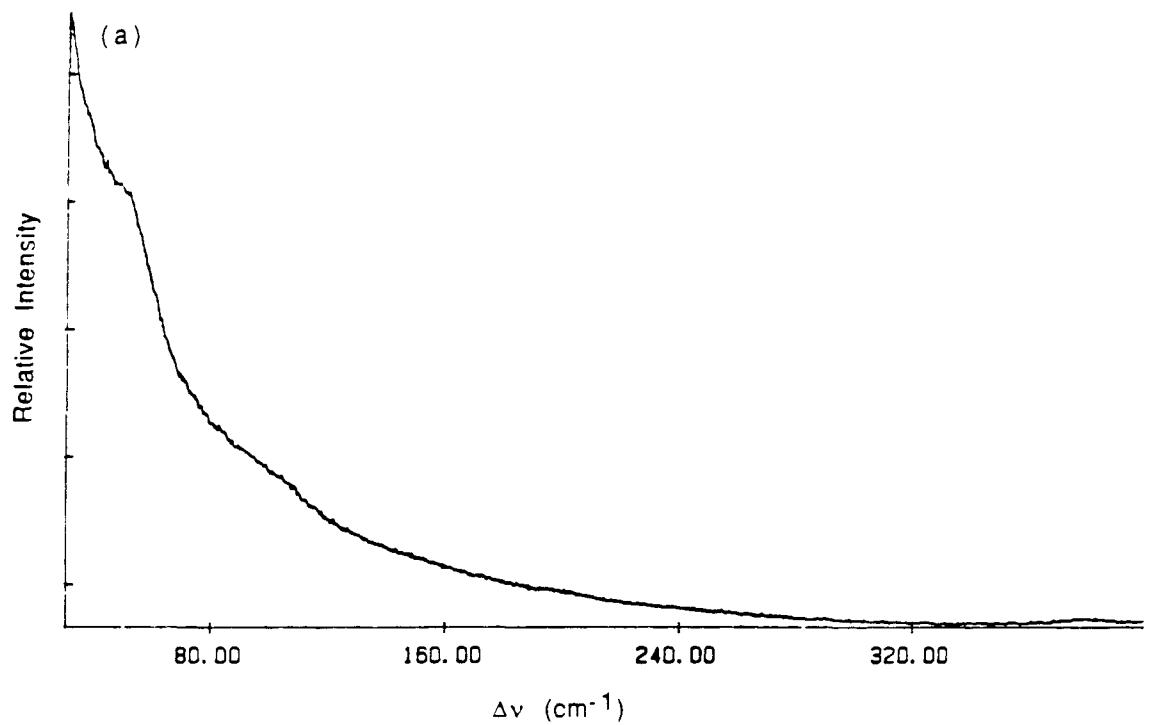

The earlier study of the temperature dependence of the ${}^3\text{A}_{2u}$ state discussed the nonradiative rate constants for the binuclear d^8 complexes within the framework of the strong-coupling model as described by Engleman and Jortner.³⁴ It was thought that the ${}^3(d\sigma^*p\sigma)$ excited state is thermally deactivated to a dd excited state, whose equilibrium geometry is D_{2d} distorted about the metal center, and that such a state would undergo a rapid nonradiative decay to the ground state. Such D_{2d} distortions are observed for

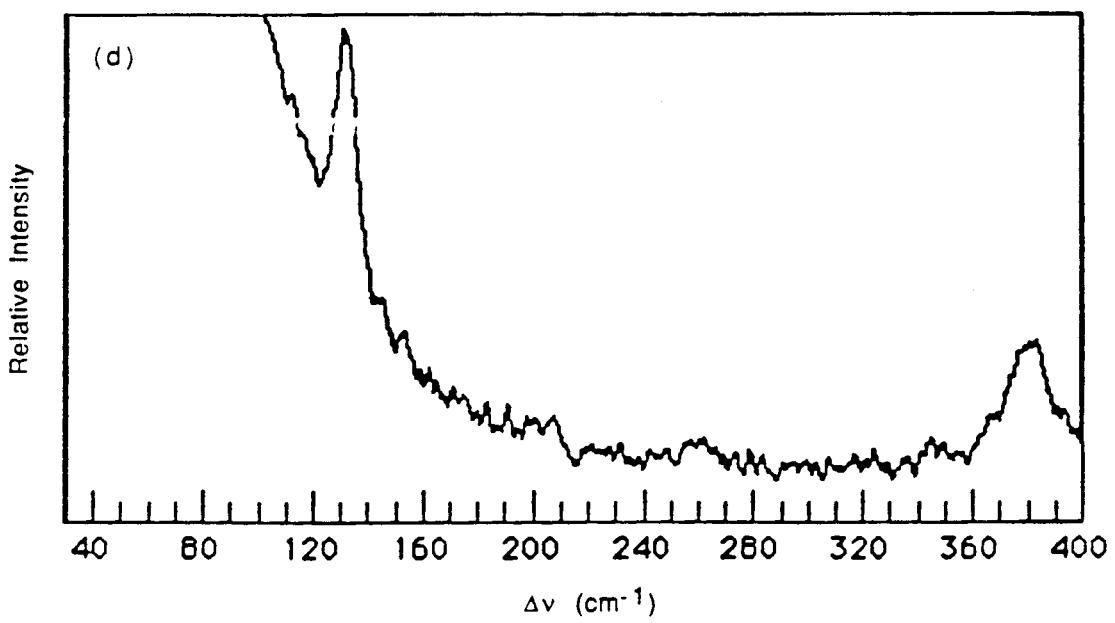
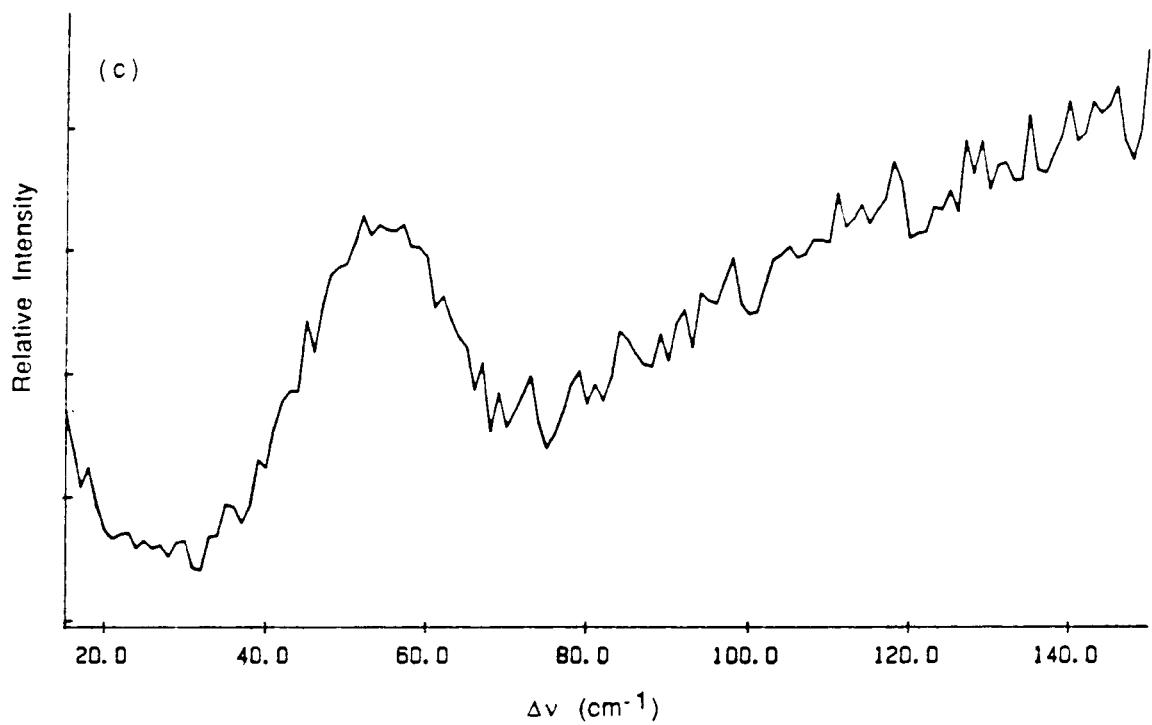
certain dd excited states of d^8 square planar complexes. The 3B_2 and 3B_1 ligand field states having the configuration $(d_z^2)^1(d_{x^2-y^2})^1$ are states that could couple to the $^3A_{2u}$ state. Ballhausen *et al.* have suggested that a similar configuration in d^8 monomers is unstable with respect to a D_{2d} distortion, which would result in intersection with the ground-state surface and account for the effective intersystem crossing.⁴² That the $^3A_{2u}$ state of $Ir_2(TMB)_4^{2+}$ does not show a temperature-dependent lifetime is support of this analysis, since the ligand field states are thermally inaccessible. A recent NMR structural study of Rh and Ir isocyanide complexes proposed that rotation about the metal-metal axis contributes substantially to the deactivation of the $^3A_{2u}$ state, the rotation coupling the $^3A_{2u}$ state to intermediate dd states.²² Again, for $Ir_2(TMB)_4^{2+}$, such states would be higher in energy; therefore, rotation about the metal-metal axis would not deactivate the $^3A_{2u}$ state.

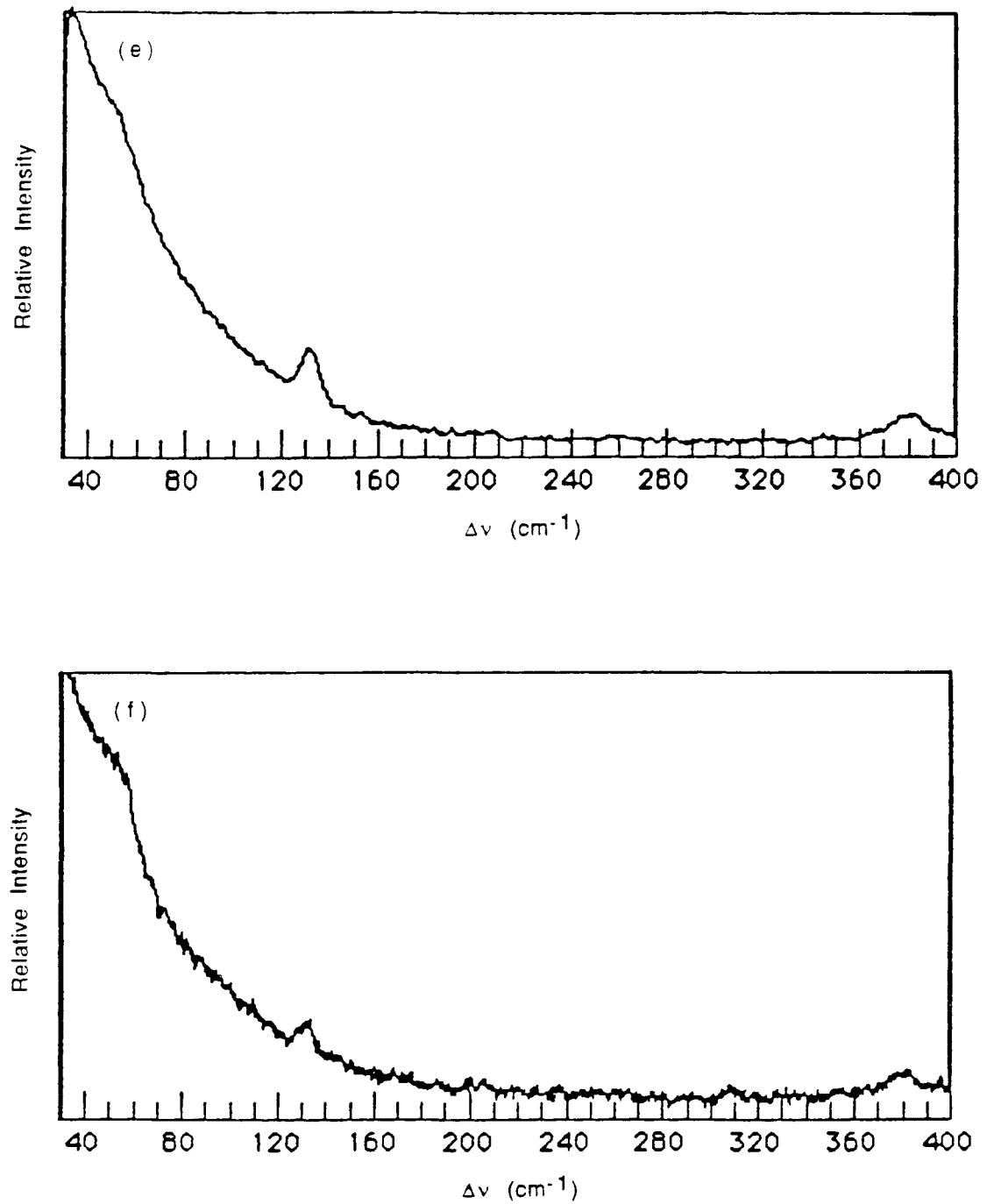
There has been no direct measurement of the $^1A_{2u}$ excited-state lifetime for $Ir_2(TMB)_4^{2+}$. Two estimates of the $^1A_{2u}$ lifetime of $Ir_2(TMB)_4^{2+}$ can be made. If one assumes the radiative rates for $Rh_2(TMB)_4^{2+}$ and $Ir_2(TMB)_4^{2+}$ are the same, from the ratio of the $^1\Phi_{em}$, an estimate of 40 ps ($\tau = 1/k_{nr}$) is obtained. Using the calculated radiative rate, $^1\tau$ is estimated to be 100 ps. A $^1A_{2u}$ lifetime of 70 ± 30 ps is in line with other binuclear Ir(I) complexes.³

The transient absorption spectrum of $Ir_2(TMB)_4^{2+}$ has been measured previously (Figure 2.9).¹ The transient has a lifetime of 185 ± 15 ns, in good agreement with the lifetime obtained by measuring the decay of the phosphorescence. The decrease in absorbance at 625 nm is due to bleaching of the ground state, with the bands at 400 and 510 nm attributed to absorptions by the 3A_2 state. For $Rh_2b_4^{2+}$ and $Rh_2(TMB)_4^{2+}$, these absorptions have been assigned to $d\pi \rightarrow p\sigma$ and $d\sigma \rightarrow d\sigma^*$, respectively.³⁶

Figure 2.9. Transient difference spectrum for $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C. Taken from Reference 1.



Vibrational Spectroscopy


The ground state of the binuclear d⁸ complexes possesses only a weak metal-metal bonding interaction, with the dσ* pσ excited states possessing a formal metal-metal single bond. The metal-metal interactions in the ground and excited states of Ir₂(TMB)₄²⁺ have been probed using resonance Raman spectroscopy. The spectra are shown in Figure 2.10. The low-frequency features for some of the spectra are poorly resolved because of Rayleigh scattering of the laser line. Other spectra show a substantial base-line slope because of emission from the fluorescent excited state. The ground state spectrum shows an intense peak at 53 cm⁻¹ with a feature at 106 cm⁻¹, 2v(Ir-Ir), which may be attributed to the first overtone of the 53 cm⁻¹ vibration. The ³A₂ excited-state spectrum exhibits an intense peak at 132 cm⁻¹, with possibly a weak overtone at 264 cm⁻¹. These bands are assigned to the Ir-Ir stretching modes. For the excited-state spectrum, the assignment of the 132 cm⁻¹ band to the excited state Ir-Ir vibration is supported by the dependence of the spectra on the per-pulse laser power. As the incident-per-pulse laser energy is varied from 2 to 5 mJ/pulse, the 132 cm⁻¹ band increases in intensity as the 53 cm⁻¹ intensity decreases (Figures 2.10e and 2.10f). Similar per-pulse laser-power dependence has been observed for Rh₂b₄²⁺.⁴³ Upon excitation to the ³A_{2u} excited state, there is a sixfold increase in the metal-metal restoring force (Table 2.12). This is in line with what is observed for other binuclear d⁸ complexes.

It was stated earlier that the metal-metal interaction in Ir₂(TMB)₄²⁺ is greater (stronger metal-metal bonding) than in the analogous Rh(I) complex. This is manifest in the vibrational data. The metal-metal restoring force for the ¹A_{1g} state increases by a factor of 1.9 in going from Rh₂(TMB)₄²⁺ to Ir₂(TMB)₄²⁺. The metal-metal bond strength in the ³A_{2u} state of Ir₂(TMB)₄²⁺ is also greater than in the Rh(I) dimers. The Rh-Rh bond strength in the ³A_{2u} state of Rh₂b₄²⁺ is estimated to be 42 kcal/mol.¹⁴ The shorter metal-metal bond length calculated for Ir₂(TMB)₄²⁺ and larger metal-metal

Figure 2.10. Resonance Raman spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$: (a) CH_3CN solution, $\lambda_{\text{ex}} = 568.2$ nm; (b) CH_3CN solution, $\lambda_{\text{ex}} = 647.1$ nm; (c) K_2SO_4 pellet, $\lambda_{\text{ex}} = 647.1$ nm; (d) Time resolved, CH_3CN solution, $\lambda_{\text{ex}} = 565$ nm, 10 scans; (e) Time resolved, CH_3CN solution, $\lambda_{\text{ex}} = 565$ nm, 10 scans, 2 mJ/P; (f) Time resolved, $\lambda_{\text{ex}} = 565$ nm, 10 scans, 5 mJ/P.

Table 2.12. Observed metal-metal vibrational frequencies and calculated force constants. Observed metal-metal distances and calculated metal-metal distances using Woodruff's relationship.

	¹ A _{1g}		³ A _{2u}		
	ν (M-M)	F	ν (M-M)	F	Ref.
	cm ⁻¹	mdyne/Å	cm ⁻¹	mdyne/Å	
Rh ₂ b ₄ ²⁺	79	0.19	144	0.63	43
Rh ₂ (TMB) ₄ ²⁺	55	0.09			44
Ir ₂ (TMB) ₄ ²⁺	53	0.16	132	0.99	

Metal-Metal Separation

	¹ A _{1g}		³ A _{2u}	
	X-ray, Å	W.R., Å ^a	W.R., Å ^a	Δ, Å ^b
Rh ₂ b ₄ ²⁺	3.242(1)	3.17 ^c	2.96	0.28 ^d
Rh ₂ (TMB) ₄ ²⁺	3.262(1)	3.23		0.4
Ir ₂ (TMB) ₄ ²⁺	3.199(1)	3.23	2.87	0.33

- a. Woodruff's relationship: Rh, $D = 1.83 + 1.45\exp(-F/2.53)$; Ir, $D = 2.01 + 1.31\exp(-F/2.36)$.⁴⁵
- b. Decrease in metal-metal separation upon excitation, $\Delta = W.R.(^1A_{1g}) - W.R.(^3A_{2u})$.
- c. The large discrepancy between the calculated and observed metal-metal distances is a consequence of ligand contribution to the observed vibrational frequency; using the crystallographically determined Rh-Rh distance $F_{\text{calc}} = 0.07$, $\nu_{\text{calc}} = 47 \text{ cm}^{-1}$
- d. Frank-Condon analysis yields $\Delta Q = 0.31 \text{ Å}$.¹⁴

restoring force in the $^3A_{2g}$ excited state imply a stronger metal-metal interaction.

While it is not necessarily the case that the increased force constant is an indication of a stronger bonding interaction, there is precedent in the literature for such a correlation within a series of analogous metal-metal bonded compounds.^{46,47} Larger force constants for Ir in comparison to Rh have been observed for complexes that possess formal metal-metal single bonds.⁴⁴ The major distortion upon excitation is along the Ir-Ir coordinate; a contraction of 0.3 Å is expected.

References and Notes

1. Smith, T.P., Ph.D. Dissertation, California Institute of Technology, 1982.
2. Mann, K.R.; Thich, J.A.; Bell, R.A.; Coyle, C.L.; Gray, H.B. *Inorg. Chem.* **1980**, *19*, 2462-2468.
3. Marshall, J.L., Ph.D. Dissertation, California Institute of Technology, 1987.
4. *International Tables of X-ray Crystallography*; Kynoch Press: Birmingham, England, 1974; Vol. V, p.72.
5. Gordon, A.J.; Ford, R.A. *The Chemist's Companion*; John Wiley & Sons: New York, 1972.
6. Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R. *Purification of Laboratory Chemicals*; Pergamon: Oxford, 1966.
7. Rice, S.F.; Gray, H.B. *J. Am. Chem. Soc.* **1983**, *105*, 4571-4575.
8. Nocera, D.G.; Winkler, J.R.; Yocom, K.M.; Bordignon, E.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 5145-5150.
9. Mann, K.R.; Lewis, N.S.; Williams, R.M.; Gray, H.B.; Gordon, J.G. II *Inorg. Chem.* **1978**, *17*, 828-834.
10. Goldberg, S.A.; Eisenberg, R. *Inorg. Chem.* **1976**, *15*, 58-63.
11. Churchill, M.R.; Hutchinson, J.P. *Inorg. Chem.* **1979**, *18*, 2451-2454.
12. Ferguson, J. In *Electronic States of Inorganic Compounds: New Experimental Techniques*; Day, P., Ed.; D. Reidel: Boston, 1975; pp. 59-93.
13. Albrecht, A.C. *J. Mol. Spect.* **1961**, *6*, 84-108.

14. Rice, S.F.; Miskowski, V.M.; Gray, H.B. *Inorg. Chem.* **1988**, *27*, 4704-4708, and references therein.
15. Chapter 3.
16. Rodman, G.S.; Daws, C.A.; Mann, K.R. *Inorg. Chem.* **1988**, *27*, 3347-3353, and references therein.
17. Isci, H.; Mason, W.R. *Inorg. Chem.* **1975**, *14*, 913-918.
18. Lewis, N.S.; Mann, K.R.; Gordon, J.G. II; Gray, H.B. *J. Am. Chem. Soc.* **1976**, *98*, 7461-7463.
19. Endres, H.; Gottstein, N.; Keller, H.J.; Martin, R.; Rodemer, W.; Steiger, W. *Z. Naturforsch.* **1979**, *34B*, 827-833.
20. Yamamoto, Y.; Wakatsuki, Y.; Yamazaki, H. *Organometallics* **1983**, *2*, 1604-1607.
21. Mann, K.R.; Bell, R.A.; Gray, H.B. *Inorg. Chem.* **1979**, *18*, 2671-2673.
22. Maverick, A.W.; Smith, T.P.; Maverick, E.F.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 4336-4341.
23. Olmstead, M.M.; Balch, A.L. *J. Organomet. Chem.* **1978**, *148*, C15-C18.
24. Fukuzumi, S.; Hironaka, K.; Nishizawa, N.; Tanaka, T. *Bull. Chem. Soc. Jpn.* **1983**, *56*, 2220-2227.
25. Brady, R.; Flynn, B.R.; Geoffroy, G.L.; Gray, H.B.; Peone, J., Jr.; Vaska, L. *Inorg. Chem.* **1976**, *15*, 1485-1488.
26. Kenny, M.I.S.; Kenny, J.W. III; Crosby, G.A. *Organometallics* **1986**, *5*, 230-234.
27. Cowie, M.; Dwight, S.K. *Inorg. Chem.* **1980**, *19*, 2500-2507.
28. Mague, J.T. *Inorg. Chem.* **1969**, *8*, 1975-1981.

29. Balch, A.L. *J. Am. Chem. Soc.* **1976**, *98*, 8049-8054.
30. Yaneff, P.V.; Powell, J. *J. Organomet. Chem.* **1979**, *179*, 101-113.
31. Fordyce, W.A.; Crosby, G.A. *J. Am. Chem. Soc.* **1982**, *104*, 985-988.
32. Fox, L.S., Ph.D. Dissertation, California Institute of Technology, 1989.
33. Winkler, J.R.; Marshall, J.L.; Netzel, T.L.; Gray, H.B. *J. Am. Chem. Soc.* **1986**, *108*, 2263-2266.
34. Rice, S.F., Ph.D. Dissertation, California Institute of Technology, 1982.
35. Milder, S.J.; Goldbeck, R.A.; Kliger, D.S.; Gray, H.B. *J. Am. Chem. Soc.* **1980**, *102*, 6761-6764.
36. Milder, S.J.; Kliger, D.S.; Butler, L.G.; Gray, H.B. *J. Phys. Chem.* **1986**, *90*, 5567-5570.
37. Adamson, A.W.; Fleischauer, P.D., Eds., *Concepts of Inorganic Photochemistry*; John Wiley & Sons: New York, 1975.
38. Balzani, V.; Carassiti, V. *Photochemistry of Coordination Compounds*; Academic Press: New York, 1970.
39. Miskowski, V.M.; Nobinger, G.L.; Kliger, D.S.; Hammond, G.S.; Lewis, N.S.; Mann, K.R.; Gray, H.B. *J. Am. Chem. Soc.* **1978**, *100*, 485-488.
40. Caspar, J.V.; Meyer, T.J. *J. Phys. Chem.* **1983**, *87*, 952-957.
41. Rice, S.F.; Milder, S.J.; Gray, H.B.; Goldbeck, R.A.; Kliger, D.S. *Coord. Chem. Rev.* **1982**, *43*, 349-354.
42. Gray, H.B.; Ballhausen, C.J. *J. Am. Chem. Soc.* **1963**, *85*, 260-265.

43. Dallinger, R.F.; Miskowski, V.M.; Gray, H.B.; Woodruff, W.H. *J. Am. Chem. Soc.* **1981**, *103*, 1595-1596.

44. Miskowski, V.M.; Smith, T.P.; Loehr, T.M.; Gray, H.B. *J. Am. Chem. Soc.* **1985**, *107*, 7925-7934.

45. Woodruff's relationship is an empirical correlation of force constants and bond distances: Miskowski, V.M.; Dallinger, R.F.; Christoph, G.G.; Morris, D.E.; Spies, G.H.; Woodruff, W.H. *Inorg. Chem.* **1987**, *26*, 2127-2132.

46. Spiro, T.G. *Prog. Inorg. Chem.* **1970**, *11*, 1-51.

47. Nakamoto, K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds*; John Wiley & Sons: New York, 1986.

Chapter 3

Detailed Study of the Electronic Spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$

Introduction

The electronic spectra of face-to-face, metal-metal bonded d^8 - d^8 complexes have been extensively discussed on the basis of a molecular orbital (MO) model.¹⁻¹⁰ In this picture, the metal-based d_z^2 (filled) and p_z (empty) orbitals each interact strongly to produce pairs of bonding and antibonding orbitals. Configuration interaction between the empty and filled sets (which might be visualized alternatively as dative d-p bonding) provides the weak ground-state bond, while the lowest-energy singlet and triplet excited states, derived from the $d\sigma^* \rightarrow p\sigma$ one-electron transition, are strongly stabilized relative to their respective monomer $d_z^2 \rightarrow p_z$ states.

While this picture accounts nicely for several important aspects of the metal-metal interaction, it has also been noted that several monomer $d \rightarrow p$ excitations are only slightly perturbed in the d^8 - d^8 complexes.¹ This observation and the rather long metal-metal bonds (3.1 - 3.3 Å)^{11,12} suggest that d^8 - d^8 species should be examined from a valence bond (VB) "weak-coupling" viewpoint.

In addition to beginning such an examination, and to complement earlier investigations of rhodium complexes, $(Rh_2(TMB)_4)^{2+}$; $Rh_2b_4^{2+}$, $b = 1,3$ -diisocyanopropane), we undertook a detailed study of the electronic spectrum of $Ir_2(TMB)_4^{2+}$ (TMB = 2,5-diisocyanato-2,5-dimethylhexane). A change in the metal from rhodium to iridium should perturb the electronic structure, thereby altering the characteristic d^8 - d^8 electronic spectrum and allowing us to test key aspects of the MO and VB models. Electronic absorption and magnetic circular dichroism (MCD) spectra of $Rh_2(TMB)_4^{2+}$ and $Ir_2(TMB)_4^{2+}$ are reported along with polarized single-crystal absorption spectra of $[Ir_2(TMB)_4](B(C_6H_5)_4)_2 \cdot CH_3C_6H_5$.

Experimental

Synthesis

All synthetic procedures were carried out with standard Schlenk techniques unless otherwise specified. Tetrahydrofuran (THF) was distilled from CaH_2 prior to use. All other solvents were from freshly opened bottles with no further purification, except as noted. All solvents were Schlenk-degassed prior to use. Standard procedures were used to prepare 2,5-diisocyano-2,5-dimethylhexane (TMB),¹¹ $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$,¹³ $[\text{Ir}(\text{COD})\text{Cl}]_2$ (COD = 1,5-cyclooctadiene),¹⁴ $[\text{Ir}(\text{COD})_2]\text{BF}_4$,¹⁵ and $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$.¹¹ The literature preparation of the compound $\text{Ir}(\text{COD})(\text{acac})$,¹⁶ a precursor to $[\text{Ir}(\text{COD})_2]\text{BF}_4$, was modified as noted below. All other chemicals were of reagent grade or comparable quality and were used as received. The ^1H NMR spectra were obtained on a 400-MHz JNM-GX400 FT NMR spectrometer. The IR spectra were taken on a Beckman IR 4240.

$[\text{Ir}_2(\text{TMB})_4](\text{PF}_6)_2$

A filtered methanol solution of NaPF_6 was added to a stirred methanol solution of $[\text{Ir}_2(\text{TMB})_4]\text{Cl}_2$ (prepared by the method of Reference 13). Immediate precipitation of a blue powder occurred. The solution was filtered and the blue material recrystallized by slow evaporation of a toluene/acetonitrile solution. Electronic absorption spectra of this compound were identical with that of the $\text{B}(\text{C}_6\text{H}_5)_4^-$ salt except for the absence of absorption that was due to the $\text{B}(\text{C}_6\text{H}_5)_4^-$ anion in the UV region.

$\text{Ir}(\text{COD})(\text{acac})$

A THF solution of $\text{Ti}(\text{acac})$ (acac = acetylacetone) was added with stirring to a THF solution of $[\text{Ir}(\text{COD})\text{Cl}]_2$. Formation of a white precipitate, TiCl , occurred immediately. The solution was stirred for approximately 1 h to ensure complete reaction. THF was removed under vacuum, and pentane was added. The solution was

filtered through a Celite plug to yield a clear, bright-yellow filtrate. The pentane was removed under vacuum to yield a bright-yellow crystalline material. The material was further purified by sublimation at 70-80 °C onto a water-cooled cold finger condenser (0 °C) at 10⁻⁵ to 10⁻⁶ torr. The final material was a bright-yellow powder. Calculated for Ir(COD)(acac): C, 39.09; H, 4.79. Found: C, 38.3; H, 4.6. NMR: δ(CDCl₃, 20 °C); 1.60 (quartet, CH₂, 4H), 1.98 (singlet, CH₃, 6H), 2.23 (multiplet, CH₂, 4H), 3.93 (multiplet, CH=CH, 4H), 5.49 (singlet, CH, 1H). This preparative method appeared to yield a product that was less contaminated with chloride impurities than the literature preparation.

[Ir(CN-*t*-butyl)₄]BF₄

To a clear yellow CH₃CN solution of [Ir(COD)₂]BF₄ was added, via syringe, a large excess of *t*-butyl isocyanide (CN-*t*-butyl). A rapid color change from yellow to orange was observed. The solution was stirred for approximately 1 h. The solvent and volatiles were then removed under high vacuum, yielding an extremely air-sensitive bright-orange solid.

Acetonitrile in this preparation was distilled twice from CaH₂, degassed with a minimum of 5 freeze-pump-thaw cycles, and stored under vacuum over activated alumina. The *t*-butyl isocyanide was thoroughly degassed by 5 freeze-pump-thaw cycles. The reaction was done in a Vacuum Atmospheres inert atmosphere box to ensure oxygen exclusion. Earlier attempts to prepare the desired compound using standard Schlenk techniques yielded materials that appeared to be partially oxidized according to UV-Vis spectroscopic criteria. Attempts to prepare Ir(CN-*t*-butyl)₄⁺ directly from [Ir(COD)Cl]₂ yielded material that did not give reproducible spectra. We infer some partial oxidation of the material enhanced by the presence of chloride ion. NMR: δ(CD₃CN, 20 °C); 1.49 (singlet, CH₃). IR: (Nujol mull, NaCl plates) 2190 cm⁻¹ (ν(NC), vs).

X-ray Data Collection and Reduction for

Crystal data are given in Table 3.1. The thin-flat plate crystal was of a form suited for spectroscopic measurements, but ill-suited for x-ray diffraction. It was glued on a glass fiber with the *c* axis approximately parallel to the fiber. The *b* axis is perpendicular to the plate. The crystal was much larger than the collimator; it was centered on a Nonius CAD-4 diffractometer equipped with graphite-monochromated MoK α radiation. Unit cell dimensions were obtained from the setting angles of 14 reflections with $8.4^\circ < 2\theta < 10.1^\circ$; the long *b* axis caused difficulties in indexing the reflections. A data set of 1654 reflections in $\pm h, k, l$ out to 9° in 2θ was collected in a θ - 2θ scan at 8° per min, and then a second set of 148 data with *h* and *k* = 0 or 1 was collected with an ω scan. The θ - 2θ data near the *b* axis were deleted and the two data sets merged. The data were corrected for absorption, and Lorentz and polarization factors were applied. The four independent iridium atoms were located from the Patterson map and their positions refined with 6 cycles of least squares (Table 3.2). A subsequent Fourier map did not have sufficient resolution to locate the atoms of the TMB ligands, so refinement was terminated.

Calculations were done with programs of the CRYM Crystallographic Computing System and ORTEP. Scattering factors and corrections for anomalous scattering were taken from a standard reference.¹⁷ The function minimized in least squares was $\sum w(F_o^2 - F_c^2)^2$, where $w = 1/\sigma^2(F_o^2)$. Variances of the individual reflections were assigned based on counting statistics plus an additional term, $(0.14)I^2$. Variances of the merged reflections were determined by standard propagation of error plus an additional term, $0.14 < I^2$. The absorption correction was done by Gaussian integration over an 8x8x8 grid. Transmission factors varied from 0.151 to 0.945.

Table 3.1. Crystal and Intensity Collection Data.

Formula: $\text{Ir}_2\text{N}_8\text{C}_{94}\text{B}_2\text{H}_{112}$	Formula Weight: 1772.03
Crystal Color: Green	Habit: flat plate
$a = 17.678(8)$ Å	$\alpha = 90^\circ$
$b = 55.03(4)$ Å	$\beta = 110.54(8)^\circ$
$c = 18.01(3)$ Å	$\gamma = 90^\circ$
$v = 16408(8)$ Å ³	$z = 8$
$d_{\text{calc}} = 1.435(1)$ g cm ⁻³	
$\lambda = 0.71073$ Å	T: room
Graphite monochromator	
Space group: $P2_1/c$	Absences: $h0l$, $l = 2n+1$; $0k0$, $k = 2n+1$
Crystal size: 1.37 X 0.60 X 0.016 mm	$\mu = 34.88$ cm ⁻¹
CAD-4 Diffractometer	θ - 2θ scan, ω scan
2 θ range: 0-18°	Octants collected: $\pm h, k, l$
Number of reflections measured: 1802	
Number of independent reflections: 1505	
Number with $F_0^2 > 0$: 1381	
Number with $F_0^2 > 3\sigma(F_0^2)$: 1052	
Goodness-of-fit for merging data: 1.51	

Table 3.2. Coordinates of the Iridium Atoms.

Atom	x	y	z
Ir1	0.4155(16)	0.1059(5)	0.0742(16)
Ir2	0.4828(15)	0.1168(5)	0.2580(16)
Ir3	0.9180(15)	0.1293(5)	0.5440(15)
Ir4	0.9659(15)	0.1447(5)	0.7277(16)

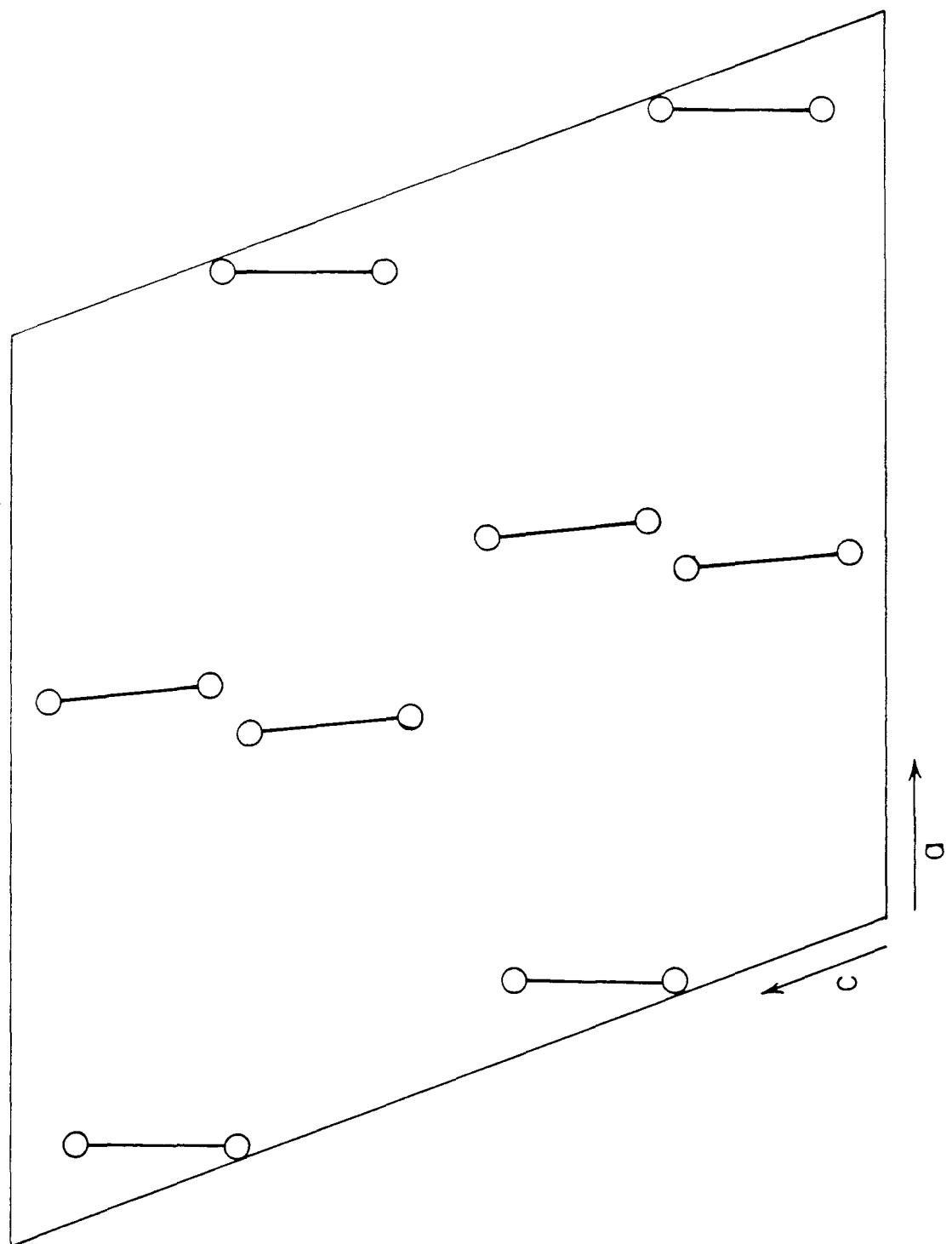
Spectroscopic Measurements

All solvents were dried and degassed by standard methods.^{18,19} Absorption spectra presented in Figures 3.2 and 3.6-3.9 were recorded with a Cary 17 spectrophotometer. Absorption and MCD spectra presented in Figures 3.4 and 3.5 were determined simultaneously and synchronously along the same light path by means of a computer-controlled spectrometer described previously.²⁰ A field strength of 7.0 T was provided by a superconducting magnet system (Oxford instruments SM2-7, fitted with a bore tube held at room temperature). The $\Delta\epsilon_M$ values are presented in units of $M^{-1} \text{ cm}^{-1} \text{ T}^{-1}$, where T is the magnetic field strength in Tesla units. All spectra were corrected for solvent blank. Single-crystal polarized absorption measurements employed dual Glan-Thompson, air-spaced calcite polarizers. Low-temperature absorption experiments were performed with two temperature-control systems: a quartz optical dewar of local design (77 K measurements); or a CTI-Cryogenics model 70 Cryodyne Cryocooler.

Propionitrile/2-methyl-THF (1:2 volume ratio) solutions for 77 K glassy matrix experiments were prepared on a high-vacuum line in an evacuable 1 cm pathlength quartz cuvette attached to a high-vacuum Teflon stopcock.

Absorption spectra at ~20 K were recorded of single crystals mounted on quartz flats. Crystal orientation was established with a polarizing microscope; the crystals transmitted light yellow-green and dark-blue light for polarization parallel to their two extinction directions determined between crossed polarizers. The former extinction was found to correspond to $\parallel a$ of the (010) crystal face. The extinctions were very sharp with white light, and are therefore inferred to be wavelength-independent in the visible region. The crystals were carefully masked with heat-conducting grease (fine copper powder suspended in vacuum grease) in order to provide good thermal contact with the cold station of the cryostat. The thickness of the $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ crystal whose spectra are given in Figures 3.7 and 3.8 was determined with a micrometer to be

21 μm . The thickness of the crystal whose spectra are shown in Figure 3.9 was not determined.


Results and Discussion

Crystal Structure of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_2)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$

In the course of our studies, we required thin single crystals for spectroscopic purposes. The crystal structure of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_2)_2 \cdot 2(\text{CH}_3\text{CN})$, which had been determined previously,¹² revealed a cation orientation amenable to polarized spectroscopy, but crystals obtained from CH_3CN solution were chunky blue blocks, far too thick for spectroscopy. Attempts to grow thin crystals eventually yielded clusters of thin blue-green plates²¹ by slow evaporation of toluene-acetonitrile solutions, from which high-quality spectroscopic data were obtained. X-ray examination of these crystals showed them not to be isomorphous with those of the structurally characterized material. NMR spectra showed that these crystals contained toluene ($n \approx 1$) instead of the acetonitrile of crystallization that was found in the previously characterized phase.^{12,22}

The structure of this phase was partially determined, as described in the experimental section. The well-developed crystal face was (010); in Figure 3.1 we show a (010) view of the Ir_2 units of the structure. The Ir_2 bond distances of the two independent Ir_2 units in this structure (3.16(4) and 3.23(4) Å) are, within their large esd's, equivalent to those found in the earlier study, 3.199(1) Å.¹² The Ir_2 units are all aligned nearly perpendicular to the a axis, which corresponds to an optical extinction, and lie very nearly in the (010) plane. Thus, our single-crystal polarized spectra should approximate molecular z and x,y spectra for the $\perp a$ and $\parallel a$ polarizations, respectively. It should be noted that for a monoclinic crystal face that does not contain the b axis, extinctions are not required to be parallel to a crystallographic axis, nor are they required to be wavelength-independent. However, both properties were found (within experimental error).

Figure 3.1. Projection of Ir-Ir units onto the (010) plane. Ir position indicated by o. The two metal atoms of a dimer unit are connected by a solid line.

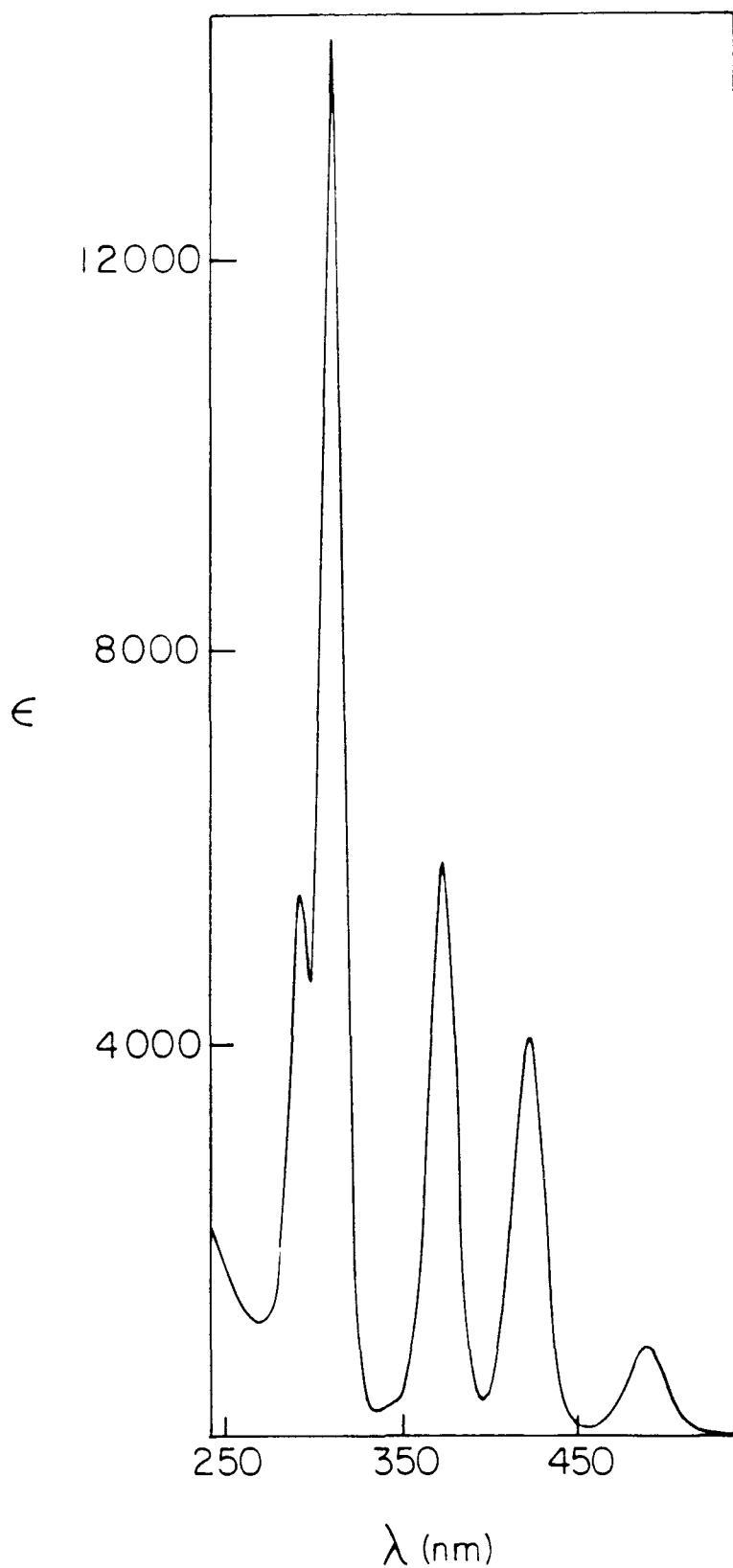
Electronic Spectrum of $\text{Ir}(\text{CN-}t\text{-butyl})_4^+$

For comparison to binuclear Ir(I) complexes, it is important to have a reliable monomer electronic absorption spectrum. This apparently simple task proved to be difficult. We eventually obtained reproducible spectra for $\text{Ir}(\text{CN-}t\text{-butyl})_4^+$, when a synthetic route (see the experimental section) was employed that rigorously excluded both halide and oxygen. The isolated BF_4^- salt is remarkably air-sensitive, instantaneously changing color from orange to blue-green upon exposure to trace contamination of air.

The probable explanation of this color change is the formation of partially oxidized oligomers, analogous to well-characterized rhodium species such as $\text{Rh}_4\text{b}_8^{6+}$, which have similar colors.^{23,26}

Well-characterized Rh(I) isocyanide oligomeric systems, which are relatively air-insensitive, hence easier to handle, are thermally labile (because of very weak ground-state Rh-Rh bonding) but not photosensitive, since the excited states are strongly bound.^{1,30,31} The similar spectroscopic properties of binuclear Rh(I) and Ir(I) isocyanide complexes that are documented here and elsewhere suggest that their thermal and photochemical properties would not be very different. In contrast, partially oxidized Rh(I) isocyanide oligomers are thermally much less labile (the Rh-Rh ground state is strongly bound) but undergo dissociative photochemistry.²³ Moreover, net photoreduction has been noted for Rh isocyanide systems.¹³ With regard to authentic Ir(I) oligomers, we note that samples of $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$ during dissolution in CH_3CN show flashes of blue-green color near the dissolving crystals, the color disappearing with diffusion into the bulk solvent. This may represent Ir(I) oligomerization in very concentrated solutions,²⁷ as previously reported for Rh(I) isocyanides, including the *t*-butyl isocyanide complex.³¹ We have not attempted to quantify this observation, however, because of the extreme difficulties involved in working with this compound.

The electronic absorption spectrum found for $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$ in dilute solution is shown in Figure 3.2; data are summarized in Table 3.3. The observed bands are assigned to $d_z^2 \rightarrow p_z$, $d_{xz,yz} \rightarrow p_z$, and $d_{xy} \rightarrow p_z$ excitations, as indicated by the extensive work of Mason and coworkers.^{28,32,33} The features at 291 and 343 nm could each be assigned either to pure electronic transitions (Table 3.3) or to vibronic sidebands involving one quantum of $\nu(\text{NC})$ built upon lower energy transitions. For the 291 nm feature, the vibronic assignment is excluded because the intensity is much too high relative to that seen for authentic $\nu(\text{NC})$ sidebands in the present work (*vide infra*) as well as in a previous investigation.¹ The interpretation of the 343 nm feature is, however, ambiguous.

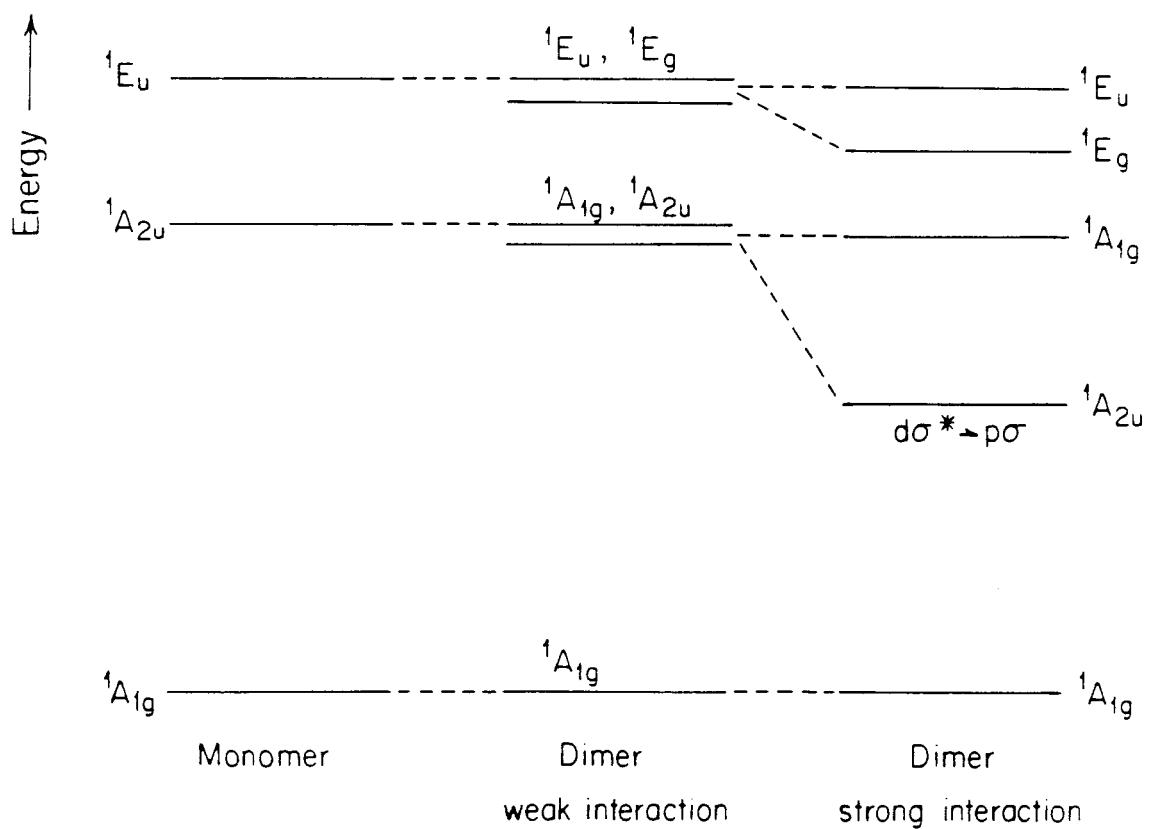
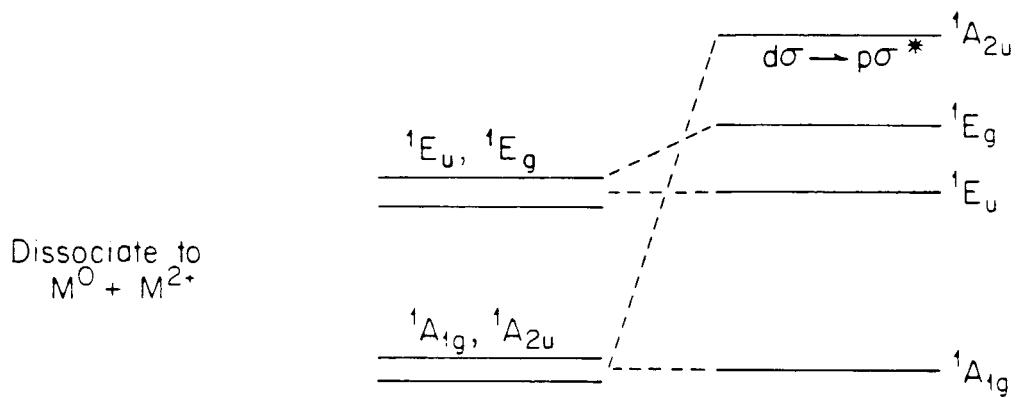

Our results are consistent with the conventional MO scheme for square-planar d^8 complexes containing π -backbonding ligands.^{26,32-34} The filled d level ordering is $d_z^2 > d_{xz,yz} > d_{xy}$, and no electronic transitions involving the empty $d_{x^2-y^2}$ orbital have been located experimentally. As usual for such complexes, the last point only suggests the probable energetic ordering $d_{x^2-y^2} > p_z$ (i.e., that the LUMO is p_z), since d-d transitions to $d_{x^2-y^2}$ are dipole-forbidden, and could be obscured by the intense (allowed) $d \rightarrow p$ absorptions.

Valence-Bond Model

Consider a dimer with no one-electron coupling of the two centers. For clarity, we consider only singlet states of a D_{4h} symmetry dimer. Low-lying molecular states involving $d_z^2 \rightarrow p_z$ and $d_{xz,yz} \rightarrow p_z$ excitations are shown in Figure 3.3.

The single-center excitations are Davydov-coupled³⁵ in symmetric and antisymmetric fashion to yield, for the $^1\text{A}_{2u}$ ($d_z^2 \rightarrow p_z$) monomer excited state, for example, $^1\text{A}_{1g}$ and $^1\text{A}_{2u}$ dimer states. The MO picture gives a total of four excited states correlating to $d_z^2 \rightarrow p_z$ excitations. In the VB picture, the remaining two excited states are a $^1\text{A}_{1g}$, $^1\text{A}_{2u}$ pair corresponding to excitation of a d_z^2 electron on one center into a p_z

Figure 3.2. Electronic absorption spectrum of $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$ in CH_3CN at 25 °C.



Table 3.3. Absorption spectral data for $[\text{Ir}(\text{CN-t-butyl})_4]\text{BF}_4$ measured in CH_3CN at 25°C .

${}^1\text{A}_{1g} \rightarrow$	$\lambda_{\text{max}}, \text{ nm}$ ($\epsilon, \text{ M}^{-1}\text{cm}^{-1}$)	fw hm, cm^{-1} a
$\text{E}_u({}^3\text{A}_{2u}), \text{d}_z^2 \rightarrow \text{p}_z$	489 (870)	1130
$\text{A}_{2u}({}^1\text{A}_{2u}), \text{d}_z^2 \rightarrow \text{p}_z$	423 (4100)	1120
$\text{E}_u({}^3\text{E}_u), \text{d}_{xz,yz} \rightarrow \text{p}_z$	373 (5900)	1300
$\text{E}_u({}^1\text{E}_u), \text{d}_{xz,yz} \rightarrow \text{p}_z$	308 (14500)	1360
$\text{E}_u({}^3\text{B}_{1u}), \text{d}_{xy} \rightarrow \text{p}_z$	291 (5500)	b

a. fwhm - full width at half the maximum height.

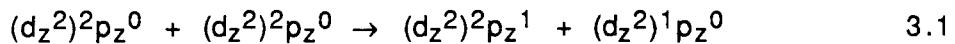


b. Not measured.

Figure 3.3. Qualitative VB state diagram for weak d/p interaction of two Rh(I) or Ir(I) monomers. See text. Note that for the strong interaction case, state energies are implicitly for the equilibrium bond distance of each individual state.

orbital on the other center; thus, they are "ionic" states that must dissociate to M^{2+} plus M^0 . As such, they must lie at much higher energy, *even for no metal-metal bonding*.

The energy of the metal-to-metal charge transfer states are dependent on the ease of ionization of the metal center and the ability of a single metal center to accommodate an additional electron. Such a transition should scale roughly as $IP_d - EA_p$. An estimate of the molecular $IP_d - EA_p$ can be obtained by considering the atomic $IP_d - EA_p$. The atomic IP and EA calculated for Rh and Ir are listed in Table 3.4.³⁶

The transition energies, as defined above, are listed in Table 3.4, corrected for the $1/R$ repulsion terms. The transition energies, as they stand, are not comparable to the molecular system, in that the molecular stabilization of the atomic charge transfer state (via delocalization of charge onto the ligands, in a simplistic viewpoint) has not been accounted for. An estimate of the molecular stabilization accompanying the metal-to-metal charge transfer can be obtained from earlier work on $Re_2Cl_8^{2-}$, a quadruply bonded ($\sigma^2\pi^4\delta^2$) metal dimer.³⁷ Similar to the binuclear d^8 complexes, the δ interaction is best viewed in the VB "weak-coupling" limit. Thus, the $^1(\delta \rightarrow \delta^*)$ transition is best described as a metal-to-metal charge-transfer (MMCT) transition. It can be shown that the energy separation of the $^3(\delta\delta^*)$ state, the lowest energy covalent excited state, and the $^1(\delta\delta^*)$ state, the lowest energy charge-transfer excited state, is $2K$:³⁸

$$K = 1/2[(aa|aa) - (aa|bb)], \quad 3.3$$

Table 3.4. Metal-to-metal charge transfer transition energies.

Calculated Atomic State Energies (hartrees)			
	s ⁰ d ⁸	p ¹ d ⁸	s ⁰ d ⁷
Ir	-103.51082	-103.54144	-102.83667
Rh	-108.36242	-108.47397	-107.73884
	IP (eV)	-EA (eV)	
Ir	15.47	-3.19	
Rh	16.97	-3.03	
M ⁺ + M ⁺ → M ²⁺ + M ⁰			
	IP-EA (eV)	(IP-EA) - 1/R (eV)	(IP-EA) - 1/R + MS (eV) ^a
Ir	12.8	8.3	5.7 (45000 cm ⁻¹)
Rh	13.9	9.4	6.8 (55000 cm ⁻¹)

a. M.S. - Molecular stabilization = 2.6 eV.

where $(aa|aa)$ is the energy required to transfer a δ electron from metal center A to metal center B at infinite A-B distance. The $(aa|bb)$ term is the electrostatic correction to finite R that we have already applied, as noted above. A value for the molecular stabilization of an MMCT state can be obtained by comparing the energy separation of the $^3(\delta\delta^*)$ and $^1(\delta\delta^*)$ excited states to the estimate, using atomic IP and EA values. For $\text{Re}_2\text{Cl}_8^{2-}$, the molecular stabilization of an MMCT state is 2.65 eV. This estimate is obtained using the experimentally observed $^1(\delta\delta^*)$ transition energy³⁹ (which is greater than, but very close to, the singlet-triplet energy separation) and the calculated energy separation using *ab initio* atomic energies.⁴⁰

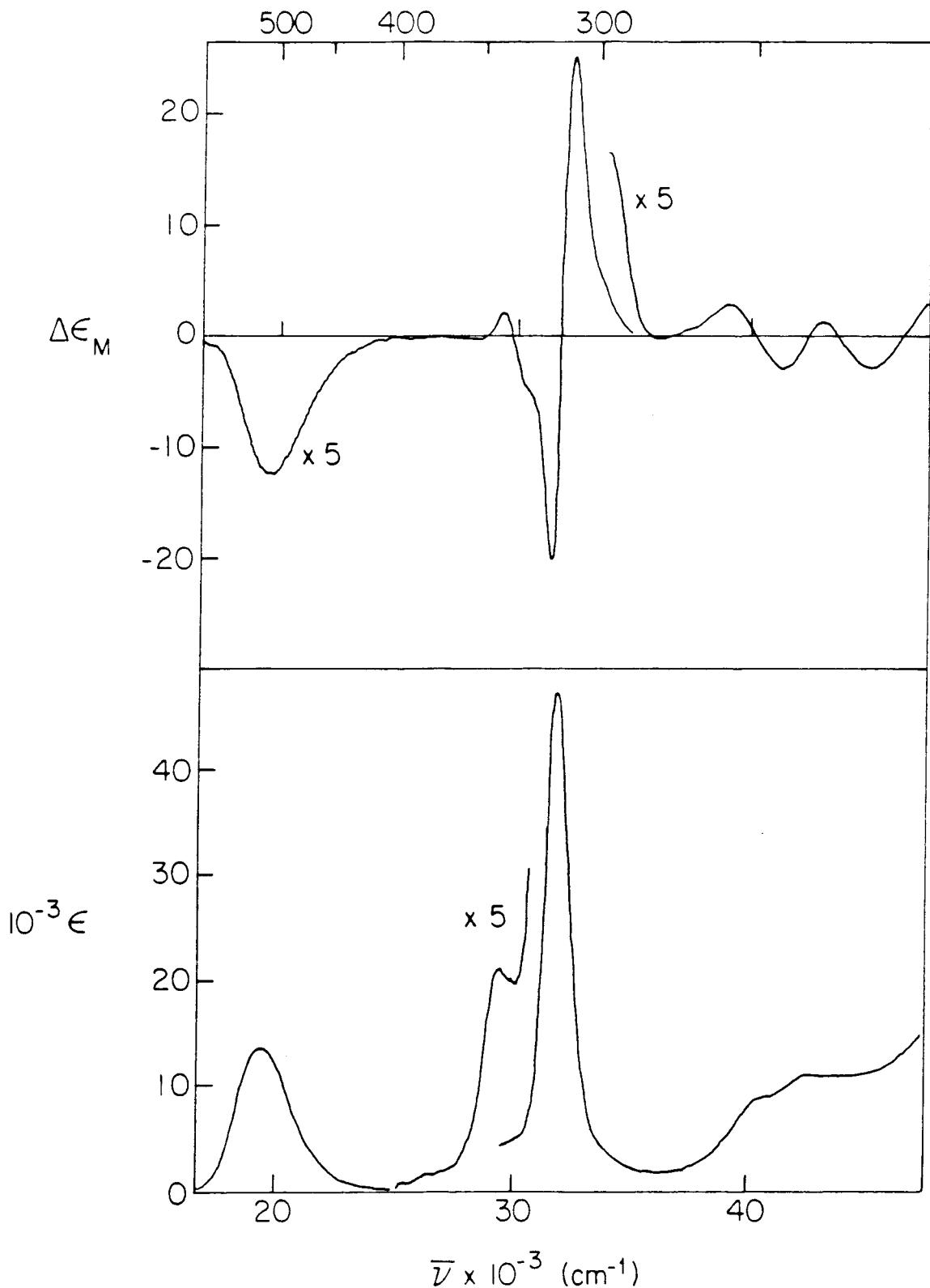
Using 2.6 eV as a rough estimate of the molecular stabilization of the charge-transfer state, an estimate of the MMCT state energy for the Ir(I) and Rh(I) complexes is obtained (Table 3.4). The transition energies are indicated to be in the UV with those of Ir lower than those of Rh. These estimates are upper limits to the transition energies. The calculated IP and EA for Ir and Rh may be in error because of correlation effects not accounted for in the calculations. However, the excitation in question does not require an increased pairing of electrons; therefore, energy differences (in particular, the predicted strong decrease in energy for Ir_2 versus Rh_2) may not have a large error associated with them. These are very crude estimates, and the crude agreement with experiment that will be evident later should be taken only to indicate that our assignments are not absurd.

The VB wave functions are equal mixtures of the two MO wavefunctions of the same symmetry. Thus, the two $^1\text{A}_{2u}$ wave functions are given by $d\sigma^*p\sigma \pm d\sigma p\sigma^*$, the plus combination corresponding to the lowest energy state. If we increase the metal-metal one-electron interaction (shorten the metal-metal distance), the two $^1\text{A}_{2u}$ states will mix in such a way as to resolve into the two MO wave functions, as indicated on the right-hand side of Figure 3.3.⁴¹ The same thing should happen for the other $d \rightarrow p$ excited states if the metal-metal distance is decreased. However, there is much less

reason for them to do so. Both the 1E_u and $^1A_{1g}$ states are, at long distance, equal mixtures of bonding-bonding and antibonding-antibonding MO states; the $^1A_{1g}$ states, for example, are $(d\sigma^*p\sigma^* \pm d\sigma p\sigma)$. Thus, bonding contributions tend to cancel out. It is difficult to predict the relative bonding-antibonding contributions, particularly since the various interactions ($d\sigma-d\sigma$, $d\sigma-p\sigma$, $p\sigma-p\sigma$, $d\pi-d\pi$, etc.) undoubtedly maximize stabilization at greatly different metal-metal distances. However, it is reasonable that much less stabilization would arise than for $^1A_{2u}$ ($d\sigma^* \rightarrow p\sigma$), and our experimental data (*vide infra*) support the idea that the 1E_u and $^1A_{1g}$ excitations are nearly vertical. There is, moreover, an interesting comparison available in diatomic mercury, Hg_2 , which in its ground state ($s\sigma^2s\sigma^*2$) is an extremely weakly bound van der Waals molecule.⁴²⁻⁴⁴ However, corresponding to the atomic $^1S \rightarrow ^3P$ transition at 254 nm, Hg_2 shows two allowed transitions. One, $s\sigma^* \rightarrow p\sigma$, is to a strongly bound excited state, and is richly structured in $\nu(Hg_2)$ and red-shifted from the atomic line. The second, $(s\sigma/s\sigma^*) \rightarrow (p\pi/p\pi^*)$, is vertical, and is shifted from the atomic line by only 57 cm^{-1} . These two Hg_2 states are clearly analogous to the low-lying $^1A_{2u}$ and 1E_u excited states of d^8-d^8 Rh_2 and Ir_2 species.

Finally, we consider the 1E_g excited states. The VB wave functions of these states ($d\pi^*p\sigma \pm d\pi p\sigma^*$) indicate that the lowest 1E_g should be stabilized by resolving into the antibonding-to-bonding $d\pi^*p\sigma$ wave function. However, it is unclear how much stabilization can actually be expected, since the $d\pi$ overlap will be very small except at very short metal-metal distances, which would be precluded by repulsive metal-metal and ligand-ligand interactions. We compromise in Figure 3.3 by suggesting a smaller stabilization than for $^1A_{2u}$.

The important points that emerge from this discussion are that, in contrast to a simple MO picture, a VB model readily accommodates both weakly and strongly perturbed monomer transitions, and that it identifies fully half of the dimer electronic excited states as ionic (MMCT); these ionic states should lie at considerably higher


energy than the monomer excited states. Both of these points prove to be crucial to understanding the electronic spectra of d^8 - d^8 complexes.

Solution Electronic Absorption and MCD Spectra

The electronic absorption and MCD spectra of $\text{Rh}_2(\text{TMB})_4^{2+}$ are shown in Figure 3.4. The assignments have been discussed extensively elsewhere, with supporting single-crystal data,^{1,11} and our present (entirely consistent) data are offered largely for comparisons with the Ir complex. The theory necessary for interpretation of the MCD spectrum has been given elsewhere.³ In the following discussion, we will use D_{4h} symmetry labels. The symmetry of the TMB complexes is only D_4 , because of significant torsion of the MC_4 units with respect to each other.¹² The effect of the lower symmetry is that D_{4h} g/u labels should be dropped. However, the only effect of the lower symmetry upon the states under consideration is that D_{4h} states of E_g symmetry become formally x,y-dipole-allowed, and these transitions are expected to be weak, since it depends upon low-symmetry-induced mixing of the D_{4h} E_u and E_g states. The low-energy feature ($\lambda_{\text{max}} 517$ nm) is assigned to the $d\sigma^* \rightarrow p\sigma$ singlet ($A_{1g}(^1A_{1g}) \rightarrow A_{2u}(^1A_{2u})$) transition. This band shows the expected -B term in the MCD spectrum.⁴⁵ The strong band centered at 314 nm is attributed to the $A_{1g}(^1A_{1g}) \rightarrow E_u(^1E_u)$ ($d\pi \rightarrow p\sigma$) excitation. This transition is to a degenerate excited state and the MCD band appears to be dominated by a +A term. A weak band ($\lambda_{\text{max}} 340$ nm) is observed to lower energy of the $E_u(^1E_u)$ band. From low-temperature, polarized single-crystal spectra, this band is deconvoluted into two features,¹ an x,y-polarized component assigned to the E_u component of the 3E_u transition ($\lambda_{\text{max}} 342$ nm) and a z-polarized A_{2u} component ($\lambda_{\text{max}} 335$ nm). The E_u component of the 3E_u state should have +A and +B terms associated with it and the A_{2u} state, a -B term. The two 3E_u states appear to be resolved in the MCD spectrum. A slight $-\Delta\epsilon$ is observed on the low-

Figure 3.4. Electronic absorption (lower curves) and MCD (upper curves) spectra of $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C. Note that the MCD scales in the regions 210 - 295 nm and 400 - 600 nm have been expanded fivefold; similarly, the absorptivity scale has been expanded fivefold in the 325 - 400 nm region. $\Delta\epsilon$ has units of $(\text{M cm T})^{-1}$.

106

 λ (nm)

energy side of the MCD band at 330 nm ($\sim 3.00 \text{ \mu m}^{-1}$), indicating a weak +A term; this transition is dominated by a +B term. Similarly, weak +A terms have been observed for analogous states of monomeric Rh(I) isocyanides.²⁸ To higher energy, a transition with a -B term is observed, consistent with the presence of an A_{2u} state. Several weak features are observed to higher energy of the $E_u(^1E_u)$ transition. The shoulder at 290 nm appears to have a +B term, consistent with an $E_u(^3B_{1u})$ $d_{xy} \rightarrow p\sigma$ assignment. However, this would also be consistent with the feature being a vibronic $E_u(^1E_u) + v(\text{NC})$ band, and the energy and low intensity of the band are reasonable for either assignment. The two bands above 250 nm (4.00 \mu m^{-1}) appear to possess A terms, indicating degenerate excited states, although the interpretation of the data for the higher-energy band is ambiguous. Emission polarization ratios of these bands measured for 77 K glassy solutions are also consistent with x,y-polarization, again most clearly for the lower-energy band.⁴⁶ These bands have not been reported in previous work (largely because they are obscured by anion absorption for $\text{B}(\text{C}_6\text{H}_5)_4^-$ salts), but we note here that similar features are seen in the spectra of all other binuclear Rh(I) isocyanide complexes that we have examined, whereas monomers such as $\text{Rh}(\text{CN-}t\text{-butyl})_4^+$ show no resolved absorption in this region.⁴⁶ Assignments listed in Table 3.5 will be justified later.

The electronic absorption and MCD spectra of $[\text{Ir}_2(\text{TMB})_4](\text{PF}_6)_2$ are shown in Figure 3.5. In analogy to $\text{Rh}_2(\text{TMB})_4^{2+}$, the intense absorption centered at 625 nm ($\epsilon = 11,200 \text{ M}^{-1}\text{cm}^{-1}$) is assigned to the fully allowed $A_{1g}(^1A_{1g}) \rightarrow A_{2u}(^1A_{2u})$ ($d\sigma^* \rightarrow p\sigma$) excitation. This band shows the expected -B term in the MCD. The intense features below 300 nm, having maxima at 318 ($\epsilon = 22,000 \text{ M}^{-1}\text{cm}^{-1}$) and 372 nm ($\epsilon = 9750 \text{ M}^{-1}\text{cm}^{-1}$) are attributed to $d\pi \rightarrow p\sigma$ transitions to $E_u(^1E_u)$ and $E_u(^3E_u)$ states, respectively. The 318 nm absorption, while complicated by the overlap of the weaker bands to low and high energy, displays the expected +A term in the MCD. The $A_{1g}(^1A_{1g}) \rightarrow E_u(^3E_u)$ transition appears in the MCD as a skewed band because of the contribution of

Table 3.5. Absorption maxima for $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Ir}_2(\text{TMB})_4^{2+}$. The convention we adopt in this and the following table is that the previously adopted MO $d\sigma^* \rightarrow p\sigma$ assignments are retained for such excitations, but other transitions are labeled either as single-center excitations (e.g., $d_{xz,yz} \rightarrow p_z$) or MMCT.

$[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN (25 °C)					
$^1\text{A}_{1g} \rightarrow$	$\lambda_{\text{max}}, \text{nm} (\epsilon, \text{M}^{-1}\text{cm}^{-1})$	fw hm, cm^{-1} a	MCD		
	$v, \text{cm}^{-1} \times 10^{-3}$		$v, \text{cm}^{-1} \times 10^{-3}$	$\Delta\epsilon_M, \text{M}^{-1}\text{cm}^{-1}\text{T}^{-1}$	
$E_u(^3A_{2u}), d\sigma^* \rightarrow p\sigma$	b				
$^1\text{A}_{2u}, d\sigma^* \rightarrow p\sigma$	517 (13600)	2800	1.95	-2.45	
	1.93				
$E_u(^3E_u), d_{xz,yz} \rightarrow p_z$	340 (4200, sh)		2.78	-0.076	
	2.94		2.87	0.0	
$A_{2u}(^3E_u), d_{xz,yz} \rightarrow p_z$	c		2.95	+2.38	
$E_u(^1E_u), d_{xz,yz} \rightarrow p_z$	314 (47500)	1400	3.04 (sh)	-4.67	
	3.18		3.15	-20.1	
$E_u(^3B_{1u}), d_{xy} \rightarrow p_z$	290 (3500, sh)		3.19	0.0	
and/or $E_u(^1E_u) + v(\text{CN})$	3.45		3.24	+25.2	
$\text{MMCT}(?)$	245 (8600, sh)		~3.3 (sh)	~+5	
	4.08		3.91	+0.059	
$\text{MMCT}(?)$	234 (10700, sh)		4.02	0.0	
	4.27		4.14	-0.581	
			4.24	0.0	
			4.30	+0.291	
			4.51	-0.531	

[Ir₂(TMB)₄](B(C₆H₅)₄)₂ in CH₃CN (25 °C)

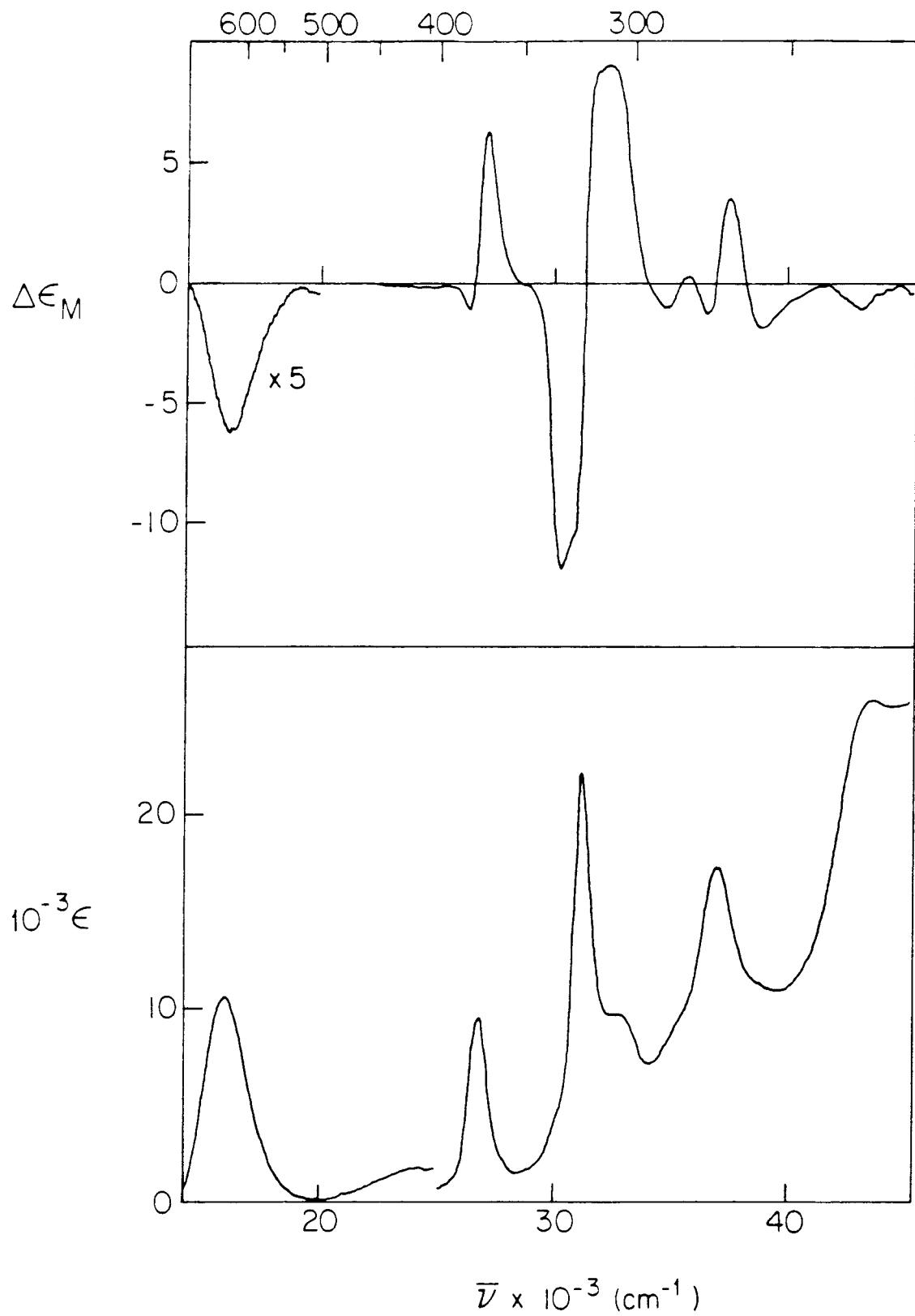
¹ A _{1g} →	λ_{max} , nm (ϵ , M ⁻¹ cm ⁻¹)	fw hm, cm ⁻¹ ^a	MCD ^d	
	ν , cm ⁻¹ × 10 ⁻³		ν , cm ⁻¹ × 10 ⁻³	$\Delta\epsilon_M$, M ⁻¹ cm ⁻¹ T ⁻¹
E _u (³ A _{2u}), dσ ⁺ → pσ				
1A _{2u} , dσ ⁺ → pσ	625 (11200)	2200	1.61	-1.26
	1.60			
E _u (³ E _u), d _{xz,yz} → p _z	372 (9750)	1000	2.63	-0.118
	2.69		2.66	0.0
+ ν(CN)	b		2.71	+6.25
A _{2u} (³ E _u), d _{xz,yz} → p _z	333 (4000, sh)		3.03	-12.0
	3.00			
E _u (¹ E _u), d _{xz,yz} → p _z	318 (22,000)	1300	3.09 (sh)	-10.1
	3.14		3.13	0.0
E _u (³ B _{1u}), d _{xy} → p _z	305 (9500, sh)		3.23	+8.98
	3.28		(obscured)	
MMCT				
E _u (³ E _u), d _{xz,yz} → p _z	~280 (8500, sh)		3.46	-1.05
	~3.6		3.51	0.0
E _u (¹ E _u), d _{xz,yz} → p _z	268 (17000)	1500	3.56	+0.23
	3.73		3.65	-1.34
"dσ → pσ"	~210 (25000)		3.69	0.0
	~4.7		3.75	+3.49
			3.88	-1.94
			4.31	-1.20

[Ir₂(TMB)₄](B(C₆H₅)₄)₂ in a glassy matrix of CH₃CH₂CN/2-MeTHF (77 K)

¹ A _{1g} →	λ _{max} , nm (ε, M ⁻¹ cm ⁻¹)	fw hm, cm ⁻¹ a
E _u (³ A _{2u}), dσ* → pσ	520 (150)	1500
¹ A _{2u} , dσ* → pσ	635 (25500)	1200
E _u (³ E _u), d _{xz,yz} → p _z	373 (17000)	650
+ v(CN)	344 (1500, sh)	
A _{2u} (³ E _u), d _{xz,yz} → p _z	331 (5000)	700
E _u (¹ E _u), d _{xz,yz} → p _z	320 (38000)	690
E _u (³ B _{1u}), d _{xy} → p _z	304 (6000)	800
MMCT		
E _u (³ E _u), d _{xz,yz} → p _z	280 (11000, sh)	
E _u (¹ E _u), d _{xz,yz} → p _z	268 (32000)	1000
"dσ → pσ*"	e	

a. fwhm = full width at half the maximum height.

b. Not observed.


c. Polarized single-crystal spectra resolve this band into two features: E_u(³E_u), λ_{max} 342 nm;

A_{2u}(³E_u), λ_{max} 335 nm.

d. For PF₆⁻ salt.

e. Not determined because of anion absorption.

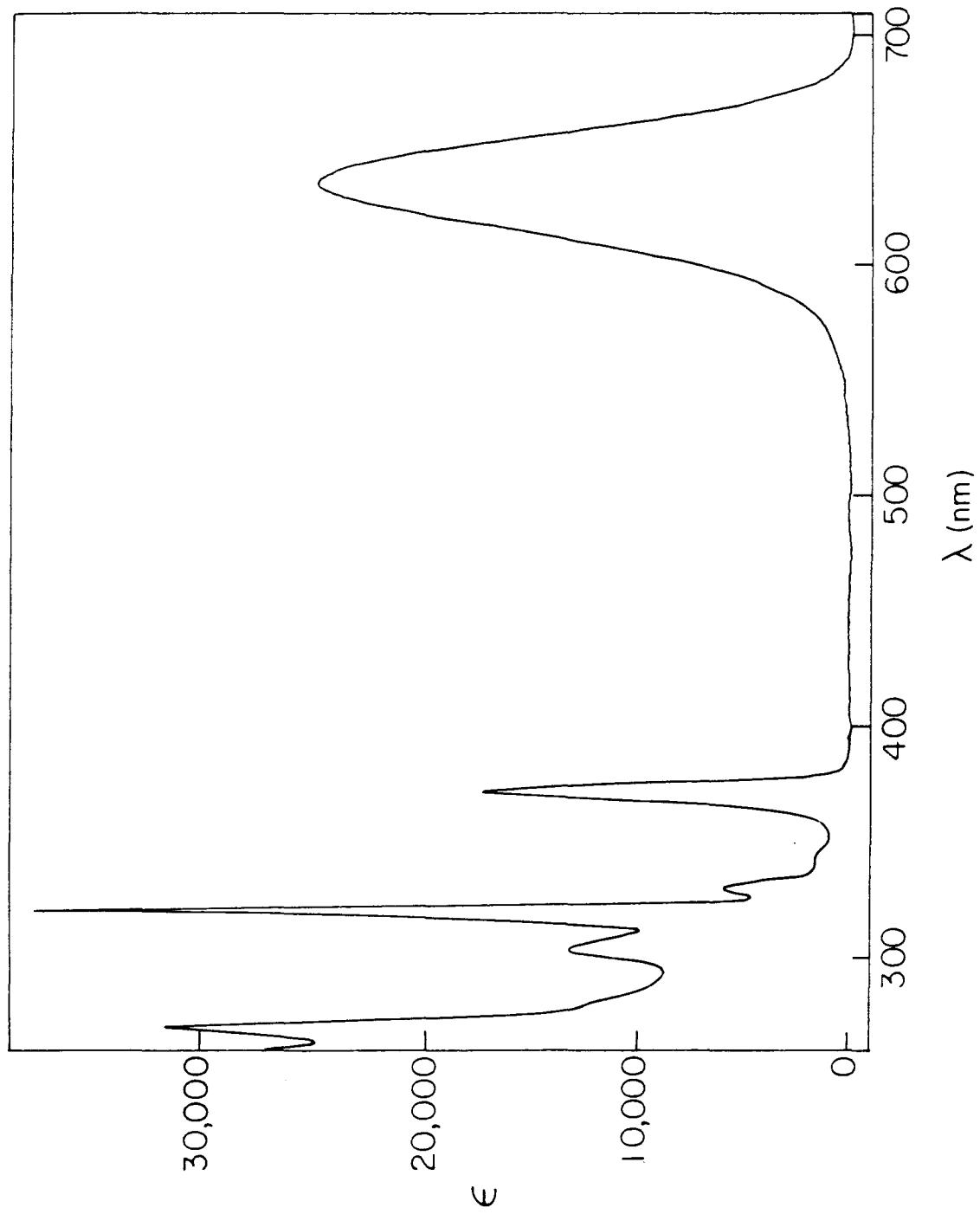
Figure 3.5. Electronic absorption (lower curve) and MCD (upper curves) spectra of $[\text{Ir}_2(\text{TMB})_4](\text{PF}_6)_2$ in CH_3CN at 25 °C. Note that the MCD scale has been expanded fivefold in the 700 - 500 nm region. $\Delta\epsilon$ has units of $(\text{M cm T})^{-1}$.

λ (nm)

the +A and +B terms. In comparison to $\text{Rh}_2(\text{TMB})_4^{2+}$, there is a much larger +A term contributing to this transition. A feature centered at 820 nm is observed to lower energy of the 625 nm absorbance in both single crystals and concentrated solutions. The MCD of this band was not measured because of spectrometer limitations. This band is assigned to the $3(\text{d}\sigma^* \rightarrow \text{p}\sigma)$ transition. To lower energy of the 372 nm band, a weak shoulder is observed. A similar weak feature is observed for $\text{Rh}_2(\text{TMB})_4^{2+}$. Several features not well resolved for $\text{Rh}_2(\text{TMB})_4^{2+}$ are observed for $\text{Ir}_2(\text{TMB})_4^{2+}$. To both the high- and low-energy side of the 318 nm band, shoulders are observed (305 and 333 nm). The low-energy shoulder appears as a -B term in the MCD spectrum, consistent with an assignment to the $\text{A}_{2u}(^3\text{E}_u)$ transition. The shoulder to higher energy, although overlapped with the $^1\text{E}_u$ band, appears to be dominated by a +B term, perhaps with a small -A component, in accord with the $\text{E}_u(^3\text{B}_{1u}) \text{d}_{xy} \rightarrow \text{p}\sigma$ transition. In addition, bands to higher energy of 300 nm are resolved for both the $\text{B}(\text{C}_6\text{H}_5)_4^-$ and PF_6^- salts. Neither of these features has an analogue in monomer spectra. The two lower-energy bands exhibit +A terms in the MCD, indicating transitions to degenerate excited states. The highest-energy shoulder possesses a weak -B term and no A term, suggestive of a nondegenerate excited state. Assignments are listed in Table 3.5.

The energies and widths of the bands derived from the lowest-energy $\text{d}_z^2 \rightarrow \text{p}_z$ excitation for $\text{Ir}_2(\text{TMB})_4^{2+}$ are in stark contrast to the $\text{d}_z^2 \rightarrow \text{p}_z$ absorption in the spectrum of $\text{Ir}(\text{CN-}t\text{-butyl})_4^+$. The large red shift has been attributed to the smaller d-p gap in the dimer.¹⁰ The greater widths of the $\text{A}_{2u}(^1\text{A}_{2u})$ and $\text{E}_u(^3\text{A}_{2u})$ bands are a consequence of the enhanced metal-metal bonding interaction in the $1,3(\text{d}\sigma^* \text{p}\sigma)$ excited states. Promotion of an electron from $\text{d}\sigma^*$ to $\text{p}\sigma$ produces a large molecular distortion; this distortion is mainly a contraction along the metal-metal coordinate.¹

In contrast to the $\text{d}\sigma^* \rightarrow \text{p}\sigma$ transition, features assigned to $\text{d}\pi \rightarrow \text{p}\sigma$ excitation have energies and widths very similar to those observed for the monomer, implying very little if any molecular distortion along the metal-metal coordinate. If one adheres

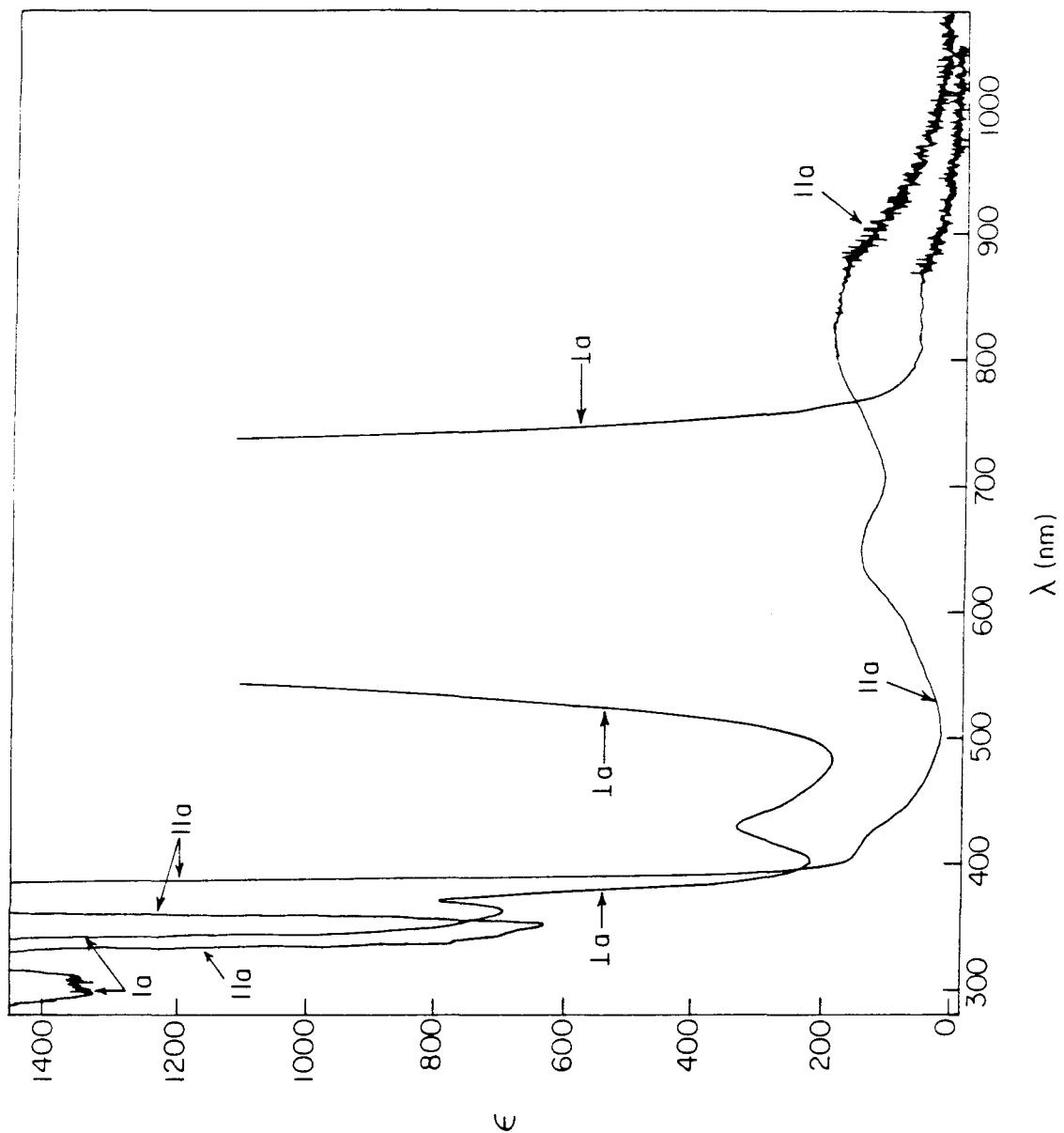

strictly to the MO model for the binuclear complex, a shift in the $d\sigma^* \rightarrow p\sigma$ transitions implies a shift in the $d\pi \rightarrow p\sigma$ excitations, unless $p\sigma/d\sigma$ and $p\sigma/p\sigma$ bonding interactions are negligible,¹ which would contradict the ground-state bonding picture. Since a large shift is observed for the $d\sigma^* \rightarrow p\sigma$ transitions and very little if any shift is seen for $d\pi \rightarrow p\sigma$, the VB model is preferred; according to VB, the low-energy $d\sigma^* \rightarrow p\sigma$ transition is red-shifted from the monomer $d_z^2 \rightarrow p_z$ because of a favorable metal-metal interaction at shorter distance, with the $^{1,3}E$ states only slightly shifted from their reference monomer energies.

The weak features observed to lower energy of the $A_{1g}(^1A_{1g}) \rightarrow E_u(^3E_u)$ transition have been the subject of much speculation. Arguments against assignment to transitions to $d_x^2-y^2$ -derived levels (e.g., "ligand-field" excited states) have been presented, and other assignments have been suggested: $d_{xy} \rightarrow p_z$, $d\sigma^* \rightarrow p\sigma^*$, and $d\sigma \rightarrow p\sigma$.¹

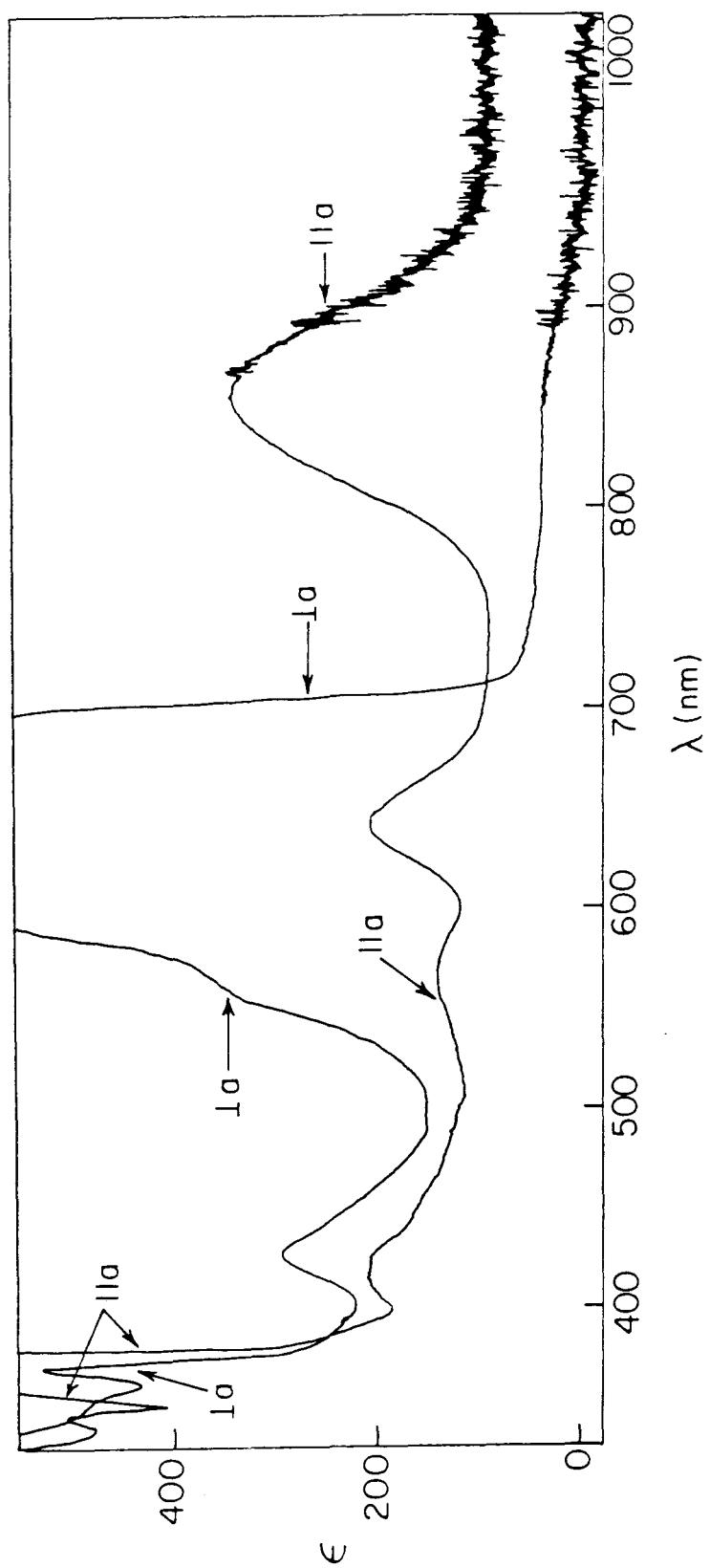
Figure 3.6 shows the low-temperature (77 K) absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$. Upon cooling, the expected sharpening and red shift of $A_{1g}(^1A_{1g}) \rightarrow A_{2u}(^1A_{2u})$ ($d\sigma^* \rightarrow p\sigma$) are observed. The red shift of the maximum indicates that the effective vibrational frequency that is coupled to the electronic transition is higher in the excited state than in the ground state.⁴⁷

The high-energy portion of the spectrum resolves impressively upon cooling. The bands assigned to $d\pi \rightarrow p\sigma$ excitations sharpen but do not shift. The shoulders on each side of the 320 nm band are resolved into distinct features with widths similar to those of the intense $d\pi \rightarrow p\sigma$ absorptions. A weak shoulder at 344 nm attributable to one quantum of $\nu(\text{NC})$ (2260 cm^{-1}) is resolved. The similarity of the high-energy portion of the low-temperature absorption spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ to that of $\text{Ir}(\text{CN}-t\text{-butyl})_4^+$ is remarkable.

Figure 3.6. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in a glassy matrix of $\text{CH}_3\text{CH}_2\text{CN}/2\text{-MeTHF}$ (1:2 volume ratio) at 77 K.



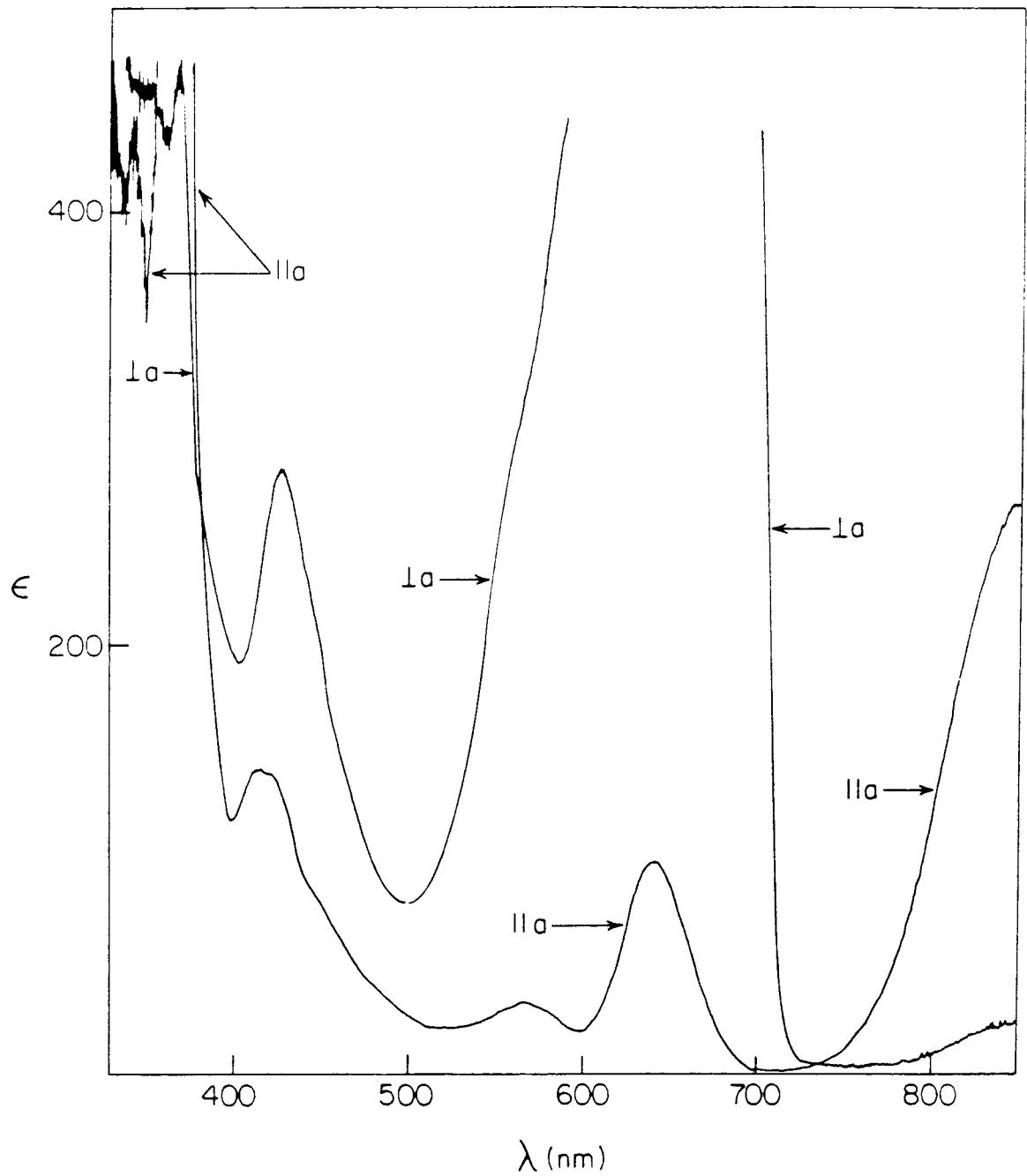
Single-Crystal Polarized Spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$


To verify the assignments of the solution and 77 K glass spectra, and to probe the nature of the weak transitions, single-crystal polarized spectra were measured. The room-temperature polarized single-crystal absorption spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$ are shown in Figure 3.7. Consistent with the earlier assignment, $\text{A}_{1g}(^1\text{A}_{1g}) \rightarrow \text{A}_{2u}(^1\text{A}_{2u})$ ($\lambda_{\text{max}} 645 \text{ nm}$) shows the expected z -polarization. At lower energy is the x,y -polarized $\text{A}_{1g}(^1\text{A}_{1g}) \rightarrow \text{E}_u(^3\text{A}_{2u})$ band ($\lambda_{\text{max}} 830 \text{ nm}$). These two features are the $d\sigma^* \rightarrow p\sigma$ transitions.

Upon cooling to 24 K, the spectrum sharpens and reveals additional features not resolved at room temperature (Figure 3.8). To the high-energy side of the $\text{A}_{2u}(^1\text{A}_{2u})$ band, a feature assignable to one quantum of $\nu(\text{NC})$ (2100 cm^{-1}) is observed in both polarizations ($\lambda_{\text{max}} 565 \text{ nm}$). (Modes of e_g and a_{1g} symmetries presumably lead to $\perp z$ and $\parallel z$ intensities, respectively.) This feature appears as a broad shoulder in the x,y -polarized room-temperature spectrum. The weak feature at 640 nm in the $\parallel a$ spectra at both room temperature and 24 K is interpreted in terms of a vibronically induced $\perp z$ intensity component of the transition to $\text{A}_{2u}(^1\text{A}_{2u})$, presumably involving low-frequency modes of e_g symmetry.⁴⁸ The observation that the intensity of this feature decreases significantly as the temperature is reduced to 24 K is consistent with the vibronic interpretation. The band assigned to the transition to $\text{E}_u(^3\text{A}_{2u})$ sharpens and red-shifts, as expected because of the higher-frequency metal-metal vibration in the excited state. Similar to the $\text{A}_{1g}(^1\text{A}_{1g}) \rightarrow \text{E}_u(^3\text{A}_{2u})$ band in the spectrum of $\text{Rh}_2(\text{TMB})_4^{2+}$, but in contrast to $\text{Rh}_2\text{b}_4^{2+}$, no vibronic structure is resolved at 24 K.¹ The metal-metal vibration (which is known from a Raman study to have values for the Ir_2 compound of 55 and 132 cm^{-1} in the ground and $^3\text{A}_{2u}$ excited states, respectively)¹² is expected to be the primary promoting mode for this electronic transition. The absence of a resolved vibronic progression built on the electronic

Figure 3.7. Polarized single-crystal absorption spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 25 °C. The $\parallel a$ base line is vertically offset by 20 ϵ units.

Figure 3.8. Polarized single-crystal absorption spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 24 K. The $\parallel a$ base line is vertically offset by 100 ϵ units.


absorption band may be due to broadening attributable to vibronic coupling involving a low-energy ligand mode.

Several well-resolved bands are observed at higher energy than the $d\sigma^* \rightarrow p\sigma$ absorption. The intense feature at 371 nm displays x,y-polarization, as expected for the $A_{1g}(^1A_{1g}) \rightarrow E_u(^3E_u)$ system. The weak band at 344 nm, resolved in both room-temperature and 24 K spectra, is x,y-polarized; it represents one quantum of $\nu(NC)$ (1970 cm^{-1}) built on the transition to $E_u(^3E_u)$. The sharp band at 369 nm in the z-polarized spectrum is assigned to $A_{1g}(^1A_{1g}) \rightarrow E_u(^3E_u)$; it appears in this polarization because of the slight misalignment of the chromophore in the crystal. The shoulder to higher energy is assigned to one quantum of $\nu(NC)$, presumably an e_g mode in this polarization.

Unambiguous polarizations for the higher-energy transitions could not be obtained because available crystals were too thick to allow maxima to be measured in either polarization. Indirect polarizations can be obtained from the room-temperature spectra (Figure 3.7), which could be extended to higher optical density than the low-temperature spectra. The band at 328 nm appears to be z-polarized, since intensity in the $\perp a$ polarization goes off scale near 340 nm well before it does in the $\parallel a$ polarization, but then comes back on scale at ~ 318 nm. This polarization is consistent with the $A_{1g}(^1A_{1g}) \rightarrow A_{2u}(^3E_u)$ assignment. The intense band(s) to higher energy are similarly indicated to be x,y-polarized, since the absorption $\perp a$ remains on scale down to nearly 290 nm. These observations are consistent with our assignments of the intense solution bands at 318 and 305 nm as the x,y-polarized transitions $A_{1g}(^1A_{1g}) \rightarrow E_u(^1E_u)$ and $A_{1g}(^1A_{1g}) \rightarrow E_u(^3B_{1u})$.

Several weak features are resolved to lower energy of the $A_{1g}(^1A_{1g}) \rightarrow E_u(^3E_u)$ band. Low-temperature single-crystal spectra of a thicker crystal of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$ are shown in Figure 3.9. The weak features in the 400- 500 nm region are better resolved and show distinct polarizations. Similar

Figure 3.9. Polarized single-crystal absorption spectra of a thicker crystal of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ at 22 K.

features have been reported for the analogous Rh complex.¹ Because of drastic thermal narrowing of the intense bands to higher and lower energy (Figures 3.7 and 3.8), the temperature dependence of the intensity of these bands is obscured. The most intense band, which peaks at 428 nm, is predominantly z-polarized. In x,y-polarization, the shape of the absorption is reproducibly very different, and we infer additional weak shoulders at 415 and 450 nm. The absorption maxima in the polarized single-crystal spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ are set out in Table 3.6.

Assignments

Many possible assignments have been considered for the weak features observed at lower energy than the $\text{A}_{1g}(^1\text{A}_{1g}) \rightarrow \text{E}_u(^3\text{E}_u)$ band. One initially attractive assignment, suggested for the Rh_2 complexes, was excitations into the $d\sigma^*(\text{Rh-C})$ orbitals derived from $\text{Rh}(\text{d}_{x^2-y^2})$,⁴⁹ as excited states of this type have been postulated to be thermally accessible from $^3\text{A}_{2u}(d\sigma^* \rightarrow p\sigma)$.⁵⁰ However, the halfwidths of these bands are far too narrow for transitions to $\text{d}_{x^2-y^2}$ -derived orbitals, because the excited state in question would be strongly distorted along $v(\text{M-C})$ coordinates.

The $\text{d}_{xy} \rightarrow \text{p}_z$ transitions ($\text{d}\delta, \delta^* \rightarrow \text{p}\sigma$), which are dipole-forbidden for both mononuclear and binuclear d^8 complexes, were viewed as another attractive possibility for the weak features.¹ The assignment of the 291 nm band in the spectrum of $[\text{Ir}(\text{CN-}t\text{-butyl})_4]\text{BF}_4$ to a transition to $\text{E}_u(^3\text{B}_{1g})$ (derived from $\text{d}_{xy} \rightarrow \text{p}_z$) indicates that it is not likely that the weak feature at 430 nm represents an analogous excitation. The $\text{d}_{xy} \rightarrow \text{p}_z$ transitions evidently are only weakly perturbed, as are the $\text{d}_{xz}, \text{d}_{yz} \rightarrow \text{p}_z$ excitations.

Another possibility has been suggested for the weak features. For $\text{Rh}_2\text{b}_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$, $\text{d}\sigma \rightarrow \text{p}\sigma$ and $\text{d}\sigma^* \rightarrow \text{p}\sigma^*$ excitations could be responsible for these bands.¹ (The relevant excited state, $\text{d}\sigma^* \text{p}\sigma^* + \text{d}\sigma\text{p}\sigma$, may not be strongly bound (*vide infra*) and therefore is best described as an excited monomer weakly coupled to a ground-state

Table 3.6. Absorption maxima for polarized single-crystal spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$.

$^1\text{A}_{1g} \rightarrow$	at 25 °C				at 24 K			
	pol.	λ_{max} , nm (ϵ , $\text{M}^{-1}\text{cm}^{-1}$)	fw hm, cm^{-1}	pol.	λ_{max} , nm (ϵ , $\text{M}^{-1}\text{cm}^{-1}$)	fw hm, cm^{-1}		
$\text{E}_u(^3\text{A}_{2u})$, $\text{d}\sigma^* \rightarrow \text{p}\sigma$	x,y	830 (180, $\parallel a$; 60, $\perp a$)	2200	x,y	855 (250, $\parallel a$; 40, $\perp a$)	1300		
$^1\text{A}_{2u}$, $\text{d}\sigma^* \rightarrow \text{p}\sigma$	z	645 (140, $\parallel a$; $\perp a$ ^a)		z	642 (110, $\parallel a$; $\perp a$ ^a)	1100		
+ $\nu(\text{CN})$	z; x,y	565		z; x,y	568 (50, $\parallel a$)			
a	x,y	~455 (40 sh, $\parallel a$)		x,y	~450 (65 sh, $\parallel a$)			
$^1\text{A}_{1g}$, $\text{d}\sigma/\sigma^* \rightarrow \text{p}\sigma/\sigma^*$	z > x,y	430 (~300, $\perp a$)	1400	z > x,y	428 (300, $\perp a$)	1500		
a				x,y	415			
$\text{E}_u(^3\text{E}_u)$, $\text{d}_{xz,yz} \rightarrow \text{p}_z$	x,y	371		x,y	369			
+ $\nu(\text{CN})$	z; x,y	345 (sh)		z; x,y	344			
$\text{A}_{2u}(^3\text{E}_u)$, $\text{d}_{xz,yz} \rightarrow \text{p}_z$	z	~328						
$\text{E}_u(^1\text{E}_u)$, $\text{d}_{xz,yz} \rightarrow \text{p}_z$	x,y	>320						

a. Off-scale.

b. Not assigned, see text.

monomer.) Such an assignment is quite appealing for $\text{Ir}_2(\text{TMB})_4^{2+}$. The spectral bandwidth (1500 cm^{-1}) is too great to correspond to a $d\pi \rightarrow p\sigma$ transition, but is similar to the bandwidths associated with $d_z^2 \rightarrow p_z$ excitations. Such transitions are dipole-forbidden; hence, the absorptions should be weak, with intensities induced by vibronic or crystal site-symmetry couplings. An interesting consequence of such an assignment is the correspondence of the 430 nm band in the spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ to the $\text{A}_{1g}(^1\text{A}_{1g}) \rightarrow \text{A}_{2u}(^1\text{A}_{2u})$ ($d_z^2 \rightarrow p_z$) absorption at 423 nm for $\text{Ir}(\text{CN-}t\text{-butyl})_4^+$. A similar correspondence between dimer and monomer band positions has been noted previously for the $d\pi \rightarrow p_z$ and $d_{xy} \rightarrow p_z$ excitations.

Note that only one $^1\text{A}_{1g}(d_z^2 \rightarrow p_z)$ transition is expected near 430 nm, since the other one (MO model) is to an ionic transition in the VB model (Figure 3.3).

Possible assignments for the additional weak features near 430 nm, as suggested by the VB model, are transitions to $^1,^3\text{E}_g$ bound states arising from $d\pi/\pi^* \rightarrow p\sigma/\sigma^*$ excitations. Such features might be somewhat red-shifted from the monomer transitions (Figure 3.1) and have widths comparable to the bound $d\sigma^* \rightarrow p\sigma$ excitation. The low intensity would suggest spin-forbidden transitions, possibly $^3(d\pi/\pi^* \rightarrow p\sigma/\sigma^*)$.

If the $d\sigma/\sigma^* \rightarrow p\sigma/\sigma^*$ assignment is correct, a corresponding band should be observed for the analogous Rh complexes. Indeed, for $\text{Rh}_2(\text{TMB})_4^{2+}$ and $\text{Rh}_2\text{b}_4^{2+}$, bands at 375 and 385 nm, respectively, are observed, each with the appropriate width and polarization.⁴⁶ (The $\text{A}_{2u}(^1\text{A}_{2u})$ transition for $\text{Rh}(\text{CNEt})_4^+$ is observed at 380 nm.)³¹

In addition to accommodating both weakly and strongly perturbed monomer transitions, the VB model identifies fully half of the dimer electronic excited states as ionic (MMCT). Earlier, we placed the MMCT transitions for $\text{Ir}(\text{I})$ and $\text{Rh}(\text{I})$ at approximately 240 and 200 nm, respectively. The correspondence between the predicted MMCT transition energies and the broad features at 270 and 240 nm for $\text{Ir}_2(\text{TMB})_4^{2+}$ and $\text{Rh}_2(\text{TMB})_4^{2+}$, respectively, makes assignment of the observed bands

to such transitions very attractive. The A-term behavior in the MCD spectrum suggests transitions to ${}^1,{}^3E_u$ ($d_{xz,yz} \rightarrow p_z$) states. The peak separation observed for $Ir_2(TMB)_4^{2+}$ (2000 cm^{-1}) is consistent with the expected singlet-triplet state splitting. For the covalent $d_{xz,yz} \rightarrow p_z$ transition, peak separations of 1400 cm^{-1} ($A_{2u}({}^3E_u)$) and 4500 cm^{-1} ($E_u({}^3E_u)$) are observed. The large bandwidths are attributed to ligand distortions caused by the change in electron density around the metal. In analogy to $Ir_2(TMB)_4^{2+}$, the high-energy features for $Rh_2(TMB)_4^{2+}$ are tentatively assigned to MMCT ($d_{xz,yz} \rightarrow p_z$) transitions. While this is but one of the possible assignments (other possibilities are transitions to $d_{x^2-y^2}^2$ states, which would have to be from $d\pi/\pi^*$ levels in order to account for the A terms, or MLCT states), the large blue shift of the bands in going from Ir to Rh is consistent with the ionic nature of the transition, and is not obviously consistent with any other interpretation. In line with this discussion, the highest energy band for $Ir_2(TMB)_4^{2+}$, which shows a weak -B term, may be attributable to an ionic ${}^1A_{2u}$ state derived from a $d\sigma/\sigma^* \rightarrow p\sigma/\sigma^*$ transition (e.g., the $d\sigma \rightarrow p\sigma^*$ state of the MO limit).

We have not made any assignments to states derived from excitations to the $d_{x^2-y^2}$ orbital. Such transitions, which are formally allowed for the dimer and have been assigned² for d^8-d^8 $Pt_2(P_2O_5H_2)_4^{4-}$, are not expected to give rise to intense bands.

Conclusions

The MO model accounts for some of the important aspects of the metal-metal interaction in binuclear d^8 complexes, but it is unable to accommodate all of the observed spectral features. The VB "weak-coupling" model allows for dimer transitions that are highly perturbed from the monomer bands as well as monomer-like dimer excitations. The VB model also identifies half of the dimer electronic excited states as ionic, involving metal-to-metal charge transfer; these MMCT states do not correlate to any monomer states. With the VB model, we have been able to rationalize the energies

and widths of the previously observed bands; in addition, we have arrived at plausible assignments for bands that were either not interpreted satisfactorily or not observed in earlier work. There is a striking similarity of our picture of the d⁸-d⁸ states to that derived from the spectroscopy of van der Waals molecules. The VB model does not change any of the MO-based interpretations of the thermal chemistry, photochemistry, or photophysics of these systems. What it does do is emphasize that weakly bound ground-state systems will show just a few strongly stabilized excited states that correlate to monomer states, and these are the only ones that MO theory describes correctly. The weakly perturbed monomer-like states, and, particularly, the ionic states, are better described by the VB model.

The VB model is applicable to the general class of dimeric systems in which the metals are nonbonded, in a formal sense, and can be viewed as weakly coupled (e.g., [Ir(μ -pz)(COD)]₂,⁵¹ binuclear d⁸ A-frame; Au₂(dppm)₂²⁺,⁵² binuclear d¹⁰ complex; Pt₂(dppm)₃,⁵³ binuclear d¹⁰ complex). In all of these cases, minimal perturbations of monomer states are expected except when collapse to a strongly bonded state can occur.

Acknowledgment. We thank Terry Smith, Steve Rice, Dave Brinza, Bill Goddard, and Woody Woodruff for early contributions to this work and for helpful discussions through the years. This research was supported by the Sun Company and by National Science Foundation Grant CHE84-19828.

References and Notes

1. Rice, S.F.; Miskowski, V.M.; Gray, H.B. *Inorg. Chem.*, 1988, 27, 4704-4708.
2. Stiegman, A.E.; Rice, S.F. Gray, H.B.; Miskowski, V.M. *Inorg. Chem.* 1987, 26, 1112-1116.
3. Isci, H.; Mason, W.R. *Inorg. Chem.* 1985, 24, 1761-1765.
4. Rodman, G.S.; Daves, C.A.; Mann, K.R. *Inorg. Chem.* 1988, 27, 3347-3353.
5. Milder, S.J.; Kliger, D.S. *J. Phys. Chem.* 1985, 89, 4170-4171.
6. Milder, S.J. *Inorg. Chem.* 1984, 24, 3376-3378.
7. Milder, S.J.; Kliger, D.S.; Butler, L.G.; Gray, H.B. *J. Phys. Chem.* 1986, 90, 5567-5570.
8. Winkler, J.R.; Marshall, J.L.; Netzel, T.L. Gray, H.B. *J. Am. Chem. Soc.* 1986, 108, 2263-2266.
9. Marshall, J.L.; Stiegman, A.E.; Gray, H.B. In *Excited States and Reactive Intermediates*; Lever, A.B.P., Ed.; ACS symposium Series 307; American Chemical Society: Washington, D.C., 1986; pp. 166-176.
10. Mann, K.R.; Gordon, J.G. II; Gray, H.B. *J. Am. Chem. Soc.* 1975, 97, 3553-3555.
11. Mann, K.R.; Thich, J.A.; Bell, R.A.; Coyle, C.L.; Gray, H.B. *Inorg. Chem.* 1980, 19, 2462-2468.
12. Smith, D.C., Ph.D. Dissertation, California Institute of Technology, 1989; Details of the Raman measurements (performed by Prof. R. Dallinger of Wabash College) will be published in a subsequent paper.

13. Miskowski, V.M.; Smith, T.P.; Loehr, T.M.; Gray, H.B. *J. Am. Chem. Soc.* **1985**, *107*, 7925-7934.
14. Herde, J.L.; Lambert, J.C.; Seroff, C.V. *Inorg. Synth.* **1974**, *15*, 18-20.
15. Green, M.; Kuc, T.A.; Taylor, S.H. *J. Chem. Soc. (A)* **1971**, 2334-2337.
16. Robinson, S.D.; Shaw, B.L. *J. Chem. Soc.* **1965**, 4997-5001.
17. *International Tables for X-ray Crystallography, Vol. IV*; Kynoch Press: Birmingham, England, 1974; p. 71, p. 149.
18. Gordon, A.J.; Ford, R.A. *The Chemist's Companion*; John Wiley & Sons: New York, 1972.
19. Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R. *Purification of Laboratory Chemicals*; Pergamon: Oxford, 1966.
20. Mason, W.R. *Anal. Chem.* **1982**, *54*, 646-648.
21. The differences in color of the two phases is due to the high degree of orientation in the well-developed crystal face of the toluene solvate, one extinction (\perp to the Ir_2 axis) transmitting yellow-green light (see Experimental Section). The crystals are air-stable *when dry* for days, but are air-oxidized (with notable surface degradation) upon longer exposure.
22. Determined from the ratio of the integrated intensities for toluene- CH_3 resonance and aromatic proton resonances, to the integrated intensities of the TMB resonances. A signal corresponding to the methyl resonance of the CH_3CN was not seen.
23. Miskowski, V.M.; Sigal, I.S.; Mann, K.R.; Gray, H.B.; Milder, S.J.; Hammond, G.S.; Ryason, P.R. *J. Am. Chem. Soc.* **1979**, *101*, 4383-4385.
24. Sigal, I.S.; Gray, H.B. *J. Am. Chem. Soc.* **1981**, *103*, 2220-2225.

25. Miskowski, V.M.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 1108-1112.
26. Several earlier studies of Ir(I) isocyanide complexes probably encountered such species.²⁷⁻²⁹ In particular, the study of Geoffroy *et al.*²⁹ in which blue species in solution could be photolyzed to generate monomeric Ir(I) isocyanide complexes probably represents photolysis of partially oxidized oligomers rather than photolysis of Ir(I) isocyanide oligomers.²⁹
27. Kawakami, K.; Hoga, M.-A.; Tanaka, T. *J. Organomet. Chem.* **1973**, *60*, 363-373.
28. Isci, H.; Mason, W.R. *Inorg. Chem.* **1975**, *14*, 913-918.
29. Geoffroy, G.L.; Bradley, M.G.; Kenny, M.E. *Inorg. Chem.* **1978**, *17*, 777-779.
30. Miskowski, V.M.; Nobinger, G.L.; Kliger, D.S. Hammond, G.S.; Lewis, N.S.; Mann, K.R.; Gray, H.B. *J. Am. Chem. Soc.* **1978**, *100*, 485-488.
31. Mann, K.R.; Lewis, N.S.; Williams, R.M.; Gray, H.B.; Gordon, J.G., II *Inorg. Chem.* **1978**, *17*, 828-834.
32. Isci, H.; Mason, W.R. *Inorg. Chem.* **1975**, *14*, 905-912.
33. Geoffroy, G.L.; Isci, H.; Litrenti, J.; Mason, W.R. *Inorg. Chem.* **1977**, *16*, 1950-1955
34. Brady, R.; Flynn, B.R.; Geoffroy, G.L.; Gray, H.B.; Peone, J., Jr.; Vaska, L. *Inorg. Chem.* **1976**, *15*, 1485-1488.
35. Craig, D.P.; Walmsley, S.H. *Excitons in Molecular Crystals*; Benjamin: New York, 1968.

36. Effective core potentials were utilized in which only the 19 outermost electrons of Rh and Ir are treated explicitly. See: Hay, P.J.; Wadt, W.R. *J. Chem. Phys.* **1985**, *82*, 299-310.
37. Smith, D.C.; Goddard, W.A. III *J. Am. Chem. Soc.* **1987**, *109*, 5580-5583.
38. Hopkins, M.D.; Gray, H.B.; Miskowski, V.M. *Polyhedron* **1987**, *6*, 705-714.
39. Cotton, F.A.; Walton, R.A. *Multiple Bonds Between Metal Atoms*; Wiley: New York, 1982.
40. The calculated Re atomic spectrum is fit to the observed atomic spectrum using a Condon-Shortley formalism. Corrections to the Condon-Shortley parameters were determined so as to fit the calculated spectrum to the observed spectrum. These parameters were then used to correct the energies of other calculated Re atomic states. The estimate of 2.65 eV is the difference between the observed ${}^1(\delta\delta^*)$ transition energy and the calculated value of 2K using the corrected atomic state energies. Using either the calculated ${}^3(\delta\delta^*)$ and ${}^1(\delta\delta^*)$ state splitting or calculated ${}^1(\delta\delta^*)$ transition energy would require using uncorrected atomic state energies and would not properly describe the ligand stabilization of the MMCT state.
41. The higher energy ${}^1A_{2u}$ state (" $d\sigma \rightarrow p\sigma^*$ ") obviously does not demand a shorter metal-metal bond. However, its extreme antibonding character mandates a higher energy, as supported by calculations on analogous states of Hg_2 .
42. Morse, M.D. *Chem. Rev.* **1986**, *86*, 1049-1109.
43. Celestino, K.C.; Ermler, W.C. *J. Chem. Phys.* **1984**, *81*, 1872-1881.
44. van Zee, R.D.; Blankspoor, S.C.; Zwier, T.S. *J. Chem. Phys.* **1988**, *88*, 4650-4654, and references therein.

45. For a detailed description of MCD terms together with the theory and conventions in standard use, see: Piepho, S.B.; Schatz, P.N. *Group Theory in Spectroscopy with Application to Magnetic Circular Dichroism*; Wiley-Interscience: New York, 1983.
46. Miskowski, V.M., unpublished results.
47. Ballhausen, C.J. *Molecular Electronic Structures of Transition Metal Complexes*; McGraw-Hill: New York, 1979; pp. 132-135.
48. The intensity is too high, according to oriented gas calculations, to be attributable to the slight misorientation of the Ir_2 axes.
49. Rice, S.F., Ph.D. Dissertation, California Institute of Technology, 1982.
50. Rice, S.F.; Milder, S.J.; Gray, H.B.; Goldbeck, R.A.; Kliger, D.S. *Coord. Chem. Rev.* **1982**, *43*, 349-354.
51. Marshall, J.L.; Stobart, S.R.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 3027-3029.
52. Jaw, H.-R.C.; Savas, M.M.; Rogers, R.D.; Mason, W.R., to be submitted.
53. Harvey, P.D.; Gray, H.B. *J. Am. Chem. Soc.*, in press.

Chapter 4

Thermal Reactivity of $\text{Ir}_2(\text{TMB})_4^{2+}$

Introduction

Binuclear d⁸ complexes are known to undergo two-electron oxidative addition reactions similar to mononuclear d⁸ complexes.¹⁻⁹ Unlike the mononuclear systems in which the metal is oxidized by two electrons,¹⁰ the dimers undergo addition reactions in which the metals are oxidized by one electron with formation of a metal-metal single bond. Interest in the addition reactions of binuclear complexes arises from two sources. In an effort to characterize the excited-state chemistry of a system, it is necessary to understand the thermal ground-state reactivity. Second, it is thought that binuclear complexes are more attractive for activating organic molecules than mononuclear complexes because of the possibility of cooperative involvement of metal sites.¹¹⁻¹⁵

While much effort has been expended toward understanding the various oxidative addition pathways for mononuclear systems, little is known for bimetallic complexes. Some general statements can be made by considering the electronic structure and the three-dimensional structure of these systems. Similar arguments for the orbital involvement in addition reactions can be made for the dimers as have been made for the mononuclear complexes.¹⁰ This is not necessarily apparent within the MO formalism; however, within the VB model, where the ground state is best described as two weakly coupled monomers, this is more apparent. For some dimer complexes, the metals have been observed to react independently, mimicking the monomer reactivity.¹⁶ One of the major considerations in the reactivity of bimetallic complexes is the influence of the three-dimensional structure on the reactivity. For a cage-like complex, concerted addition to one or both metal centers is unlikely. For an open A-frame complex, concerted additions to one or both metals are possible and have been observed.¹⁶⁻²⁰ One added feature that bimetallic systems possess, which may enhance their reactivity in comparison to monomers, is the formation of a metal-metal bond in the final product. It has been suggested that the increased enthalpy of reaction for oxidation addition may be attributed to formation of a metal-metal bond.⁷

Earlier work found that $\text{Rh}_2\text{b}_4^{2+}$, $\text{Rh}_2(\text{TMB})_4^{2+}$, $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$, and $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ react with dihalides to yield the corresponding d⁷-d⁷ dimer, X-M-M-X.^{1,2,9} $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ and $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ were also found to react with CH_3I to yield $\text{CH}_3\text{-M-M-I}$.^{2,9} It was found that $\text{Ir}_2(\text{TMB})_4^{2+}$ reacts with dihalides (Cl_2 , Br_2 , I_2), CH_3I , HCl , and $\text{CH}_2(\text{CN})_2$ to yield the corresponding d⁷-d⁷ complex, X-M-M-Y (X = Y, Cl_2 , Br_2 , I_2 ; X = I, Y = CH_3 ; X = Cl, Y = H; X = $\text{CH}(\text{CN})_2$, Y = H).³ Because of the greater reactivity expected for Ir and the interest in the photochemical reactivity of the excited states of $\text{Ir}_2(\text{TMB})_4^{2+}$, extension of the thermal chemistry was pursued.

Experimental

Synthesis

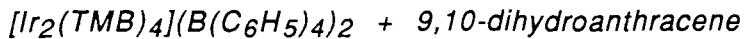
All synthetic procedures were carried out with standard Schlenk techniques. All solvents were from freshly opened bottles with no further purification. All solvents were degassed prior to use. Standard procedures were used to prepare $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$.²¹ Methyl iodide was distilled prior to use. All other chemicals were of reagent grade or of comparable quality and were used as received. The ^1H NMR spectra were obtained on a 400 MHz JNM-GX400 FT NMR spectrometer.

$[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$

To a CH_3CN solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$, a slight excess of freshly distilled CH_3I was added via syringe. The color of the solution changed immediately upon addition, from clear blue to clear yellow. The solution was stirred for 10 minutes. Solvent and excess CH_3I were removed under vacuum to yield an orange-yellow powder that was recrystallized from acetone to yield yellow crystalline material. A red-orange emission was observed from the recrystallized material at 77 K in the solid state. Calculated for $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$: C, 58.7; H, 5.9; N, 6.1. Calculated for 0.85 $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 0.15 $[\text{Ir}_2(\text{TMB})_4(\text{I})_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$: C, 58.1; H, 5.8; N, 6.1. Calculated for $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot 2\text{CH}_3\text{COCH}_3$: C, 58.9; H, 6.2; N, 5.8. Found: C, 58.8; H, 6.1; N, 5.7. Sample dried in vacuum: C, 58.3, H, 5.9; N, 6.1. ^1H NMR: $\delta(\text{CD}_3\text{CN}, 20^\circ\text{C})$; 0.95 (singlet, CH_3 , 3H), 1.53 (broad singlet, CH_2 , 16H), 2.09 (singlet, CH_3 , 48H), 6.83 (triplet-of-triplets, 8H), 6.98 (triplet, 16H), 7.25 (multiplet, 16H).

$[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{COCl})](\text{B}(\text{C}_6\text{H}_5)_4)_2$

To a clear, blue acetonitrile solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$, 1.4 equivalents of acetylchloride was added via syringe. An immediate color change was


observed, blue to yellow. The solution was stirred for 10 minutes. The final solution was a cloudy yellow. Solvent and excess acetylchloride were removed under vacuum to yield a light yellow powder. Attempts to recrystallize this material from acetone led to a rapid color change of the solution, yellow to blue-green.

NMR Tube Reactions

Acetonitrile-*d*₃ was freeze-pump-thaw degassed, stored under vacuum over activated alumina, and vacuum-transferred into the NMR tube. Cyclohexadienes were distilled from NaBH₄ under argon, freeze-pump-thaw degassed, stored under vacuum, and protected from light. 9,10-dihydroanthracene was recrystallized three times from absolute ethanol. A CD₃CN solution of [Ir₂(TMB)₄](B(C₆H₅)₄)₂ was prepared in a grease-free/vacuum-adapted NMR tube. To this tube was added the desired substrates. Gases (HCl and HI) were freeze-pump-thaw degassed or scrubbed (H₂) with the appropriate catalyst prior to addition. Liquids were either added via syringe in an inert atmosphere (R₃SnH and R₃SiH) or vacuum-transferred from an appropriate storage flask (1,4-cyclohexadiene and 1,3-cyclohexadiene). Solids (CH₂(CN)₂ and 9,10-dihydroanthracene) were added to crystalline [Ir₂(TMB)₄](B(C₆H₅)₄)₂ and the mixture dissolved in CD₃CN.

[Ir₂(TMB)₄(C₆H₅C≡C)H](B(C₆H₅)₄)₂

To the CD₃CN solution of [Ir₂(TMB)₄](B(C₆H₅)₄)₂ (0.005 g) was added via syringe an excess of phenylacetylene. The solution was agitated at room temperature overnight. ¹H NMR: δ(CD₃CN, 20 °C); -10.79 (singlet, Ir-H), 1.52 (broad singlet, CH₃), 1.91 (broad singlet, CH₂), 6.83 (triplet), 6.98 (triplet), 7.26 (multiplet).

$[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and freshly recrystallized 9,10-dihydroanthracene were combined in a grease-free/vacuum-adapted NMR tube. Acetonitrile- d_3 was vacuum-transferred onto the solids. The NMR tube was wrapped in foil and placed in the dark at room temperature overnight to allow the solid material to dissolve. The NMR spectrum of the sample was measured after 12 hrs. The sample, wrapped in foil, was placed in an 80 °C oil bath for 20 hrs. ^1H NMR: $\delta(\text{CD}_3\text{CN}, 20\text{ }^\circ\text{C})$; -10.62 (singlet, Ir-H); anthracene, 7.50 (multiplet, 4H), 8.05 (quartet, 4H), 8.50 (singlet, 2H).

Spectroscopic Measurements

All solvents were dried and degassed by standard methods.^{22,23} Absorption spectra were recorded with a Cary 17 spectrophotometer, a Hewlett-Packard 8450A spectrophotometer, or a Shimadzu UV-260 spectrophotometer. Spectra were obtained of solutions prepared on a high-vacuum line in a cell consisting of a 10 ml Pyrex bulb, a 1 cm pathlength quartz cell, and a Teflon vacuum valve. Several spectra of the complexes that are air-stable in solution were measured, of samples prepared in the air in 1 cm pathlength quartz cuvettes. Substrates were introduced to $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ solutions as described for the NMR tube reactions.

Electrochemical Measurements

Cyclic voltammetric measurements were conducted with a Princeton Applied Research (PAR) model 173 potentiostat/galvanostat, a model 175 universal programmer, and a model 179 digital coulometer. Cyclic voltammograms (CVs) were plotted on a Houston Instruments Omniphotic 2000 x,y-recorder. Fast-sweep CVs were recorded on a Tektronix 5223 digitizing oscilloscope. The cell geometry used to measure the CVs is described elsewhere.²⁴ CVs were measured at a BAS Pt button working electrode, with a Pt wire auxiliary electrode, and a sodium saturated calomel

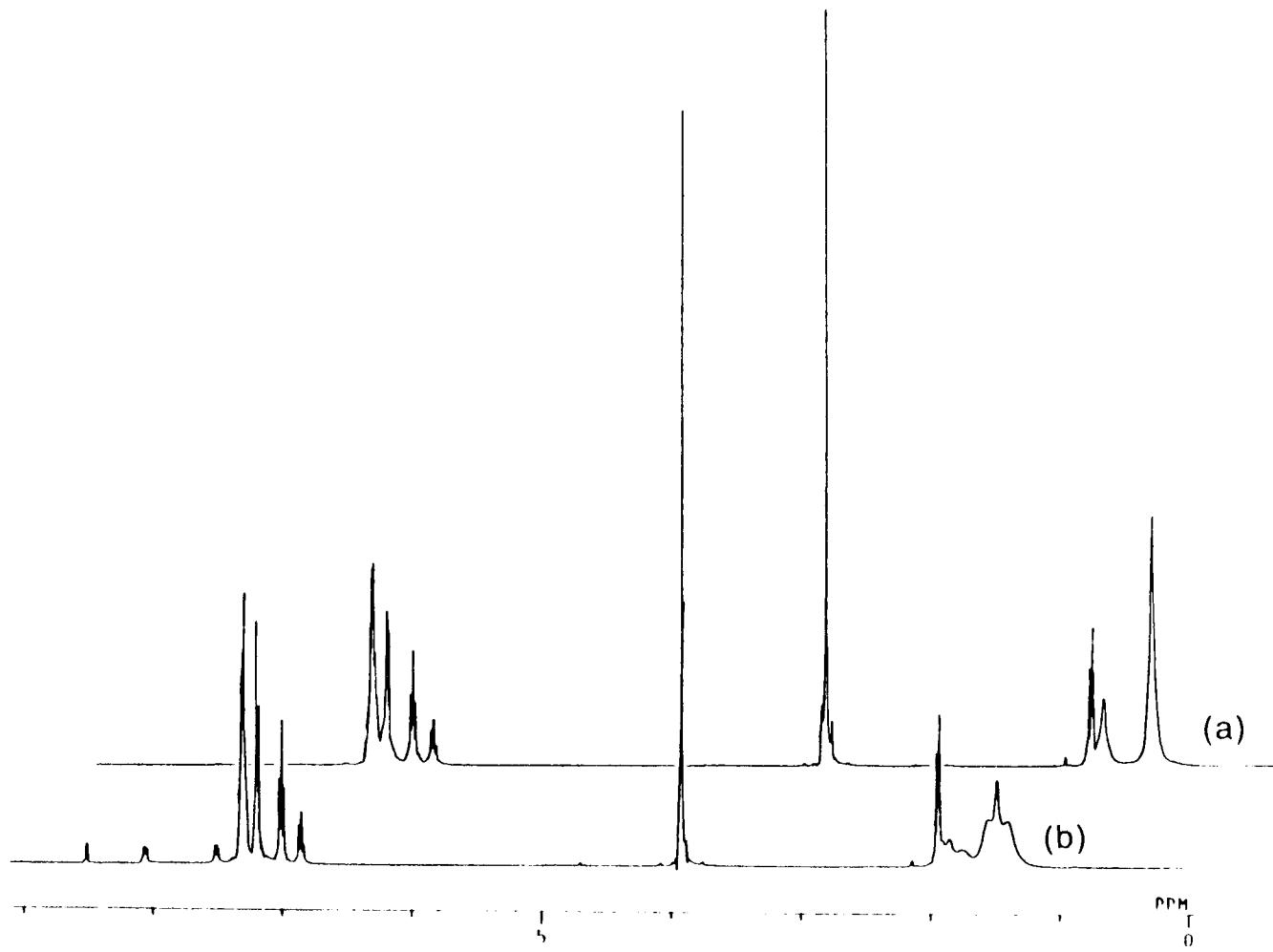
electrode (SSCE) as the reference. Dichloromethane was distilled from CaH_2 under an atmosphere of argon, freeze-pump-thaw degassed, and stored under argon. Tetra-*n*-butyl ammonium hexafluorophosphate (TBAPF₆) was recrystallized 3 times from 95% ethanol. CVs of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ were measured for dichloromethane solutions under argon that contained 0.1 M TBAPF₆ as the supporting electrolyte and 10-³ M compound.

Additional Measurements

Elemental analyses were obtained at the CalTech Analytical Laboratory.

Results and Discussion

Thermal Reactivity


Nonpolar and Low Polarity Reagents (H₂, C-H, Si-H, Sn-H)

As was noted by T.P. Smith, no reaction with H₂ is observed.³ This is not surprising in that no reaction with H₂ has been observed for the mononuclear alkyl isocyanide complexes. This has been understood to be a result of the decrease in electron density at the metal because of the π acidity of the isocyanide ligands. If phosphine is exchanged for isocyanide, as in the complex Rh₂(dppm)₂(CN-*n*-hexyl)₄²⁺, slow thermal addition of H₂ is observed. In analogy to [Ir(CO)Cl(dppm)]₂,¹⁶ H₂ addition is thought to proceed in a concerted fashion to one metal with rapid transfer of one hydride to the other metal center.

There are no known examples of concerted C-H addition to a binuclear d⁸ complex. For Ir₂(TMB)₄²⁺, preliminary results indicate that thermolysis with 9,10-dihydroanthracene in CD₃CN at 80 °C yields products that are derived from C-H bond cleavage. Figure 4.1 shows the growth with time of anthracene and a metal product independently characterized as Ir₂(TMB)₄H₂²⁺. The most likely pathway to the observed products is a free-radical process. Over a 12 hr period a 78% yield of anthracene, based on starting metal concentration, is obtained. This is the first example of a thermal C-H bond cleavage reaction by a binuclear d⁸ complex. There is no observable reaction with 1,4-cyclohexadiene or 1,3-cyclohexadiene at 25 or 80 °C.

For substrates described as carbon acids (CH₂(CN)₂, pK_a ~ 11; C₆H₅C≡CH, pK_a ~ 18.5),²⁵ reactions with Ir₂(TMB)₄²⁺ are observed and yield products best represented as H-Ir-Ir-R. Earlier work by T.P. Smith suggested that the reaction of malononitrile was not an acid/base reaction in that acetyl acetone (pK_a ~ 9) and benzoic acid (pK_a ~ 10.7) did not show similar reactivity.³ Rigorous exclusion of light did not alter the reaction with malononitrile. It was thought that the prior coordination of the CN groups to the iridium center may be necessary for reaction, although no evidence to

Figure 4.1. NMR spectra of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene (a) prior to thermolysis, and (b) after 12 hrs thermolysis in 80 °C oil bath.

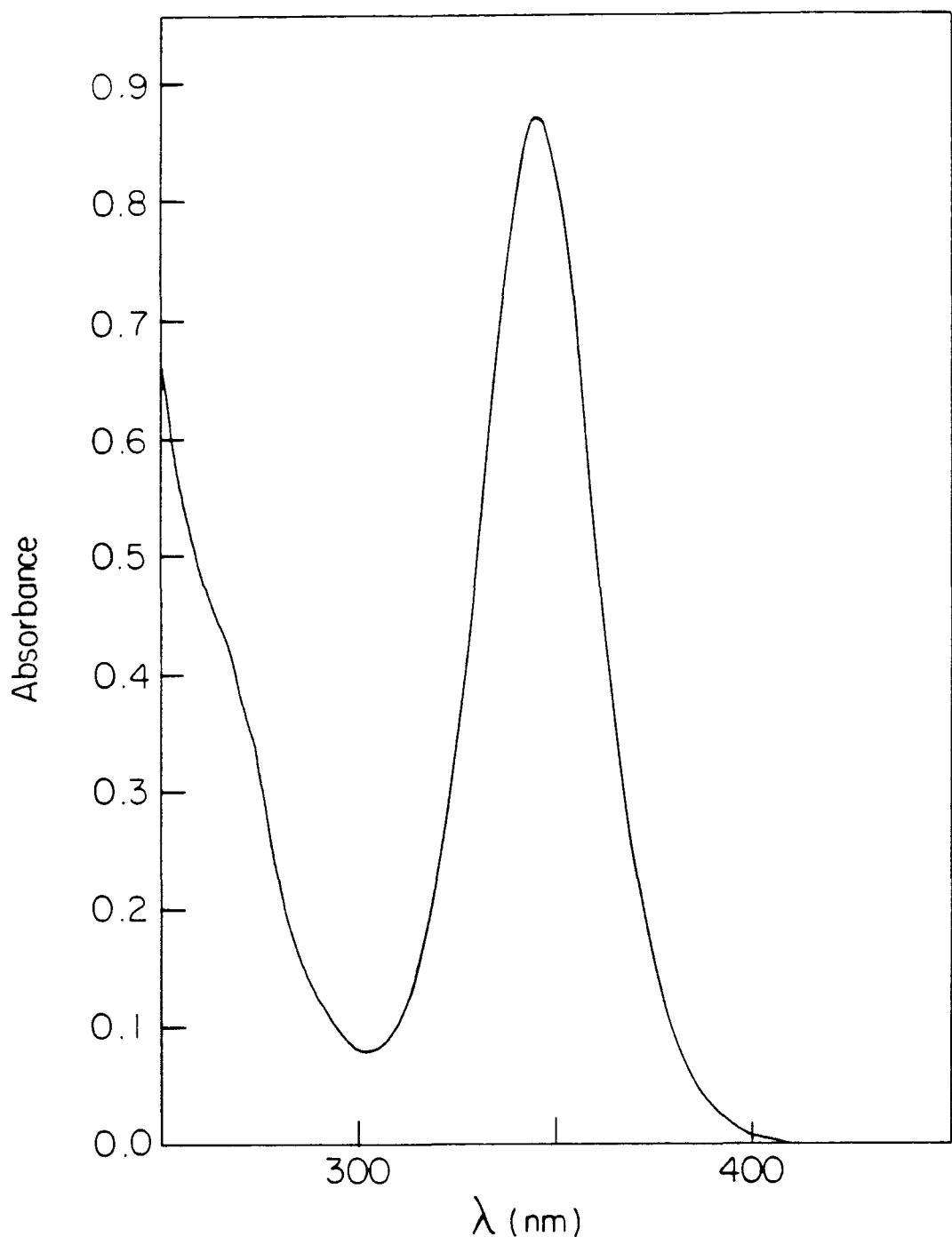
support this suggestion could be obtained. The lack of reactivity of acetyl acetone may be due to bad steric interactions with the methyl groups of the TMB ligand in the final product. Dimerization of benzoic acid or the instability of the final product are possible explanations of the lack of reactivity of this substrate.²⁶

For $C_6H_5C\equiv CH$, a smooth reaction with $Ir_2(TMB)_4^{2+}$ is observed. Although the final product has not been isolated, the chemical shift of the Ir-H resonance and the nature of the aliphatic resonances lead to the suggestion that the product is $H-Ir-Ir-C\equiv CC_6H_5$. Similar to the reaction with malononitrile, the addition of phenylacetylene is thought to be an acid/base process. Homolytic cleavage of the C-H bond of phenylacetylene seems unlikely ($D(C_6H_5C\equiv C-H) \sim 130$ kcal/mol).²⁷

Addition of acetylenes to Rh(I) and Ir(I) phosphine complexes has been recently studied.²⁸ It is suggested that these reactions rather than acid/base processes are concerted additions to the metal center. For $Ir_2(TMB)_4^{2+}$, such a concerted addition is not likely, and an acid/base pathway is preferred. It may, in fact, be the case that for the mononuclear Rh(I) and Ir(I) phosphine complexes, the true reaction pathway is acid/base.

For R_3SiH and R_3SnH , rapid thermal reactions with $Ir_2(TMB)_4^{2+}$ are observed. In the optical absorption spectrum, a rapid bleach of the binuclear d^8 spectrum is observed with growth of a spectrum that indicates oxidation of the metal complex, but not necessarily formation of a d^7-d^7 dimer complex. For $Pt_2(P_2O_5H_2)_4^{4-}$, no thermal reaction with R_3SiH or R_3SnH is observed.²⁹ The NMR spectra of the reaction mixtures do reveal formation of metal hydrides.

Electrophilic Reagents (X_2 , RX , HX , CH_3COCl)

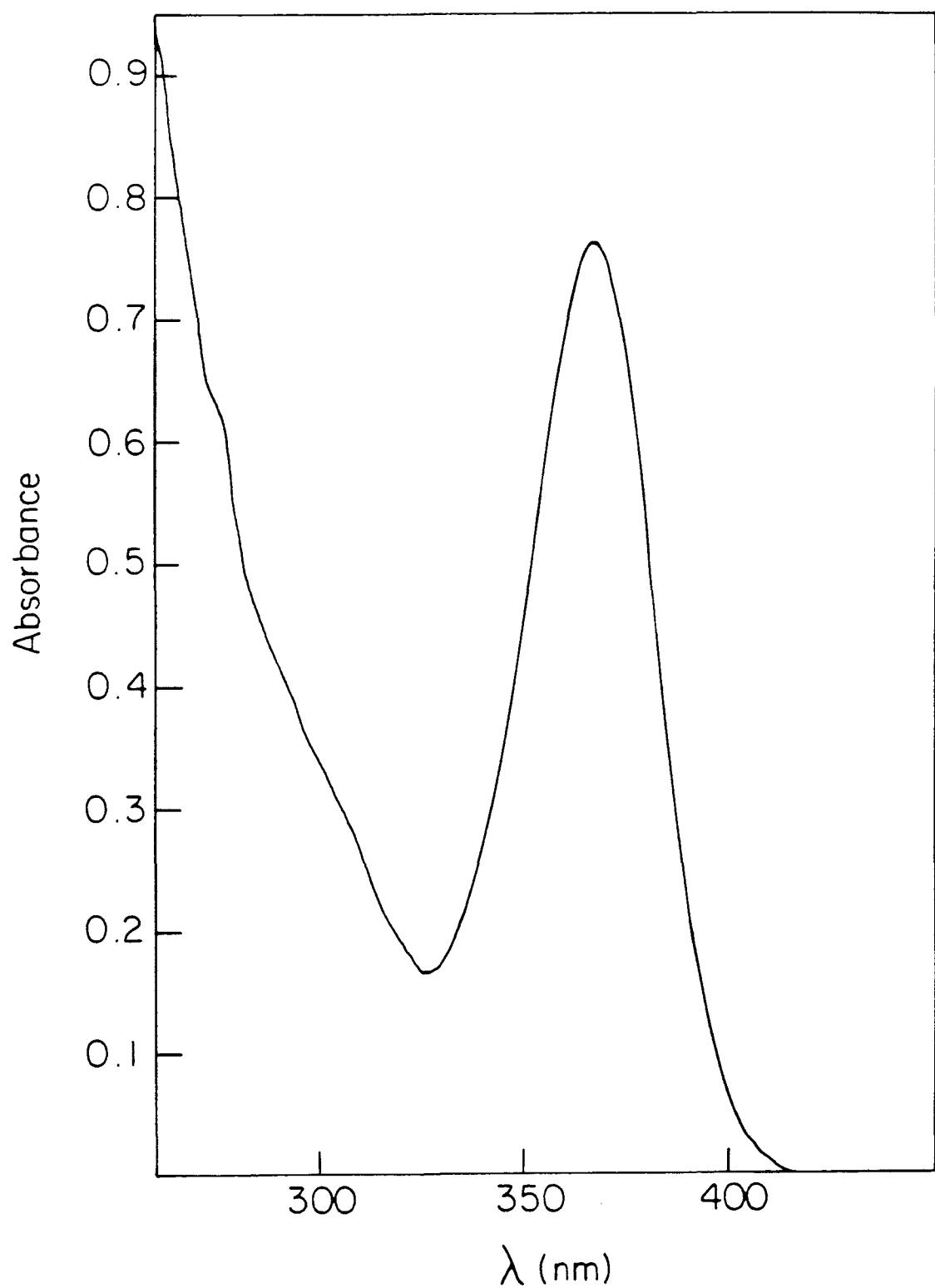

Previous work has shown that dihalides and mineral acids will add to $Ir_2(TMB)_4^{2+}$ oxidatively to yield the corresponding d^7-d^7 complex.³ The only alkyl halide found to add thermally to $Ir_2(TMB)_4^{2+}$ is CH_3I . No thermal reaction is observed

with CH_2Cl_2 , CHCl_3 , CCl_4 , or $\text{ClCH}_2\text{CH}_2\text{Cl}$. Previous discussion of the CH_3I reaction had concluded that the reaction follows a free-radical pathway. For analogous mononuclear d^8 complexes, detailed studies have shown that the addition of CH_3I , unlike other alkyl halides, proceeds by an $\text{S}_{\text{N}}2$ pathway,¹⁰ contrary to the result for $\text{Ir}_2(\text{TMB})_4^{2+}$. Emphasized in the work on mononuclear complexes is the fine balance that exists between the concerted $\text{S}_{\text{N}}2$ pathway and the electron-transfer, free-radical pathway. For $\text{Ir}_2(\text{TMB})_4^{2+}$, the balance may be swayed in favor of electron transfer.

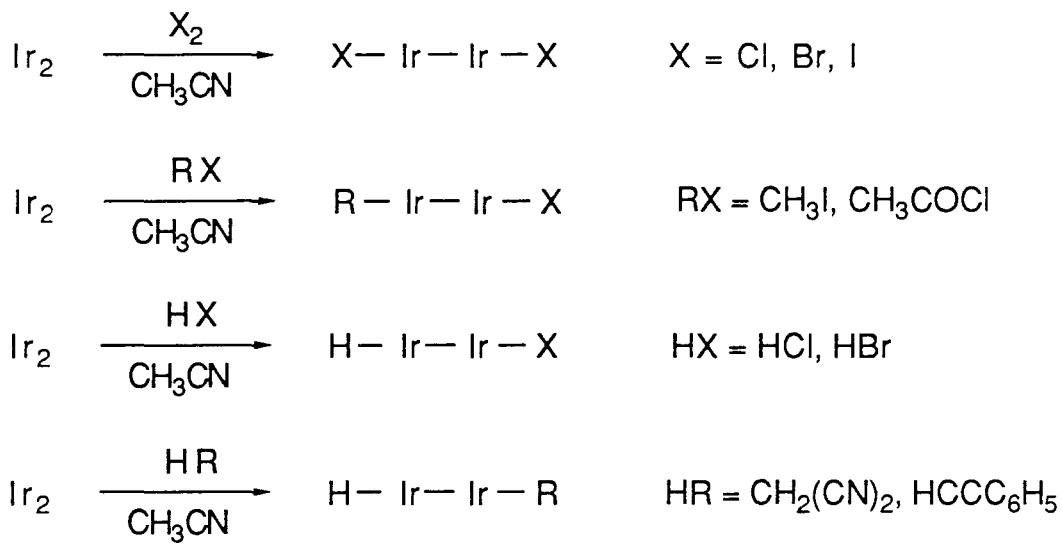
Careful preparation and isolation of the addition products from the reaction of CH_3I and $\text{Ir}_2(\text{TMB})_4^{2+}$ indicate that, unlike the earlier report, there is very little if any $\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$ (Ir_2I_2) contamination. The Ir_2I_2 by-product was used as evidence for a free-radical process. The UV-Vis spectrum of the isolated material (Figure 4.2) shows no evidence of Ir_2I_2 contamination. The NMR spectrum of the isolated product appears quite clean. Neglecting the large uncertainty in the integrated intensities of the NMR resonances, an estimate of ~15% Ir_2I_2 contamination is arrived at by comparing the ratio of Ir-CH_3 to TMB-CH_2 . However, from the combustion data a 15% Ir_2I_2 impurity seems unlikely. Rather, the complex appears to be an acetone solvate. Thus, addition of CH_3I to $\text{Ir}_2(\text{TMB})_4^{2+}$ appears to yield only $\text{Ir}_2(\text{TMB})_4(\text{CH}_3)(\text{I})^{2+}$.

These results do not distinguish between the possible pathways for addition of CH_3I . Alkyl halide addition to binuclear gold complexes is thought to proceed via an $\text{S}_{\text{N}}2$ pathway.^{30,31} Another possibility is an inner-sphere electron-transfer pathway in which a solvent-caged radical pair is formed. This pathway would yield products that are the same as that from an $\text{S}_{\text{N}}2$ reaction. Evidence exists that suggests the addition of I_2 to $\text{Rh}_2\text{b}_4^{2+}$ follows an electron-transfer pathway.³² No conclusion concerning the pathway of alkyl halide addition to $\text{Ir}_2(\text{TMB})_4^{2+}$ is possible until more detailed experiments designed to test the various mechanism are done. Such experiments would be similar to those discussed for the mononuclear complexes.

Figure 4.2. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{I})](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C.


Addition of acetylchloride to a solution of $\text{Ir}_2(\text{TMB})_4^{2+}$ results in a rapid reaction with formation of a yellow material similar to that obtained from the reaction of CH_3I . The optical absorption spectrum of this material (Figure 4.3) indicates formation of a d^7 - d^7 complex different from the previously prepared dichloride adduct and red-shifted from the spectrum expected for $\text{Ir}_2(\text{TMB})_4(\text{CH}_3)(\text{Cl})^{2+}$. The proposed product is $\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})(\text{Cl})^{2+}$. Attempts to recrystallize the material lead to rapid decomposition. For analogous mononuclear Ir(III) acyl complexes, decarbonylation occurs rapidly upon heating.¹⁰ The yellow material is quite susceptible to decomposition, yielding blue-green materials upon heating, exposure to solvents such as acetone, and prolonged exposure to light.

Summary


The observed thermal reactivity for $\text{Ir}_2(\text{TMB})_4^{2+}$ (Figure 4.4) conforms to the earlier expectations of net two-electron chemistry. While the details of the specific pathways for the various reactions are not known, the reactivity parallels that observed for the analogous mononuclear complexes. The reactivity of the monomers is controlled by the $(d_z^2)^2$ configuration, with the reactivity of the dimer being dictated by the $(d\sigma^*)^2$ configuration, or more accurately, two weakly coupled $(d_z^2)^2$ metal centers. In contrast to the monomers, the metal centers of the dimer are oxidized by only one electron with formation of a metal-metal single bond. No complications that were due to reactions involving the isocyanide ligand were observed.³³

It will be shown in subsequent sections that the excited-state chemistry contrasts drastically to the ground-state chemistry. As stated earlier, the ${}^1,{}^3(d\sigma^* p\sigma)$ excited states may be viewed as a diradical species, implying that the chemistry for such excited states will be one electron in nature, i.e., electron transfer and atom transfer, in contrast to the two-electron chemistry of the ground state. Free-radical reactions may occur for the ground state. These reactions involve oxidation of the metal complex,

Figure 4.3. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C.

Figure 4.4. Observed thermal reactions of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$.

generating a species whose electronic structure is similar to the triplet excited state, an oxidizing hole in the $d\sigma^*$ orbital. It will be shown that electrochemical oxidation of $\text{Rh}_2(\text{TMB})_4^{2+}$ to generate $\text{Rh}_2(\text{TMB})_4^{3+}$ in the presence of alkyl halides and H-atom donors results in reactions that parallel those observed for the $^3(d\sigma^*p\sigma)$ excited state.

Ir-H Chemical Shifts

In Table 4.1, the Ir-H chemical shifts for a series of d^7 - d^7 complexes of $\text{Ir}_2(\text{TMB})_4^{2+}$ are listed. The unique feature of these complexes is the extreme sensitivity of the chemical shift of the Ir-H resonance to the nature of the ancillary group. A possible explanation for this behavior comes from the theory of Buckingham and Stephen in which the mixing of low-lying, electronic excited states into the ground-state wave function determines the hydride chemical shift.^{34,35} For complexes of the type YX_4MH , the paramagnetic shielding, $\sigma\mathbf{P}$, is predicted to be very sensitive to the anisotropy of the complex. This is borne out for the limited data in Table 4.1.

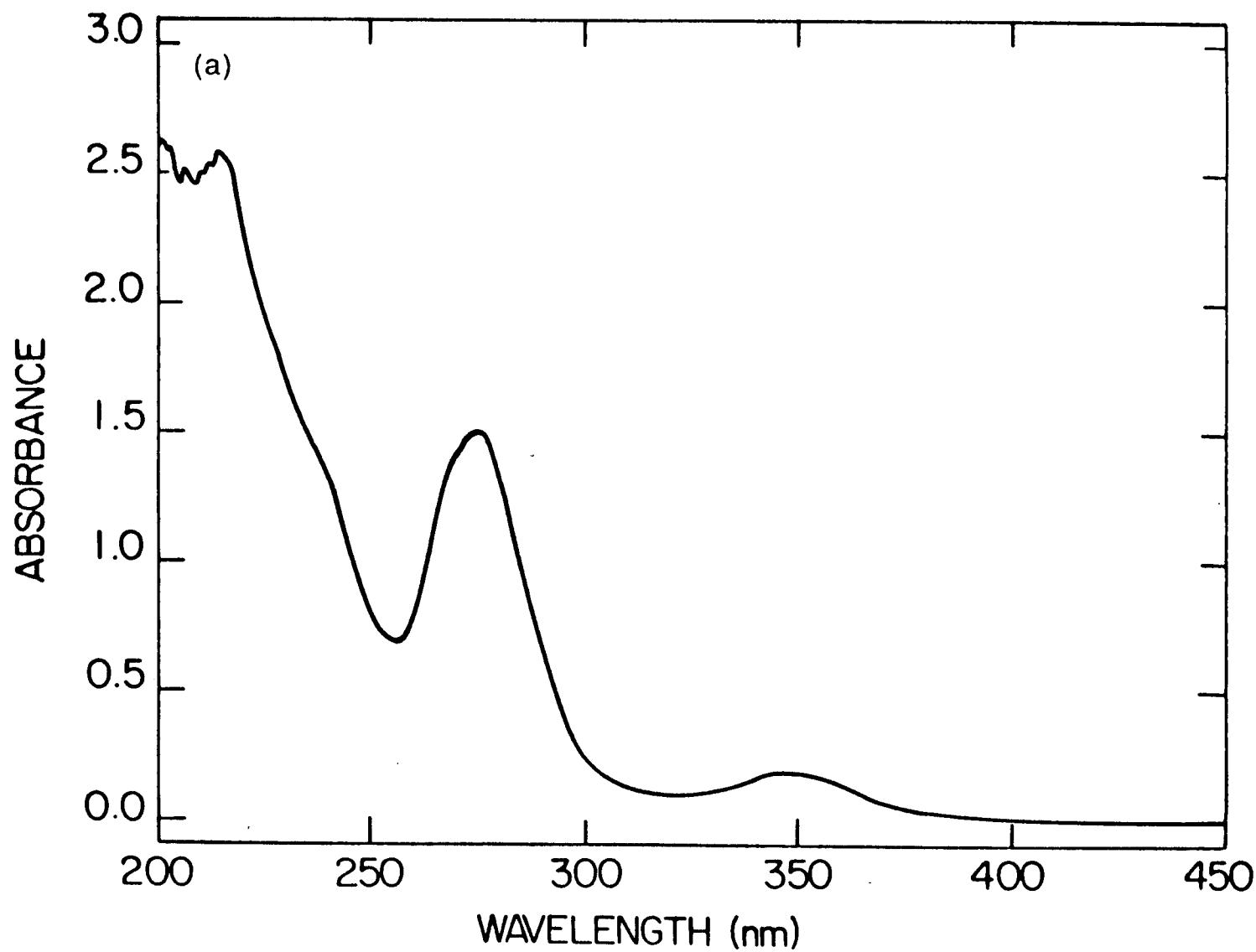
In the Buckingham model, the relative chemical shifts for complexes of the type YX_4MH are governed by the ligand-field strength of the ligand Y; as the ligand-field strength of Y increases, $\sigma\mathbf{P}$ should decrease. Within the limited data set for H-Ir-Ir-Y, the expected shift of the hydride resonance with increasing ligand-field strength of Y is observed. Electronic coupling of groups trans to one another through a metal-metal bond is known;³⁶ however, the trend in hydride chemical shift for the d^7 - d^7 complexes of $\text{Ir}_2(\text{TMB})_4^{2+}$ is surprising, considering the complexity of the electronic coupling of the metal centers. Further studies are necessary to determine how well the Buckingham model describes these systems.

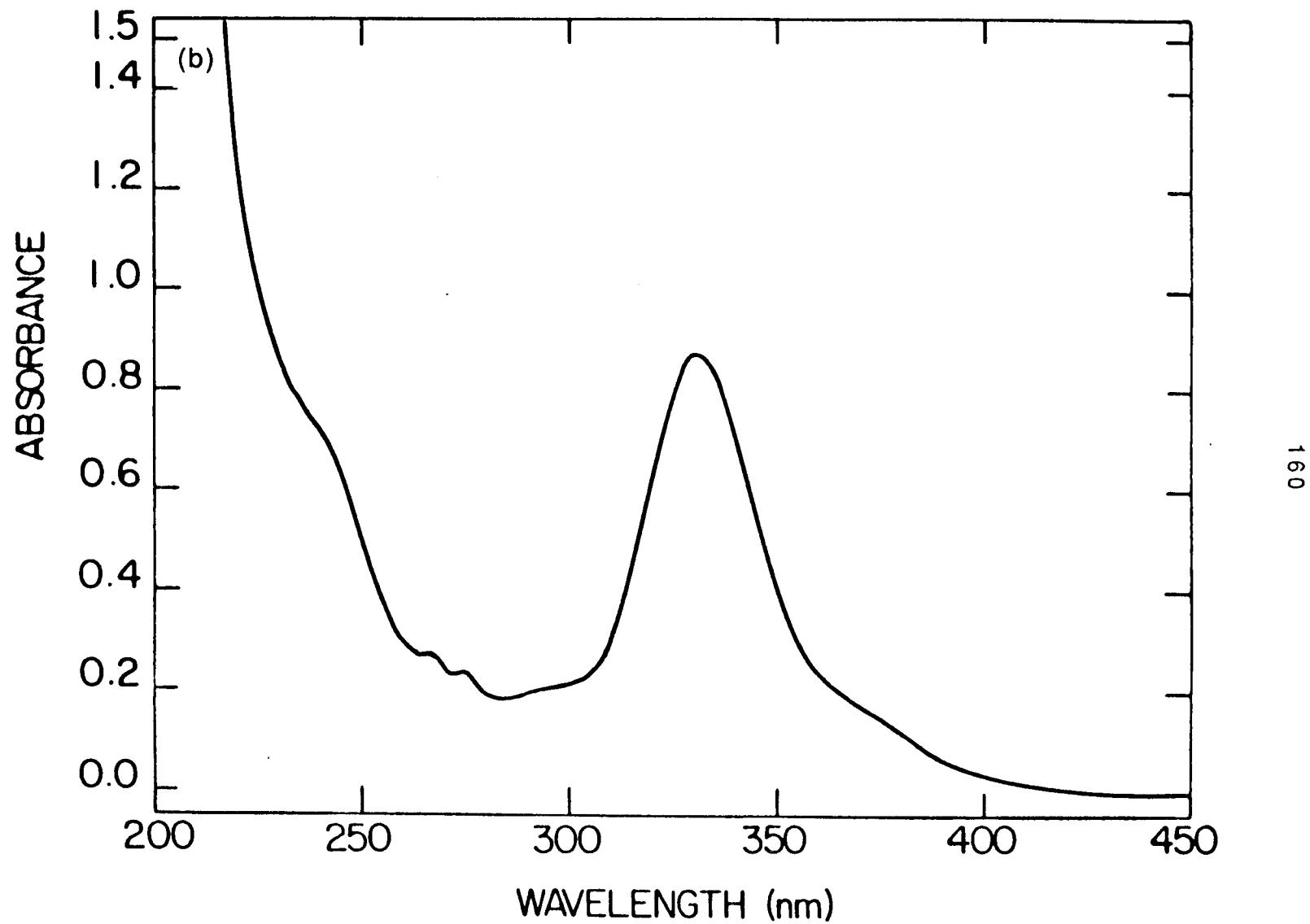
Electronic Spectra of d^7 - d^7 Complexes of $\text{Ir}_2(\text{TMB})_4^{2+}$

In Table 4.2, the optical absorption spectra for a series of d^7 - d^7 complexes of $\text{Ir}_2(\text{TMB})_4^{2+}$ are summarized. Figure 4.5 presents the spectra for several of these

Table 4.1. Ir-H Chemical Shifts.

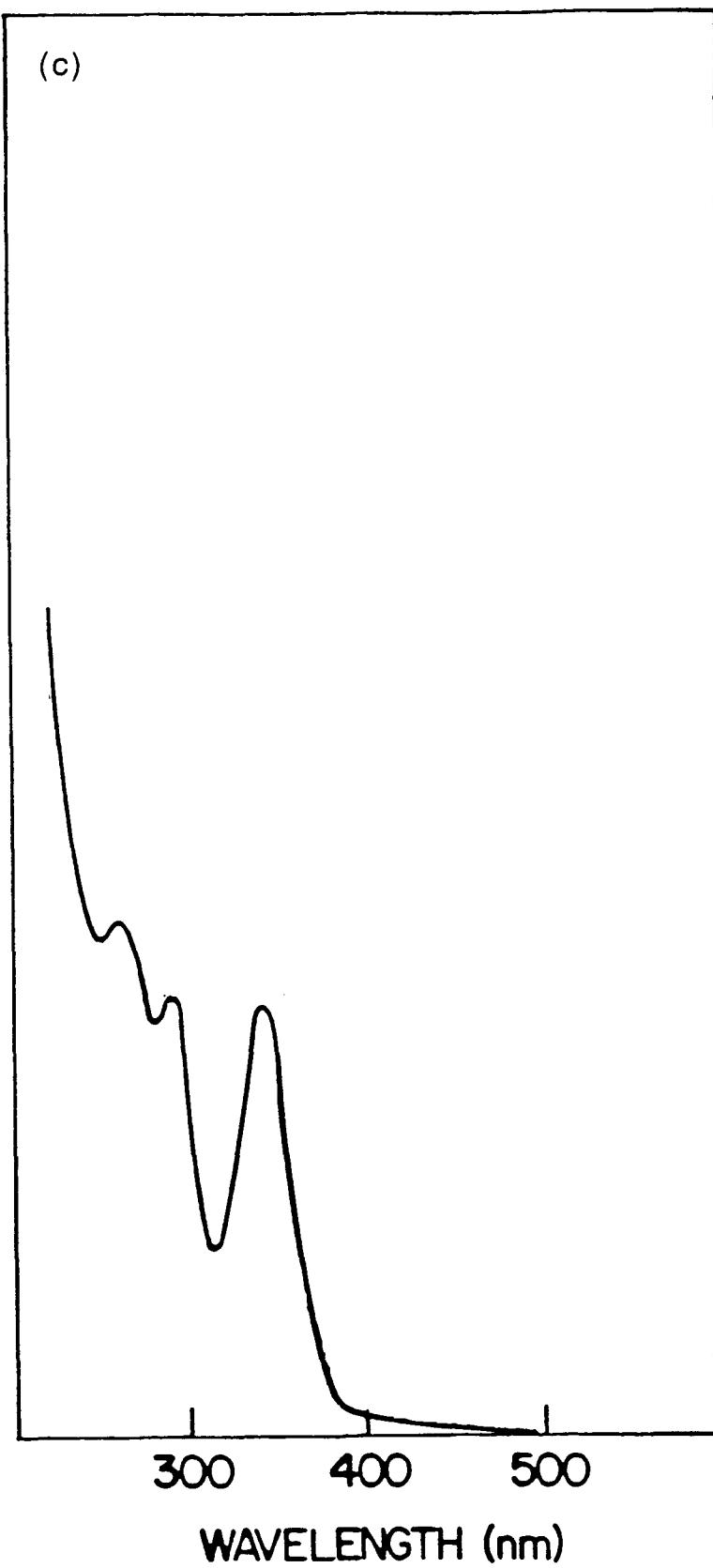
H-Ir-Ir-X	δ (ppm)
H-Ir-Ir-Cl	-13.5
H-Ir-Ir-I	-13.1
H-Ir-Ir-CH(CN) ₂	-11.9
H-Ir-Ir-C≡CC ₆ H ₅	-10.8
H-Ir-Ir-H	-10.6

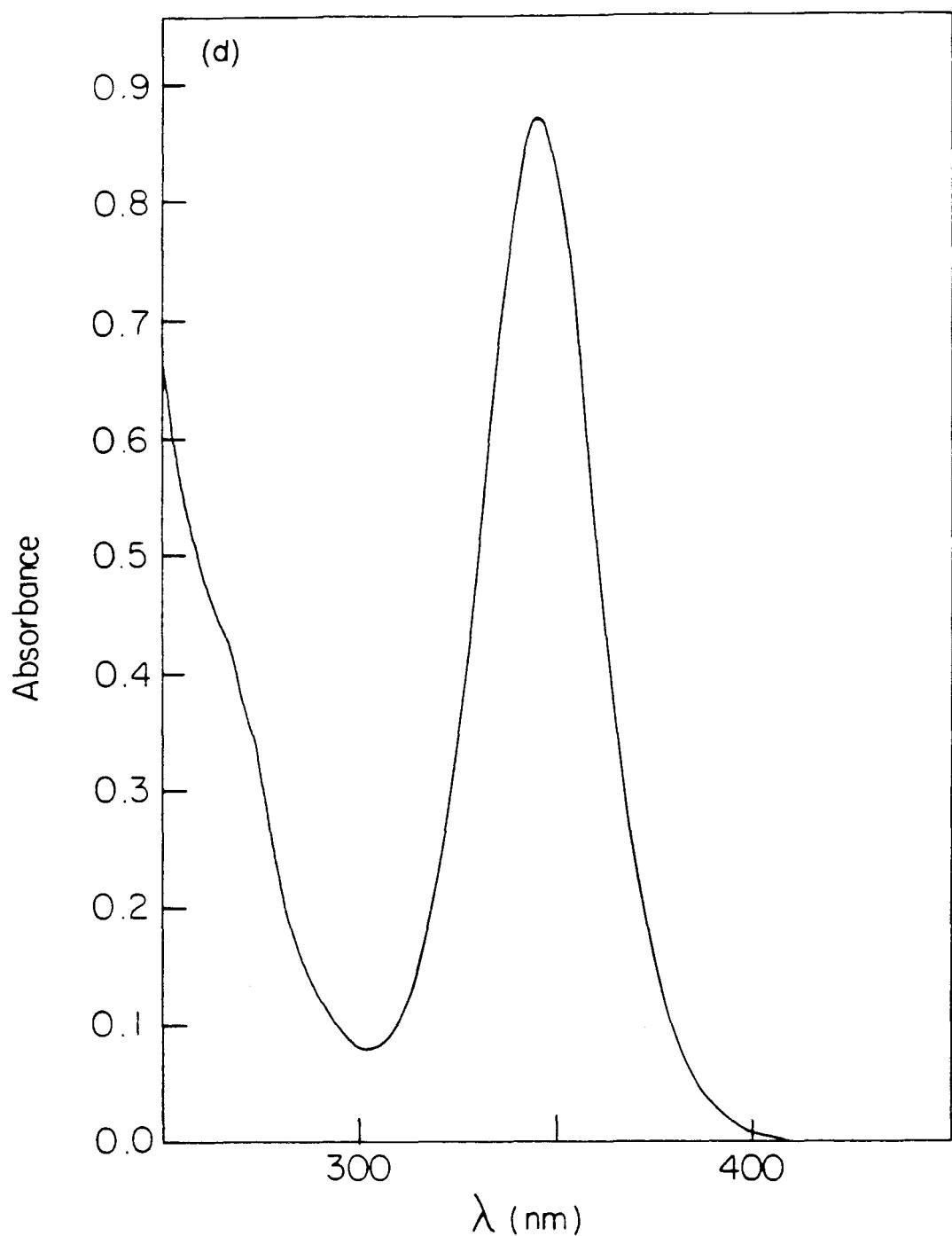

Table 4.2. Electronic absorption data for $\text{Ir}_2(\text{TMB})_4\text{XY}^{2+}$ complexes.

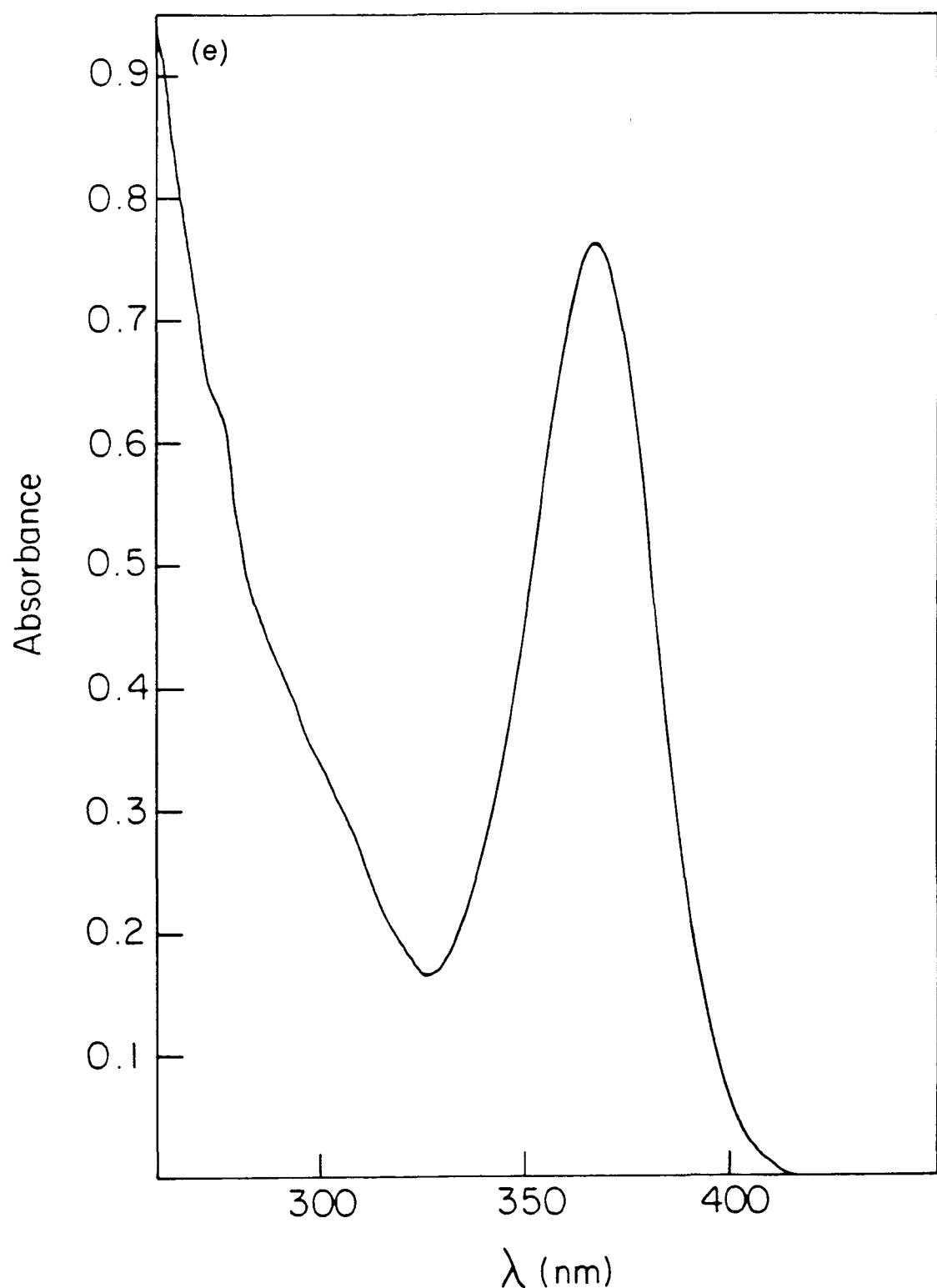

	$d\sigma \rightarrow d\sigma^*, \text{ nm}$ ($\epsilon, \text{ M}^{-1} \text{ cm}^{-1}$)	" $d\pi$ " $\rightarrow d\sigma^*, \text{ nm}$ ($\epsilon, \text{ M}^{-1} \text{ cm}^{-1}$)	Ref.
$\text{Ir}_2(\text{TMB})_4\text{Cl}_2^{2+}$	275 (50520)	349 (5910)	4
$\text{Ir}_2(\text{TMB})_4\text{Br}_2^{2+}$	297 (52569)	330 (4510)	4
$\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$	330 (49800)	375 (8110)	4
$\text{Ir}_2(\text{TMB})_4(\text{H})\text{Cl}^{2+}$	336	a	3
$\text{Ir}_2(\text{TMB})_4(\text{H})(\text{CH}(\text{CN})_2)^{2+}$	330	a	b
$\text{Ir}_2(\text{TMB})_4(\text{CH}_3)\text{I}^{2+}$	346	a	b
$\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})\text{Cl}^{2+}$	366	a	b
$\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$	320	a	b

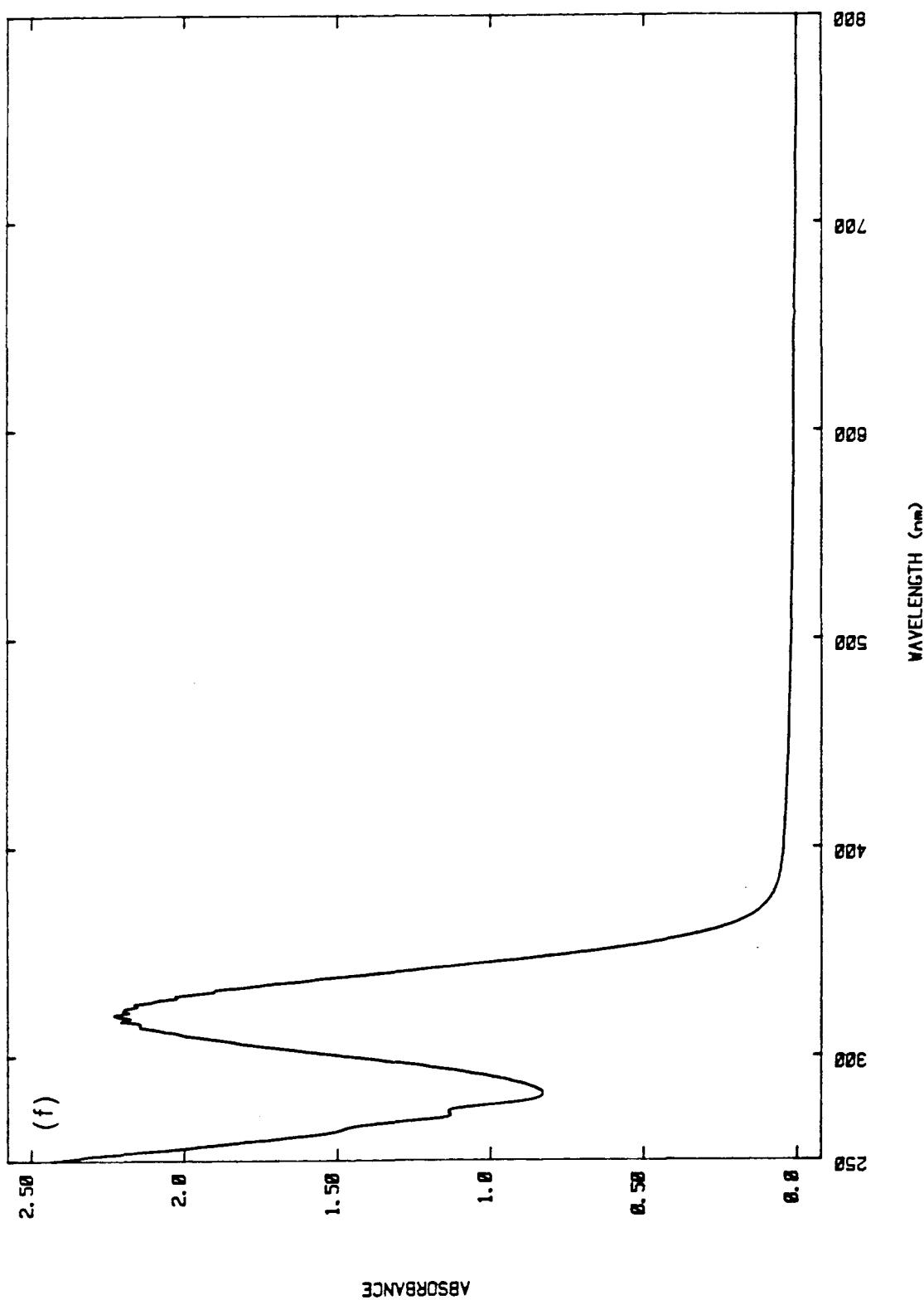
a. Not observed.

b. This work.

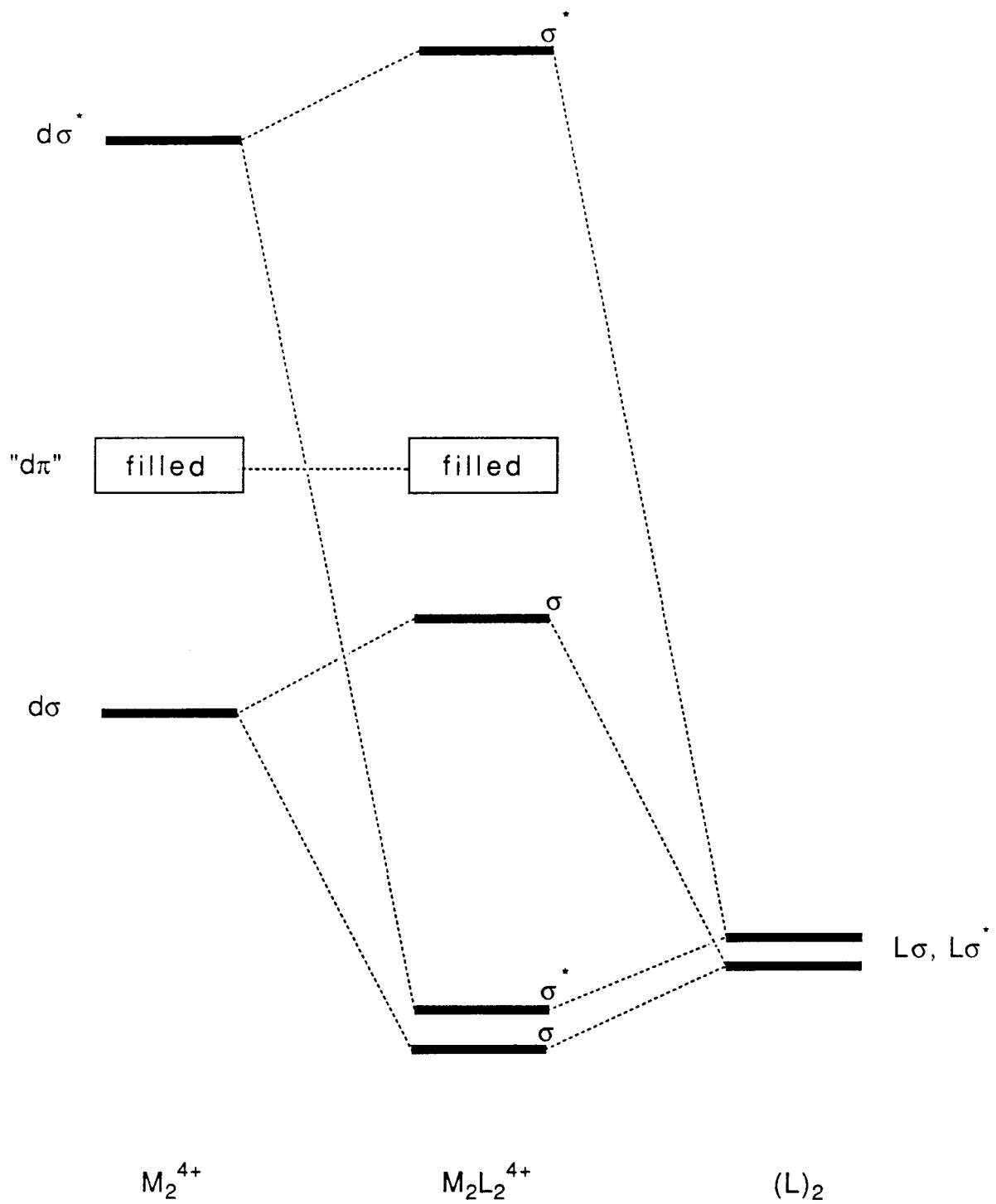

Figure 4.5. Electronic absorption spectra of (a) $[\text{Ir}_2(\text{TMB})_4\text{Cl}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , (b) $[\text{Ir}_2(\text{TMB})_4\text{I}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , (c) $[\text{Ir}_2(\text{TMB})_4(\text{H})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , (d) $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3)\text{I}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , (e) $[\text{Ir}_2(\text{TMB})_4(\text{CH}_3\text{CO})\text{Cl}](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN , and (f) $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN .






(c)

ABSORBANCE

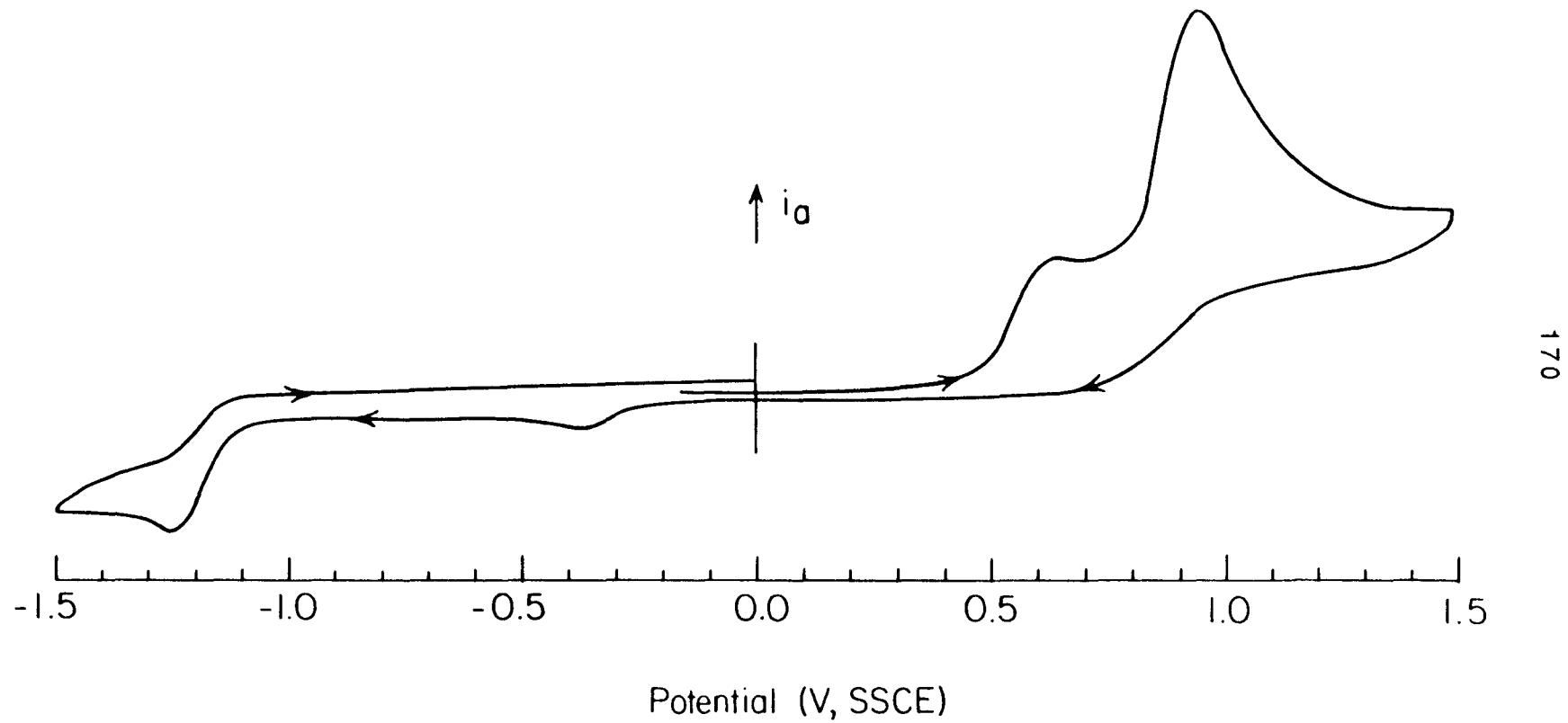


complexes. Earlier work on the dihalide adducts has assigned the intense high-energy feature to the $d\sigma \rightarrow d\sigma^*$ transition in analogy to $Mn_2(CO)_{10}$. The weak lower-energy feature is attributed to the " $d\pi \rightarrow d\sigma^*$ " transition.

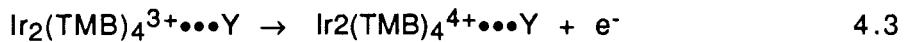
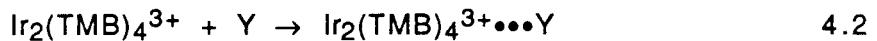
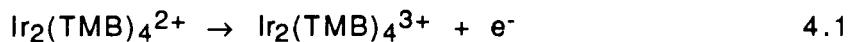
Work on axially substituted $M_2(CO)_{10}$ complexes had suggested a correlation between the $d\sigma \rightarrow d\sigma^*$ transition energy and the metal-metal bond strength.^{37,38} Additional work on the adducts of the binuclear d^8 complexes suggested a more reasonable explanation for the shift in the $d\sigma \rightarrow d\sigma^*$ energy involving mixing of the metal-metal $d\sigma \rightarrow d\sigma^*$ transition with axial ligand-to-metal charge transfer (LMCT).⁴ This is indicated by the orbital mixing diagram in Figure 4.6. For the dihalides, a systematic red shift of the $d\sigma \rightarrow d\sigma^*$ transition is observed through the series Cl, Br, I, a shift with decreasing ionization potential of the axial ligand, an increase in the amount of axial LMCT mixing. Substitution of a hydride for a chloride, $Ir_2(TMB)_4(H)(Cl)^{2+}$, results in a dramatic red shift of the $d\sigma \rightarrow d\sigma^*$ transition, 6700 cm^{-1} . Within the model, this shift can be understood to arise from a significantly greater charge transfer contribution for H^+ in comparison to Cl^- . The increased interaction of the hydride ligand with the σ -symmetry combination is evident in comparing the transition energy of Ir_2H_2 . In comparison to Ir_2Cl_2 , a 5200 cm^{-1} red shift of the $d\sigma \rightarrow d\sigma^*$ transition is observed. The large red shift of the $d\sigma \rightarrow d\sigma^*$ transition with introduction of a strong σ -donating ligand is general for the series of complexes listed in Table 4.2 and can be accounted for within the model presented earlier to describe the electronic structure of M_2^{4+} complexes with two σ -donor axial ligands.

A low-energy feature assignable to the " $d\pi \rightarrow d\sigma^*$ " transition is not observed for the hydride and alkyl substituted complexes. This transition may now be roughly isoenergetic with the $d\sigma \rightarrow d\sigma^*$ transition, with the large red shift observed for the latter. Also, the absence of π -symmetry electrons on the ligand may increase the energy of the " $d\pi \rightarrow d\sigma^*$ " transition because of the loss of π -CT mixing, a simultaneous blue shift of the " $d\pi \rightarrow d\sigma^*$ " transition and red shift of the $d\sigma \rightarrow d\sigma^*$ transition. For $[Ir(\mu-$

Figure 4.6. Molecular orbital diagram for interaction of M_2^{4+} with two σ -donor axial ligands.

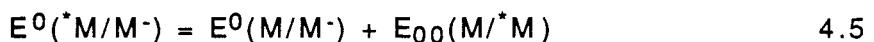
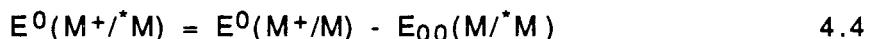

pz)COD(X)]₂ complexes, it has been suggested that the $d\sigma \rightarrow p\sigma^*$ transition is to lower energy of the "d π " $\rightarrow d\sigma^*$ transition.³⁹

Electrochemistry




Little is known about the electrochemistry of Ir(I) isocyanide complexes. Much of the work in the literature has focused on Ir(I) phosphine complexes.⁴⁰⁻⁴² Earlier work on the $\text{Ir}_2(\text{TMB})_4^{2+}/\text{Ir}_2(\text{TMB})_4^+$ couple found a quasi-reversible reduction at -1.15 V (SCE) in CH_3CN .³ This reduction was found to be complicated by follow-up chemistry, which was thought to involve interaction between dimer units. No reference to the oxidation of $\text{Ir}_2(\text{TMB})_4^{2+}$ was made in this work.

The cyclic voltammogram (CV) of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_2Cl_2 (0.1 M TBAPF₆) is shown in Figure 4.7. CH_2Cl_2 was chosen over CH_3CN as a solvent because earlier work had shown that the oxidation chemistry of binuclear d⁸ complexes was complicated by ECE processes in coordinating solvents.⁴³ The wave at +0.95 V (SSCE) is associated with the oxidation of the $\text{B}(\text{C}_6\text{H}_5)_4^+$ counter ion. This observation was confirmed by independent study of $\text{NaB}(\text{C}_6\text{H}_5)_4$. The broad wave at +0.63 V (SSCE) is associated with the oxidation of $\text{Ir}_2(\text{TMB})_4^{2+}$. This feature appears very irreversible on the electrochemical time scale with no reversible component observed up to scan rates of 100 V/s. The fast-sweep experiments are, however, not conclusive because of experimental difficulties. The value of the $\text{Ir}_2(\text{TMB})_4^{2+}$ oxidation was found to vary 100 mV between experiments. The weak feature at -0.4 V (SSCE) is associated with the oxidation at +0.63 V. This observation was made by reversing the scan direction and by probing only the first oxidation wave. No features were observed in this region for $\text{NaB}(\text{C}_6\text{H}_5)_4$. The wave at -1.25 V (SSCE) is associated with the reduction of $\text{Ir}_2(\text{TMB})_4^{2+}$. There was no change in the CV with variation in solvent (CH_2Cl_2 and $(\text{CH}_3)_2\text{CO}$).

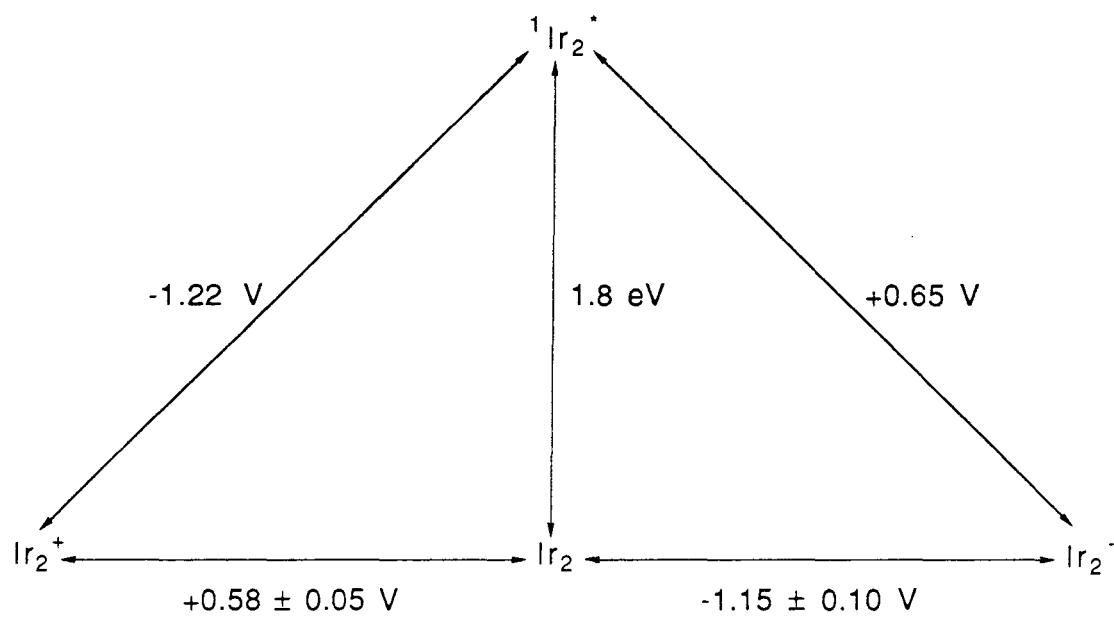
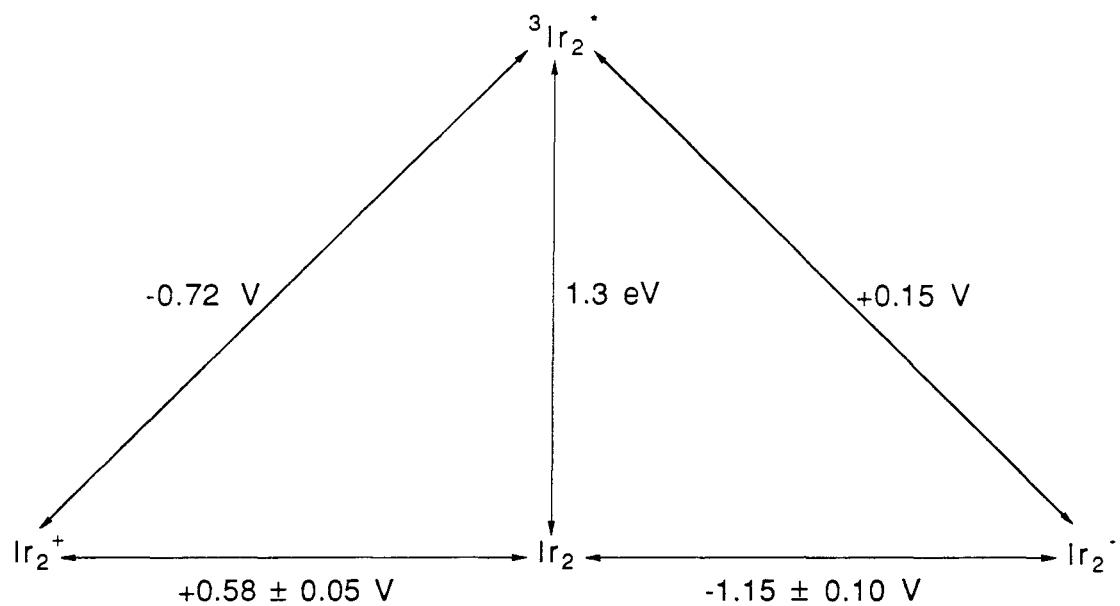
Figure 4.7. Cyclic voltammogram of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ (1 mM) in CH_3CN (0.1 M TBAPF₆).

A possible explanation as to why this couple is so irreversible is suggested by the work of Geiger.^{44,45} The oxidation of $\text{Ir}_2(\text{TMB})_4^{2+}$ will result in a contraction of the metal-metal distance. If the structural rearrangements between the reactants and the products are concerted with the actual electron transfer, an increased energy barrier to electron transfer is expected. If the reorganization energy is of moderate or large magnitude, a quasi-reversible or irreversible electrode reaction will be observed. Another more likely explanation for the irreversible electrochemistry observed for $\text{Ir}_2(\text{TMB})_4^{2+}$ is a rapid associative chemical step following the initial oxidation.

The intermediate formed (Equation 4.2), being more easily oxidized than $\text{Ir}_2(\text{TMB})_4^{2+}$, is rapidly oxidized (Equation 4.3), an ECE process. At present no information toward this end is available.

With knowledge of the ground-state thermodynamics and values for the excited-state energies, an estimate of the excited-state redox potentials can be made.^{46,47}



Excited-state potentials can also be estimated from kinetic studies of electron-transfer quenching reactions involving a series of acceptors and/or donors with varying potentials.

Because of the irreversibility of the $\text{Ir}_2(\text{TMB})_4^{3+}/\text{Ir}_2(\text{TMB})_4^{2+}$ couple, attempts to estimate the excited-state reduction potentials are very problematic. Using

an average value of the E_p (oxidation), a modified Latimer diagram can be completed, which describes the excited-state redox potentials (Figure 4.8). The $^1A_{2u}$ and $^3A_{2u}$ excited states are, as expected, much more powerful reductants and oxidants than the ground state. One of the major assumptions in this analysis is that the entropy changes associated with the redox processes and excitation are small compared to the enthalpy changes. The excited-state reduction potentials, because of the uncertainty of the $\text{Ir}_2(\text{TMB})_4^{3+}/\text{Ir}_2(\text{TMB})_4^{2+}$ couple, are only upper bounds of the true values. In comparison to other binuclear d⁸ complexes, the excited-state reduction potential of $\text{Ir}_2(\text{TMB})_4^{2+}$ is on the low end of the energy scale (Table 4.3 and Figure 4.9).

In subsequent sections, the ability of the $^3(d\sigma^* p\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ to carry out various chemical conversions will be studied. It will be found that while the excited state is a far superior reductant than the ground state, the photochemical reactions follow an atom-transfer pathway. This conclusion will be found to be general for binuclear d⁸ complexes.

Figure 4.8. Modified Latimer diagrams for $\text{Ir}_2(\text{TMB})_4^{2+}$ describing the reduction energies for the $^1(\text{d}\sigma^*\text{p}\sigma)$ and $^3(\text{d}\sigma^*\text{p}\sigma)$ excited states.

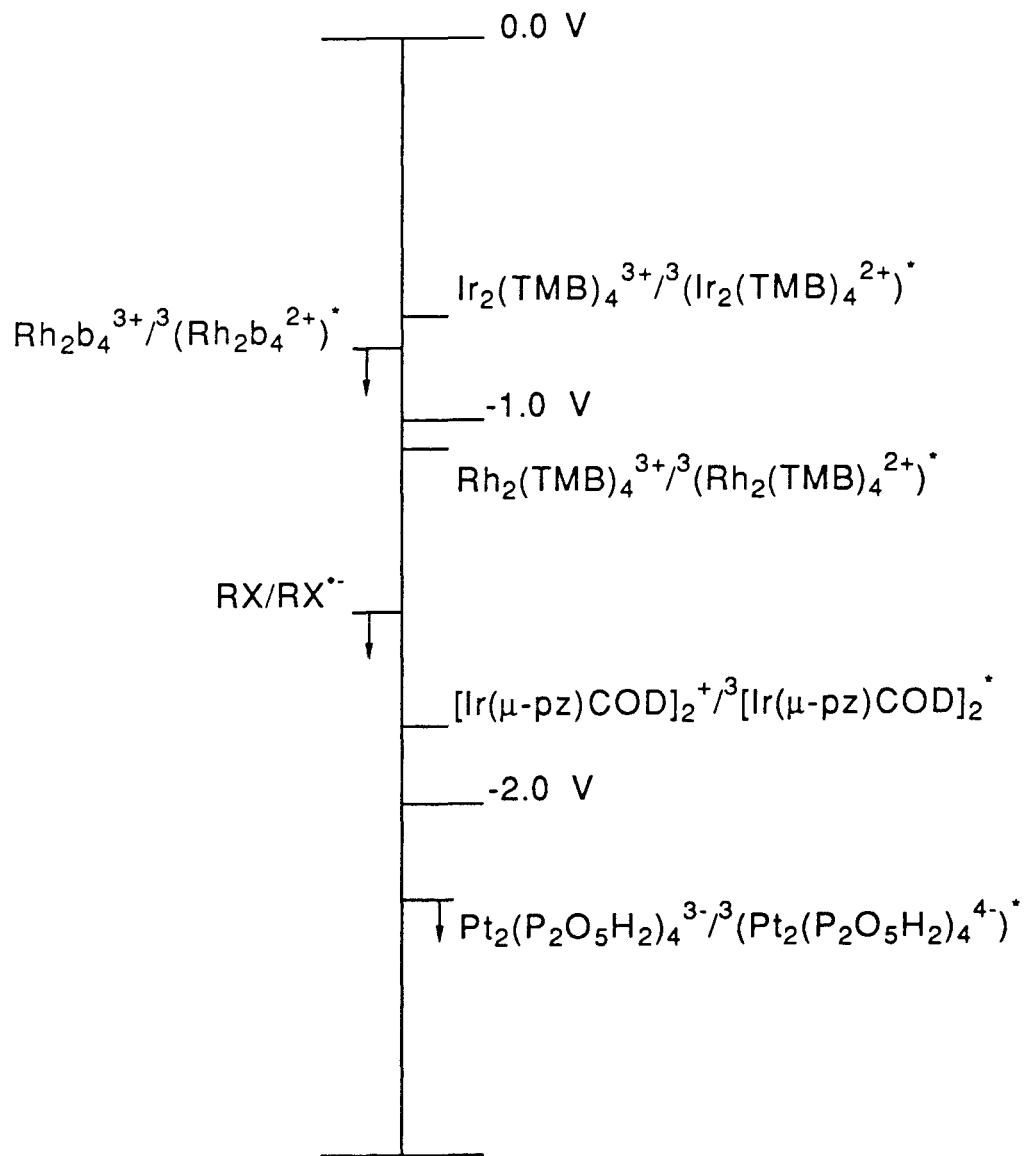


Table 4.3. Excited state reduction potentials for binuclear d⁸ complexes.

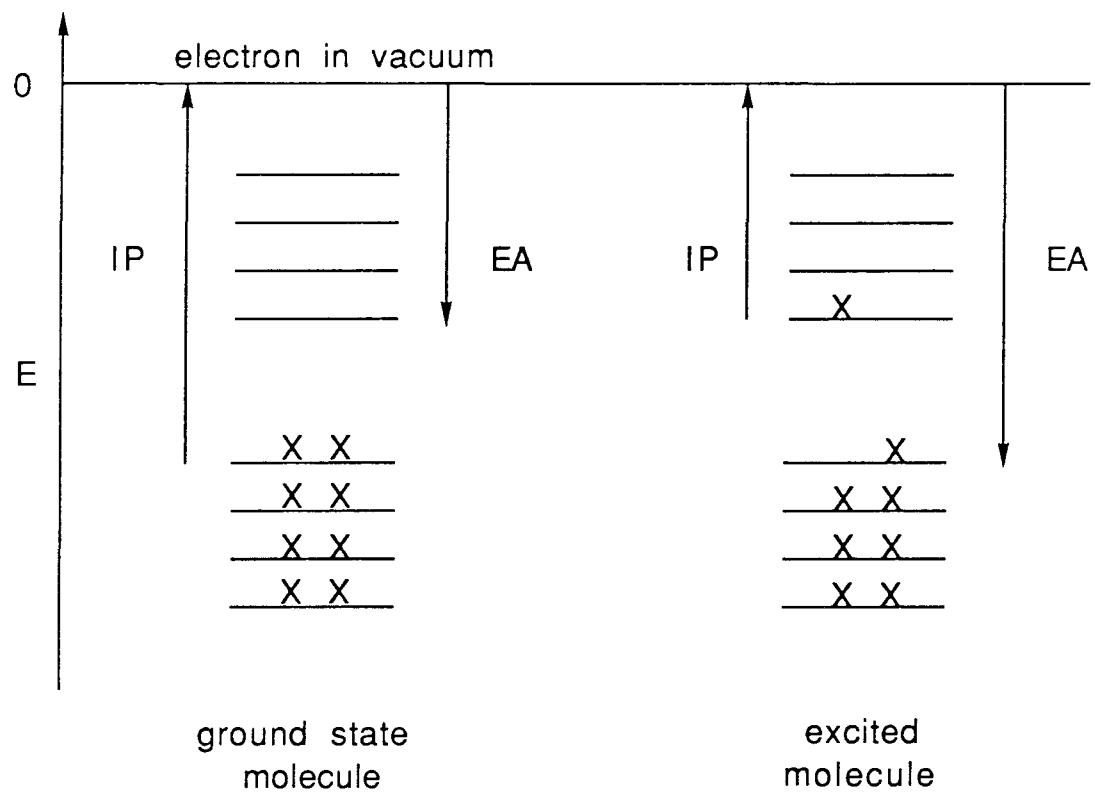
Metal Complex	$E^0(M_2^+/{}^3M_2^+)$, V (SSCE)	$E^0(M_2^+/{}^1M_2^+)$, V (SSCE)	Ref.
$Ir_2(TMB)_4^{2+}$	-0.72	-1.22	a
$Rh_2b_4^{2+}$	< -0.8	< -1.3	48
$Rh_2(TMB)_4^{2+}$	-1.03	-1.4	a
$[Ir(\mu\text{-pz})COD]_2$	-1.75	-2.2	49
$Pt_2(P_2O_5H_2)_4^{4-}$	-2.24	< -2.7	49

a. This work.

Figure 4.9. Reduction potentials for the ${}^3(d\sigma^*p\sigma)$ excited state of binuclear d^8 complexes and alkyl halides.

Photochemical and Electrocatalytic Reactions of Binuclear d⁸ Complexes

Introduction

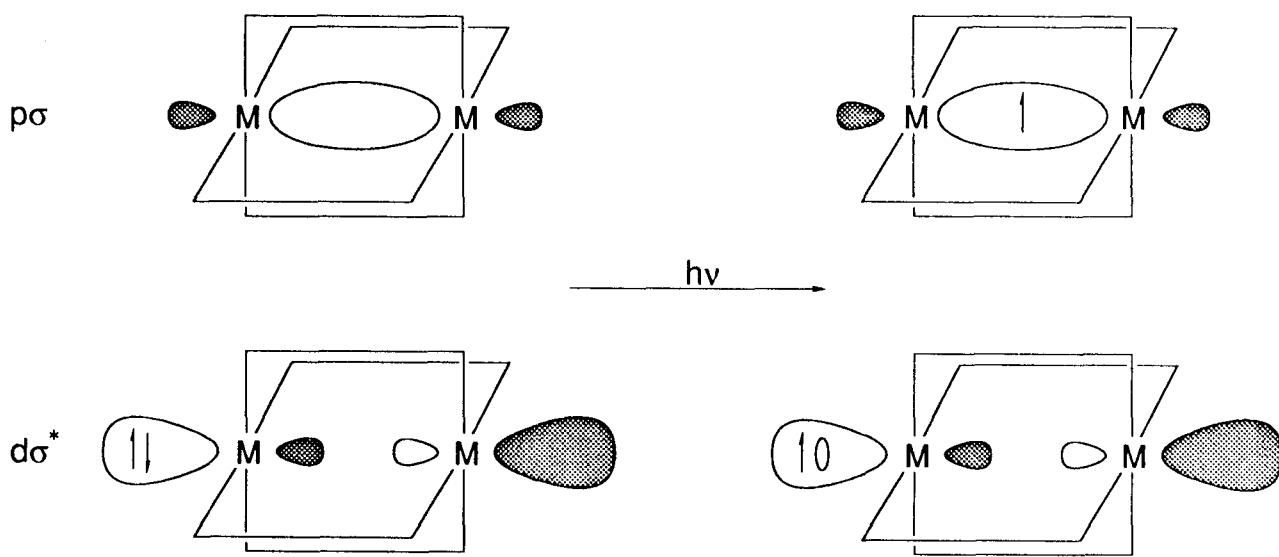

An electronic excited state of a metal complex is both a stronger reductant and a stronger oxidant than the ground state.⁴⁶ Excitation of an electron from a low-energy to a high-energy orbital reduces the ionization potential and increases the electron affinity of a molecule (Figure 4.10). Therefore, complexes with relatively long-lived excited states can participate in intermolecular electron-transfer reactions that are uphill for the corresponding ground-state species. Such excited-state electron-transfer reactions often play key roles in multistep schemes for the conversion of light to chemical energy.⁵⁰

While electron-transfer processes are common in inorganic photochemistry, excited-state atom transfer is limited to a small class of inorganic complexes. For UO_2^{2+} , the diradical excited state ($\bullet\text{U-O}\bullet$) is active in alcohol oxidation.⁵¹ The primary photoprocess is hydrogen-atom abstraction by the oxygen-centered radical. Photoaddition to a metal center via atom transfer has been observed for binuclear metal complexes such as $\text{Re}_2(\text{CO})_{10}$.⁵²⁻⁵⁵ The primary photoprocess is metal-metal bond homolysis. The photogenerated metal radical undergoes thermal atom-abstraction reactions. Until recently, atom transfer to a metal-localized excited state had not been observed.

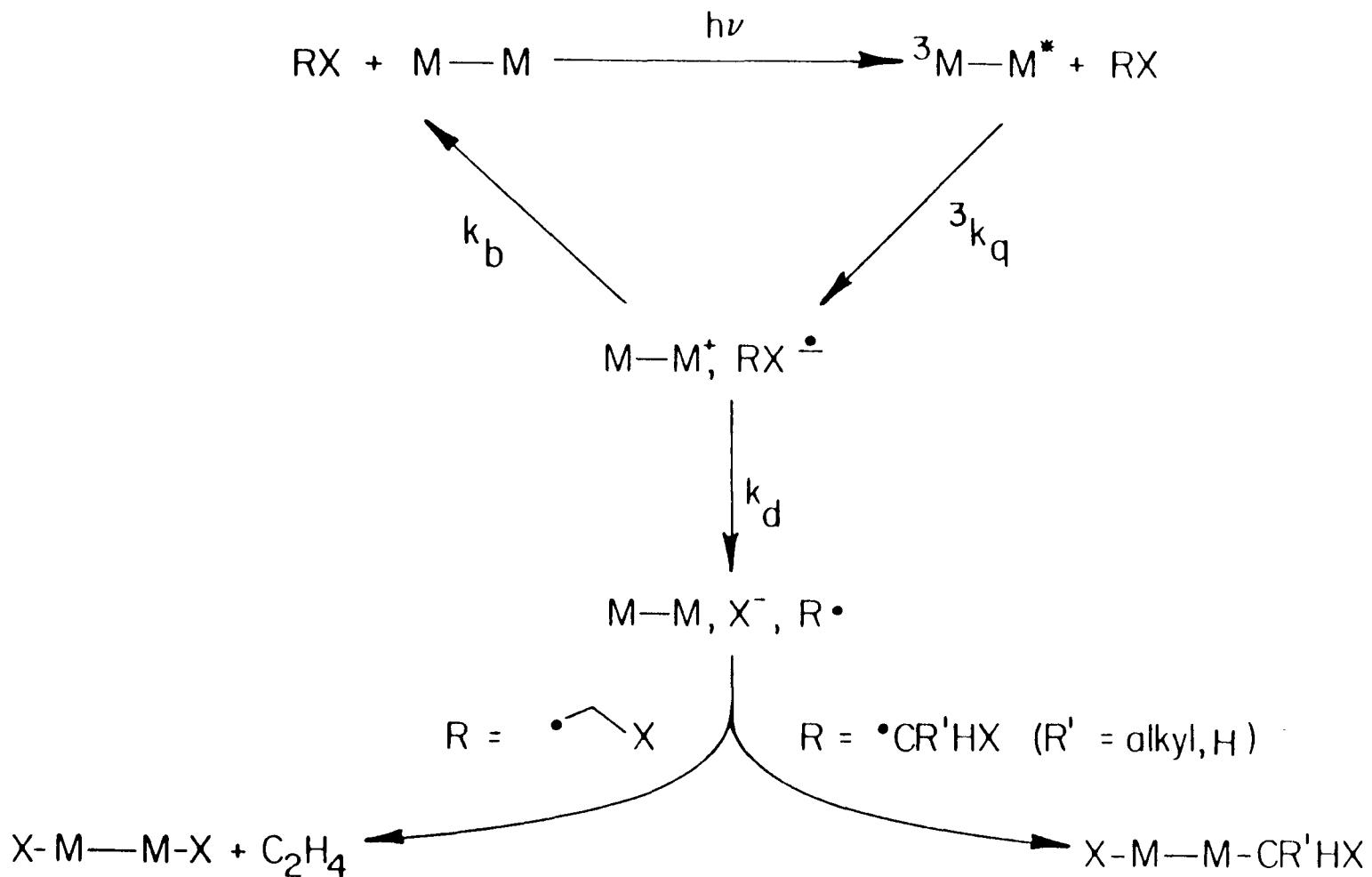
Atom transfer to a metal complex is facilitated if localized electron or hole generation occurs at one or more open coordination sites. Binuclear d^8 complexes have been found to undergo photochemical atom transfer to one of the metal centers.^{2,30,49,56} These complexes possess open coordination sites in addition to an electronic structure that localizes the electron (hole) necessary for atom transfer to the metal center.

The lowest energy optical transition for the binuclear systems is $d\sigma^* \rightarrow p\sigma$. This excitation results in formation of a formal metal-metal single bond in the excited state. The transition is metal-localized and can be viewed as movement of an electron from an

Figure 4.10. Schematic orbital diagram showing the decrease in the ionization potential and increase in the electron affinity upon excitation of a molecule.


orbital localized on the exterior of the M_2 unit (the $d\sigma^*$ orbital) to an orbital localized in the interior of the dimer cage (the $p\sigma$ orbital). The excitation results in hole formation localized on a metal center at an open coordination site (Figure 4.11). The lifetime of the $^3(d\sigma^*p\sigma)$ excited state, normally in between 100 ns and 10 μ s, makes M_2 systems attractive for bimolecular photoprocesses.

The initial interest in these systems was stimulated by observations of their photochemical electron-transfer reactivity.^{48,49} From spectroscopic and electrochemical studies, the $^3(d\sigma^*p\sigma)$ excited state is predicted to be a powerful reductant, with $E^0(M_2^+/^3M_2^*)$ estimated to range from -0.8 to -2.0 V vs SSCE in CH_3CN . That this state is a powerful reductant has been confirmed by investigation of the electron-transfer quenching of $^3M_2^*$ by a series of pyridinium acceptors with varying reduction potentials.⁵⁷ For several binuclear complexes, the excited-state reduction potential cannot be calculated accurately because of the irreversibility of the ground-state electrochemistry; but it can be estimated from bimolecular electron-transfer quenching experiments.


For systems that are powerful excited-state reductants, photoreduction of alkyl halides is observed.^{49,58} This reaction was initially interpreted to be an outer-sphere electron transfer to form an alkyl halide radical anion, which rapidly decomposes to yield $R\cdot$ and $X\cdot$. Subsequent thermal reactions give the observed products, an SRN1 mechanism (Figure 4.12). While such a mechanism, SRN1, appears plausible for a metal complex with $E^0(M_2^+/^3M_2^*) < -1.5$ V (SSCE), it seems unlikely for complexes with $E^0(M_2^+/^3M_2^*) > -1.0$ V (SSCE). Reduction potentials for alkyl halides of interest are generally more negative than -1.5 V (SSCE).⁵⁹ Alkyl-halide photoreduction is observed for binuclear d^8 complexes whose excited-state reduction potentials are more positive than -1.0 V (SSCE) in CH_3CN .

An alternative pathway to outer-sphere electron transfer, which yields similar photoredox products with alkyl halides, is excited-state atom transfer (Figure 4.13).

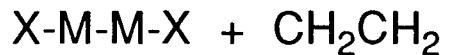
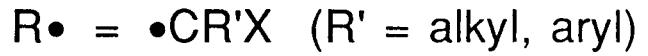
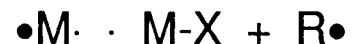
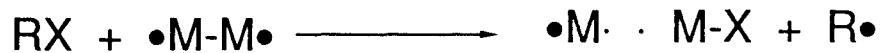





Figure 4.11. Pictorial representation of the M_2 -localized hole in a ${}^3(d\sigma^*p\sigma)$ state.

Figure 4.12. SRN1 mechanistic scheme for halocarbon photooxidative addition to binuclear d⁸ complexes.

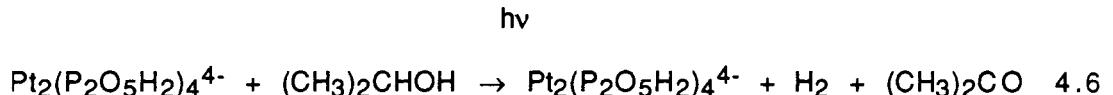
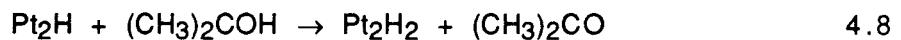


Figure 4.13. Atom-transfer mechanism for halocarbon photooxidative addition.



Data obtained for $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ indicate that alkyl and aryl halides react with the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state via halogen-atom transfer.²

Although the primary photoprocess for alkyl-halide photoreduction may not be atom transfer in all cases, $^3(\text{d}\sigma^*\text{p}\sigma)$ excited-state hydrogen-atom transfer has been established as the mechanism of the reactions between several binuclear d^8 complexes and a number of organic and organometallic substrates.^{2,29,49,56} Initial work in this area focused on $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$, for which the catalytic conversion of isopropanol to acetone (Equation 4.6) had been first observed.⁶⁰

From detailed studies of this system, it was concluded that the primary photoprocess is abstraction of the α -hydrogen by the $^3\text{Pt}_2^*$ to form a monohydride species (directly observed by transient absorption spectroscopy for a number of substrates) and the organic radical (Equation 4.7), with the final photoproduct being Pt_2H_2 and acetone (Equation 4.8). The Pt_2H_2 complex has been characterized by NMR, UV-Vis, and IR (but has not been successfully isolated).⁶¹

The relatively long lifetime of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ in fluid solution suggests that it should be able to participate in bimolecular photochemical reactions. In light of the favorable absorption and emission properties of this complex, it is of interest to examine the possibility of the conversion of visible light to net chemical energy through a photochemical process, either electron transfer or atom

transfer. The excited-state electron-transfer reactivity of $\text{Ir}_2(\text{TMB})_4^{2+}$ with pyridinium acceptors is reported and analyzed in the context of classical Marcus theory for outer-sphere electron transfer. The photochemical reactions of $\text{Ir}_2(\text{TMB})_4^{2+}$ with alkyl halides and hydrogen atom donors are reported.

Experimental

Synthesis

Pyridinium Hexafluorophosphates

All solvents were from freshly opened bottles with no further purification. All chemicals were of reagent grade or comparable quality and used as received. The ^1H NMR spectra were obtained on a 90 MHz EM-390 spectrometer. Elemental analyses were obtained at the Cal Tech Analytical Laboratory.

Several of the pyridinium hexafluorophosphates were prepared and recrystallized by Dr. Janet L. Marshall³⁹ and used as received. Methyl viologen di(hexafluorophosphate) was received from Dr. Miriam A. Heinrichs.

4-CN-N-Benzylpyridinium

A slight excess of benzyl bromide was added to an acetone solution of 4-CN-pyridine. After refluxing for 10 hrs, the solution was cooled to room temperature and the precipitated pyridinium halide was filtered off. The yellow powder was dissolved in a minimum of distilled water and metathesized with KPF_6 . The precipitated pyridinium hexafluorophosphate was filtered off and recrystallized from acetone. Calculated for $\text{C}_{13}\text{H}_{11}\text{NPF}_6$: C, 45.9; H, 3.3; N, 8.2. Found: C, 45.8; H, 3.4; N, 8.4. ^1H NMR: δ (CD_3CN , 20 °C); 5.8 (singlet, 2H, CH_2), 7.5 (singlet, 5H, C_6H_5), 8.4 (multiplet, 2H, 3,5-H), 8.9 (doublet, 2H, 2,6-H).

3-CN-N-Methylpyridinium

A tenfold excess of methyl iodide was added to a stirred THF solution of 3-cyanopyridine. The solution was stirred for 48 hrs. The precipitated pyridinium iodide was filtered off and washed with THF. The yellow powder was dissolved in distilled water and metathesized with NH_4PF_6 . The white precipitate was recrystallized from

$\text{H}_2\text{O}/\text{acetone}/\text{ethanol}$ (2:1:1). Calculated for $\text{C}_7\text{H}_7\text{N}_2\text{PF}_6$: C, 31.8; H, 2.7; N, 10.6. Found: C, 32.0; H, 2.6; N, 10.6.

3-Carbomethoxy-N-Benzylpyridinium

A fivefold excess of benzyl chloride was combined with methyl nicotinate in a 1:1 ethanol/acetone solution. The solution was refluxed for 10 hrs. No solid material precipitated upon cooling to room temperature. The solvent was removed under vacuum, yielding a viscous oil. The oil was dissolved in a minimum of distilled water and metathesized with KPF_6 . The white precipitate was recrystallized from methanol. Calculated for $\text{C}_{14}\text{H}_{14}\text{NO}_2\text{PF}_6$: C, 45.1; H, 3.8; N, 3.8. Found: C, 45.2; H, 3.8; N, 3.8. ^1H NMR: δ (CD_3CN , 20 °C); 3.9 (singlet, 3H, CH_3), 5.8 (singlet, 2H, CH_2), 7.5 (singlet, 5H, C_6H_5), 8.1 (triplet, 1H, 5-H), 8.9 (multiplet, 2H, 4,6-H), 9.3 (singlet, 1H, 2-H).

3-Carbomethoxy-N-Methylpyridinium

A tenfold excess of methyl iodide was added to a THF solution of methyl nicotinate. After stirring the solution overnight, the precipitated pyridinium iodide was filtered off and washed with THF. The yellow powder was dissolved in a minimum of distilled water and metathesized with NH_4PF_6 . The white precipitate was recrystallized from $\text{H}_2\text{O}/\text{acetone}/\text{ethanol}$ (2:1:1). Calculated for $\text{C}_8\text{H}_{10}\text{NO}_2\text{PF}_6$: C, 32.2; H, 3.4; N, 4.7. Found: C, 32.2; H, 3.1; N, 4.8. ^1H NMR: δ (CD_3CN , 20 °C); 4.0 (singlet, 3H, OCH_3), 4.4 (singlet, 3H, NCH_3), 8.1 (triplet, 1H, 5-H), 8.8 (multiplet, 2H, 4,6-H), 9.2 (singlet, 1H, 2-H).

Additional Compounds

Standard synthetic procedures were used to prepare $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$,⁶² $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$,⁶³ and $[\text{Rh}_2(\text{TMB})_4](\text{PF}_6)_2$.⁶⁴

Physical Measurements

Materials

All solvents were purified, if necessary, degassed with a minimum of five freeze-pump-thaw cycles on a high-vacuum line, and bulb-to-bulb distilled into glass, round-bottomed storage flasks equipped with Teflon vacuum valves. Acetonitrile was used as received and stored over activated alumina. 1,2-Dichloroethane was distilled from CaH_2 and stored over activated molecular sieves. Dichloromethane was distilled from CaH_2 and stored under argon. The halocarbon solvents' storage flasks were wrapped in foil to prevent exposure to room light. 1,4-Cyclohexadiene was distilled from NaBH_4 under argon, freeze-pump-thaw degassed, and stored under vacuum, protected from light. Cyclohexene was distilled from either CaH_2 or Na , freeze-pump-thaw degassed, and stored under vacuum, protected from the light. 9,10-Dihydroanthracene was recrystallized three times from absolute ethanol. Cyclohexene- d_{10} was used as received. All other hydrocarbon quenchers were purified by standard methods,^{22,23} freeze-pump-thaw degassed, and stored, protected from light, under vacuum or argon.

Tetra-*n*-butyl ammonium hexafluorophosphate was prepared from tetra-*n*-butyl ammonium iodide and ammonium hexafluorophosphate by addition of a hot, saturated, acetone solution of NH_4PF_6 to a hot, saturated, acetone solution of Bu_4NI . To this hot solution was added a large excess of distilled water. The solution was cooled and filtered. The precipitated Bu_4NPF_6 (TBAPF₆) was recrystallized three times from 95% ethanol.

Electrochemistry

Cyclic voltammograms (CVs) and constant potential bulk electrolysis were performed using a Princeton Applied Research (PAR) model 173 potentiostat/galvanostat, a model 175 universal programmer, and a model 179 digital

coulometer. The CVs were plotted on a Houston Instruments Omniphotic 2000 x,y-recorder. Volatile organics obtained from bulk electrolysis were analyzed on a Hewlett-Packard 5890A gas chromatograph. The UV-Vis spectra were measured on a Shimadzu UV-260 spectrophotometer.

Pyridinium Hexafluorophosphates

The cell geometry used to measure the CVs is described elsewhere.²⁴ CVs were measured at a BAS Pt button electrode, with a Pt wire auxiliary electrode, and a sodium saturated calomel electrode (SSCE) as the reference. CVs of the pyridinium hexafluorophosphates were measured for acetonitrile solutions under argon that contained 0.1 M TBAPF₆ as the supporting electrolyte and 10⁻³ M compound. Acetonitrile was obtained from a freshly opened bottle and was used as received.

Rh₂(TMB)₄²⁺

The cell geometry used to measure the CVs for [Rh₂(TMB)₄](PF₆)₂ was similar to that used to measure the CVs of the pyridinium hexafluorophosphates. CVs were measured at either a BAS Pt button or a BAS glassy carbon electrode, with a Pt wire auxiliary electrode, and an SSCE as the reference. CVs were measured of dichloromethane solutions under argon that contained 0.1 M TBAPF₆ as supporting electrolyte and 10⁻³ M compound.

The Pt button electrode was prepared following the procedure described by Anson, *et al.*⁶⁵ The glassy carbon electrode was polished with 0.3 μm α-alumina slurry, sonicated in purified water for 15 mins, and rinsed with dichloromethane.

Constant potential bulk electrolysis experiments were done in an H-tube type cell at either a Pt basket or a pyrolytic graphite working electrode. The H-tube cell was modified to allow CVs to be measured of the solution in the compartment with the working electrode. CVs were measured at either a BAS Pt button or a BAS glassy carbon

electrode. The auxiliary electrode was a Pt basket and was separated from the working electrode by a medium-porosity, sintered glass frit. Potentials were measured with respect to an SSCE. Measurements were made of dichloromethane solutions under argon, which contained 0.1 M TBAPF₆ as the supporting electrolyte and 10⁻³ M compound. Substrates were added to the electrolysis cell via syringe.

A twentyfold excess of 1,4-cyclohexadiene (or cyclohexene) was added to a dichloromethane solution of [Rh₂(TMB)₄](PF₆)₂ and TBAPF₆. The initial solution was clear, red. Exhaustive electrolysis yielded a clear, light-red solution. This solution was transferred to a round-bottom flask and the volatiles were vacuum-transferred to a second round-bottom flask. Benzene was identified as the electrolysis product by gas chromatography. Production of protons was confirmed from the CV of the final solution. This CV compared well to a CV of a dichloromethane solution of HBF₄. Extraction of the dichloromethane electrolysis solution with distilled water resulted in an increase in pH of the water phase. UV-Vis spectra of the electrolysis solution during the course of the reaction showed the slow appearance of Rh₂(TMB)₄Cl₂²⁺ with loss of Rh₂(TMB)₄²⁺. Rh₂(TMB)₄Cl₂²⁺ was isolated as a yellow powder from the final electrolysis solution.

Electronic Emission Spectroscopy

Electronic emission spectra were measured using an emission spectrophotometer constructed at Cal Tech, which has been described previously.⁶⁶ Spectra recorded at ambient temperature were obtained for solutions that were prepared on a high-vacuum line in a cell consisting of a 10 ml Pyrex bulb, a 1 cm pathlength quartz cell, and a Teflon vacuum valve. Solvent was bulb-to-bulb distilled into the cell from the appropriate solvent storage flask.

Stern-Volmer Quenching

For the experiments with methyl viologen di(hexafluorophosphate) and the pyridinium hexafluorophosphate quenchers, acetonitrile solutions of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and TBAPF₆ ($\mu = 0.1$ M) were prepared on a high-vacuum line in a two-compartment spectrophotometric cell consisting of a 1 cm pathlength square cuvette and a 10 ml bulb. Acetonitrile was vacuum-distilled from its storage flask to a calibrated volumetric cylinder, then to the evacuated cell containing the iridium complex and the electrolyte. Addition of solid quencher to one compartment of the cell was followed by re-evacuation of the cell to maintain the oxygen-free conditions of the experiment. Rate constants for the quenching of the triplet excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ were determined by measuring its lifetime as a function of quencher concentration. The emission lifetime measurements were conducted with a Nd:YAG pulsed laser system that has been described previously, using 532 nm excitation.⁶⁷ All emission intensity decays exhibited first-order kinetics over at least three half-lives. Nonlinear-least-squares fits of $RT\ln(k_q')$ (k_q' = activation-controlled rate constant) versus $E^0(A^{+/0})$ using Equations 4.20 and 4.23 were accomplished using the program MARQUARDT.

Rate constants for the quenching of the triplet excited of $\text{Ir}_2(\text{TMB})_4^{2+}$ with hydrogen-atom donors were determined by the same methods as described for the study using the pyridinium hexafluorophosphates. Acetonitrile solutions were prepared in a similar fashion except with no added electrolyte. The hydrocarbon quenchers were either added via syringe in an inert atmosphere and the solution freeze-pump-thaw degassed after each addition, or vacuum-transferred from an appropriate storage flask. At least two independently prepared lots of hydrocarbon quencher were used for each kinetic analysis. For cyclohexene, two different purification procedures were also used. Unlike the electron-transfer quenching, irreversible photochemical reactions were observed with some hydrocarbon quenchers. For these substrates, each data point

required a separate sample to be prepared. Low laser powers along with a limited number of laser pulses (20 to 50) were used to minimize the amount of photoreaction. All emission-intensity decays exhibited first-order kinetics over at least three halflives.

Absorption spectra of the solutions were measured with a Hewlett-Packard 8450A spectrophotometer or a Shimadzu UV-260 spectrophotometer before and after the quenching experiments to insure that the quenching was reversible and that no reaction, either thermal or photochemical, was occurring between $\text{Ir}_2(\text{TMB})_4^{2+}$ and the quenchers during the course of the experiments.

Steady-State Photolysis

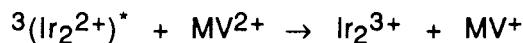
Steady-state photolysis experiments were conducted on solutions prepared on a high-vacuum line in a two-compartment cell. Solvent was bulb-to-bulb distilled into the cell containing the metal complex from the appropriate storage flask followed by the addition of the reactant. Liquid reactants were bulb-to-bulb distilled into the cell, and solid reactants were added to one compartment of the cell, followed by re-evacuation of the cell to maintain oxygen-free conditions.

$[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane was irradiated with $\lambda_{\text{ex}} > 604$ nm and showed formation of $\text{Ir}_2(\text{TMB})_4\text{Cl}_2^{2+}$. Solutions kept in the dark showed no formation of the oxidative addition product. Solutions of $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane were irradiated with $\lambda_{\text{ex}} > 500$ nm and showed rapid formation of $\text{Rh}_2\text{b}_4\text{Cl}_2^{2+}$. Solutions kept in the dark showed no formation of the oxidative addition products. The d^7 - d^7 complexes were identified by their absorption spectra; the organic products were not identified.

Acetonitrile solutions of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and the hydrogen-atom donors were photolyzed with $\lambda_{\text{ex}} > 550$ nm. The oxidative addition product was identified by its absorption spectrum and NMR spectrum. The organic products from the

photoreaction of 9,10-dihydroanthracene and 1,4-cyclohexadiene were identified by their NMR spectra.

A 1000 W high-pressure Hg/Xe arc lamp equipped with Corning cut-off filters was used for the irradiations. Spectrophotometric monitoring of both photolysis and thermal-blank experiments was done with either a Hewlett-Packard 8450A spectrophotometer or a Shimadzu UV-260 spectrophotometer. ^1H NMR spectra were obtained on a 400 MHz JNM-GX400 FT NMR spectrometer.


Results and Discussion

Homogeneous Electron Transfer

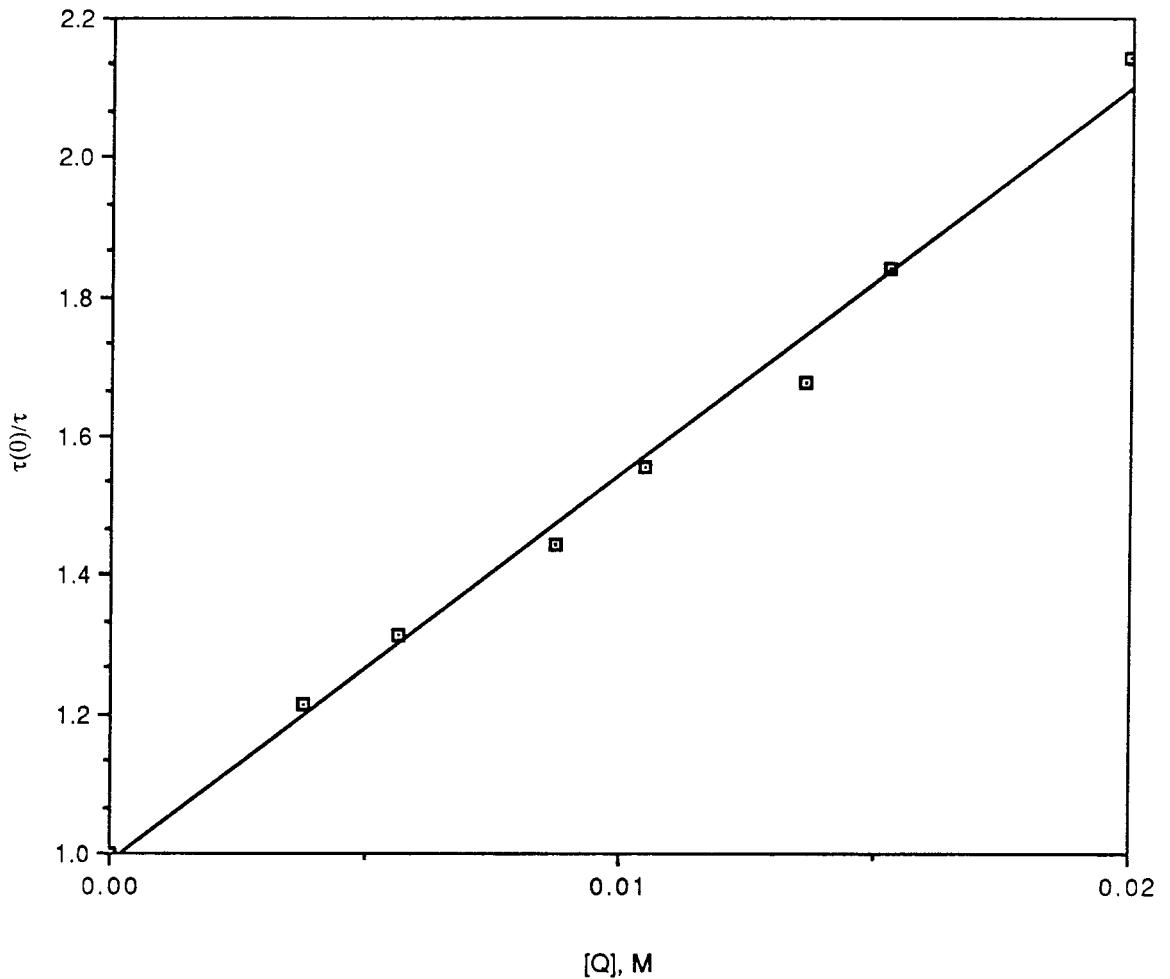
Earlier work has shown that the $^3(d\sigma^*p\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ can be reductively quenched with *N,N,N',N'*-tetramethylphenylenediamine (TMFD), yielding TMFD^{+*} and presumably $\text{Ir}_2(\text{TMB})_4^{+*}$.³ Kinetic data were not reported. Similar reductive quenching has been reported for $\text{Rh}_2(\text{TMB})_4^{2+}$, $\text{Rh}_2\text{b}_4^{2+}$, and $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ with spectroscopic characterization of the reduced products.⁴⁸ No discussion of the oxidative quenching of $\text{Ir}_2(\text{TMB})_4^{2+}$ was presented in the earlier work.

It has been reported that $\text{Ir}_2(\text{TMB})_4^{2+}$ undergoes a thermal reaction with *N,N'*-dimethyl-4,4'-pyridinium (MV^{2+}) or with chloranil.³ No characterization of the final products was presented. Tetracyanoethylene and chloranil react thermally with $\text{Ir}_2(\text{TMB})_4^{2+}$. The final products appear to be the one-electron reduced acceptors and the two-electron oxidized metal complex. Contrary to the earlier result, there is no thermal reaction between $\text{MV}(\text{PF}_6)_2$ and $\text{Ir}_2(\text{TMB})_4^{2+}$.

While no thermal ground-state reaction with MV^{2+} is observed for $\text{Ir}_2(\text{TMB})_4^{2+}$, MV^{2+} efficiently quenches the phosphorescence of the metal complex. Electron transfer is the expected quenching process with a net driving force for reaction of the $^3(d\sigma^*p\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ with MV^{2+} of 0.27 V ($E_{1/2}(\text{MV}^{2+}/\text{MV}^+)$ = -0.45 V (SSCE)).⁶⁸ The triplet energy of MV^{2+} (3.10 eV)⁶⁹ is too high for energy-transfer quenching to be competitive with electron-transfer quenching of $^3(\text{Ir}_2^{2+})^*$, and energy transfer can be ruled out. Additional support for excited-state electron transfer is obtained from the measurement of the rate of the quenching reaction (Equation 4.9).

4.9

The reaction obeys Stern-Volmer quenching kinetics;⁷⁰ the quenching rate constant is determined by measuring the change in the ${}^3(d\sigma^*p\sigma)$ excited state lifetime as a function of the concentration of MV^{2+} .


$$\frac{\tau_0}{\tau} = 1 + k_q \tau_0 [Q] \quad 4.10$$

A plot of τ_0/τ versus $[Q]$, where τ_0 is the unquenched ${}^3(d\sigma^*p\sigma)$ lifetime and τ is the quenched ${}^3(d\sigma^*p\sigma)$ lifetime, yields a line of slope $k_q \tau_0$ (Figure 4.14). The measured rate constant for the quenching by MV^{2+} ($2.7 \pm 0.3 \times 10^8 \text{ M}^{-1}\text{s}^{-1}$) is approximately two orders of magnitude below the calculated diffusion-limited rate constant in CH_3CN ($k_d \sim 2 \times 10^{10} \text{ M}^{-1}\text{s}^{-1}$).⁷¹ Attempts to characterize the redox products from the photoreaction using conventional microsecond flash photolysis were unsuccessful, presumably because back electron transfer occurs too quickly.

A small change in the optical absorption spectrum of a CH_3CN solution of $\text{Ir}_2(\text{TMB})_4^{2+}$ and MV^{2+} was observed over an extended period of irradiation. This change may be attributed to the formation of trace amounts of MV^{+*} .⁷² No significant build-up of products is observed since the rapid back reaction of the quenching products Ir_2^{3+} and MV^{+*} gives ground-state Ir_2^{2+} and MV^{2+} . Consequently, this photoinduced electron transfer does not lead to net chemistry.

The measured rate constant for electron-transfer quenching of ${}^3(\text{Ir}(\text{TMB})_4^{2+})^*$ by MV^{2+} is compared to the measured rate constants for several related reactions in Table 4.4. The variation in the observed rates may be understood as a result of the increased driving force (more negative $\Delta G^0'$) for electron transfer through the series of complexes. Such an argument appears reasonable for the comparison to $\text{Rh}_2(\text{TMB})_4^{2+}$ and $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$. These systems should have comparable electronic and nuclear factors (for the same intermolecular separation) that determine the reaction rate; redox

Figure 4.14. Stern-Volmer plot for the oxidative quenching of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ by methyl viologen di(hexafluorophosphate) (0.1 M TBAPF₆, CH₃CN).

Table 4.4. Measured rate constant for the reaction ${}^3M_2^* + MV^{2+} \rightarrow M_2^+ + MV^+$ or $M^* + MV^{2+} \rightarrow M^+ + MV^+$.

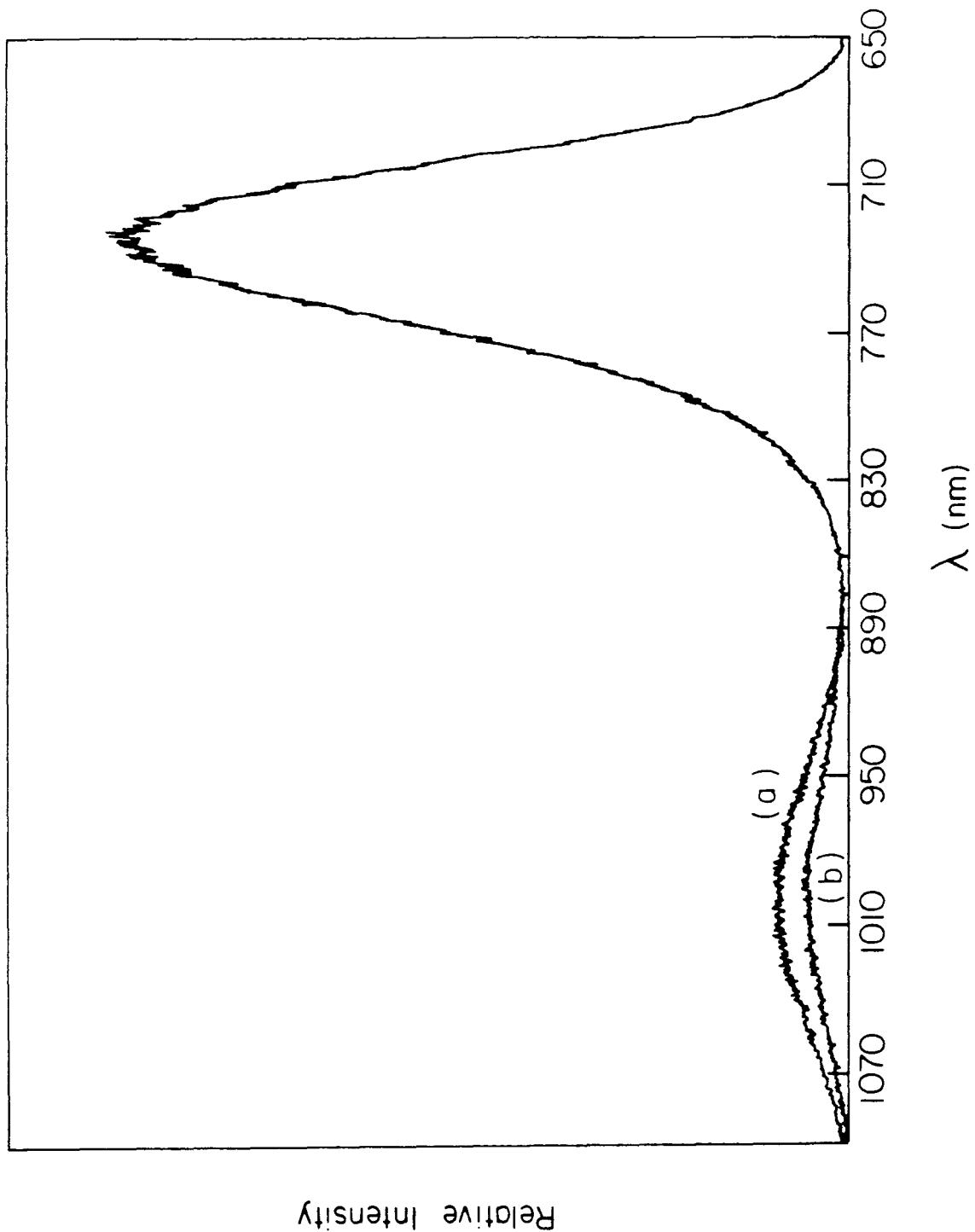
Metal Complex	$k_q, M^{-1}s^{-1}$	$E^0(M^+/M^*), V$ (SSCE)	Ref.
$Ir_2(TMB)_4^{2+}$	2.7×10^8	-0.72	a
$Ru(bpy)_3^{2+}$	2.4×10^9	-0.81	73
$Rh_2(TMB)_4^{2+}$	1.1×10^9	-1.25	48
$[Ir(\mu-pz)COD]_2$	8.7×10^9	-1.75	39

a. This work.

orbitals are the same, and oxidation involves comparable contractions of the metal-metal distance. For $\text{Ru}(\text{bpy})_3^{2+}$, the measured rate constant is an order of magnitude larger than that of $\text{Ir}_2(\text{TMB})_4^{2+}$ and comparable to that for $\text{Rh}_2(\text{TMB})_4^{2+}$. However, the driving force for the excited-state electron transfer for $\text{Ru}(\text{bpy})_3^{2+}$ is comparable to that for $\text{Ir}_2(\text{TMB})_4^{2+}$. Variations in factors other than driving force have a dramatic effect on the rate of reaction. The donor orbital for excited $\text{Ru}(\text{bpy})_3^{2+}$ is located on one of the ligands,⁷⁴ which means that it is more accessible to the acceptor than the metal-localized orbital of the binuclear d⁸ complexes. (In other words, the electron-transfer reaction for $\text{Ir}_2(\text{TMB})_4^{2+}$ may be more nonadiabatic than that one for $\text{Ru}(\text{bpy})_3^{2+}$.) To further understand the electron-transfer reactivity of the ${}^3(\text{d}\sigma^* \text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$, a study of electron-transfer quenching by a series of pyridinium acceptors of variable reduction potential was undertaken. This study has allowed a better determination of the excited-state reduction potential ($\text{M}_2^{3+} + \text{e}^- \rightarrow {}^3(\text{M}_2^{2+})^*$); it has also elucidated the factors controlling the excited-state reactivity and has enabled comparisons of the electron-transfer reactivity of $\text{Ir}_2(\text{TMB})_4^{2+}$ to be made with other inorganic systems.

Previous work has made available a series of pyridinium compounds that are well-suited for a systematic study.⁵⁷ The list of pyridinium quenchers and the measured $E_{1/2}(\text{A}^{+/-})$ or $E_{\text{p},\text{c}}(\text{A}^{+/-})$ values for one-electron reductions of these acceptors is given in Table 4.5. Discussion of the possible complications of using a series of acceptors that are electrochemically irreversible is presented elsewhere.³⁹ No complications that are due to the dimerization of the pyridinium radical were observed.

Addition of the pyridiniums to an acetonitrile solution of $\text{Ir}_2(\text{TMB})_4^{2+}$ does not alter the optical absorption spectrum of the metal complex. Emission spectra showed only quenching of the triplet excited state (Figure 4.15). No evidence for singlet


Table 4.5. Reduction Potentials of the Pyridinium Quenchers.

	Quencher ^a	$E(A^{+/0})$, V (SSCE) ^b
(1)	4-cyano-N-benzylpyridinium	-0.58
(2)	4-cyano-N-methylpyridinium	-0.65
(3)	4-carbomethoxy-N-methylpyridinium	-0.78
(4)	3-cyano-N-methylpyridinium	-0.90
(5)	4-amido-N-ethylpyridinium	-0.93
(6)	3-carbomethoxy-N-benzylpyridinium	-0.96
(7)	3-carbomethoxy-N-methylpyridinium	-1.01
(8)	3-amido-N-benzylpyridinium	-1.04

a. All of the compounds are hexafluorophosphate salts.

b. For Pyridiniums 1-3, $E(A^{+/0}) = E_{1/2}(A^{+/0})$. For pyridiniums 4-8 the reductions are irreversible; therefore the values of $E(A^{+/0})$ are the cathodic peak potentials, $E_{p,c}(A^{+/0})$ measured at a scan rate of 200 mV/s. Both $E_{1/2}(A^{+/0})$ and $E_{p,c}(A^{+/0})$ were measured by cyclic voltammetry (0.1 M TBAPF₆) in acetonitrile solution.

Figure 4.15. (a) Emission spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN (0.1 M TBAPF_6). (b) Emission spectrum of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN (0.1 M TBAPF_6) with 4-CN-*N*-methylpyridinium.

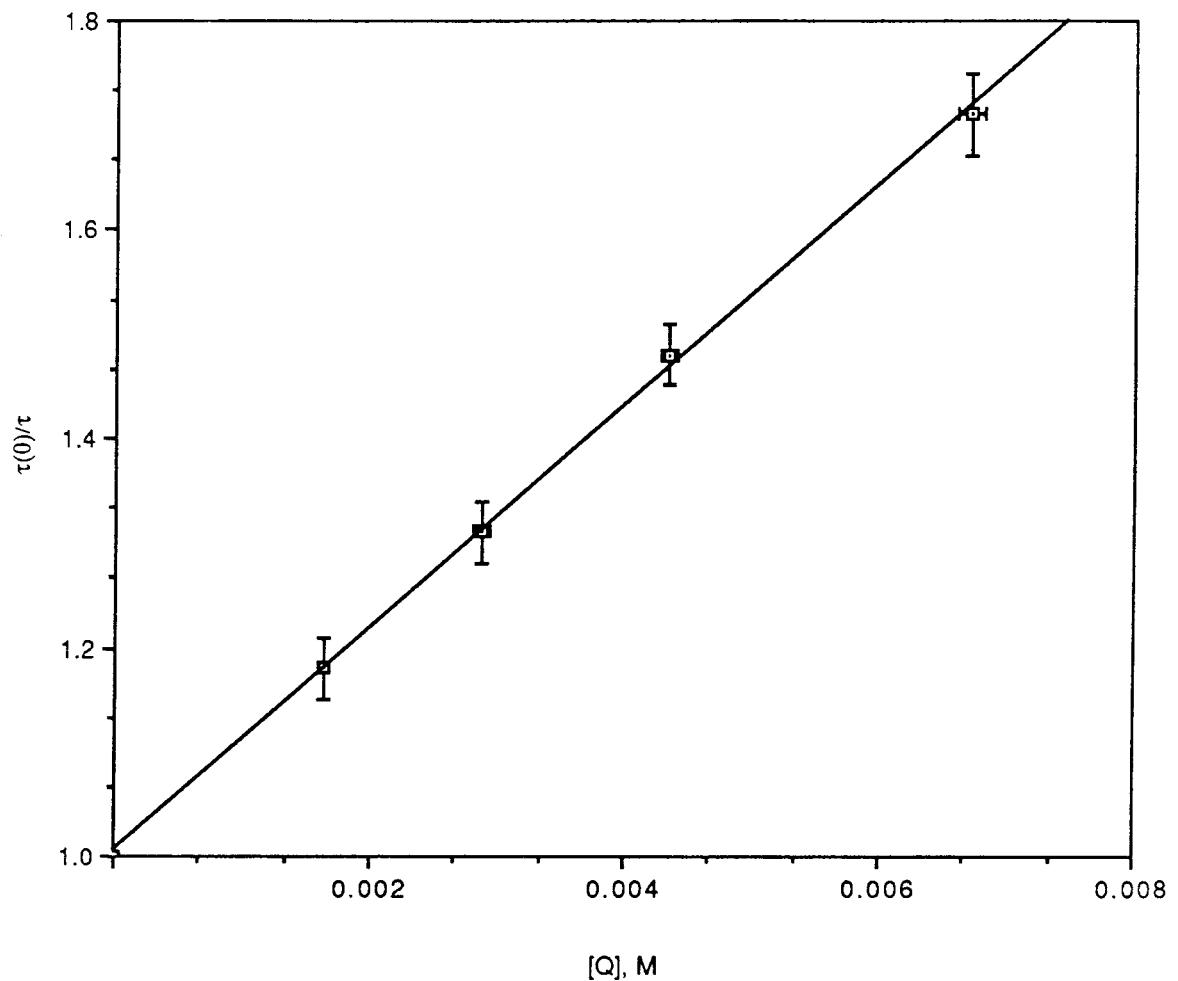
reactivity was observed. Presumably, the singlet state does not react because of its short lifetime.

The kinetics of the excited state quenching of $\text{Ir}_2(\text{TMB})_4^{2+}$ with the pyridinium acceptors was studied, using the same techniques as in the study of the quenching by MV^{2+} . All systems were found to obey Stern-Volmer kinetics over the quencher concentration range studied. A representative plot of the data for 4-CN-*N*-benzylpyridinium hexafluorophosphate is shown in Figure 4.16. The quenching rate constants, listed in Table 4.6, were obtained from the slopes of linear-least-squares fits to the data.

Excited-state electron transfer has been the subject of many reviews in the recent literature.^{46,47,50,75-77} The general scheme presented to describe the kinetics is given in Figure 4.17. The quenching rate constant for the system is

$$k_q = \frac{k_d}{1 + \frac{k_d}{k_e} \left(1 + \frac{k_e}{k_e(g)} \right)} . \quad 4.11$$

For $k_e \ll k_e(g)$, the expression reduces to


$$k_q = \frac{k_d}{1 + \frac{k_d}{k_e}} \quad 4.12$$

$$\frac{1}{k_q} = \frac{1}{k_d} + \frac{1}{Kk_e} . \quad 4.13$$

Correcting the observed rate constants for diffusion, one obtains the activation-controlled rate constant (k_q') for the bimolecular reaction

$$k_q' = Kk_e , \quad 4.14$$

Figure 4.16. Stern-Volmer plot of oxidative quenching of the ${}^3(d\sigma^* p\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ by 4-CN-*N*-benzylpyridinium (0.1 M TBAPF₆, CH₃CN).

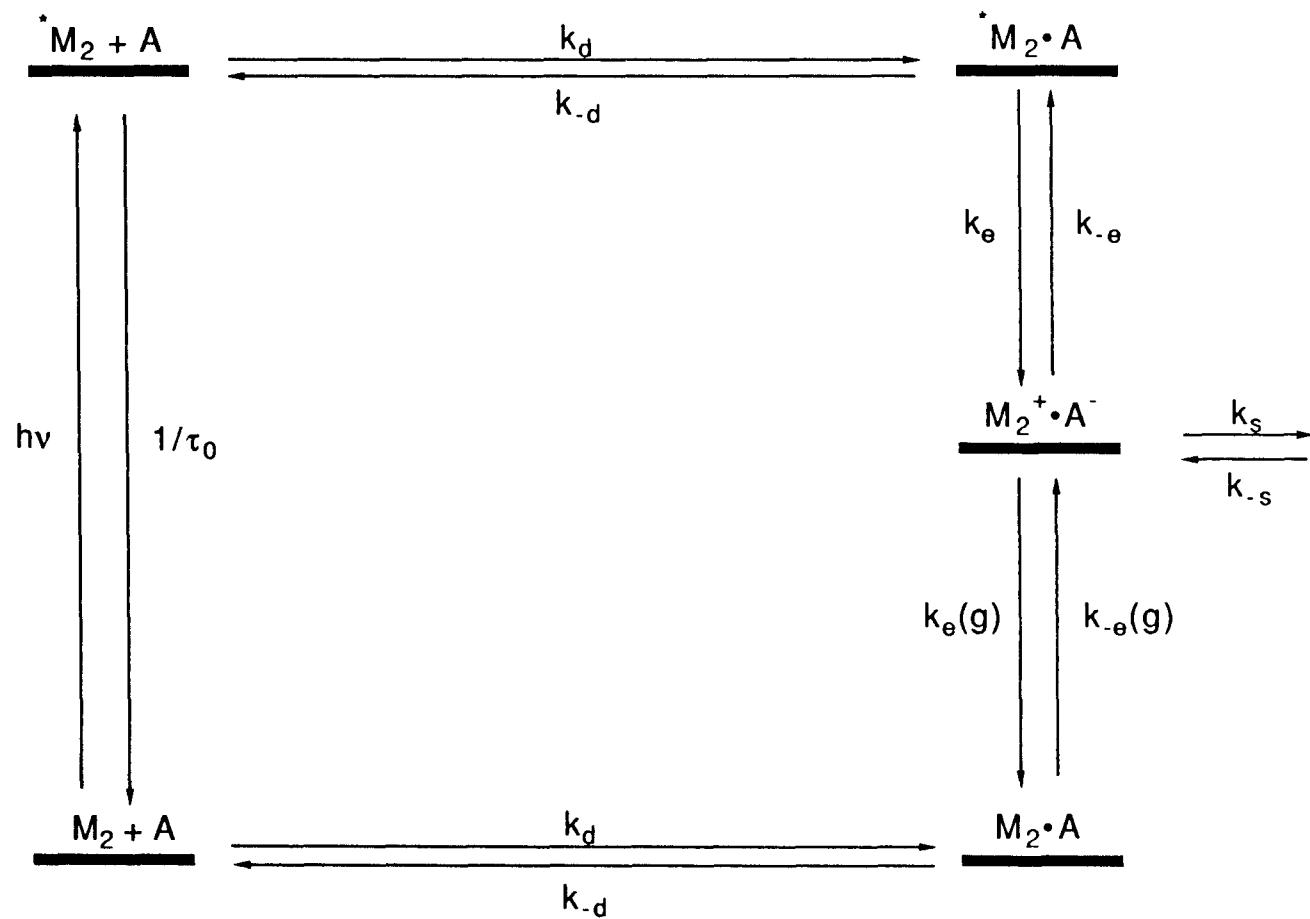


Table 4.6. Rate constants for the electron-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by pyridinium acceptors in acetonitrile solution.

Pyridinium Acceptors ^a	$k_q, \text{M}^{-1}\text{s}^{-1}$ ^b	$k_q', \text{M}^{-1}\text{s}^{-1}$ ^c
1	$4.9 \pm 0.5 \times 10^8$	$5.0 \pm 0.5 \times 10^8$
2	$4.5 \pm 0.4 \times 10^8$	$4.6 \pm 0.5 \times 10^8$
3	$3.3 \pm 0.3 \times 10^8$	$3.4 \pm 0.3 \times 10^8$
4	$3.2 \pm 0.3 \times 10^8$	$3.3 \pm 0.3 \times 10^8$
5	$1.9 \pm 0.2 \times 10^8$	$1.9 \pm 0.2 \times 10^8$
6	$2.8 \pm 0.3 \times 10^7$	$2.8 \pm 0.3 \times 10^7$
7	$9.6 \pm 1.0 \times 10^6$	$9.6 \pm 1.0 \times 10^6$
8	$4.6 \pm 0.5 \times 10^6$	$4.6 \pm 0.5 \times 10^6$

- a. The acceptors are the pyridinium hexafluorophosphates listed in Table 4.5.
- b. The measured quenching rate constants (k_q) are not corrected for diffusional effects.
- c. The quenching rate constants (k_q') are corrected for diffusional effects as discussed in the text.

Figure 4.17. Kinetic scheme for the electron-transfer quenching of *M_2 by pyridinium acceptors.

where $K = \frac{k_d}{k_{-d}}$. From a classical approach, the rate constant for the electron-transfer step is

$$k_e = \kappa v \exp\left(-\frac{\Delta G^*}{RT}\right), \quad 4.15$$

where κ is the transmission coefficient or average probability for electron transfer per passage of the system through the intersection region, v is the nuclear frequency, ΔG^* is the free energy of activation that is related to the reorganization energy of the system.

To analyze the kinetic data, it is necessary to adopt a relationship for ΔG^* . Several free-energy relationships, FERs, have been presented in the literature with the pros and cons of each formalism discussed in some detail.⁵⁰ Two FERs are used to analyze the bimolecular electron-transfer kinetics. From theoretical considerations, Marcus has suggested a relationship for ΔG^* in terms of $\Delta G^0'$, the standard free energy of the reaction, λ , the reorganization energy associated with the inner and outer coordination spheres, w_r and w_p , the work of bringing reactants or products to the mean separation for reaction.⁷⁸

$$\Delta G^* = \frac{\lambda}{4} \left(1 + \left(\frac{\Delta G^0'}{\lambda} \right)^2 \right) \quad 4.16$$

$$\Delta G^0' = \Delta G^0 + w_p - w_r \quad 4.17$$

$$\Delta G^0 = E^0(Ir_2^{3+}/3(Ir_2^{2+})^*) - E^0(A^{+/0}) - w_r \quad 4.18$$

$$k_q' = K \kappa v \exp\left(\frac{\lambda}{4RT} \left(1 + \frac{\Delta G^0'}{\lambda} \right)^2\right) \quad 4.19$$

$$RT \ln(k_q') = RT \ln(K \kappa v) + \frac{\lambda}{4} \left(1 + \frac{\Delta G^0'}{\lambda} \right)^2. \quad 4.20$$

Rehm and Weller, studying the fluorescence quenching of organic compounds, have suggested an empirical FER.⁷⁹

$$\Delta G^* = \frac{\Delta G^0'}{2} + \left[\left(\frac{\Delta G^0'}{2} \right)^2 + \left(\frac{\lambda}{4} \right)^2 \right]^{1/2} \quad 4.21$$

$$k_q' = K_{\text{KV}} \exp \left\{ \frac{\Delta G^0'}{2RT} + \frac{1}{RT} \left[\left(\frac{\Delta G^0'}{2} \right)^2 + \left(\frac{\lambda}{4} \right)^2 \right]^{1/2} \right\} \quad 4.22$$

$$RT \ln(k_q') = RT \ln(K_{\text{KV}}) + \frac{\Delta G^0'}{2} + \left[\left(\frac{\Delta G^0'}{2} \right)^2 + \left(\frac{\lambda}{4} \right)^2 \right]^{1/2} \quad 4.23$$

Using either the Marcus or the Rehm-Weller expression, the rate of electron transfer can be analyzed as a function of the driving force of the reaction, $-\Delta G^0$. An analysis of $RT \ln(k_q')$ as a function of the ease of reduction of the pyridinium acceptor gives the excited-state reduction potential, the reorganization energy associated with the electron-transfer reaction, and the preexponential factor, assuming that the associative equilibrium constant can be estimated.^{47,50,80}

The two FERs predict different behavior for the rate of electron transfer as a function of $\Delta G^0'$. The most pronounced difference occurs at high exoergicity. The Marcus relationship predicts that the reaction rate will reach a maximum for $\Delta G^0' = -\lambda$ and decrease for increasing exoergicity. For the Rehm-Weller empirical FER, the rate constant tends asymptotically to its maximum value with increasing exoergicity.

Rate constants corrected for the diffusional contribution are listed in Table 4.6. The diffusion-controlled rate constant can be calculated using the Debye-Smoluchowski equation⁸¹

$$k_d = \frac{4\pi N_0 (D_A + D_B) a f}{1000}$$

4.24

N_0 = Avogadro's number.

a = distance of closest approach, $r_A + r_B$.

D_A, D_B = diffusion coefficient for the ions calculated, using the Stokes-Einstein equation,

where f is the integral

$$\left[a \int_a^{\infty} \exp\left(\frac{U}{k_b T}\right) \frac{dr}{r^2} \right]^{-1} .$$

4.25

$$U = \left(\frac{z_A z_B e^2}{D_s} \right) \left[\frac{\exp(Ka)}{(1 + Ka)} \right] \left(\frac{\exp(-Kr)}{r} \right)$$

r = distance of separation of the ions.

z_A, z_B = charge of the ions.

e = unit electron charge.

D_s = static dielectric of the medium.

$$K = \left[\frac{8\pi N_0 e^2 \mu}{1000 D_s k_b T} \right]^{1/2}$$

μ = ionic strength.

k_b = Boltzmann's constant.

T = temperature.

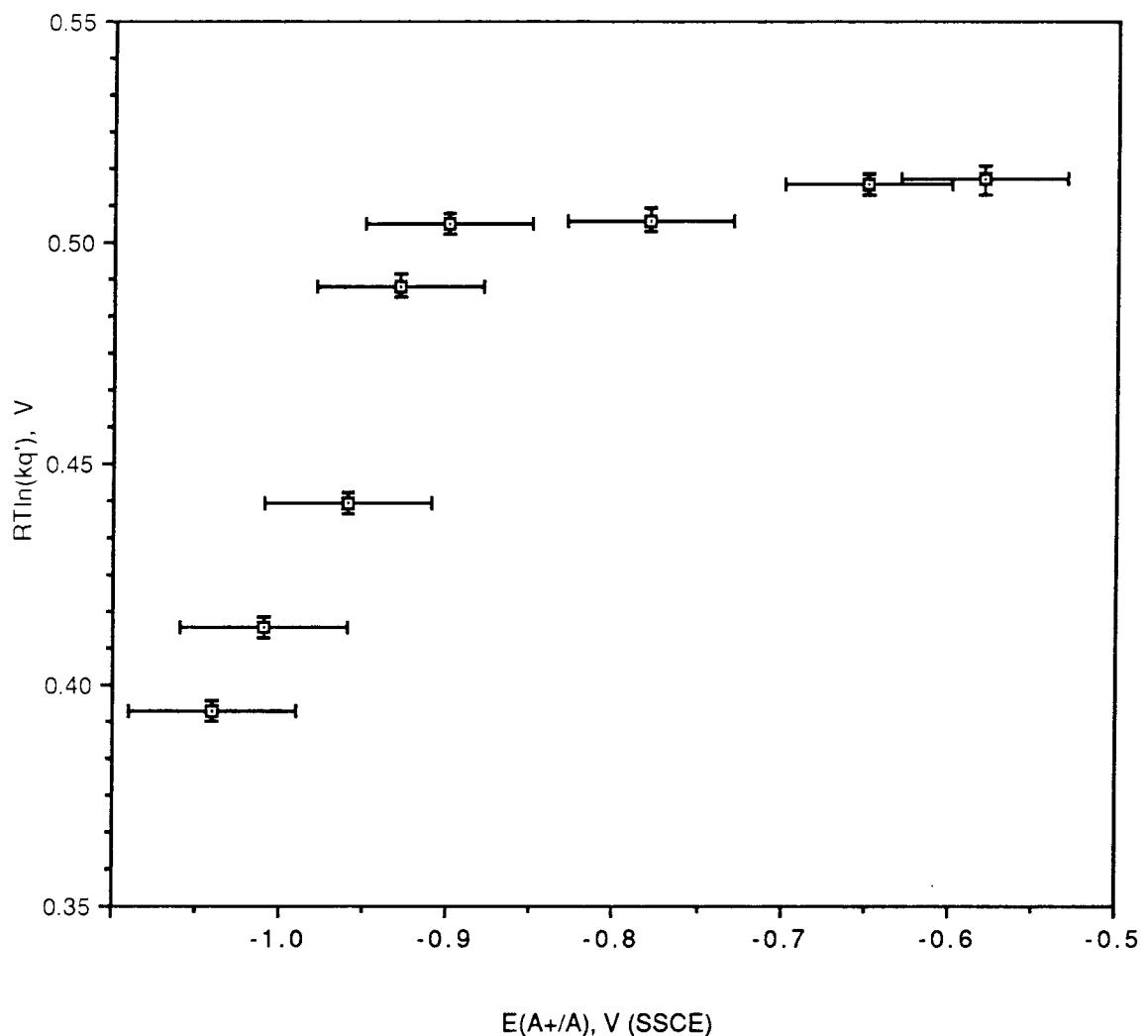
k_d may be evaluated using the Eigen equation.⁸²

$$k_d = \left[\frac{3(D_A + D_B)f}{a^2} \right] \exp\left[\frac{b}{(1 + Ka)} \right]$$

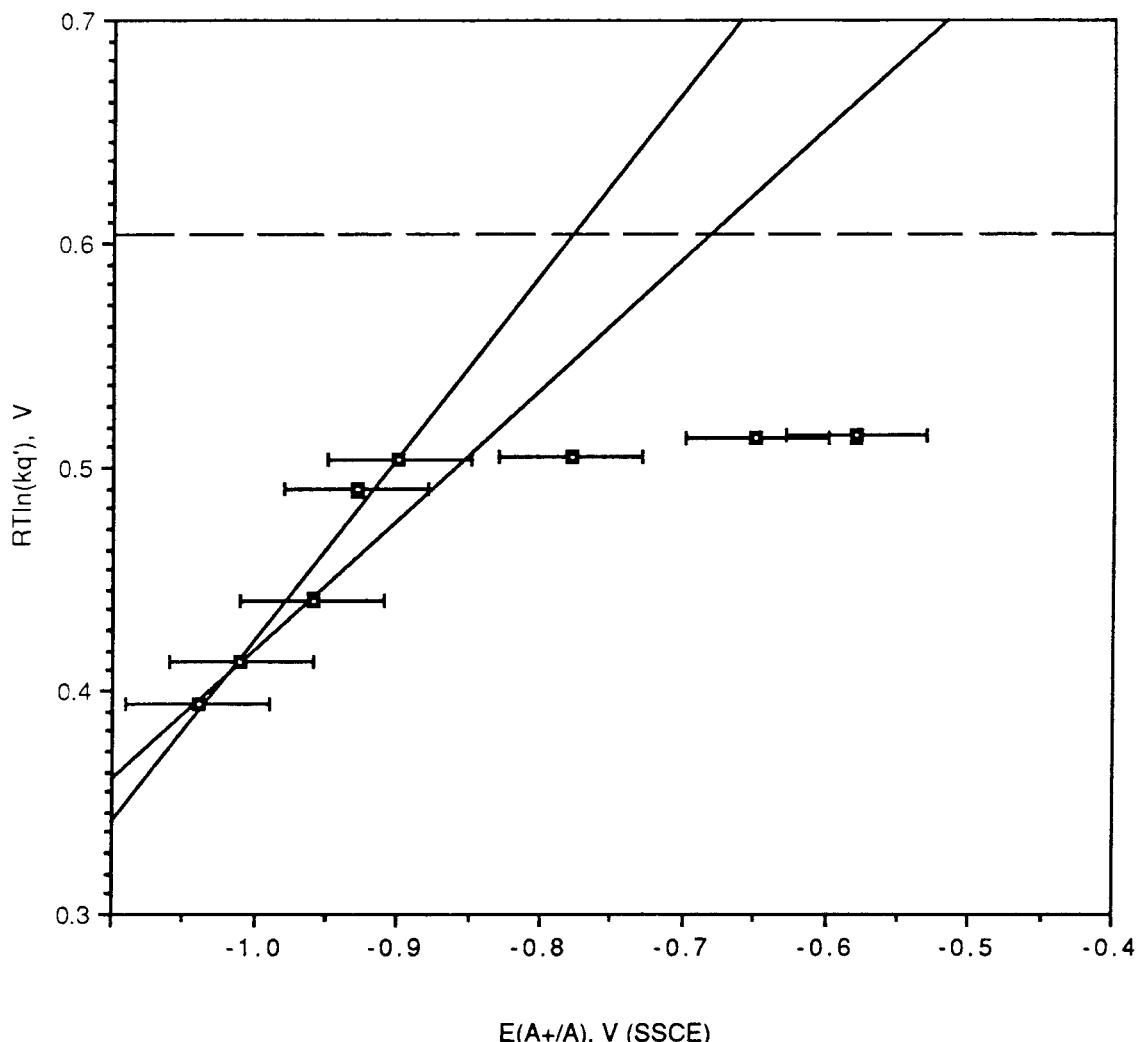
4.26

$$b = \frac{zAZB\epsilon^2}{aD_s k_b T}$$

The equilibrium constant for association is then


$$\frac{k_d}{k_{-d}} = \left(\frac{4\pi a^3 N_0}{3000} \right) \exp \left[\frac{-b}{(1 + K_a)} \right]. \quad 4.27$$

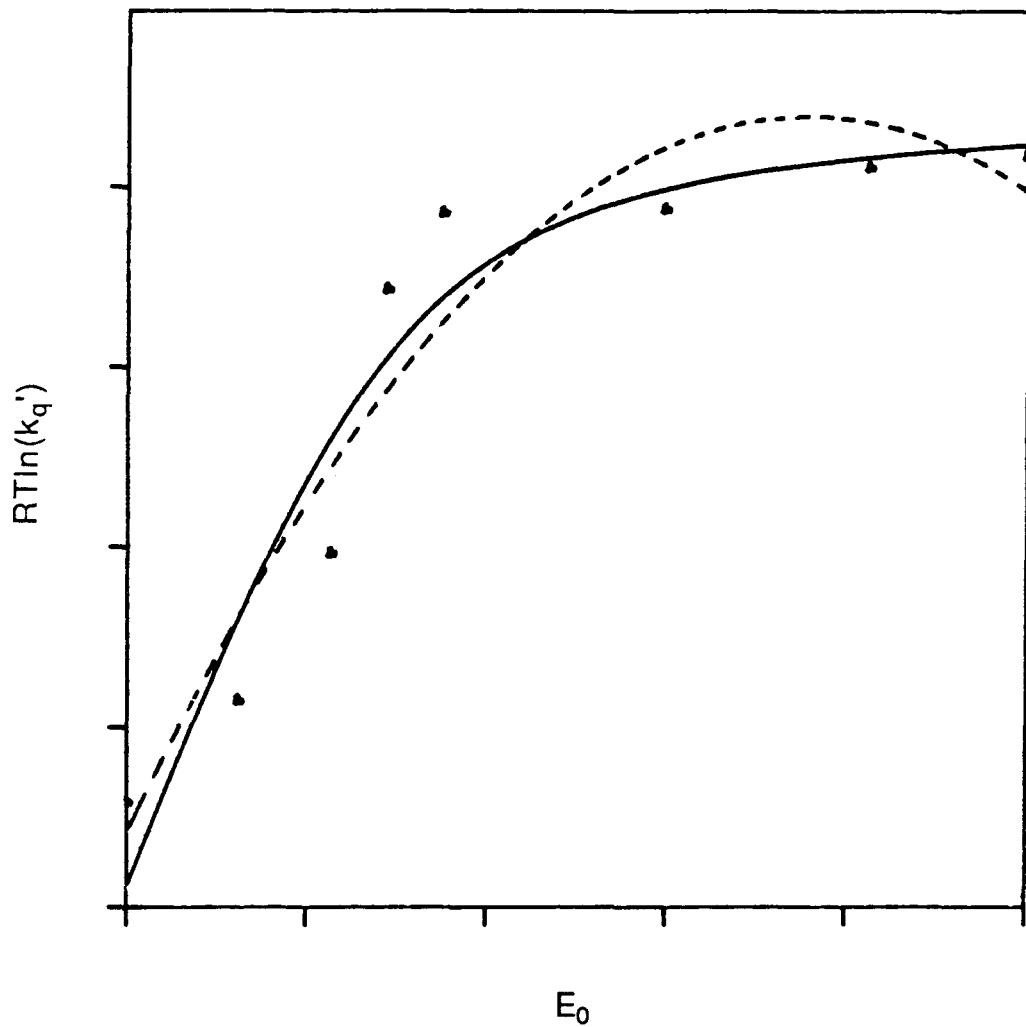
The equilibrium constant for association calculated for $\text{Ir}_2(\text{TMB})_4^{2+}$ and the pyridinium quenchers is approximately 1 to 2 M⁻¹. See Appendix 2 for a numerical integration routine to evaluate f. Also included in Appendix 2 are the calculated constants for the various pyridinium acceptors.⁸³


A plot of $RT\ln(k_q')$ versus $E^0(A^{+/0})$ is shown in Figure 4.18. Two regions are observed; (i) an activated region that shows Arrhenius-type linear behavior, and (ii) a plateau region where the rate shows no change for a decrease in $E^0(A^{+/0})$. Lacking in these data is a region, predicted by both the Marcus and Rehm-Weller FERs, intermediate between (i) and (ii), where k_q' increases nonlinearly as $E^0(A^{+/0})$ decreases.

Within the Marcus formalism, a plot of $RT\ln(k_q')$ versus $E^0(A^{+/0})$ should yield a line of slope 0.5 in the region where $\Delta G^0' \ll 2\lambda$.⁷³ A plot of the data with linear-least-squares fits to the activated region is shown in Figure 4.19. The slope is 0.7 ± 0.1 . This poor agreement to the predicted value of 0.5 is not an indication that the Rehm-Weller formalism is a better description of the system.⁵⁰ Earlier work for $[\text{Ir}(\mu-\text{pz})\text{COD}]_2$ found excellent agreement between the experimentally determined slope (0.48) and the theoretical value of 0.5.⁵⁷ The uncertainty in the value of the slope determined for $\text{Ir}_2(\text{TMB})_4^{2+}$ arises from the limited amount of data available in the activated region and the large uncertainty in $E^0(A^{+/0})$.

Figure 4.18. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1$ M TBAPF₆, CH₃CN).

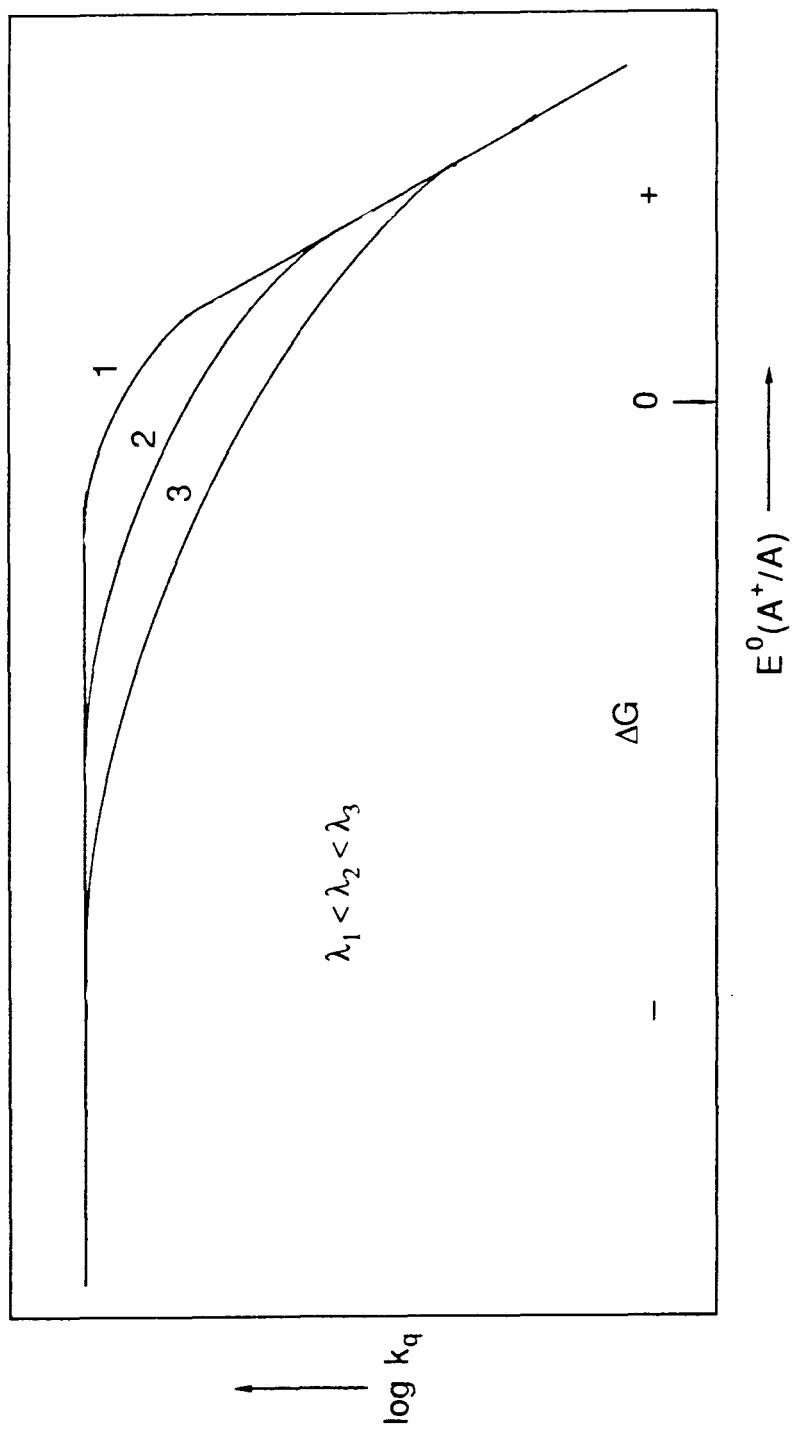
Figure 4.19. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of ${}^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1$ M TBAPF₆, CH₃CN). Diffusion-limited rate shown as the horizontal dashed line. Two linear fits to the activated region are shown.

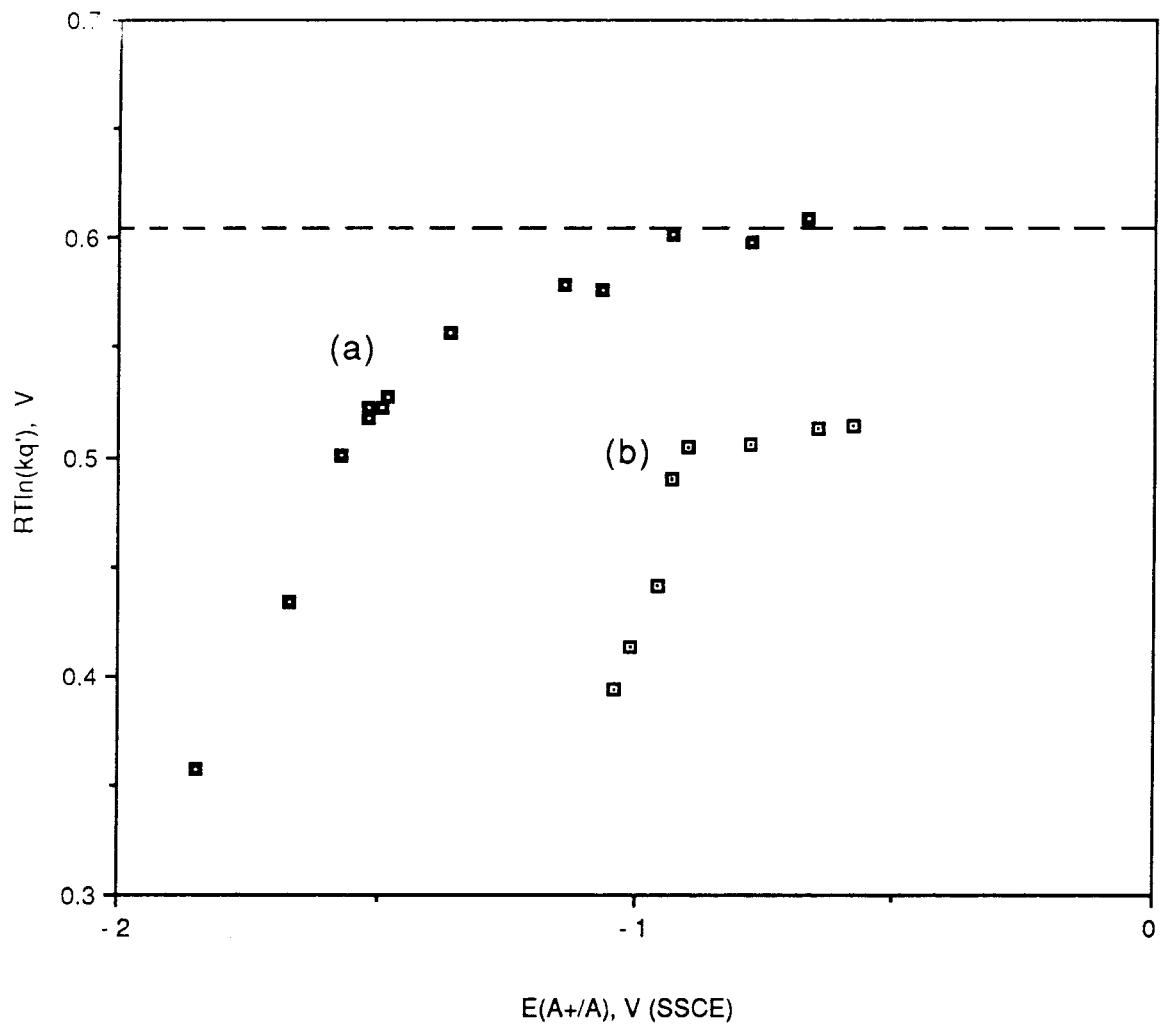


Three-parameter, nonlinear-least-squares fits of $RTIn(k_q')$ versus $E^0(A^{+/0})$ using Equations 4.20 and 4.23 are shown in Figure 4.20. The work term associated with bringing $Ir_2(TMB)_4^{2+}$ and a pyridinium acceptor together is 0.01 to 0.03 eV.⁴⁶ This contribution is neglected in the analysis of the electron-transfer rate data.

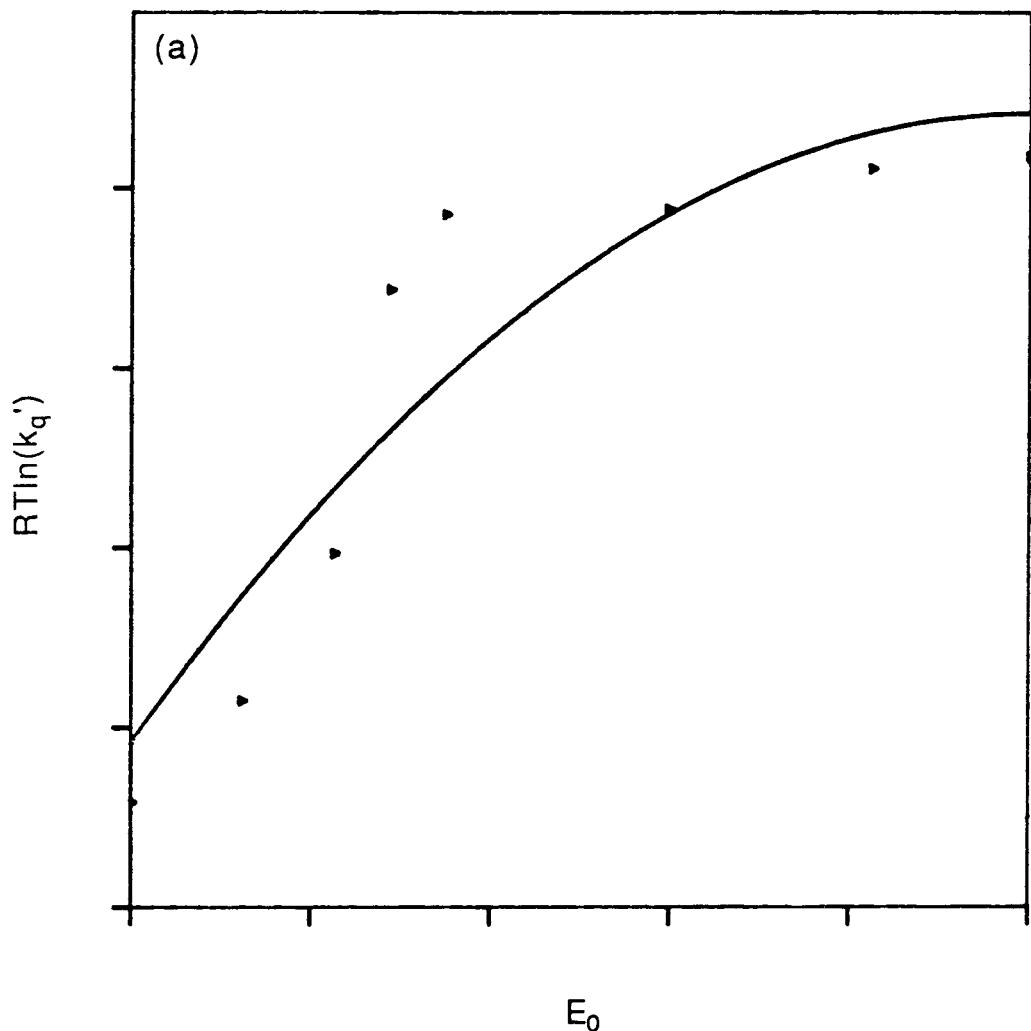
The fitted values for $RTIn(k_{\nu})$, $E^0(Ir_2^{3+/3}(Ir_2^{2+})^*)$, and λ are listed in Table 4.7. The fitted values for the two FERs are almost identical with the largest variation observed for λ . It is satisfying to find that the fitted value of $E^0(Ir_2^{3+/3}(Ir_2^{2+})^*)$ agrees with the earlier estimate of -0.72 V (SSCE). Variances of 200- 300 mV in reduction potentials are observed for other systems.⁵⁷ The surprising result from the nonlinear-least-squares fits is the low value for the reorganization energy ($\lambda \sim 0.25$ eV). Earlier studies for analogous binuclear systems found λ 's of approximately 1 eV.^{57,84} For small λ values, the intermediate curved region will decrease, and for very small values of λ , the intermediate range will be almost unnoticeable (Figure 4.21).⁵⁰ For $[Ir(\mu-pz)COD]_2$, a broad, nonlinear region is observed (Figure 4.22). The curvature observed for $Ir_2(TMB)_4^{2+}$ is in stark contrast to that for $[Ir(\mu-pz)COD]_2$ (Figure 4.22); however, this may be a consequence of the low limiting rate, not a small value of λ . In Figure 4.23, several two-parameter, nonlinear-least-squares fits to the data for $Ir_2(TMB)_4^{2+}$ are shown. The value of λ is fixed, and $E^0(Ir_2^{3+/3}(Ir_2^{2+})^*)$ and $RTIn(k_{\nu})$ are optimized according to Equation 4.20. Reasonable fits to the observed data are obtained for λ from 0.5 to 0.8 eV (Table 4.8). Thus, the reorganization energy for the oxidative electron-transfer quenching of $^3(Ir_2(TMB)_4^{2+})^*$ by pyridinium acceptors may be comparable to that determined for other binuclear d^8 complexes. Also, for a large value of λ , the fitted Marcus curve does not show an artificial downward curvature at higher driving force as for $\lambda \sim 0.2$ eV.

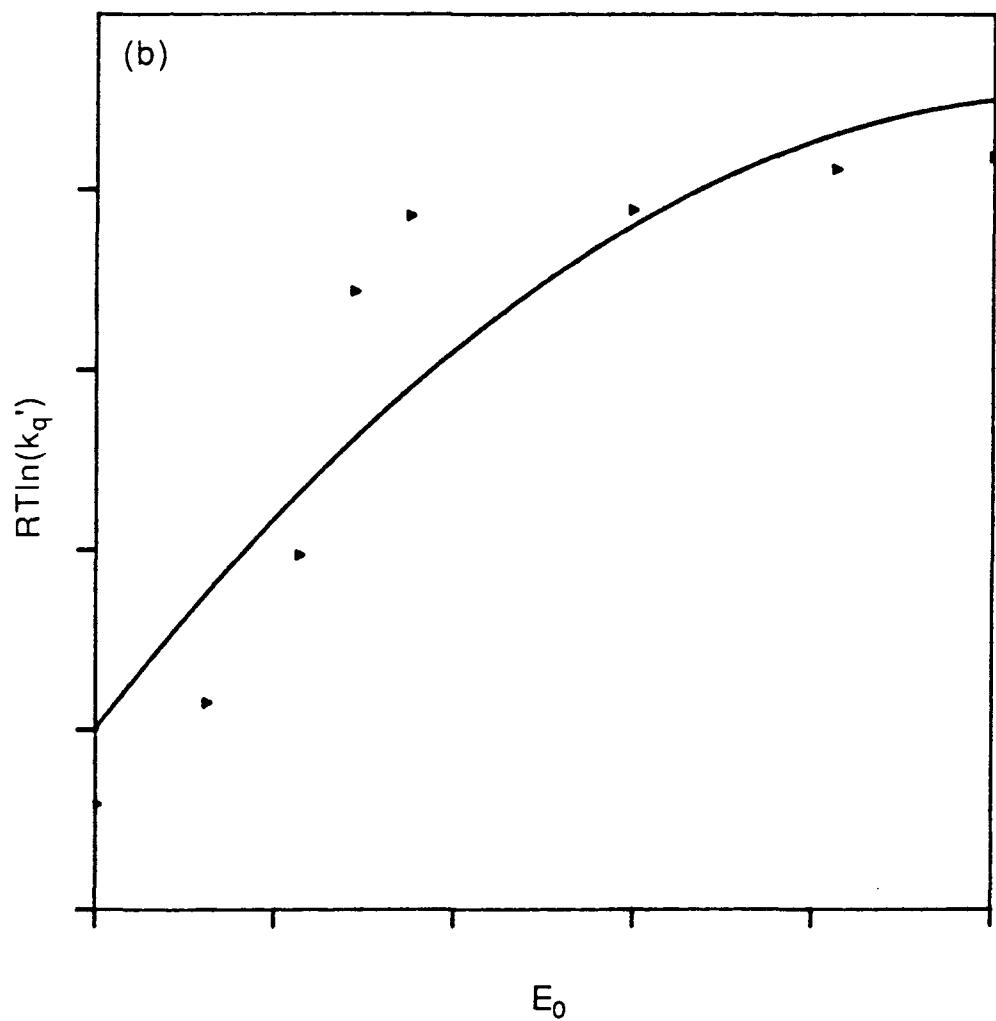
The limiting rate observed for $Ir_2(TMB)_4^{2+}$ is approximately two orders of magnitude below the calculated diffusional rate constant. For the plateau region two limiting values are predicted. As $\Delta G^0' \rightarrow -\infty$,

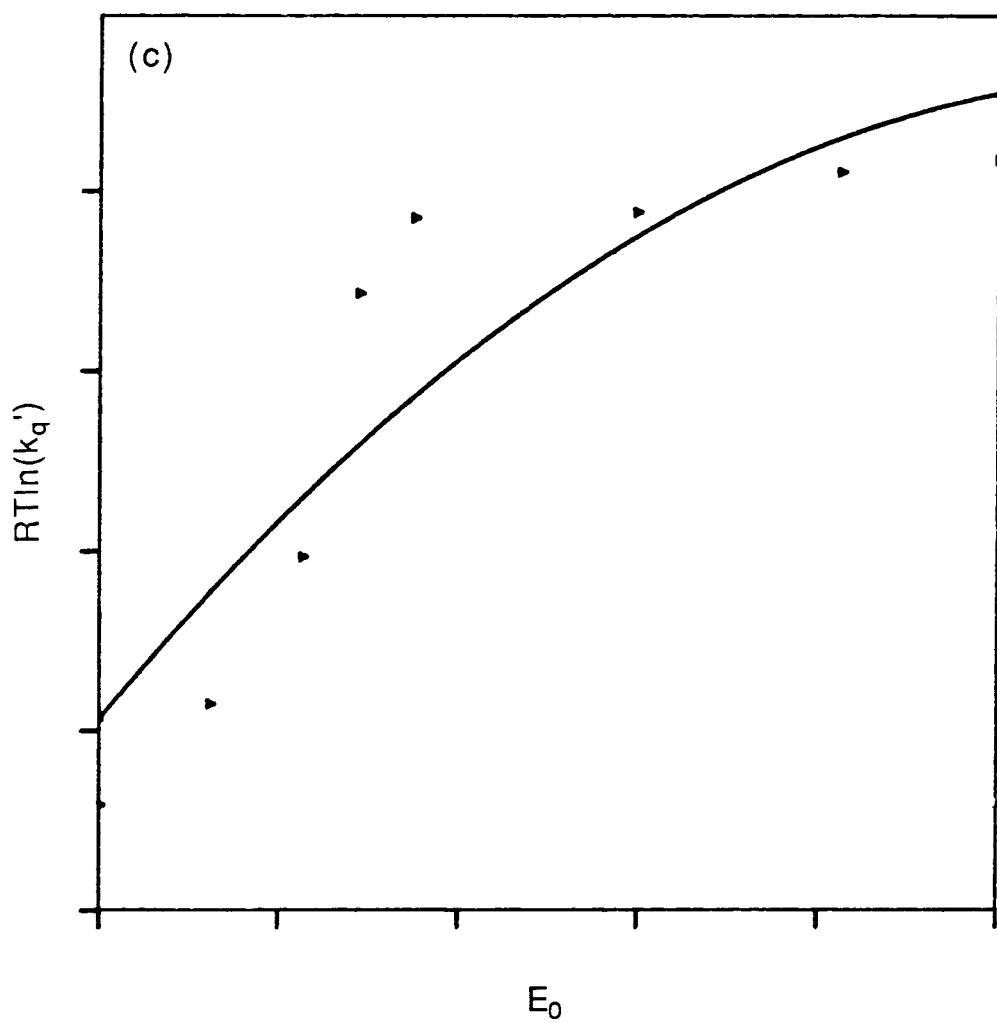

Figure 4.20. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1$ M TBAPF₆, CH₃CN). Three-parameter, nonlinear-least-squares fit using Marcus formalism (dashed curve) and Rehm-Weller (solid curve).


Table 4.7. Values for $RTIn(K\kappa v)$, $E^0(Ir_2^{3+}/^3(Ir_2^{2+})^*)$, and λ for $Ir_2(TMB)_4^{2+}$ obtained from three-parameter, nonlinear-least-squares fits.

	Marcus	Rehm-Weller
$RTIn(K\kappa v)$, V (SSCE)	0.52	0.52
$E^0(Ir_2^{3+}/^3(Ir_2^{2+})^*)$, V (SSCE)	-0.95	-0.94
λ , eV	0.25	0.21


Figure 4.21. Influence of λ on $\log(k_q)$ versus ΔG plots.




Figure 4.22. Plot of $RT\ln(k_{q'})$ versus $E^0(A^{+/0})$ for the electron-transfer quenching of ${}^3[\text{Ir}(\mu\text{-pz})\text{COD}]_2^*$ (curve a) and ${}^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ (curve b) by the pyridinium acceptors. Diffusion-limited rate horizontal dashed line.

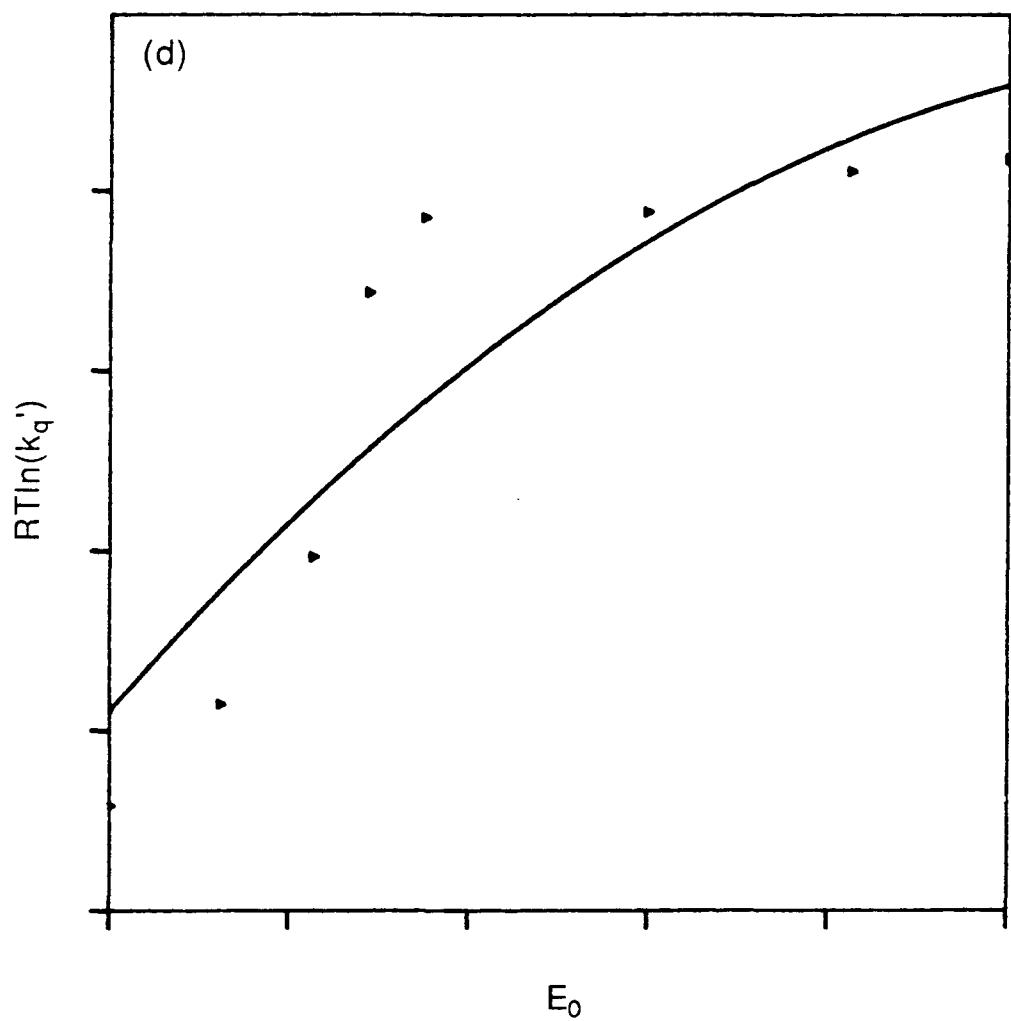


Figure 4.23. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the pyridinium acceptors in Table 4.5 ($\mu = 0.1$ M TBAPF₆, CH₃CN). Two-parameter, nonlinear-least-squares fits using Marcus formalism for (a) $\lambda = 0.5$ eV, (b) $\lambda = 0.6$ eV, (c) $\lambda = 0.7$ eV, and (d) $\lambda = 0.8$ eV.

Table 4.8. Values for $RT\ln(K_{\text{Kv}})$ and $E^0(\text{Ir}_2^{3+}/\text{Ir}_2^{2+})^*$ for $\text{Ir}_2(\text{TMB})_4^{2+}$ obtained from two-parameter, nonlinear-least-squares fits to Marcus equation with fixed λ values.

$\lambda, \text{ eV}$	$RT\ln(K_{\text{Kv}}), \text{ V (SSCE)}$	$E^0(\text{Ir}_2^{3+}/\text{Ir}_2^{2+})^*, \text{ V (SSCE)}$
0.5	0.52	-1.08
0.6	0.53	-1.14
0.7	0.53	-1.19
0.8	0.53	-1.24

$$k_q = \frac{k_d \kappa v}{(\kappa v + k_{-d})} \quad 4.28$$

for $\kappa v > k_{-d}$

$$k_q = k_d$$

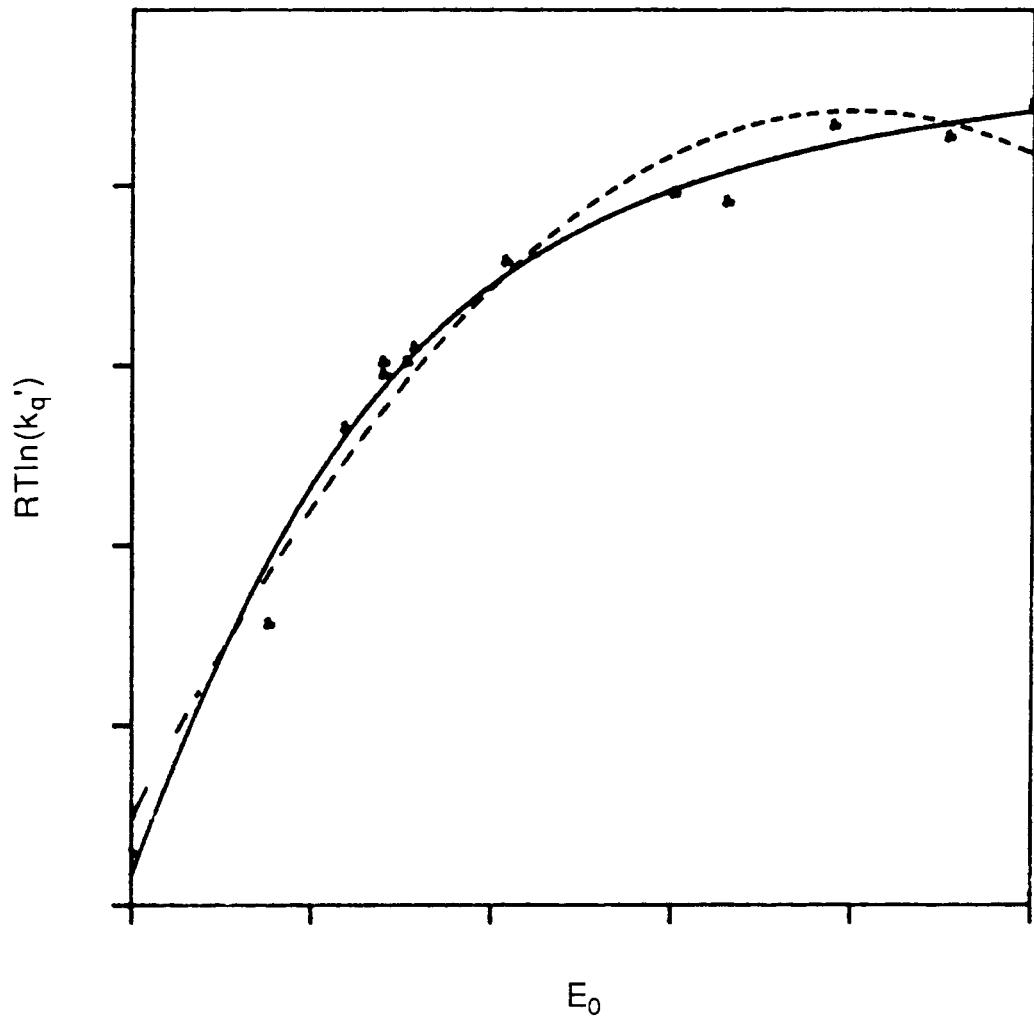
for $\kappa v < k_{-d}$

$$k_q = \kappa v.$$

The limiting rate for $\text{Ir}_2(\text{TMB})_4^{2+}$ is κv , indicating a highly nonadiabatic process, $\kappa \ll 1$.

A value for the nonadiabaticity of the electron-transfer reaction can be estimated from the value of $RT\ln(\kappa v)$. The values of $RT\ln(\kappa v)$ for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ determined for both the Marcus and Rehm-Weller FERs are listed in Table 4.9 (Figure 4.24). The electron-transfer reaction for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ is found to be nonadiabatic with $\kappa \approx 0.01$. A preexponential factor of $5 \times 10^8 \text{ s}^{-1}$ is estimated for $\text{Ir}_2(\text{TMB})_4^{2+}$, yielding a $\kappa \approx 0.0001$, indicative of a highly nonadiabatic process. The small values of κ may be understood in terms of the semiclassical Landau-Zener theory.⁸⁵ The probability of the reactants' being converted to products per single passage through the intersection region is given by

$$P_{if} = 1 - \exp\left[\frac{-4\pi^2 H_{if}^2}{h v |s_i - s_f|}\right], \quad 4.29$$


where H_{if} is the electronic coupling matrix element between the initial reactant surface, and the final product surface. κ is given by

$$\kappa = \frac{2P_{if}}{(1 + P_{if})}, \quad 4.30$$

Table 4.9. Values for $RT\ln(K\kappa v)$, $E^0(\text{Ir}_2^{3+}/^3(\text{Ir}_2^{2+})^*)$, and λ for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ obtained from three-parameter, nonlinear-least-squares fits.

	Marcus	Rehm-Weller
$RT\ln(K\kappa v)$, V (SSCE)	0.61	0.64
$E^0(\text{Ir}_2^{3+}/^3(\text{Ir}_2^{2+})^*)$, V (SSCE)	-1.84	-1.69
λ , eV	0.94	0.78

Figure 4.24. Plot of $RT\ln(k_q')$ (V) versus $E^0(A^{+/0})$ (V) for the electron-transfer quenching of ${}^3[\text{Ir}(\mu\text{-pz})\text{COD}]_2^*$ by the pyridinium acceptors. Three-parameter, nonlinear-least-squares fit using Marcus formalism (dashed curve) and Rehm-Weller (solid curve).

For strong coupling between the initial and final states, κ is unity; when H_{if} is small (weak coupling), κ is also small. The origin of the small value of κ for $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ is not well understood. Weak electronic coupling might be expected for a donor and acceptor of like charge because of the Coulombic interaction that would keep them far apart, thus the very small value of κ observed for $\text{Ir}_2(\text{TMB})_4^{2+}$.

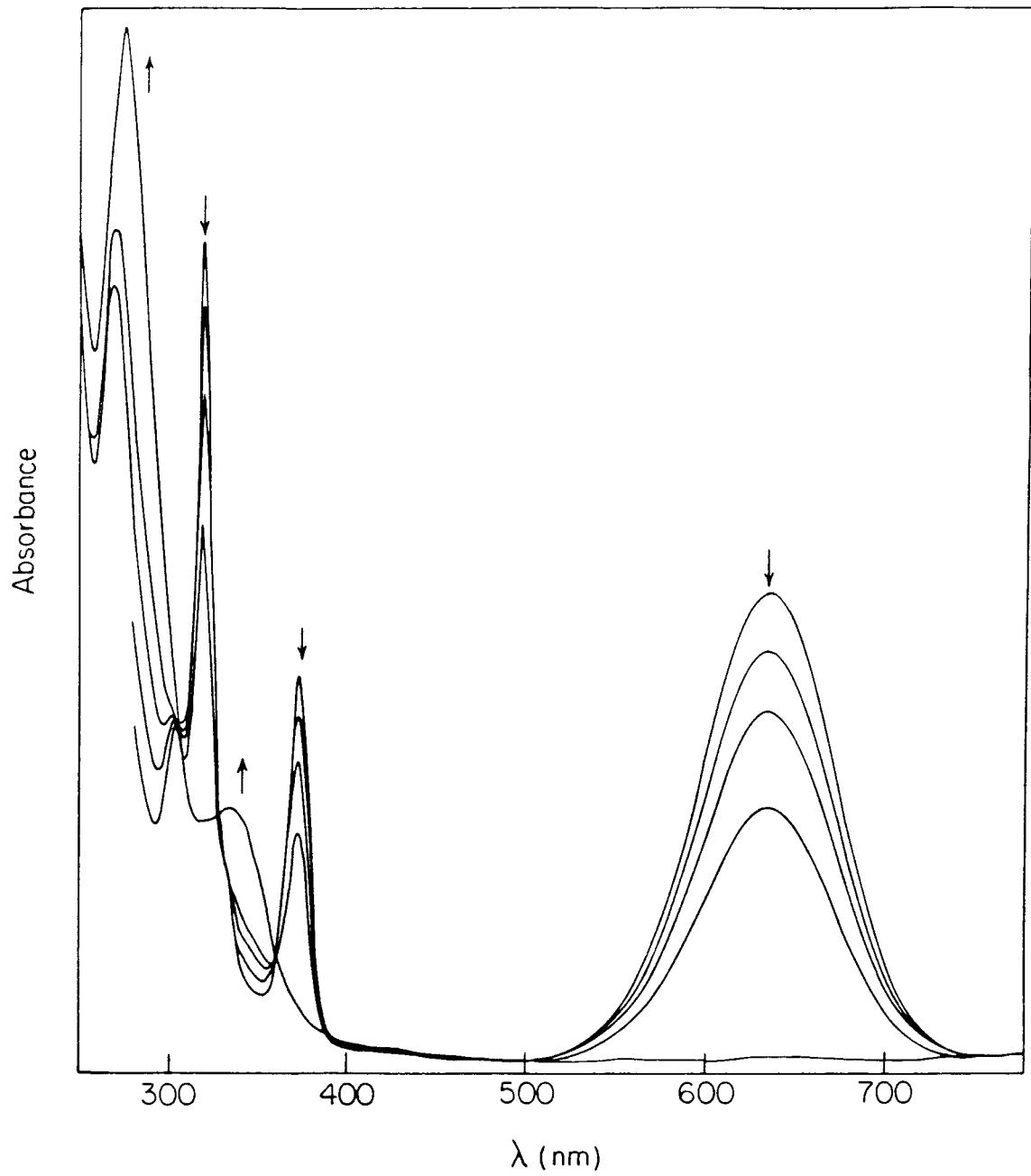
An estimate of the donor-acceptor separation for the electron-transfer event can be obtained from the value of κ .⁷⁸ In the nonadiabatic region, κv is given by

$$\kappa v = 2\pi \frac{H_{ab}^2}{h(4\pi\lambda RT)^{1/2}} . \quad 4.31$$

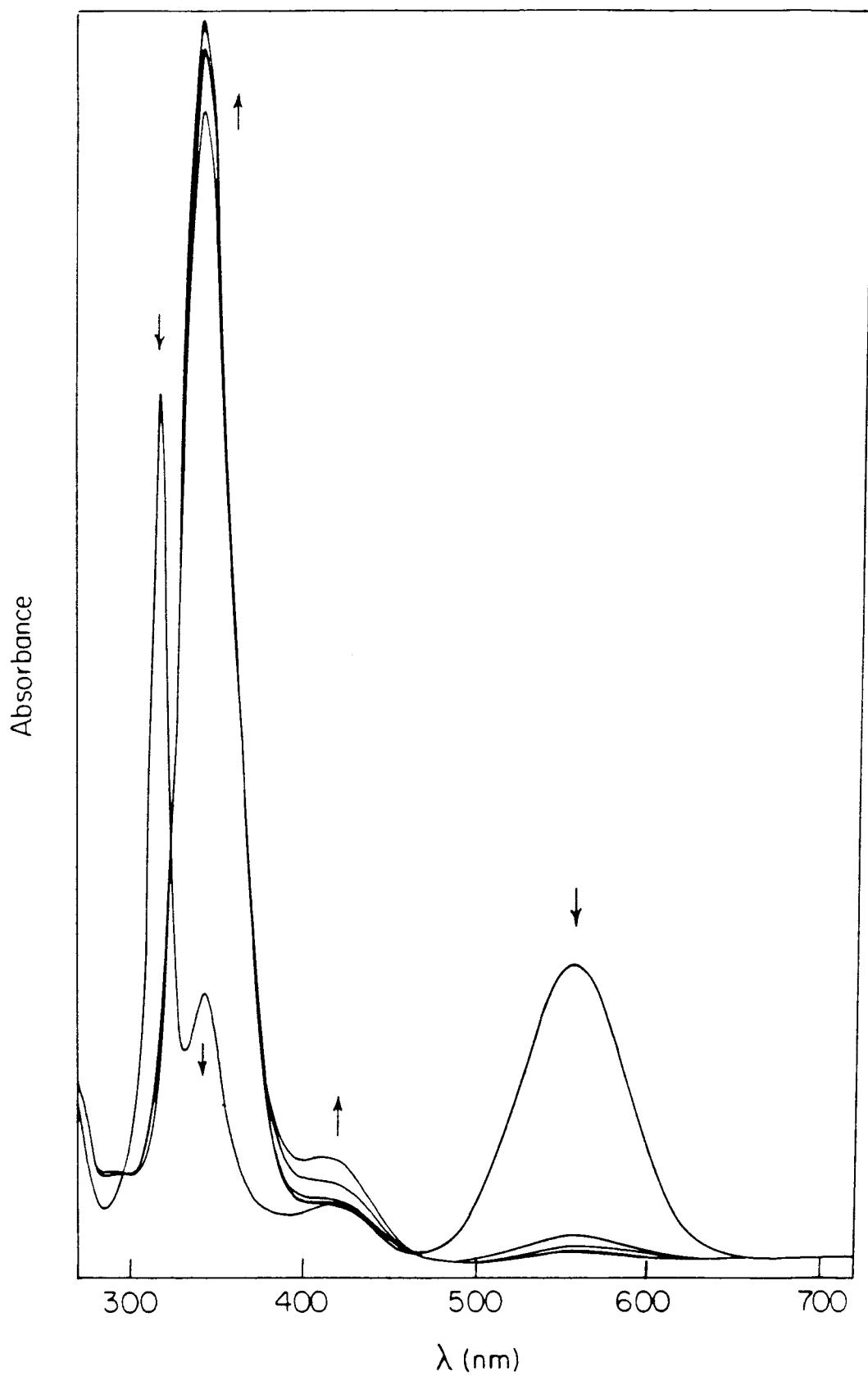
H_{ab}^2 decreases exponentially with separation distance for many systems, and so κv can be written as

$$\kappa v = v_0 \exp[-\beta(r - r_0)] , \quad 4.32$$

where r_0 is the value of r at which κv equals some preassigned value. For bimolecular reactions r_0 is frequently assumed to correspond to close contact of the two reactants. Therefore, $r - r_0$ corresponds to the donor-acceptor separation. Assuming a β of 1.2 \AA^{-1} , $r - r_0$ for the electron transfer reaction of $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ is approximately 4 \AA . A closest contact ($r = r_0$) encounter complex is not formed for the reaction between $^3[\text{Ir}(\mu\text{-pz})\text{COD}]_2^*$ and a pyridinium acceptor. For $\text{Ir}_2(\text{TMB})_4^{2+}$, $r - r_0$ is calculated to be $\sim 8 \text{\AA}$, a reasonable value considering the unfavorable Coulombic interaction between $\text{Ir}_2(\text{TMB})_4^{2+}$ and the pyridinium cation.


Alkyl-Halide Photoredox

Although the conversion of light to chemical energy via the electron transfer reaction of binuclear d⁸ complexes is rather facile, the photochemical products return to starting materials because the back-electron-transfer reactions are very rapid. In order to utilize the strong reducing power of the ${}^3(d\sigma^*p\sigma)$ excited state, the nonproductive back electron transfer must be inhibited. The first approach taken was to intercept the d⁸-d⁷ complex. This species, possessing open coordination sites, might be trapped by Lewis bases. Photolysis of $[\text{Ir}(\mu\text{-pz})\text{COD}]_2$ with MV^{2+} in the presence of an excess of I^- did not yield $[\text{Ir}(\mu\text{-pz})\text{COD}(\text{I})]_2$.³⁹ Stern-Volmer quenching of the excited state was observed with rapid, back-electron transfer to yield the starting materials. The back reaction between $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{3-}$ and A^- could be inhibited by axial ligand binding.⁸⁶ A fine balance between productive scavenging of $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{3-}$ and nonproductive back reaction to $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ and A was found.


An alternative approach for inhibiting the back electron transfer is generation of a reduced acceptor, which is thermally unstable. The unimolecular decomposition of the reduced acceptor would compete with the bimolecular back-electron-transfer reaction.

Photolysis of the binuclear d⁸ complexes in the presence of alkyl halides yields products that can be rationalized to occur from the thermal decomposition of the reduced alkyl halide: an excited-state electron-transfer reaction followed by dissociative decomposition of the alkyl halide radical anion, and rapid scavenging of the fragmentation products.^{2,49,58,87,88} The back-electron-transfer reaction is inhibited by the decomposition of the alkyl halide radical anion. Photolysis of $\text{Ir}_2(\text{TMB})_4^{2+}$ in 1,2-dichloroethane cleanly generates $\text{Ir}_2(\text{TMB})_4\text{Cl}_2^{2+}$ (Figure 4.25). The presumed organic product is ethylene. Similarly for $\text{Rh}_2\text{b}_4^{2+}$, a clean photoredox reaction is observed with 1,2-dichloroethane for $\lambda_{\text{ex}} > 500$ nm (Figure 4.26). The inorganic product is $\text{Rh}_2\text{b}_4\text{Cl}_2^{2+}$.

Figure 4.25. Spectral changes upon irradiation of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 604$ nm.

Figure 4.26. Spectral changes upon irradiation of $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 500$ nm.

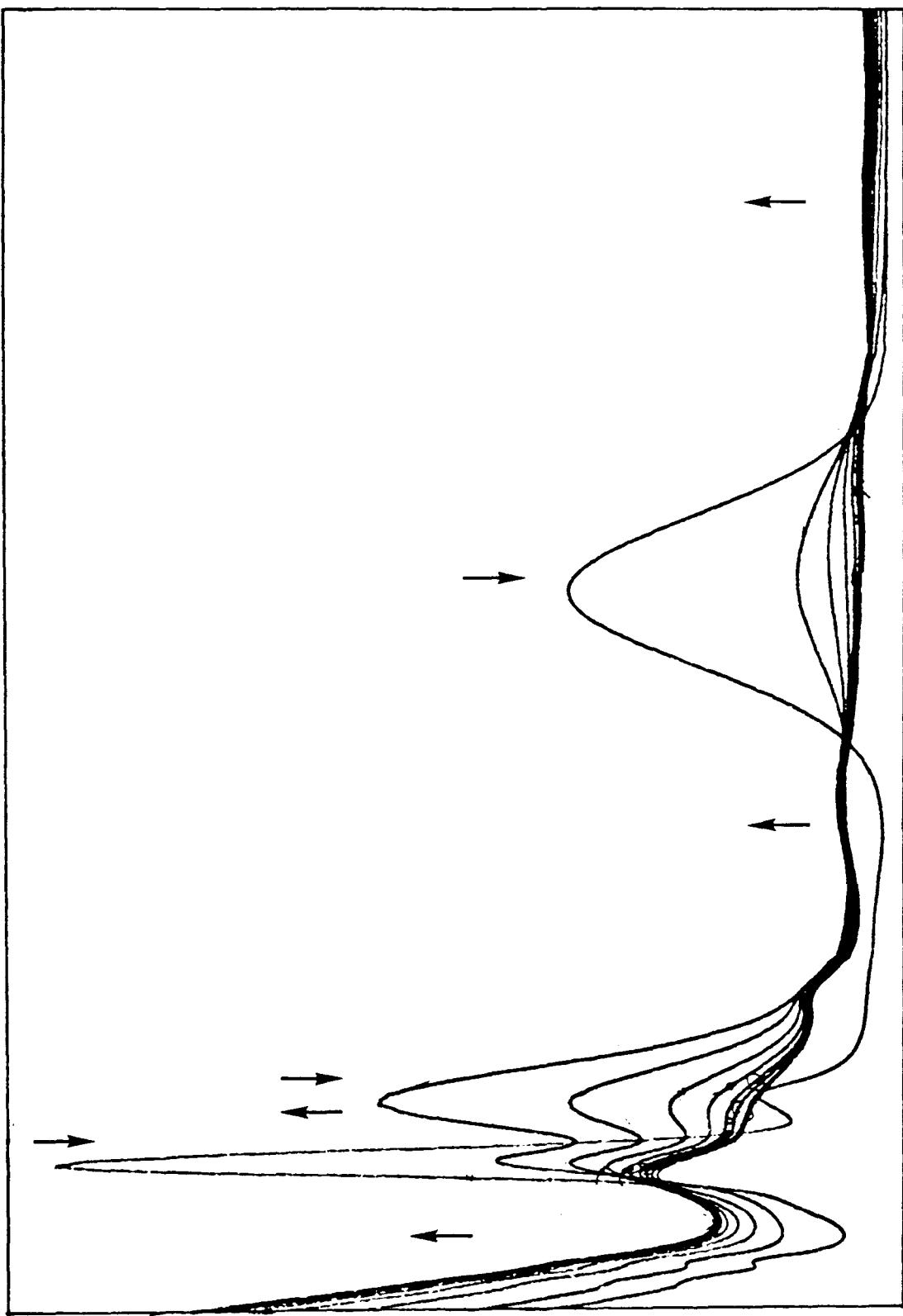
An SRN1 mechanism (Figure 4.12) has been proposed to explain the photoredox reaction of alkyl halides with binuclear d⁸ complexes.⁴⁹ For [Ir(μ -pz)COD]₂ and Pt₂(P₂O₅H₂)₄⁴⁻, whose excited-state reduction potentials are less than -1.5 V (SSCE), an outer-sphere electron-transfer reaction seems likely. Reduction potentials for alkyl halides of interest are generally more negative than -1.5 V (SSCE).⁵⁹ The quenching rate constant for the ³(dσ* pσ) excited state of [Ir(μ -pz)COD]₂ by 1,2-dichloroethane was found to agree with the rate expected for an outer-sphere electron-transfer reaction to an acceptor with a reduction potential of -2.0 V (SSCE).⁵⁸ However, an outer-sphere electron-transfer reaction seems unlikely for complexes with E⁰(M₂⁺/³M₂⁺) > -1.0 V (SSCE).

An alternate pathway to outer-sphere electron transfer, which yields similar photoredox products with alkyl halides, is excited-state atom transfer (Figure 4.13). Data obtained for Pt₂(P₂O₅H₂)₄⁴⁻ indicate that alkyl and aryl halides react with the ³(dσ* pσ) excited state via halogen-atom transfer,² the ³(dσ* pσ) excited state abstracting the halide generating a d⁸-d⁷ monohalide species and an organic radical. An atom-transfer mechanism is favored for the photoredox reaction observed for Ir₂(TMB)₄²⁺ and Rh₂b₄²⁺ with 1,2-dichloroethane.

Earlier work had suggested that the photoreaction of Rh₂b₄²⁺ with alkyl iodides proceeds by a radical chain mechanism initiated by an excited-state electron-transfer reaction.⁸⁸ An equivalent mechanism can be written with an atom-transfer initiation step. The photochemical reaction for Rh₂b₄²⁺, unlike the reaction for Ir₂(TMB)₄²⁺, is complete in a matter of minutes (rather than hours). The relative rates of the photoredox reaction for Rh₂b₄²⁺ and Ir₂(TMB)₄²⁺ can be understood from the varied lifetimes (and emission quantum yields) for the two complexes.⁸⁹

The photoredox reaction for Ir₂(TMB)₄²⁺ appears very clean for λ_{ex} > 500 nm. As λ_{ex} is decreased to 400 nm, secondary photolysis occurs. The most likely reaction is photochemical degradation of Ir₂(TMB)₄Cl₂²⁺.⁴ Higher-energy irradiation of Rh₂b₄²⁺

in 1,2-dichloroethane results in very complex behavior (Figure 4.27). Rapid disappearance of $\text{Rh}_2\text{b}_4^{2+}$ with growth of $\text{Rh}_2\text{b}_4\text{Cl}_2^{2+}$ is observed with slower loss of $\text{Rh}_2\text{b}_4\text{Cl}_2^{2+}$ and appearance of bands attributable to oligomeric rhodium species.⁹⁰ The final solution is brown-orange. Removal of the solvent yields dark-purple material.


One concern for the photoreaction of $\text{Rh}_2\text{b}_4^{2+}$ is the possibility of oligomer reaction rather than dimer reaction. The photochemical generation of H_2 from HCl solutions of $\text{Rh}_2\text{b}_4^{2+}$ is thought to result from photochemical cleavage of $[\text{Rh}_2\text{b}_4\text{Cl}]_2^{4+}$.⁹¹ Generation of mixed valence rhodium complexes followed by thermal electron transfer or atom transfer might explain the observed alkyl-halide photoreduction.

Atom transfer to the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is the favored reaction mechanism for the alkyl-halide photoreduction reaction. While outer-sphere electron transfer appears plausible for a metal complex with $E^0(\text{M}_2^+/\text{M}_2^*) < -1.5$ V (SSCE), it seems unlikely for complexes with $E^0(\text{M}_2^+/\text{M}_2^*) > -1.0$ V (SSCE). One question remains to be answered. Why would systems, whose excited state reduction potentials are much less than -1.5 V (SSCE), react by an atom-transfer mechanism rather than by an outer-sphere electron-transfer pathway? One explanation may be obtained from the study of the electron-transfer quenching of binuclear d^8 complexes. The oxidative quenching of the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is found to be quite nonadiabatic. In order to overcome the large nonadiabaticity, the metal complex coordinates the alkyl halide. Inner-sphere electron transfer coupled with C-X bond cleavage results in net halide-atom transfer to the metal complex.

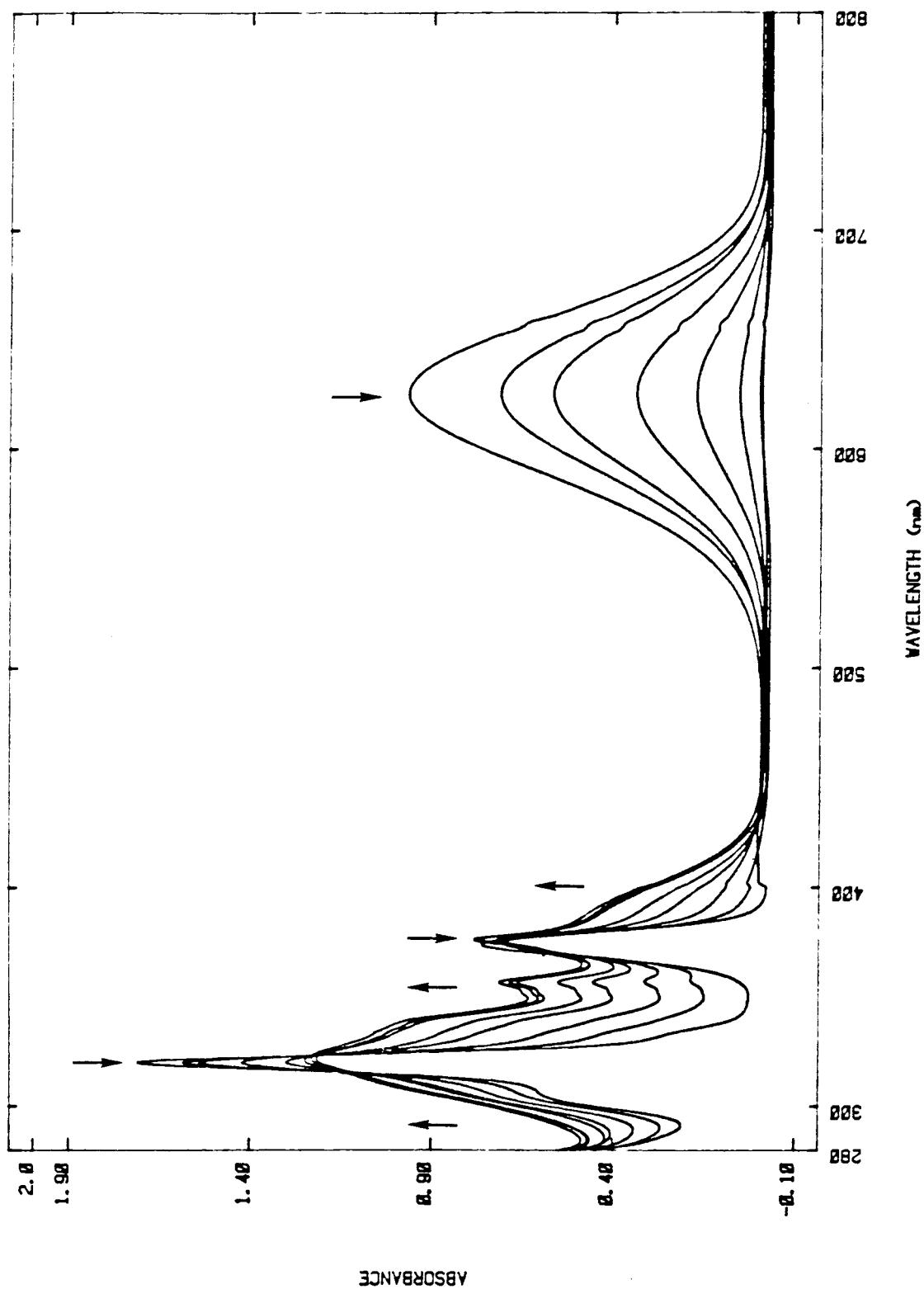
Hydrogen-Atom Transfer

$\text{Ir}_2(\text{TMB})_4^{2+}$ (Ir_2) is found to react photochemically with 9,10-dihydroanthracene and 1,4-cyclohexadiene. A representative electronic absorption spectrum of the photochemical reaction between $\text{Ir}_2(\text{TMB})_4^{2+}$ and 9,10-

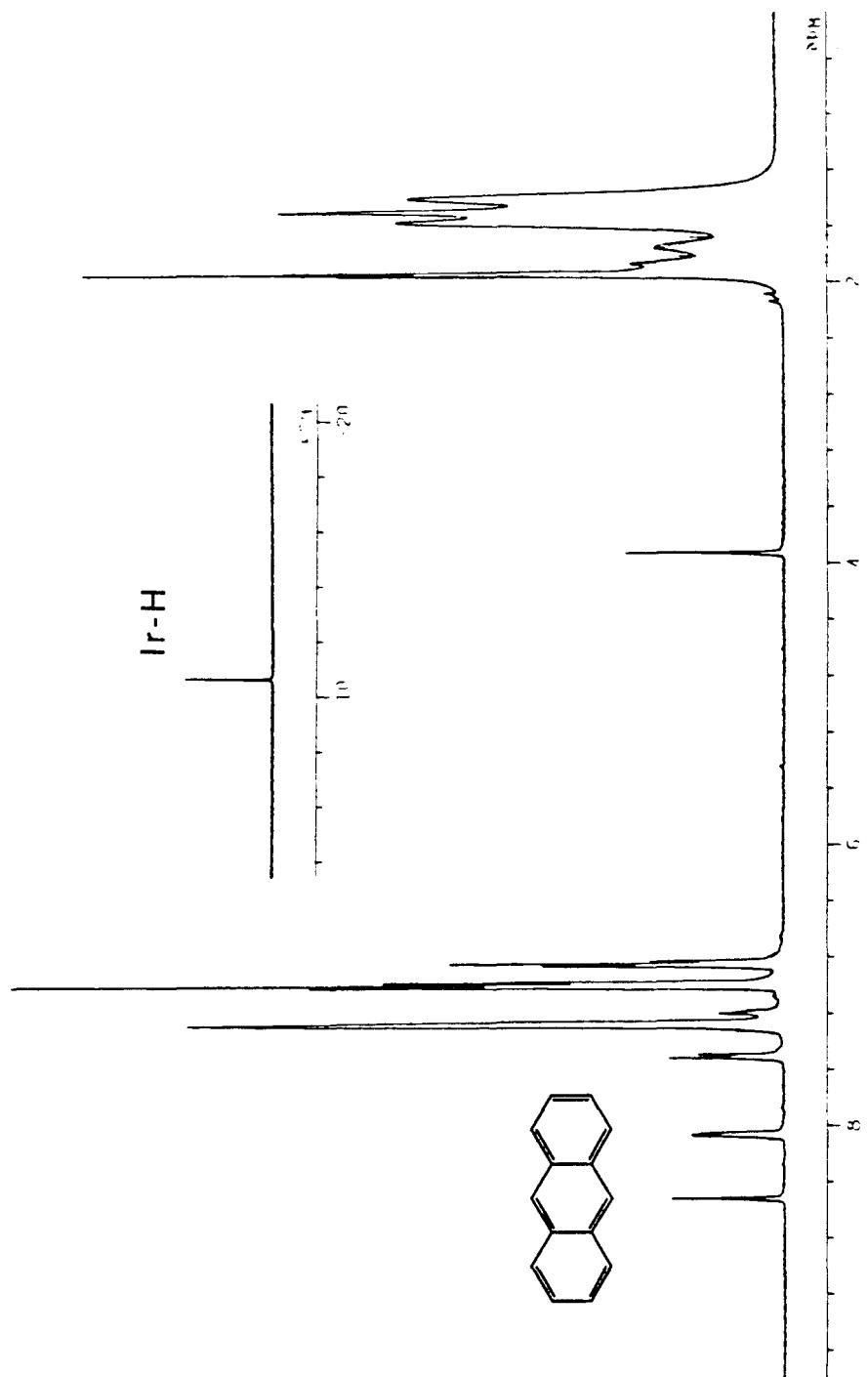
Figure 4.27. Spectral changes upon irradiation of $[\text{Rh}_2\text{b}_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in neat 1,2-dichloroethane, $\lambda_{\text{ex}} > 400$ nm.

dihydroanthracene is shown in Figure 4.28. Rapid disappearance of the ${}^1(\text{d}\sigma^*\text{p}\sigma)$ band with growth of higher-energy transitions is observed, indicating the formation of anthracene. Growth of resonances assignable to anthracene and Ir-H are observed in the ${}^1\text{H}$ NMR (Figure 4.29). Isolation of the inorganic product from the reaction mixture yields a material whose electronic spectrum suggests the formation of a transdihydride $\text{d}^7\text{-d}^7$ adduct, $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ (Ir_2H_2). A moderate Ir-H stretch (1940 cm^{-1}) is observed in the IR, indicative of a terminal metal hydride. No appreciable thermal reaction with 9,10-dihydroanthracene is observed at room temperature; however, a reaction is observed at elevated temperatures. Anthracene and Ir-H resonances are observed in the ${}^1\text{H}$ NMR.

For 1,4-cyclohexadiene, no thermal reaction is observed, even at elevated temperatures. Photolysis of $\text{Ir}_2(\text{TMB})_4^{2+}$ and 1,4-cyclohexadiene results in rapid disappearance of the $\text{d}^8\text{-d}^8$ metal complex. With no complication because of overlapping product spectra for the reaction with 1,4-cyclohexadiene, clean isosbestic conversion to the product spectrum is observed (Figure 4.30). Growth of resonances attributable to benzene and Ir-H are observed in the ${}^1\text{H}$ NMR (Figure 4.31).


No dark reaction is observed after partial photolysis for either 9,10-dihydroanthracene or 1,4-cyclohexadiene (no indication of a photoinitiated process).

The net photoreaction observed for $\text{Ir}_2(\text{TMB})_4^{2+}$ with a number of hydrocarbon substrates is hydrogen-atom transfer to the metal center.



No evidence of organic radical-coupling products ($(\text{RH})_2$) or alkyl-hydride metal complexes (RH-Ir-Ir-H) is observed. The Ir_2H_2 complex has been isolated and characterized (see Chapter 5).

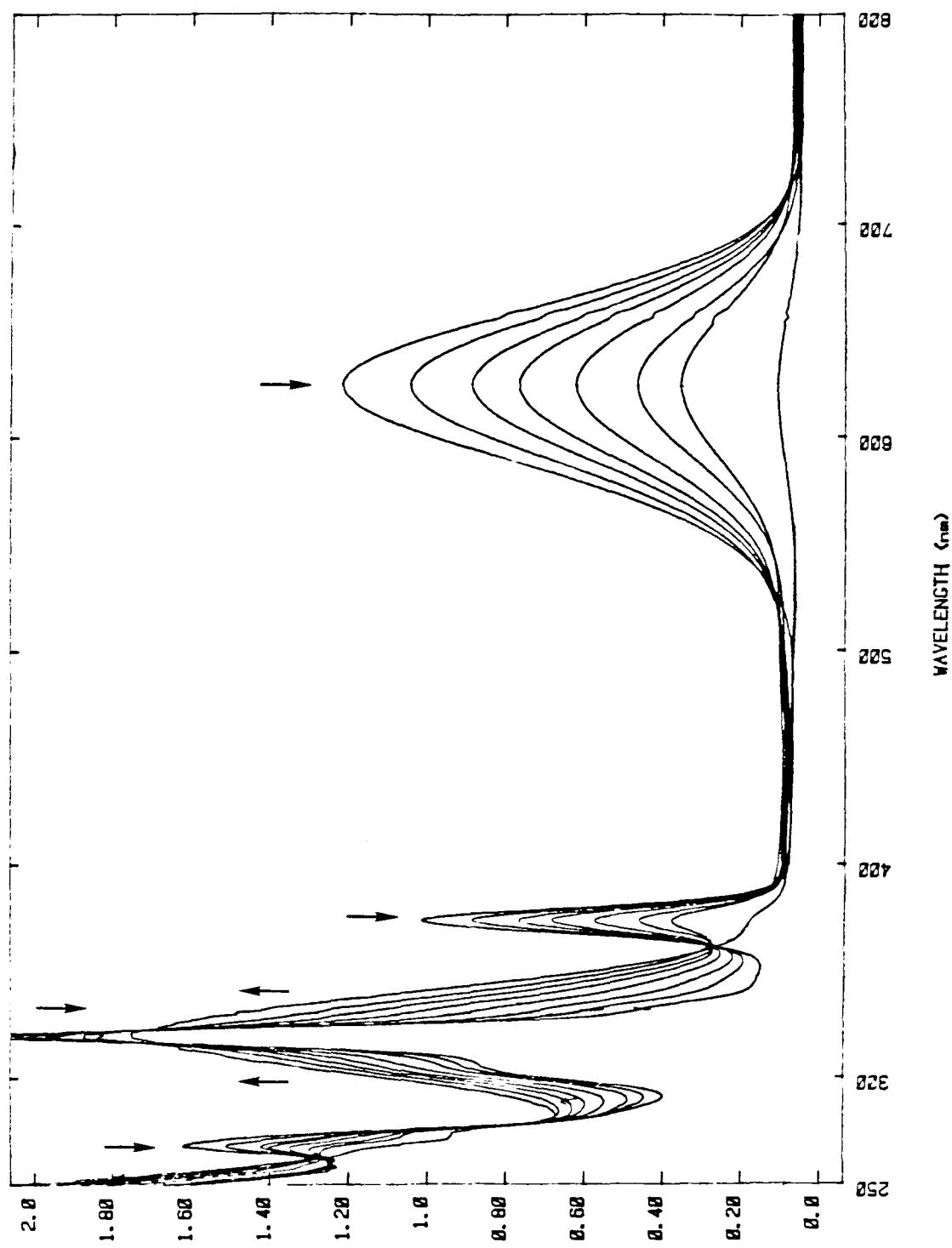
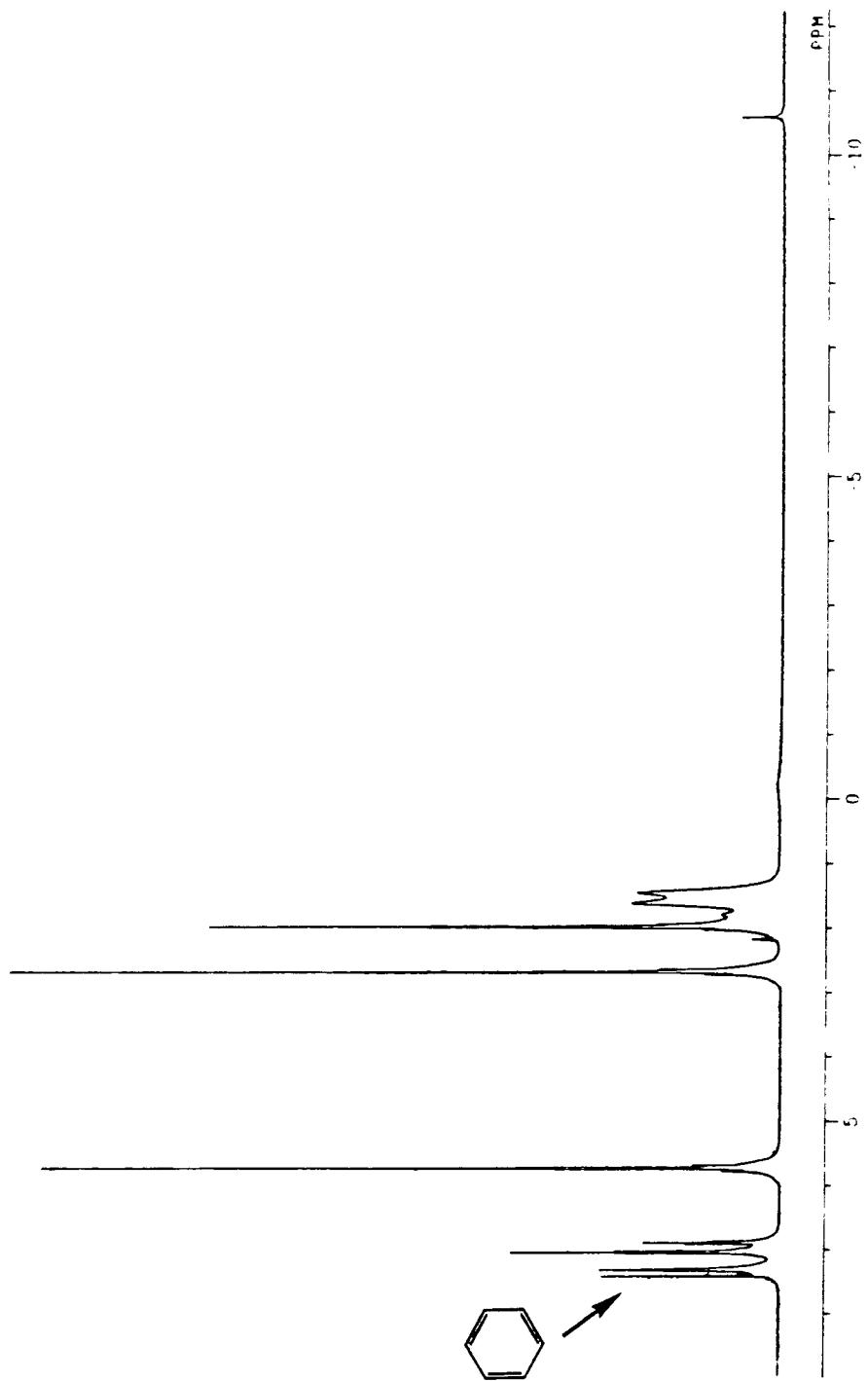
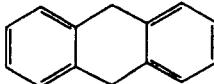
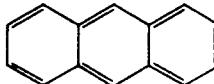
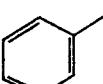
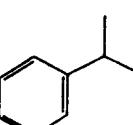
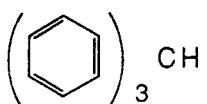

Figure 4.28. Spectral changes upon irradiation of an acetonitrile solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene.

Figure 4.29. NMR spectrum of an acetonitrile-*d*₃ photolysis solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 9,10-dihydroanthracene.

Figure 4.30. Spectral changes upon irradiation of an acetonitrile solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 1,4-cyclohexadiene.

Figure 4.31. NMR spectrum of an acetonitrile-*d*₃ photolysis solution of $[\text{Ir}_2(\text{TMB})_4](\text{B}(\text{C}_6\text{H}_5)_4)_2$ and 1,4-cyclohexadiene.








Table 4.10 lists a number of hydrocarbon substrates and their observed photochemical reactivity with Ir_2 . The conclusions are based on conversion to Ir_2H_2 . While conversion to Ir_2H_2 is not observed for all substrates, all but triphenylmethane quench the ${}^3(\text{d}\sigma^*\text{p}\sigma)$ excited state (*vide infra*). Photochemical conversion of the organic substrates may occur with no build-up of inorganic product. For $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ (Pt_2), excited-state quenching by toluene and cumene is observed; steady-state photolysis ($\lambda_{\text{ex}} 370$ nm) produces H_2 and organic radical products (for toluene, bibenzyl; for cumene, 2,3-dimethyl-2,3-diphenylbutane) with no formation of Pt_2H_2 .⁹²

To better understand the hydrogen-atom transfer reactivity of the ${}^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$, a study of the hydrogen-transfer quenching by a series of hydrogen-atom donors with variable homolytic C-H bond strengths was undertaken. All systems were found to obey Stern-Volmer kinetics over the quencher concentration range studied. A plot of the data for the series of hydrogen-atom donors is shown in Figure 4.32. The quenching rate constants, listed in Table 4.11, were obtained from the slopes of linear-least-squares fits to the data.

Results for ${}^3\text{Pt}_2^*$ have been interpreted as supporting a hydrogen-abstraction pathway in which the H atom transfers via a linear Pt-H-E transition state with negligible charge transfer.⁵⁶ The reactivity of ${}^3\text{Pt}_2^*$ has been compared to that of the $n\pi^*$ excited states of ketones with similar triplet energies.² For ${}^3\text{Ir}_2^*$, a similar interpretation is possible; however, the analogy to the $n\pi^*$ excited states of ketones cannot be made in that the triplet energy for this complex is 30 kcal/mol compared to 60 kcal/mol for ${}^3\text{Pt}_2^*$.

If the photoreaction is truly an atom-transfer process, the observed rate in the absence of steric effects should track the homolytic C-H bond energies of the substrates. In a series of quenchers, the observed rate constant decreases with increasing C-H bond energy (Figure 4.33).²⁷ However, this trend is not general. For cyclohexene, whose

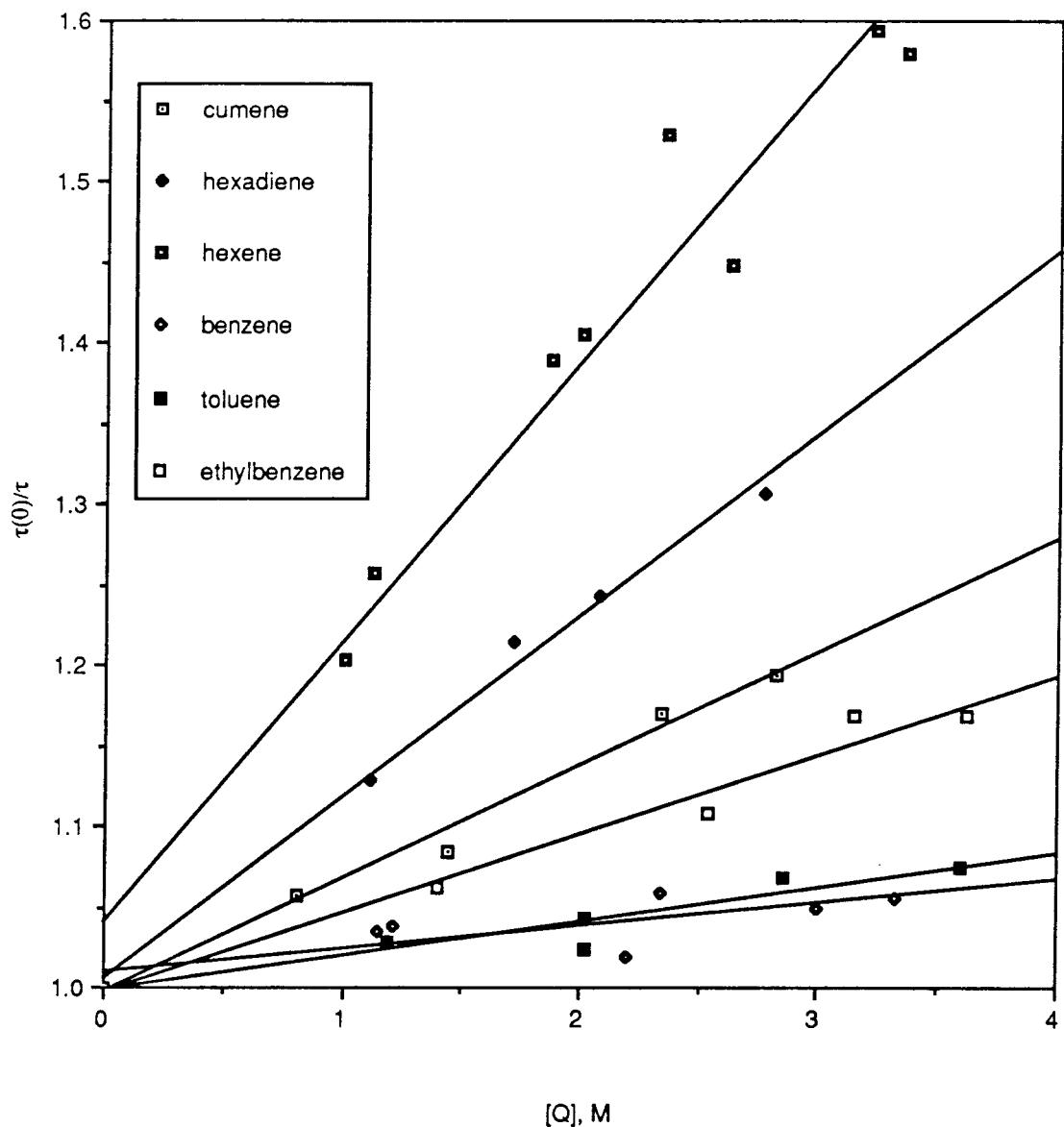
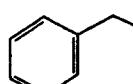
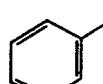
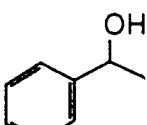
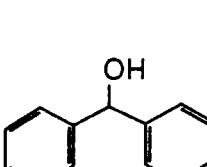
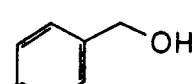
Table 4.10. Observed photochemical reactivity of hydrocarbons with $\text{Ir}_2(\text{TMB})_4^{2+}$.

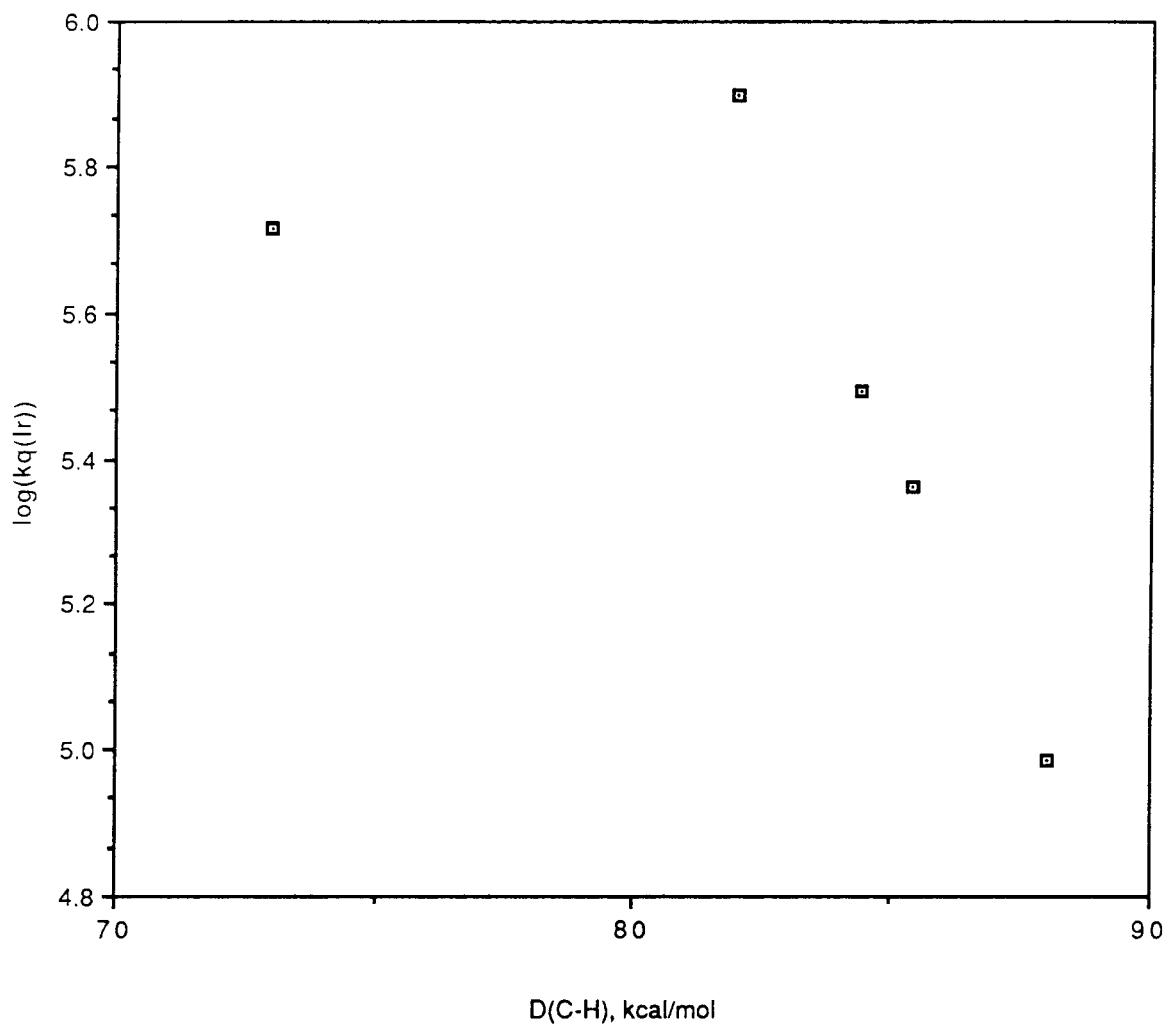
Substrate	$D(\text{C-H}), \text{ kcal/mol}^a$	Products
	77	 Ir_2H_2 ,
	73	 Ir_2H_2 ,
	82	Ir_2H_2 ^b
	88	NR ^c
	84.4	NR
	~ 75	NR

a. C-H bond dissociation energy, Reference 27.

b. Sluggish formation of Ir_2H_2 .c. No reaction, no observed formation of Ir_2H_2 .

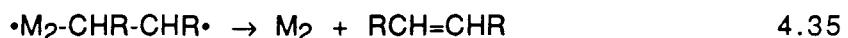
Figure 4.32. Stern-Volmer plot for hydrogen atom-transfer quenching of the $^3(\text{d}\sigma^* \text{p}\sigma)$ excited state of $\text{Ir}_2(\text{TMB})_4^{2+}$ for a series of hydrocarbons.


Table 4.11. Stern-Volmer quenching rate constants for $\text{Ir}_2(\text{TMB})_4^{2+}$ and $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)^{4-}$.

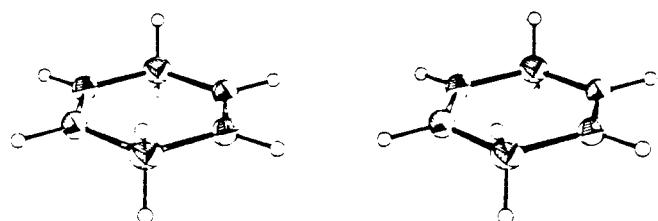
Substrate	BDE (kcal/mol) ^a	3Ir_2^* ($\text{M}^{-1}\text{s}^{-1}$)	3Pt_2^* ($\text{M}^{-1}\text{s}^{-1}$)
	82 ^b	7.9×10^5 ($k_H/k_D > 3$)	1.2×10^6
	73 ^b	5.2×10^5	8.2×10^6
	84.4 ^b	3.1×10^5	10^4
	85.5 ^b	2.3×10^5	
	88.0 ^b	9.7×10^4	10^4
		6.5×10^4	
	91.0 ^b		5×10^3
	88		1.9×10^6 ($k_H/k_D = 4.6$)
	82		2×10^5
	83		3×10^6
Et_3SiH	c	d	2.0×10^4
Bu_3SnH	c	d	1.2×10^7

- a. C-H bond dissociation energy.
- b. Reference 27.
- c. The gas phase (298 K) E-H bond energies of $(CH_3)_3EH$ species have been reported: 90 (Si) and 74 kcal/mol (Sn). Jackson, R.A. *J. Organomet. Chem.* **1979**, *166*, 17-19.
- d. Reacts upon mixing.


Figure 4.33. Plot of $\log(k_q)$ versus the C-H bond dissociation energy ($D(C-H)$) of the hydrogen atom-transfer quenching of $^3(\text{Ir}_2(\text{TMB})_4^{2+})^*$ by the hydrocarbon substrates.

homolytic C-H bond energy is ~10 kcal/mol greater than that of 1,4-cyclohexadiene, a larger rate constant is observed. However, steric arguments may be sufficient to reconcile the order of rates. Recent work has found the structure of 1,4-cyclohexadiene to be almost planar (Figure 4.34).⁹³ The structure of cyclohexene is a skewed boat (Figure 4.34).⁹⁴ For a linear M-H-C transition state, a much more unfavorable steric interaction is expected for the planar 1,4-cyclohexadiene. The angle defined by the M-H-C vector and the plane containing the allyl unit is much less for 1,4-cyclohexadiene than for cyclohexene.

The dihydride of $\text{Ir}_2(\text{TMB})_4^{2+}$ (Ir_2H_2) has been characterized as the primary photoproduct. For some substrates (toluene and cumene), very little Ir_2H_2 product is observed. For cyclohexene, Ir_2H_2 appears slowly; either efficient Ir_2H_2 formation requires a rapid in-cage reaction of Ir_2H with the organic radical, or the factors that govern the second H atom-transfer reaction are unfavorable with either the substrates or the substrate radicals present.


An alternate explanation for the variation in quenching rates and chemical conversions is an alternative quenching mechanism. Both energy-transfer quenching and electron-transfer quenching can be ruled out.^{95,96} The energies required for these processes are too great. An alternate mechanism, suggested for the photoreaction of $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ with simple alkenes, is an inner-sphere process that involves formation of a diradical intermediate.⁹⁷

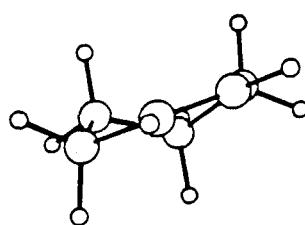
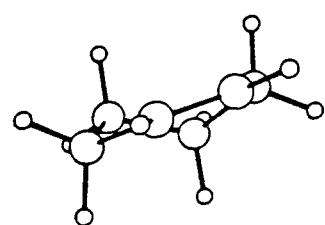
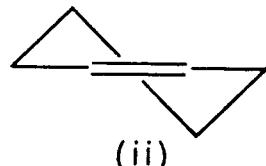

The second step in this mechanism involves the collapse of this intermediate back to the alkene and the ground-state metal complex. The rapid formation of Ir_2H_2 with 1,4-

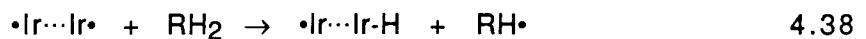
Figure 4.34. (a) Stereoview of the X-ray structure of 1,4-cyclohexadiene. (b) Structure of cyclohexene; (i) stereo representation, (ii) conventional symbolism.


(a)


(b)

(i)

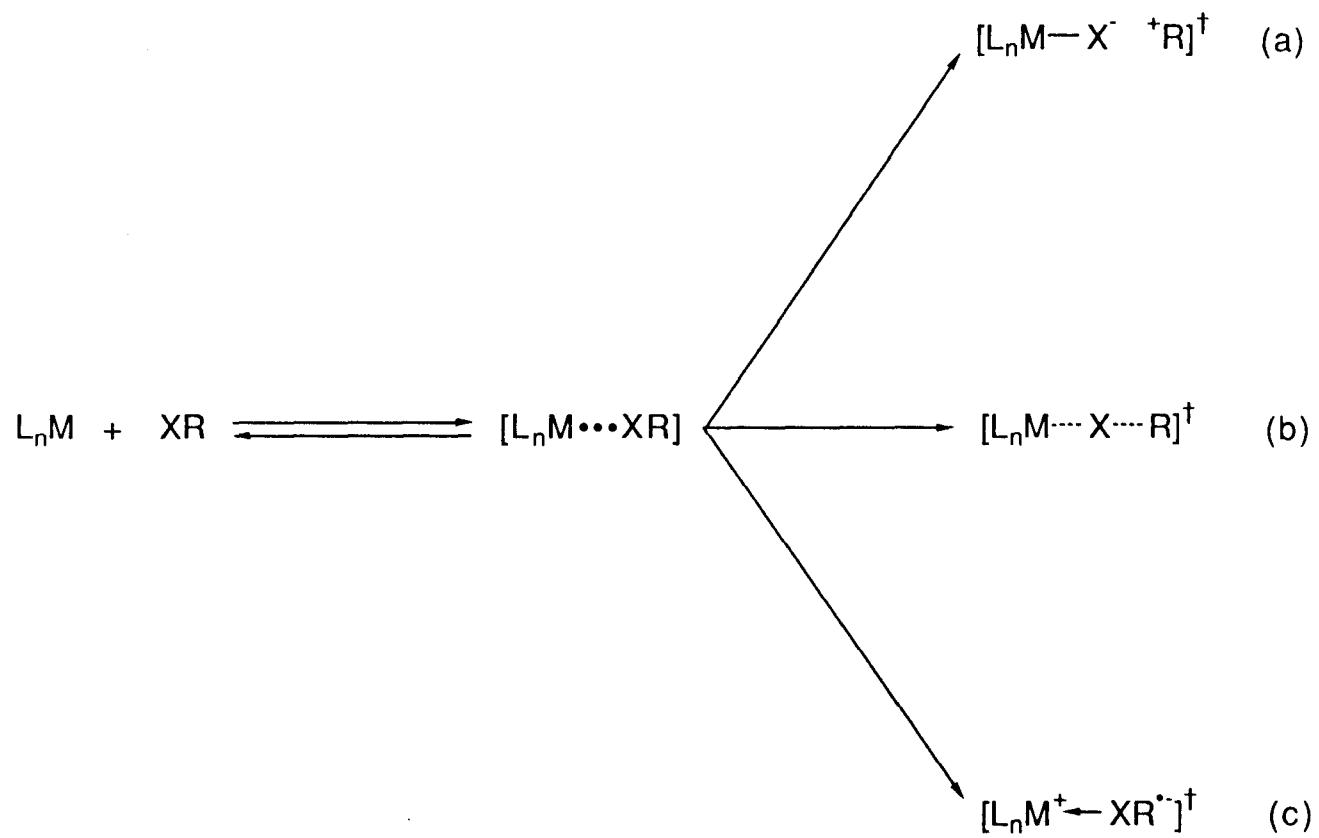
(ii)

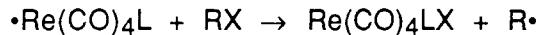

(iii)

cyclohexadiene and the large kinetic isotope effect observed for cyclohexene do not support such a mechanism.

From these data, the primary photoprocess from the $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is hydrogen-atom transfer:

Observation of a large kinetic isotope effect is supportive of an atom-transfer process for $^3\text{Ir}_2^*$. The monohydride species for $\text{Ir}_2(\text{TMB})_4^{2+}$ has not been identified. The proposed pathway for formation of the observed products is

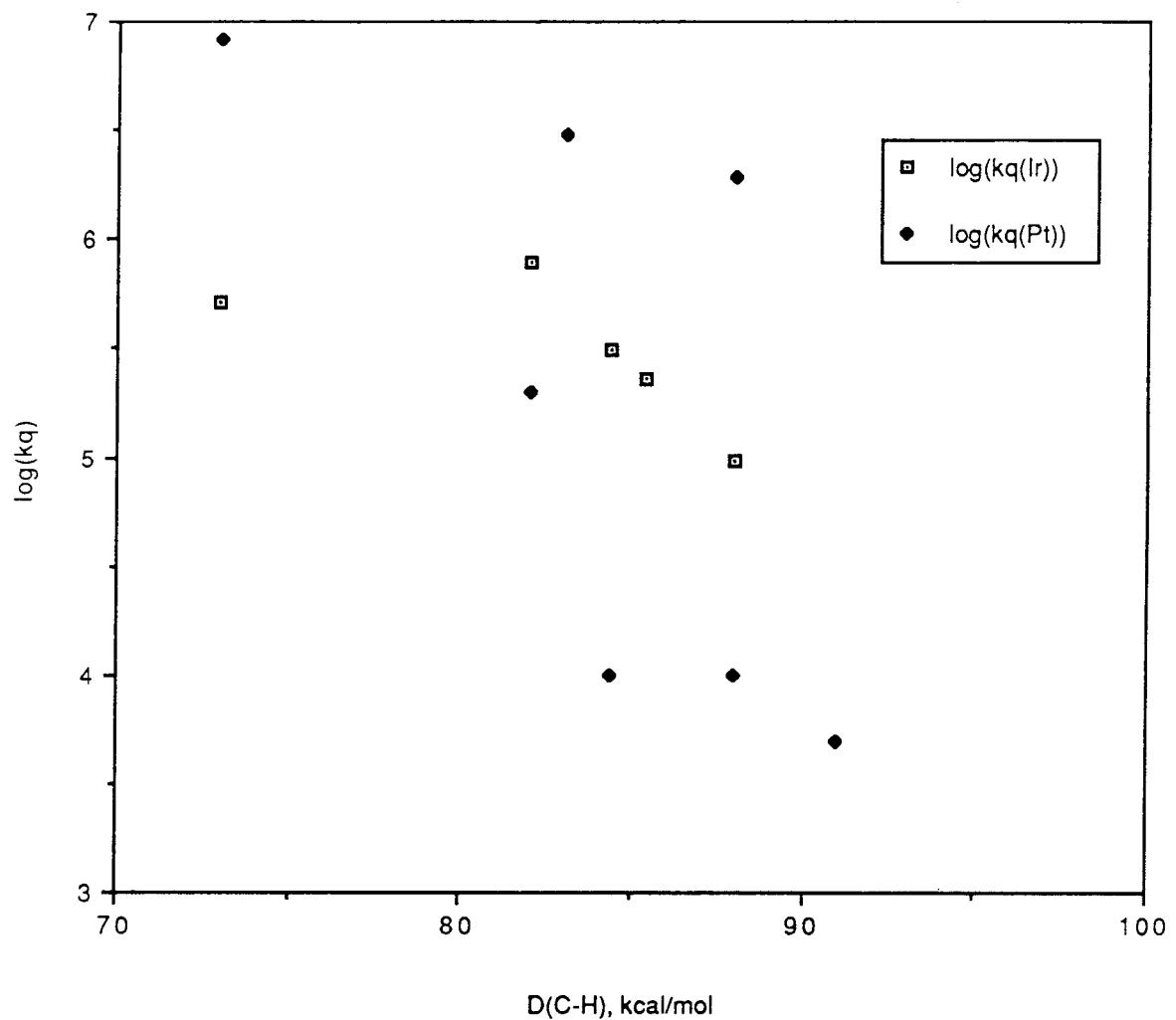



The $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state is written as $\cdot\text{Ir}\cdots\text{Ir}\cdot$ to emphasize the diradical-like structure.

The mechanism of radical atom abstraction has been extensively studied for many years and numerous reviews have appeared.⁵⁵ Three limiting atom abstraction mechanisms are defined by the timing of the various steps: M-Y bond making, R-Y bond cleavage, and electron transfer from M to Y. The three limiting mechanisms are shown in Figure 4.35. The timing of the electron-transfer event with respect to R-Y bond cleavage and M-Y bond formation becomes earlier in going from a to c.

Halogen-atom abstraction from alkyl halides has been extensively studied by Brown and coworkers.^{98,99} They showed that the rate constant for

Figure 4.35. Possible limiting mechanism of atom transfer. (a) Heterolytic R-X bond cleavage and M-X bond formation followed by electron transfer. (b) Synchronous electron transfer, R-X bond cleavage, and M-X bond formation. (c) Electron transfer followed by R-X⁻ heterolytic cleavage and M-X bond formation.


4.42

could be fit to the Marcus/Agmon-Levine equation, correlating the $E_{1/2}$ value for the halides and the rate constants for atom abstraction. The correlation between the rate constants and the C-X bond dissociation energy was not very good. That a Marcus/Agmon-Levine correlation exists between $E_{1/2}$ and the atom abstraction rates was interpreted as being consistent with some electron transfer, from the metal to the halogen-atom donor, in the transition state. Brown and coworkers were able to narrow down the possible pathways to b or c of Figure 4.35.

A limited correlation of the quenching rate constant with the C-H bond dissociation energy is observed for $\text{Ir}_2(\text{TMB})_4^{2+}$ (Figure 4.33). Deviation from this correlation can be understood to be due to unfavorable steric interactions. If an atom-transfer mechanism with little to no charge development in the transition state is the preferred mechanism, correlation of the quenching rate constants for $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ and the C-H bond dissociation energies is expected. The kinetic isotope effect observed for Bu_3SnH is interpreted to be in accord with hydrogen-atom transfer involving a linear Pt-H-Sn transition state with negligible charge transfer.⁵⁶

A plot of the $\log(k_q)$ versus the C-H bond dissociation energy $D(\text{C-H})$ is given in Figure 4.36. While a limited correlation is observed for $\text{Ir}_2(\text{TMB})_4^{2+}$, a very poor correlation is found for $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$. (A general downward drift in k_q is observed for increasing C-H bond energy.) This result may suggest an alternate quenching pathway for $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$. With the greater redox energy, electron transfer in the transition state may be important for the reaction of ${}^3\text{Pt}_2^*$. An alternative explanation for the observed behavior is a variation in the steric factors for the series of hydrogen atom donors.

Figure 4.36. Plot of $\log(k_q)$ versus the C-H bond dissociation energy ($D(C-H)$) of the hydrogen atom-transfer quenching of $^3M_2^*$ by the hydrocarbon substrates, $Ir_2(TMB)_4^{2+}$ open squares and $Pt_2(P_2O_5H_2)_4^{4-}$ solid diamonds.

In comparing rate constants for ${}^3\text{Ir}_2^*$ and ${}^3\text{Pt}_2^*$, some surprising trends emerge. For small substrates, such as 1,4-cyclohexadiene, the rate observed for ${}^3\text{Pt}_2^*$ is greater. This is expected and is due to the more energetic excited state. Assuming a $\text{M}_2\text{-H}$ dissociation energy of 60 kcal/mol,¹⁰⁰ for both Ir and Pt,¹⁰¹ the driving force for hydrogen-atom transfer is estimated to be roughly $(60 - D_{\text{EH}} + E_T) 47$ kcal/mol for Pt_2 and 17 kcal/mol for Ir_2 . For cumene and possibly toluene, a larger rate is observed for ${}^3\text{Ir}_2^*$. These larger rates might be understood from the greater steric demands about the open axial site in $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ in comparison to $\text{Ir}_2(\text{TMB})_4^{2+}$.

For reactions where most of the reorganization comes from the bonds being broken and formed, rather than from all the other coordinates, the free energy of activation is controlled by the work terms for the process (w_r , w_p), and the steric (S^r , S^p) and statistical factors (s^r , s^p), which describe the orientation of the reactants and products.^{102,103}

$$\Delta G^* \cong W^r \quad (-\Delta G^0' \geq \lambda) \quad 4.43$$

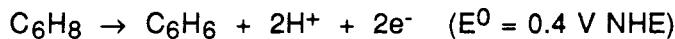
$$\Delta G^* \cong \Delta G^0' + W^p \quad (\Delta G^0' \geq \lambda) \quad 4.44$$

$$W^r = w^r - RT\ln(S^r s^r)$$

$$W^p = w^p - RT\ln(S^p s^p)$$

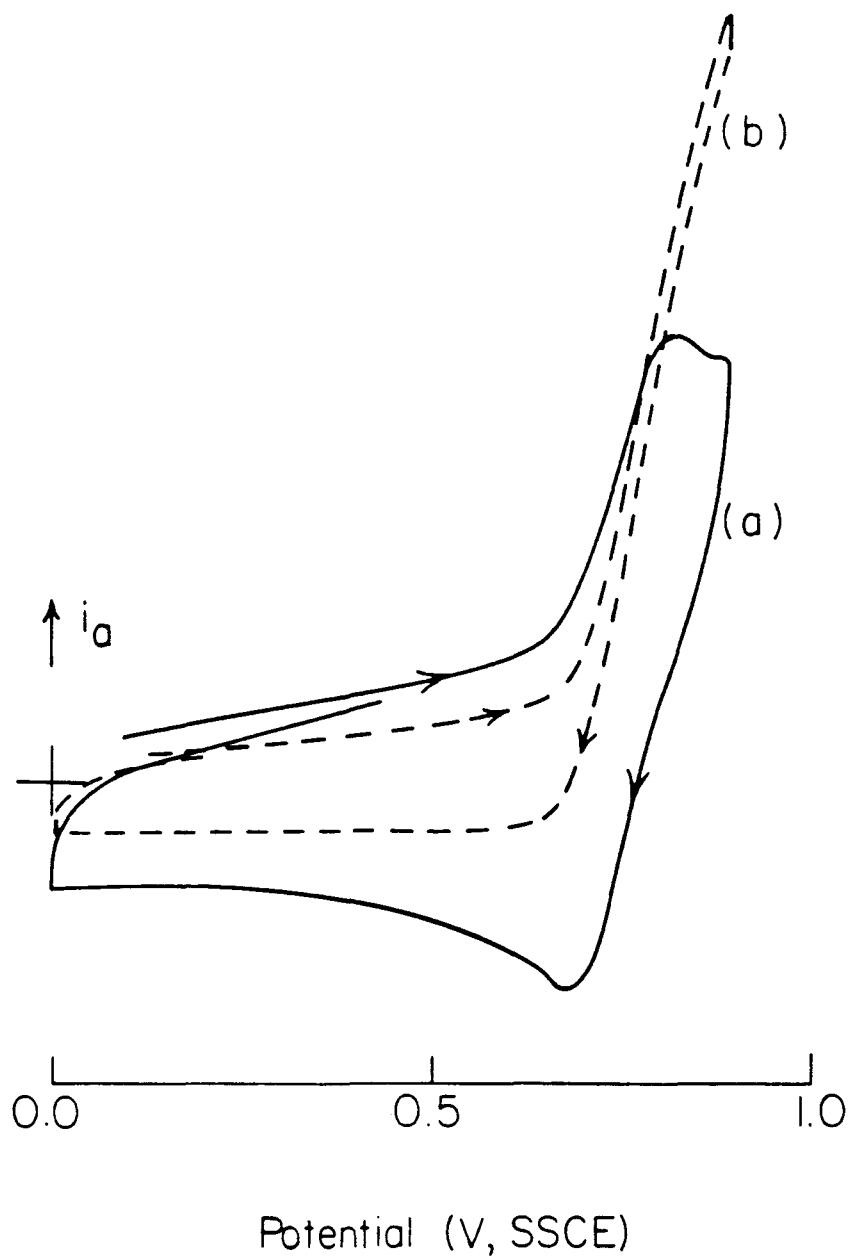
S^r/p , s^r/p - steric and statistical factors that describe the orientation of the reactants and products, respectively.

w^r/p - Coulombic and other work terms of the reactants and the products, respectively.


The poor correlation of the quenching rate of $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$ with the C-H bond dissociation energy can be understood as the result of variation in the steric factors of the reaction with variation of the substrate. Also, preassociation or favorable docking of the alcohol via hydrogen-bonding interactions with the $\text{P}_2\text{O}_5\text{H}_2^{2-}$ ligand may enhance the

hydrogen-atom transfer process and may explain the increased quenching rate observed for alcohols in comparison to hydrocarbons with similar C-H bond dissociation energies. For $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4^{4-}$, the greater steric demands about the open axial site and the possible substrate and/or solvent hydrogen-bonding interactions with the pyrophosphite ligand increase the sensitivity of the reaction to variations in the substrate. For $\text{Ir}_2(\text{TMB})_4^{2+}$, no preassociation or docking of the substrate is possible, and steric interactions alone discriminate between substrates.

The $^3(\text{d}\sigma^*\text{p}\sigma)$ excited state of the $\text{d}^8\text{-d}^8$ complexes has been shown to be involved in the photochemical hydrogen atom-transfer reaction. The atom-transfer reactivity of this state is attributed to the presence of a hole in the $\text{d}\sigma^*$ orbital, analogous to the $^3\text{n}\pi^*$ state of organic ketones. Interaction of the oxidizing hole with the electron pair of the C-H bond is the presumed pathway.

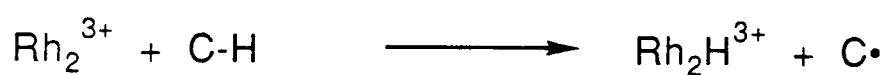
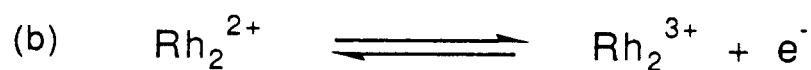
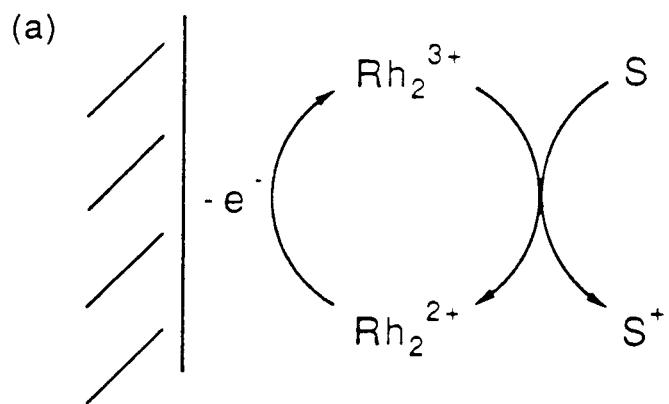

Electrocatalysis

If production of an oxidizing hole in the $\text{d}\sigma^*$ orbital is the important factor in the photochemical hydrogen-atom transfer reaction, then electrochemical generation of such a hole should produce a highly reactive intermediate that would mimic the initial step in the $^3(\text{d}\sigma^*\text{p}\sigma)$ photoreaction. Several of the binuclear d^8 complexes undergo reversible one-electron oxidations in noncoordinating solvents.^{43,104,105} The complex $\text{Rh}_2(\text{TMB})_4^{2+}$ possesses a quasi-reversible, one-electron oxidation at 0.74 V (SSCE). Electrochemical oxidation of $\text{Rh}_2(\text{TMB})_4^{2+}$ in the presence of 1,4-cyclohexadiene exhibits an enhanced anodic current with loss of the cathodic wave, behavior indicative of an electrocatalytic process (Figure 4.37).¹⁰⁶ Bulk electrolysis of $\text{Rh}_2(\text{TMB})_4^{2+}$ in an excess of 1,4-cyclohexadiene results in the formation of benzene and two protons (Equation 4.45).

4.45

Figure 4.37. Cyclic voltammograms of a dichloromethane solution (0.1 M TBAPF₆) of (a) [Rh₂(TMB)₄](PF₆)₂ (1 mM, $i_a = 5 \mu\text{A}/\text{cm}$) with (b) a twentyfold excess of 1,4-cyclohexadiene ($i_a = 10 \mu\text{A}/\text{cm}$).

The maximum number of turnovers observed is limited by the amount of substrate relative to solvent. The complex $\text{Rh}_2(\text{TMB})_4^{2+}$ is slowly lost because of a competitive reaction with CH_2Cl_2 to produce $\text{Rh}_2(\text{TMB})_4\text{Cl}_2^{2+}$.




The pathway proposed to explain the observed oxidation of 1,4-cyclohexadiene is given in Figure 4.38. Oxidation $\text{Rh}_2(\text{TMB})_4^{2+}$ generates the reactive d^8-d^7 complex, $\text{Rh}_2(\text{TMB})_4^{3+}$. The metal complex abstracts a hydrogen atom from the organic substrate, generating a monohydride species and an organic radical. It is known that hydride complexes of $\text{Rh}_2(\text{TMB})_4^{2+}$ are quite unstable.³ (No reaction between $\text{Rh}_2(\text{TMB})_4^{2+}$ and HCl is observed at room temperature, in the absence of air, suggesting that the equilibrium between the d^8-d^8 and d^7-d^7 adducts lies far to the side of the d^8-d^8 complex.) Therefore, the monohydride rapidly loses H^+ , regenerating $\text{Rh}_2(\text{TMB})_4^{2+}$. The cycle accounts for the generation of H^+ (identified electrochemically at a platinum button electrode and by the decrease in pH) and the observed electrocatalytic behavior of $\text{Rh}_2(\text{TMB})_4^{2+}$.

The competitive reaction of $\text{Rh}_2(\text{TMB})_4^{2+}$ with CH_2Cl_2 can also be accounted for with a pathway similar to that for the hydrogen-atom abstraction. The d^8-d^7 complex abstracts a halide atom, generating a monohalide species. The monohalide, rather than losing halide to regenerate $\text{Rh}_2(\text{TMB})_4^{2+}$, reacts to yield $\text{Rh}_2(\text{TMB})_4\text{Cl}_2^{2+}$.

This result demonstrates that highly reactive d^8-d^7 species can be generated electrochemically, and that complexes with an oxidizing hole in the $d\sigma^*$ orbital can participate in atom abstraction processes. This is the first direct example of chemistry for a d^8-d^7 complex.

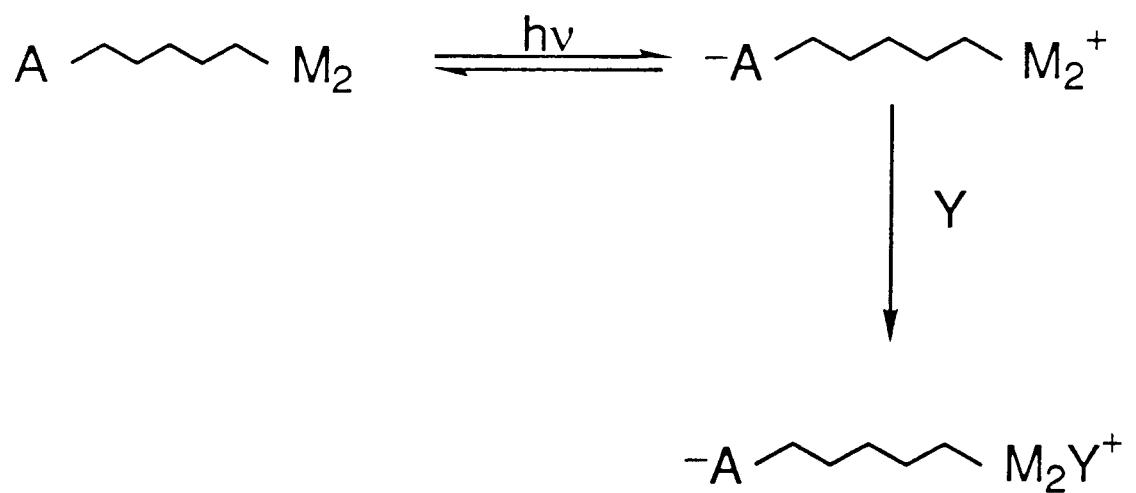

The importance of this result is twofold. First, it demonstrates that the d^8-d^7 complex can be chemically intercepted. In constructing a system that can efficiently harvest light and store this energy in the form of a charge-separated state, some means of intercepting the charge-separated state is necessary. Systems using binuclear d^8

Figure 4.38. (a) Pictorial representation of an electrocatalytic cycle which regenerates the Rh_2^{2+} complex. (b) Atom-transfer pathway for electrochemical oxidation of 1,4-cyclohexadiene.

complexes covalently linked to pyridinium acceptors have been shown to yield charge-separated species upon excitation.²⁴ Excited-state electron transfer generates the one-electron oxidized metal complex and the one-electron reduced pyridinium. Intercepting the d⁸-d⁷ species of the charge-separated state would inhibit the back-electron-transfer step, creating a system where charge separation coupled with chemistry at the oxidized metal complex serves to harvest and store the photon energy (Figure 4.39). Second, the ability to generate reactive d⁸-d⁷ complexes electrochemically should make possible reactions with the most inert hydrocarbons. While the ³(dσ* pσ) excited state may possess a sufficient driving force for reaction with hydrocarbons with D(C-H) in excess of 100 kcal/mol, the expected rates for these reactions are orders of magnitude less than the lower limit for the observed rates for the ³(dσ* pσ) excited state. For Pt₂(P₂O₅H₂)₄⁴⁻, the lower limit of the observed rates is 10⁴ M⁻¹s⁻¹ for substrate with a D(C-H) of approximately 90 kcal/mol.² Electrochemically generated d⁸-d⁷ complexes may overcome the kinetic limitation of the ηs to μs ³(dσ* pσ) lifetime.

Figure 4.39. Pictorial representation of chemical step following charge separation to trap the charge-transfer state.

References and Notes

1. Lewis, N.S.; Mann, K.R.; Gordon, J.G. II; Gray, H.B. *J. Am. Chem. Soc.* **1976**, *98*, 7461-7463.
2. Roundhill, D.M.; Gray, H.B.; Che, C.-M. *Accts. Chem. Res.*, in press.
3. Smith, T.P., Ph.D. Dissertation, California Institute of Technology, 1982.
4. Miskowski, V.M.; Smith, T.P.; Loehr, T.M.; Gray, H.B. *J. Am. Chem. Soc.* **1985**, *107*, 7925-7934.
5. Maverick, A.W.; Smith, T.P.; Maverick, E.F.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 4336-4341.
6. Olmstead, M.M.; Blach, A.L. *J. Organomet. Chem.* **1978**, *148*, C15-C18.
7. Mondal, J.U.; Young, K.G.; Blake, D.M. *J. Organomet. Chem.* **1982**, *240*, 447-451.
8. Balch, A.L. *J. Am. Chem. Soc.* **1976**, *98*, 8049-8054.
9. Coleman, A.W.; Eadie, D.T.; Stobart, S.R.; Zaworotho, M.J.; Atwood, J.L. *J. Am. Chem. Soc.* **1982**, *104*, 922-923.
10. Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, California, 1987.
11. Poilblanc, R. *Inorg. Chim. Acta.* **1982**, *62*, 75-78, and references therein.
12. Halpern, J. *Inorg. Chim. Acta.* **1982**, *62*, 31-37, and references therein.
13. Poilblanc, R. *Nouv. J. Chim.* **1978**, *2*, 145-150.
14. McCleverty, J.A. *Inorg. Chim. Acta.* **1982**, *62*, 67-73.

15. Chisholm, M.H. *ACS Symp. Ser.* **1980**, *155*, 17-39.
16. Sutherland, B.R.; Cowie, M. *Organometallics* **1984**, *3*, 1869-1878.
17. Mague, J.T.; DeVries, S.H. *Inorg. Chem.* **1982**, *2*, 1632-1638.
18. Mague, J.T. *Inorg. Chem.* **1983**, *22*, 1158-1162.
19. Bushnell, G.W.; Decker, M.J.; Eadie, D.T.; Stobart, S.R.; Vefghi, R.; Atwood, J.L.; Zaworotko, M.J. *Organometallics* **1985**, *4*, 2106-2111.
20. Stobart, S.R.; Coleman, A.W.; Harrison, D.G.; Atwood, J.L.; Zaworotko, M.J. *J. Am. Chem. Soc.*, submitted.
21. Chapter 2.
22. Gordon, A.J.; Ford, R.A. *The Chemist's Companion*; John-Wiley & Sons: New York, 1972.
23. Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R. *Purification of Laboratory Chemicals*; Pergamon: Oxford, 1966.
24. Fox, L.S., Ph.D. Dissertation, California Institute of Technology, 1989.
25. Halpern, J.; Pribanic M. *Inorg. Chem.* **1970**, *9*, 2616-2618.
26. Reactions with phenol are of interest.
27. McMillen, D.F.; Golden, D.M. *Ann. Rev. Phys. Chem.* **1982**, *33*, 493-532.
28. Chan, D.M.T.; Marder, T.D.; Milstein, D.; Taylor, N.J. *J. Am. Chem. Soc.* **1987**, *109*, 6385-6388, and references therein.
29. Vlcek, A., Jr.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 1997-2001.
30. Schmidbaur, H.; Franke, R. *Inorg. Chim. Acta* **1975**, *13*, 85-89.

31. Fackler, J.P., Jr.; Murray, H.H.; Basil, J.D. *Organometallics* **1984**, *3*, 821-823.
32. Fukuzumi, S.; Nishizawa, N.; Tanaka, T. *Bull. Chem. Soc. Jpn.* **1982**, *55*, 2886-2891.
33. Isocyanide ligands provide the possibility of both insertion reactions and nucleophilic additions. Insertion of isocyanides into M-C bonds is now well established for many metal systems. In comparision to metal-carbonyl complexes, isonitrile insertion into metal-alkyls is more facile. Insertion into M-H bonds is known. Reaction of $\text{Pt}_3(\text{CN-}t\text{-butyl})_6$ with either R_3SiH or R_3GeH yields formimidoyl species. There are also some examples of isocyanide insertion into metal-halide bonds. Nucleophilic addition of alcohols and amines to metal-isocyanides is well known. Such addition reactions have been observed for several binuclear d^8 complexes.
34. Buckingham, A.D.; Stephens, P.J. *J. Chem. Soc.* **1964**, 2747-2759.
35. Buckingham, A.D.; Stephens, P.J. *J. Chem. Soc.* **1964**, 4583-4587.
36. Felthouse, T.R.; Dong, T.-Y.; Hendrickson, D.N.; Shieh, H.-S.; Thompson, M.R. *J. Am. Chem. Soc.* **1986**, *108*, 8201-8214.
37. Jackson, R.A.; Poe, A. *Inorg. Chem.* **1978**, *17*, 997-1003.
38. Poe, A.; Jackson, R.A. *Inorg. Chem.* **1978**, *17*, 2330-2333.
39. Marshall, J.L., Ph.D. Dissertation, California Institute of Technology, 1987.
40. Pilloni, G.; Vecchi, E.; Martelli, M. *Electroanal. Chem. Interfac. Electrochem.* **1973**, *45*, 483-487.
41. Teo, B.-K.; Ginsberg, A.P.; Calabrese, J.C. *J. Am. Chem. Soc.* **1976**, *98*, 3027-3028.
42. Zotti, G.; Zecchin, S.; Pilloni, G. *J. Organometal. Chem.* **1983**, *246*, 61-71.

43. Womack, D.R.; Enlow, P.D.; Woods, C. *Inorg. Chem.* **1983**, *22*, 2653-2656.
44. Geiger, W.E. *Prog. Inorg. Chem.* **1985**, *33*, 275-352.
45. Gennett, T.; Geiger, W.E.; Willett, B.; Anson, F.C. *J. Electroanal. Chem.* **1987**, *222*, 151-160.
46. Balzani, V; Bolletta, F.; Gandolfi, M.T.; Maestri, M. *Top. Curr. Chem.* **1978**, *75*, 1-64.
47. Meyer, T.G. *Prog. Inorg. Chem.* **1983**, *30*, 389-440, and references therein.
48. Milder, S.J.; Goldbeck, R.A.; Kliger, D.S.; Gray, H.B. *J. Am. Chem. Soc.* **1980**, *102*, 6761-6764.
49. Marshall, J.L.; Stiegman, A.E.; Gray, H.B. In *Excited States and Reactive Intermediates*; Lever, A.B.P., Ed.; ACS Symp. Ser. 307; American Chemical Society: Washington, D.C., 1986; pp. 166-176.
50. Balzani, V. Scandola, F. In *Energy Resources through Photochemistry and Catalysis*; Gratzel, M., Ed.; Academic Press: New York, 1985; Chapter 1.
51. Bergamini, P.; Sostero, S.; Traverso, O. In *Fundamental and Technological Aspects of Organo-f-Element Chemistry*; Marks, T.J.; Fragala, I.L., Eds.; D. Reidel: Boston, 1985; pp. 361-385.
52. Stiegman, A.E.; Tyler, D.R. *Comm. Inorg. Chem.* **1986**, *5*, 215-245.
53. Hanckel, J.M.; Lee, K.-W.; Rushman, P.; Brown, T.L. *Inorg. Chem.* **1986**, *25*, 1852-1856.
54. Wayland, B.B.; Del Rossi, K.J. *J. Organomet. Chem.* **1984**, *276*, C27-C30.
55. Tyler, D.R. *Prog. Inorg. Chem.* **1988**, *36*, 125-194.

56. Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 286-287.

57. Marshall, J.L.; Stobart, S.R.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 3027-3029.

58. Caspar, J.V.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 3029-3030.

59. Hawley, M.D. In *Encyclopedia of Electrochemistry of the Elements*. Vol. XIV; Bard, A.J., Ed.; Marcel Dekker: New York, 1980; pp. 1-135.

60. Roundhill, D.M. *J. Am. Chem. Soc.* **1985**, *107*, 4354-4356.

61. Harvey, E.L.; Stiegman, A.E.; Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 5233-5235.

62. Chapter 2.

63. Miskowski, V.M.; Nobinger, G.L.; Kliger, D.S.; Hammond, G.S.; Lewis, N.S.; Mann, K.R.; Gray, H.B. *J. Am. Chem. Soc.* **1978**, *100*, 485-488.

64. Mann, K.R.; Thich, J.A.; Bell, R.A.; Coyle, C.G.; Gray, H.B. *Inorg. Chem.* **1980**, *19*, 2462-2468.

65. Che, C.-M.; Wong, K.-Y.; Anson, F.C. *J. Electroanal. Chem.* **1987**, *226*, 211-226.

66. Rice, S.F.; Gray, H.B. *J. Am. Chem. Soc.* **1983**, *105*, 4571-4575.

67. Nocera, D.G.; Winkler, J.R.; Yocom, K.M.; Bordignon, E.; Gray, H.B. *J. Am. Chem. Soc.* **1984**, *106*, 5145-5150.

68. Bock, C.R.; Meyer, T.J.; Whitten, D.G. *J. Am. Chem. Soc.* **1974**, *96*, 4710-4712.

69. Ledwith, A. *Accts. Chem. Res.* **1972**, *5*, 133-139.

70. Balzani, V.; Moggi, L.; Manfrin, M.F.; Bolletta, F.; Laurence, G.S. *Coord. Chem. Rev.* **1975**, *15*, 321-433.

71. Appendix 2.

72. Kosower, E.M.; Cotter, J.L. *J. Am. Chem. Soc.* **1964**, *86*, 5524-5527.

73. Bock, C.R.; Connor, J.A.; Gutierrez, A.R.; Meyer, T.J.; Whitten, D.G.; Sullivan, B.P.; Nagle, J.K. *J. Am. Chem. Soc.* **1979**, *101*, 4815-4824.

74. Kalyanasundaram, K. *Coord. Chem. Rev.* **1982**, *46*, 159-244.

75. Sutin, N.; Creutz, C. *J. Chem. Educ.* **1983**, *60*, 809-814.

76. Sutin, N. *Accts. Chem. Res.* **1982**, *15*, 275-282.

77. Sutin, N. *Prog. Inorg. Chem.* **1983**, *30*, 441-498.

78. Marcus, R.A.; Sutin, N. *Biochim. Biophys. Acta* **1985**, *811*, 265-322, and references therein.

79. Rehm, D.; Weller, A. *Isr. J. Chem.* **1970**, *8*, 259-271.

80. Sandrini, D; Maestri, M.; Belser, P.; Zelewsky, A. von; Balzani, V. *J. Phys. Chem.* **1985**, *89*, 3675-3679.

81. Debye, P. *Trans. Electrochem. Soc.* **1942**, *82*, 265-272.

82. Eigen, M. *Z. Physik. Chem. [N.F.]* **1954**, *1*, 176-200.

83. The pyridinium radii are calculated by averaging the van der Waals radii along the three molecular axes and they vary from 3.2 to 4.6 Å, $r(MV^{2+}) = 7.8$ Å, and $r(Ir_2(TMB)_4^{2+}) = 7.85$ Å.

84. Heuer, W.B.; Totten, W.D.; Rodman, G.S.; Hebert, E.J.; Tracy, H.J.; Nagle, J.K. *J. Am. Chem. Soc.* **1984**, *106*, 1163-1164.

85. Brunshwig, B.S.; Logan, J.; Newton, M.D.; Sutin, N. *J. Am. Chem. Soc.* **1980**, *102*, 5798-5809.
86. Che, C.-M.; Cho, K.-R.; Chan, W.-S.; Gray, H.B. *Inorg. Chem.* **1986**, *25*, 4906-4909.
87. Che, C.-M.; Lu, W.-M. *J. Chem. Soc., Chem. Commun.* **1986**, 616-617.
88. Fukuzumi, S.; Nishizawa, N.; Tanaka, T. *Bull. Chem. Soc. Jpn.* **1983**, *56*, 709-714.
89. Chapter 2.
90. Sigal, I.S.; Gray, H.B. *J. Am. Chem. Soc.* **1981**, *103*, 2220-2225.
91. Miskowski, V.M.; Sigal, I.S.; Mann, K.R.; Gray, H.B.; Milder, S.J.; Hammond, G.S.; Ryason, P.R. *J. Am. Chem. Soc.* **1979**, *101*, 4383-4385.
92. Stiegman, A.E., unpublished results.
93. Jeffrey, G.A.; Buschmann, J.; Lehmann, C.W.; Luger, P. *J. Am. Chem. Soc.* **1988**, *110*, 7218-7219.
94. Streitwieser, A., Jr.; Heathcock, C.H. *Introduction to Organic Chemistry, 2nd Edition*; MacMillan: New York, 1981.
95. *Encyclopedia of Electrochemistry of the Elements*; Bard, A.J., Ed.; Marcel Dekker: New York, 1982.
96. Murov, S.L. *Handbook of Photochemistry*; Dekker: New York, 1973.
97. Roundhill, D.M.; Shen, Z.-P.; King, C.; Atherton, S.J. *J. Phys. Chem.* **1988**, *92*, 4088-4094.
98. Burke, M.R.; Brown, T.L. *J. Am. Chem. Soc.*, in press.

99. Lee, K.-W.; Brown, T.L. *J. Am. Chem. Soc.* **1987**, *109*, 3269-3275.

100. Pearson, R.G. *Chem. Rev.* **1985**, *85*, 41-49.

101. The M-H IR resonance is at higher energy for Ir than for Pt, leading to the conclusion that the M-H bond strength is larger for Ir than for Pt. (The reduced mass for the M-H system ($\mu = \frac{m_M m_H}{m_M + m_H}$) is approximately m_H .) The large Ir-H bond strength will increase the driving force for hydrogen-atom transfer to Ir_2

102. Marcus, R.A. *Proc. Symp. Chem. Physics Electrocatal.* **1984**, *84-12*, 169-186.

103. Marcus, R.A. *J. Phys. Chem.* **1968**, *72*, 891-899.

104. Enlow, P.D.; Woods, C. *Inorg. Chem.* **1985**, *24*, 1273-1274.

105. Boyd, D.C.; Matsch, P.A.; Mixa, M.M.; Mann, K.R. *Inorg. Chem.* **1986**, *25*, 3331-3333.

106. Bard, A.J.; Faulkner, L.R. *Electrochemical Methods: Fundamentals and Applications*; John Wiley & Sons: New York, 1980.

Chapter 5

Synthesis and Characterization of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$

Introduction

Hydrogen-atom transfer has been established as an important reaction pathway for the triplet $d\sigma^*p\sigma$ excited state of binuclear d^8 complexes.¹⁻⁴ Substrates that serve as hydrogen-atom donors include hydrocarbons (e.g., cyclohexene and 1,4-cyclohexadiene), alcohols with α (C-H) bonds, and triorganosilanes, -germanes, and -stannanes. Irradiation of the metal complex in the presence of these substrates produces complexes of the type M_2H_2 . Earlier work has characterized the product formed with $Pt_2(P_2O_5H_2)_4^{4-}$ as the binuclear platinum(III) dihydride, $Pt_2(P_2O_5H_2)_4H_2^{4-}$ (Pt_2H_2).⁵ In this chapter, the characterization of the dihydride of $Ir_2(TMB)_4^{2+}$ (Ir_2H_2) is reported. In addition to NMR, UV-Vis, IR, and Raman spectra, the complex has been characterized crystallographically. The reactivity of Ir_2H_2 is also reported.

Experimental

Synthesis

Standard Schlenk and high-vacuum techniques were used. Acetonitrile was used as received, freeze-pump-thaw degassed, and stored under vacuum over activated alumina. 1,4-Cyclohexadiene was distilled under argon from $NaBH_4$, freeze-pump-thaw degassed, and stored under vacuum. 9,10-Dihydroanthracene was recrystallized three times from absolute ethanol. Standard procedures were used to prepare $[Ir_2(TMB)_4](B(C_6H_5)_4)_2$.⁶ The 1H NMR spectra were obtained on a 400 MHz JNM-GX400 FT NMR spectrometer. The IR spectra were measured on a Beckman IR 4240. Absorption spectra were recorded with a Hewlett-Packard 8450A spectrophotometer or a Shimadzu UV-260 spectrophotometer. Elemental analyses were obtained from Galbraith Laboratories, Inc.

[Ir₂(TMB)₄H₂](B(C₆H₅)₄)₂

A twentyfold excess of 1,4-cyclohexadiene was added to an acetonitrile solution of [Ir₂(TMB)₄](B(C₆H₅)₄)₂ in an inert atmosphere. The solution was freeze-pump-thaw degassed three times and photolyzed for 2 hrs, using a 1000 W high-pressure Hg/Xe lamp equipped with a Corning cutoff filter ($\lambda_{\text{ex}} > 550$ nm). The final solution was a clear, light orange. The solvent was removed under vacuum, being careful to shield the material from light. An off-white powder was obtained. The solid was recrystallized from acetonitrile/toluene. Calculated for Ir₂C₉₅H₁₁₄N₈B₂: C, 64.3; H, 6.5; N, 6.3. Found: C, 64.8, H, 6.8; N, 6.2. ¹H NMR: δ (CD₃CN, 20 °C); -10.6 (singlet, 1H, Ir-H), 1.4 (broad singlet singlet, CH₃), 1.6 (broad singlet, CH₃), 1.8 (broad singlet, CH₂), 6.9 (triplet, 8H), 7.04 (triplet, 16H), 7.33 (multiplet, 16H). IR (Nujol mull, NaCl plates): 1940 cm⁻¹ (m), ν (Ir-H); 2160 cm⁻¹(s), ν (N≡C). UV-Vis (CH₃CN, 25 °C): 320 nm ($\epsilon = 17000$ M⁻¹cm⁻¹)

A similar procedure was followed for the photolysis with 9,10-dihydroanthracene. The material obtained from the removal of the solvent contained the desired iridium complex, anthracene, and 9,10-dihydroanthracene. This material was washed with dry, degassed benzene to remove the organics. The remaining solid was dissolved in CH₃CN and filtered. The solvent was removed from the filtrate under vacuum, yielding a light blue-green powder.

Reactivity

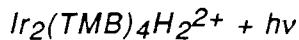
Acetonitrile and acetonitrile-d₃ were used as received, freeze-pump-thaw degassed, and stored under vacuum over activated alumina. HCl was freeze-pump-thaw degassed prior to addition to the reaction vessel. Styrene was used as received, freeze-pump-thaw degassed, vacuum-transferred to a graduate cylinder, and a known volume of styrene vacuum transferred to the reaction vessel.

Thermal Stability of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$

A CH_3CN solution of Ir_2H_2 was prepared in a two-compartment cell consisting of a 10 ml bulb and a 1 cm pathlength square cuvette. The UV-Vis spectrum of the sample was measured. The cell was wrapped in foil to prevent exposure to light and immersed in an 80 °C oil bath. The UV-Vis spectrum was remeasured after 12 hrs. A 5% decrease in the intensity of the band at 320 nm was observed.

 $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+} + \text{HCl}$

An atmosphere of HCl was introduced to an CH_3CN solution of Ir_2H_2 in a two-compartment cell. The UV-Vis spectrum of the sample was measured before and after the addition of HCl .


 $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+} + \text{Styrene}$

An CH_3CN solution of Ir_2H_2 was prepared in a two-compartment cell. To this solution was added a large excess of styrene. A slow growth of $\text{Ir}_2(\text{TMB})_4^{2+}$ was observed in the UV-Vis spectrum of the sample over a 24 hr period.

Two samples of Ir_2H_2 were prepared in vacuum-adapted NMR tubes. To one of these solutions was added a thirtyfold excess of styrene. Both tubes were stored in the dark at room temperature. NMR spectra were recorded every 24 hrs over a 7-day period.

No change was observed for the solution that did not contain styrene. For the sample with styrene, resonances for $\text{Ir}_2(\text{TMB})_4^{2+}$ slowly grew into the spectrum with loss of the signals for $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$. The sample that contained styrene was clear, dark-blue after 7 days. The NMR tube, which contained the styrene solution, was opened after 7 days, and the contents transferred to a round-bottom flask. The volatiles were vacuum-transferred to a new NMR tube. This solution was clear and colorless. A dark-blue material remained in the round-bottom flask. The NMR of the solvent, in addition

to strong styrene resonances, contained two weak signals attributable to the ethyl group of ethyl benzene (δ (ppm): 1.2 (triplet, 3H, CH_3); 2.62 (quartet, 2H, CH_2)). These resonances appeared in the NMR spectrum of the reaction mixture as the NMR spectrum of $\text{Ir}_2(\text{TMB})_4^{2+}$ grew in.

A CH_3CN solution of Ir_2H_2 , prepared on a high-vacuum line in a two-compartment cell, was photolyzed using a 1000 W high-pressure Hg/Xe lamp equipped with Corning cut-off and band-pass filters. A set of filters was used, which yielded $\%T > 0.1\%$ from 329 to 383 nm. The reaction was monitored by UV-Vis spectroscopy. Disappearance of the 320 nm band assigned to the $d\sigma \rightarrow d\sigma^*$ transition of Ir_2H_2 was observed with the growth of bands attributed to $\text{Ir}_2(\text{TMB})_4^{2+}$ (λ_{max} 625 and 380 nm) and a new feature at 480 nm.

Raman Spectroscopy

Raman and resonance Raman spectra were measured by Dr. Thomas Loehr at the Oregon Graduate Center.

X-Ray Data Collection and Reduction for $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$

Long, plate-like crystals were grown by slow evaporation of a toluene/acetonitrile solution; they appeared dichroic under a microscope with large, colorless faces and narrow, light-blue faces. A crystal was mounted in a capillary with a small amount of grease holding it in place, and was centered on a CAD-4 diffractometer equipped with graphite-monochromated $\text{MoK}\alpha$ radiation. Cell dimensions and an orientation matrix were obtained from the setting angles of 25 reflections with $15^\circ < 2\theta < 25^\circ$, and the intensity of reflections ($\pm h, \pm k, l$) was measured out to 2θ of 30° . Absences

in the data for $0k0$ with k odd identified the space group as either $P2_1$ or $P2_1/m$. The coordinate of the iridium atoms, obtained from a Patterson map, suggested $P2_1/m$. The remaining nonhydrogen atoms were found by successive structure factor-Fourier calculations; however, the resulting structure appeared to be disordered in several regions.

Before attempting to derive an ordered model in the space group $P2_1/m$, an oscillation photograph was taken, the axis of rotation being the needle axis, $[2,0,-1]$.⁷ This photograph showed weak, intermediate layer lines, which were interpreted in terms of a doubling of the c axis; none of these weak reflections had been noted by the CAD-4 diffractometer during the initial search. The crystal was remounted on a $P2_1$ diffractometer again equipped with $MoK\alpha$ radiation, and new cell dimensions were obtained. These were averaged with the cell dimensions determined by the CAD-4 (with the c axis doubled) to give the final values listed in Table 5.1. All reflections out to 2θ of 30° were measured twice ($\pm h, \pm k, -l$ for 0° to 20° , $\pm h, \pm k, +l$ for 20° to 30° , and $+h, +k, \pm l$ for $h = 0, 1, 2$ 2θ from 30° to 40°). Absences in the data for $0k0$, $k=2n+1$ and $h0l$, $h+l=2n+1$ identified the space group as $P2_1/c$, #14. The weakness of reflections with l odd is due to the fact that the iridium atoms lie very close to $y = 0.25$ and hence they plus many of the lighter atoms show a pseudotranslation of $1/2$ along c .

Backgrounds were measured for each reflection at each end of scan; an average background as a function of 2θ was calculated and used to correct the measured counts. Absorption corrections were made, first on the basis of the correct value of μ (38 cm^{-1}) and later, on the basis of a revised value (32.5 cm^{-1}), which led to improved agreement between symmetry-related measurements. With this revised value, the goodness-of-fit for merging the 9434 measured intensities into 4692 independent reflections was 0.95; 3915 of these reflections had $F_o > 0$ and 2005 had $F_o^2 > 3\sigma(F_o^2)$. Variances of the

Table 5.1. Crystal data for $[\text{Ir}_2(\text{C}_{10}\text{H}_{16}\text{N}_2)_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$.

Formula : $\text{Ir}_2\text{N}_8\text{C}_{95}\text{B}_2\text{H}_{114}$	Formula Weight: 1774.03
Crystal Color: Dichroic, colorless to light blue	Habit: flat plate
$a = 10.54(2)$ Å	$\alpha = 90.0^\circ$
$b = 31.02(4)$ Å	$\beta = 91.57(3)^\circ$
$c = 27.05(4)$ Å	$\gamma = 90.0^\circ$
$V = 8840(13)$ Å ³	$Z = 4$
$d_{\text{calc}} = 1.333(2)$ gcm ⁻³	
$\lambda = 0.71073$ Å	
Graphite monochromator	
Space group: $\text{P}2_1/\text{c}$ (#14)	Absences: $h0l$, $l = 2n+1$; $0k0$, $k = 2n+1$
Crystal size: $0.2 \times 0.074 \times 0.8$ mm	$\mu = 32.5$ cm ⁻¹
	Transmission coefficients: 0.53 - 0.79
Number of data collected: 9434	
Number of independent reflections: 4692	
Number with $F_o^2 > 0$: 3915	
Number with $F_o^2 > 3\sigma(F_o^2)$: 2005	
Goodness-of-fit for 4692 measured intensities: 1.16	

individual reflections were assigned, based on counting statistics plus an additional term, $0.14I^2$. Structure factors were taken from standard references.⁸

The earlier $P2_1/m$ model was converted to an ordered model in $P2_1/c$. After several cycles of full-matrix least squares, minimizing $\Sigma w(F_o^2 - F_c^2)^2$, hydrogen atoms were introduced at calculated positions ($C-H = 0.95 \text{ \AA}$). Each hydrogen was given an isotropic thermal parameter 10% greater than that of the carbon to which it was bonded. The hydrogens bound to iridium appeared on difference maps and were placed 1.6 \AA from the iridium atoms. No parameters of the hydrogen atoms bound to iridium were further adjusted, nor were those of the toluene ring, which appeared as diffuse maxima in a late difference map. In the final refinement cycles, 411 parameters were adjusted: the coordinates of 100 atoms, the anisotropic thermal parameters of the Ir atoms, the isotropic thermal parameters for the 98 C, N, and B atoms (excluding the toluene), and a scale factor. The final goodness-of-fit, $[\Sigma w(F_o^2 - F_c^2)^2/(n - p)]^{1/2}$, was 1.16 for $n = 4692$ and $p = 411$; the R's were 0.118 for the 3915 reflections with $F_o^2 > 0$ and 0.045 for the 2005 reflections with $F_o^2 > 3\sigma(F_o^2)$. Final parameters are given in Table 5.2, bond lengths and angles in Table 5.3, anisotropic coefficients for the Ir atoms in Table A3.1, hydrogen coordinates in Table A3.2 and observed and calculated F's in Table A3.3.

Table 5.2. Final Parameters (x,y,z and $U_{eq} \times 10^4$).

Atom	x	y	z	U_{eq} or B
IR1	45(.9)	2540(.5)	3276(.3)	298(4)
IR2	2126(.9)	2564(.4)	4010(.3)	321(4)
C1	1041(27)	2185(8)	2832(11)	4.4(8)*
N1	1679(21)	1998(6)	2560(8)	4.2(6)*
C2	2426(29)	1722(8)	2212(11)	3.9(7)*
C3	1959(31)	1263(9)	2278(12)	7.0(10)*
C4	2201(28)	1902(8)	1703(11)	6.5(9)*
C5	3767(28)	1757(8)	2425(10)	5.5(8)*
C6	4372(27)	2219(8)	2360(10)	5.5(8)*
C7	6060(28)	2041(8)	3037(11)	5.6(8)*
C8	5748(27)	2804(8)	2728(11)	5.8(8)*
C9	5154(25)	2375(9)	2835(10)	5.3(7)*
N2	4177(18)	2431(7)	3211(7)	4.0(5)*
C10	3395(21)	2523(10)	3504(8)	4.3(6)*
C11	712(25)	3059(8)	2980(10)	3.7(7)*
N3	1091(20)	3358(7)	2786(8)	4.0(6)*
C12	1861(28)	3716(8)	2531(11)	4.1(7)*
C13	2662(31)	3498(9)	2175(12)	6.6(9)*
C14	943(26)	4057(8)	2320(10)	5.1(8)*
C15	2691(25)	3900(8)	2975(10)	4.5(7)*
C16	1964(27)	4141(8)	3348(11)	5.4(8)*
C17	1451(30)	4253(8)	4248(12)	7.3(9)*
C18	3752(33)	4133(9)	4056(13)	7.2(10)*
C19	2270(33)	4042(9)	3897(12)	6.2(9)*
N4	2179(21)	3549(7)	3958(8)	3.9(6)*
C20	2108(30)	3184(9)	3990(12)	4.3(8)*
C21	-1073(30)	2858(8)	3713(11)	4.3(8)*
N5	-1749(25)	3060(7)	3938(9)	5.9(7)*
C22	-2584(33)	3295(10)	4303(13)	7.3(9)*
C23	-2512(31)	3763(9)	4129(13)	7.2(10)*
C24	-3944(35)	3099(10)	4246(13)	10.0(11)*
C25	-1953(29)	3200(9)	4790(12)	6.8(9)*
C26	-1930(31)	2755(9)	5017(12)	8.1(10)*
C27	-856(33)	2120(10)	5421(13)	9.2(11)*
C28	-245(34)	2862(10)	5661(14)	9.4(12)*
C29	-829(28)	2572(11)	5248(11)	7.0(8)*
N6	212(19)	2597(7)	4867(7)	5.0(5)*
C30	902(21)	2569(9)	4543(8)	4.7(7)*
C31	-494(24)	2024(8)	3553(9)	2.9(7)*
N7	-852(18)	1684(6)	3706(7)	2.9(5)*
C32	-1280(29)	1246(8)	3887(11)	4.8(7)*
C33	-2454(38)	1349(10)	4233(15)	9.6(12)*
C34	-1691(30)	986(9)	3459(12)	7.1(9)*
C35	-242(31)	1079(8)	4238(12)	6.9(9)*
C36	896(31)	939(8)	3927(11)	6.4(9)*

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U_{eq}</i> or <i>B</i>
C37	2340(30)	1006(9)	4747(13)	8.4(10)*
C38	3335(35)	938(9)	3933(13)	7.0(10)*
C39	2178(31)	1101(9)	4172(12)	6.2(9)*
N8	2215(21)	1589(7)	4132(8)	3.7(6)*
C40	2193(26)	1967(8)	4075(10)	2.4(7)*
B1	5694(38)	3954(11)	1047(14)	4.5(11)*
C111	6408(26)	3843(8)	1589(10)	2.9(6)*
C112	7483(34)	3555(9)	1634(13)	4.6(9)*
C113	8063(28)	3452(8)	2070(12)	4.6(8)*
C114	7623(30)	3657(9)	2508(11)	6.2(8)*
C115	6681(31)	3928(9)	2491(11)	5.8(8)*
C116	6001(28)	4023(8)	2034(13)	4.4(8)*
C121	6603(32)	4243(8)	717(12)	3.7(8)*
C122	7866(34)	4305(8)	784(11)	4.9(8)*
C123	8693(31)	4550(9)	470(12)	5.6(8)*
C124	8104(33)	4759(8)	79(12)	4.4(8)*
C125	6856(36)	4714(9)	-18(13)	5.0(9)*
C126	6154(31)	4475(8)	301(12)	3.9(8)*
C131	4358(26)	4240(8)	1134(9)	2.9(6)*
C132	4482(27)	4681(9)	1274(10)	5.5(8)*
C133	3281(32)	4917(9)	1354(11)	6.7(9)*
C134	2187(30)	4734(9)	1249(10)	5.8(8)*
C135	2098(28)	4319(9)	1080(10)	5.2(8)*
C136	3182(35)	4072(8)	1011(12)	4.7(8)*
C141	5330(27)	3495(8)	779(11)	3.9(8)*
C142	4743(27)	3159(9)	1031(10)	6.0(8)*
C143	4370(28)	2778(9)	803(12)	6.7(9)*
C144	4508(25)	2729(7)	320(11)	4.6(8)*
C145	5074(26)	3032(8)	68(10)	4.8(7)*
C146	5515(24)	3417(7)	273(10)	3.5(7)*
B2	6035(31)	1034(8)	1136(12)	1.5(8)*
C211	6778(28)	1462(8)	1358(10)	3.2(7)*
C212	7833(32)	1433(8)	1671(12)	4.5(9)*
C213	8508(26)	1788(8)	1908(9)	3.6(7)*
C214	8080(27)	2188(7)	1814(10)	3.7(7)*
C215	7025(26)	2236(7)	1514(9)	3.4(7)*
C216	6400(26)	1877(8)	1286(10)	4.4(8)*
C221	5911(24)	708(8)	1620(10)	3.1(7)*
C222	5828(29)	837(8)	2103(12)	4.8(9)*
C223	5575(27)	543(9)	2488(11)	6.0(8)*
C224	5358(28)	127(10)	2372(12)	6.5(9)*
C225	5403(26)	-21(8)	1905(11)	5.4(8)*
C226	5741(25)	264(8)	1548(10)	4.4(7)*
C231	6933(32)	788(8)	717(11)	3.9(8)*
C232	8270(30)	824(8)	648(11)	4.5(8)*

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U_{eq}</i> or <i>B</i>
C233	8924(29)	582(9)	295(12)	5.3(8) *
C234	8311(37)	327(9)	-19(13)	6.3(10)*
C235	7023(38)	284(9)	10(13)	5.3(9) *
C236	6293(30)	497(8)	363(12)	3.6(8) *
C241	4666(27)	1131(7)	893(9)	2.7(6) *
C242	4655(30)	1415(8)	481(11)	4.3(8) *
C243	3409(32)	1502(8)	248(10)	5.3(8) *
C244	2296(30)	1336(9)	419(12)	6.3(8) *
C245	2303(32)	1064(9)	774(13)	6.5(9) *
C246	3494(31)	958(7)	1041(11)	3.1(7) *
CB1	1044	42	2523	4.0 *
CB2	1818	-12	2120	6.0 *
CB3	1335	59	1644	8.0 *
CB4	78	184	1571	10.0 *
CB5	-696	238	1974	8.0 *
CB6	-213	167	2450	6.0 *
CME	1579	-37	3051	12.0 *

$$^a U_{eq} = \frac{1}{3} \sum_i \sum_j [U_{ij} (a_i^* a_j^*) (\vec{a}_i \cdot \vec{a}_j)]$$

*Isotropic displacement parameter, *B*

Table 5.3. Bond lengths and angles.

	Distance(Å)		Distance(Å)
IR1 -IR2	2.920(2)	C35 -C36	1.55(4)
IR1 -C1	1.96(3)	C36 -C39	1.57(4)
IR1 -C11	1.94(3)	C37 -C39	1.59(4)
IR1 -C21	1.96(3)	C38 -C39	1.49(5)
IR1 -C31	1.86(3)	C39 -N8	1.52(4)
IR2 -C10	1.94(3)	N8 -C40	1.18(3)
IR2 -C20	1.92(3)	B1 -C111	1.67(5)
IR2 -C30	1.96(3)	B1 -C121	1.60(5)
IR2 -C40	1.86(3)	B1 -C131	1.68(4)
C1 -N1	1.17(3)	B1 -C141	1.64(5)
N1 -C2	1.51(4)	C111-C112	1.45(4)
C2 -C3	1.52(4)	C111-C116	1.40(4)
C2 -C4	1.50(4)	C112-C113	1.35(4)
C2 -C5	1.51(4)	C113-C114	1.43(4)
C5 -C6	1.58(4)	C114-C115	1.30(4)
C6 -C9	1.58(4)	C115-C116	1.44(4)
C7 -C9	1.50(4)	C121-C122	1.35(4)
C8 -C9	1.50(4)	C121-C126	1.41(4)
C9 -N2	1.48(3)	C122-C123	1.45(4)
N2 -C10	1.19(3)	C123-C124	1.37(4)
C11 -N3	1.14(3)	C124-C125	1.34(5)
N3 -C12	1.55(3)	C125-C126	1.37(5)
C12 -C13	1.46(4)	C131-C132	1.42(4)
C12 -C14	1.53(4)	C131-C136	1.38(4)
C12 -C15	1.57(4)	C132-C133	1.48(4)
C15 -C16	1.49(4)	C133-C134	1.31(4)
C16 -C19	1.54(4)	C134-C135	1.37(4)
C17 -C19	1.46(4)	C135-C136	1.39(4)
C18 -C19	1.63(5)	C141-C142	1.40(4)
C19 -N4	1.54(4)	C141-C146	1.41(4)
N4 -C20	1.14(4)	C142-C143	1.39(4)
C21 -N5	1.14(4)	C143-C144	1.33(4)
N5 -C22	1.53(4)	C144-C145	1.31(4)
C22 -C23	1.53(5)	C145-C146	1.39(4)
C22 -C24	1.56(5)	B2 -C211	1.65(4)
C22 -C25	1.49(5)	B2 -C221	1.66(4)
C25 -C26	1.51(4)	B2 -C231	1.68(4)
C26 -C29	1.42(4)	B2 -C241	1.60(4)
C27 -C29	1.48(5)	C211-C212	1.38(4)
C28 -C29	1.55(5)	C211-C216	1.36(4)
C29 -N6	1.53(4)	C212-C213	1.45(4)
N6 -C30	1.16(3)	C213-C214	1.34(4)
C31 -N7	1.20(3)	C214-C215	1.37(4)
N7 -C32	1.52(3)	C215-C216	1.43(4)
C32 -C33	1.60(5)	C221-C222	1.37(4)
C32 -C34	1.47(4)	C221-C226	1.40(4)
C32 -C35	1.52(4)	C222-C223	1.41(4)

Distance(Å) Angle(°)

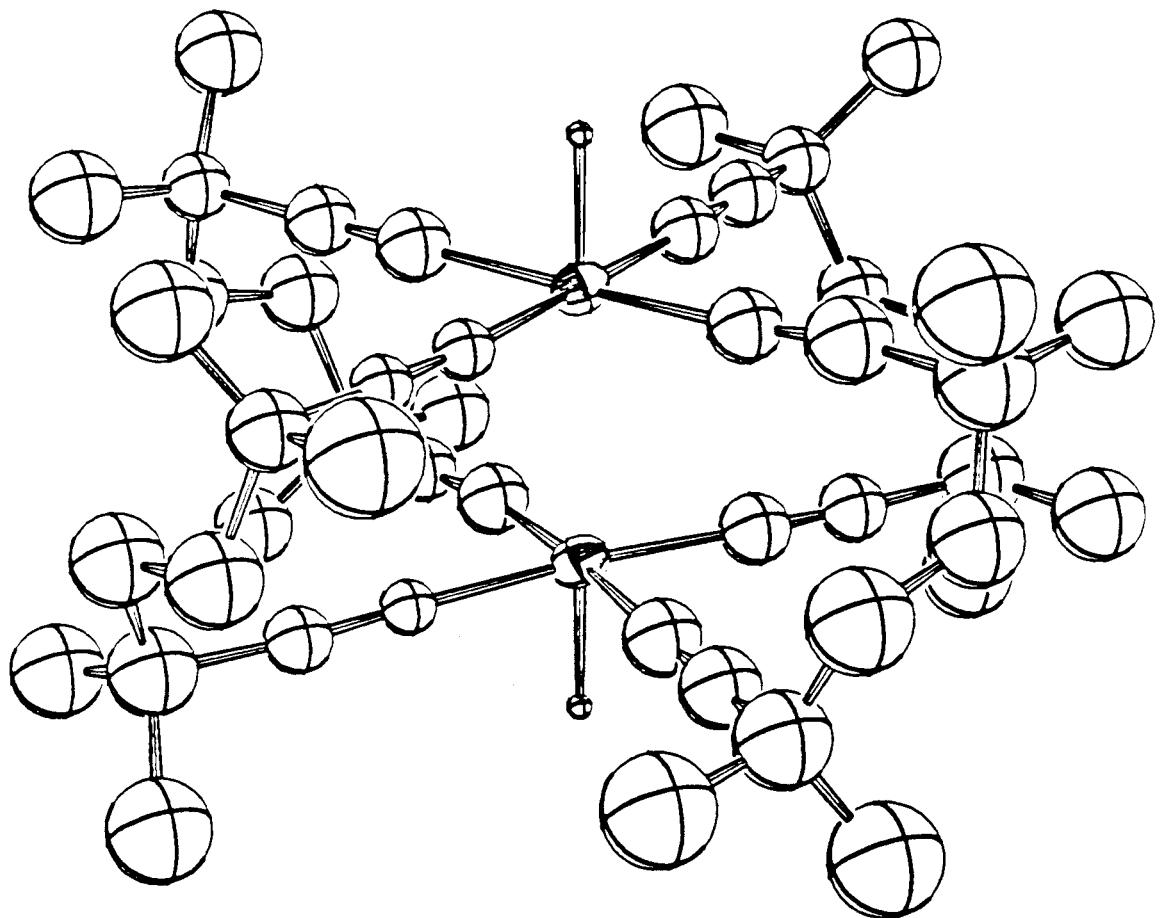
C223-C224	1.35(4)	C11 -IR1 -C1	90.4(11)
C224-C225	1.35(4)	C21 -IR1 -C1	174.9(11)
C225-C226	1.36(4)	C31 -IR1 -C1	86.4(11)
C231-C232	1.43(4)	C21 -IR1 -C11	93.6(11)
C231-C236	1.47(4)	C31 -IR1 -C11	176.2(11)
C232-C233	1.41(4)	C31 -IR1 -C21	89.6(11)
C233-C234	1.32(5)	C20 -IR2 -C10	92.9(12)
C234-C235	1.37(5)	C30 -IR2 -C10	175.9(10)
C235-C236	1.41(5)	C40 -IR2 -C10	88.7(11)
C241-C242	1.42(4)	C30 -IR2 -C20	90.4(11)
C241-C246	1.42(4)	C40 -IR2 -C20	175.9(12)
C242-C243	1.47(4)	C40 -IR2 -C30	87.8(11)
C243-C244	1.37(4)	N1 -C1 -IR1	175.5(24)
C244-C245	1.28(4)	C2 -N1 -C1	174.9(25)
C245-C246	1.47(4)	C3 -C2 -N1	106.4(22)
CB1- CB2	1.390(0)	C4 -C2 -N1	106.7(22)
CB1- CB6	1.390(0)	C5 -C2 -N1	102.6(21)
CB1- CME	1.541(0)	C4 -C2 -C3	114.5(24)
CB2- CB3	1.390(0)	C5 -C2 -C3	109.0(23)
CB3- CB4	1.390(0)	C5 -C2 -C4	116.4(23)
CB4- CB5	1.390(0)	C6 -C5 -C2	113.6(22)
CB5- CB6	1.390(0)	C9 -C6 -C5	113.0(21)
		C7 -C9 -C6	113.3(22)
		C8 -C9 -C6	109.0(22)
		N2 -C9 -C6	103.7(20)
		C8 -C9 -C7	114.6(23)
		N2 -C9 -C7	106.2(21)
		N2 -C9 -C8	109.4(21)
		C10 -N2 -C9	172.8(23)
		N2 -C10 -IR2	169.7(22)
		N3 -C11 -IR1	177.0(23)
		C12 -N3 -C11	168.6(24)
		C13 -C12 -N3	106.2(22)
		C14 -C12 -N3	109.1(21)
		C15 -C12 -N3	101.9(20)
		C14 -C12 -C13	116.4(24)
		C15 -C12 -C13	110.6(23)
		C15 -C12 -C14	111.5(22)
		C16 -C15 -C12	114.5(22)
		C19 -C16 -C15	117.1(24)
		C17 -C19 -C16	115.3(26)
		C18 -C19 -C16	113.1(24)
		N4 -C19 -C16	106.8(23)
		C18 -C19 -C17	109.3(25)
		N4 -C19 -C17	109.6(24)
		N4 -C19 -C18	101.9(23)
		C20 -N4 -C19	178.3(27)

Angle(°)			Angle(°)		
N4	-C20	-IR2	174.8(26)	C114-C113-C112	117.8(27)
N5	-C21	-IR1	174.9(26)	C115-C114-C113	121.4(28)
C22	-N5	-C21	171.8(28)	C116-C115-C114	121.6(28)
C23	-C22	-N5	102.7(24)	C115-C116-C111	119.8(26)
C24	-C22	-N5	107.0(25)	C122-C121-B1	127.4(28)
C25	-C22	-N5	103.1(25)	C126-C121-B1	122.6(27)
C24	-C22	-C23	113.2(27)	C126-C121-C122	110.0(27)
C25	-C22	-C23	115.9(27)	C123-C122-C121	127.0(28)
C25	-C22	-C24	113.4(27)	C124-C123-C122	115.6(28)
C26	-C25	-C22	122.8(27)	C125-C124-C123	121.4(30)
C29	-C26	-C25	123.2(27)	C126-C125-C124	118.5(31)
C27	-C29	-C26	119.7(28)	C125-C126-C121	127.3(29)
C28	-C29	-C26	112.8(27)	C132-C131-B1	118.1(23)
N6	-C29	-C26	106.0(24)	C136-C131-B1	121.2(24)
C28	-C29	-C27	109.5(26)	C136-C131-C132	120.1(25)
N6	-C29	-C27	106.3(24)	C133-C132-C131	116.2(24)
N6	-C29	-C28	100.4(23)	C134-C133-C132	120.3(27)
C30	-N6	-C29	170.1(24)	C135-C134-C133	122.1(28)
N6	-C30	-IR2	175.6(22)	C136-C135-C134	120.9(27)
N7	-C31	-IR1	176.4(21)	C135-C136-C131	119.8(27)
C32	-N7	-C31	178.2(22)	C142-C141-B1	122.3(25)
C33	-C32	-N7	104.6(22)	C146-C141-B1	122.7(25)
C34	-C32	-N7	108.8(22)	C146-C141-C142	114.9(25)
C35	-C32	-N7	107.0(22)	C143-C142-C141	122.9(26)
C34	-C32	-C33	110.7(25)	C144-C143-C142	119.8(27)
C35	-C32	-C33	104.8(24)	C145-C144-C143	119.6(26)
C35	-C32	-C34	119.8(25)	C146-C145-C144	124.0(25)
C36	-C35	-C32	108.1(24)	C145-C146-C141	118.7(23)
C39	-C36	-C35	110.6(24)	C221-B2 -C211	104.5(21)
C37	-C39	-C36	114.9(25)	C231-B2 -C211	109.9(22)
C38	-C39	-C36	114.4(26)	C241-B2 -C211	114.3(22)
N8	-C39	-C36	108.2(23)	C231-B2 -C221	108.3(21)
C38	-C39	-C37	107.2(25)	C241-B2 -C221	110.5(22)
N8	-C39	-C37	104.7(23)	C241-B2 -C231	109.2(22)
N8	-C39	-C38	106.6(24)	C212-C211-B2	122.6(24)
C40	-N8	-C39	175.8(25)	C216-C211-B2	125.3(24)
N8	-C40	-IR2	177.6(23)	C216-C211-C212	112.0(25)
C121-B1	-C111		110.0(25)	C213-C212-C211	126.8(27)
C131-B1	-C111		110.1(24)	C214-C213-C212	117.3(25)
C141-B1	-C111		107.7(24)	C215-C214-C213	118.5(24)
C131-B1	-C121		107.4(25)	C216-C215-C214	122.0(23)
C141-B1	-C121		112.2(26)	C215-C216-C211	123.3(24)
C141-B1	-C131		109.4(24)	C222-C221-B2	125.6(24)
C112-C111-B1			122.4(24)	C226-C221-B2	120.1(22)
C116-C111-B1			122.1(24)	C226-C221-C222	114.0(24)
C116-C111-C112			115.4(25)	C223-C222-C221	122.2(27)
C113-C112-C111			123.8(28)	C224-C223-C222	118.6(27)

Angle($^{\circ}$)

C225 -C224-C223	122.4(28)
C226 -C225-C224	117.5(26)
C225 -C226-C221	125.0(25)
C232 -C231-B2	128.9(25)
C236 -C231-B2	117.5(24)
C236 -C231-C232	113.5(25)
C233 -C232-C231	123.3(26)
C234 -C233-C232	121.1(29)
C235 -C234-C233	119.5(32)
C236 -C235-C234	123.7(31)
C235 -C236-C231	118.8(27)
C242 -C241-B2	115.3(23)
C246 -C241-B2	126.7(23)
C246 -C241-C242	118.0(24)
C243 -C242-C241	116.0(25)
C244 -C243-C242	123.4(27)
C245 -C244-C243	120.9(30)
C246 -C245-C244	120.4(29)
C245 -C246-C241	121.1(25)
CB6 - CB1- CB2	120.0(0)
CME- CB1- CB2	120.0(0)
CME- CB1- CB6	120.0(0)
CB3 - CB2- CB1	120.0(0)
CB4 - CB3- CB2	120.0(0)
CB5 - CB4- CB3	120.0(0)
CB6 - CB5- CB4	120.0(0)
CB5 - CB6- CB1	120.0(0)

Results and Discussion


Crystal Structure

$\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ is the first example of a binuclear metal complex with a trans-dihydride (H-M-M-H) structure (Figure 5.1). The Ir-Ir separation is 2.920(2) Å, approximately 0.3 Å shorter than in the starting d⁸ dimer (3.199(1) Å),⁶ indicating formation of an Ir-Ir bond. This Ir-Ir separation is ~0.1 Å longer than that in the analogous $\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$,⁹ presumably a result of two transhydride effects. The hydrogen-atom positions were not refined; electron density was observed ~1.6 Å away from each Ir atom and assigned to the hydrogen positions.

A comparison of the geometric parameters for $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ (Ir_2H_2), $\text{Ir}_2(\text{TMB})_4^{2+}$ (Ir_2^{2+}),⁶ $\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$ (Ir_2I_2),⁹ $\text{Rh}_2(\text{TMB})_4\text{Cl}_2^{2+}$ (Rh_2Cl_2),⁹ and $\text{Rh}_2(\text{TMB})_4^{2+}$ (Rh_2)¹⁰ is given in Table 5.4. Comparison of the structure for Ir_2H_2 to the structure of $\text{Ir}_2(\text{TMB})_4\text{Cl}_2^{2+}$ (Ir_2Cl_2) is preferred over the comparison to Ir_2I_2 . However, the structure of the dichloride complex is not known.

The structural parameters observed for Ir_2H_2 compare well to those observed for Ir_2I_2 . The geometry of the $\text{Ir}(\text{CN})_4$ unit deviates only slightly from the idealized geometry (M-M-C, 90°; M-C-N, 180°) and compares well to those of Ir_2 and Ir_2I_2 . The two $\text{Ir}(\text{CN})_4$ planes are nearly parallel to one another with an angle of approximately 3° between the vectors normal to the planes and are twisted with respect to each other (Figure 5.2). The torsion angle, N-M-M'-N', is 28°, identical to that observed for Ir_2 and Ir_2I_2 . A best-plane fit through the $\text{Ir}(\text{CN})_4$ units shows a slight distortion about each metal center (Table 5.5), each experiencing a different distortion. Ir(1) experiences a tetrahedral distortion. The metal is displaced 0.05 Å toward the center of the dimer, away from the plane defined by the four isocyanide nitrogens. A pyramidal distortion is observed for Ir(2), displaced 0.11 Å away from the plane defined by the four isocyanide nitrogens, toward the center of the dimer.

Figure 5.1. View of the structure of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$.

Table 5.4. Comparison of geometric parameters of Ir_2H_2 to other binuclear d^8 and d^7 complexes.

	Ir_2H_2 ^a	Ir_2I_2 ^b	Ir_2 ^a	Rh_2Cl_2 ^b	Rh_2 ^c
M-M	2.920(2) Å	2.803(4) Å	3.199(1) Å	2.773(2) Å	3.262(1) Å
M-X	1.6 Å	2.712(7) Å		2.425(6) Å	
M-C	1.92(1) Å	1.95(1) Å	1.96(1) Å	1.95(1) Å	1.92-1.98 Å
C-N	1.16(1) Å	1.16(2) Å	1.12(1) Å	1.15(1) Å	1.16 Å
ω	28.2(3)°	31(2)°	28.1(1)°	33.1(1)°	31°
$\text{C}_\beta\text{-C}_\gamma\text{-C}_\gamma'\text{-C}_\beta'$	136(1)°	130(2)°	141(1)°	137(2)°	
$\text{N}\cdots\text{N}'$	3.43(1) Å		3.68(1) Å		
M-M-C	91.0(3)°	90.12(5)°	91.7(2)°	90.7(4)°	
M-C-N	175.2(1)°	173(1)°	177.12(6)°	176(1)°	175°
displacement of M from plane of the 4 N	Ir(1) 0.05 Å Ir(2) 0.11 Å toward center	0.15 Å toward center of dimer	0.08 Å toward center of dimer	0.15 Å toward center of dimer	
dihedral angle of $\text{M}(\text{CN})_4$ planes		179°		177°	

a. This work.

b. Reference 9.

c. Reference 10.

Figure 5.2. View of the structure of $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ viewed down the Ir-Ir vector.

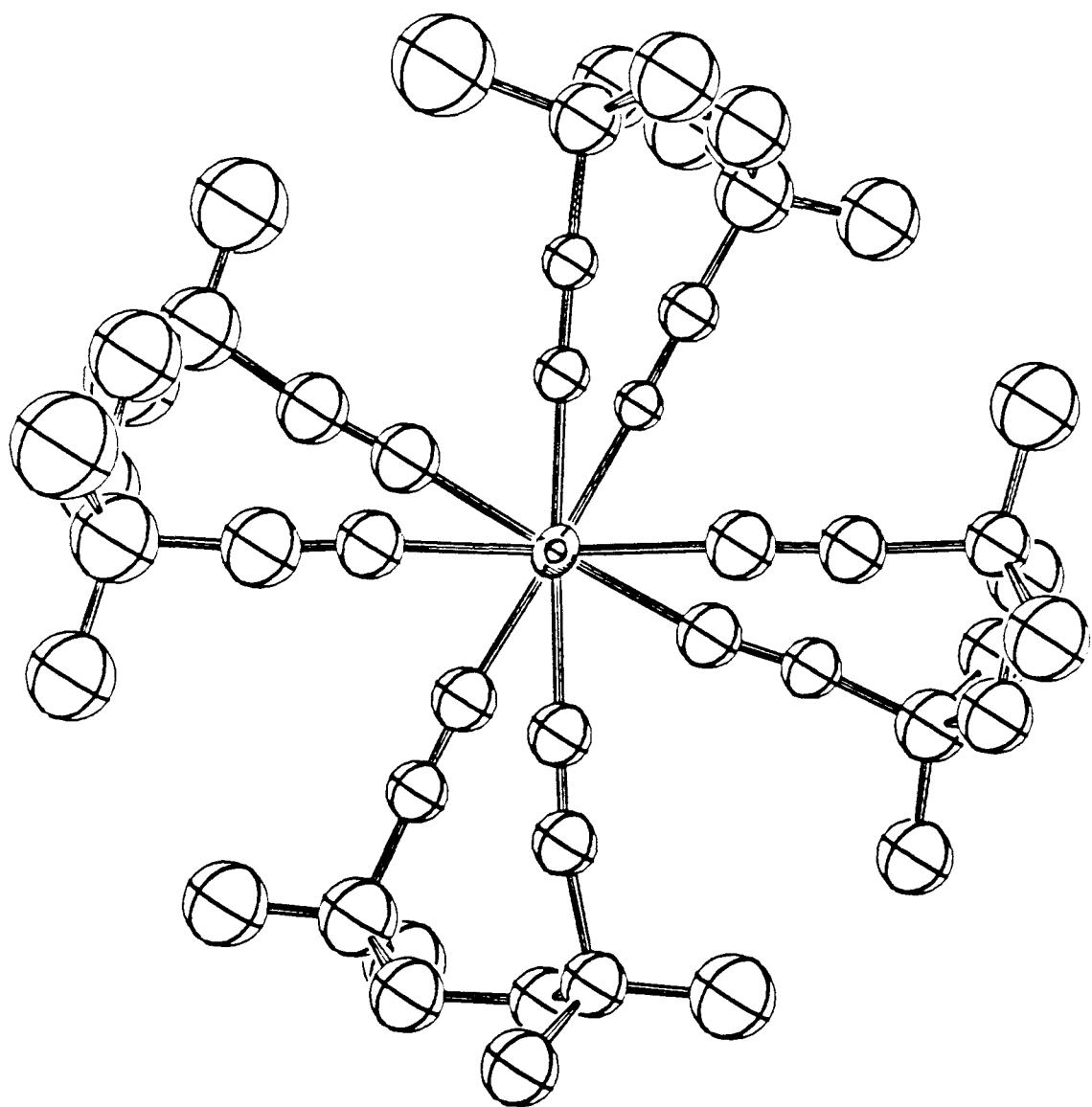


Table 5.5. Best plane fit of Ir(CN)₄ units.

Atom	Deviation, Å	Atom	Deviation, Å
Ir1	0.030	Ir2	-0.071
C1	-0.051	C10	-0.025
N1	-0.066	N2	0.023
C11	0.056	C20	-0.007
N3	0.033	N4	0.005
C21	-0.005	C30	-0.035
N5	-0.091	N6	0.030
C31	0.061	C40	-0.006
N7	0.034	N8	0.045

With the different metal-metal separations observed for the Ir complexes, some variation of geometric parameters is expected. No variation in the $\text{Ir}(\text{CN})_4$ geometry is observed. A compression of the $\text{Ir}(\text{CN})_4$ units toward one another is found (the $\text{N}\cdots\text{N}'$ separation decreases 0.25 Å from Ir_2 to Ir_2H_2) in addition to a slightly increased pyramidal distortion of the $\text{Ir}(\text{CN})_4$ moieties. With a compression of the $\text{Ir}(\text{CN})_4$ units, an increase in the torsion angle ($\text{N}-\text{M}-\text{M}'-\text{N}'$) might be expected. However, no variation in the torsion angle is observed through the series of complexes; rather, a decrease in the $\text{C}_\beta-\text{C}_\gamma-\text{C}_\gamma'-\text{C}_\beta'$ dihedral angle is found. A decrease in the metal-metal distance (increased metal-metal bonding interaction) results in a compression or kinking of the four-carbon atom backbone of the TMB ligand. The other geometric parameters of the TMB ligand compare well through the series of complexes.

Spectroscopy

The vibrational data for $\text{Ir}_2(\text{TMB})_4\text{H}_2^{2+}$ are summarized in Tables 5.6 and 5.7. The IR spectrum in the region from 1800 cm^{-1} to 2400 cm^{-1} is shown in Figure 5.3. A moderate Ir-H absorption is observed at 1940 cm^{-1} , in line with the terminal metal hydride structure. This resonance is 100 cm^{-1} to higher energy of the Pt-H band for $\text{Pt}_2(\text{P}_2\text{O}_5\text{H}_2)_4\text{H}_2^{4-}$,⁵ indicating a stronger metal hydrogen bond for iridium. The $\text{C}\equiv\text{N}$ frequency for Ir_2H_2 has shifted 20 cm^{-1} to higher energy from that for Ir_2 (a 40 cm^{-1} shift to higher energy from the free ligand)¹¹ because of the increased σ donation from the isocyanide to the Ir(II) center. This increased σ donation reduces the σ antibonding contribution of the carbon lone pair to the $\text{C}\equiv\text{N}$ bond.

Raman spectra for Ir_2H_2 are shown in Figure 5.4. Two low-energy bands are observed. The band at 38 cm^{-1} is a plasma line. Excitation at 647.1 nm (on resonance for Ir_2 , see Chapter 2) results in a large enhancement of the 60 cm^{-1} band (Figure 5.4), identifying this resonance as the Ir-Ir frequency for Ir_2 . Thus, a small amount of Ir_2 is present in the Ir_2H_2 material (hence the light-blue color of the crystals). The

Table 5.6. Infrared vibrational frequencies.

	$\nu(\text{M-H}), \text{ cm}^{-1}$	$\nu(\text{N}\equiv\text{C}), \text{ cm}^{-1}$
Ir_2H_2	1940	2160 a
Pt_2H_2 b	1840	
Ir_2		2140 a

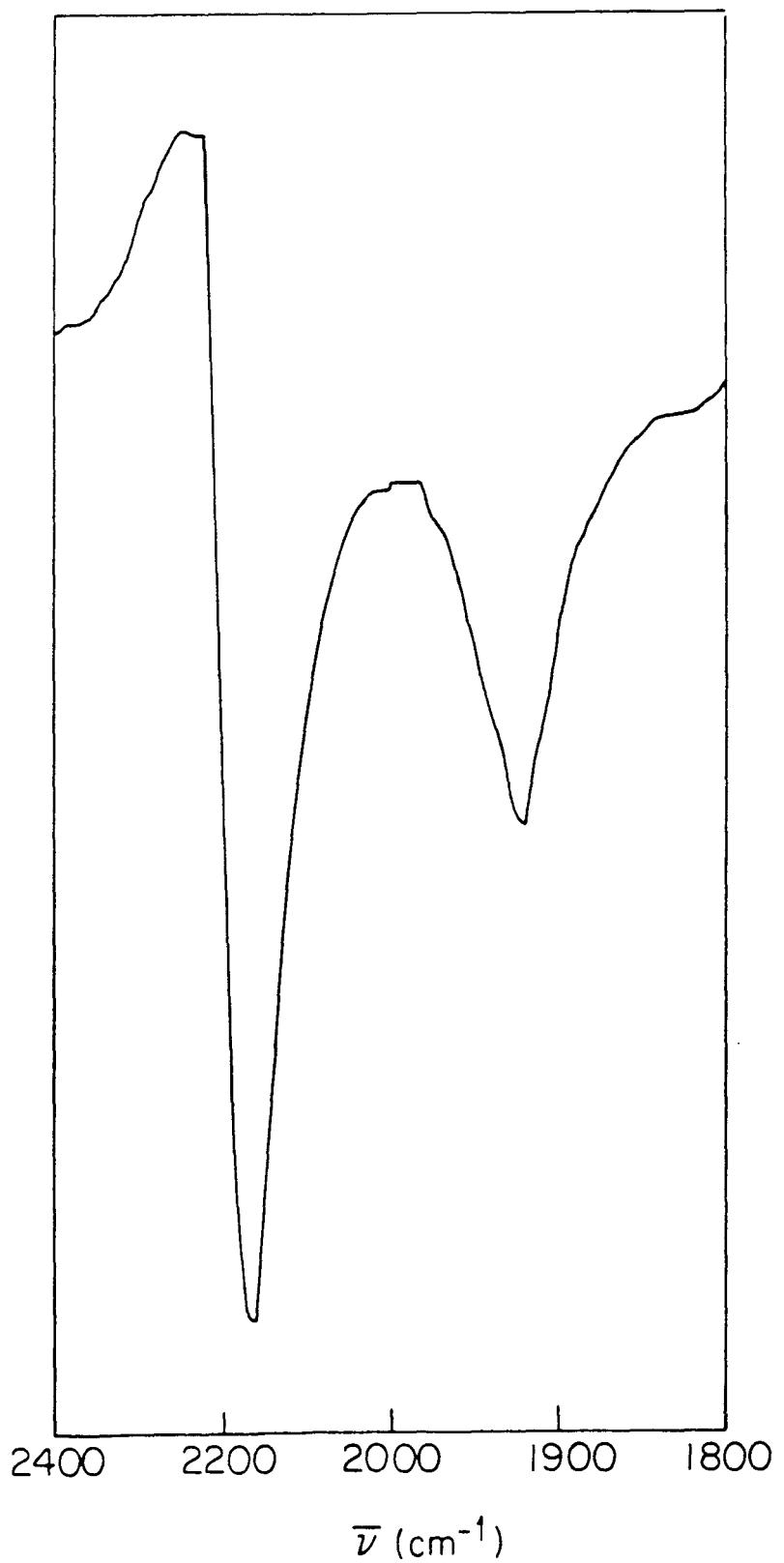
a. Free ligand, 2120 cm^{-1} .

b. Reference 5.

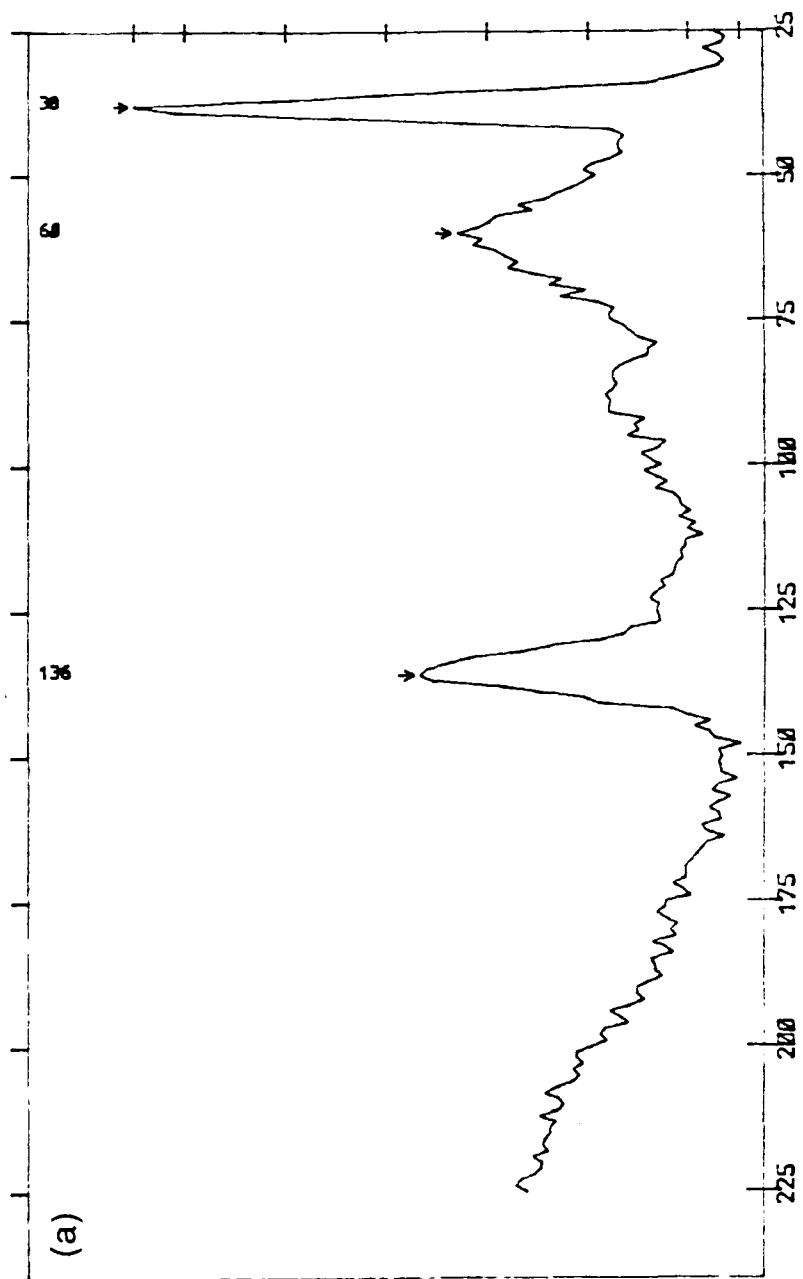
Table 5.7. Raman vibrational frequencies.

	$\nu(M-M)$, cm^{-1}	k , mdyne/ \AA	k , mdyne/ \AA ^a	$M-M$, \AA	
				X-ray	W.R. ^a
Ir_2H_2 ^b	136	1.05 ^c	0.86	2.920(2)	2.85
Ir_2I_2 ^d	116	2.09 ^e	1.18	2.803(4)	2.55
Ir_2Cl_2 ^d	140	1.56 ^e			2.69
Rh_2Cl_2 ^d	155	1.141 ^e	1.27	2.773(2)	2.82

a. Calculated using Woodruff's relationship, Reference 13.


b. This work.

c. Harmonic approximation.


d. Reference 12.

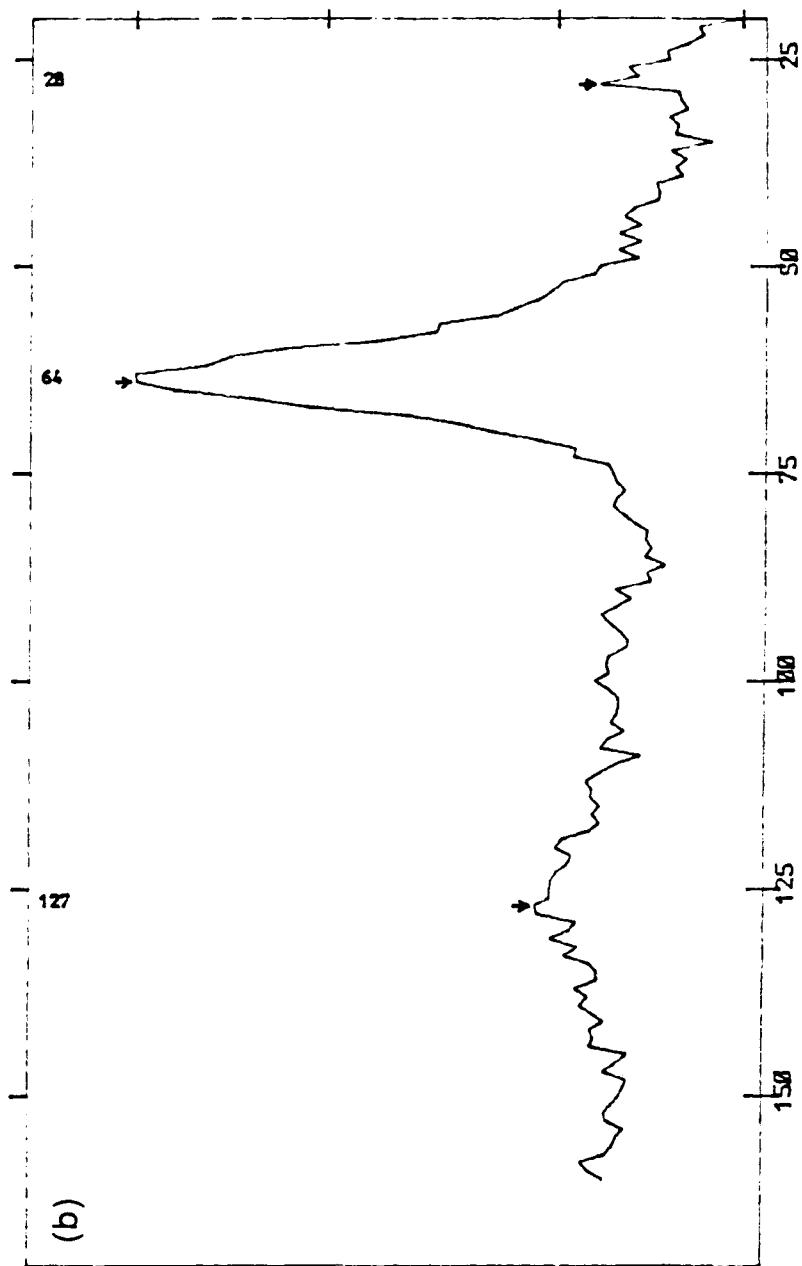
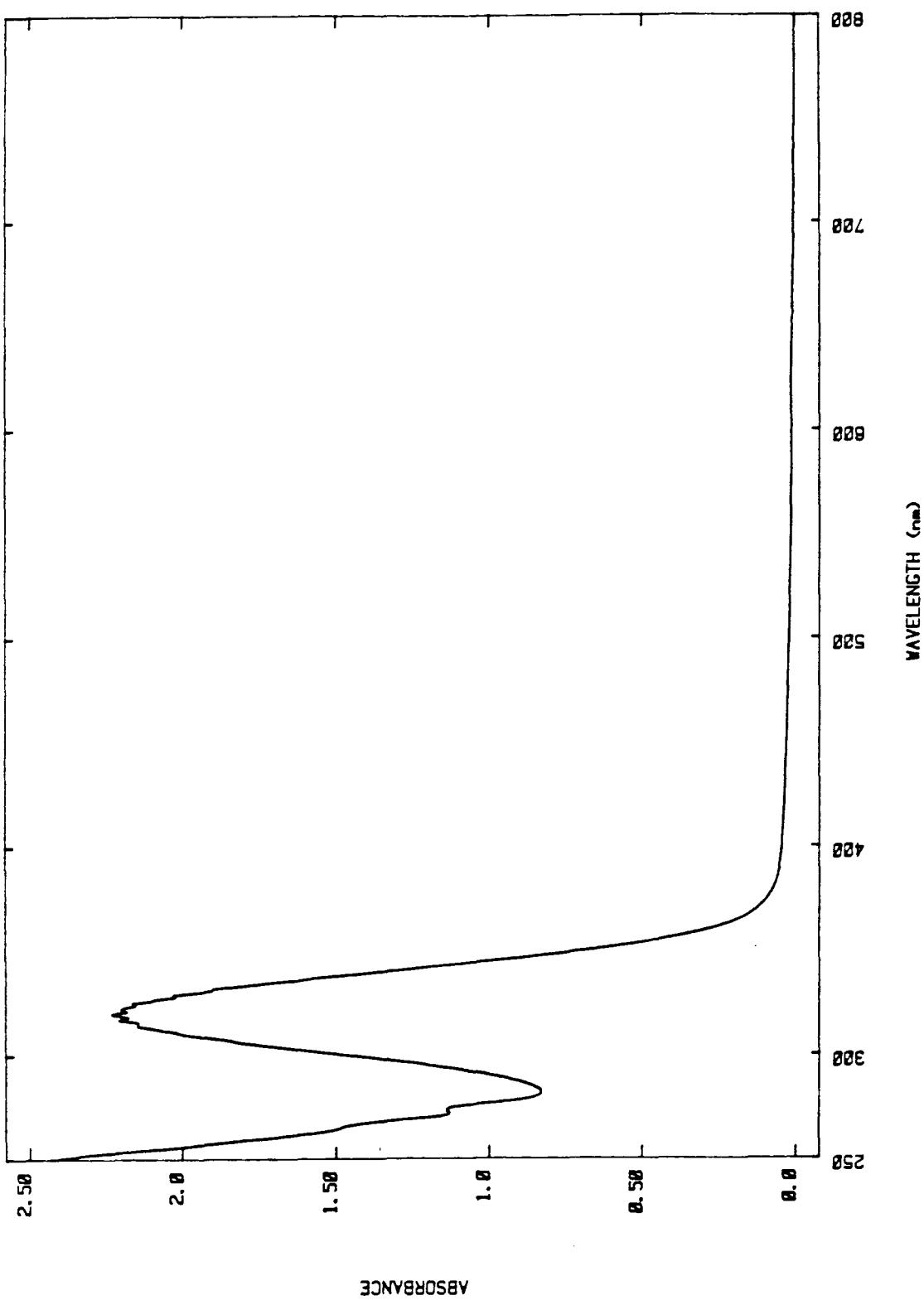
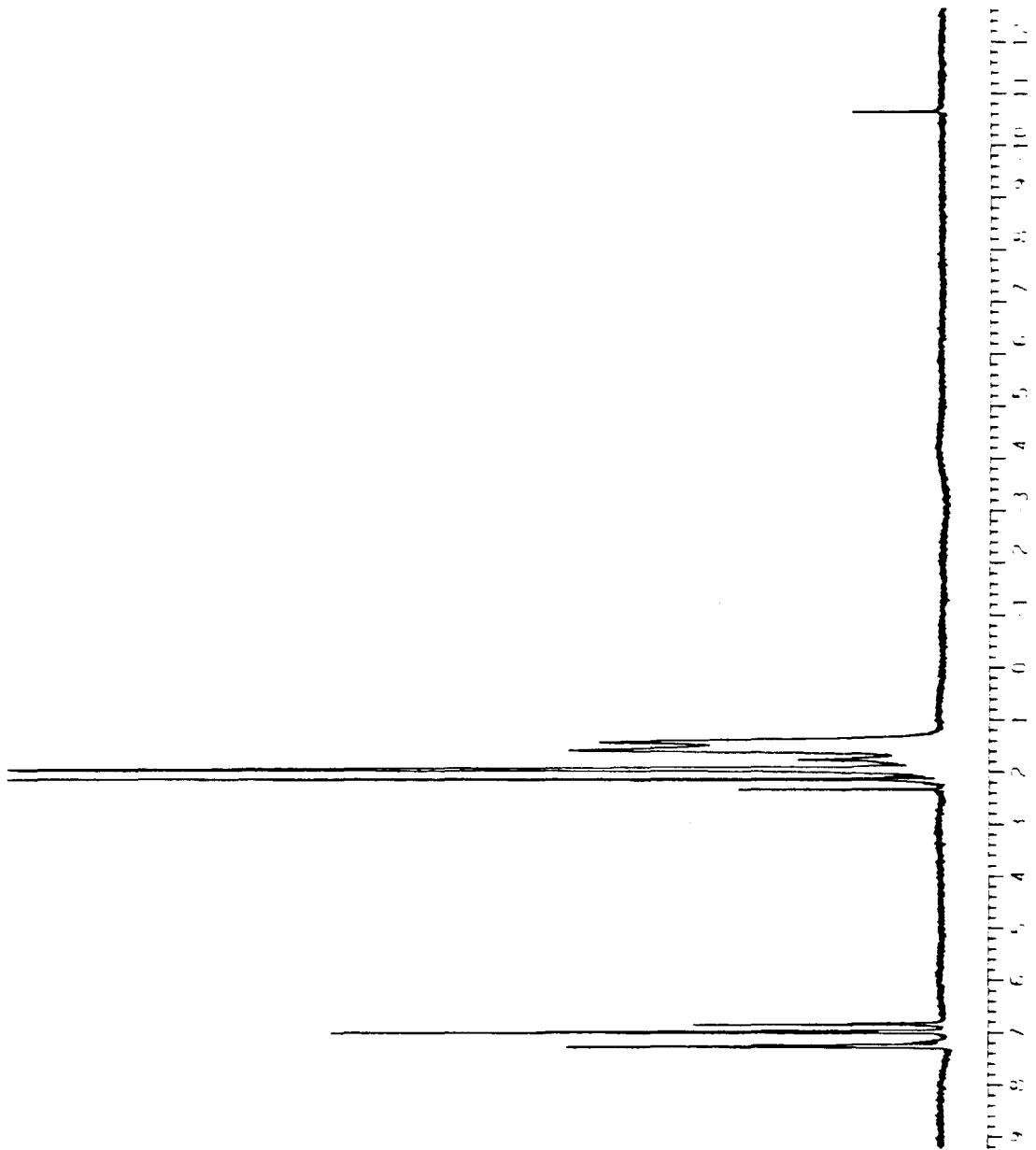

e. Determined from a force-field analysis, Reference 12.

Figure 5.3. Infrared spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\text{CH}_3\text{C}_6\text{H}_5$.

Figure 5.4. Raman spectra of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$: (a) Solid, 90 K, $\lambda_{\text{ex}} = 488$ nm; (b) Solid, 90 K, $\lambda_{\text{ex}} = 647.1$ nm.


ratio of the concentration of Ir_2 to Ir_2H_2 (determined from optical absorption spectra) is 1/40. The band at 136 cm^{-1} is the Ir-Ir stretching frequency of Ir_2H_2 .

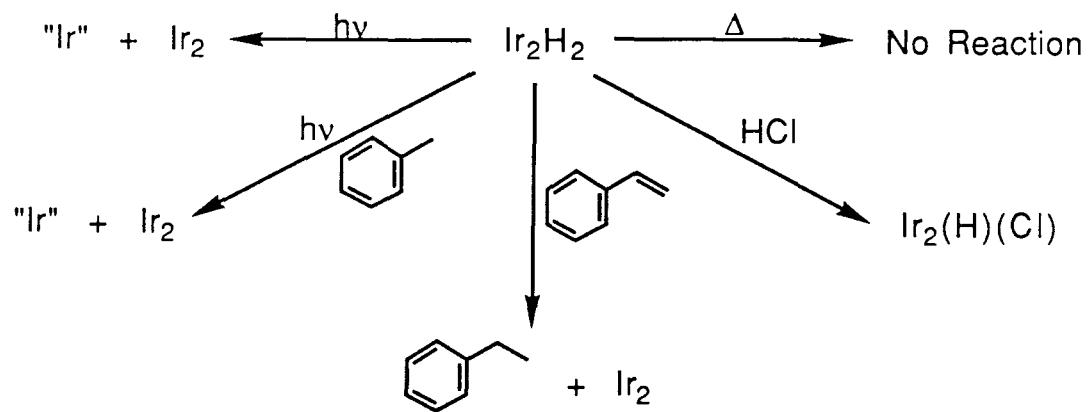
While the Ir_2Cl_2 structure is not known, a comparison of the Ir-Ir interaction for Ir_2Cl_2 to that of Ir_2H_2 can be made using the Raman vibrational data.¹² A significantly larger Ir-Ir force constant is found for Ir_2Cl_2 , indicating a stronger Ir-Ir interaction, and hence a smaller Ir-Ir separation. An estimate of the Ir-Ir distance for Ir_2Cl_2 can be obtained using Woodruff's correlation (Table 5.7).^{13,14} A significantly shorter Ir-Ir distance, in comparison to Ir_2H_2 , is calculated for Ir_2Cl_2 . The longer Ir-Ir distance for Ir_2H_2 is a consequence of two transhydride effects.


The optical absorption spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ is shown in Figure 5.5. In analogy to other binuclear d^7 - d^7 complexes, the broad feature (λ_{\max} 320 nm, $\epsilon = 17000 \text{ M}^{-1}\text{cm}^{-1}$) is assigned to the $d\sigma \rightarrow d\sigma^*$ transition.¹² A weak absorption attributable to " $d\pi$ " $\rightarrow d\sigma^*$ is not present in the spectrum. This band is presumably beneath the $d\sigma \rightarrow d\sigma^*$ band. The large red shift observed for the $d\sigma \rightarrow d\sigma^*$ transition from Ir_2Cl_2 to Ir_2H_2 is a result of the strong σ -donating character of the hydride ligand (a significantly greater charge-transfer contribution for H^- in comparison to Cl^-).

The ^1H NMR spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2 \cdot \text{CH}_3\text{C}_6\text{H}_5$ is shown in Figure 5.6. The Ir-H resonance is a sharp singlet at -10.6 ppm. The resonances attributed to the TMB methyls and methylenes are assigned to the broad features at 1.4, 1.6 and 1.8 ppm. The $\text{B}(\text{C}_6\text{H}_5)_4^-$ resonances are to lower field. One unique feature of this spectrum is the similarity of the TMB spectrum to that of the coalesced spectra for $\text{Ir}_2(\text{TMB})_4^{2+}$ and $\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$.¹⁵ While Ir_2H_2 is expected to be fluxional in solution at room temperature, the two types of methyl groups (one almost coplanar with the $\text{Ir}(\text{CN})_4$ unit and the other projecting out over the $\text{Ir}(\text{CN})_4$ plane, see Figure 5.1) are magnetically inequivalent and give rise to resonances at 1.4 and 1.6 ppm.

Figure 5.5. Electronic absorption spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$ in CH_3CN at 25 °C.

Figure 5.6. ^1H NMR spectrum of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2\cdot\text{CH}_3\text{C}_6\text{H}_5$ in CD_3CN at $20\text{ }^\circ\text{C}$.


Reactivity

An exciting aspect of atom-transfer reactivity is the possibility of photocatalytic processes. The metal dihydrides formed in the initial photochemical hydrogen atom-transfer reaction may be turned over to produce H₂ and the d⁸ -d⁸ complex (M₂) or reacted with a substrate to effect hydrogenation (and again production of M₂).

Isolation and characterization of M₂H₂ afford an opportunity to explore its reactivity (Scheme 5.1). Some of this work has already been reported for Pt₂(P₂O₅H₂)₄H₂⁴⁻ (Pt₂H₂).^{1,5} Ir₂H₂ is found to be thermally quite stable. No significant decomposition of Ir₂H₂ is observed at 80 °C in CH₃CN over 12 hrs. Slow thermal decomposition of Pt₂H₂ is observed at room temperature. Both Pt₂H₂ and Ir₂H₂ react with HCl. Reaction of Ir₂H₂ yields Ir₂(H)Cl. For Pt₂H₂, reaction with HCl and DCI generates H₂ and HD, respectively. Pt₂H₂ photochemically eliminates H₂ to yield Pt₂. For Ir₂H₂, photolysis results in production of the starting Ir₂ complex. This reaction is not clean, and a large amount of decomposition of the iridium material is observed.

A potentially more useful reaction has been found. Reaction of Ir₂H₂ with styrene results in a slow, clean conversion to Ir₂ and ethylbenzene. The reaction may be related to the hydrogenation of alkenes by Co(CN)₅³⁻, which involves a coordinatively saturated metal hydride that can effect hydrogen atom transfer to give a stable 1-electron reduced transition metal ion.¹⁶ A similar reaction (transhydrogenation of cyclohexene and pentene with isopropanol) is observed for Pt₂.¹⁷ Thus, combination of the photochemical hydrogen atom-transfer reaction with the hydrogenation step completes a catalytic cycle in which the Ir₂ complex functions as a photochemical two-hydrogen transfer reagent.

Scheme 5.1. Observed reactivity of $[\text{Ir}_2(\text{TMB})_4\text{H}_2](\text{B}(\text{C}_6\text{H}_5)_4)_2$. Iridium containing by-product not characterized, "Ir".

References and Notes

1. Roundhill, D.M.; Gray, H.B.; Che, C.-M. *Accts. Chem. Res.*, in press.
2. Marshall, J.L.; Stiegman, A.E.; Gray, H.B. In *Excited States and Reactive Intermediates*; Lever, A.B.P., Ed.; ACS Symp. Ser. 307; American Chemical Society: Washington, D.C., 1986; pp. 116-176.
3. Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 286-287.
4. Vlcek, A., Jr.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 1997-2001.
5. Harvey, E.L.; Stiegman, A.E.; Vlcek, A., Jr.; Gray, H.B. *J. Am. Chem. Soc.* **1987**, *109*, 5233-5235.
6. Chapter 2.
7. Principal crystal faces [0,1,0] and [1,0,2].
8. *International Tables for X-ray Crystallography*, Vol. IV; Kynoch Press: Birmingham, England, 1974.
9. Maverick, A.W.; Smith, T.P.; Maverick, E.F.; Gray, H.B. *Inorg. Chem.* **1987**, *26*, 4336-4341.
10. Mann, K.R.; Thich, J.A.; Bell, R.A.; Coyle, C.L.; Gray, H.B. *Inorg. Chem.* **1980**, *19*, 2462-2468.
11. An increase in the N≡C stretching frequency from the free ligand to Ir₂ is counter to the expected shift, if π -backbonding were an important part of the metal-isocyanide interaction. Therefore, the π -backbonding contributions to the metal-isocyanide interaction are negligible with σ donation from the isocyanide to the iridium center being the dominant bonding interaction leading to an increase in the N≡C frequency.
12. Miskowski, V.M.; Smith, T.P.; Loehr, T.M.; Gray, H.B. *J. Am. Chem. Soc.* **1985**, *107*, 7925-7934.

13. Miskowski, V.M.; Dallinger, R.F.; Christoph, G.G.; Morris, D.E.; Spies, G.H.; Woodruff, W.H. *Inorg. Chem.* **1987**, *26*, 2127-2132.

14. Poor agreement is found between the calculated and crystallographically determined Ir-Ir distances for Ir_2I_2 . The significant mixing of the metal-halide vibration with the metal-metal vibration for Ir_2I_2 makes force-field analysis of this system quite difficult. The force constant for the Ir-Ir bond is not well determined. For Ir_2Cl_2 and Ir_2Br_2 , the amount of mixing between the metal-halide mode and the metal-metal mode is much less, allowing force-field analyses to produce more reliable estimates of the Ir-Ir force constants. Therefore, better agreement between the calculated and the true Ir-Ir separations are expected. Good agreement is found between the calculated and crystallographically determined metal-metal distances for Rh_2Cl_2 .

15.

	Chemical Shift ^a			$T_C, ^\circ\text{C}$	$\Delta G^\ddagger, \text{kcal/mol}$
	-CH ₂ -	-CH ₃	-CH ₃		
	(fast)	(fast)	(slow)		
$\text{Ir}_2(\text{TMB})_4^{2+}$ ^b	1.72	1.46	1.33, 1.58	15	14.6
$\text{Ir}_2(\text{TMB})_4\text{I}_2^{2+}$ ^b	2.11	1.54	1.33, 1.63	-14	13.0

a. Given in δ (ppm) vs. TMS. "Fast" and "slow" refer to values determined in the fast-exchange and stopped-exchange limits, respectively.

b. In CD_3CN , see reference 9.

16. Kwiateh, J. *Catal. Rev.* **1967**, *1*, 37-72.17. Che, C.-M.; Lee, W.-M. *J. Chem. Soc., Chem. Commun.* **1986**, 512-513.

Chapter 6

***Ab Initio* Calculations of $\text{Re}_2\text{Cl}_8^{2-}$**

Introduction

The discovery of multiply bonded metal-metal dimers has provoked numerous studies aimed toward understanding the electronic structure and spectral properties of these systems. To begin to understand the nature of the quadruple metal-metal bond, one can analyze the d orbital interaction for a simple diatomic system M_2 . Figure 6.1 shows the five nonzero overlaps between pairs of d orbitals when two metal atoms approach each other.

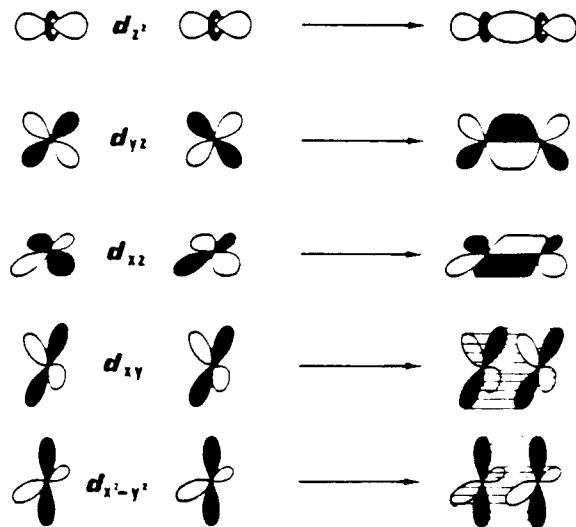
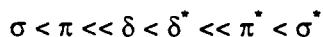



Figure 6.1. d-d overlaps between two metal atoms.

The positive overlap of the d_z^2 , d_{xz} , and d_{yz} orbitals gives rise to the σ and π bonds, with the δ bonds being formed by the overlap of the d_{xy} and $d_{x^2-y^2}$ orbitals. The relative magnitudes of the orbital overlap are $\delta \ll \pi < \sigma$. Using the simple Huckel concept that the molecular orbital (MO) energy should be proportional to the orbital overlap, the following orbital energy ordering is predicted.

In order to explain the nonbridging eclipsed conformation and the observed diamagnetism of $\text{Re}_2\text{Cl}_8^{2-}$ Cotton proposed, based on the above MO scheme, that the ground-state configuration was $\sigma^2\pi^4\delta^2$. Because the $\delta_{x^2-y^2}^2$ orbitals of the metal are involved in the metal-ligand σ bonds, the $\delta_{x^2-y^2}$ and $\delta_{x^2-y^2}^*$ orbitals were assumed to be high in energy and unimportant in the description of the metal-metal bonds (see Figure 6.2). Using this MO scheme, estimates of the quadruple bond and δ bond strengths were made, as well as assignment of the optical absorption spectrum. However, the MO interpretation has been shown to be incorrect.¹

Figure 6.2. d orbitals for M_2 and M_2X_8 .

In the MO formalism, a single configuration is used to describe the electronic structure of a molecule. For a singly bonded system such as H_2 , the MO wave function is

$$\Psi_{\text{MO}} = [\varphi_{\sigma}(1)\varphi_{\sigma}(2)] (\alpha\beta - \beta\alpha). \quad 6.1$$

In terms of atomic orbitals, the MO wave function has an equal covalent and ionic contribution.

$$\varphi_{\sigma} = l + r \quad 6.2$$

$$\Psi_{MO} = [l + r][l + r](\alpha\beta - \beta\alpha) \quad 6.3$$

$$\Psi_{MO} = [(l|r + r|) + (l|l + rr)](\alpha\beta - \beta\alpha) \quad 6.4$$

$$\Psi_{cov} = lr + rl \quad \Psi_{ion} = ll + rr \quad 6.5$$

The MO wave function for the ground state of H_2 , while being bound at the equilibrium bond distance, is more than 2 eV above the exact energy. As the molecule is dissociated, the ground-state wave function should converge toward the covalent limit of two hydrogen atoms, $lr + rl$. At $R = \infty$, the MO wave function leads to an energy that is more than 8 eV above the correct dissociation limit. Since the MO wave function must have equal ionic and covalent contributions for all internuclear separations, it cannot correctly describe the long R region of the ground-state potential surface. This is a region of low orbital overlap that is best described by a covalent wave function.

For Re_2 , with a metal-metal separation of 2.24 Å, the orbital overlaps are $\sigma = 0.63$, $\pi = 0.53$, and $\delta = 0.17$. Because of the low δ orbital overlap, the wave function for the δ bond is required to be largely covalent. Therefore, an MO wave function will be an extremely inadequate description of the δ bond.

In order to correct for the deficiencies of the MO description, a wave function can be constructed using the exact wave functions at $R = \infty$ (i.e., the valence bond (VB) wave function). The VB wave function for H_2 is

$$\Psi_{VB} = [l|r + r|](\alpha\beta - \beta\alpha). \quad 6.6$$

This wave function is covalent for all internuclear distances and, while being only slightly better than the MO wave function at short R , correctly describes the long R region of the potential surface. Although dissociating to the correct limit, the VB wave function at Re is ~1.5 eV above the exact energy of H_2 .

Expressing the VB wave function for H_2 in terms of the MO wave functions, one sees that the correct description of the long R region requires a wave function that is made up of more than a single configuration.

$$\Psi_{MO} = [l \ r \ + \ r \ l] (\alpha\beta - \beta\alpha) \quad 6.7$$

$$\varphi_{\sigma} = l + r \quad \varphi_{\sigma}^* = l - r \quad 6.8$$

$$\varphi_{\sigma}\varphi_{\sigma} = (ll + rr) + (lr + rl) \quad 6.9$$

$$\varphi_{\sigma}^*\varphi_{\sigma}^* = (ll + rr) - (lr + rl) \quad 6.10$$

$$\Psi_{VB} = [\varphi_{\sigma}\varphi_{\sigma} - \varphi_{\sigma}^*\varphi_{\sigma}^*] (\alpha\beta - \beta\alpha) \quad 6.11$$

For the metal dimers, the VB wave function is a multiconfiguration description that correctly describes the weak coupling in the metal-metal bond.

A generalization to the VB description can be made by allowing the MO wave functions to optimize their contributions to the VB wave function. This generalization yields the generalized valence bond (GVB) wave function.

$$\Psi_{GVB} = [C_1(\varphi_{\sigma}\varphi_{\sigma}) - C_2(\varphi_{\sigma}^*\varphi_{\sigma}^*)] (\alpha\beta - \beta\alpha) \quad 6.12$$

A multiconfiguration description is necessary to represent adequately the ground state wave function for the quadruply bonded metal dimers. This level of theory, while providing the correct qualitative description of the quadruple bond, gives a very poor quantitative description of the metal dimer. Using an extensive *ab initio* wave function for $Mo_2Cl_8^{4-}$ and solving self-consistently for the $^1A_{2u}$ excited state ($\delta \rightarrow \delta^*$ transition), an excitation energy ~ 1.2 eV higher than the experimental assignment was obtained.² Such results have led some theoreticians to conclude that the earlier spectral assignments are incorrect.² Others, arguing that the errors are due to an inadequate description of the electron correlation, have corrected the calculated transition energies

by subtracting from these values the difference in the theoretical estimate and experimental assignment for one well-characterized transition.³

Recently, it has been shown from studies on Cr₂ and Mo₂ that the large correlation error in the *ab initio* wave function results from a difficulty in describing the atomic electron affinities.^{4,5} There exists an atomic correlation energy associate with a doubly occupied atomic orbital that is normally accounted for by doing double excitation out of a bond pair. For the hexuply bonded metal dimers, the number of configurations necessary to describe this atomic correlation is impractical. Reducing the size of the calculation to a manageable level leads to an energy for the doubly occupied atomic orbitals that is too high. However, by making a simple modification to the GVB methods, accurate ground-state properties could be determined.⁵

For the quadruply bonded metal dimers, an accurate description of the doubly occupied atomic orbitals, while being important in determining the ground-state properties, is imperative in the calculation of excitation energies. The importance of the intrapair correlation energy in the excited state is evident from the VB wave function for the ¹A_{2u} state.

$$\Psi(^1A_{2u}) = [\varphi_\delta \varphi_\delta + \varphi_\delta^* \varphi_\delta^*] (\alpha\beta - \beta\alpha) \quad 6.13$$

$$\varphi_\delta = l + r \quad \varphi_\delta^* = l - r \quad 6.14$$

$$\varphi_\delta \varphi_\delta^* = (l + r)(l - r) \quad 6.15$$

$$\varphi_\delta^* \varphi_\delta = (l - r)(l + r) \quad 6.16$$

$$\Psi(^1A_{2u}) = [l l - r r] (\alpha\beta - \beta\alpha) \quad 6.17$$

The ¹(δδ*) excited state is described by an ionic wave function, two electrons localized on the same atom. The correlation error associated with having two electrons in the same localized orbital is large, and to describe accurately the ¹(δδ*) state, it is necessary to include in the wave function the correct amount of correlation interaction

to account for this correlation error. The ${}^1(\delta \rightarrow \delta^*)$ excitation energy is expected to have an error of 1-2 eV if a wave function is used that does not account for the intrapair correlation energy. A similar error is expected for any state that cannot be described by singly occupied orbitals on the metal centers.

For the *ab initio* calculations to date,¹⁻³ the level of correlation in the wave functions has not been sufficient to account for the intrapair correlation energy. Again, the size of the calculation necessary for an accurate description is impractical. However, the correlation neglected in the *ab initio* wave function can be accounted for by applying the modified generalized valence-bond (MGVB) method.

In addition to the *ab initio* calculations, many studies have been carried out using the extended Huckel and X α scattered wave methods.¹ However, these methods are limited in their ability to describe accurately the multiply bonded metal dimers because of their MO formalisms and lack of correlation.

In order to determine accurate ground- and excited-state properties for quadruply bonded metal dimers, we have begun an *ab initio* study in which the ground and excited state wave functions are solved for self-consistently using the MGVB method. A detailed discussion of the results obtained from the *ab initio* study of the excited states for quadruply bonded metal dimers is presented elsewhere. In this chapter, the results of *ab initio* calculations of $\text{Re}_2\text{Cl}_8^{2-}$ are reported.

Calculational Details

Hartree-Fock (HF), generalized valence bond (GVB), configuration interaction (CI), multiconfiguration self-consistent field (MCSCF), and modified generalized valence bond (MGVB) calculations were carried out on all metal dimers of interest.

The general form of the ground-state HF wave function for the quadruply bonded metal dimers is

$$\Psi_{HF} = A \Psi_{core} [\varphi_{a1g}(1)\alpha(1)] [\varphi_{a1g}(2)\beta(2)] [\varphi_{egx}(3)\alpha(3)] [\varphi_{egx}(4)\beta(4)]$$

6.18

$$[\varphi_{egy}(5)\alpha(5)] [\varphi_{egy}(6)\beta(6)] [\varphi_{b2g}(7)\alpha(7)] [\varphi_{b2g}(8)\beta(8)] ,$$

where A is the antisymmetrizer and Ψ_{core} represents all the ligand and nonvalence metal electron pairs. The overall symmetry of the systems studied is D_{4h} , and the orbitals represented above are those that are equivalent to the σ , π , and δ metal-metal bonding orbitals.

$$\varphi_{a1g} \approx \sigma \quad 6.19$$

$$\varphi_{eg} \approx \pi \quad 6.20$$

$$\varphi_{b2g} \approx \delta \quad 6.21$$

In the GVB wave function, unlike the HF wave function where an electron pair is described by a pair of identical orbitals $\varphi_i(1)\varphi_i(2)$, each electron in a bond pair is allowed to have a different orbital $\varphi_i(1)\varphi_i'(2) + \varphi_i(2)\varphi_i'(1)$, and every orbital is optimized self-consistently. For the metal dimers, the $^1A_{1g}$ ground-state GVB-PP wave function has the form

$$\Psi_{GVB} = A \Psi_{core} [\varphi_{\sigma}(1)\varphi_{\sigma}'(2) + \varphi_{\sigma}'(1)\varphi_{\sigma}(2)] [\varphi_{\pi x}(3)\varphi_{\pi x}'(4) + \varphi_{\pi x}'(3)\varphi_{\pi x}(4)]$$

6.22

$$[\varphi_{\pi y}(5)\varphi_{\pi y'}(6) + \varphi_{\pi y'}(5)\varphi_{\pi y}(6)] [\varphi_{\delta}(7)\varphi_{\delta'}(8) + \varphi_{\delta'}(7)\varphi_{\delta}(8)] \chi$$

$$\langle \varphi_i | \varphi_j \rangle = \delta_{ij}, \quad \langle \varphi_i | \varphi_i' \rangle = S_i, \quad 6.23$$

where, again, A is the antisymmetrizer, ψ_{core} represents the closed-shell HF core and χ represents the spin function. This wave function describes the left-right static correlation in the two electron bonds. Where one electron is localized on the right, the other electron is more likely to be found on the left, thus relieving some of the electron-electron repulsion.

$$\varphi = l + \lambda r \quad 6.24$$

$$\varphi' = r + \lambda l \quad 6.25$$

In solving the GVB wave function, the GVB orbitals are cast in their orthogonal, natural orbital (NO) representation $c_1\varphi_{i1}(1)\varphi_{i1}(2) - c_2\varphi_{i2}(1)\varphi_{i2}(2)$ (plus and minus combination of the one-electron orbitals), where $\langle \varphi_{i1} | \varphi_{i2} \rangle = 0$ and $c_1^2 + c_2^2 = 1$. For the quadruple metal-metal bond, the NO's would be bonding and antibonding orbitals of the appropriate bond pairs.

$$\begin{aligned} \Psi_{\text{GVB}}^{\text{NO}} = & A \psi_{\text{core}} [c_1(\varphi_{\sigma})^2 - c_2(\varphi_{\sigma^*})^2] [c_3(\varphi_{\pi x})^2 - c_4(\varphi_{\pi x^*})^2] \\ & [c_5(\varphi_{\pi y})^2 - c_6(\varphi_{\pi y^*})^2] [c_7(\varphi_{\delta})^2 - c_8(\varphi_{\delta^*})^2] \chi \end{aligned} \quad 6.26$$

The designation given this wave function is GVB-PP(4/8), four bonds correlated with eight natural orbitals.

In the GVB-PP wave function, only a single spin-coupling (or valence bond structure) is allowed and the wave function is designated PP for perfect pairing. In the NO representation, this spin restriction leads only to configurations where the occupation for any given bond pair is {2,0} or {0,2}.

The GVB-PP wave function often provides an excellent description of saturated organic systems; however, for transition metal systems, singly occupied d orbitals on the same metal prefer to be high-spin coupled, and it is necessary to optimize the spin coupling of the GVB wave function.

Originally, the full GVB wave function was calculated using the form

$$A\varphi_a\varphi_b\cdots\varphi_z\chi, \quad 6.27$$

where the orbitals $\varphi_a\cdots\varphi_z$ are all allowed to overlap and where the spin function χ is optimized.⁶ Such calculations are too tedious for studies of large molecules, and a series of studies led to an abbreviated approach in which the GVB-PP wave function of (6.26) is generalized to allow the {1,1} configuration in each bond pair. The orbitals and CI coefficients of the resulting wave function are solved for using the GVB3 program.^{4,7} This wave function does not correspond exactly to the full GVB wave function; however, it does allow a completely general description of the spin coupling and an unambiguous description of the two electrons in each bond pair, just as in GVB. The resulting wave function is denoted GVB-RCI in order to indicate the restricted coupling used.

In nontransition metal systems, the full GVB wave function can often be well approximated by using the GVB-PP orbital in the GVB-RCI wave function. However, for transition metal system, the orbitals in the GVB-RCI wave function must be optimized self-consistently. Calculations in which all the GVB occupied orbitals are used and general occupations are allowed are denoted as GVB-CI. This allows a more complete description of the resonance and the correlation effects.

Recently, it has been shown from studies on Cr_2 and Mo_2 that quite significant correlation errors result from difficulties in describing the atomic electron affinities.^{4,8} With this insight, a simple modification to the GVB method was made that corrects certain Coulombic integrals so as to provide the correct atomic electron affinities.^{4,5} This method, MGVB, when applied to the metal dimers gave accurate bond lengths and bond energies.

Modified Generalized Valence Bond Method

The MGVB method was developed by Goodgame and Goddard to account for the electron correlation missing in a GVB wave function.^{4,5} Because of the importance of this method to the present investigation, a brief discussion is necessary.

In the long R limit, the homonuclear GVB wave function is covalent and has the form

$$\Psi_{\text{GVB}} = [\varphi_l(1)\varphi_r(2) + \varphi_r(1)\varphi_l(2)](\alpha\beta - \beta\alpha), \quad 6.28$$

where φ_l and φ_r represent the one-electron orbitals localized on the left and right centers, respectively. As the internuclear distance is decreased, the one-electron orbitals delocalize and the GVB wave function has the form

$$\Psi_{\text{GVB}} = [\varphi_a(1)\varphi_b(2) + \varphi_b(1)\varphi_a(2)](\alpha\beta - \beta\alpha), \quad 6.29$$

where the GVB orbitals can be thought of as consisting of optimized atomic orbitals (ignoring normalization),

$$\varphi_a = \varphi_l + \lambda\varphi_r \quad \text{and} \quad \varphi_b = \varphi_r + \lambda\varphi_l. \quad 6.30$$

Expanding the GVB wave function in terms of these optimized atomic functions,

$$\Psi_{\text{GVB}} = (\phi_l \phi_r + \phi_r \phi_l) + \lambda (\phi_l \phi_l + \phi_r \phi_r) , \quad 6.31$$

leads to a superposition of an ionic term (two electrons localized on the same center) and a covalent term (two electrons localized on different centers).

$$\Psi_{\text{GVB}} = C_c \Psi_{\text{cov}} + C_i \Psi_{\text{ion}} \quad 6.32$$

Goodgame and Goddard postulated that the GVB wave function leads to an excellent description of the covalent terms, but the ionic terms, involving as they do doubly occupied orbitals, should be too high by ~ 1.3 eV.⁵ They argued that the usual CI approach, in which one does double excitations out of each bond pair, is specifically correcting for the error in the ionic terms. They tested this hypothesis by carrying out calculations in which the one-center Coulomb integrals were modified so to have the effect of properly correcting the ionic terms at $R = \infty$.

There are several ways in which corrections for the error in the ionic terms can be determined. The simplest, used by Goodgame and Goddard in their first paper and referred to as MGVB/1,⁵ corrects the limits so that the wave function Ψ or Ψ_{GVB} at $R = \infty$ has the correct energy relative to Ψ_{cov} or Ψ_{ion} , leading to

$$CC = |P(\text{Exp} - \text{Calc}) - EA(\text{Exp} - \text{Calc})| \quad 6.33$$

For the hexuply bonded metal dimers, the total error in the HF energy was

$$\delta E(s^0 d^5) + \delta E(s^2 d^5) - 2\delta E(s^1 d^5) = \delta IP_s - \delta EA_s \quad 6.34$$

$$\delta E(s^1 d^4) + \delta E(s^1 d^6) - 2\delta E(s^1 d^5) = \delta IP_d - \delta EA_d \quad 6.35$$

These correction values were then used to modify the s-s and d-d self-Coulomb terms while all other integrals were evaluated exactly.

In a new approach, MGVB/2, various one-center, one- and two-electron integrals are adjusted to fit the IP's, EA's and atomic-excitation energies. In MGVB/2, an energy expression based on the Condon and Shortley formalism is derived for various atom states. While the values of the one- and two-electron integrals in these energy expressions are dependent on the electron configuration of the atom, it has been shown that the correlation error expressed in terms of these integrals is relatively constant for a given ionic series and shows only minor fluctuation with changing ionicism. In other words, the correlation error in the HF energy appears to be constant.

MGVB/2 is an extension of the ideas developed in the earlier method. The corrections to the one- and two-electron Condon and Shortley parameters, obtained by fitting the difference between the calculated and experimental term energies with the parametric equations, are added to the appropriate integrals, while evaluating all integrals exactly. Now, instead of correcting only for the correlation error associated with placing two electrons in the same orbital, a spherical correction is applied that accounts not only for the correlation between electrons in the same orbital but also for the correlation of electrons in different orbitals.

Method of Correction

In applying the MGVB corrections, the following procedure is used:

- (1) symmetric orthogonalization of the localized GVB orbitals;
- (2) evaluate all integrals in terms of the localized orbitals and apply the appropriate corrections to the one-center integrals;
- (3) transform these orbitals back to the GVB natural orbitals for use in a CI or an MCSCF calculation;

- (4) recalculate the usual GVB-RCI wave function, using the modified integrals;
- (5) in calculating the CI wave function of (4), the corrected integrals are used only for bond pairs in which bonding or antibonding GVB natural orbitals are doubly occupied, since only in this case is there static ionic character in the wave function.

References

1. Cotton, F.A.; Walton, R.A. *Multiple Bonds Between Metal Atoms*; Wiley: New York, 1982, and references therein.
2. Mathisen, K.B.; Walhgren, U.; Pettersson, L.G.M. *Chem. Phys. Lett.* **1984**, *104*, 336-342.
3. Hay, P.J. *J. Am. Chem. Soc.* **1982**, *104*, 7007-7017.
4. Goodgame, M.M., Ph.D. Dissertation, California Institute of Technology, 1983.
5. Goodgame, M.M.; Goddard, W.A. III *Phys Rev. Lett.* **1985**, *54*, 661-664.
6. Goddard, W.A. III; Ladner, R.C. *J. Am. Chem. Soc.* **1971**, *93*, 6750-6756.
7. Bobrowicz, F.W., Ph.D. Dissertation, California Institute of Technology, 1974.
8. Goodgame, M.M.; Goddard, W.A. III *Phys Rev. Lett.* **1982**, *48*, 135-138.
9. Crosswhite, H.M.; Crosswhite, H. *J. Optic. Soc. Am. B* **1984**, *1*, 246-254.
10. Hansen, J.E.; Raassen, A.J.J. *Physica* **1981**, *111C*, 76-101, and references therein.
11. Shadmi, Y. *Phys. Rev.* **1965**, *139*, A43-A47, and references therein.

Reprinted from the Journal of the American Chemical Society, 1987, 109, 5580.
 Copyright © 1987 by the American Chemical Society and reprinted by permission of the copyright owner.

Bond Energy and Other Properties of the Re-Re Quadruple Bond

David C. Smith and William A. Goddard III*

Contribution No. 7558 from the Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125. Received February 18, 1987

Abstract: Using generalized valence bond (GVB) methods designed for obtaining accurate bond energies, we predict an Re-Re quadruple bond strength of 85 ± 5 kcal/mol for $\text{Re}_2\text{Cl}_8^{2-}$. This is much less than early estimates of 370 kcal/mol and somewhat lower than estimates (124 to 150 kcal/mol) based on Birge-Sponer extrapolation but is in reasonable agreement with a recent thermochemical study (97 ± 12 kcal/mol). We obtain a rotational barrier of 3.0 kcal/mol and a singlet-triplet excitation energy of 3100 cm^{-1} , and we conclude that the intrinsic strength of the δ bond is 6 ± 3 kcal/mol.

Since their discovery in 1965, quadruply bonded metal dimers have provoked numerous theoretical and experimental studies. A particularly controversial issue has been the strength of the quadruple bond and, in particular, the contribution of the δ bond to the observed structure of the unbridged dimers.¹⁻⁴ We here report the results of ab initio calculations of $\text{Re}_2\text{Cl}_8^{2-}$ designed to provide accurate bond energies and torsion barriers as well as accurate shapes for the potential curves. These studies use the generalized valence bond (GVB) approach in which electron correlations are included for all eight electrons available for the

quadruple bond, while solving self-consistently for all orbitals.^{5,6}

We use the modified-GVB (M-GVB) approach of Goodgame and Goddard.⁷ They pointed out that ab initio descriptions of multiple bonds in transition metals lead to substantial errors in the bond energy due to an inadequate treatment of the electron correlations in the ionic part of the wave function describing the bond.

$$\psi^{\text{GVB}} = \psi_{\text{cov}} + \lambda\psi_{\text{ionic}} = [\phi_l(1)\phi_r(2) + \phi_r(1)\phi_l(2)] + \lambda[\phi_l(1)\phi_l(2) + \phi_r(1)\phi_r(2)]$$

In GVB, electron correlation in the covalent part of the wave

(1) Cotton, F. A.; Walton, R. A. *Multiple Bonds Between Metal Atoms*; Wiley: New York, 1982; and references therein.
 (2) Cotton, F. A.; Walton, R. A. *Struct. Bonding* 1985, 62, 1-49.
 (3) Mathisen, K. B.; Wahlgren, U.; Pettersson, L. G. M. *Chem. Phys. Lett.* 1984, 104, 336-342 and references therein.
 (4) Hay, P. J. *J. Am. Chem. Soc.* 1982, 104, 7007-7017 and references therein.

(5) Goddard, W. A., III; Ladner, R. C. *J. Am. Chem. Soc.* 1971, 93, 6750-6756.

(6) Bobrowicz, F. W.; Goddard, W. A., III. In *Modern Theoretical Chemistry: Methods of Electronic Structure Theory*; Schaefer, H. F., III, Plenum: New York, 1977; Vol. 3, Chapter 4, pp 79-127.

Table II. Comparison of Calculated Spectroscopic Constants for the $^1\text{A}_{1g}$ and $^3\text{A}_{2g}$ States at the M-GVB-RCI Level

	$^1\text{A}_{1g}$	$^3\text{A}_{2g}$	diff
bond length (Å)	2.26	2.30	+0.04
Re-Re force constant (mdyn/Å)	4.65	4.67	+0.02
vibrational frequency (cm ⁻¹)	293	293	0.0
bond energy (kcal/mol)	85.0	76.5	-8.5

^a Optimization of eclipsed rotomer neglecting relaxation of ReCl_4 fragments from their ground-state structure.

neutralized by counter charges (e.g., K^+), and in calculating bond energies it is necessary to include the effects of these counter charges (the Coulomb energy for two charges at 2.24 Å is 150 kcal/mol!). In order to ameliorate this problem, fractional charges (leading to a net charge of 0 on each fragment) are placed at positions extrapolated from the crystallographic positions of the counterions. The charges are placed so as to maintain the overall symmetry of the system and to be invariant under a 45° rotation of the ReCl_4^- units.¹⁰ The rotational invariance allows for a comparison of the properties of the eclipsed and staggered geometries. The results for the Re-Re bond distance optimization are shown in Figure 3 and in Tables I and II.¹¹

The bond energy for the Re-Re quadruple bond calculated at the M-GVB level is 85.0 kcal/mol, the first ab initio estimate of the energy of a quadruple metal-metal bond. Similar calculations on Mo_2 and Cr_2 lead to bond energies within 5 kcal/mol of experiment, and we believe that similar accuracy can be expected in the Re-Re quadruple bond studies, leading to D_e (Re⁴⁺Re) = 85 ± 5 kcal/mol. A more conservative estimate of the uncertainty, perhaps, ±10 kcal/mol, would be warranted given the lack of comparable theoretical and experimental studies on other systems. Experimental values for the bond energy of the quadruple bond have been quite difficult to obtain. Early estimates have ranged as high as 370 kcal/mol.¹ Birge-Sponer extrapolations using the harmonic stretching frequency and the anharmonicity constant determined from resonance Raman measurements suggest an Re-Re bond energy of 152 ± 19 kcal/mol for $\text{Re}_2\text{Cl}_8^{2-}$ and 139 ± 24 kcal/mol for $\text{Re}_2\text{Br}_8^{2-}$.¹² Such Birge-Sponer extrapolations for multiple bonds are fraught with peril and could easily lead to errors of 50–70 kcal/mol.¹³ A more reliable thermochemical study places the Re-Re bond energy for $\text{Cs}_2\text{Re}_2\text{Br}_8$ at 97 ± 12 kcal/mol,¹⁴ this estimate depending on empirically based assumptions in order to estimate the Re-Br bond energy. Given the various experimental uncertainties, we believe that the theoretical value of 85 kcal/mol is the best current estimate of the bond energy. Early extended Hückel calculations placed the quadruple bond in $\text{Re}_2\text{Cl}_8^{2-}$ at 370 kcal/mol.¹ Recent theoretical work with the Hartree-Fock-Slater transition-state method has estimated the Re-Re triple bond energy in $\text{Re}_2\text{Cl}_4(\text{PH}_3)_4$ to be 134 kcal/mol.¹⁵ Generally, these latter methods

(10) An average metal-ion distance of 4.3 Å was maintained (determined from the X-ray diffraction data). Charges of +0.125 were placed in the same plane as defined by the four Cl's of each ReCl_4 unit. The charges were placed at 22.5° off the Re-Cl vector. The validity of this approach is supported by the small effect on excitation energies and rotational barriers where use of the counterions (i) increases the $(\delta-\delta^*)$ excitation energy by 10 cm⁻¹ for the eclipsed conformation and less than 10 cm⁻¹ for the staggered conformation and (ii) decreases the rotational barrier by 0.5 kcal/mol.

(11) The calculations lead to a slight barrier in the potential curves as the neutral ReCl_4 fragments are brought together. This barrier is 0.45 kcal/mol (at 4.18 Å) for GVB-RCI and 0.13 kcal/mol (at 4.92 Å) for M-GVB. This occurs because the nonplanar ReCl_4 fragments are kept at a fixed nonplanar geometry as the fragments are separated, leading to a small dipole moment and hence a slight repulsive interaction at large R.

(12) Trogler, W. C.; Cowman, C. D.; Gray, H. B.; Cotton, F. A. *J. Am. Chem. Soc.* 1977, 99, 2993–2996.

(13) Gaydon, A. G. *Dissociation Energies and Spectra of Diatomic Molecules*; Chapman and Hall: London, 1968; see Chapter 5.

(14) Mors, L. R.; Porcja, R. J.; Nicoletti, J. W.; San Filippo, J.; Jenkins, H. D. B. *J. Am. Chem. Soc.* 1980, 102, 1923–1927.

lead to an overestimate of the bond energy by 1 to 2 eV,¹⁶ suggesting D_e ≈ 90 to 110 kcal/mol, in line with the GVB results.

Given a total bond energy of 85 kcal/mol, the question is how strong is the δ -bond? One way to establish this is by the singlet-triplet gap at the eclipsed geometry (calculated at 3100 cm⁻¹ = 0.38 eV = 8.8 kcal/mol), suggesting a δ bond strength of 4.5–9.0 kcal/mol (this estimate ignores spin-coupling with the other orbitals of the bond). A second approach is to use the rotational barrier at the ground-state equilibrium bond distance. The energy difference between the eclipsed and staggered geometries involves opposing energy contributions. Rotating from eclipsed to staggered changes the overlap, i.e., the δ bond goes to zero so that bonding is lost. Simultaneously electrostatic and steric interactions between Cl's bonded to opposite Re's are relieved. With this competitive effect in the total energy, one can only obtain bounds to the pure δ contribution to the bonding. The calculations give a direct barrier of 3.0 kcal/mol,^{17a} a lower bound on the strength of the δ bond. The calculated barrier for the triplet state (favoring staggered) of 3.0 kcal/mol^{17b} should be an upper limit on the steric barrier, suggesting an upper limit on the δ bond of 6.0 kcal/mol. From the above analysis, a reasonable estimate of the δ bond strength is 6 ± 3 kcal/mol, which is weak compared with σ and π bonds but sufficiently large to explain the ubiquity of the eclipsed geometry for d^4-d^4 metal dimers.

There are not experimental estimates of the δ bond strength; however, from dynamic NMR studies of meso-substituted molybdenum porphyrin dimers, the activation energy for rotation about the quadruple metal-metal bond has been estimated to be 10.1 ± 0.5 kcal/mol.¹⁸ This is larger than the value calculated for $\text{Re}_2\text{Cl}_8^{2-}$, perhaps because steric interactions (which reduce the barrier) are smaller in the porphyrin. From measured $\delta - \delta^*$ splittings in odd-electron complexes [e.g., $\text{Mo}_2(\text{SO}_4)_4^{3-}$ and $\text{Te}_2\text{Cl}_8^{3-}$], Trogler and Gray have estimated the δ bond energy to be 9–10 kcal/mol.¹⁹

Early self-consistent-field (SCF) calculations found the ground state of the staggered conformation to be a triplet, about 60 kcal/mol lower than the singlet ground state of the eclipsed geometry. Addition of Cl reduced the difference between eclipsed and staggered geometries to 4 kcal/mol, yet still favored the triplet state of the staggered conformation.²⁰ Other recent ab initio calculations find the ground state for the eclipsed and staggered geometries to be a singlet with essentially no barrier between the two rotomers.²¹

The M-GVB calculations lead to an Re-Re bond distance of 2.26 Å, in excellent agreement with the experimental value of 2.24 Å. This is consistent with the results on Mo_2 where M-GVB leads to an error of -0.01 Å.⁷ We calculate a metal-metal stretching force constant of 4.6 mdyn/Å, and using a valence force field,²² we obtain a metal-metal stretching frequency of 293 cm⁻¹.²³ This can be compared with the vibrational frequency for $(n\text{-Bu}_4\text{N})_2[\text{Re}_2\text{Cl}_8]$ (determined from resonance Raman) of 275 cm⁻¹.²⁴

Summarizing, our calculations (i) provide the first prediction based on ab initio studies of an eclipsed ground state for a

(15) Ziegler, T. *J. Am. Chem. Soc.* 1984, 106, 5901–5908.

(16) Messmer, R. P. *J. Vac. Sci. Technol. A* 1984, 2, 899–904.

(17) (a) The ground-state rotational barrier calculated for $\text{Re}_2\text{Cl}_8^{2-}$ is 3.3 kcal/mol, while the ground-state rotational barrier calculated for $\text{Re}_2\text{Cl}_8^{2-}$ with counterions is 2.8 kcal/mol. (b) The triplet barrier calculated for $\text{Re}_2\text{Cl}_8^{2-}$ is 3.0 kcal/mol, while the triplet barrier calculated for $\text{Re}_2\text{Cl}_8^{2-}$ with counterions is 3.4 kcal/mol.

(18) Collman, J. P.; Woo, L. K. *Proc. Natl. Acad. Sci. U.S.A.* 1984, 81, 2592–2596.

(19) Trogler, W. C.; Gray, H. B. *Acc. Chem. Res.* 1978, 11, 232–239.

(20) Bernard, M. *J. Am. Chem. Soc.* 1978, 100, 2354–2362.

(21) (a) At the GVB-Cl level there is less than 1 kcal/mol difference between the staggered and eclipsed forms of $\text{Re}_2\text{Cl}_8^{2-}$; see ref 4. (b) The staggered form of $\text{Mo}_2\text{Cl}_8^{4-}$ was found to be 3 kcal/mol more stable than the eclipsed form at the CAS-SCF level: Strömberg, A.; Pettersson, L. G. M.; Wahlgren, U. *Chem. Phys. Lett.* 1985, 118, 389–394.

(22) Brattion, W. K.; Cotton, F. A.; Debeau, M.; Walton, R. A. *J. Coord. Chem.* 1971, 1, 121–131.

(23) Details and further analysis of the force field calculations will be published later. These calculations were carried out with BIOGRAF/IV (from Biodesign, Inc.).

(24) Clark, R. J. H.; Stead, M. J. *Inorg. Chem.* 1983, 22, 1214–1220.

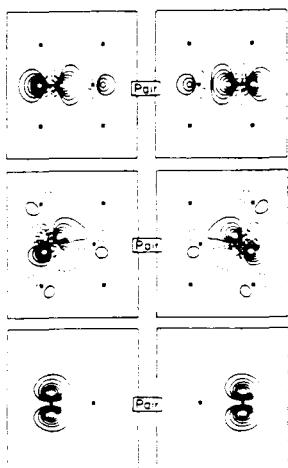


Figure 1. GVB orbitals involved in the σ , π , and δ bonds of $\text{Re}_2\text{Cl}_8^{2-}$ (reading top to bottom). Spacing between contours is 0.05 au. Negative contours are denoted by dashed lines; asterisks denote position of nuclei. The σ and π orbitals are plotted in the xz plane; the δ orbitals are plotted in a plane rotated 45° from the xz plane.

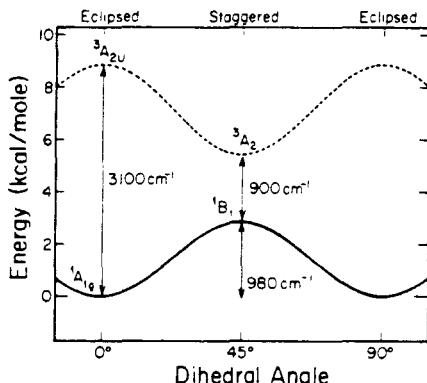


Figure 2. Energy profile for the ground state and $^3(6 \rightarrow 8^*)$ excited state of $\text{Re}_2\text{Cl}_8^{2-}$ as a function of dihedral angle. The $^3(6 \rightarrow 8^*)$ excitation energy was calculated for ϕ of 0° and 45° . The plot assumes a periodic energy function with the energies at ϕ of 0° and 45° as the minimum and maximum of the function for the ground state and the maximum and minimum of the function for the $^3(6 \rightarrow 8^*)$ excited state.

function is well described, but the ionic terms are forced to use doubly occupied orbitals. Because of the spatial compactness of the d orbitals, there are substantial electron correlations in such doubly occupied orbitals, leading to large errors in certain atomic electron affinities and ionization potentials. In M-GVB, this correlation error of the atom is built into the atomic Coulomb integrals, but calculations are otherwise as in normal GVB.⁷ The electron correlations imbedded in M-GVB would have been included in normal GVB wave functions by suitably high-level excitations (CI) and hence with M-GVB we cannot go beyond GVB-level calculations (since some electron correlation effects would be double corrected). M-GVB has been successfully applied in studying the sextuple bonds of Mo_2 and Cr_2 , where an accurate description of bond energies (D_e) and bond distances (R_e) was obtained.⁷ Thus, for Mo_2 , $D_e^{\text{calcd}} = 90.9$ kcal/mol, $R_e^{\text{expd}} = 97 \pm 5$ kcal/mol, $R_e^{\text{calcd}} = 1.92$ Å, $R_e^{\text{expd}} = 1.93$ Å; and for Cr_2 , $D_e^{\text{calcd}} = 42.9$ kcal/mol, $D_e^{\text{expd}} = 46 \pm 7$ kcal/mol, $R_e^{\text{calcd}} = 1.61$ Å, $R_e^{\text{expd}} = 1.68$ Å. The current studies involve exactly the same approach as in these earlier studies except that we now utilize effective core

Table I. Comparison of Calculated and Experimental Spectroscopic Constants

	GVB-PP ^a	GVB-RCI ^b	M-GVB-RCI	exptl
bond length (Å)	2.37	2.36	2.26	2.24 ^c
Re-Re force constant (mdyn/Å)	2.75	2.48	4.64	
vibrational frequency ^d (cm ⁻¹)	247	240	293	275 ^e
bond energy (kcal/mol)	g	25.8	85.0	(97 ± 12) ^f
rotational barrier (kcal/mol)	-1.6	0.1	2.8	

^a For a description of GVB-PP wave functions, see ref 6. ^b CI wave function similar to that described in Table Ia of Moss, B. J.; Goddard, W. A., III *J. Chem. Phys.* 1975, 63, 3523-3531. ^c Based on X-ray diffraction study of $\text{K}_4[\text{Re}_2\text{Cl}_8]\cdot 2\text{H}_2\text{O}$; ref 9. ^d The calculated Re-Re bond length and force constants were used with an earlier determined valence force field in the vibrational analysis; ref 22. ^e Based on solid-state resonance Raman study of $(n\text{-Bu}_4\text{N})_2[\text{Re}_2\text{Cl}_8]$; ref 24. ^f Based on thermochemical study of $\text{Cs}_2\text{Re}_2\text{Br}_4$; ref 14. ^g Keeping a constant spin coupling, GVB-PP leads to a dissociation error of 55.5 kcal/mol.

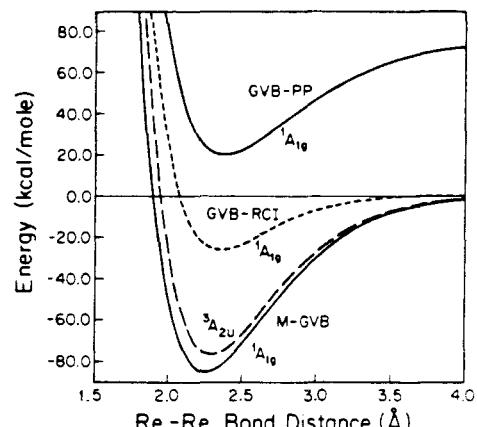


Figure 3. Calculated potential curves for $\text{Re}_2\text{Cl}_8^{2-}$.

potentials (ECP) so that only the 15 outermost electrons (5s, 5p, 6s, 5d) of each Re are treated explicitly; however, the potentials describe the effects of core electrons including the dominant relativistic effects.⁸

The GVB orbitals of the singlet ground state ($^1\text{A}_{1g}$) are shown in Figure 1 where we see that four electrons in $d\sigma$, $d\pi_x$, $d\pi_y$, and $d\delta_{xy}$ orbitals on each Re are spin-paired to form the quadruple bond. Uncoupling the spins of the two electrons in δ orbitals leads to the lowest triplet state ($^3\text{A}_{2u}$). Rotating one ReCl_4 group about the bond by 45° leads (see Figure 2) to essentially identical bonding in the σ , π_x , and π_y orbitals, but the δ bond is broken with the result that the singlet and triplet states (denoted as $^1\text{B}_1$ and $^3\text{A}_2$) are nearly degenerate. Some indications of the relative strengths of these bonds are given by the overlaps in the GVB orbitals, $S_{\sigma} = 0.68$, $S_{\pi} = 0.54$, $S_{\delta} = 0.12$ for the eclipsed configurations, but $S_{\sigma} = 0.68$, $S_{\pi} = 0.53$, and $S_{\delta} = 0.0$ for the staggered. As the bond is stretched, the overlaps of the GVB orbitals decrease continuously to zero, leading to a smooth description of bond dissociation (molecular orbital based schemes often lead to the wrong dissociation limit, complicating predictions of bond energies).

In these calculations the geometry of each $(\text{ReCl}_4)^-$ fragment was fixed as that in the crystal,⁹ and the Re-Re bond distance was optimized. An important issue here for bond energies concerns the charges. In crystals and solution, the charge of $\text{Re}_2\text{Cl}_8^{2-}$ is

(7) Goodgame, M. M.; Goddard, W. A., III, *Phys. Rev. Lett.* 1985, 54, 661-664.

(8) Hay, P. J.; Wadt, W. R. *J. Chem. Phys.* 1985, 82, 299-310.

(9) Cotton, F. A.; Harris, C. B. *Inorg. Chem.* 1965, 4, 330-333.

quadruply bonded metal dimer, (ii) predict an Re-Re quadrupole bond energy of 85 ± 5 kcal/mol—the first direct estimate of the strength of this prototypical quadrupole bond, and (iii) suggest that the δ bond energy is 6 ± 3 kcal/mol.

Acknowledgment. We acknowledge Dr. Siddharth Dasgupta for his contributions in the vibrational analysis. This work was partially supported by grants from the Sun Co. and from National Science Foundation (No. CHE83-18041).

Appendix 1

Table A1.1. Hydrogen Coordinates $\times 10^4$.

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>B</i>
H3A	-2119	180	-103	5.8
H3B	-1996	521	555	5.8
H3C	-2813	523	-303	5.8
H4A	-1871	319	-1353	4.8
H4B	-2547	673	-1669	4.8
H4C	-1595	752	-1522	4.8
H8A	-1515	2369	356	5.7
H8B	-1812	2047	-363	5.7
H8C	-2378	2131	112	5.7
H9A	-986	2147	1873	5.0
H9B	-1790	1874	1707	5.0
H9C	-864	1685	2121	5.0
H13A	2745	325	-970	8.1
H13B	2647	621	-1696	8.1
H13C	2912	792	-797	8.1
H14A	1224	39	-1778	8.3
H14B	441	339	-2060	8.3
H14C	1011	326	-2547	8.3
H18A	332	2219	-2078	5.1
H18B	1084	1936	-2034	5.1
H18C	194	1926	-2820	5.1
H19A	-883	1960	-1866	7.2
H19B	-1164	1625	-2559	7.2
H19C	-941	1503	-1637	7.2
H23A	4104	207	3565	8.0
H23B	4925	484	3896	8.0
H23C	4016	678	3652	8.0
H24A	4288	-85	2344	6.9
H24B	4411	193	1686	6.9
H24C	5165	140	2578	6.9
H28A	4675	2095	1755	7.1
H28B	4872	1791	2495	7.1
H28C	5436	1784	2001	7.1
H29A	3955	1841	224	7.6
H29B	4623	1493	348	7.6
H29C	3644	1388	21	7.6
H33A	936	88	3735	5.0
H33B	1801	332	4133	5.0
H33C	1127	372	4502	5.0
H34A	-455	459	2873	6.4
H34B	-337	780	3565	6.4
H34C	-446	925	2685	6.4
H38A	3641	1845	4263	7.0
H38B	3673	1527	4934	7.0
H38C	3637	1377	4083	7.0
H39A	2252	2193	4120	7.7
H39B	1424	1931	3908	7.7
H39C	2177	1920	4807	7.7

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>B</i>
H5A	-2417	1285	-686	4.2
H5B	-1439	1357	-444	4.2
H6A	-1306	1133	975	3.9
H6B	-2234	1319	625	3.9
H15A	1380	1128	-2268	5.3
H15B	1628	1296	-1371	5.3
H16A	165	987	-1679	5.7
H16B	10	1116	-2581	5.7
H25A	5176	971	2871	5.3
H25B	4275	1168	2655	5.3
H26A	4004	882	1194	6.0
H26B	4985	988	1540	6.0
H35A	997	1184	4224	4.8
H35B	897	1327	3347	4.8
H36A	2330	948	3835	4.8
H36B	2400	1092	4701	4.8
H42	8254	1384	3283	5.5
H43	7720	1077	1909	6.1
H44	7081	433	1659	6.1
H45	6805	98	2738	7.3
H46	7212	436	4039	5.1
H52	8697	1716	5999	6.1
H53	8315	2421	6078	7.7
H54	7344	2746	4833	7.3
H55	6701	2400	3560	6.9
H56	7119	1694	3487	5.2
H62	6513	1072	4514	5.7
H63	5826	872	5378	7.5
H64	6648	487	6607	6.0
H65	8137	412	7117	6.0
H66	8855	689	6305	4.7
H72	9714	1659	5405	5.9
H73	11257	1468	6042	7.0
H74	11618	785	6216	6.2
H75	10631	253	5743	6.6
H76	9085	430	5053	4.5
H82	9803	2838	2336	4.6
H83	10994	2430	2387	8.4
H84	12280	2730	2494	6.4
H85	12412	3442	2612	5.8
H86	11293	3862	2722	4.5
H92	8885	3490	3639	5.2
H93	7692	3067	3471	5.3
H94	6970	2667	2254	5.1
H95	7306	2774	1107	5.2
H96	8478	3215	1239	4.5
H102	10825	3439	4138	4.8
H103	11213	3758	5507	6.1

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>B</i>
H104	10802	4415	5560	6.9
H105	9846	4803	4381	9.0
H106	9392	4470	2984	5.8
H112	10233	4000	1325	3.8
H113	9682	4530	340	5.0
H114	8422	4880	126	4.3
H115	7631	4681	892	4.7
H116	8137	4128	1849	3.4

Table A1.2. Anisotropic Thermal Parameters $\times 10^4$.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
IR1	374(5)	410(5)	229(5)	58(4)	128(4)	-8(4)
IR2	384(5)	388(5)	236(5)	28(4)	150(4)	18(4)
C3	584(126)	472(140)	1055(173)	-10(105)	437(125)	136(124)
C4	656(130)	571(140)	435(112)	116(110)	46(96)	-26(103)
C8	698(126)	444(130)	983(164)	308(103)	319(119)	124(117)
C9	926(148)	466(129)	659(132)	-9(108)	438(116)	-139(104)
C13	1439(165)	939(199)	904(180)	346(150)	880(145)	6(154)
C14	2151(217)	687(149)	601(148)	242(150)	609(148)	134(126)
C18	628(133)	638(146)	458(131)	-137(112)	182(110)	116(112)
C19	562(119)	1413(193)	745(169)	138(125)	398(116)	555(149)
C23	693(143)	1553(214)	551(133)	-30(138)	-92(110)	118(132)
C24	604(135)	664(148)	1007(172)	332(113)	119(125)	-33(126)
C28	534(126)	896(163)	1462(182)	-139(116)	359(126)	80(140)
C29	1175(175)	1143(177)	932(165)	157(144)	772(144)	212(141)
C33	837(136)	745(129)	489(131)	-58(107)	340(110)	32(110)
C34	694(122)	1118(189)	784(146)	-72(120)	505(109)	58(135)
C38	711(124)	1161(184)	611(149)	-301(123)	118(110)	102(139)
C39	1343(169)	861(164)	590(167)	160(133)	164(138)	-45(131)

Table A1.3. More Distances and Angles.

Distance(Å)			Distance(Å)	
N1 -C2	1.47(2)		C52 -C53	1.41(3)
C2 -C3	1.51(3)		C53 -C54	1.37(3)
C2 -C4	1.52(2)		C54 -C55	1.40(3)
C2 -C5	1.53(2)		C55 -C56	1.40(3)
C5 -C6	1.49(2)		C61 -C62	1.38(3)
C6 -C7	1.53(2)		C61 -C66	1.41(2)
C7 -C8	1.53(3)		C62 -C63	1.40(3)
C7 -C9	1.56(2)		C63 -C64	1.39(3)
C7 -N2	1.48(2)		C64 -C65	1.37(3)
N3 -C12	1.50(2)		C65 -C66	1.42(3)
C12 -C13	1.46(3)		C71 -C72	1.41(3)
C12 -C14	1.55(3)		C71 -C76	1.38(2)
C12 -C15	1.54(3)		C72 -C73	1.43(3)
C15 -C16	1.48(3)		C73 -C74	1.31(3)
C16 -C17	1.51(3)		C74 -C75	1.34(3)
C17 -C18	1.50(3)		C75 -C76	1.41(3)
C17 -C19	1.50(3)		B2 -C81	1.64(3)
C17 -N4	1.47(2)		B2 -C91	1.62(3)
N5 -C22	1.51(2)		B2 -C101	1.63(3)
C22 -C23	1.56(3)		B2 -C111	1.65(2)
C22 -C24	1.51(3)		C81 -C82	1.35(2)
C22 -C25	1.50(3)		C81 -C86	1.38(2)
C25 -C26	1.55(3)		C82 -C83	1.41(3)
C26 -C27	1.48(3)		C83 -C84	1.35(3)
C27 -C28	1.55(3)		C84 -C85	1.34(3)
C27 -C29	1.54(3)		C85 -C86	1.43(3)
C27 -N6	1.48(2)		C91 -C92	1.40(2)
N7 -C32	1.48(2)		C91 -C96	1.39(2)
C32 -C33	1.51(2)		C92 -C93	1.39(3)
C32 -C34	1.47(3)		C93 -C94	1.37(3)
C32 -C35	1.51(2)		C94 -C95	1.36(3)
C35 -C36	1.50(3)		C95 -C96	1.38(3)
C36 -C37	1.53(3)		C101-C102	1.41(2)
C37 -C38	1.50(3)		C101-C106	1.36(3)
C38 -C39	2.53(3)		C102-C103	1.43(3)
C37 -C39	1.50(3)		C103-C104	1.33(3)
C37 -N8	1.50(3)		C104-C105	1.36(3)
B1 -C41	1.63(3)		C105-C106	1.47(3)
B1 -C51	1.59(3)		C111-C112	1.41(2)
B1 -C61	1.64(3)		C111-C116	1.39(2)
B1 -C71	1.65(3)		C112-C113	1.39(3)
C41 -C42	1.41(3)		C113-C114	1.34(3)
C41 -C46	1.38(3)		C114-C115	1.38(2)
C42 -C43	1.42(3)		C115-C116	1.40(2)
C43 -C44	1.34(3)		N9 -C200	1.26(5)
C44 -C45	1.39(3)		C200-C201	1.33(5)
C45 -C46	1.41(3)		N10 -C203	1.22(5)
C51 -C52	1.41(3)		C203-C204	1.25(6)
C51 -C56	1.40(3)			

Angle($^{\circ}$)		Angle($^{\circ}$)		
C1	-IR1 -C11	92.2(6)	C23 -C22 -C25	108.4(15)
C1	-IR1 -C21	175.5(7)	C24 -C22 -C25	116.3(16)
C1	-IR1 -C31	85.9(6)	C22 -C25 -C26	115.5(15)
C11	-IR1 -C21	90.1(7)	C25 -C26 -C27	116.4(16)
C11	-IR1 -C31	176.8(6)	C26 -C27 -C28	112.7(15)
C21	-IR1 -C31	91.6(7)	C26 -C27 -C29	110.6(16)
C10	-IR2 -C20	87.5(7)	C28 -C27 -C29	110.2(15)
C10	-IR2 -C30	175.4(7)	C26 -C27 -N6	108.1(15)
C10	-IR2 -C40	88.5(7)	C28 -C27 -N6	108.0(14)
C20	-IR2 -C30	92.4(7)	C29 -C27 -N6	107.0(15)
C20	-IR2 -C40	175.3(7)	C27 -N6 -C30	172.4(16)
C30	-IR2 -C40	91.3(7)	C31 -N7 -C32	173.0(16)
C1	-N1 -C2	169.5(17)	N7 -C32 -C33	107.4(13)
N1	-C2 -C3	108.9(14)	N7 -C32 -C34	108.6(14)
N1	-C2 -C4	106.6(13)	C33 -C32 -C34	111.1(14)
C3	-C2 -C4	108.6(14)	N7 -C32 -C35	107.3(13)
N1	-C2 -C5	106.4(13)	C33 -C32 -C35	112.6(14)
C3	-C2 -C5	112.4(14)	C34 -C32 -C35	109.6(14)
C4	-C2 -C5	113.8(14)	C32 -C35 -C36	117.1(15)
C2	-C5 -C6	116.8(14)	C35 -C36 -C37	117.1(15)
C5	-C6 -C7	115.4(14)	C36 -C37 -C38	111.8(16)
C6	-C7 -C8	113.4(14)	C36 -C37 -C39	110.8(16)
C6	-C7 -C9	109.9(13)	C38 -C37 -C39	115.1(17)
C8	-C7 -C9	108.4(14)	C36 -C37 -N8	106.7(15)
C6	-C7 -N2	108.9(13)	C38 -C37 -N8	105.6(15)
C8	-C7 -N2	108.5(13)	C39 -C37 -N8	106.3(15)
C9	-C7 -N2	107.6(13)	C37 -N8 -C40	172.5(18)
C7	-N2 -C10	172.5(16)	C41 -B1 -C51	112.1(14)
C11	-N3 -C12	174.5(17)	C41 -B1 -C61	110.0(14)
N3	-C12 -C13	109.0(16)	C41 -B1 -C71	105.5(14)
N3	-C12 -C14	106.7(15)	C51 -B1 -C61	105.1(14)
C13	-C12 -C14	110.2(17)	C51 -B1 -C71	113.5(14)
N3	-C12 -C15	107.2(15)	C61 -B1 -C71	110.8(14)
C13	-C12 -C15	113.8(16)	B1 -C41 -C42	121.1(15)
C14	-C12 -C15	109.7(16)	B1 -C41 -C46	124.7(15)
C12	-C15 -C16	118.0(16)	C46 -C41 -C42	113.9(16)
C15	-C16 -C17	116.2(16)	C41 -C42 -C43	122.5(17)
C16	-C17 -C18	115.1(16)	C42 -C43 -C44	120.3(18)
C16	-C17 -C19	112.5(16)	C43 -C44 -C45	119.9(19)
C18	-C17 -C19	110.6(16)	C44 -C45 -C46	118.5(19)
C16	-C17 -N4	106.4(15)	C45 -C46 -C41	124.8(17)
C18	-C17 -N4	107.1(15)	B1 -C51 -C52	119.6(15)
C19	-C17 -N4	104.3(15)	B1 -C51 -C56	126.2(15)
C17	-N4 -C20	170.2(18)	C56 -C51 -C52	113.9(16)
C21	-N5 -C22	176.6(17)	C51 -C52 -C53	125.0(18)
N5	-C22 -C23	105.1(15)	C52 -C53 -C54	117.2(20)
N5	-C22 -C24	108.6(15)	C53 -C54 -C55	121.5(20)
C23	-C22 -C24	110.4(16)	C54 -C55 -C56	118.6(19)
N5	-C22 -C25	107.5(15)	C55 -C56 -C51	123.7(17)

	Angle($^{\circ}$)		Angle($^{\circ}$)
B1 -C61 -C62	119.1(15)	C111-C112-C113	121.5(16)
B1 -C61 -C66	125.0(15)	C112-C113-C114	123.1(17)
C66 -C61 -C62	115.9(16)	C113-C114-C115	118.1(16)
C61 -C62 -C63	124.3(18)	C114-C115-C116	119.2(16)
C62 -C63 -C64	116.5(19)	C115-C116-C111	124.6(15)
C63 -C64 -C65	122.6(19)	N9 -C200-C201	172.6(37)
C64 -C65 -C66	118.3(18)	N10 -C203-C204	174.3(46)
C65 -C66 -C61	122.0(16)		
B1 -C71 -C72	125.4(15)		
B1 -C71 -C76	118.8(15)		
C76 -C71 -C72	115.8(15)		
C71 -C72 -C73	120.8(17)		
C72 -C73 -C74	118.3(19)		
C73 -C74 -C75	125.2(20)		
C74 -C75 -C76	116.8(18)		
C75 -C76 -C71	123.0(17)		
C81 -B2 -C91	108.8(13)		
C81 -B2 -C101	108.6(13)		
C81 -B2 -C111	112.0(13)		
C91 -B2 -C101	110.0(13)		
C91 -B2 -C111	108.1(13)		
C101-B2 -C111	109.4(13)		
B2 -C81 -C82	124.3(15)		
B2 -C81 -C86	120.7(14)		
C86 -C81 -C82	114.9(15)		
C81 -C82 -C83	121.2(17)		
C82 -C83 -C84	123.4(20)		
C83 -C84 -C85	117.2(19)		
C84 -C85 -C86	119.7(18)		
C85 -C86 -C81	123.3(16)		
B2 -C91 -C92	124.2(15)		
B2 -C91 -C96	122.3(15)		
C96 -C91 -C92	113.5(15)		
C91 -C92 -C93	121.3(16)		
C92 -C93 -C94	123.5(18)		
C93 -C94 -C95	116.0(17)		
C94 -C95 -C96	121.4(17)		
C95 -C96 -C91	124.1(16)		
B2 -C101-C102	119.7(15)		
B2 -C101-C106	121.9(15)		
C106-C101-C102	117.9(16)		
C101-C102-C103	120.1(16)		
C102-C103-C104	118.4(18)		
C103-C104-C105	126.1(21)		
C104-C105-C106	114.5(20)		
C105-C106-C101	122.9(18)		
B2 -C111-C112	126.4(14)		
B2 -C111-C116	120.4(14)		
C116-C111-C112	113.2(14)		

Table A1.4. Structure Factors.

The columns contain, in order k , $10F_o$, $10F_c$, and $10[(F_o^2 - F_c^2)/\sigma(F_o^2)]$.

Iridium - TMB Dimer												Page	1		
-14	k	4	3	851	884	-9	10	675	708	-7	10	1412	1355	17	
			4	652	709	-14				11	336	432	-15		
			5	1351	1253	29	-13	k	9	12	1150	1131	5		
0	1621	1556	19	6	369	394	-3			13	588	531	11		
1	292	304	-1	7	-84	138	-5	0	-257	248	-30	14	397	391	0
2	335	239	11	8	595	592	0	1	830	784	12				
3	707	668	9	9	538	549	-2	2	777	776	0	-12	k	4	
4	734	710	5	10	520	560	-8	3	905	1023	-34				
								4	618	701	-20	0	660	581	20
								5	763	780	-4	1	1666	1695	-9
								6	1517	1541	-7	2	1038	997	13
1	660	700	-9	1	-233	130	-17	7	803	937	-36	3	858	881	-7
2	766	728	9	2	849	864	-4	8	493	359	21	4	335	318	2
3	1134	1070	18	3	1145	1075	21	9	660	665	0	5	357	413	-9
4	1320	1296	7	4	1139	1097	12				6	1585	1553	10	
5	357	331	3	5	778	776	0	-13	k	10	7	1418	1402	5	
6	486	531	-8	6	861	815	12				8	957	861	27	
			7	942	839	30	1	943	900	12	9	342	355	-1	
			8	307	236	8	2	1693	1693	0	10	220	34	11	
			9	973	1018	-13	3	572	596	-5	11	2019	1963	18	
0	472	500	-5	10	1118	1068	14	4	-276	178	-24	12	514	497	3
1	1010	1021	-3	11	245	163	6	5	323	436	-17	13	501	498	0
2	1061	1046	4				6	390	348	5	14	408	430	-3	
3	641	680	-9	-13	k	5	7	1251	1246	1					
4	458	449	1				8	593	614	-4	-12	k	5		
5	404	244	20	0	555	515	8				1	1578	1586	-2	
6	1452	1387	18	1	1538	1545	-2	-13	k	11	2	1034	1072	-12	
			2	1211	1160	15									
-14	k	7	3	851	925	-21	0	1509	1533	-7	3	245	140	10	
			4	389	530	-28	1	954	1029	-22	4	1358	1318	13	
1	1195	1226	-9	5	424	412	2	2	790	761	7	5	537	410	25
2	1746	1622	35	6	1346	1343	0	3	281	239	4	6	421	405	3
3	677	641	8	7	947	977	-9	4	206	196	0	7	1002	973	9
4	714	621	20	8	1174	1201	-8	5	1595	1372	6	8	1521	1488	10
5	933	905	7	9	285	209	7				9	1968	1978	-3	
6	-218	117	-13	10	619	523	19	-12	k	1	10	1007	935	21	
			11	1937	1870	19				11	139	82	2		
-14	k	8		-13	k	6	1	1129	1119	2	12	348	235	14	
				2	465	596	-29	13	1333	1277	18				
0	584	609	-5		3	529	646	-28	14	1510	1475	10			
1	269	367	-12	1	1228	1277	-15	4	1236	1209	8	15	936	883	13
2	720	709	2	2	1058	1066	-2	5	135	203	-5				
3	728	745	-4	3	741	754	-3	6	508	543	-7	-12	k	6	
4	-108	30	-2	4	868	873	-1	7	436	464	-5				
5	1524	1548	-7	5	655	651	0	8	977	964	3	0	2687	2757	-20
			6	438	293	21	9	1489	1512	-7	1	400	217	27	
-14	k	9	7	1733	1693	12	10	231	268	-4	2	425	284	23	
			8	1281	1299	-5	11	283	248	3	3	711	796	-25	
1	1334	1354	-5	9	1424	1509	-26	12	159	7	5	4	1055	1027	8
2	855	836	5	10	1230	1165	18				5	1585	1634	-18	
3	581	555	5	11	307	138	15	-12	k	2	6	177	26	7	
											7	87	158	-4	
-13	k	1		-13	k	7	0	973	979	-1	8	1175	1161	4	
				1	-72	185	-10	9	809	755	14				
0	610	651	-9	0	1808	1848	-12	2	271	325	-7	10	903	882	6
1	697	700	0	1	245	47	13	3	1213	1153	18	11	164	64	5
2	833	800	8	2	546	510	7	4	332	368	-5	12	1268	1320	-16
3	243	308	-7	3	703	769	-17	5	1690	1626	20	13	1471	1400	21
4	-237	140	-17	4	447	483	-6	6	928	967	-11	14	200	353	-18
5	238	566	-56	5	1324	1333	-2	7	285	386	-15	15	575	513	12
6	964	988	-6	6	-95	18	-2	8	918	879	11				
			7	309	260	5	9	730	677	13	-12	k	7		
-13	k	2	8	1311	1366	-17	10	1077	1009	19					
			9	430	415	2	11	1031	1096	-20	1	710	564	37	
1	1025	1098	-22	10	1096	1047	13	12	1132	1167	-10	2	1075	1073	0
2	590	615	-5	11	265	192	6	13	940	882	15	3	1555	1495	19
3	244	292	-5								4	1898	1849	15	
4	1064	975	25	-13	k	8		-12	k	3	5	522	560	-8	
5	174	122	3								6	1195	1148	14	
6	524	508	3	1	1333	1332	0	1	62	39	0	7	628	683	-14
7	-77	303	-21	2	594	608	-3	2	1538	1677	-48	8	476	556	-17
8	881	864	5	3	1107	1082	7	3	1080	1121	-13	9	1272	1285	-4
			4	1382	1309	21	4	560	619	-14	10	1033	954	22	
-13	k	3	5	-288	1	-20	5	408	496	-18	11	258	347	-11	
			6	480	475	0	6	773	809	-10	12	1349	1276	21	
0	1467	1412	17	7	127	99	1	7	1408	1358	15	13	1118	1098	5
1	-194	28	-9	8	408	375	5	8	383	352	5	14	517	619	-21
2	-167	115	-9	9	1198	1173	7	9	608	607	0				

Iridium - TMB Dimer										Page	2	
-12	k	8	5	794	787	2	4	1102	1085	5	1 1200 1162 12	
0	670	640	8	6 1320	1447	-45	5	1884	1852	10	2 516 528 -2	
1	1117	1170	-17	8	610	548	-20	6	971	939	10	3 172 126 3
2	526	535	-2	9	645	603	14	7	-166	178	-16	4 860 941 -26
3	972	1036	-20	10	1072	1065	1	9	486	501	-35	5 1482 1455 8
4	573	521	11	11	1580	1500	24	10	1565	1578	-4	7 600 638 -9
5	-183	34	-8	12	1421	1332	27	11	645	604	10	8 1812 1818 -1
6	925	909	4	13	1115	997	33	12	2017	1906	32	9 298 248 6
7	1522	1468	17	14	-177	231	-19	13	1516	1451	20	10 1507 1470 11
8	179	199	-1	15	-237	219	-24	14	647	725	-19	11 739 687 12
9	420	376	7					15	59	106	-1	12 1263 1303 -12
10	180	166	1					16	159	343	-20	13 1136 1194 -17
11	2099	2170	-21					17	997	959	11	14 688 744 -13
12	615	606	1	1	339	238	16				15 327 379 -7	
13	291	241	5	2	1976	1989	-4					
14	598	596	0	3	1565	1531	11				-11 k 10	
			4	601	599	0	1	914	847	21		
-12	k	9	5	822	819	1	2	1672	1638	11	1 1676 1632 14	
6	948	983	-11	3	1660	1648	4	2	1208	1152	18	
1	1038	1058	-6	7	1455	1459	-1	4	1478	1464	5	
2	2048	2055	-1	8	667	698	-8	5	831	814	5	
3	832	847	-4	9	679	676	0	6	1017	1082	-22	
4	568	600	-7	10	1874	1762	34	7	800	814	-4	
5	392	572	-37	11	581	510	15	8	439	443	0	
6	135	108	1	12	1491	1459	9	9	1606	1672	-22	
7	1361	1344	5	13	463	416	8	10	1270	1303	-11	
8	1281	1274	2	14	-205	61	-11	11	380	347	5	
9	844	868	-7	15	1551	1445	31	12	1434	1431	1	
10	1497	1484	3	16	143	197	-4	13	1075	1032	12	
11	637	620	3					14	652	703	-12	
12	1125	1035	24					15	1100	1120	-6	
13	332	362	-4					16	-278	193	-26	
			0	1284	1277	2	17	406	259	19	-11 k 11	
-12	k	10	1	1777	1713	21						
			2	1401	1407	-2						
0	2412	2428	-4	3	753	692	19					
1	1264	1213	15	4	-113	80	-5	0	343	176	23	
2	703	719	-4	5	1122	1057	22	1	2030	1945	27	
3	326	308	2	6	1642	1690	-16	2	1239	1190	17	
4	422	432	-1	7	1073	1190	-42	3	1900	1876	7	
5	1432	1436	-1	8	1223	1241	-6	4	403	371	6	
6	573	577	0	9	-99	26	-2	5	-166	5	-8	
7	1099	1154	-16	10	527	482	9	6	1526	1491	12	
8	1715	1720	-1	11	2031	1964	20	7	784	733	15	
9	263	300	-4	12	522	363	29	8	555	524	7	
10	1111	1126	-4	13	676	596	19	9	232	207	2	
11	778	878	-26	14	1107	1033	21	10	306	20	23	
			15	738	734	0	11	2056	2021	10		
-12	k	11	16	1734	1611	35	12	958	869	26	-11 k 12	
			17	775	726	11	13	320	352	-4		
1	1880	1892	-3				14	674	704	-7	1 510 427 15	
2	609	459	29				15	-62	151	-6	2 2129 2120 2	
3	1331	1329	0				16	1214	1274	-18	3 666 667 0	
4	1632	1606	7	1	2137	2127	3	17	322	317	0	
5	92	34	1	2	1466	1418	17				5 645 646 0	
6	828	832	0	3	819	853	-12				6 294 304 -1	
7	349	111	22	4	1556	1587	-10				7 1108 1057 14	
8	227	107	8	5	-110	184	-13	1	1553	1533	7	
9	2073	2153	-23	6	653	639	3	2	1612	1613	0	
			7	630	556	19	3	354	442	-18	9 404 98 29	
-12	k	12	8	1081	1142	-21	4	1259	1258	0		
			9	2080	2117	-12	5	649	635	3	-11 k 13	
0	1592	1680	-26	10	966	992	-8	6	192	181	1	
1	914	919	-1	11	248	19	15	7	1448	1423	8	
2	614	634	-4	12	34	29	0	8	1585	1569	5	
3	966	967	0	13	1362	1306	17	9	1440	1411	9	
4	724	764	-9	14	1500	1458	13	10	1281	1272	2	
5	484	489	0	15	384	318	9	11	322	293	3	
6	1461	1484	-6	16	751	760	-2	12	785	793	4	
			17	1035	915	32	13	943	1000	-16	5 914 909 1	
-11	k	1					14	1004	989	4		
0	1814	1867	-18				15	914	912	0	-10 k 1	
							16	504	546	-8		
1	923	841	26	0	3209	3123	21				1 529 378 36	
2	366	490	-27	1	621	564	15				2 1967 1930 12	
3	1369	1347	7	2	429	329	19				3 1642 1682 -14	
4	923	1006	-28	3	666	647	5	0	2373	2279	27	4 400 405 0

Iridium - TMB Dimer												Page	3			
5	470	518	-12	16	644	652	-1	4	647	685	-11	3	-202	69	-11	
6	219	231	-1	17	576	532	9	5	1303	1320	-6	4	427	433	-1	
7	1423	1415	2	18	1698	1699	0	6	192	148	4	5	1052	1037	4	
8	889	942	-18	19	741	580	35	7	429	375	11	6	289	336	-6	
9	358	363	0					8	1982	1929	17	7	806	811	-1	
10	1668	1679	-3	-10	k	5	9	520	408	24	8	1547	1526	6		
11	877	933	-18				10	1679	1677	0	9	-96	94	-4		
12	1519	1590	-24	1	961	775	63	11	159	166	0	10	1172	1231	-17	
13	209	185	2	2	1959	1920	13	12	1350	1328	7	11	1162	1139	6	
14	850	904	-16	3	2147	1984	52	13	1275	1257	5	12	1019	915	26	
15	1683	1563	36	4	980	1029	-18	14	1067	1095	-8					
16	-232	18	-13	5	776	710	23	15	533	515	3	-10	k	13		
17	495	440	10	6	926	964	-13	16	385	376	1					
18	288	140	13	7	1179	1245	-25	17	1066	1038	7	1	1394	1459	-19	
				8	763	810	-15	18	1360	1309	14	2	212	275	-6	
	-10	k	2		9	1098	1025	24				3	952	1007	-15	
				10	1739	1826	-30	-10	k	9	4	885	894	-2		
0	1534	1489	16	11	533	554	-5				5	245	191	4		
1	1956	1874	27	12	1558	1618	-20	1	1647	1614	11	6	358	401	-6	
2	1055	1016	14	13	729	679	13	2	1206	1166	13	7	-204	78	-10	
3	531	629	-30	14	216	166	4	3	1265	1249	5	8	403	367	5	
4	141	282	-19	15	1325	1314	3	4	1274	1298	-8	9	1942	1939	0	
5	996	1086	-34	16	121	134	0	5	309	275	5					
6	1169	1179	-3	17	74	79	0	6	832	809	7	-10	k	14		
7	1162	1153	3	18	512	539	-5	7	228	305	-11					
8	1221	1283	-23	19	622	574	10	8	312	114	22	0	1451	1512	-18	
9	242	219	3				9	2053	2004	15	1	788	806	-4		
10	564	640	-21	-10	k	6	10	1196	1220	-8	2	-262	200	-23		
11	1544	1550	-2				11	488	386	18	3	927	987	-16		
12	268	326	-8	0	579	586	-2	12	1318	1331	-4					
13	713	796	-24	1	1922	1896	9	13	1423	1384	11	-9	k	1		
14	1385	1300	26	2	1226	1160	24	14	534	548	-3					
15	422	468	-8	3	1124	1142	-7	15	651	742	-22	0	739	637	36	
16	929	850	24	4	490	448	10	16	83	62	0	1	1272	1268	1	
17	835	818	4	5	-218	34	-16	17	440	413	4	2	715	677	13	
18	624	460	32	6	1875	1864	3				3	365	404	-9		
19	1279	1180	28	7	1420	1454	-12	-10	k	10	4	-173	131	-18		
				8	707	763	-18				5	928	908	7		
	-10	k	3		9	469	469	0	0	596	701	-30	6	471	442	7
				10	571	505	16	1	1604	1668	-22	7	1253	1316	-25	
1	2609	2551	17	11	2458	2623	-57	2	898	891	2	8	1076	1140	-24	
2	912	868	15	12	276	210	8	3	1689	1730	-13	9	-69	106	-5	
3	1067	962	38	13	-222	358	-46	4	713	755	-13	10	1126	1107	6	
4	2167	2215	-16	14	1179	1087	28	5	378	331	8	11	1700	1807	-39	
5	481	466	3	15	436	407	5	6	1330	1293	12	12	393	461	-15	
6	336	384	-10	16	1088	1102	-4	7	1391	1411	-6	13	204	316	-16	
7	265	254	1	17	424	387	6	8	276	159	12	14	779	848	-22	
8	1376	1388	-4	18	-212	84	-11	9	365	386	-3	15	-173	254	-24	
9	2037	2042	-1	19	1402	1333	20	10	764	642	30	16	803	782	6	
10	709	763	-17				11	2437	2451	-3	17	709	711	0		
11	-103	150	-9	-10	k	7	12	1229	1158	20	18	808	708	25		
12	222	197	2				13	422	418	0	19	1026	941	23		
13	1365	1372	-2	1	2019	2041	-7	14	356	366	-1	20	183	150	2	
14	1292	1274	5	2	1843	1867	-8	15	333	366	-4	-9	k	2		
15	-128	152	-9	3	135	11	5	16	824	835	-2					
16	551	538	2	4	614	605	2									
17	918	840	22	5	573	634	-18	-10	k	11	1	1825	1793	11		
18	659	615	10	6	46	90	-1				2	271	301	-6		
19	961	841	31	7	1275	1255	7	1	900	852	14	3	541	640	-35	
				8	1580	1471	30	2	1719	1736	-5	4	1321	1345	-9	
	-10	k	4		9	2287	2174	34	3	670	571	24	5	-176	160	-22
				10	1656	1543	37	4	173	257	-9	6	925	944	-7	
0	2940	2996	-15	11	-69	115	-5	5	157	298	-15	7	725	721	1	
1	689	508	53	12	799	787	4	6	489	560	-15	8	922	924	0	
2	702	653	16	13	1045	1112	-21	7	1218	1166	-15	9	2557	2681	-38	
3	1514	1415	35	14	1307	1213	28	8	1103	1141	-11	10	-78	155	-10	
4	1315	1351	-13	15	828	919	-26	9	833	839	-1	11	-226	1	-17	
5	1140	1118	8	16	618	657	-9	10	1796	1811	-4	12	450	477	-6	
6	1844	1835	3	17	1309	1311	0	11	377	159	23	13	1575	1740	-61	
7	190	64	9	18	274	88	14	12	1340	1347	-2	14	1063	1165	-36	
8	1419	1537	-45	19	542	552	-1	13	303	393	-12	15	-259	128	-23	
9	639	488	39				14	657	716	-13	16	647	627	5		
10	2028	2044	-5	-10	k	8					17	739	694	11		
11	875	900	-8				-10	k	12		18	1021	987	16		
12	1706	1822	-40	0	3080	3057	6				19	816	728	22		
13	771	858	-27	1	574	470	27	0	1875	1880	-1	20	425	331	14	
14	-39	267	-18	2	393	416	-5	1	774	864	-25	21	1386	1269	33	
15	-155	5	-6	3	657	641	4	2	645	734	-22					

Iridium - TMB Dimer

Page 4

-9	k	3	3	410	448	-14	10	260	6	18	11	1784	1774	2		
0	3219	3157	16	5	1160	1173	-6	12	597	525	17	-9	k	14		
1	1019	1046	-11	6	57	157	-10	13	409	493	-16	1	369	346		
2	450	417	9	7	876	885	-4	14	327	363	-5	2	2169	2253		
3	1982	2018	-12	8	1046	1008	19	15	-212	39	-11	3	382	518		
4	1532	1576	-17	9	2067	2055	5	16	982	1025	-12	4	193	197		
5	1054	1044	4	10	736	728	4	17	109	286	-15	5	30	302		
6	1169	1247	-31	11	131	72	3	18	342	226	13	6	51	290		
7	1177	1136	16	12	188	313	-17					-8	k	1		
8	1341	1444	-41	13	1215	1382	-62					10				
9	724	764	-14	14	1330	1407	-27									
10	1760	1733	9	15	860	988	-41	1	1761	1718	14	1	1911	1854		
11	1675	1709	-12	16	467	208	38	2	2476	2440	10	2	254	255		
12	1858	1853	1	17	1096	1155	-18	3	333	255	12	3	723	787		
13	654	648	2	18	349	420	-11	4	52	379	-41	4	1417	1508		
14	-190	160	-18	19	782	817	-9	5	684	698	-4	5	388	431		
15	365	401	-7	20	756	608	33	6	337	311	4	6	775	777		
16	510	575	-15	21	1580	1559	6	7	1138	1144	-2	7	368	405		
17	244	130	10					8	1354	1433	-27	8	961	975		
18	1817	1746	21				-9	k	7	9	1336	1310	8	8		
19	1415	1351	19					10	2166	2148	5	9	2571	2566		
20	351	298	7	0	3213	3201	3	11	464	296	27	10	583	641		
21	1154	1068	24	1	257	129	17	12	1169	1248	-25	11	235	332		
				2	319	339	-4	13	780	792	-3	12	369	438		
-9	k	4	3	1212	1207	1	14	1238	1200	11	13	1685	1846	-60		
			4	871	886	-5	15	767	732	8	14	1022	1095	-27		
1	457	277	42	5	1846	1799	16	16	805	859	-14	15	-162	345		
2	2052	2028	8	6	417	372	10	17	929	875	14	16	162	340		
3	1512	1477	13	7	-92	78	-5					17	993	1128		
4	1143	1068	29	8	1555	1615	-22					18	947	880		
5	1054	994	23	9	118	256	-16					19	1103	936		
6	1148	1156	-3	10	1745	1696	16	0	3232	3230	0	20	-61	121		
7	1109	1062	17	11	631	582	13	1	1261	1153	35	21	1476	1337		
8	1187	1215	-11	12	1727	1734	-2	2	470	442	6	22	643	586		
9	829	818	3	13	1078	1069	3	3	-198	24	-11					
10	2522	2708	-59	14	627	632	-1	4	727	733	-1		-8	k	2	
11	692	679	4	15	188	258	-8	5	1187	1144	13					
12	2625	2638	-3	16	89	213	-9	6	-221	51	-14	0	1777	1780	0	
13	685	707	-6	17	645	621	5	7	698	716	-5	1	1429	1436	-2	
14	566	706	-41	18	1561	1484	23	8	2033	1979	16	2	549	453	30	
15	1535	1582	-16	19	349	396	-7	9	379	316	9	3	754	707	18	
16	-107	200	-13	20	456	475	-3	10	1746	1768	-6	4	368	507	-44	
17	-71	86	-3					11	823	793	8	5	221	62	17	
18	696	543	34				-9	k	8	12	1069	1116	-14	6	1704	1846
19	810	764	12					13	986	977	2	7	934	941	-2	
20	2245	2067	49	1	1191	1148	16	14	1206	1202	0	8	986	989	-1	
21	759	687	17	2	1925	1848	26	15	494	480	2	9	985	952	12	
			3	1771	1713	20					10	1798	1886	-33		
-9	k	5	4	1064	1119	-21					11	1524	1476	18		
			5	-205	178	-28					12	1717	1781	-24		
0	957	879	29	6	1466	1374	32	1	1899	1890	2	13	806	837	-11	
1	1681	1675	2	7	883	854	9	2	412	442	-5	14	-292	32	-29	
2	296	205	15	8	146	145	0	3	1214	1236	-6	15	-326	1	-35	
3	1272	1332	-24	9	2074	2052	7	4	723	728	-1	16	866	964	-34	
4	257	251	1	10	1812	1711	33	5	-140	116	-8	17	546	575	-7	
5	295	330	-7	11	455	426	6	6	672	681	-2	18	1354	1262	28	
6	901	991	-36	12	1636	1602	11	7	302	287	1	19	1458	1411	14	
7	1986	1990	-1	13	1609	1558	16	8	70	136	-3	20	175	54	6	
8	935	939	-1	14	92	228	-11	9	2344	2362	-5	21	1015	815	52	
9	429	319	23	15	726	696	7	10	607	587	4	22	1315	1239	22	
10	344	309	6	16	-332	134	-32	11	446	418	4					
11	2668	2760	-27	17	551	626	-17	12	583	546	7		-8	k	3	
12	386	287	18	18	775	756	4	13	1434	1411	6					
13	268	282	-2	19	945	900	11				1	406	120	53		
14	695	762	-20								2	4260	4202	12		
15	-246	247	-34				-9	k	9		3	1521	1455	26		
16	1124	1270	-50				0	1852	1939	-27	4	172	255	-13		
17	731	738	-1	0	646	580	19	1	1021	1104	-25	5	1008	1036	-12	
18	406	430	-4	1	1810	1837	-9	2	217	253	-3	6	653	657	-1	
19	1503	1444	17	2	813	766	16	3	1085	1126	-12	7	1238	1297	-25	
20	360	212	17	3	1160	1243	-31	4	896	876	6	8	1261	1314	-21	
21	1191	1067	34	4	410	455	-10	5	-392	116	-41	9	806	867	-25	
			5	-198	61	-13	6	844	836	1	10	2493	2637	-46		
-9	k	6	6	962	1027	-23	7	837	856	-5	11	885	911	-9		
			7	1985	2007	-7	8	650	641	2	12	2083	2153	-24		
1	2334	2356	-8	8	286	189	12	9	146	267	-10	13	511	560	-14	
2	703	712	-5	9	322	378	-10	10	949	946	0	14	832	959	-46	

Iridium - TMB Dimer											Page	5			
15	1187	1302	-43	16	-271	38	-31	-8	k	10	1	1310	1371	-18	
16	533	701	-49	17	540	560	-6				2	468	486	-3	
17	647	669	-6	18	1825	1716	33	0	2980	3062	-22	3	429	537	-20
18	653	748	-26	19	718	705	3	1	598	573	7	4	260	446	-26
19	907	679	59	20	509	383	22	2	320	315	0	5	793	817	-6
20	2477	2369	29	21	672	578	20	3	304	281	3	6	230	147	6
21	685	506	38	22	1778	1820	-12	4	1168	1220	-19	7	941	1049	-33
22	117	244	-10					5	1178	1127	17	8	1407	1421	-4
								6	676	700	-7				
								7	445	425	4				
															-7 k 1
0	2443	2398	14	2	2634	2512	36	8	1944	2005	-20	0	3630	3549	20
1	1852	1715	50	3	1123	1101	8	10	1921	1882	12	1	1723	1680	17
2	1460	1396	26	4	1731	1672	21	11	597	564	8	2	877	833	18
3	1576	1535	16	5	22	155	-8	12	1670	1681	-3	3	2066	2095	-10
4	189	322	-26	6	1188	1149	15	13	648	642	1	4	1530	1586	-23
5	1606	1534	28	7	310	285	5	14	739	681	14	5	1462	1473	-4
6	958	990	-13	8	1219	1191	10	15	195	408	-29	6	1290	1350	-26
7	1163	1204	-17	9	1550	1456	33	16	266	368	-13	7	1940	2090	-58
8	1944	1930	4	10	2314	2223	28	17	-159	225	-16	8	872	928	-23
9	381	318	14	11	196	93	9	18	1617	1562	15	9	317	367	-12
10	824	867	-16	12	2147	2120	8				10	593	608	-5	
11	2276	2423	-50	13	1332	1296	12				11	2946	2980	-9	
12	221	310	-15	14	37	185	-9				12	1927	1958	-11	
13	740	716	8	15	842	796	15	1	2453	2359	27	13	1004	1080	-30
14	1005	1058	-19	16	-249	49	-18	2	1471	1411	20	14	-214	109	-20
15	615	701	-26	17	148	241	-9	3	1678	1674	1	15	152	219	-7
16	901	960	-20	18	802	864	-17	4	1232	1243	-3	16	1065	1232	-64
17	970	1020	-17	19	947	857	24	5	-304	39	-28	17	109	175	-5
18	857	814	12	20	2001	1996	1	6	566	571	-1	18	1154	1271	-43
19	1661	1618	13	21	838	784	13	7	-297	3	-26	19	1427	1532	-36
20	345	228	14					8	137	81	3	20	351	193	19
21	1077	989	25					9	2513	2474	11	21	1280	1110	50
22	1195	1093	28					10	1055	1042	3	22	1481	1409	21
				0	275	45	25	11	447	391	9	23	505	379	21
				1	2677	2661	4	12	974	939	9				
				2	985	943	16	13	1731	1729	0				
1	2593	2492	31	3	1399	1382	6	14	176	283	-10				
2	1713	1845	26	4	-143	101	-11	15	399	571	-33	1	533	473	21
3	317	240	15	5	596	481	33	16	96	35	1	2	4712	4633	15
4	1243	1237	2	6	1403	1369	13	17	653	659	-1	3	1351	1371	-8
5	-161	152	-19	7	1993	2011	-6				4	536	566	-11	
6	546	545	0	8	489	481	-2				5	343	499	-50	
7	1710	1734	-9	9	606	623	-5				6	130	91	3	
8	564	531	10	10	144	71	4	0	1191	1188	1	7	1462	1487	-10
9	2741	2865	-37	11	3135	3086	12	1	1639	1701	-21	8	1556	1596	-16
10	527	587	-19	12	586	475	27	2	692	599	24	9	221	99	15
11	331	119	29	13	183	150	3	3	1358	1355	0	10	2491	2587	-31
12	-271	18	-26	14	611	661	-14	4	447	544	-22	11	518	507	3
13	1841	1958	-41	15	250	298	-6	5	292	429	-24	12	1697	1830	-52
14	1258	1320	-22	16	1090	1102	-3	6	1164	1120	13	13	163	153	1
15	678	834	-56	17	762	721	10	7	879	885	-1	14	1111	1157	-18
16	722	806	-26	18	269	1	16	8	445	441	0	15	1233	1300	-26
17	1055	1176	-42	19	1807	1732	22	9	277	374	-14	16	664	695	-9
18	342	326	2	20	361	81	24	10	749	764	-3	17	206	339	-21
19	904	818	23					11	2180	2178	0	18	454	568	-29
20	1037	1002	10					12	960	995	-9	19	184	123	4
21	1558	1513	13					13	316	229	9	20	2575	2374	54
22	672	615	12	1	1859	1925	-23	14	-173	28	-6	21	210	208	0
				2	2766	2723	12				22	-301	18	-22	
				3	-137	126	-12				23	549	487	12	
				4	618	621	-1								
0	3813	3704	30	5	669	583	25	1	405	384	3				
1	643	641	1	6	357	380	-5	2	2317	2368	-14				
2	198	52	20	7	935	967	-11	3	95	186	-5	0	2704	2614	28
3	925	931	-3	8	1450	1451	0	4	248	330	-10	1	3245	3185	16
4	1098	1086	6	9	2046	2012	10	5	-228	95	-14	2	989	939	22
5	1720	1713	3	10	1749	1720	9	6	441	537	-18	3	861	880	-8
6	851	820	16	11	427	511	-19	7	632	698	-15	4	376	461	-27
7	150	51	10	12	1375	1360	4	8	1698	1644	16	5	1296	1298	-1
8	1800	1779	9	13	1342	1333	3	9	400	315	11	6	-147	7	-9
9	176	182	-1	14	1169	1137	10	10	1834	1856	-6	7	1710	1765	-22
10	1824	1899	-35	15	959	972	-3	11	236	18	11	8	2009	2049	-14
11	858	824	16	16	547	612	-15	12	1269	1231	10	9	210	111	12
12	1342	1391	-24	17	906	900	1				10	1308	1394	-36	
13	1088	1180	-36	18	161	53	5				11	2520	2534	-4	
14	611	664	-22	19	-110	237	-14				12	689	789	-38	
15	298	380	-15					0	2087	2051	10	13	931	972	-16

Iridium - TMB Dimer														Page	6											
14	1057	1075	-7	13	920	992	-37	14	878	871	2	7	1023	941	22											
15	558	677	-37	14	271	352	-21	15	365	467	-20	8	1761	1743	5											
16	278	439	-34	15	856	845	5	16	68	85	0	9	260	49	13											
17	998	1136	-51	16	58	220	-18	17	594	546	10	10	1872	1853	5											
18	1115	1164	-17	17	-167	225	-32	18	2216	2168	13	11	1270	1257	3											
19	1324	1461	-49	18	605	721	-46	19	287	9	17	12	1073	1054	5											
20	12	30	0	19	715	665	12	20	365	118	23	-7 k 14														
21	1058	892	46	20	2165	2065	28	-7 k 10			1	1771	1898	-39												
22	1516	1384	39	21	918	895	6	-7 k 4			2	823	793	7												
23	1664	1568	28	22	-120	38	-3	23	142	44	3	3	853	960	-33											
	-7 k 4														22											
1	3336	3188	39	-7 k 7																						
2	1025	1053	-12	0	475	497	-7	4	1518	1436	28	5	92	134	-2											
3	1642	1636	2	1	2298	2130	54	5	-197	123	-18	6	472	482	-1											
4	2429	2361	22	2	968	920	19	6	693	644	15	7	499	517	-3											
5	-207	265	-49	3	1651	1667	-6	7	-236	23	-18	8	306	123	15											
6	264	316	-11	4	239	315	-16	8	571	526	11	9	1153	2302	-12											
7	378	420	-12	5	1065	996	27	9	2142	2220	-25	-6 k 1														
8	1501	1490	4	6	1176	1140	14	11	450	384	13	-6 k 1														
9	3523	3584	-15	7	1954	1949	1	12	1859	1861	0	1	1203	1064	62											
10	1159	1232	-39	8	676	651	8	13	1729	1674	17	2	2286	2317	-11											
11	500	372	34	9	132	349	-38	14	-112	94	-5	3	194	122	11											
12	218	34	16	10	745	732	5	15	682	721	-10	4	1231	1176	25											
13	1969	2059	-32	11	3089	3023	29	16	-159	230	-18	5	337	371	-10											
14	776	935	-68	12	-42	1	0	17	589	640	-11	6	938	991	-25											
15	-284	69	-29	13	-166	193	-21	18	866	783	20	7	793	736	24											
16	583	672	-27	14	473	564	-24	19	892	852	10	8	2004	2136	-51											
17	1106	1151	-16	15	64	297	-25	-7 k 11																		
18	470	544	-18	16	936	936	0	-7 k 11																		
19	920	936	-5	17	747	742	1	-7 k 11																		
20	684	661	6	18	283	104	16	0	661	598	17	12	1693	1794	-40											
21	1775	1575	58	19	2060	1930	38	1	2073	2142	-22	13	624	684	-23											
22	857	786	18	20	260	140	10	2	249	186	9	14	747	794	-17											
23	1191	1118	20	21	1389	1469	-25	3	1601	1525	25	15	540	552	-3											
	-7 k 5														-50											
0	3085	2896	52	-7 k 8																						
1	1339	1239	42	1	2284	2271	4	8	-139	2	-5	20	2338	2412	-22											
2	338	65	42	2	1722	1727	-2	9	503	421	17	21	484	508	-5											
3	2035	2052	-6	3	1213	1176	14	10	870	801	21	22	319	229	11											
4	1321	1325	-1	4	-154	30	-9	11	2750	2714	9	23	835	779	14											
5	863	798	26	5	294	360	-15	12	491	445	8	24	1040	925	33											
6	956	966	-4	6	97	163	-6	13	423	474	-9	-6 k 2														
7	1157	1222	-28	7	770	774	-1	14	-171	70	-8	-6 k 2														
8	1442	1397	17	8	1246	1222	9	15	-184	108	-10	0	3634	3477	39											
9	936	964	-11	9	2158	2145	4	16	89	208	-7	-6 k 2														
10	2047	2082	-12	10	1578	1576	0	17	185	309	-12	1	2805	2677	39											
11	1481	1533	-20	11	325	283	10	-6 k 2														2	355	107	52	
12	1182	1240	-23	12	950	960	-3	-6 k 2															3	560	522	15
13	1378	1429	-20	13	1420	1361	20	-6 k 2															4	1485	1487	-1
14	601	702	-34	14	1236	1262	-9	1	1199	1070	41	5	1757	1798	-17											
15	502	578	-21	15	439	439	0	2	2353	2305	14	6	412	399	4											
16	-312	147	-38	16	488	456	7	3	189	302	-14	7	3120	3250	-37											
17	466	502	-8	17	1237	1284	-8	4	-192	282	-32	8	2087	2125	-14											
18	1404	1439	-12	18	-171	70	-8	5	506	467	8	9	218	157	9											
19	1061	1164	-34	19	628	618	2	6	491	600	-27	10	1742	1749	-2											
20	408	175	30	20	944	987	-12	7	930	875	18	11	2865	3016	-46											
21	1151	1081	20	21	1558	1596	-11	8	1343	1311	10	12	1700	1831	-53											
22	1516	1559	45	-6 k 9																						
23	224	223	0	-6 k 9																						
	-7 k 6														-43											
1	848	806	23	2	223	111	13	14	1138	1117	6	18	1612	1607	1											
2	2922	2811	38	3	383	419	-9	15	931	863	17	19	1117	1283	-63											
3	1593	1603	-4	4	1280	1278	0	-6 k 13																		
4	1033	1133	-61	5	1109	1193	-33	-6 k 13														21	666	589	19	
5	720	767	-26	6	553	476	21	-6 k 13														22	1731	1658	22	
6	1333	1331	1	7	604	603	0	0	2531	2569	-10	23	1533	1501	9											
7	1086	1039	25	8	2170	2209	-12	1	812	858	-12	24	229	195	3											
8	779	776	1	9	353	291	11	2	490	637	-34	-6 k 3														
9	1701	1663	18	10	2124	2072	16	3	-280	133	-24	-6 k 3														
10	2573	2574	0	11	402	167	35	4	535	611	-17	-6 k 3														
11	263	127	25	12	2009	1990	6	5	782	763	5	1	3111	2945	47											
12	1879	1961	-38	13	780	776	1	6	132	168	-2	2	-162	25	-14											

Iridium - TMB Dimer										Page	7					
3	1582	1528	23	-6	k	6	22	2298	2162	36	6	370	288	13		
4	1786	1684	41							7	739	733	1			
5	-130	155	-20	0	1345	1249	54	-6	k	9	8	2440	2348	26		
6	1009	1054	-21	1	2206	2171	15			9	472	302	28			
7	576	554	8	2	822	759	37	1	1115	1144	-11	10	2332	2200	36	
8	458	449	2	3	2267	2244	10	2	1662	1708	-17	11	873	717	39	
9	3445	3632	-50	4	864	866	-1	3	1378	1349	11	12	1554	1486	20	
10	448	523	-25	5	324	232	30	4	180	29	11	13	308	230	8	
11	669	529	49	6	-117	240	-43	5	202	317	-21	14	1369	1349	5	
12	750	852	-42	7	1111	1138	-16	6	1074	1072	0	15	-381	112	-36	
13	1975	2098	-45	8	1174	1234	-34	7	447	490	-12	16	751	659	20	
14	491	583	-30	9	582	528	25	8	1073	1074	0					
15	556	614	-18	10	953	935	9	9	2087	2051	11	-6	k	13		
16	403	593	-56	11	3521	3564	-12	10	1772	1772	0					
17	1204	1375	-67	12	581	543	17	11	-165	103	-12	1	1802	1920	-37	
18	718	814	-33	13	251	283	-8	12	1735	1703	10	2	410	502	-18	
19	1418	1504	-31	14	716	833	-60	13	1533	1488	15	3	1238	1252	-4	
20	-286	17	-23	15	791	883	-47	14	79	221	-12	4	-45	222	-12	
21	1996	1941	16	16	781	810	-13	15	162	337	-23	5	-368	17	-35	
22	681	620	14	17	602	670	-27	16	321	414	-17	6	694	767	-19	
23	1129	1047	23	18	631	730	-41	17	691	769	-21	7	85	92	0	
24	-261	159	-21	19	1688	1690	-1	18	413	395	3	8	749	652	23	
				20	448	350	17	19	686	505	38	9	2492	2461	8	
				21	1184	1169	4	20	1983	1950	9	10	917	856	15	
				22	1020	840	47	21	1292	1242	14	11	438	444	0	
												12	977	936	11	
0	4421	4141	58	23	1073	992	22					13	1828	1841	-3	
1	1615	1525	38	24	438	434	0	-6	k	10						
2	424	260	46													
3	1796	1668	52	-6	k	7	0	356	274	16	-6	k	14			
4	1349	1282	29				1	2173	2183	-3						
5	1508	1485	10	1	3145	3082	17	2	552	515	10	0	1545	1550	-1	
6	-185	34	-16	2	1477	1409	27	3	2030	2041	-3	1	1769	1739	8	
7	1631	1695	-27	3	1265	1203	26	4	145	248	-13	2	95	29	1	
8	2204	2163	14	4	1403	1269	53	5	550	564	-3	3	1822	1796	7	
9	906	926	-8	5	105	189	-10	6	867	825	14	4	262	442	-28	
10	1635	1756	-50	6	-184	172	-27	7	2618	2569	14	5	-52	200	-9	
11	2497	2512	-5	7	1236	1227	3	8	234	209	3	6	121	362	-24	
12	2066	2181	-41	8	1704	1602	37	9	516	525	-2	7	455	654	-41	
13	629	621	2	9	3046	2976	19	10	415	317	18	8	797	796	0	
14	633	717	-30	10	1006	970	13	11	3541	3450	21	9	310	394	-11	
15	-274	18	-28	11	516	422	25	12	319	204	15					
16	-229	28	-18	12	497	533	-10	13	319	276	6	-5	k	1		
17	-208	13	-14	13	1991	1901	29	14	-234	226	-29					
18	1394	1506	-41	14	1190	1248	-22	15	-180	191	-17	0	4371	4312	13	
19	1152	1235	-30	15	-194	180	-22	16	642	651	-2	1	1393	1327	31	
20	316	361	-7	16	-94	376	-45	17	707	784	-20	2	452	345	39	
21	1427	1234	58	17	1062	1091	-10	18	407	499	-16	3	1126	1148	-10	
22	1622	1516	32	18	121	64	2	19	1757	1725	9	4	894	936	-21	
23	624	646	-5	19	1218	1229	-3					5	1425	1514	-43	
24	115	103	0	20	970	883	24	-6	k	11	6	-44	275	-41		
				21	1691	1555	40				7	781	881	-50		
				22	535	519	3	1	1979	1904	24	8	3163	3347	-54	
				23	1469	1408	17	2	2562	2501	17	9	240	384	-38	
1	967	870	43				3	-247	21	-19	10	2121	2172	-19		
2	2705	2594	34	-6	k	8	4	-104	114	-7	11	1557	1512	18		
3	1052	1013	17				5	496	480	4	12	1587	1708	-51		
4	120	162	-5	0	3394	3373	5	6	773	785	-3	13	661	671	-4	
5	885	910	-11	1	176	167	1	7	1332	1244	29	14	1144	1290	-64	
6	1155	1157	0	2	223	291	-13	8	888	900	-3	15	241	350	-23	
7	723	688	13	3	735	823	-36	9	1946	1897	15	16	698	750	-20	
8	1258	1286	-12	4	1382	1349	13	10	2200	2178	6	17	907	994	-34	
9	1284	1266	7	5	1065	1044	8	11	587	481	24	18	1659	1756	-35	
10	2787	2876	-27	6	1133	1087	18	12	1153	1204	-16	19	799	821	-8	
11	868	797	26	7	186	118	7	13	1045	1039	1	20	220	332	-17	
12	2268	2460	-67	8	2217	2197	6	14	679	659	5	21	838	732	31	
13	460	464	-1	9	228	52	17	15	963	1006	-12	22	2037	1923	34	
14	-198	193	-28	10	1785	1842	-21	16	674	712	-9	23	1168	1090	23	
15	806	887	-30	11	675	647	9	17	1349	1303	13	24	230	425	-28	
16	73	438	-58	12	1901	1882	6	18	264	252	1	25	375	405	-4	
17	-298	76	-30	13	778	754	7					-5	k	2		
18	787	888	-33	14	810	790	6	-6	k	12						
19	510	510	0	15	-247	8	-19									
20	2283	2502	-69	16	-289	78	-27	0	3928	3833	20	1	1616	1504	49	
21	735	619	28	17	770	659	30	1	519	439	17	2	259	319	-18	
22	207	106	7	18	1939	1813	37	2	748	740	2	3	748	792	-24	
23	-183	7	-7	19	450	346	17	3	-35	6	0	4	1090	1031	29	
24	962	981	-5	20	659	661	0	4	1159	1143	5	5	386	446	-22	
				21	271	1	15	5	179	210	-3	6	242	312	-18	

Iridium - TMB Dimer

Page 8

7	468	495	-10				21	852	827	6					
8	172	168	0	0	1066	963	48	22	1840	1803	10	0	4280	4317	-7
9	4018	4133	-27	1	2539	2333	67	23	408	395	2	1	629	543	23
10	1491	1583	-40	2	1166	1159	3				2	959	925	11	
11	296	263	7	3	1569	1526	18	-5	k	8	3	-30	186	-11	
12	668	681	-5	4	655	670	-6				4	1286	1336	-18	
13	2843	3063	-68	5	258	379	-34	1	865	829	14	5	815	782	11
14	565	555	3	6	480	536	-21	2	3795	3670	29	6	-162	93	-10
15	745	820	-30	7	1050	1023	11	3	1292	1255	14	7	300	104	21
16	109	87	1	8	873	951	-35	4	1274	1170	41	8	2741	2667	20
17	1102	1121	-7	9	368	357	2	5	778	768	3	9	296	213	11
18	563	531	9	10	899	940	-17	6	951	980	-11	10	2123	2115	2
19	1574	1619	-16	11	2396	2353	14	7	297	309	-2	11	575	430	31
20	686	683	0	12	757	756	0	8	909	859	19	12	1766	1785	0
21	1935	2046	-37	13	92	20	3	9	1965	1933	11	13	519	470	10
22	346	158	22	14	1016	1060	-17	10	2868	2772	27	14	1042	1124	-25
23	1145	1055	26	15	532	672	-47	11	330	152	27	15	390	506	-21
24	-292	162	-27	16	-191	199	-26	12	2448	2364	25	16	817	817	0
25	508	650	-31	17	-245	138	-26	13	918	867	17	17	277	292	-1
				18	891	1046	-56	14	-245	4	-19	18	1720	1734	-3
			-5	k	3			19	1476	1501	-9	15	575	561	3
				20	-198	18	-10	16	305	320	-2		-5	k	12
0	2668	2532	44	21	1018	973	13	17	438	434	0				
1	2128	2001	48	22	1463	1466	-1	18	785	737	13	1	2377	2352	7
2	475	468	2	23	1035	1030	1	19	1102	1108	-1	2	1955	1949	1
3	653	594	27	24	315	268	5	20	2497	2432	17	3	1346	1379	-11
4	534	483	20	25	-217	370	-40	21	692	626	15	4	714	798	-26
5	-58	133	-11					22	559	487	13	5	237	208	3
6	1756	1783	-11		-5	k	6				6	380	381	0	
7	1289	1356	-32						-5	k	9	7	367	367	0
8	2092	2117	-9	1	3248	3108	45				8	629	584	11	
9	326	287	9	2	444	251	81	0	523	464	17	9	2381	2341	11
10	2139	2238	-36	3	897	798	60	1	2579	2695	-36	10	1212	1177	10
11	2453	2598	-49	4	1267	1230	21	2	130	72	4	11	263	76	14
12	2723	2893	-53	5	456	383	34	3	2139	2070	23	12	1310	1140	48
13	489	472	5	6	801	765	21	4	-148	13	-8	13	1812	1761	15
14	368	431	-17	7	675	645	18	5	-210	111	-22	14	213	43	9
15	745	729	5	8	864	878	-7	6	-187	103	-17	15	-245	112	-16
16	453	586	-41	9	3867	3928	-17	7	2070	2046	8	16	506	527	-4
17	467	499	-8	10	565	540	11	8	605	586	6		-5	k	13
18	1328	1423	-36	11	560	533	12	9	622	592	9				
19	1651	1705	-19	12	265	101	30	10	685	727	-14				
20	445	527	-20	13	2313	2423	-46	11	4042	3928	24	0	306	444	-23
21	1105	1205	-35	14	633	667	-16	12	589	407	43	1	1436	1480	-14
22	1596	1469	39	15	-221	3	-25	13	372	314	10	2	-108	181	-10
23	1068	1034	10	16	528	596	-28	14	927	962	-11	3	931	1028	-30
24	509	583	-15	17	1298	1357	-28	15	529	521	1	4	-291	176	-29
25	-279	231	-30	18	276	259	3	16	664	731	-19	5	77	271	-15
			19	1444	1463	-8	17	710	778	-18	6	496	458	7	
			20	894	906	-5	18	98	138	-2	7	1555	1540	4	
1	1188	1102	41	21	2013	2022	-2	19	2231	2216	4	8	295	220	8
2	2678	2593	27	23	988	908	21	21	1538	1532	1	10	793	731	15
3	85	89	0	24	701	721	-4				11	2726	2626	25	
4	-119	194	-27					-5	k	10	12	558	504	10	
5	266	411	-46		-5	k	7				13	-92	68	-2	
6	-127	193	-27				1	3362	3304	23					
7	1019	935	38	0	6130	5886	38	2	2536	2473	18		-5	k	14
8	1174	1244	-33	1	1067	947	53	3	825	815	3				
9	226	42	20	2	667	488	70	4	433	338	21	1	-79	130	-5
10	2053	2125	-27	3	767	678	38	5	439	385	12	2	1917	2019	-31
11	1049	1067	-7	4	1500	1376	50	6	750	756	-1	3	-248	40	-14
12	1088	1116	-11	5	325	530	-66	7	1181	1107	26	4	83	216	-8
13	150	46	7	6	473	453	6	8	1083	1072	3	5	320	417	-14
14	415	540	-38	7	844	765	31	9	2907	2842	17	6	540	522	3
15	977	1009	-12	8	3268	3135	34	10	1757	1714	14	7	-82	137	-5
16	245	391	-30	9	211	124	11	11	576	480	23	8	1082	1150	-19
17	489	552	-17	10	2265	2199	21	12	1317	1291	9	9	400	421	-3
18	677	667	3	11	1147	1245	-40	13	1335	1336	0				
19	340	403	-12	12	1748	1764	-5	14	550	529	4		-4	k	1
20	2223	2252	-9	13	368	436	-17	15	472	535	-13				
21	535	328	1	14	628	649	-6	16	272	317	-5	1	4621	4508	23
22	180	222	-4	15	-263	74	-25	17	1317	1300	5	2	1449	1526	-39
23	209	120	6	16	290	373	-15	18	522	473	9	3	3388	3443	-15
24	1068	989	22	17	136	215	-8	19	922	868	14	4	1379	1274	50
25	134	229	-7	18	2092	2020	22	20	1383	1384	0	5	1409	1426	-8
			19	1047	1045	0					6	991	1084	-51	
			20	593	467	26		-5	k	11	7	513	514	0	

Iridium - TMB Dimer

Page 9

8 437 422 5				18 1669 1752 -38 15 -197 151 -18				
9 3584 3760 -46	-4	k 4		19 1272 1230 19 16 24 89 -2				
10 304 399 -29				20 233 118 14 17 1063 1013 14				
11 -170 53 -14	0 3695 3500	48	21 1240 1198 13 18 76 211 -9					
12 1618 1627 -3	1 3635 3394	60	22 1743 1629 34 19 1300 1254 13					
13 2487 2526 -12	2 155 143	1	23 254 78 12 20 1225 1248 -7					
14 1309 1357 -20	3 386 254	39	24 -183 68 -8 21 1406 1390 4					
15 473 523 -16	4 191 185	1						
16 161 172 -1	5 181 191	-1	-4 k 7					
17 1303 1412 -44	6 581 561	8						
18 524 686 -55	7 1415 1353	28	1 1371 1340 14 0 4347 4283 13					
19 1292 1409 -45	8 1089 1191	-51	2 3569 3497 18 1 346 29 38					
20 1234 1354 -45	9 176 44	13	3 971 852 53 2 1005 993 4					
21 1828 1898 -24	10 528 566	-14	4 1364 1234 55 3 575 563 3					
22 298 334 -5	11 1719 1752	-13	5 407 35 73 4 1352 1353 0					
23 1207 1177 9	12 778 683	36	6 1485 1448 14 5 546 537 2					
24 345 360 -2	13 202 65	14	7 192 111 10 6 290 46 25					
25 515 462 10	14 636 783	-59	8 1609 1492 45 7 411 354 12					
26 -129 267 -19	15 -269 236	-52	9 942 918 9 8 2576 2465 32					
	16 475 550	-23	10 3010 2912 27 9 412 263 27					
	-4 k 2		17 810 845 -12 11 315 280 7 10 2182 2056 39					
	18 617 733	-38	12 2411 2407 1 11 497 500 0					
0 2848 2733 36	19 1236 1291 -20	13 866 859 2 12 1659 1629 10						
1 5293 5090 37	20 168 289 -15	14 -177 75 -13 13 500 476 5						
2 515 419 39	21 937 965 -9	15 380 448 -16 14 1066 1077 -3						
3 2624 2569 18	22 1578 1396 55	16 243 307 -10 15 207 339 -17						
4 2884 2852 10	23 1040 1080 -12	17 582 589 -1 16 474 547 -15						
5 -138 175 -26	24 261 346 -11	18 1163 1133 10 17 -247 110 -17						
6 1438 1424 7	25 -390 84 -39	19 801 764 11 18 2027 1986 11						
7 2034 2036 0		20 2756 2682 19 19 267 219 4						
8 1008 1005 1	-4 k 5	21 929 818 30 20 465 380 13						
9 354 286 19		22 290 140 14						
10 159 65 10	1 2738 2528 65	23 445 389 9 -4 k 11						
11 3426 3654 -62	2 496 468 11	24 1346 1253 26						
12 1392 1565 -80	3 1397 1320 35			1 1870 1888 -6				
13 -79 139 -10	4 143 182 -6		-4 k 8	2 2099 2087 3				
14 -100 32 -4	5 -127 177 -24			3 882 860 7				
15 200 363 -35	6 224 372 -41	0 2102 2035 23		4 313 443 -27				
16 774 812 -14	7 985 964 9	1 3179 3101 21		5 -134 56 -6				
17 615 694 -28	8 436 451 -5	2 919 862 23		6 527 525 0				
18 1171 1259 -35	9 3654 3768 -29	3 2873 2740 38		7 310 386 -14				
19 2012 2131 -41	10 180 92 9	4 1030 978 21		8 607 645 -10				
20 242 205 4	11 373 290 20	5 108 155 -5		9 2302 2331 -8				
21 1216 1217 0	12 162 95 6	6 749 719 11		10 1599 1602 0				
22 1447 1511 -22	13 2269 2467 -70	7 1866 1869 -1		11 354 152 25				
23 1040 1097 -18	14 -196 183 -28	8 582 627 -15		12 1319 1315 1				
24 435 457 -4	15 393 371 5	9 595 579 5		13 1474 1399 23				
25 -264 37 -17	16 -32 324 -36	10 1340 1310 11		14 456 580 -26				
26 -302 110 -24	17 1467 1650 -72	11 3538 3500 9		15 -69 163 -7				
	18 518 550 -8	12 314 284 5		16 259 383 -16				
	-4 k 3	19 1321 1465 -54		17 947 988 -11				
	20 -236 22 -16	14 670 692 -6		18 416 366 7				
1 338 321 5	21 1645 1790 -50	15 289 182 14						
2 4801 4623 35	22 427 258 25	16 620 590 8		-4 k 12				
3 1435 1393 20	23 1219 1209 3	17 446 381 13						
4 1367 1354 6	24 -216 63 -11	18 1199 1196 0		0 1011 932 25				
5 108 181 -11	25 -363 69 -32	19 2314 2268 13		1 2207 2163 13				
6 189 162 4		20 346 132 22		2 335 115 25				
7 481 418 24	-4 k 6	21 1391 1357 10		3 1774 1647 40				
8 1931 1978 -19		22 1151 1159 -2		4 578 638 -16				
9 815 795 8	0 3406 3352 17	23 892 913 -5		5 -314 83 -31				
10 2501 2590 -30	1 1197 1046 89			6 -60 14 -1				
11 128 145 -2	2 795 698 60	-4 k 9		7 1766 1690 24				
12 1963 2024 -23	3 2997 2897 35			8 199 238 -4				
13 -157 161 -21	4 870 879 -6	1 2389 2501 -37		9 487 360 22				
14 1025 1087 -26	5 592 530 35	2 899 981 -33		10 454 258 29				
15 453 505 -16	6 330 218 39	3 328 428 -25		11 3285 3271 3				
16 625 682 -21	7 1093 1097 -2	4 -139 90 -10		12 485 428 10				
17 -107 283 -33	8 2423 2489 -18	5 447 569 -39		13 419 473 -9				
18 512 466 12	9 765 724 22	6 -229 26 -21		14 -145 4 -4				
19 532 543 -3	10 2816 2764 18	7 908 901 1		15 307 440 -19				
20 2553 2653 -30	11 2662 2764 -39	8 1392 1360 11		16 -244 14 -12				
21 -34 3 0	12 1832 1803 13	9 3175 3113 16						
22 76 171 -5	13 852 891 -21	10 1537 1534 0		-4 k 13				
23 505 539 -7	14 977 1071 -51	11 249 99 16						
24 993 972 -6	15 155 273 -24	12 1377 1292 29		1 1183 1190 -2				
25 -206 217 -20	16 -246 55 -31	13 2113 2057 17		2 1626 1767 -46				
26 -246 14 -13	17 -244 0 -27	14 718 702 4		3 253 393 -20				

Iridium - TMB Dimer												Page	10			
4	-337	196	-38	24	885	801	24	13	280	288	-1	7	1249	1183	26	
5	147	316	-17	25	75	365	-29	14	1144	1252	-46	8	461	434	7	
6	743	753	-2	26	628	687	-14	15	-56	229	-21	9	3967	3862	23	
7	98	257	-12					16	-277	70	-31	10	1006	941	24	
8	1020	1073	-15		-3	k	3	17	-260	16	-24	11	113	31	4	
9	1103	1095	2					18	1781	1927	-53	12	1145	1052	34	
10	1568	1587	-5	0	2478	2313	58	19	1520	1660	-52	13	2670	2593	22	
11	311	123	16	1	563	524	18	20	-214	60	-14	14	685	635	15	
12	1178	1150	8	2	404	466	-28	21	1241	1302	-21	15	672	737	-20	
13	787	846	-14	3	2108	2104	2	22	1893	1778	34	16	-239	114	-21	
				4	988	905	43	23	526	667	-34	17	1541	1542	0	
	-4	k	14		5	-383	88	-84	24	-78	15	-1	18	410	402	1
				6	616	715	-49	25	332	459	-20	19	1369	1279	28	
0	2205	2343	-40	7	2089	2131	-18					20	1547	1436	33	
1	557	624	-14	8	2460	2636	-64	-3	k	6		21	2364	2216	40	
2	370	310	8	9	-159	70	-15					22	429	288	19	
3	210	293	-8	10	1716	1750	-14	1	499	365	63	23	1395	1413	-5	
4	273	459	-27	11	1221	1336	-55	2	3964	3815	41					
5	198	320	-13	12	1701	1708	-3	3	400	216	71	-3	k	9		
6	-383	216	-44	13	539	614	-28	4	2122	2022	45					
7	350	297	6	14	639	780	-59	5	222	48	34	0	1811	1936	-47	
8	1560	1603	-12	15	361	320	9	6	1502	1530	-15	1	418	469	-15	
				16	700	735	-13	7	411	374	16	2	287	343	-12	
	-3	k	1		17	697	701	-1	8	1269	1227	23	3	453	423	8
				18	1519	1538	-7	9	787	771	9	4	445	485	-11	
0	2315	2262	20	19	722	696	8	10	3447	3524	-24	5	625	543	29	
1	3810	3781	7	20	636	656	-6	11	646	589	38	6	694	684	3	
2	474	578	-56	21	706	712	-1	12	2776	2902	-46	7	764	788	-8	
3	950	950	0	22	1892	1972	-26	13	612	621	-4	8	2291	2238	17	
4	1212	1279	-38	23	734	619	29	14	282	382	-32	9	148	45	6	
5	2700	2842	-49	24	415	479	-12	15	-180	259	-52	10	2337	2322	4	
6	514	632	-55	25	78	160	-4	16	283	361	-22	11	870	859	3	
7	3354	3466	-31	26	62	8	0	17	-241	158	-39	12	1875	1805	23	
8	972	994	-11					18	961	1062	-50	13	423	421	0	
9	812	812	0	-3	k	4		19	191	10	14	14	1143	1086	19	
10	1739	1715	9					20	2708	2831	-44	15	-250	93	-21	
11	3000	3094	-28	1	5021	4572	83	21	362	35	30	18	-266	205	-32	
12	1086	1131	-21	2	2157	2030	48	22	221	24	11	17	412	409	0	
13	-89	203	-22	3	795	787	3	23	211	68	8	18	1851	1894	-13	
14	-157	196	-27	4	1455	1402	25	24	1036	1012	6	19	621	581	8	
15	618	642	-8	5	1307	1363	-28	25	-144	103	-6	20	542	541	0	
16	-206	17	-18	6	887	925	-20					21	465	492	-4	
17	961	1001	-16	7	1496	1414	37	-3	k	7			-3	k	10	
18	682	692	-3	8	513	551	-15									
19	2213	2289	-25	9	3217	3367	-43	0	3821	3754	16					
20	410	395	3	10	503	489	-5	1	2499	2477	7	1	1725	1634	32	
21	1870	1955	-29	11	597	607	-3	2	1171	1040	58	2	1636	1704	-25	
22	896	766	39	12	533	548	-5	3	2774	2644	39	3	685	686	0	
23	1548	1420	40	13	1836	2034	-80	4	387	142	61	4	170	112	5	
24	432	537	-22	14	355	474	-34	5	1378	1304	31	5	-170	80	-12	
25	373	345	4	15	535	626	-34	6	1373	1237	56	6	1016	1038	-8	
26	-304	59	-23	16	116	222	-13	7	1510	1499	4	7	239	319	-13	
				17	1357	1388	-12	8	2494	2354	44	8	884	871	4	
	-3	k	2	18	508	542	-10	9	819	779	16	9	1785	1739	15	
				19	1402	1422	-7	10	968	983	-6	10	1555	1604	-17	
1	770	700	40	20	475	461	3	11	3538	3511	6	11	170	183	-1	
2	2017	1962	23	21	1928	2043	-39	12	695	678	6	12	1029	1110	-28	
3	452	521	-33	22	159	85	4	13	282	166	17	13	1185	1217	-10	
4	3507	3716	-58	23	1548	1478	21	14	659	686	-9	14	463	496	-7	
5	1885	1991	-48	24	358	353	0	15	-108	256	-25	15	-277	59	-20	
6	668	758	-45	25	96	246	-11	16	660	669	-2	16	132	204	-5	
7	348	444	-35	26	471	474	0	17	569	624	-15	17	583	593	-2	
8	2433	2621	-69					18	1495	1451	14	18	171	292	-12	
9	956	995	-20	-3	k	5		19	2168	2116	16	19	804	755	12	
10	3265	3406	-40					20	317	54	22	20	1546	1495	14	
11	375	395	-6	0	3380	3072	81	21	1967	1887	23					
12	2444	2475	-10	1	1335	1250	40	22	1094	1022	20	-3	k	11		
13	1272	1273	0	2	228	147	15	23	1112	1064	15					
14	2002	2078	-28	3	752	710	20	24	609	645	-8	0	507	374	29	
15	208	320	-23	4	1243	1298	-27					1	2105	2024	25	
16	245	419	-43	5	137	209	-12	-3	k	8		2	308	270	6	
17	-192	81	-17	6	602	747	-69					3	1840	1821	6	
18	345	92	35	7	1375	1370	2	1	4184	4033	32	4	198	141	5	
19	443	360	19	8	1873	1998	-52	2	2215	2032	61	5	-259	125	-28	
20	2308	2275	10	9	706	675	13	3	1023	994	12	6	-148	35	-6	
21	430	212	36	10	2715	2764	-15	4	335	345	-2	7	2006	1942	20	
22	476	461	3	11	3093	3335	-71	5	1042	1020	9	8	162	101	4	
23	835	733	28	12	1582	1588	-2	6	-208	29	-18	9	298	122	19	

Iridium - TMB Dimer

Page 11

10 432 406	5 23 871	886 -4	10 1395 1393	1 2 1022 935	39	
11 3155 3061	23 24 1285	1274 -3	11 3278 3552	3 -78 1479 1339	58	
12 149 49	4 25 -313	42 -25	12 1489 1530	4 -17 589 465	48	
13 252 275	-2 26 520	508 2	13 1167 1166	5 0 951 756	81	
14 -116 123	-6 27 368	223 17	14 1315 1388	6 -31 135 188	-6	
15 -163 61	-7		15 314 393	7 -19 98 123	-10	
16 -109 342	-28	-2 k 2	16 297 445	8 -38 284 303	-4	
17 1016 982	9		17 -126 330	9 -46 4109 4021	19	
18 410 227	22	0 2316 1841	171 18 1115 1131	10 -6 749 685	25	
	1 581 459	69	19 2561 2654	11 -28 167 159	0	
-3 k 12	2 452 653	-132	20 -44 105	12 513 565	-16	
	3 371 515	-76	21 1770 1786	13 1821 1811	3	
1 1243 1299	-19	4 310 459	66 22 1697 1813	14 -40 199 313	-19	
2 1991 1888	31	5 467 629	87 23 1267 1177	15 -28 99 136	-2	
3 843 846	0	6 159 377	64 24 255 342	16 -11 220 334	-19	
4 487 597	-27	7 578 595	7 25 273 255	17 2 1437 1492	-19	
5 -197 69	-12	8 3229 3429	59 26 -167 99	18 18 216 141	7	
6 705 688	4	9 285 328	-13	19 1567 1437	41	
7 615 571	11	10 3776 3909	-33	20 415 280	21	
8 1015 860	43	11 1871 1906	-14	21 2364 2328	10	
9 1889 1858	9	12 2372 2372	0	1 879 802	38 22 333 34	23
10 2198 2131	18	13 -211 138	-30	2 2935 2772	49 23 1189 1195	-1
11 379 282	13	14 2106 2231	-47	3 686 663	10 24 560 481	14
12 1711 1721	-3	15 58 290	-33	4 -50 85	-5	
13 1585 1536	8	16 522 524	0	5 -174 159	-30	
14 529 586	-11	17 461 596	-45	6 1507 1563	-25	
15 -170 68	-7	18 2465 2552	-28	7 901 912	-5	
	19 755 778	-8	8 1342 1405	0 4586 4465	24	
-3 k 13	20 590 476	30	9 787 852	1 2044 1978	23	
	21 690 637	15	10 3689 3895	2 490 483	2	
0 2365 2545	-53	22 2320 2376	-17	3 195 236	-7	
1 502 595	-20	23 596 601	-1	4 1484 1595	35	
2 148 226	-6	24 156 62	5	5 444 459	-4	
3 -260 220	-28	25 -44 285	-19	6 7 1740 1699	15	
4 357 449	-15	26 525 623	-21	14 1501 1684	-76	
5 -198 185	-17	27 -297 203	-29	15 352 555	-61	
6 -131 311	-26	0 -2 k 3	16 303 567	8 2754 2751	0	
7 351 357	0	17 -117 245	-75	9 698 780	-32	
8 1718 1796	-24	18 594 674	-25	10 2655 2538	34	
9 473 386	14	19 -118 53	-25	11 1433 1396	14	
10 1651 1744	-28	20 590 476	-29	12 2339 2258	25	
11 450 375	11	21 690 637	-15	13 407 402	1	
12 1014 1083	-20	22 2320 2376	-17	14 1252 1241	3	
	23 596 601	-1	25 2774 2878	15 291 29	-28	
-3 k 14	24 156 62	5	26 343 879	16 -160 130	-12	
	25 -44 285	-19	27 346 334	17 457 348	21	
	26 525 623	-28	28 1 18 2236 2125	18 2236 2125	33	
	27 -297 203	-25	29 19 1096 1034	19 1096 1034	18	
1 1589 1687	-30	28 344 450	-41	20 293 177	12	
2 1155 1284	-32	29 3267 3546	-81	21 606 458	29	
3 635 735	-23	30 924 887	17	22 2084 2039	13	
4 -346 65	-28	31 11 202 42	18	0 3867 3732	38	
5 541 546	-1	32 12 1005 1097	-43	1 3592 3380	63	
6 253 186	5	33 13 2253 2394	-51	2 831 811	12	
7 -339 60	-26	34 14 77 166	-8	3 -2 k 9	2	
	35 -189 95	-18	4 274 146	1 1050 1107	-23	
-2 k 1	36 -200 176	-29	5 636 645	2 2594 2632	-11	
	37 17 1301 1379	-32	6 713 681	3 854 790	23	
	38 18 470 452	-4	7 2476 2468	4 425 378	11	
1 2687 2621	23	39 19 1081 1229	-59	5 2270 2217	22 5 477 377	26
2 4915 5066	-30	40 20 592 527	9	6 442 389	21 6 502 496	1
3 1303 1445	-89	41 21 1723 1791	17	10 2291 2334	-18 7 487 435	14
4 400 499	-51	42 22 250 155	10	11 2866 3054	-69 8 1512 1473	14
5 -275 126	-59	43 23 1512 1470	12	12 784 818	-18 9 1700 1640	21
6 185 378	-61	44 24 287 286	13	13 400 423	-9 10 3071 2963	28
7 906 915	-5	45 25 142 302	-16	14 503 581	-35 11 259 18	20
8 2734 2904	-58	46 26 240 105	15	15 -114 278	-46 12 2035 1949	27
9 3280 3433	-44	47 17 221 288	-16	16 586 633	-21 13 1058 1043	5
10 3015 3052	-11	48 18 1431 1466	-14	17 912 861	14 16 -277 197	-34
11 1273 1305	-15	49 -2 k 4	18 2032 -39	18 16 318 339	-3	
12 2405 2415	-3	50 19 1942	19 16	19 16 318 339	-3	
13 1621 1628	-2	51 0 4529 4220	20 -119 68	20 7 352 350	0	
14 1326 1290	15	52 1 3057 2889	21 67 22 1294 1119	21 8 600 692	-22	
15 286 409	-33	53 2 1149 1017	22 1541 51	19 1069 1108	-12	
16 1651 1712	-24	54 3 4565 4410	23 1413 1366	20 14 2277 2226	14	
17 1354 1409	-22	55 4 1349 1364	24 -205 72	21 10 769 664	23	
18 423 89	55	56 5 293 237	25 545 562	-3 -2 k 10		
19 628 559	21	57 6 210 185	5	27 1 2579 2493	25	
20 2886 3069	-53	58 7 2195 2256	-23	28 0 791 703	29	
21 1492 1517	-9	59 8 2048 2209	-65	29 1 2579 2493	25	
22 239 21	16	60 9 663 712	-23	30 1 3349 3247	27	

Iridium - TMB Dimer

Page 12

2	377	290	17				14	967	1004	-16	5	290	9	58		
3	1994	1971	7	-1	k	1	15	898	923	-10	6	478	401	38		
4	318	166	22				16	-212	32	-19	7	1137	1079	33		
5	251	394	-29	0	6017	5725	47	17	604	589	5	8	252	120		
6	91	151	-4	1	550	535	9	18	887	772	40	9	3733	3829		
7	1816	1825	-3	2	583	566	11	19	2316	2385	-22	10	348	272		
8	762	754	2	3	235	326	-41	20	453	218	42	11	1128	1169		
9	321	372	-9	4	1559	1543	8	21	1658	1662	-1	12	410	386		
10	358	209	22	5	-359	105	-106	22	1596	1547	16	13	2371	2519		
11	2832	2830	0	6	1683	1772	-44	23	1036	1022	4	14	335	380		
12	491	476	3	7	378	446	-28	24	-257	82	-18	15	373	535		
13	-235	4	-15	8	5204	5249	-8	25	276	227	-31	16	-242	80		
14	-225	42	-14	9	33	24	0	26	121	270	-12	17	1327	1387		
15	279	321	-5	10	4413	4483	-15					18	208	264		
16	311	295	2	11	1448	1463	-7		-1	k	4	19	1142	1190		
17	644	703	-14	12	3599	3472	32					20	119	169		
18	560	535	5	13	948	965	-8	1	1522	1463	28	21	1781	1702		
19	1729	1731	0	14	2136	2157	-7	2	8569	8110	52	22	367	283		
				15	110	137	-2	3	1854	1811	18	23	1082	1032		
				16	343	311	7	4	270	341	-18	24	174	98		
			-2	k	11		17	748	753	-1	5	924	943	4		
1	2728	2582	40	18	3066	3181	-32	6	478	603	-59		-1	k	7	
2	2140	2020	37	19	570	491	23	7	127	263	-27					
3	1800	1676	40	20	1059	659	122	8	1516	1511	2	0	4880	4811	13	
4	297	374	-14	21	861	882	-7	9	444	497	-20	1	3305	3121	48	
5	-157	36	-7	22	2834	2973	-40	10	2843	3089	-79	2	651	487	65	
6	259	317	-9	23	297	127	18	11	253	420	-47	3	1904	1732	63	
7	109	139	-2	24	139	38	4	12	2227	2322	-34	4	1793	1661	50	
8	691	654	10	25	142	115	1	13	784	844	-25	5	1643	1581	24	
9	2578	2586	-2	26	479	598	-25	14	1118	1264	-65	6	1165	1100	27	
10	1462	1439	7	27	154	56	4	15	-73	183	-15	7	1710	1702	2	
11	320	155	18				16	737	750	-4	8	1885	1916	-11		
12	1330	1308	6	-1	k	2	17	226	307	-14	9	550	468	25		
13	1452	1368	25				18	488	520	-9	10	2142	2029	37		
14	559	616	-12	1	5054	4787	51	19	215	303	-13	11	2884	2767	27	
15	295	166	12	2	3188	3060	38	20	2973	3048	-20	12	1886	1790	33	
16	-110	302	-22	3	2298	2372	-30	21	584	562	5	13	203	68	12	
17	1192	1229	-10	4	-292	188	-87	22	326	314	1	14	642	636	1	
			5	88	341	-65	23	187	5	8	15	-262	86	-26		
			-2	k	12	6	987	1048	-35	24	1302	1228	22	16	-138	70
			7	204	334	-36	25	104	161	-3	17	1110	1072	13		
0	3814	3845	-6	8	263	22	31	26	-202	176	-16	18	2088	2053	10	
1	368	163	26	9	4162	4326	-38					19	1624	1571	17	
2	503	501	0	10	1868	1737	53	-1	k	5		20	500	362	25	
3	180	95	6	11	391	46	66					21	1177	1166	3	
4	1449	1525	-25	12	1632	1689	-25	0	3202	3017	52	22	2659	2545	30	
5	-230	158	-21	13	2857	2981	-38	1	2103	2029	28	23	926	822	26	
6	325	358	-5	14	326	152	32	2	1099	986	64					
7	159	46	5	15	192	257	-11	3	423	389	12	-1	k	8		
8	2076	2046	8	16	461	408	15	4	807	753	26					
9	357	115	24	17	1441	1451	-3	5	-181	17	-18	1	1365	1309	22	
10	2138	2118	6	18	1113	1089	9	6	640	642	-1	2	3439	3441	0	
11	351	249	12	19	1775	1779	-1	7	2145	2201	-21	3	651	635	5	
12	1929	1858	20	20	1514	1493	7	8	2372	2482	-39	4	559	400	46	
13	345	311	4	21	1991	2049	-19	9	368	309	16	5	88	8	3	
14	890	947	-15	22	255	123	13	10	3254	3437	-51	6	194	77	11	
			23	884	935	-16	11	3240	3419	-50	7	412	462	-14		
			-2	k	13	24	233	171	6	12	2063	2216	-57	8	2031	1965
			25	-270	7	-18	13	854	803	20	9	770	715	21		
1	1728	1856	-40	26	-217	8	-11	14	687	763	-29	10	2973	2921	14	
2	1172	1290	-37	27	1100	1134	-10	15	717	810	-35	11	401	309	19	
3	459	614	-33				16	278	364	-18	12	2293	2355	-19		
4	328	246	9	-1	k	3	17	500	567	-19	13	1023	973	17		
5	-42	213	-10	0	2198	2019	70	19	1577	1578	-61	14	1365	1236	44	
6	576	653	-17	2	864	843	12	21	1009	1132	0	15	46	268	-20	
7	589	490	19	1	2605	2428	61	20	392	428	-7	16	503	524	-5	
8	602	658	-12	2	864	843	12	21	1009	1132	-42	17	-237	155	-23	
9	1983	1980	0	3	4351	4221	28	22	1951	1869	25	18	779	816	-10	
10	1202	1231	-8	4	1489	1541	-26	23	959	925	9	19	195	242	-4	
11	129	114	0	5	1666	1678	-5	24	-269	70	-18	20	2474	2401	20	
			6	-191	290	-63	25	170	35	5	21	332	276	7		
			-2	k	14	7	3264	3424	-46		22	568	493	14		
			8	1280	1322	-21		-1	k	6			-1	k	9	
0	590	554	7	9	281	91	34									
1	1394	1537	-43	10	778	653	55	1	3522	3343	54					
2	211	258	-4	11	2807	2955	-47	2	359	168	66	0	2379	2359	6	
3	802	867	-16	12	1070	1083	-6	3	2728	2635	35	1	2316	2371	-18	
4	257	182	6	13	549	540	3	4	1312	1231	47	2	105	156	-4	

Iridium - TMB Dimer										Page	13		
3	1991	2031	-14	-1	k	13	17	569	602	-11	6	-207	
4	708	696	4				18	543	409	37	7	312	
5	-278	30	-31	0	347	3	24	19	2215	2116	32	8	935
6	624	582	13	1	2424	2496	-20	20	512	476	9	9	3685
7	2248	2182	21	2	399	356	6	21	1544	1518	9	10	101
8	1268	1262	2	3	1438	1516	-24	22	547	452	22	11	449
9	597	593	1	4	184	233	-4	23	884	856	8	12	504
10	994	881	38	5	122	302	-16	24	255	24	-17	13	2718
11	3245	3285	-10	6	213	310	-10	25	-211	149	-16	14	249
12	895	830	21	7	1711	1816	-32	26	-298	13	-21	15	-154
13	-80	130	-6	8	505	411	15	27	557	492	12	16	-84
14	-71	99	-4	9	545	481	11				17	1145	1180
15	95	103	0					0	k	3	18	331	358
16	-252	34	-16	0	k	0		1	1661	1601	29	20	453
17	249	255	0					2	4545	4294	52	21	2044
18	1055	1053	0	2	1271	1444	-125	3	2466	2362	37	22	394
19	1782	1788	-1	4	6061	6040	-3	3	5138	5228	-17	23	1140
20	113	169	-3	6	1393	1403	-5	4	672	765	-50	24	335
21	1266	1224	11	8	8892	8707	20	5	217	462	-70	25	52
				10	5596	5406	32	6	462	177			
			-1	k	10		12	3432	3228	53	7	1179	1255
				14	1161	1308	-71	8	2215	2222	-2		0
				16	885	858	11	9	1888	1937			6
1	3247	3239	2	18	4554	4551	0	10	2116	2126	-3	0	3890
2	1865	1830	12	20	1058	552	146	11	829	819	4	1	2254
3	2213	2112	31	22	3552	3611	-14	12	1942	1933	3	2	574
4	180	122	5	24	486	428	11	13	626	607	7	3	1321
5	404	406	0	24	486	428	-31	14	1617	1687	-29	4	698
6	492	592	-27	26	486	627		15	807	832	-10	5	1778
7	277	229	7					16	955	956	0	6	1550
8	941	876	21	0	k	1		17	742	664	27	7	1974
9	3325	3305	4					18	214	252	-6	8	1764
10	1071	1084	-4	1	3130	2971	48	18	214	252	-35	9	173
11	70	135	-3	2	2252	2252	0	19	876	970	-12	10	2333
12	1038	1048	-3	3	1847	1954	-54	20	2804	2847	-19	11	3043
13	1894	1897	-1	4	1291	1400	-69	21	767	704	-4	12	1130
14	-52	74	-2	5	-295	91	-71	22	301	326	-17	13	627
15	556	699	-35	6	649	603	24	23	791	848	-17	14	836
16	-68	79	-2	7	467	530	-30	24	1439	1398	12	14	957
17	1069	1037	9	8	2237	2160	29	25	-200	109	-12	15	191
18	434	401	5	9	5593	5588	0	26	-321	78	-26	16	-268
19	1387	1373	4	10	2937	2669	79				17	684	807
			11	11	551	195	103	0	k	4	18	1256	1267
			-1	k	11		12	1701	1701	0	19	1631	1637
				13	2816	2725	27	0	3777	3394	92	20	575
0	3701	3652	11	14	935	877	25	1	2183	1950	86	21	1314
1	354	223	19	15	845	903	-25	2	1402	1372	14	22	1130
2	331	404	-14	16	1114	1135	-8	3	2908	2774	41	23	1640
3	228	73	12	17	2048	2148	-36	4	2055	2063	-3	24	160
4	1520	1509	3	18	860	680	63	5	-111	190	-27		
5	232	286	-7	19	1567	1506	22	6	575	631	-26		
6	738	762	-7	20	2107	2093	4	7	1397	1433	-17		
7	614	585	7	21	2517	2606	-27	8	3009	3163	-47	1	423
8	2209	2129	24	22	566	396	39	9	233	257	-5	2	4477
9	215	3	11	23	1281	1380	-35	10	2588	2842	-87	3	289
10	2181	2160	6	24	689	592	24	11	2084	2186	-38	4	662
11	719	548	39	25	-216	10	-11	12	2407	2574	-58	5	297
12	2123	1989	38	26	-347	94	-32	13	110	259	-22	6	1002
13	344	387	-6	27	901	811	24	14	775	781	-2	7	172
14	843	815	7					15	-202	195	-31	8	1617
15	-300	9	-20	0	k	2		16	225	350	-25	9	416
16	-226	186	-18					17	211	165	5	10	3260
				0	1982	1746	102	18	2026	1993	10	11	559
				1	3396	3132	73	19	1293	1195	34	12	1376
				2	150	163	-3	20	600	640	-11	13	88
1	1392	1386	1	3	2498	2543	-17	21	604	640	-10	14	1141
2	1611	1715	-34	4	-293	296	-121	22	1932	1853	24	15	213
3	298	373	-11	5	285	367	-29	23	668	678	-2	16	1114
4	-82	346	-30	6	1611	1716	-52	24	-284	88	-22	17	153
5	-293	144	-27	7	3303	3314	-3	25	141	283	-13	18	430
6	557	658	-24	8	302	61	41	26	-224	17	-11	19	258
7	655	663	-1	9	1702	1671	13				20	2537	2476
8	1060	1072	-3	10	1535	1340	84	0	k	5	21	296	17
9	1946	1981	-10	11	4936	4844	17				22	-152	44
10	1775	1753	6	12	693	488	80	1	1823	1646	71	23	-151
11	276	78	14	13	268	261	1	2	1592	1474	51		
12	1237	1230	2	14	403	430	-8	3	1714	1609	44	0	k
13	1155	1132	6	15	813	821	-3	4	1174	1090	39		8
			16	743	663	30	5	284	298	-3	0	2934	3024

Iridium - TMB Dimer													Page	14	
1	1547	1601	-21	9	1574	1592	-5	13	291	38	34	2	1721	1616	45
2	357	208	29	10	1879	1831	14	14	446	365	23	3	1565	1498	30
3	2072	2045	9	11	-122	10	-3	15	685	682	0	4	355	302	16
4	1064	978	33	12	1841	1785	16	16	232	308	-16	5	526	646	-59
5	383	444	-17	13	753	739	3	17	869	838	12	6	-257	44	-38
6	-121	35	-6	14	818	799	4	18	503	191	65	7	-127	52	-9
7	1484	1540	-21	15	232	316	-9	19	3042	2951	24	8	842	896	-26
8	1382	1316	24	0	k	12	21	2222	2216	1	10	684	720	-15	
9	522	487	9	0	k	12	22	605	441	39	11	197	1	15	
10	1587	1548	14	0	179	83	5	23	1169	1224	-19	12	697	702	-2
11	3443	3386	13	0	179	83	20	659	378	71	9	3573	3611	-9	
12	1744	1687	19	1	1473	1539	-21	24	-101	50	-3	13	2184	2100	28
13	402	379	5	2	19	40	0	25	242	401	-23	14	966	1060	-39
14	894	910	-5	3	1652	1761	-34	26	398	374	3	15	280	250	5
15	-191	7	-10	4	-93	95	-4	27	689	684	1	16	484	494	-2
16	581	548	8	5	373	374	0	27	689	684	17	1457	1372	31	
17	271	325	-8	6	228	462	-35	1	k	2	18	774	789	-5	
18	1511	1458	16	7	1441	1495	-16	21	2222	2216	19	1216	1206	3	
19	2314	2258	15	8	-61	18	0	1	701	725	-15	20	956	1095	-50
20	257	107	11	9	847	765	20	2	991	998	-4	21	1945	1965	-8
21	1507	1421	25	10	551	463	16	3	348	405	-23	22	372	293	12
22	1474	1509	-10	11	2710	2720	-2	4	364	132	60	23	1135	1009	37
				12	421	401	3	5	-315	30	-62	24	788	842	-14
							6	961	1042	-45	25	257	446	-28	
							7	120	192	-10					
							8	3013	2860	45					
							9	2118	1980	52					
1	2871	2833	10	1	1019	1192	-52	9	2118	1980	52	0	2888	2771	35
2	1299	1321	-8	2	1308	1371	-18	10	2778	2655	38	1	2435	2294	48
3	1464	1433	11	3	697	822	-31	11	205	268	-14	2	101	180	-7
4	260	333	-14	4	735	751	-3	12	2811	2708	31	3	1752	1698	22
5	196	304	-18	5	165	385	-24	13	1698	1699	0	4	864	887	-11
6	733	774	-14	6	969	1013	-11	14	-219	94	-25	5	-229	106	-32
7	516	452	16	6	969	1013	15	495	566	-27	6	-70	196	-20	
8	357	86	34	1	k	0	16	515	528	-4	7	1517	1633	-51	
9	3772	3756	3	1	k	0	17	415	281	30	8	1998	2157	-62	
10	1120	1099	7	1	3083	3139	-20	18	927	926	0	9	1458	1511	-22
11	227	96	12	2	3757	3820	-19	19	1036	1017	6	10	641	692	-20
12	894	879	4	3	1173	1227	-45	20	2271	2183	27	11	3457	3615	-41
13	2090	2121	-10	4	-259	236	-143	21	1159	1144	5	12	1662	1729	-26
14	265	192	8	5	799	807	-7	22	90	1	2	104	66	2	
15	-332	111	-33	6	1057	1087	-23	23	556	577	-5	14	656	628	9
16	-232	142	-18	7	907	997	-72	24	641	589	12	15	812	876	-24
17	1220	1262	-13	8	4057	3955	28	25	474	593	-26	16	661	680	0
18	691	712	-5	9	4304	4298	1	26	-175	106	-9	17	370	478	-25
19	1202	1202	0	10	3816	3654	46	11	652	423	122	18	1010	1028	-8
20	703	725	-5	12	2413	2411	0	13	5630	5464	28	20	423	469	-9
							14	524	271	89	21	1300	1273	8	
0	3162	3211	-12	14	1025	1018	4	15	773	20	210	22	950	943	2
1	1141	1064	26	15	963	941	12	2	577	552	11	23	949	882	18
2	285	357	-13	16	587	527	29	3	2124	2168	-18	24	443	392	8
3	503	377	28	17	2208	2266	-25	4	606	573	14	25	-260	213	-25
4	998	919	26	18	602	183	152	5	887	935	-26				
5	705	686	5	19	718	559	74	6	887	935					
6	502	490	2	20	3163	3057	33	7	483	413	27				
7	681	677	1	21	2362	2359	1	8	2219	2229	-3				
8	2063	2121	-18	22	502	101	85	9	1178	1150	13	1	668	558	62
9	241	9	15	23	1288	1271	7	10	2067	1992	28	2	4097	3918	47
10	1809	1790	6	24	1483	1421	26	11	272	118	25	3	1372	1290	45
11	1252	1243	2	25	-147	17	-7	12	2240	2284	-15	4	931	838	54
12	1688	1649	12	26	245	281	-6	13	999	1019	-9	5	727	683	24
13	336	277	8	27	478	415	15	14	377	381	-1	6	1381	1441	-33
14	270	352	-11	15	430	369	16	7	319	323	-1				
15	594	682	-21	16	-139	135	-14	8	1882	1952	-17	9	581	595	-7
16	266	373	-14	17	-99	195	-17	9	581	595	-17				
17	674	705	-7	18	1934	1912	7	10	2667	2734	-25				
18	1793	1778	4	19	4610	4681	-15	19	410	361	10	11	136	34	9
				20	541	28	175	20	163	264	-12	12	1945	1999	-24
				21	3058	2931	39	21	298	76	22	13	739	770	-16
1	1389	1336	17	4	1175	1183	-4	22	2297	2328	-9	14	437	489	-20
2	2691	2654	10	5	-153	227	-47	23	380	63	32	15	330	388	-17
3	189	193	0	6	407	304	37	24	134	50	3	16	946	992	-22
4	179	311	-17	7	2382	2304	28	25	-214	45	-11	17	349	361	-3
5	-317	12	-29	8	2044	1988	22	26	-320	128	-27	18	540	530	3
6	670	682	-3	9	2101	2062	15	1	k	4	19	547	540	2	
7	835	835	0	10	1556	1237	132	21	3020	2909	20	21	312	57	21
8	1552	1467	26	11	6496	6350	56	1	3139	3036	29	22	59	86	0

Iridium - TMB Dimer

Page 15

23	-125	51	-4	2	2741	2685	15			17	1201	1286	-34		
				3	88	80	0	2	k	1	18	232	101	13	
1	k	7		4	-171	169	-17				19	1278	1285	4	
				5	441	477	-8	1	1440	1469	-16	20	1280	1230	17
0	3287	3258	7	6	652	669	-4	2	1798	1672	57	21	1723	1694	9
1	2013	1946	23	7	1122	1121	0	3	620	707	-52	22	472	419	10
2	-77	95	-6	8	1317	1350	-11	4	2121	2033	35	23	1131	1187	-17
3	1103	1148	-19	9	852	900	-16	5	320	438	-47	24	430	329	16
4	931	858	28	10	2185	2207	-6	6	3065	2921	42	25	-161	19	-6
5	194	231	-6	11	315	54	21	7	888	935	-25				
6	1300	1216	33	12	1796	1772	7	8	926	564	155	2	k	4	
7	1697	1679	6	13	541	452	17	9	3969	3813	36				
8	1602	1556	17	14	683	667	3	10	3013	2905	31	0	1049	809	106
9	347	489	-39	15	297	441	-22	11	603	604	0	1	1267	1303	-17
10	2057	2063	-1	16	536	591	-11	12	2663	2542	38	2	451	532	-34
11	2113	2051	20	17	518	534	-3	13	2295	2283	4	3	1308	1340	-15
12	1401	1351	18					14	253	263	-2	4	577	675	-45
13	516	531	-4		1	k	11	15	647	619	10	5	792	825	-16
14	797	762	11					16	479	495	-5	6	1112	1038	34
15	117	84	1	0	962	835	37	17	939	1022	-35	7	1487	1479	3
16	-98	41	-3	1	1183	1244	-20	18	1304	1372	-27	8	539	193	87
17	155	180	-2	2	-152	80	-8	19	1024	967	21	9	209	312	-22
18	1458	1432	8	3	1458	1553	-31	20	2291	2253	12	10	265	203	11
19	1734	1706	8	4	553	565	-2	21	1860	1769	30	11	2629	2538	28
20	350	277	9	5	459	523	-13	22	276	184	11	12	909	812	37
21	890	924	-9	6	131	270	-13	23	736	802	-27	13	445	470	-7
22	1703	1660	12	7	1082	1068	4	24	604	608	-1	14	349	373	-5
				8	372	370	0	25	488	433	10	15	128	319	-30
1	k	8		9	496	422	13	26	428	594	-34	16	132	21	5
				10	552	477	14				17	878	877	0	
1	2188	2284	-33	11	2359	2426	-19		2	k	2	18	300	300	0
2	1038	983	21	12	609	539	14				19	1869	1788	26	
3	429	474	-12	13	417	388	4	0	3001	3101	-31	20	439	182	39
4	927	918	3	14	104	151	-2	1	62	17	2	21	1334	1203	41
5	-259	26	-26					2	768	424	147	22	752	609	35
6	442	440	0	1	k	12		3	1392	1277	56	23	1260	1185	22
7	1042	1010	12					4	1755	1700	24	24	-212	96	-12
8	449	349	23	1	1772	1857	-26	5	-258	106	-35	25	-206	16	-9
9	3230	3221	2	2	1215	1265	-15	6	356	343	4				
10	847	701	48	3	906	1072	-52	7	91	168	-11	2	k	5	
11	134	16	5	4	1093	1079	3	8	2219	2052	60				
12	260	409	-28	5	-237	238	-25	9	1463	1384	35	1	1063	1025	17
13	1844	1916	-24	6	815	827	-3	10	2195	2023	61	2	3189	3123	18
14	119	256	-14	7	-188	172	-14	11	492	314	53	3	1649	1629	8
15	-190	26	-10	8	248	72	11	12	2584	2530	17	4	-140	185	-24
16	-257	31	-17	9	1666	1710	-13	13	415	400	4	5	-193	250	-45
17	1291	1310	-6	10	1355	1361	-1	14	1474	1391	33	6	1969	1825	52
18	176	356	-22					15	387	450	-18	7	615	651	-13
19	1346	1311	10	2	k	0		16	-162	56	-11	8	2243	2160	28
20	423	273	20					17	452	445	2	9	903	835	27
21	1543	1540	0	0	807	907	-98	18	1963	1868	32	10	2999	2982	4
				1	2960	2906	20	19	419	208	37	11	466	459	1
1	k	9		2	367	475	-85	20	394	386	1	12	3001	3000	0
				3	2460	2474	-6	21	439	251	33	13	1310	1314	-1
0	2408	2502	-30	4	-341	107	-130	22	2412	2360	15	14	229	88	14
1	1683	1670	4	5	948	1050	-84	23	582	554	6	15	600	678	-25
2	287	329	-8	6	679	720	-31	24	-285	128	-25	16	56	120	-3
3	482	486	-1	7	1711	1648	-35	25	-331	31	-27	17	92	2	2
4	648	615	10	8	1218	1169	31	26	-54	272	-17	18	688	741	-16
5	860	784	25	9	665	611	35				19	564	539	6	
6	-43	11	0	10	847	670	109	2	k	3	20	2518	2392	34	
7	1170	1161	3	11	4000	3909	25				21	957	933	7	
8	2108	2052	17	12	158	72	13	1	3557	3676	-32	22	329	40	23
9	159	113	3	13	991	930	36	2	2075	2213	-57	23	-159	59	-6
10	2026	1964	19	14	154	59	12	3	740	787	-24	24	861	821	10
11	1669	1642	9	15	386	406	-8	4	-86	185	-23				
12	1434	1376	19	16	635	657	-12	5	671	665	3	2	k	6	
13	486	402	17	17	595	542	24	6	200	244	-10				
14	1102	1226	-41	18	734	680	36	7	1497	1404	41	0	3344	3363	-6
15	440	531	-18	19	2927	2913	4	8	773	681	40	1	2083	2091	-3
16	534	595	-13	20	506	361	48	9	2127	1981	52	2	412	419	-2
17	431	434	0	21	2086	2049	15	10	1494	1381	47	3	1729	1715	7
18	1561	1567	-2	22	448	275	45	11	806	733	31	4	1024	1070	-20
19	814	803	2	23	1536	1571	-16	12	699	647	19	5	911	796	45
				24	438	430	2	13	823	725	37	6	502	547	-15
1	k	10		25	568	482	25	14	699	699	0	7	861	851	4
				26	-221	97	-19	15	148	293	-24	8	1999	1936	22
1	1602	1566	12	27	610	609	0	16	-230	26	-21	9	1140	1089	20

Iridium - TMB Dimer

Page 16

10	1858	1752	37	14	443	468	-4			3	k	1	17	694	792	-34
11	1688	1576	40	15	597	782	-47						18	-143	27	-6
12	1744	1712	11	18	290	440	-23						19	1806	1780	9
13	865	740	41	17	19	242	-12	0	7485	7910	-58	20	350	110	28	
14	531	583	-9	18	643	613	6	1	2262	2227	13	21	1578	1514	21	
15	47	168	-8					2	2412	2226	66	22	458	445	2	
16	61	337	-33		2	k	10	3	-107	39	-7	23	1421	1400	6	
17	-162	61	-8					4	1016	993	12	24	184	151	2	
18	1685	1647	12	0	1837	1838	0	5	1206	1140	33	25	-303	156	-26	
19	1058	1024	10	1	1782	1868	-28	6	1308	1245	31					
20	225	301	-9	2	183	187	0	7	339	424	-32					
21	908	795	30	3	2203	2206	0	8	3686	3544	35					
22	1656	1644	3	4	722	723	0	9	324	18	49	1	1233	1256	-10	
23	210	206	0	5	411	508	-21	10	3608	3272	82	2	2584	2721	-46	
				6	706	688	4	11	196	1	17	3	1082	1157	-36	
				7	1232	1271	-12	12	1401	1313	37	4	897	898	0	
				8	690	727	-9	13	1581	1479	41	5	7	217	-21	
1	2795	2779	4	9	227	241	-1	14	2168	2191	-7	6	690	638	20	
2	546	512	10	10	903	820	22	15	28	182	-13	7	79	259	-25	
3	552	649	-35	11	2328	2419	-26	16	1010	1027	-7	8	220	158	9	
4	998	992	2	12	737	753	-3	17	531	494	11	9	1862	1760	37	
5	1001	970	11	13	351	522	-30	18	2207	2128	25	10	2540	2371	52	
6	310	315	-1	14	-285	136	-22	19	194	11	12	11	966	926	16	
7	776	798	-7	15	-98	140	-6	20	334	317	3	12	2522	2427	29	
8	233	19	18					21	387	368	3	13	1360	1270	34	
9	3313	3234	20		2	k	11	22	2409	2380	8	14	680	589	30	
10	501	491	2					23	387	206	24	15	864	857	2	
11	178	184	0	1	1600	1717	-37	24	349	539	-37	16	254	243	1	
12	528	528	0	2	934	935	0	25	211	333	-14	17	355	464	-24	
13	2089	1984	33	3	615	752	-35	26	555	585	-6	18	821	734	26	
14	873	811	19	4	1169	1162	2				19	752	744	2		
15	336	422	-17	5	-306	11	-22		3	k	2	20	2218	2250	-10	
16	50	31	0	6	-46	361	-30				21	899	801	28		
17	1430	1447	-5	7	246	286	-4	1	2883	2962	-25	22	367	226	18	
18	141	204	-5	8	-78	19	-1	2	2570	2514	19	23	414	481	-12	
19	1486	1477	2	9	1984	1972	3	3	1141	1129	5	24	767	772	-1	
20	193	191	0	10	648	656	-1	4	-86	72	-7					
21	1856	1739	33	11	-14	18	0	5	780	712	33					
				12	1131	1088	11	6	196	176	3					
								7	1466	1363	46	0	3088	3142	-15	
					2	k	12	8	682	585	40	1	502	547	-15	
0	2481	2546	-20					9	3107	2912	54	2	-264	56	-31	
1	2007	2041	-11	0	2075	2207	-38	10	2335	2187	50	3	1185	1246	-27	
2	474	442	8	1	103	147	-2	11	712	677	13	4	1181	1283	-46	
3	926	890	13	2	253	334	-9	12	1025	996	12	5	594	646	-21	
4	778	843	-23	3	182	253	-6	13	2098	2041	20	6	1283	1265	7	
5	628	676	-17	4	314	591	-49	14	1165	1158	3	7	122	198	-9	
6	505	523	-5	5	358	580	-40	15	1179	1111	27	8	2154	2036	40	
7	1299	1329	-10	6	-296	71	-20	16	453	414	10	9	390	314	17	
8	1787	1794	-2					17	1286	1232	20	10	2658	2580	23	
9	122	48	3		3	k	0	18	569	538	9	11	1911	1791	41	
10	1125	1129	-1					19	973	917	19	12	1413	1355	21	
11	2205	2174	9	1	4530	4598	-17	20	1709	1774	-23	13	682	646	12	
12	1312	1260	17	2	4545	4689	-36	21	1461	1368	31	14	671	649	7	
13	106	93	0	3	1872	1890	-10	22	399	116	33	15	248	268	-2	
14	1259	1259	0	4	4264	4269	-1	23	1249	1101	44	16	-153	94	-9	
15	112	114	0	5	1025	1027	-1	24	690	732	-10	17	192	266	-9	
16	635	663	-6	6	1177	1212	-23	25	-125	43	-4	18	2099	2135	-11	
17	658	780	-32	7	1034	1073	-27				19	889	825	19		
18	1016	957	17	8	1539	1457	47		3	k	3	20	344	315	4	
19	1275	1328	-16	9	2257	2211	20				21	1029	963	20		
20	263	307	-5	10	2134	2126	4	0	505	342	57	22	1881	1797	24	
				11	290	206	26	1	1752	1872	-53	23	222	164	4	
				12	1671	1668	1	2	401	454	-20					
1	657	674	-5	14	-184	16	-21	3	1607	1661	-24					
2	3013	2993	5	15	-198	28	-25	5	96	76	-11	1	2716	2624	27	
3	326	363	-7	16	657	682	-13	6	180	180	0	2	626	642	-6	
4	321	402	-16	17	1486	1484	1	7	1524	1425	41	3	1098	1121	-9	
5	-219	101	-18	18	573	566	2	8	611	91	121	4	538	530	2	
6	631	649	-5	19	1350	1313	18	9	504	461	14	5	355	346	2	
7	701	773	-24	20	1649	1659	-4	10	945	877	28	6	717	701	5	
8	1304	1317	-4	21	2022	2061	-16	11	3086	2891	53	7	750	754	-1	
9	702	668	9	22	425	412	4	12	657	262	104	8	858	850	2	
10	2271	2337	-20	23	1326	1255	30	13	344	374	-7	9	3016	2979	10	
11	429	377	10	24	453	322	31	14	511	559	-15	10	490	418	18	
12	1917	1979	-19	25	277	296	-3	15	432	468	-10	11	150	3	7	
13	260	406	-22	26	-279	176	-36	16	264	332	-13	12	296	308	-2	

Iridium - TMB Dimer

Page 17

13	2156	2167	-3	1	1561	1607	-14	20	2384	2301	25	13	705	651	17	
14	889	919	-10	2	255	336	-11	21	1189	1216	-9	14	804	846	-14	
15	535	580	-6	3	773	865	-28	22	345	156	22	15	88	115	-1	
16	460	486	-6	4	678	813	-37	23	1118	1174	-17	16	88	9	2	
17	1078	1068	3	5	-282	113	-20	24	905	989	-25	17	364	359	1	
18	395	347	8	6	169	444	-39	25	545	710	-39	18	1764	1636	41	
19	900	768	35	7	-206	110	-13					19	541	478	18	
20	719	629	21	8	130	214	-6	4	k	2	20	514	463	10		
21	1909	1799	31	9	2372	2466	-27				21	554	354	35		
22	518	492	4	10	428	418	1	0	949	798	70	22	2143	1976	46	
			11	-144	166	-10	1	2556	2633	-26	23	237	228	0		
	3	k	7		12	766	800	-8	2	682	742	-29				
				13	1725	1790	-19	3	2262	2294	-11		4	k	5	
0	2380	2324	17					4	809	790	9					
1	1468	1506	-15		3	k	11	5	590	568	9	1	2381	2483	-34	
2	1456	1401	20					6	1188	1203	-6	2	1749	1812	-25	
3	1182	1214	-12	0	2210	2291	-23	7	2126	2081	16	3	815	897	-34	
4	172	267	-14	1	1032	1046	-4	8	1261	1145	49	4	266	343	-17	
5	385	458	-19	2	322	454	-21	9	1564	1479	34	5	-153	206	-26	
6	752	667	29	3	-121	98	-5	10	363	320	11	6	-205	59	-18	
7	1489	1518	-10	4	410	468	-10	11	4315	4151	34	7	1044	974	27	
8	1400	1379	7	5	872	925	-14	12	1219	1039	70	8	976	886	34	
9	228	92	13	6	232	223	0	13	500	438	18	9	2741	2552	54	
10	1597	1508	30	7	434	572	-26	14	732	675	20	10	1098	1067	11	
11	2318	2253	20	8	1727	1723	1	15	-156	28	-9	11	428	354	17	
12	563	511	13	9	92	26	1	16	868	896	-10	12	333	131	27	
13	-106	172	-12					17	228	84	14	13	1679	1705	-9	
14	846	883	-12	4	k	0		18	236	218	2	14	1174	1160	5	
15	186	164	1					19	2142	2054	27	15	381	355	4	
16	218	338	-16	0	3658	3604	16	20	469	158	47	16	628	609	5	
17	914	976	-18	1	-223	128	-46	21	1846	1814	13	17	1246	1144	32	
18	928	848	21	2	1405	1377	17	22	87	95	0	18	568	558	2	
19	1267	1270	0	3	179	180	0	23	869	799	18	19	851	750	26	
20	341	138	19	4	2067	2069	0	24	572	505	13	20	986	913	22	
			5	648	650	-1	25	733	839	-27	21	1204	1209	-1		
	3	k	8	6	979	977	1				22	299	320	-2		
			7	837	853	-11		4	k	3						
1	323	199	19	8	2748	2701	18					4	k	6		
2	3407	3429	-5	9	276	191	26	1	1636	1736	-44					
3	656	702	-14	10	2819	2864	-17	2	2187	2240	-19	0	2046	1949	33	
4	450	518	-17	11	1349	1345	2	3	1780	1779	0	1	2562	2475	26	
5	524	615	-26	12	2265	2297	-13	4	1071	1110	-18	2	1093	1071	8	
6	909	931	-7	13	1035	1036	0	5	859	776	35	3	1437	1355	31	
7	726	694	9	14	1467	1498	-17	6	1080	1043	16	4	499	449	14	
8	1142	1216	-26	15	420	547	-59	7	200	91	13	5	518	593	-24	
9	242	101	13	16	442	565	-57	8	2109	1974	47	6	970	900	26	
10	2788	2767	5	17	1081	1109	-15	9	2348	2182	54	7	1891	1831	20	
11	432	483	-11	18	1933	1864	30	10	2209	1991	72	8	1349	1234	41	
12	1954	1940	4	19	323	342	-5	11	261	52	24	9	584	517	18	
13	-84	24	-1	20	836	887	-24	12	2127	2016	37	10	1317	1272	16	
14	534	600	-15	21	528	476	-17	13	1288	1257	12	11	2855	2758	26	
15	1156	1138	5	22	2373	2433	-23	14	477	365	28	12	462	452	2	
16	114	209	-7	23	292	188	16	15	624	703	-27	13	-214	17	-14	
17	490	485	1	24	321	429	-25	16	420	509	-23	14	1063	962	32	
18	714	803	-22	25	-156	231	-25	17	614	613	0	15	385	436	-10	
			26	-206	20	-13	18	468	371	20	16	1020	928	28		
	3	k	9					19	992	857	42	17	714	744	-7	
			4	k	1			20	1916	1814	32	18	867	784	22	
0	2124	2069	17					21	1347	1297	15	19	1836	1803	9	
1	1608	1596	3	1	1359	1275	41	22	386	424	-6	20	102	210	-7	
2	350	252	15	2	1912	1826	35	23	369	181	21	21	1258	1197	17	
3	1714	1709	1	3	788	730	29	24	639	591	10					
4	667	671	-1	4	688	603	39					4	k	7		
5	619	734	-34	5	1400	1442	-20		4	k	4					
6	928	911	5	6	952	911	20					1	599	521	22	
7	1381	1347	11	7	1457	1409	21	0	3166	3427	-76	2	2421	2469	-15	
8	899	916	-5	8	1925	1765	61	1	246	312	-15	3	1053	1024	10	
9	609	602	1	9	2024	2002	8	2	452	488	-11	4	987	988	0	
10	1195	1265	-22	10	2724	2496	69	3	1117	1176	-26	5	311	371	-12	
11	2194	2189	1	11	485	479	2	4	1425	1483	-25	6	1197	1154	15	
12	1241	1243	0	12	1869	1843	10	5	1239	1206	13	7	740	756	-5	
13	795	820	-6	13	2381	2355	8	6	1052	1000	21	8	1199	1222	-8	
14	-224	43	-11	14	505	416	26	7	487	322	43	9	726	698	8	
15	-92	186	-9	15	1246	1247	0	8	2577	2384	58	10	2380	2303	22	
16	495	528	-6	16	240	221	3	9	389	217	35	11	161	205	-4	
			17	1240	1307	-26	10	2728	2534	56	12	1825	1740	27		
	3	k	10	18	328	337	-1	11	759	689	24	13	443	474	-6	
			19	861	868	-2	12	2370	2319	16	14	398	408	-1		

Iridium - TMB Dimer

Page 18

15	992	976	4	13	455	436	8	7	275	53	27	9	1275	1225	17
16	422	564	-29	14	1244	1185	31	8	2962	2794	47	10	1861	1877	-5
17	-236	18	-13	15	1063	1029	18	9	926	855	27	11	421	456	-7
18	598	564	7	16	1135	1105	15	10	1965	1840	43	12	1781	1652	41
19	668	618	10	17	1120	1125	-2	11	329	78	35	13	1023	986	11
				18	390	404	-4	12	2364	2248	36	14	323	361	-6
			4 k 8	19	258	202	10	13	1130	1098	12	15	943	958	-4
				20	2360	2401	-16	14	732	595	44	16	-214	137	-15
0	1990	1918	23	21	764	705	24	15	719	644	23	17	-363	119	-36
1	879	851	9	22	127	161	-3	16	94	185	-7	18	-96	230	-13
2	453	403	10	23	977	905	28	17	1108	1123	-5	19	688	608	17
3	1431	1441	-3	24	1139	1099	16	18	2105	2098	2				
4	682	703	-6	25	683	665	5	19	456	387	13	5 k 7			
5	877	872	1					20	459	312	24				
6	1279	1293	-4		5 k 1		21	202	148	4	0	2706	2693	3	
7	672	743	-21				22	2122	2080	11	1	638	731	-29	
8	1222	1279	-19	0	1241	1130	51	23	651	584	14	2	155	42	6
9	764	744	5	1	2140	2095	17					3	1350	1321	10
10	1434	1457	-7	2	701	652	22	5 k 4			4	1155	1212	-20	
11	1940	1878	18	3	2853	2817	11				5	1188	1200	-4	
12	1345	1354	-2	4	442	439	1	1	2282	2360	-26	6	860	853	2
13	769	816	-12	5	1707	1625	33	2	1729	1865	-55	7	407	318	16
14	407	479	-13	6	360	343	5	3	619	664	-16	8	1301	1294	2
15	-210	18	-10	7	1982	1999	-6	4	1539	1566	-11	9	398	439	-8
16	-84	253	-15	8	393	130	53	5	468	498	-9	10	1555	1503	17
17	-155	192	-13	9	622	606	6	6	304	364	-14	11	1469	1423	14
				10	432	343	25	7	853	854	0	12	1656	1588	21
			4 k 9	11	4411	4256	32	8	1547	1519	10	13	1116	1024	27
				12	468	175	62	9	1832	1711	42	14	351	378	-4
1	2302	2354	-15	13	1385	1420	-14	10	1187	1136	19	15	-88	263	-17
2	257	93	14	14	-247	17	22	11	302	47	28	16	384	304	11
3	1312	1310	0	15	-141	69	-9	12	973	901	25	17	399	289	14
4	1034	1084	-16	16	1037	974	23	13	1449	1406	15				
5	-244	47	-16	17	228	142	9	14	1001	972	10	5 k 8			
6	667	715	-12	18	574	470	26	15	164	127	3				
7	327	508	-34	19	2594	2566	8	16	640	557	21	1	2071	2066	1
8	603	562	9	20	378	102	33	17	990	950	12	2	342	395	-9
9	2411	2416	-1	21	1773	1799	-8	18	-169	7	-7	3	1063	1030	10
10	328	224	12	22	293	174	12	19	965	994	-9	4	1304	1302	0
11	-247	75	-15	23	741	699	10	20	1127	1085	12	5	-101	207	-14
12	459	500	-7	24	794	830	-9	21	1466	1386	23	6	142	289	-15
13	1664	1670	-1					22	650	538	23	7	587	542	10
14	819	762	14	5 k 2							8	892	837	15	
							5 k 5				9	2329	2330	0	
			4 k 10	1	2353	2454	-36				10	427	352	12	
				2	2606	2642	-11	0	536	558	-7	11	-154	36	-5
0	1755	1786	-9	3	1759	1762	-1	1	2007	2197	-70	12	353	345	1
1	994	1021	-8	4	1832	1836	-1	2	606	677	-26	13	1461	1475	-4
2	787	845	-15	5	771	795	-10	3	1190	1250	-24	14	954	995	-11
3	-191	31	-8	6	1297	1307	-4	4	-169	91	-14				
4	-138	446	-49	7	130	179	-6	5	801	757	15	5 k 9			
5	809	821	-3	8	267	214	9	6	1156	1126	11				
6	514	570	-11	9	3238	3081	41	7	1831	1783	16	0	1750	1750	0
7	971	956	4	10	2002	1815	65	8	922	917	1	1	1475	1396	24
8	1479	1447	9	11	362	257	22	9	395	218	31	2	803	836	-9
9	-227	131	-15	12	1903	1849	19	10	485	324	34	3	793	834	-11
10	1088	1182	-27	13	1553	1500	20	11	2893	2729	44	4	-98	290	-21
				14	658	675	-5	12	159	61	6	5	789	800	-2
			4 k 11	15	193	120	7	13	72	10	1	6	522	640	-26
				16	-124	279	-30	14	976	918	18	7	1046	1102	-17
1	782	836	-13	17	846	832	5	15	307	310	0	8	1601	1630	-9
2	1473	1649	-54	18	1011	974	12	16	1038	997	12	9	270	8	15
3	460	508	-8	19	952	886	21	17	388	442	-9	10	1183	1189	-1
				20	1715	1684	10	18	-49	128	-4	11	1806	1783	6
			5 k 0	21	1704	1753	-15	19	1757	1643	33				
				22	680	558	27	20	349	188	17	5 k 10			
1	1936	1925	5	23	620	731	-27	21	1598	1273	35				
2	3190	3181	2	24	336	469	-21					1	330	419	-13
3	1255	1250	2					5 k 6				2	2022	2132	-32
4	502	511	-5		5 k 3							3	930	973	-11
5	-209	40	-36					1	267	301	-6	4	764	738	6
6	1047	1019	18	0	4440	4734	-64	2	2237	2257	-6	5	212	300	-9
7	2125	2107	8	1	402	346	15	3	1467	1443	8	6	487	616	-25
8	2173	2176	-1	2	576	644	-26	4	512	512	0				
9	2163	2126	16	3	449	585	-50	5	792	814	-7	6 k 0			
10	3179	3230	-17	4	1178	1219	-18	6	1240	1141	35				
11	275	42	42	5	1640	1590	20	7	1017	950	23	0	1268	1228	24
12	2228	2242	-6	6	276	231	8	8	891	941	-17	1	2430	2418	4

Iridium - TMB Dimer

Page 19

2	855	903	-31			6	856	858	0	20	1338	1266	30		
3	4070	4122	-14	1	1149	1303	-69	7	-157	26	-7	21	1493	1454	16
4	991	992	0	2	2043	2141	-36	8	1644	1563	26	22	290	206	12
5	1937	1919	8	3	571	600	-10	9	310	260	7	23	907	948	-15
6	1649	1685	-8	4	928	941	-5	10	1833	1737	30				
7	697	735	-22	5	554	607	-18	11	888	821	20		7	k	1
8	729	649	43	6	-129	187	-20	12	1472	1398	22				
9	1021	1000	12	7	731	744	-5	13	1056	1006	14	0	4192	4279	-19
10	805	819	-8	8	1662	1519	52	14	466	479	-2	1	1291	1236	22
11	2987	3000	-4	9	2007	1871	46	15	-207	111	-10	2	1198	1172	11
12	1411	1414	-1	10	1911	1860	18	16	-259	215	-26	3	-75	86	-5
13	951	949	1	11	757	741	5	17	1092	1066	7	4	1759	1763	-1
14	-201	141	-33	12	1241	1091	52					5	1463	1552	43
15	-148	133	-20	13	1051	967	29		6	k	7	6	915	915	0
16	546	584	-16	14	1278	1208	24					7	1260	1200	24
17	-246	13	-28	15	1125	1094	10	1	2156	2118	11	8	2010	1966	15
18	663	635	11	16	573	595	-5	2	808	729	23	9	560	536	7
19	1916	1918	0	17	933	907	7	3	688	665	6	10	2209	2083	41
20	738	591	52	18	-210	122	-15	4	1308	1294	4	11	995	897	36
21	1692	1618	30	19	246	134	9	5	-121	219	-17	12	1664	1621	15
22	818	748	25	20	1877	1772	31	6	448	417	5	13	1101	1049	19
23	356	323	6	21	894	768	32	7	960	942	5	14	1525	1544	-7
24	930	865	24	22	289	406	-16	8	1141	1105	11	15	666	530	37
							9	2159	2204	-13	16	983	1023	-14	
	6	k	1		6	k	4	10	767	719	12	17	1292	1264	9
							11	148	119	1	18	1462	1383	25	
1	2774	2839	-20	0	310	316	-1	12	260	275	-1	19	545	507	8
2	2188	2161	9	1	2177	2314	-48	13	1532	1418	33	20	582	695	-28
3	1780	1685	37	2	551	581	-10	14	1072	1118	-13	21	155	164	0
4	2641	2659	-5	3	1345	1380	-13	15	364	361	0	22	1804	1823	-5
5	83	187	-12	4	-175	33	-11								
6	1783	1747	14	5	186	313	-22	6	k	8		7	k	2	
7	204	175	4	6	1168	1088	30								
8	334	176	30	7	1623	1563	21	0	2073	1985	25	1	1127	1200	-31
9	2749	2581	49	8	585	479	29	1	1863	1758	31	2	2098	2150	-18
10	1815	1777	14	9	486	390	22	2	1007	954	15	3	-164	9	-10
11	607	456	46	10	282	174	14	3	1175	1225	-15	4	938	898	15
12	1998	1949	17	11	2819	2675	39	4	245	269	-2	5	454	553	-31
13	1703	1741	-14	12	857	772	26	5	756	794	-10	6	424	409	3
14	1273	1245	10	13	-209	88	-15	6	751	739	3	7	1540	1572	-12
15	440	487	-12	14	1000	891	34	7	1121	1166	-13	8	1825	1750	26
16	287	222	9	15	511	536	-5	8	1289	1291	0	9	1761	1781	-7
17	1024	958	22	16	1230	1203	8	9	-135	58	-4	10	2277	2206	22
18	1179	1202	-8	17	899	897	0	10	976	982	-1	11	500	426	18
19	1666	1600	22	18	213	335	-15	11	1815	1787	8	12	1294	1273	7
20	1580	1569	3	19	1501	1467	10	12	181	247	-5	13	1462	1385	27
21	1971	1974	-1	20	376	68	27					14	1335	1221	39
22	733	740	-1		6	k	9					15	1814	1795	6
23	929	935	-1		6	k	5	1	388	339	7	16	954	897	17
	6	k	2	1	978	1064	-33	2	2090	2217	-37	18	379	347	5
				2	2166	2359	-67	3	1228	1291	-18	19	177	18	7
0	4290	4500	-47	3	1353	1438	-33	4	532	566	-6	20	2241	2237	0
1	546	551	-1	4	772	885	-41	5	909	1012	-29	21	817	909	-25
2	544	614	-26	5	-135	124	-10	6	657	762	-25				
3	321	376	-14	6	659	666	-2	7	1144	1154	-2		7	k	3
4	1213	1172	17	7	879	886	-2								
5	1379	1384	-1	8	643	584	16		7	k	0	0	166	79	7
6	-125	13	-6	9	1351	1330	7	1	2254	2265	-4	1	1540	1647	-42
7	643	641	0	10	2027	1987	12	2	1459	1431	15	3	1612	1697	-33
8	2579	2501	24	11	460	353	21	3	924	988	-39	4	578	556	6
9	659	524	43	12	1927	1869	18								
10	2411	2344	21	13	1091	1005	27	4	1782	1741	20	5	59	215	-15
11	450	219	47	14	-60	80	-2	5	183	271	-23	6	1305	1310	-1
12	1596	1556	14	15	952	918	9	6	1100	1077	13	7	1543	1562	-7
13	1272	1212	22	16	161	163	0	7	352	409	-22	8	499	471	7
14	1694	1695	0	17	433	386	7	8	597	545	24	9	647	633	4
15	209	195	1	18	925	901	6	9	2920	2953	-11	10	380	293	16
16	368	391	-4	19	627	525	20	10	834	665	83	11	2870	2714	42
17	487	467	4				11	287	269	5	12	824	733	27	
18	1863	1717	46		6	k	6	12	1605	1617	-6	13	-169	63	-9
19	297	139	16				13	1734	1761	-12	14	364	361	0	
20	460	399	11	0	2541	2499	12	14	905	931	-12	15	53	115	-2
21	573	540	7	1	326	302	4	15	-142	246	-37	16	460	433	5
22	1920	1789	37	2	-255	28	-21	16	523	570	-18	17	468	538	-14
23	421	287	18	3	841	718	37	17	1099	1101	0	18	252	14	14
				4	925	880	15	18	881	870	4	19	1738	1646	27
	6	k	3	5	1376	1291	29	19	1117	1105	5	20	265	240	2

Iridium - TMB Dimer										Page		20				
7 k 4				7 k 8			18 931 943			-3		1 426 489		-11		
7	k	4	1	273	141	11	19	1730	1743	-3	2	1696	1697	0		
1	1091	1173	-31	2	1811	1834	-6		8	k	3	4	441	467	-4	
2	1310	1449	-54	3	891	846	11					5	296	249	5	
3	1517	1552	-12	4	447	561	-22	1	1818	1858	-14	6	414	537	-22	
4	1114	1156	-15	5	714	777	-15	2	1249	1316	-25	7	977	912	19	
5	542	551	-2	6	908	940	-8	3	1462	1454	2					
6	731	845	-39	7	988	1005	-4	4	1829	1885	-20	9	k	0		
7	829	726	32					5	-155	162	-16					
8	599	587	3		8	k	0	6	1215	1277	-23	1	1441	1373	34	
9	1869	1878	-3					7	302	249	8	2	2994	2994	0	
10	1312	1258	18	0	2081	2177	-43	8	330	311	3	3	1124	1120	2	
11	205	2	11	1	852	840	6	9	2291	2242	15	4	244	57	27	
12	1588	1587	0	2	669	657	6	10	1126	1097	9	5	1206	1232	-13	
13	1223	1184	17	3	101	52	4	11	624	611	3	6	610	686	-35	
14	493	432	11	4	333	438	-41	12	1774	1645	41	7	1395	1331	31	
15	935	920	4	5	1545	1568	-12	13	1506	1416	28	8	969	1009	-21	
16	-234	11	-13	6	321	365	-15	14	866	929	-21	9	474	357	37	
17	159	266	-10	7	997	1044	-26	15	738	669	17	10	1703	1663	18	
18	891	847	11	8	1847	1877	-14	16	194	24	8	11	233	249	-3	
19	1345	1209	38	9	251	120	23	17	302	260	5	12	1384	1471	-43	
				10	1694	1714	-9	18	911	908	0	13	-158	118	-16	
				11	1183	1229	-24					14	779	809	-12	
				12	1085	1187	-54		8	k	4	15	1138	1057	33	
0	2935	3078	-40	13	905	949	-21					16	567	557	3	
1	106	14	3	14	1068	1115	-23	0	3092	3145	-14	17	596	456	40	
2	-313	79	-33	15	357	422	-19	1	408	320	16	18	319	261	10	
3	1025	1052	-9	16	595	584	4	2	96	223	-11	19	268	103	18	
4	1082	1151	-24	17	1498	1476	9	3	840	880	-12					
5	1536	1559	-8	18	1048	977	29	4	1008	1096	-31		9	k	1	
6	615	676	-17	19	424	295	28	5	1183	1104	26					
7	-261	164	-28	20	339	250	16	6	146	270	-14	0	949	891	20	
8	1676	1610	21	21	914	916	0	7	599	640	-11	1	1653	1696	-16	
9	573	579	-1					8	1736	1657	25	2	804	835	-11	
10	1525	1422	33		8	k	1	9	619	659	-10	10	3	2410	2405	1
11	213	38	10					10	1107	957	44	4	1125	1080	16	
12	1855	1845	3	1	1960	2083	-46	11	-196	105	-12	5	1182	1200	-6	
13	1215	1085	38	2	2743	2831	-27	12	1332	1280	16	6	1590	1640	-18	
14	625	552	16	3	751	762	-4	13	757	645	27	7	878	858	7	
15	-129	316	-26	4	322	230	17	14	268	409	-20	8	289	251	6	
16	195	270	-7	5	633	641	-2	15	293	298	0	9	811	799	4	
17	692	698	-1	6	1042	1077	-13	16	49	197	-7	10	539	419	28	
				7	2182	2163	6					11	2410	2320	26	
				8	1642	1561	29		8	k	5	12	1280	1243	12	
				9	1615	1493	43					13	1106	1133	-8	
1	1956	1975	-6	10	2651	2557	27	1	1140	1241	-35	14	575	687	-28	
2	1153	1162	-3	11	501	433	16	2	1393	1533	-49	15	315	134	18	
3	-193	77	-12	12	1571	1525	16	3	-98	354	-34	16	1458	1456	0	
4	749	709	11	13	374	234	22	4	764	901	-41	17	392	455	-11	
5	483	511	-6	14	493	445	11	5	253	262	-1	18	664	548	24	
6	150	302	-17	15	1498	1402	32	6	-162	145	-12					
7	1112	1065	14	16	565	492	16	7	1188	1131	17		9	k	2	
8	909	855	16	17	1410	1414	-1	8	1311	1290	6					
9	2098	2147	-14	18	742	677	16	9	1464	1463	0	1	1616	1707	-33	
10	840	742	25	19	596	566	6	10	955	893	17	2	1166	1265	-37	
11	266	89	13	20	1823	1659	47	11	588	583	1	3	1040	987	18	
12	-135	95	-6					12	521	545	-4	4	2433	2459	-7	
13	1158	1196	-11		8	k	2	13	1014	917	26	5	334	267	11	
14	1132	1073	16					14	1270	1236	9	6	1291	1384	-34	
15	774	636	30	0	1015	1012	1					7	258	339	-13	
				1	1327	1344	-6		8	k	6	8	718	593	34	
				2	1126	1154	-10					9	1965	1941	7	
				3	1772	1856	-31	0	259	362	-14	10	1181	1225	-15	
0	813	837	-6	4	927	962	-13	1	1109	1150	-12	11	337	314	3	
1	1800	1781	6	5	944	987	-16	2	1216	1173	13	12	1452	1532	-26	
2	1029	956	21	6	1476	1440	13	3	662	698	-8	13	1452	1400	16	
3	851	761	23	7	1566	1477	31	4	-286	37	-20	14	1061	1062	0	
4	183	228	-4	8	258	191	8	5	230	281	-5	15	298	217	9	
5	633	639	-1	9	693	657	12	6	1584	1536	14	16	454	355	16	
6	1139	1128	3	10	619	459	40	7	1329	1258	21	17	565	644	-17	
7	1497	1450	14	11	2961	2929	8	8	619	669	-11					
8	793	740	13	12	1085	890	61	9	262	304	-5		9	k	3	
9	-189	116	-11	13	797	712	24	10	76	8	1					
10	707	630	17	14	370	284	13	11	2097	2109	-3	0	2243	2332	-28	
11	1955	1939	4	15	137	290	-16					1	829	889	-19	
12	484	360	19	16	1254	1248	1		8	k	7	2	375	333	7	
				17	148	235	-7					3	251	433	-34	

Iridium - TMB Dimer

Page 21

4	752	746	1	4	812	849	-18	5	602	683	-20	10	742	841	-27				
5	1700	1752	-18	5	1169	1087	-39	6	61	8	0	11	1048	1040	2				
6	203	39	10	6	1419	1441	-10	7	1209	1203	1	12	345	336	1				
7	686	661	6	7	853	774	-35	8	1180	1207	-8								
8	1325	1296	9	8	655	679	-10	9	589	581	1		11	k	2				
9	600	559	9	9	374	343	-7	10	1249	1258	-2								
10	1652	1637	4	10	892	921	-13	11	353	304	6	1	762	773	-2				
11	632	510	26	11	1721	1648	-30	12	889	904	-4	2	1415	1460	-14				
12	1096	1032	18	12	1548	1508	17					3	1166	1222	-17				
13	1296	1290	1	13	1313	1222	-38		10	k	4		4	644	623	5			
14	1184	1184	0	14	-186	18	-12		0	636	570	14	6	215	330	-14			
15	318	425	-16	15	349	361	-2		1	974	964	2	7	1394	1455	-19			
				16	825	802	8		2	904	917	-3		8	1468	1462	1		
			9	k	4		17	194	137	5		3	904	985	-23	9	719	797	-20
												3	10	1560	1547	3			
1	1255	1245	3		10	k	1		4	675	661								
2	1576	1568	2				5	-207	77	-11									
3	228	198	3	1	1654	1755	-36	6	1427	1451	-7		11	k	3				
4	833	789	12	2	487	541	-13	7	1039	1072	-9								
5	599	625	-6	3	1092	1091	0	8	111	38	2	0	718	625	21				
6	-138	95	-7	4	1927	1958	-10	9	221	135	6	1	1072	1142	-21				
7	995	918	22	5	-213	38	-14					2	977	1008	-9				
8	1322	1265	17	6	799	804	-1		10	k	5	3	1123	1172	-14				
9	884	851	10	7	84	147	-4		1	701	786	-21	4	735	765	-7			
10	1427	1449	-7	8	845	850	-1		2	489	479	1	5	580	666	-19			
11	270	326	-7	9	2133	2097	10		3	1253	1245	2	6	1299	1266	9			
12	766	784	-4	10	588	514	16		4	803	748	13	7	584	574	2			
13	444	327	17	11	319	244	9		12	1360	1290	21							
													12	k	0				
			9	k	5		13	1394	1392	0	11	k	0						
							14	1197	1171	7			0	1177	1129	20			
0	200	65	8	15	394	99	29	1	1288	1322	-16	1	964	949	6				
1	1161	1135	8	16	999	949	14	2	216	261	-7	2	748	759	-3				
2	767	765	0				3	659	719	-25	3	-229	39	-18					
3	821	894	-20		10	k	2	4	1574	1592	-8	4	-262	21	-24				
4	256	347	-12				5	-161	16	-9	5	1050	1052	0					
5	103	268	-14	0	1963	2087	-41	6	542	409	38	6	744	636	36				
6	1328	1311	5	1	1051	1031	-6	7	306	342	-7	7	875	895	-7				
7	807	767	10	2	831	887	-19	8	1020	1017	1	8	1060	987	28				
8	429	571	-28	3	-123	124	-8	9	1834	1750	33	9	258	216	6				
9	-266	53	-17	4	328	389	-10	10	162	6	8	10	538	496	11				
10	-181	41	-7	5	1580	1591	-3	11	306	209	15								
			6	678	656	5	12	376	333	9			12	k	1				
			7	986	840	43	13	988	942	18									
			8	1867	1868	0	14	1230	1198	12	1	275	339	-8					
1	743	775	-8	9	496	468	5					2	1449	1429	6				
2	762	720	10	10	1722	1694	8	11	k	1		3	1140	1105	10				
3	1436	1433	0	11	782	522	57					4	-102	303	-23				
4	651	610	8	12	1042	1049	-2	0	1718	1750	-10	5	682	692	-2				
5	372	416	-6	13	1285	1339	-16	1	1017	1057	-12	6	321	370	-7				
6	680	669	2	14	1127	1256	-39	2	526	626	-24	7	1216	1103	31				
							3	-170	232	-21									
			10	k	0		10	k	3	4	57	137	-3	12	k	2			
							5	1602	1582	6									
0	1627	1660	-15	1	1013	1092	-25	6	714	660	13	0	870	803	17				
1	1249	1288	-19	2	1711	1683	8	7	1051	987	18	1	729	733	0				
2	686	686	0	3	258	363	-15	8	1312	1403	-29	2	910	900	2				
3	1735	1735	0	4	786	741	13	9	450	345	17								

Appendix 2

```

C PROGRAM DIFFAN
C
  OPTIONS/G_FLOATING
  PARAMETER (LW=1000,LIW=LW/8+2)
  IMPLICIT DOUBLE PRECISION (A-H,O-Z)
  INTEGER IW(LIW)
  DIMENSION W(LW)
  EXTERNAL F,D01AJF
  COMMON/CONST/AK,C,KOUNT
  READ(5,101) IZA,IZB,X1,SI,T,RA,RB,OBSK,DA,DB,N
101 FORMAT(2I4,F4.2,E10.4,F6.2,2F4.2,E9.3,2E10.4,I5)
  TK = 273.15 + T
  AB = RA + RB
  IF (X1.EQ.0) X1 = AB
  DIEL = EXP(3.69031 - 0.00430493*T)
  ETA = EXP(885.636/TK - 4.03662)
  AID = SI/(DIEL*TK)
  AK = 50.2900016*SQRT(AID)
  TB = IZA*IZB*167102.4/(DIEL*TK)
  BB = TB/X1
  CHK = ABS(IZA*IZB)
  IF (CHK.GT.0) GO TO 1
  RESULT = 1.0/X1
  GO TO 2
1  DC = EXP(AK*X1)/(1.0 + AK*X1)
  C = TB*DC
  EPSABS = 0.0
  EPSREL = 1.0E-5
  A = X1
  B = N*X1
  KOUNT = 0
  IFAIL = -1
  CALL D01AJF(F,A,B,EPSABS,EPSREL,RESULT,ABSERR,W,LW,IW,LIW,IFAIL)
  IF (IFAIL .NE. 0) THEN
    WRITE(6,101) IFAIL
1001 FORMAT(' D01AJF FAILED. IFAIL = ',I2)
    STOP
  END IF
2  FF = 1.0/(RESULT*X1)
  PDC = 7.3246393*TK/(ETA*10.0**8)
  DAA = PDC/RA
  IF (DAA.GT.0) GO TO 3
  DA = DAA
3  DBB = PDC/RB
  IF (DBB.GT.0) GO TO 4
  DB = DBB
4  DK = 75.675251*AB*FF*(DA + DB)*10.0**12
  DHF = EXP(BB/(1.0 + X1*AK))
  BDK = 3.0*(DA + DB)*FF*DHF*10.0**16/AB/AB
  EQK00 = 0.0025225083*AB*AB*AB
  EQK = EQK00/DHF
  EQK0 = EQK00/EXP(BB)
  ACTK = BDK/(DK/OBSK - 1.0)
  ACT1 = 1.0/(1.0/OBSK - 1.0/DK)
  WRITE(6,103) IZA,IZB,T,SI,X1,RA,RB,OBSK,DA,DB
103 FORMAT(5X,'CHARGE ON ION A = ',I4,/5X'CHARGE ON ION B = ',I4,
  */5X,'TEMPERATURE (DEG. CELCIUS) = ',F6.2,/5X,'IONIC STRENGTH
  *(MOLES/LITER) = ',E10.4,/5X,'A-B SEPERATION DISTANE (A) = ',F5.2,
  */5X,'RADIUS OF ION A (A) = ',F5.2,/5X,'RADIUS OF ION B (A) = ',
  *F5.2,/5X,'OBSERVED RATE CONSTANT (1/Msec) = ',E9.3,/5X,'DIFFUSION
  *CONSTANT FOR ION A (CM2/SEC) = ',E10.4,/5X,'DIFFUSION CONSTANT
  *FOR ION B (CM2/SEC) = ',E10.4)
  WRITE(6,104)
104 FORMAT(//3X,'THE CALCULATED PARAMETERS: ')

```

```

      WRITE(6,105)DIEL,ETA,BB,AK,FF,DHF,DAA,DBB
105 FORMAT(5X,'DIELECTRIC CONSTANT OF CH3CN = ',F6.3,/5X,'VISCOSITY OF
*CH3CN = ',F7.4,/5X,'DEBYE-HUCKEL PARAMETER, B = ',E12.6,/5X,'DEBYE-
*HUCKEL PARAMETER, KAPPA (A-1), = ',E12.5,/5X,'DEBYE CHARGE-IONIC ATMOS
*PHERE PARAMETER, F, = ',E12.6,/5X,'EIGEN-FUOSS K-d IONIC
*PARAMETER = ',E12.6,/5X,'THE CALCULATED DIFFUSION COEFFICIENT OF
*ION A (CM2/SEC) = ',E10.4,/5X,'THE CALCULATED DIFFUSION COEFFICIENT
*OF ION B (CM2/SEC) = ',E10.4)
      WRITE(6,106)
106 FORMAT(//3X,'THE CALCULATED RESULTS ARE:')
      WRITE(6,107)DK,BDK,EQK,EQK0,ACTK,ACT1
107 FORMAT(5X,'DIFFUSION CONTROLLED RATE,(1/Msec) = ',E10.4,/5X,'DISSOCIA-
*TION RATE (1/SEC) = ',E10.4,/5X,'EQUILIBRIUM CONSTANT (MOLES/LITER)
*= ',E10.4,/5X,'EQUILIBRIUM CONSTANT AT ZERO IONIC STRENGTH (MOLES/LITER)
*= ',E10.4,/5X,'ACTIVATED 1ST ORDER RATE CONSTANT (1/SEC) = ',E10.4,
*/5X,'ACTIVATED 2ND ORDER RATE CONSTANT (1/Msec) = ',E10.4)
      WRITE(6,108)RESULT,KOUNT,IFAIL,ABSERR,IW(1)
108 FORMAT(/5X,'RESULT = ',F10.4,5X,'KOUNT = ',I4,5X,'IFIAL = ',I4,
*/5X,'ABSERR = ',E10.4,5X,'IW(1) = ',I4)
      END
      REAL*8 FUNCTION F(X)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      COMMON/CONST/AK,C,KOUNT
      INTEGER KOUNT
      KOUNT = KOUNT + 1
      F = EXP(C/(X*EXP(AK*X)))/(X**2)
      RETURN
      END

```

Results for 4-cyano-N-methylpyridinium.

CHARGE ON ION A = 1
 CHARGE ON ION B = 2
 TEMPERATURE (DEG. CELCIUS) = 22.00
 IONIC STRENGTH (MOLES/LITER) = 0.1000E+00
 A-B SEPERATION DISTANE (A) = 11.19
 RADIUS OF ION A (A) = 3.34
 RADIUS OF ION B (A) = 7.85
 OBSERVED RATE CONSTANT (1/Msec) = 0.450E+09
 DIFFUSION CONSTANT FOR ION A (CM2/SEC) = 0.1824E-04
 DIFFUSION CONSTANT FOR ION B (CM2/SEC) = 0.7780E-05
 UPPER BOUND OF INTEGRATION,N*X1, N = 100

THE CALCULATED PARAMETERS:

DIELETRIC CONSTANT OF CH3CN = 36.438
 VISCOSITY OF CH3CN = 0.3549
 DEBYE-HUCKEL PARAMETER, B , = 0.277709E+01
 DEBYE-HUCKEL PARAMETER, KAPPA (A-1), = 0.15335E+00
 DEBYE CHARGE-IONIC ATMOSPHERE PARAMETER, F , = 0.750328E+00
 EIGEN-FUOSS k-d IONIC PARAMETER = 0.278012E+01
 THE CALCULATED DIFFUSION COEFFICIENT OF ION A (CM2/SEC) = 0.1824E-04
 THE CALCULATED DIFFUSION COEFFICIENT OF ION B (CM2/SEC) = 0.7780E-05

THE CALCULATED RESULTS ARE:

DIFFUSION CONTROLLED RATE,(1/Msec) = 0.1852E+11
 DISSOCIATION RATE (1/SEC) = 0.1299E+11
 EQUILIBRIUM CONSTANT (MOLES/LITER) = 0.1271E+01
 EQUILIBRIUM CONSTANT AT ZERO IONIC STRENGTH (MOLES/LITER) = 0.2199E+00
 ACTIVATED 1ST ORDER RATE CONSTANT (1/SEC) = 0.3639E+09
 ACTIVATED 2ND ORDER RATE CONSTANT (1/Msec) = 0.4626E+09

RESULT = .119101994 KOUNT = 273 IFIAL = 0
 ABSERR = 0.5720E-09 IW(1) = 28

Results for 4-carbomethoxy-N-methylpyridinium.

CHARGE ON ION A = 1
 CHARGE ON ION B = 2
 TEMPERATURE (DEG. CELCIUS) = 22.00
 IONIC STRENGTH (MOLES/LITER) = 0.1000E+00
 A-B SEPERATION DISTANE (A) = 11.72
 RADIUS OF ION A (A) = 3.87
 RADIUS OF ION B (A) = 7.85
 OBSERVED RATE CONSTANT (1/Msec) = 0.330E+09
 DIFFUSION CONSTANT FOR ION A (CM²/SEC) = 0.1574E-04
 DIFFUSION CONSTANT FOR ION B (CM²/SEC) = 0.7780E-05
 UPPER BOUND OF INTEGRATION, N*X1, N = 100

THE CALCULATED PARAMETERS:

DIELETRIC CONSTANT OF CH₃CN = 38.438
 VISCOSITY OF CH₃CN = 0.3549
 DEBYE-HUCKEL PARAMETER, B, = 0.285150E+01
 DEBYE-HUCKEL PARAMETER, KAPPA (A-1), = 0.15335E+00
 DEBYE CHARGE-IONIC ATMOSPHERE PARAMETER, F, = 0.773685E+00
 EIGEN-FUOSS k-d IONIC PARAMETER = 0.258026E+01
 THE CALCULATED DIFFUSION COEFFICIENT OF ION A (CM²/SEC) = 0.1574E-04
 THE CALCULATED DIFFUSION COEFFICIENT OF ION B (CM²/SEC) = 0.7780E-05

THE CALCULATED RESULTS ARE:

DIFFUSION CONTROLLED RATE, (1/Msec) = 0.1813E+11
 DISSOCIATION RATE (1/SEC) = 0.1026E+11
 EQUILIBRIUM CONSTANT (MOLES/LITER) = 0.1574E+01
 EQUILIBRIUM CONSTANT AT ZERO IONIC STRENGTH (MOLES/LITER) = 0.2865E+00
 ACTIVATED 1ST ORDER RATE CONSTANT (1/SEC) = 0.2141E+09
 ACTIVATED 2ND ORDER RATE CONSTANT (1/Msec) = 0.3369E+09

RESULT = .110285706 KOUNT = 273 IFIAL = 0
 ABSERR = 0.4390E-09 IW(1) = 28

Results for 3-carbomethoxy-N-benzylpyridinium.

CHARGE ON ION A = 1
 CHARGE ON ION B = 2
 TEMPERATURE (DEG. CELCIUS) = 22.00
 IONIC STRENGTH (MOLES/LITER) = 0.1000E+00
 A-B SEPERATION DISTANE (A) = 12.49
 RADIUS OF ION A (A) = 4.64
 RADIUS OF ION B (A) = 7.85
 OBSERVED RATE CONSTANT (1/Msec) = 0.280E+08
 DIFFUSION CONSTANT FOR ION A (CM2/SEC) = 0.1313E-04
 DIFFUSION CONSTANT FOR ION B (CM2/SEC) = 0.7760E-05
 UPPER BOUND OF INTEGRATION, N*X1, N = 100

THE CALCULATED PARAMETERS:

DIELETTRIC CONSTANT OF CH3CN = 36.438
 VISCOSITY OF CH3CN = 0.3549
 DEBYE-HUCKEL PARAMETER, B , = 0.248804E+01
 DEBYE-HUCKEL PARAMETER, KAPPA (A-1) , = 0.15335E+00
 DEBYE CHARGE-IONIC ATMOSPHERE PARAMETER, F , = 0.802966E+00
 EIGEN-FUOSS k-d IONIC PARAMETER = 0.234768E+01
 THE CALCULATED DIFFUSION COEFFICIENT OF ION A (CM2/SEC) = 0.1313E-04
 THE CALCULATED DIFFUSION COEFFICIENT OF ION B (CM2/SEC) = 0.7760E-05

THE CALCULATED RESULTS ARE:

DIFFUSION CONTROLLED RATE,(1/Msec) = 0.1585E+11
 DISSOCIATION RATE (1/SEC) = 0.7573E+10
 EQUILIBRIUM CONSTANT (MOLES/LITER) = 0.2094E+01
 EQUILIBRIUM CONSTANT AT ZERO IONIC STRENGTH (MOLES/LITER) = 0.4083E+00
 ACTIVATED 1ST ORDER RATE CONSTANT (1/SEC) = 0.1340E+08
 ACTIVATED 2ND ORDER RATE CONSTANT (1/Msec) = 0.2805E+08

RESULT = .099710350 KOUNT = 273 IFIAL = 0
 ABSERR = 0.3123E-09 IW(1) = 28

Appendix 3

Table A3.1. U_{ij} 's, Ir atoms.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
IR1	275(9)	371(9)	250(8)	-12(9)	42(7)	-19(8)
IR2	346(10)	366(9)	251(8)	-42(10)	21(7)	6(8)

The form of the displacement factor is:

$$\exp -2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}\ell^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}h\ell a^*c^* + 2U_{23}k\ell b^*c^*)$$

Table A3.2. Hydrogen coordinates.

 x, y and $z \times 10^4$

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>B</i>
H1	-1095	2527	2873	5.0
H2	3266	2577	4413	5.0
H3A	2411	1074	2073	6.0
H3B	2135	1180	2620	6.0
H3C	1087	1247	2213	6.0
H4A	2651	1741	1469	6.0
H4B	1319	1897	1621	6.0
H4C	2489	2195	1698	6.0
H5A	4288	1554	2262	6.0
H5B	3754	1694	2766	6.0
H6A	3704	2418	2290	6.0
H6B	4920	2209	2086	6.0
H7A	6701	1994	2801	6.0
H7B	6416	2133	3338	6.0
H7C	5600	1779	3079	6.0
H8A	6370	2766	2480	6.0
H8B	5102	2994	2596	6.0
H8C	6119	2921	3013	6.0
H13A	3152	3707	2011	6.0
H13B	3205	3301	2346	6.0
H13C	2139	3348	1942	6.0
H14A	1425	4277	2167	6.0
H14B	386	3928	2085	6.0
H14C	478	4179	2581	6.0
H15A	3296	4092	2841	6.0
H15B	3103	3669	3136	6.0
H16A	1106	4087	3287	6.0
H16B	2149	4440	3297	6.0
H17A	1553	4563	4208	6.0
H17B	635	4172	4202	6.0
H17C	1778	4185	4575	6.0
H18A	3871	4435	4025	6.0
H18B	3845	4045	4384	6.0
H18C	4247	3980	3842	6.0
H23A	-2994	3941	4336	6.0
H23B	-1635	3853	4154	6.0
H23C	-2798	3785	3799	6.0
H24A	-4483	3244	4470	6.0
H24B	-4246	3144	3918	6.0
H24C	-3906	2804	4322	6.0
H25A	-2383	3376	5026	6.0
H25B	-1112	3289	4768	6.0
H26A	-2160	2564	4757	6.0
H26B	-2546	2753	5262	6.0
H27A	-1507	2088	5654	6.0

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U_{eq}</i> or <i>B</i>
H27B	-1035	1934	5145	6.0
H27C	-63	2049	5566	6.0
H28A	-837	2879	5921	6.0
H28B	521	2750	5769	6.0
H28C	-144	3146	5525	6.0
H33A	-2779	1088	4370	6.0
H33B	-2179	1531	4504	6.0
H33C	-3108	1491	4052	6.0
H34A	-1937	708	3573	6.0
H34B	-2355	1122	3290	6.0
H34C	-979	951	3248	6.0
H35A	-529	838	4420	6.0
H35B	36	1298	4461	6.0
H36A	823	1047	3609	6.0
H36B	935	628	3921	6.0
H37A	2337	696	4782	6.0
H37B	3116	1116	4857	6.0
H37C	1652	1124	4902	6.0
H38A	3349	625	3951	6.0
H38B	3330	1016	3594	6.0
H38C	4075	1043	4095	6.0
H112	7761	3434	1331	4.0
H113	8737	3251	2072	5.0
H114	8060	3590	2811	6.0
H115	6445	4055	2791	5.0
H116	5295	4211	2042	4.0
H122	8269	4182	1075	4.0
H123	9585	4570	534	5.0
H124	8589	4930	-139	6.0
H125	6451	4855	-290	5.0
H126	5271	4456	230	4.0
H132	5279	4820	1319	4.0
H133	3274	5205	1477	5.0
H134	1425	4896	1286	6.0
H135	1276	4202	1022	5.0
H136	3099	3790	875	4.0
H142	4567	3189	1378	4.0
H143	3976	2553	975	5.0
H144	4267	2468	152	6.0
H145	5186	2992	-278	5.0
H146	5926	3627	80	4.0
H212	8123	1149	1744	4.0
H213	9252	1736	2111	5.0
H214	8497	2429	1965	6.0
H215	6714	2522	1453	5.0

Atom	<i>x</i>	<i>y</i>	<i>z</i>	<i>U_{eq}</i> or <i>B</i>
H216	5673	1934	1074	4.0
H222	5927	1133	2187	4.0
H223	5564	629	2824	5.0
H224	5155	-70	2628	6.0
H225	5243	-316	1826	5.0
H226	5864	155	1222	4.0
H232	8726	1031	839	4.0
H233	9826	610	296	5.0
H234	8807	169	-248	6.0
H235	6614	116	-245	5.0
H236	5405	440	381	4.0
H242	5423	1546	380	4.0
H243	3404	1666	-52	5.0
H244	1530	1440	275	6.0
H245	1521	941	865	5.0
H246	3463	761	1313	4.0

Table A3.3. Structure Factors.

The columns contain, in order k , $10F_o$, $10F_c$, and $10[(F_o^2 - F_c^2)/\sigma(F_o^2)]$.

Di-iridium complex.

Page 1

-7	k	1	0	1680	-1795	-7	3	-534	-213	-13	6	723	545	8			
			1	2628	2709	-10	4	518	453	2	7	688	61	19			
1	586	-125	11	2	1876	1869	0	5	-609	40	-15	8	484	-221	7		
2	558	52	10	3	2377	-2352	3	6	1000	-783	15	-6	k	11			
3	-323	239	-5				7	390	-381	0							
4	362	-255	2	-6	k	1	8	941	890	3	1	-151	40	0			
5	549	-417	4				9	491	387	3	2	480	-147	7			
6	-529	-160	-11	1	166	250	-1	10	509	-651	-6	3	-151	-13	0		
7	-245	148	-3	2	-146	192	-2	11	711	-309	17	4	606	-138	13		
8	465	23	8	3	462	-288	5	12	1068	1044	1	5	-253	126	-3		
9	728	-642	4	4	797	82	26	13	645	598	2	6	-72	376	-5		
				5	569	-202	12	-6	k	6		7	433	57	7		
-7	k	2	6	903	855	3	7	-79	330	-5	0	3447	3606	-18	-6	k	12
0	2035	-1881	12	8	870	-929	-4	1	-90	-802	-23	0	-455	-34	-4		
1	109	-368	-4	9	600	-621	-1	2	3118	-2972	22	1	1456	1448	0		
2	2017	2050	-3	10	638	711	-4	3	596	487	4	2	-209	218	-3		
3	-559	145	-11	11	-272	350	-8	4	2624	2687	-10	3	1354	-1235	10		
4	1949	-1954	0	12	828	-999	-12	5	654	-358	12	4	739	-83	20		
5	271	-310	0	13	647	-57	17	6	2188	-2064	18						
6	1567	1567	0	14	1251	1265	-1	7	-215	460	-10						
7	127	133	0				8	2750	2835	-14	-5	k	1				
8	1651	-1512	14	-6	k	2	9	-82	-500	-10	1	531	-416	4			
9	-288	82	-3	0	3242	-3268	-3	10	2408	-2283	18	2	-398	127	-8		
-7	k	3	1	1360	1396	-3	11	-509	310	-15	3	1319	-1310	1			
			2	3386	3344	7	12	2131	2571	-36	4	628	-654	-1			
1	714	-45	17	3	1415	-1344	7	-6	k	7	5	373	223	4			
2	599	332	8	4	2616	-2658	-6				6	242	163	1			
3	514	227	7	5	1716	1703	1	1	425	66	6	7	329	-481	-6		
4	-489	7	-8	6	2997	3001	0	2	-802	130	-24	8	765	-692	5		
5	258	-240	0	7	1644	-1648	0	3	567	-522	1	9	605	345	12		
6	363	-487	-3	8	3297	-3157	24	4	-461	140	-9	10	1004	1058	-5		
7	-58	433	-7	9	1738	1706	4	5	432	437	0	11	342	-572	-10		
8	912	783	8	10	2651	2549	16	6	483	303	6	12	1415	-1435	-2		
			11	986	-1270	-27	7	791	-294	22	13	721	607	7			
-7	k	4	12	2226	-2310	-12	8	718	-228	19	14	1310	1139	18			
			13	1193	1306	-11	9	491	542	-2	15	848	-866	-1			
0	1193	1274	-4	14	2244	2267	-3	10	695	649	2	16	1393	-1272	13		
1	3027	-2990	5				11	731	-693	2	17	683	718	-2			
2	845	-1005	-9	-6	k	3											
3	2496	2540	-5				-6	k	8		-5	k	2				
4	1087	925	10	1	-511	-169	-11										
5	2482	-2375	14	2	761	-453	14	0	1014	619	14	0	1474	-1352	10		
6	909	-676	13	3	583	657	-3	1	2346	2174	22	1	3690	3768	-14		
7	2446	2357	12	4	339	251	2	2	483	-608	-5	2	1524	1319	24		
8	579	557	0	5	751	-607	8	3	1572	-1486	9	3	3631	-3634	0		
			6	-234	-283	-5	4	387	26	5	4	1578	-1587	-1			
-7	k	5	7	186	251	-1	5	1614	1697	-10	5	3906	3829	14			
			8	775	547	12	6	267	252	0	6	1278	1202	9			
1	546	117	9	9	894	-626	17	7	1742	-1644	12	7	3071	-3070	0		
2	-405	-46	-5	10	-237	-263	-5	8	454	19	8	8	1840	-1816	3		
3	-358	-455	-11	11	1096	1051	3	9	1755	1768	-1	9	3386	3324	11		
4	651	383	9	12	-476	486	-19	10	277	127	2	10	1282	1223	6		
5	232	297	-1	13	1238	-1133	9	11	1465	-1423	4	11	2632	-2708	-13		
6	-535	-198	-11									12	1454	-1202	29		
7	523	-560	-1	-6	k	4	-6	k	9		13	2466	2384	14			
											14	702	816	-7			
-7	k	6	0	1445	-1477	-2	1	-339	-58	-3	15	2267	-2317	-7			
			1	3700	-3690	1	2	-237	151	-2	16	689	-914	-14			
0	3070	3021	5	2	1625	1484	15	3	260	201	1	17	2506	2466	6		
1	1472	1577	-9	3	2810	2822	-1	4	-185	-47	-1						
2	2723	-2820	-13	4	1098	-1250	-14	5	-343	-268	-7	-5	k	3			
3	1259	-1135	9	5	3125	-3108	2	6	217	167	0						
4	2882	2805	11	6	1403	1300	11	7	-469	99	-9	1	310	114	3		
5	1607	1489	11	7	3269	3257	2	8	-693	-168	-21	2	870	620	18		
6	2782	-2762	2	8	845	-1039	-15	9	289	-100	3	3	384	114	6		
			9	3131	-2978	25	10	475	284	5	4	642	524	6			
-7	k	7	10	700	738	-2					5	588	-412	9			
			11	3133	3129	0	-6	k	10		6	-668	255	-26			
1	-345	110	-4	12	1015	-1089	-6				7	1135	1029	11			
2	-306	151	-3	13	2609	-2678	-10	0	-856	-221	-17	8	-271	-219	-6		
3	587	240	9				1	-548	267	-12	9	377	-552	-8			
4	-202	-204	-2	-6	k	5	2	578	193	10	10	364	168	5			
5	622	591	1	1	278	150	2	3	-347	28	-4	11	1177	1053	12		
-7	k	8	2	589	-228	11	5	386	-3	5	13	1274	-1267	0			

Di-iridium complex.

Page 2

14 570 649 -4	15 94 -137 0	7 2599 -2552 7	7 -4 k 3
15 1181 1189 0	8 1284 1252 3	8 -4 k 3	2 -541 80 -15
16 -36 -473 -9	9 2093 2173 -11	9 -4 k 3	3 -263 229 -8
	10 1538 -1518 2	10 -4 k 3	4 185 3 2
-5 k 4	0 708 -894 -7	-5 k 13	5 547 474 4
	1 -340 -522 -15		6 357 -115 7
0 2415 -2352 7	2 781 592 11	7 530 -418 6	
1 1024 -1036 -1	3 362 323 1	8 214 -494 -12	
2 3015 2986 5	4 492 -410 3	9 612 -392 13	
3 1786 1760 3	5 -141 1 -1	10 -487 310 -19	
4 2508 -2447 10	6 695 367 16	11 -577 -126 -20	
5 1718 -1632 12	7 273 -102 3	12 668 -450 13	
6 2141 1926 35	8 487 -525 -1	13 -66 401 -8	
7 1398 1289 13	9 -211 -112 -2	14 1244 1347 -12	
8 1720 -1710 1	10 414 375 1	15 670 -30 22	
9 1444 -1384 7	11 315 -70 4	16 968 -1064 -8	
10 1799 1884 -13	12 520 -845 -19	17 520 -416 4	
11 1236 1299 -7	13 -403 -91 -7	18 474 538 -2	
12 2028 -2064 -5	14 501 115 10	19 663 -414 11	
13 1011 -920 7			
14 1998 2008 -1	-5 k 9	0 3805 -3845 -4	
15 1171 1240 -6		1 1561 1542 1	
16 1348 -1282 6		2 3326 3298 4	
-5 k 5	1 553 -22 12	3 1071 -931 11	-4 k 4
	2 481 25 9	4 2858 -2851 1	
1 -239 -11 -2	3 619 -337 12	5 1028 895 10	
2 350 -480 -4	4 -386 -152 -8	6 2409 2467 -9	0 1254 -973 19
3 567 61 15	5 360 69 6	7 1268 -1279 -1	1 1464 1373 11
4 449 234 7	6 -425 -259 -11		2 471 581 -6
5 414 -332 3	7 164 38 1	-5 k 15	3 498 -428 3
6 435 360 3	8 107 304 -3		4 1143 -1091 6
7 128 -47 0	9 531 765 -13	1 -545 -208 -12	5 325 -398 -3
8 391 334 2	10 651 -333 14	2 -314 -2 -4	6 415 518 -5
9 -415 -208 -11	11 718 -147 21	3 723 601 6	7 1149 1239 -12
10 612 -526 4	12 616 446 7		8 -398 -170 -11
11 -423 -122 -9	13 567 479 3	-4 k 1	9 236 264 0
12 600 357 11	14 562 -524 1		10 859 913 -5
13 99 -179 -1		1 77 6 0	11 604 -669 -4
14 1188 -941 22	0 1901 2004 -8	2 472 273 7	12 363 -452 -3
15 703 644 3	1 1175 -1097 6	3 919 855 7	13 421 -366 2
16 422 789 -18	2 2213 -2175 5	4 725 -797 -7	14 487 120 11
-5 k 6	3 432 737 -15	5 667 -567 8	15 390 399 0
	4 2092 2126 -5	6 941 976 -4	16 763 -451 17
0 510 798 -10	5 1214 -1336 -13	7 688 -707 -2	17 623 -600 1
1 928 -1027 -7	6 1386 -1344 2	8 579 -85 20	18 -392 383 -13
2 736 -618 7	7 1840 1766 10	9 1250 1150 15	
3 1168 1152 1	8 1245 1360 -12	10 -306 -16 -5	-4 k 5
4 660 661 0	9 1170 -1138 3	11 1174 -1284 -14	
5 610 -356 12	10 1781 -1749 4	12 -455 -205 -14	1 705 -561 8
6 1375 -1315 7	11 1400 1231 17	13 1163 1095 7	2 567 -553 0
7 984 890 8	12 1326 1445 -13	14 301 126 3	3 337 428 -3
8 938 939 0	13 1146 -1226 -7	15 1191 -1249 -6	4 588 -631 -3
9 816 -697 8	-5 k 11	16 456 -257 6	5 225 718 -27
10 1140 -966 17		17 1490 1451 4	6 -296 27 -5
11 1064 996 6	1 388 -307 1	18 423 517 -4	7 365 -353 0
12 713 985 -20	2 -174 500 -11	19 1483 -1470 1	8 691 -662 2
13 703 -513 10	3 373 -304 2		9 -233 346 -10
14 421 -611 -8	4 125 242 -1	0 1459 1504 -3	10 670 462 13
15 309 311 0	5 595 527 3	1 1948 1911 5	11 -347 152 -8
-5 k 7	6 254 229 0	2 1319 -1117 23	12 775 -726 3
	7 680 -698 -1	3 2191 -2235 -8	13 -588 -81 -18
1 -368 330 -10	8 -499 -6 -11	4 436 -316 5	14 -328 186 -7
2 473 -462 0	9 558 550 0	5 2046 1936 20	15 233 251 0
3 243 -358 -3	10 -98 396 -7	6 486 -25 10	16 544 -468 3
4 321 -276 1	11 968 -881 6	7 2392 -2371 4	17 551 88 13
5 124 76 0	12 -192 -232 -3	8 907 700 13	18 -285 368 -9
6 248 132 2	-5 k 12	-4 k 6	
7 -551 -247 -18			
8 -198 377 -8	0 1296 1358 -3	10 -162 299 -6	0 816 -680 6
9 673 -659 0	1 2998 2776 32	11 1804 -1827 -3	1 2130 2089 6
10 312 -564 -10	2 1714 -1702 1	12 864 1011 -14	2 631 524 6
11 458 586 -6	3 3435 -3374 10	13 2136 2133 0	3 723 -781 -4
12 732 304 20	4 1680 1761 -10	14 634 -379 13	4 -389 -17 -9
13 -504 -116 -12	5 2665 2687 -3	15 2237 -2242 0	5 1747 1685 10
14 -413 -136 -8	6 1494 -1420 8	16 341 -150 4	6 695 -697 0
		17 562 46 14	7 1420 -1398 3
		18 167 -486 -10	8 167 -486 -10
		19 1477 -1445 3	9 1388 1370 2

Di-iridium complex.

Page 3

10	-256	0	-3	6	480	-634	-9	2	-521	-213	-14	6	1198	-1121	10	
11	1090	-1077	1	7	2724	2732	-1	3	644	497	7	7	315	404	-4	
12	681	615	4	8	753	661	6	4	-240	90	-2	8	813	704	10	
13	1104	924	18	9	3782	-3830	-8	5	300	-323	0	9	166	92	1	
14	-397	-84	-7	10	797	-649	10	6	-449	129	-9	10	676	-607	5	
15	1329	-1329	0	11	3320	3296	4	7	375	317	1	11	-309	143	-7	
16	330	-192	3	12	651	745	-6	8	-660	-230	-21	12	109	617	-21	
17	884	758	8	13	3040	-3046	-1	9	615	-708	-5	13	-556	186	-20	
18	456	-608	-7	14	1092	-988	9					14	-393	-163	-10	
				15	2409	2457	-7	-4	k	16		15	302	162	3	
-4	k	7		-4	k	11		0	1054	-1300	-12	17	409	-87	8	
1	663	-501	9					1	900	-924	-1	18	706	-418	15	
2	-622	-186	-22	1	290	-321	0	2	1629	1665	-4	19	360	-26	6	
3	589	-388	11	2	633	718	-5	3	522	626	-5	20	644	488	7	
4	294	80	4	3	385	-464	-3	4	928	-1071	-11					
5	432	-373	2	4	-363	-42	-7	5	1076	-1157	-7	-3	k	4		
6	479	577	-5	5	771	591	12	6	1072	1063	0					
7	375	514	-6	6	532	-549	0					0	884	1005	-7	
8	-453	150	-13	7	1134	-1177	-4	-4	k	17		1	1620	-1558	9	
9	714	-597	8	8	-438	106	-10					2	1399	-1183	29	
10	384	353	1	9	1210	1292	-9	1	395	-123	5	3	1716	1595	20	
11	776	723	4	10	594	-40	17	2	-543	122	-12	4	1609	1516	15	
12	368	-641	-14	11	1341	-1378	-4					5	2153	-2173	-4	
13	499	-438	2	12	210	373	-4	-3	k	1		6	1325	-1101	22	
14	678	646	2	13	1418	1344	8					7	1591	1527	11	
15	716	672	2	14	767	-674	5	1	1061	-956	10	8	915	777	15	
16	600	-494	5					2	430	275	6	9	1464	-1348	19	
17	1015	-892	10	-4	k	12		3	339	-82	7	10	1232	-1068	22	
-4	k	8		0	4863	4731	15	4	472	-176	14	11	1964	1976	-2	
				1	1456	1469	-1	5	-182	337	-11	12	1678	1737	-10	
0	3577	-3522	7	2	3945	-3986	-7	7	424	-293	5	14	1515	-1591	-11	
1	748	-715	2	3	1421	-1463	-5	8	463	-270	9	15	1312	1474	-21	
2	3691	3604	16	4	3092	3130	-7	9	775	712	7	16	843	949	-9	
3	641	720	-5	5	1407	1541	-17	10	388	30	12	17	1321	-1412	-11	
4	1827	-1791	6	6	3112	-3086	4	11	1137	-1088	8	18	910	-945	-2	
5	807	529	20	7	729	-895	-12	12	549	603	-4	19	1149	1173	-2	
6	2717	2842	-25	8	3525	3446	14	13	779	735	4	20	-342	172	-6	
7	22	401	-8	9	1762	1806	-6	14	417	-636	-13					
8	3324	-3326	0	10	3086	-3151	-11	15	326	-548	-10	-3	k	5		
9	415	-518	-5	11	1504	-1606	-12	16	566	-148	16					
10	2462	2497	-6	12	2542	2501	6	17	-347	44	-6	1	724	-594	8	
11	-377	26	-7	13	1045	1042	0	18	417	-536	-5	2	366	182	5	
12	2425	-2469	-7					19	300	131	3	3	287	-391	-4	
13	-382	-190	-8	-4	k	13		20	889	736	11	4	657	-625	2	
14	2443	2420	3									5	969	1075	-13	
15	568	-85	14	1	511	213	10	-3	k	2		6	859	734	12	
16	1787	-1752	4	2	291	348	-1					7	713	-691	2	
17	434	-259	5	3	352	-182	4	0	-266	-88	-2	8	788	-790	0	
-4	k	9		4	440	-520	-3	1	185	-556	-14	9	695	621	6	
				5	-370	318	-11	2	177	-436	-8	10	259	80	3	
1	481	297	6	6	7	-464	-109	10	4	319	62	5	12	548	-245	14
2	380	-32	7	8	799	-548	15	5	746	560	14	13	1036	985	5	
3	458	680	-13	9	533	458	3	6	940	857	6	14	793	177	34	
4	479	225	9	10	902	988	-6	7	-268	78	-4	15	990	-1037	-4	
5	1311	-1256	7	11	516	-347	6	8	-220	-129	-4	16	-213	171	-3	
6	315	-183	3	12	1150	-1195	-4	9	528	246	14	17	978	807	14	
7	1037	810	22					10	-375	322	-16	18	-552	-141	-15	
8	857	880	-2	-4	k	14		11	214	144	1	19	961	-1162	-18	
9	-498	-56	-13					12	485	-249	10	20	538	-547	0	
10	1449	-1467	-2	0	664	-916	-11	13	-97	377	-9					
11	718	647	4	1	2759	2821	-11	14	1248	1237	1	-3	k	6		
12	1122	1134	-1	2	1769	1862	-13	15	-439	-66	-11					
13	744	-757	0	3	2660	-2739	-14	16	516	-425	4	0	1483	1308	14	
14	1289	-1284	0	4	1723	-1677	6	17	133	429	-8	1	4149	3947	39	
15	617	597	1	5	2515	2569	-9	18	277	428	-5	2	2433	-2550	-25	
16	1194	1185	0	6	1310	1497	-22	19	501	152	10	3	3572	-3593	-4	
				7	2562	-2503	9	20	-304	-265	-7	4	2452	2415	8	
-4	k	10		8	1410	-1548	-16					5	2000	1944	11	
				9	2428	2426	0	-3	k	3		6	2890	-2916	-6	
0	528	551	0	10	1145	1191	-4					7	2778	-2871	-21	
1	2966	-2958	1	11	1978	-2190	-30	1	708	390	17	8	3140	3057	18	
2	822	-819	0					2	525	-343	8	9	3381	3374	1	
3	3619	3674	-10	-4	k	15		3	-355	-64	-7	10	1977	-2112	-26	
4	482	753	-17					4	963	935	3	11	1811	-1941	-23	
5	3198	-3371	-35	1	627	-730	-6	5	479	511	-1	12	1239	1219	2	

Di-iridium complex.

Page 4

13 2080 2121 -7	3 4007 3967 8	5 1219 1337 -13	20 751 -881 -9
14 1670-1651 2	4 1942-2021 -15	6 295 79 3	21 904 -733 12
15 1779-1805 -4	5 2098-2277 -36	7 780 -861 -6	
16 1884 1898 -2	6 828 677 12	8 -242 117 -3	-2 k 2
17 1533 1490 5	7 3815 3771 8	9 1336 1204 14	
18 1581-1525 7	8 1104-1126 -2	10 -524 323 -17	0 3706-3724 -3
19 1710-1743 -4	9 3139-3236 -19	11 817 -918 -7	1 1543-1512 6
	10 1647 1528 17	12 658 -235 16	2 2209 2121 22
-3 k 7	11 3087 3052 6	13 806 585 12	3 1296-1335 -7
	12 1360-1339 2		4 5141-5107 6
1 -370 371 -15	13 2992-2937 10	-3 k 15	5 320 292 1
2 810 715 8	14 1187 1075 11		6 3174 3174 0
3 320 -145 5	15 2711 2569 23	1 431 -119 6	7 330 94 6
4 1155-1048 14	16 1313-1369 -6	2 508 269 8	8 2157-2236 -17
5 923 -894 3	17 1949-1975 -3	3 -180 -284 -5	9 929 960 -3
6 728 722 0		4 451 238 7	10 2536 2503 7
7 822 745 7	-3 k 11	5 -491 73 -11	11 1587-1673 -16
8 1350-1339 1		6 -224 120 -3	12 2888-2914 -5
9 532 -379 8	1 263 -57 3	7 497 307 7	13 319 331 0
10 1190 1340 -20	2 514 -607 -6	8 572 -303 10	14 2182 2228 -9
11 354 326 1	3 356 -50 7	9 -414 130 -8	15 -290 -453 -17
12 1311-1292 2	4 703 813 -9	10 -653 -14 -19	16 1410-1461 -7
13 206 -417 -7	5 641 -402 14	11 326 -441 -3	17 534 535 0
14 1430 1447 -2	6 810 -828 -1	12 -263 -43 -3	18 2010 2024 -2
15 501 287 8	7 438 61 10		19 320 -282 1
16 1655-1599 7	8 451 332 5	-3 k 16	20 1038-1112 -7
17 663 -270 17	9 572 151 16		21 -208 252 -4
18 1780 1872 -12	10 713 -470 14	0 306 670 -8	
19 -364 281 -9	11 -580 -342 -23	1 684 359 12	-2 k 3
	12 923 888 3	2 710 -737 -1	
-3 k 8	13 614 390 10	3 -532 209 -14	1 424 -644 -17
	14 1330-1295 3	4 863 556 19	2 800 -797 0
0 4140-3960 25	15 330 -149 3	5 224 54 2	3 828 -952 -17
1 2584 2562 4	16 1254 1191 6	6 -219 -539 -15	4 243 343 -4
2 4301 4382 -26		7 482 158 9	5 646 -679 -3
3 2950-2911 8	-3 k 12	8 686 438 11	6 960 -788 20
4 4496-4385 22		9 -419 -102 -8	7 670 -748 -7
5 2452 2520 -14	0 2384 2412 -3	10 -97 -415 -7	8 215 360 -5
6 4086 4212 -26	1 -62 86 0		9 505 -353 8
7 2070-2007 12	2 2507-2555 -9	-3 k 17	10 -195 359 -11
8 2661-2681 -4	3 535 841 -23		11 966 780 21
9 1934 2103 -31	4 2505 2551 -9	1 -508 -224 -10	12 618 720 -8
10 3303 3399 -19	5 -209 -336 -8	2 332 -284 1	13 1248-1315 -9
11 1635-1658 -3	6 2017-2160 -25	3 -154 278 -4	14 969-1019 -5
12 2027-1971 9	7 -360 624 -27	4 505 -14 10	15 512 29 15
13 1826 1914 -14	8 2770 2760 1	5 -366 28 -5	16 1070 1117 -5
14 2867 2881 -2	9 304 -445 -5	6 673 551 6	17 795 -841 -3
15 1601-1462 18	10 2619-2607 2	7 -664 -39 -18	18 1485-1472 1
16 2975-2968 1	11 176 466 -8		19 666 702 -2
17 1436 1453 -1	12 2376 2346 4	-3 k 18	20 1276 1267 0
18 2170 2233 -9	13 423 -497 -3		21 930 -756 12
	14 2075-2039 5	0 -560 -173 -7	
-3 k 9	15 722 617 6	1 2225 2127 11	-2 k 4
		2 87 416 -5	
1 378 235 5	-3 k 13	3 1983-1866 13	0 623 391 9
2 527 -581 -3		4 -647 -236 -18	1 7240-6985 37
3 -517 173 -19	1 -511 -152 -13		2 1152-1136 2
4 541 422 7	2 158 261 -2	-2 k 1	3 6942 6988 -7
5 309 -348 -1	3 630 -634 0		4 558 533 1
6 -220 -385 -12	4 414 -264 5	1 311 19 7	5 2651-2620 7
7 588 678 -6	5 993 928 6	2 530 -475 4	6 502 120 11
8 219 452 -9	6 372 -46 7	3 3480 3529 -14	7 2824 2789 8
9 982 -970 1	7 276 -278 0	4 1298-1296 0	8 498 -578 -5
10 425 -463 -1	8 701 -161 23	5 682 742 -7	9 5194-5184 2
11 1617 1684 -10	9 571 287 11	6 846 937 -13	10 540 -443 6
12 -209 10 -2	10 227 238 0	7 981 1135 -21	11 4401 4346 11
13 1262-1263 0	11 -534 -174 -14	8 995-1010 -2	12 93 388 -9
14 838 -655 13	12 -588 -243 -18	9 535 -82 22	13 2923-3004 -17
15 1819 1840 -3	13 722 918 -13	10 313 -116 6	14 435 587 -9
16 520 405 4	14 881 76 34	11 577 503 6	15 3076 3083 -1
17 1679-1674 0		12 -185 -185 -5	16 -288 8 -4
18 714 -260 19	-3 k 14	13 443 -393 3	17 2628-2514 21
		14 72 222 -2	18 -350 42 -6
-3 k 10	0 -216 904 -22	15 1894 1913 -3	19 2313 2312 0
	1 1209 987 21	16 719 -711 0	20 392 298 2
0 2819-2876 -8	2 683 -614 4	17 895 -891 0	21 2053-2092 -5
1 4547-4574 -5	3 913 -981 -6	18 498 511 0	
2 2032 2022 1	4 590 375 10	19 1000 1041 -4	-2 k 5

Di-iridium complex.

Page 5

1 633 63 27	6 1587 1750 -31	12 313 254 1	16 974 -514 18
2 683 -830 -15	7 3855-3828 5	13 298 -456 -5	17 -456 -369 -9
3 242 66 3	8 2312-2193 24	14 580 -465 5	18 379 292 1
4 606 673 -5	9 4214 4241 -5	15 188 410 -6	19 -352 297 -5
5 -181 376 -11	10 1163 1186 0	16 516 559 -2	20 -681 -446 -17
6 1042 -984 7	11 2165-2217 -9	17 413 -448 -1	21 200 -680 -10
7 456 -228 10	12 865 -795 6	18 717 -33 14	-2 k 15
8 -227 479 -18	13 2386 2403 -3	19 -677 334 -15	
9 1044 1128 -11	14 848 1040 -18	20 771 425 10	
10 1193-1236 -6	15 2730-2668 11	21 756 -579 6	1 622 -99 15
11 1057-1116 -8	16 951 -845 9		2 -266 385 -9
12 1066 1048 2	17 2180 2230 -8	-2 k 12	3 -347 -294 -9
13 1007 987 2	18 1310 1354 -4		4 -191 -122 -2
14 696 -720 -2	19 2120-2174 -8	0 827-1173 -21	5 -385 268 -10
15 1557-1455 15	20 639 -860 -9	1 1087 -950 13	6 514 -705 -11
16 1488 1344 19	-2 k 9	2 -416 47 -9	7 310 140 3
17 1338 1270 8	3 417 466 -2	8 1005 836 14	
18 1496-1390 13	4 776 734 3	9 429 307 4	
19 1433-1360 8	5 -464 -100 -13	10 849 -813 2	
20 1279 1064 21	6 207 189 -5	11 684 -404 13	
21 1562 1635 -9	7 453 725 -20	12 799 682 7	
	8 670 -580 7	13 753 503 13	
	9 -158 208 -4	14 -276 -735 -17	
	10 860 -874 -1	15 -150 -347 -4	
	11 -392 26 -10	16 877 713 6	
0 3165 3007 23	12 314 352 -11	17 -744 341 -17	
1 693 515 14	13 -273 -541 -22	18 558-1009 -17	
2 3130-3202 -17	10 214 400 -6	19 545 -729 -6	
3 866 -857 1	11 905 733 16	20 767 863 -3	
4 2987 3023 -8	12 970 -938 3	21 -390 214 -4	
5 1003 784 24	13 943 -938 0		
6 5278-5319 -7	14 712 618 6	17 -353 120 -6	
7 871 -872 0	18 -149 181 -1	-2 k 16	
8 4364 4332 6	19 -636 302 -13		
9 806 755 -13	20 1165 1038 13	0 2230 2300 -6	
10 4151-4133 3	21 931-1230 -27	1 1793-1917 -14	
11 675 -786 -10	18 804 828 -1	2 2347-2309 5	
12 4374 4390 -3	19 890 881 0	3 1862 1735 16	
13 724 768 -3	-2 k 13	4 1602 1646 -5	
14 3378-3460 -17	21 1186-1025 10	5 1648-1573 9	
15 636 -845 -16	1 243 -29 2	6 1776-1709 9	
16 3754 3715 7	2 -596 15 -18	7 1518 1435 9	
17 755 833 -5	3 391 170 6	8 1510 1650 -17	
18 3030-3022 1	4 741 -438 19	9 1925-1878 6	
19 536 -597 -3	5 384 157 6	10 1702-1667 4	
20 2442 2483 -6	6 179 323 -4	11 1455 1554 -11	
	7 528 19 15	12 1786 1870 -11	
	8 371 79 6	13 1303-1313 0	
	9 652 -451 11	14 1364-1149 13	
	10 772 -404 22	15 1235 1299 -4	
	11 590 666 -4	16 1076 1077 0	
1 345 142 6	12 451 200 7	17 614 -757 -4	
2 1259 1214 6	13 -483 -316 -15	18 645-1082 -17	
3 658 762 -9	14 281 -16 3		
4 -302 -356 -14	15 633 338 12	19 -518 635 -16	
5 573 -558 1	16 445 403 1	20 1136 1170 -1	
6 576 638 -4	17 774 -378 12	21 1031 -692 14	
7 -387 116 -11	18 0 -495 -6		
8 1399-1399 0	19 502 148 6	-2 k 17	
9 1147 1254 -15	20 660 522 4		
10 1507 1540 -5	21 -455 -450 -10	1 620 -139 12	
11 583 -632 -3	17 989-1174 -19	2 77 349 -4	
12 819 -911 -9	18 1055 1127 -6	3 -570 -180 -13	
13 498 591 -5	-2 k 14	4 -25 77 0	
14 1533 1592 -9	19 865 890 7	5 938 660 18	
15 1535-1477 8	20 602 -862 -10	6 497 -159 9	
16 1310-1177 15	21 778 -597 6	7 538 -335 7	
17 1441 1419 2	1 908 -920 0	8 341 -121 4	
18 1309 1485 -20	2 696 877 -13	9 980 1190 -18	
19 1107-1074 3	3 815 788 2	10 364 150 4	
20 1386-1371 1	4 1179-1202 -2	11 935-1117 -9	
	5 729 700 2	12 -185 -459 -6	
	6 723 -719 0	13 1354 1062 18	
	7 369 394 0	14 380 373 0	
	8 1115-1139 -2	15 787-1070 -12	
0 111 -164 0	9 739 -817 -5	16 374 -296 1	
1 4568 4507 12	10 1342 1222 13	17 1050 1166 -6	
2 644 550 7	11 624 396 10	18 164 192 0	
3 4025-4068 -9	12 1082-1309 -23	19 793 -913 -5	
4 1471-1319 25	13 886 -665 15	20 -317 -392 -6	
5 2661 2724 -14	14 779 840 -4		
	15 974 729 12		

Di-iridium complex.

Page 6

21	1164	1190	-1	7	-424	564	-11	8	765	-586	21	21	2016	-2011	0
				8	-287	138	-2	9	643	585	5	22	529	-94	12
-2	k	18		9	934	-782	6	10	815	813	0	23	1359	1469	-7
				10	-457	-208	-5	11	228	-99	3	24	324	212	1
0	1547	1453	6	11	1155	950	9	12	2612	-2628	-4	25	1496	-1551	-3
1	2934	3021	-12	12	-413	120	-4	13	-216	62	-4	26	-568	-541	-15
2	2155	-2109	5	13	647	-555	2	14	1402	1489	-17	27	1806	1463	24
3	2723	-2646	11	14	-641	-450	-15	15	336	153	5	28	-291	169	-2
4	1399	1358	4	15	972	783	7	16	1586	-1609	-3	29	1822	-1571	18
5	2706	2740	-5	16	247	226	0	17	336	519	-8				
6	1628	-1687	-6					18	1731	1701	4	-1	k	4	
7	2700	-2628	10		-2	k	22	19	-540	182	-16				
8	1826	1584	19					20	2075	-2061	2	0	2411	-2399	2
9	2322	2313	0	0	-793	-819	-23	21	581	86	15	1	2977	-2960	5
10	1336	-1506	-11	1	2540	-2447	7	22	1918	1924	0	2	2721	2699	6
11	2170	-2209	-3	2	647	506	3	23	-445	-92	-5	3	3235	3251	-4
12	1443	1427	1	3	1978	1919	4	24	1665	-1740	-6	4	3434	-3461	-6
13	2429	2420	0	4	353	-820	-11	25	552	199	7	5	6732	-6799	-10
14	1218	-1319	-6	5	2103	-2108	0	26	1821	1661	12	6	3181	3177	1
15	1976	-1853	10	6	864	276	14	27	0	23	0	7	2864	2904	-9
16	1382	1280	6	7	1756	1938	-13	28	1747	-1601	11	8	766	-652	10
17	1611	1598	0	8	296	-292	0	29	1030	-31	27	9	2650	-2711	-10
18	672	-1044	-14	9	1538	-1750	-15					10	2472	2412	13
19	934	-1115	-8	10	321	498	-3					11	2949	2919	6
20	659	955	-11	11	1508	1559	-3					12	2154	-2088	14
				12	587	-484	2	0	5472	-5731	-44	13	3630	-3625	1
-2	k	19		13	1641	-1685	-3	1	5037	5056	-4	14	1279	1299	-2
				14	512	489	0	2	3464	3553	-21	15	2321	2314	1
1	386	-166	3	15	1730	1565	11	3	2028	-1988	12	16	1627	-1531	15
2	371	545	-5					4	2210	-2141	20	17	2332	-2301	5
3	486	-47	5	-2	k	23		5	2149	2116	9	18	1174	1192	-2
4	-298	-286	-5					6	3177	3217	-10	19	2395	2379	2
5	578	-367	4	1	-620	25	-7	7	5379	-5483	-20	20	1607	-1544	8
6	654	560	2	2	-133	175	-1	8	2863	-2861	0	21	1727	-1682	6
7	-594	359	-12	3	-848	-232	-15	9	2405	2430	-5	22	1078	1104	-1
8	455	-658	-5	4	804	225	12	10	3660	3633	6	23	1476	1556	-6
9	750	-431	9	5	853	-209	14	11	2887	-2919	-7	24	1891	-1157	16
10	721	864	-5	6	-767	-200	-13	12	3489	-3531	-14	25	1373	-1409	-2
11	194	250	0	7	886	84	17	13	2636	2650	-3	26	933	711	9
12	774	-995	-9	8	483	480	0	14	2095	2098	0	27	1184	1160	1
13	427	-489	-1	9	-432	-41	-4	15	1926	-1870	10	28	774	-306	13
14	958	1002	-2	10	249	-662	-8	16	1551	-1695	-23	29	559	-683	-3
15	330	230	1	11	-697	-132	-11	17	1590	1641	-8				
16	1090	-1067	1	12	-218	575	-8	18	2447	2330	21				
17	-359	-423	-7	13	-800	37	-15	19	2108	-2066	7				
18	1541	1206	20					20	2093	-2170	-12	1	2264	2299	-9
19	-369	268	-5	-2	k	24		21	1846	1837	1	2	643	759	-14
								22	1466	1440	3	3	2287	-2192	25
-2	k	20		0	1066	893	6	23	148	-1078	-31	4	309	342	-1
				1	0	170	0	24	1062	-960	5	5	531	701	-15
0	2815	-2610	17	2	1494	-1354	7	25	247	713	-11	6	1072	-954	16
1	1363	1454	-5	3	-751	163	-11	26	698	705	0	7	235	195	1
2	2795	2936	-13	4	1348	1217	6	27	883	-987	-4	8	1945	2009	-13
3	1484	-1528	-2	5	-682	69	-9	28	814	-815	0	9	-342	324	-14
4	2807	-2718	8	6	1430	-1065	17	29	909	875	1	10	1629	-1577	9
5	1330	1197	7	7	-775	37	-13					11	-166	-12	-1
6	2551	2663	-10	8	-834	790	-28					12	2325	2356	-6
7	933	-1233	-14	9	-738	-54	-12					13	521	-486	2
8	2875	-2568	29	10	1213	-968	11	1	337	-455	-8	14	1727	-1811	-15
9	1421	1483	-4					2	2082	-2113	-10	15	622	-580	2
10	2889	2773	12	-2	k	25		3	46	-377	-11	16	1561	1580	-2
11	1056	-960	4					4	453	404	4	17	328	562	-11
12	2221	-2186	3	1	619	325	5	5	1372	-1453	-18	18	1727	-1679	7
13	993	790	8	2	245	-88	0	6	772	356	38	19	450	-195	8
14	1840	1966	-10	3	1021	-166	19	7	638	460	14	20	1640	1689	-6
15	811	-838	-1	4	876	49	14	8	1103	937	23	21	375	290	2
16	1646	-1440	13	5	448	374	1	9	1719	-1736	-3	22	1600	-1502	8
17	1040	729	12	6	-483	249	-6	10	1166	1098	9	23	935	-523	16
18	1693	1648	3					11	1654	1568	15	24	1454	1260	13
			-2	k	21			12	-143	-292	-7	25	-111	173	-1
				1	361	-399	-4	14	218	-422	-8	26	931	-994	-3
1	-561	93	-6	2	-143	150	-7	15	1550	1584	-5	28	1347	1245	6
2	125	-596	-7	3	553	-706	-32	16	955	983	-3	29	534	403	3
3	212	414	-2	4	384	-105	20	17	1789	-1769	3				
4	-639	216	-9	5	1997	1979	6	18	499	-207	10				
5	835	-120	14	6	394	-280	8	19	2321	2313	1				
6	515	-85	5	7	-614	-172	-33	20	184	151	0	0	2904	3084	-30

Di-iridium complex.

Page 7

1	4684	-4563	25	16	-499	71	-13	2	-257	-64	-4	21	901	-715	8
2	5236	-5050	36	17	1234	1181	6	3	472	-443	1	22	875	434	15
3	1462	1352	21	18	334	-268	1	4	617	-416	12	23	732	673	2
4	2462	2528	-16	19	1086	-996	8	5	623	429	12	24	845	-617	9
5	1916	-1975	-12	20	654	173	17	6	223	388	-6	25	761	-590	5
6	2634	-2548	20	21	789	643	6	7	953	-896	6				
7	671	593	6	22	-441	-148	-6	8	621	-777	-12		-1	k	14
8	3574	3581	-1	23	599	-786	-7	9	342	281	2				
9	1329	-1368	-6	24	-317	112	-3	10	494	779	-20	0	3376	-3347	3
10	2952	-2950	1	25	979	844	6	11	450	-399	2	1	630	-408	10
11	712	-40	34	26	-524	185	-7	12	-499	4	-13	2	3349	3294	9
12	2797	2851	-12	27	738	-471	8	13	754	575	12	3	-457	-341	-15
13	1543	-1646	-17	28	830	-217	15	14	590	638	-2	4	3609	-3594	2
14	2426	-2482	-11					15	-258	-358	-9	5	508	-427	3
15	672	772	-8	-1	k	9		16	495	26	11	6	3120	3129	-1
16	1924	1989	-11					17	544	-367	7	7	-356	248	-9
17	611	-454	8	1	-278	27	-4	18	-474	290	-13	8	3156	-3144	2
18	1905	-1902	0	2	-542	-74	-17	19	-723	-311	-18	9	678	197	21
19	612	683	-4	3	484	-685	-13	20	1082	-635	21	10	3185	3152	5
20	1810	1727	11	4	609	-683	-6	21	288	483	-4	11	535	257	10
21	793	-556	14	5	-188	277	-7	22	1168	1041	7	12	2404	-2508	-17
22	1124	-984	8	6	-258	-355	-12	23	643	18	11	13	657	-370	13
23	-468	449	-12	7	310	-226	3	24	201	-567	-7	14	2043	1948	13
24	831	813	0	8	-405	292	-17	25	-777	75	-15	15	485	-569	-3
25	-390	-208	-5	9	334	-334	0	26	-1012	353	-28	16	1945	-2240	-29
26	1153	-1128	1	10	-277	296	-10					17	729	-509	8
27	624	609	0	11	402	-392	0	-1	k	12		18	2323	2310	1
28	1132	1071	3	12	593	-636	-3					19	506	421	2
				13	-360	-222	-10	0	718	-477	9	20	1341	-1478	-9
				-1	k	7		14	991	765	21	21	-280	402	-6
				15	-411	118	-9	2	468	423	2	22	1454	1656	-15
1	874	755	11	16	592	-720	-8	3	2751	-2690	12	23	-571	-105	-9
2	467	-365	5	17	-517	-29	-13	4	-282	297	-9	24	1267	-1246	1
3	582	573	0	18	-606	352	-22	5	1984	1986	0	25	-847	82	-17
4	434	-467	-2	19	198	-455	-7	6	927	-711	19				
5	455	305	7	20	780	-436	12	7	2301	-2188	21	-1	k	15	
6	525	55	18	21	529	277	6	8	-397	284	-13				
7	-352	303	-14	22	-593	82	-10	9	1049	935	12	1	497	470	1
8	325	-181	4	23	-110	-61	0	10	-83	-191	-2	2	922	-546	23
9	690	745	-5	24	467	66	5	11	1936	-1881	9	3	264	73	2
10	486	-206	13	25	306	140	1	12	290	383	-3	4	808	886	-6
11	1045	-1101	-7	26	-118	39	0	13	1823	1829	0	5	-23	-362	-6
12	441	174	10	27	-540	-30	-7	14	361	196	4	6	508	-530	-1
13	1116	1016	12					15	2009	-2050	-6	7	621	294	14
14	261	171	2	-1	k	10		16	610	292	13	8	226	584	-13
15	949	-944	0					17	766	975	-15	9	508	-402	4
16	-238	294	-7	0	1350	1053	23	18	793	-765	1	10	1106	-1184	-7
17	1338	1094	28	1	1695	1586	16	19	1446	-1502	-4	11	706	654	3
18	103	-35	0	2	-329	-328	-12	20	473	241	4	12	1286	1188	9
19	984	-1108	-11	3	632	615	1	21	1183	1210	-1	13	930	-892	2
20	440	-309	4	4	824	611	18	22	-629	-238	-12	14	696	-989	-20
21	1334	1193	10	5	452	-436	0	23	653	-552	3	15	515	710	-6
22	-449	-16	-6	6	253	145	2	24	-1060	321	-32	16	1187	1168	1
23	668	-863	-8	7	336	346	0	25	841	885	-1	17	705	-888	-7
24	384	-332	1	8	-208	238	-6	26	-548	-57	-7	18	1050	-933	6
25	736	858	-4	9	488	-690	-14					19	617	833	-8
26	-519	476	-12	10	1519	-1403	17	-1	k	13		20	1302	1332	-1
27	606	-732	-4	11	312	-248	2					21	719	-1005	-12
28	364	-105	3	12	348	599	-13	1	-323	357	-10	22	1200	-1180	1
				13	589	-144	18	2	-360	-29	-6	23	1096	740	16
				15	308	423	-4	3	687	2	24	24	578	803	-7
				14	614	354	13	4	226	377	-4				
0	658	-408	8	16	-175	242	-4	5	408	-347	2	-1	k	16	
1	1990	1980	1	17	896	-772	9	6	-80	440	-11				
2	699	-796	-8	18	214	-247	0	7	1348	1429	-11	0	827	784	1
3	1276	-1164	16	19	-346	135	-6	8	-327	-507	-19	1	4098	-4154	-9
4	406	326	3	20	672	-632	1	9	939	-891	20	2	1127	-788	24
5	1850	1844	1	21	-284	-134	-2	10	448	184	8	3	3466	3342	20
6	565	227	17	22	452	-142	5	11	1133	1053	8	4	920	758	11
7	1482	-1461	3	23	673	576	3	12	633	-311	15	5	3309	-3210	16
8	362	464	-5	24	842	25	20	13	1066	-1047	1	6	732	-630	6
9	1198	1036	22	25	673	-243	10	14	722	589	8	7	3260	3231	5
10	-173	16	-2	26	-610	130	-9	15	1156	978	16	8	851	936	-6
11	2298	-2259	8	27	-623	370	-12	16	598	-813	-12	9	2930	-2993	-10
12	1063	1062	0					17	960	-1006	-2	10	643	-640	0
13	1030	1017	1	-1	k	11		18	1149	1008	8	11	3002	2989	2
14	423	77	10					19	1186	1079	6	12	377	310	1
15	749	-756	0	1	233	111	2	20	584	-602	0	13	3026	-3131	-12

Di-iridium complex.

Page 8

14	281	-555	-6	16	1038	-1001	1	9	639	27	10	0	k	2	
15	2265	2316	-5	17	915	786	5	10	452	-70	5	0	726	-657	15
16	579	229	7	18	-362	834	-21	11	453	72	5	1	5166	5080	18
17	2201	-2164	3	19	-441	-577	-13	12	-454	-42	-5	2	692	880	-57
18	253	-138	1	20	786	-935	-6	13	537	-253	5	3	6809	-6906	-16
19	2080	1908	15									4	1230	-1076	40
20	350	345	0	-1	k	20		-1	k	24		5	3653	3663	-2
21	1592	-1494	7	0	823	-930	-4	0	-272	-85	-1	6	1175	-1062	22
22	-695	-151	-13	1	2190	2071	9	1	-638	197	-9	7	5750	-5790	-7
23	1377	1405	-1	2	697	792	-3	2	471	496	0	8	1811	-1819	-1
	-1	k	17	3	1538	-1649	-7	3	944	-746	7	10	859	-1038	-22
1	512	68	9	5	2002	1823	14	5	573	206	6	11	3786	-3813	-5
2	-205	-481	-10	6	1409	1343	4	6	433	210	3	12	962	-1096	-17
3	-729	-281	-23	7	2058	-2069	0	7	-649	-216	-11	13	3847	3812	7
4	621	84	15	8	949	-1071	-6	8	224	-94	1	14	-77	-35	0
5	564	41	13	9	943	1105	-8	9	658	223	9	15	3988	-4082	-19
6	738	-519	11	10	716	641	2	10	774	293	12	16	677	-811	-11
7	778	-849	-4	11	1855	-1799	4	11	-447	-146	-5	17	2617	2642	-5
8	584	391	7	12	1130	-869	13					18	-494	-8	-13
9	518	663	-6	13	1577	1399	12	-1	k	25		19	2811	-2811	0
10	514	-400	4	14	755	855	-4					20	440	-409	1
11	870	-861	0	15	1544	-1325	15	1	-836	57	-15	21	2374	2272	16
12	1021	531	21	16	-269	-416	-6	2	935	221	16	22	340	208	3
13	1242	1151	5	17	1368	1446	-5	3	416	40	3	23	1980	-2030	-7
14	816	-925	-5	18	427	588	-4	4	137	113	0	24	812	-581	13
15	1154	-1097	3	19	1083	-1107	-1	5	754	-83	12	25	2077	1970	13
16	682	612	2					6	711	-145	11	26	676	470	9
17	1273	937	18	-1	k	21		7	299	144	1	27	782	-1048	-18
18	554	-487	1					8	-691	-94	-11	28	590	-328	9
19	1226	-1200	1	1	882	-330	14					29	508	611	-4
20	492	631	-4	2	-415	-9	-3	0	k	0					
21	1182	1009	9	3	301	292	0					0	k	3	
22	-551	-797	-23	4	-499	-90	-6	4	4256	4087	41	1	903	-698	33
	-1	k	18	5	-813	-100	-16	6	5549	-5769	-43	2	280	-450	-17
0	3634	3417	23	7	968	387	19	8	5814	5773	7	3	-78	111	-2
1	907	1095	-12	9	667	-361	8	12	5376	5261	21	4	930	-959	-6
2	3109	-3231	-18	10	579	298	6	16	2711	2795	-17	5	1621	-1655	-9
3	965	-1031	-4	11	605	556	1	18	3297	-3175	23	7	876	841	4
4	3140	2922	32	12	892	-463	14	20	2752	2819	-12	8	315	-325	0
5	981	929	3	13	0	-601	-9	22	2134	-2224	-13	9	1194	-1248	-8
6	2575	-2517	8	14	121	363	-3	24	1352	1541	-14	10	544	342	12
7	732	-649	4	15	122	334	-2	26	1573	-1434	10	11	288	346	-2
8	2762	2763	0	16	445	-358	1	28	1172	1409	-15	12	1178	-1238	-9
9	942	741	8	17	808	-507	10					13	725	-708	1
10	2986	-2937	5					0	k	1		14	1307	1125	26
11	1378	-1471	-6	-1	k	22						15	484	632	-10
12	2218	2206	1					3	1177	-1217	-18	16	593	-712	-9
13	635	779	-5	0	1035	-707	11	4	318	424	-14	17	798	-933	-12
14	2356	-2309	4	1	-583	-234	-7	5	1344	1377	-11	18	2004	1951	9
15	588	-679	-2	2	365	774	-9	6	985	-877	23	19	1242	1042	21
16	1425	-1667	-17	3	336	426	-1	7	871	-965	-17	20	1174	-1155	2
17	931	699	10	4	1112	-993	5	8	636	-656	-2	21	814	-952	-10
18	1494	-1403	6	5	721	-608	3	9	949	985	-5	22	449	711	-13
19	688	-490	6	6	274	197	0	10	421	435	-1	23	861	895	-2
20	1638	1594	3	7	-440	206	-5	11	1226	-1202	4	24	1036	-863	13
21	710	458	7	8	1339	-1043	16	12	1688	-1616	16	25	601	-728	-6
	-1	k	19	9	740	-552	6	13	1493	1501	-1	26	1014	833	13
10	844	387	14	11	122	395	-3	14	1179	1253	-13	27	936	654	17
11	-92	-123	0	12	918	-367	17	16	1278	-1249	3	28	725	-676	2
2	-187	386	-5	13	740	-333	11	17	1453	1582	-19	29	915	-665	14
3	-319	-213	-5	14	805	504	10	18	931	1018	-9	0	k	4	
4	139	-511	-8	15	560	230	6	19	1826	-1876	-7				
5	471	649	-7					20	1658	-1561	13	0	3009	-3053	-9
6	-588	364	-12	-1	k	23		21	1552	1670	-15	1	920	-830	15
7	-247	-203	-2					22	1155	1255	-10	2	2751	2725	7
8	575	-542	0	1	702	-122	9	23	1111	-1009	8	3	1608	1575	9
9	893	442	15	2	957	-4	18	24	1460	-1439	2	4	830	-797	5
10	588	784	-7	3	-628	356	-10	25	1294	949	28	5	3056	-3120	-17
11	-500	-128	-7	4	-182	114	-1	26	1319	1138	16	6	4233	4235	0
12	478	-385	2	5	675	-102	10	27	1099	-962	10	7	1608	1552	11
13	-812	204	-18	6	633	23	9	28	1053	-1000	4	8	2066	2068	0
14	1258	1095	9	7	642	-8	9	29	1496	1074	37	9	-322	-310	-13
15	706	-479	7	8	-452	33	-4					10	1170	1140	4

Di-iridium complex.										Page		9				
11	1144	1190	-6	24	-106	280	-3	7	207	345	-5	23	1210-1211	0		
12	2939-2886	12	25	379	-550	-6	8	90	41	0	24	-228	-257	-4		
13	493	270	11	26	-492	-460	-18	9	449	421	1	25	1310 1313	0		
14	2232	2178	10	27	-164	-11	-1	10	160	104	0	26	359	7		
15	566	658	-6	28	344	453	-3	11	-221	-454	-15	27	1138-1110	2		
16	1652-1722	-11	29	747	-29	21	12	1103	1050	6						
17	256	-359	-3				13	413	-240	6	0	k	12			
18	2073	2095	-3	0	k	7	14	606	-745	-10						
19	851	878	-2				15	544	-452	4	0	3746	3768	-3		
20	1508-1453	8	1	809	-914	-10	16	359	456	-3	1	3018	3151	-25		
21	964	-792	13	2	1011-1014	0	17	61	510	-12	2	2600-2529	12			
22	1284	1291	0	3	-52	-42	0	18	903	-966	-5	3	2699-2578	23		
23	699	725	-1	4	438	-202	10	19	181	175	0	4	2479	2523	-8	
24	675	-757	-4	5	-86	46	0	20	934	888	3	5	2544	2539	0	
25	525	-825	-4	6	355	-223	5	21	-199	235	-4	6	3057-2959	19		
26	432	656	-9	7	560	-239	17	22	1162-1178	-1	7	2767-2682	16			
27	215	379	-3	8	455	322	6	23	746	-74	22	8	2797	2954	-31	
28	915	-898	1	9	516	-415	6	24	1047	726	21	9	2552	2867	-22	
29	861	-448	20	10	-314	-261	-11	25	-283	95	-3	10	2029-1881	25		
	0	k	5	11	1053	-929	15	26	793	-704	5	11	1993-2083	-15		
	13	581	486	6	28	827	694	7				12	1914	1974	-9	
	13	581	486	6	28	827	694	7				13	2133	2187	-8	
1	1571	1603	-7	14	51	-259	-3					14	1919-1972	6		
2	274	419	-9	15	118	142	0	0	0	k	10	15	1715-1666	6		
3	718	754	-4	16	118	-316	-4					16	1939	1981	-6	
4	888	-856	4	17	498	-492	0	0	3077	3060	2	17	2033	2102	-10	
5	-69	344	-9	18	225	-512	-10	1	2668	-2647	4	18	1950-1857	12		
6	-210	368	-13	19	607	337	12	2	2027	-2061	-5	19	1603-1542	6		
7	855	770	9	20	172	708	-21	3	1552	1555	0	20	918	1142	-17	
8	-416	99	-12	21	297	138	3	4	1236	1170	9	21	939	1018	-5	
9	961	-870	10	22	563	-120	12	5	2485	-2413	15	22	1435-1473	-3		
10	803	-819	-1	23	225	-115	1	6	1953-2021	-13	23	955	-979	-1		
11	524	526	0	24	489	185	8	7	1925	1849	14	24	954	918	2	
12	-615	248	-30	25	-398	-340	-10	8	1395	1300	14	25	972	779	12	
13	-263	-74	-4	26	327	146	3	9	2746	-2848	-22	26	895	-709	11	
14	381	-185	7	27	163	336	-3	10	681	-621	4					
15	360	538	-9	28	281	256	0	11	2292	2259	6	0	k	13		
16	627	276	18				12	1929	1898	5						
17	274	-167	2	0	k	8	13	2117-2132	-2	1	186	326	-3			
18	672	-544	8				14	1980-1960	3	2	377	507	-5			
19	179	331	-3	0	404	16	5	15	2040	1964	12	3	542	548	0	
20	501	394	4	1	2146-2156	-1	16	711	718	0	4	666	-748	-5		
21	1083	-989	8	2	1903	1809	16	17	1568-1541	3	5	326	62	5		
22	461	-563	-4	3	968	1012	-5	18	1173-1096	7	6	387	367	0		
23	673	772	-5	4	517	-474	2	19	1607	1629	-2	7	495	-279	9	
24	674	418	11	5	-350	-143	-9	20	893	844	3	8	1047-1141	-10		
25	452	-429	0	6	2010	2017	-1	21	1436-1363	7	9	404	-195	6		
26	383	-595	-8	7	992	-836	17	22	727	-722	0	10	902	868	3	
27	738	571	8	8	939	-922	2	23	815	861	-3	11	247	137	2	
28	403	322	2	9	1510-1467	7	24	-211	263	-4	12	1591-1570	2			
29	-404	-394	-12	10	1347	1258	13	25	984	-919	4	13	-398	227	-10	
	11	-399	150	-11	26	-525	-201	-12	14	1335	1336	0				
	12	1363-1283	11	27	657	661	0	15	-486	-161	-11					
	13	876	957	-8				16	1393-1401	0						
0	1938-1871	9	14	-175	294	-6	0	k	11		17	385	-54	6		
1	2260-2189	16	15	-92	249	-3					18	1744	1776	-4		
2	353	-337	0	16	951-1029	-7	1	-259	194	-5	19	-598	-81	-15		
3	-286	-197	-9	17	-497	-185	-14	2	656	699	-3	20	1837-1949	-13		
4	3933	3985	-12	18	513	543	-1	3	-427	204	-12	21	984	-659	20	
5	-217	-192	-6	19	-134	144	-1	4	421	-365	2	22	1236	1242	0	
6	544	637	-7	20	697	-780	-5	5	846	825	2	23	-145	501	-10	
7	480	401	4	21	-235	-151	-3	6	1139	1067	8	24	1551-1327	22		
8	1061	1019	5	22	571	570	0	7	1183-1137	6	25	-555	-75	-12		
9	829	-788	4	23	269	-201	1	8	387	76	8					
10	1653-1861	-1	24	851	-714	8	9	1260	1190	9	0	k	14			
11	1352	1291	9	25	-506	239	-12	10	-271	188	-6					
12	379	220	6	26	574	197	11	11	931	-893	3	0	3523-3493	3		
13	464	162	12	27	404	-348	1	12	630	308	16	1	2192	2312	-18	
14	537	-805	-21	28	898	-548	19	13	1018	959	5	2	3185	3087	17	
15	382	188	6	0	k	9	14	435	428	0	3	2282-2210	11			
16	463	322	6				15	1600-1566	4	4	2793-2867	-13				
17	420	-5	9				16	360	171	4	5	2328	2324	0		
18	833	-828	0	1	667	-774	-7	17	1176	1376	-21	6	3344	3334	1	
19	614	512	5	2	803	-807	0	18	270	151	2	7	2007-2004	0		
20	574	448	5	3	644	-646	0	19	1207-1327	-11	8	2932-2904	5			
21	436	-142	7	4	570	275	14	20	-205	-9	-1	9	1852	1877	-3	
22	972	-586	25	5	365	259	4	21	1386	1368	1	10	2695	2678	3	
23	240	93	2	6	827	-728	9	22	683	368	12	11	2007-1958	7		

Di-iridium complex.

Page 10

12	2396	2346	8	8	427	617	-7	12	180	-322	-2	10	405	-98	5	
13	2007	1942	9	9	-245	220	-4	13	323	234	1	11	1744	-1822	-7	
14	2416	2347	10	10	-587	-300	-18	14	-443	-158	-8					
15	1524	-1562	-4	11	-293	-177	-4	15	265	-401	-3	0	k	25		
16	2458	-2549	-14	12	-209	707	-21	16	382	26	5					
17	1418	1492	-8	13	-424	346	-11	17	-565	20	-12	1	467	-54	6	
18	1657	1763	-12	14	787	-915	-8	18	672	-195	15	2	-766	28	-18	
19	1463	-1565	-10	15	583	-254	10	19	379	-111	4	3	-86	390	-4	
20	1869	-2024	-19	16	1300	1039	22					4	-572	17	-9	
21	761	889	-7	17	266	12	2	0	k	21		5	-605	-282	-13	
22	799	926	-8	18	1003	-791	14					6	-713	189	-17	
23	963	-904	3	19	170	128	0	1	770	40	18	7	98	285	-2	
24	1236	-1028	16	20	971	904	4	2	521	423	2	8	-426	-378	-10	
25	1064	804	17	21	-79	186	-1	3	-363	-130	-4					
				22	973	-1008	-2	4	-308	-318	-6	0	k	26		
	0	k	15					5	-508	59	-8					
					0	k	18	6	381	-357	0	0	2039	-2052	-1	
1	512	-493	0					7	536	98	9	1	-412	-365	-8	
2	-249	-64	-2	0	1679	1517	11	8	-330	77	-4					
3	568	279	10	1	854	-710	7	9	-597	269	-14	1	k	0		
4	405	-325	2	2	1603	-1581	2	10	578	-108	11					
5	800	-888	-6	3	866	802	3	11	541	-716	-7	0	2606	2581	8	
6	-146	-25	-1	4	1697	1525	18	12	402	77	5	1	2699	-2626	27	
7	599	273	13	5	716	-703	0	13	309	435	-3	2	3604	-3715	-36	
8	829	487	21	6	1955	-1957	0	14	172	-256	-1	3	2553	2543	3	
9	937	-752	14	7	812	389	20	15	563	-426	5	4	4157	4124	9	
10	382	-472	-3	8	1511	1495	1	16	530	-182	9	5	1721	-1760	-14	
11	1138	1262	-12	9	334	-253	1	17	763	437	14	6	2453	-2518	-23	
12	361	84	5	10	1410	-1427	-1					7	4309	4288	5	
13	1299	-1293	0	11	-444	352	-12	0	k	22		8	3252	3209	12	
14	665	-157	17	12	1415	1499	-8					9	1462	-1490	-7	
15	1364	1196	16	13	-461	-468	-16	0	771	596	7	10	2362	-2331	9	
16	765	225	21	14	1349	-1337	1	1	-299	91	-2	11	2573	2553	5	
17	1390	-1332	5	15	-660	146	-17	2	1327	-1343	-1	12	2467	2489	-6	
18	588	-139	12	16	988	840	10	3	545	169	8	13	2959	-2939	5	
19	1357	1409	-5	17	652	-555	4	4	1361	1349	0	14	2364	-2292	19	
20	133	215	-1	18	1408	-1364	4	5	-881	-127	-26	15	1845	1876	-5	
21	1280	-1253	2	19	371	334	0	6	-310	-586	-14	16	2286	2338	-10	
22	470	-110	8	20	649	692	-2	7	739	238	16	17	1474	-1471	0	
23	1349	1310	3	21	-327	-170	-5	8	1033	954	5	18	1982	-1869	18	
24	594	371	7					9	-719	-54	-18	19	1480	1579	-13	
	0	k	16		0	k	19	10	1112	-1075	2	20	1579	1544	4	
					1	-353	156	-4	12	768	534	10	21	1293	-1285	0
0	2076	-1998	7	2	-228	69	-1	13	421	-427	0	22	1697	-1528	20	
1	2487	-2607	-17	3	-365	-6	-4	14	780	-830	-2	23	819	762	2	
2	1820	1911	-11	4	157	-65	0	15	632	102	14	24	1452	1595	-11	
3	2841	2839	0	5	-629	302	-17	16	1199	518	29	25	1047	-876	8	
4	538	-788	-13	6	-554	399	-16					26	1079	-1287	-11	
5	2735	-2764	-4	7	-583	-90	-13	0	k	23		27	768	414	10	
6	1851	1850	0	8	-597	337	-17					28	375	706	-9	
7	2666	2666	0	9	-655	206	-17	1	631	5	12	29	-121	-218	-1	
8	1522	-1375	16	10	319	-155	2	2	405	-41	4	1	k	1		
9	2616	-2593	3	11	429	-255	4	3	269	-117	1					
10	1507	1571	-7	12	-433	76	-7	4	-432	-21	-5	1	762	765	0	
11	2518	2621	-16	13	-279	543	-14	5	-425	-246	-7	2	241	-216	1	
12	1467	-1325	15	14	239	-26	2	6	879	419	18	3	205	63	5	
13	2199	-2186	1	15	522	-559	-1	7	-533	-220	-10	4	436	-331	11	
14	984	983	0	16	706	240	16	8	-653	-303	-17	5	992	1025	-7	
15	1517	1624	-11	17	-253	321	-6	9	-276	257	-4	6	1457	1517	-17	
16	666	-796	-7	18	-406	-161	-7	10	911	346	24	7	2235	-2214	6	
17	1757	-1802	-5	19	819	-433	18	11	-204	-216	-3	8	453	-455	0	
18	378	492	-3	20	-497	139	-10	12	502	-320	5	9	254	436	-10	
19	1658	1647	1					13	-454	193	-8	10	801	-684	13	
20	671	-956	-17	0	k	20		14	644	546	4	11	1642	-1652	-2	
21	1361	-1261	9									12	302	-293	0	
22	462	539	-2	0	562	262	7	0	k	24		13	2148	2153	-1	
23	1297	1212	7	1	373	278	2	2	-472	151	-8	14	-347	18	-9	
	0	k	17	3	503	-473	0	1	2257	2128	14	15	1592	-1572	3	
				4	-328	146	-4	2	-365	309	-6	16	383	-240	5	
1	588	56	12	5	593	380	7	3	1843	-1783	5	17	939	1046	-11	
2	-160	-297	-4	6	-433	33	-6	4	295	-102	2	19	2071	-1978	15	
3	803	-589	10	7	148	-271	-1	5	1993	2115	-12	20	-598	-119	-18	
4	579	598	0	8	157	186	0	6	-237	267	-4	21	1377	1251	14	
5	399	356	1	9	690	536	6	7	1636	-1729	-8	22	-232	-50	-2	
6	765	-468	15	10	847	463	18	8	215	80	1	23	1169	-1295	-8	
7	-343	-159	-5	11	-616	-241	-15	9	1483	1642	-14	24	304	-86	2	

Di-iridium complex.

Page 11

25	1200	1062	7	6	1259	-1163	16	19	1196	-1139	5	3	800	816	-1
28	-453	-30	-5	7	230	298	-2	20	686	344	15	4	804	830	-2
27	970	-1053	-3	8	636	-682	-2	21	788	856	-4	5	-179	44	-2
28	712	44	13	9	1182	1160	3	22	-236	-542	-10	6	-250	-125	-5
29	909	867	1	10	457	256	9	23	858	-527	13	7	887	834	-5
				11	-442	-140	-14	24	664	527	4	8	-321	191	-9
1	k	2		12	1056	779	34	25	734	450	8	9	1492	-1423	10
				13	1077	1098	-2	26	715	-489	6	10	423	-572	-8
0	3145	3344	-46	14	306	-236	2	27	-556	-434	-12	11	553	777	-18
1	5268	5108	32	15	493	246	11	28	776	362	12	12	1049	1102	-6
2	2111	-2064	14	16	298	242	1					13	1110	-1121	-1
3	516	-436	8	17	326	-186	4	1	k	7		14	973	-1093	-12
4	1731	1833	-29	18	178	-320	-3					15	812	979	-14
5	2133	2184	-14	19	149	-83	0	1	709	-80	26	16	1377	1430	-6
6	4820	-4830	-2	20	-437	52	-9	2	586	559	1	17	1000	-982	1
7	539	-488	4	21	-710	-89	-23	3	178	375	-6	18	1470	-1408	7
8	998	969	3	22	-254	-50	-2	4	-195	-122	-3	19	997	1074	-6
9	1250	1393	-24	23	803	514	10	5	-125	-301	-6	20	644	868	-9
10	1926	-1968	-8	24	723	-28	13	6	879	802	7	21	887	-956	-3
11	1438	-1325	19	25	-432	-405	-9	7	414	-571	-9	22	1001	-1005	0
12	1792	1638	28	26	627	287	7	8	313	-455	-7	23	865	672	8
13	1872	1892	-3	27	331	232	1	9	811	603	19	24	1198	1235	-2
14	436	-774	-25	28	-786	-34	-15	10	997	1021	-3	25	522	-801	-9
15	1611	-1634	-3	29	490	-251	4	11	801	681	10	26	1447	-1289	9
16	438	408	1					12	1016	-910	12	27	1041	878	7
17	1335	1253	10	1	k	5		13	1079	-1137	-7				
18	-288	-642	-26					14	845	740	9	1	k	10	
19	784	-876	-7	1	1356	-1308	8	15	953	828	11				
20	653	528	7	2	283	-358	-3	16	658	-654	0	0	1504	-1417	8
21	870	784	7	3	369	316	2	17	598	-712	-7	1	3868	-4017	-29
22	307	-388	0	4	665	589	7	18	1083	942	13	2	140	-298	-3
23	1205	-1188	1	5	407	-444	-2	19	1144	1203	-5	3	2896	2878	3
24	-978	37	-28	6	216	91	2	20	820	-1030	-16	4	596	133	20
25	913	820	11	7	600	-462	9	21	666	-925	-12	5	4085	-4145	-12
26	494	-37	6	8	113	127	0	22	723	759	-1	6	465	466	0
27	1033	-539	19	9	91	-147	0	23	1145	965	10	7	5430	5435	0
28	-412	331	-6	10	545	523	1	24	866	-978	-5	8	-430	37	-11
29	996	484	18	11	223	-222	0	25	767	-677	3	9	3296	-3290	1
				12	1118	-986	17	26	891	596	10	10	579	-612	-2
1	k	3		13	-463	-176	-15	27	534	810	-8	11	4062	4069	-1
				14	449	654	-13	28	-211	-766	-15	12	514	-651	-8
2	627	-668	-5	15	444	-453	0					13	2927	-2898	5
3	-230	309	-15	16	881	-906	-2	1	k	8		14	538	-548	0
4	296	173	5	17	622	710	-6					15	2871	2896	-4
5	494	439	4	18	613	703	-5	0	3968	-3797	25	16	218	28	2
6	502	-526	-2	19	311	-472	-6	1	553	110	14	17	2361	-2280	12
7	888	-885	0	20	690	-805	-7	2	3513	3455	12	18	748	442	16
8	636	-675	-3	21	-229	519	-14	3	1596	-1438	24	19	2440	2359	12
9	675	497	13	22	-455	289	-8	4	3745	-3691	11	20	-280	56	-2
10	-427	465	-30	23	-339	-577	-12	5	947	869	8	21	2117	-2144	-2
11	372	-475	-5	24	-711	-121	-13	6	2815	2885	-15	22	-221	168	-2
12	380	422	-2	25	551	592	-1	7	507	-292	11	23	1437	1519	-5
13	1420	1401	3	26	-257	418	-5	8	2413	-2373	8	24	644	-426	5
14	228	28	3	27	992	-677	13	9	1687	1615	13	25	923	-1135	-10
15	-370	-151	-9	28	1029	-464	20	10	2295	2315	-4	26	-553	2	-7
16	872	-802	6	29	-729	154	-13	11	422	-283	6	27	1383	1138	13
17	111	401	-8					12	3176	-3209	-6				
18	224	358	-4	1	k	6		13	636	311	18	1	k	11	
19	394	-525	-5					14	2871	2854	3				
20	337	-430	-3	0	2040	1971	9	15	951	-766	16	1	908	642	20
21	-343	309	-9	1	3059	3078	-4	16	2079	-2003	12	2	-158	141	-2
22	708	592	6	2	-316	104	-7	17	-579	268	-20	3	1602	-1598	0
23	-940	0	-26	3	1829	-1811	3	18	2218	2119	15	4	1208	-987	25
24	-767	-429	-20	4	1877	1712	32	19	498	-479	0	5	1369	1395	-3
25	157	108	0	5	1911	1911	0	20	1829	-1796	4	6	871	-669	17
26	-322	456	-7	6	1620	-1725	-19	21	942	483	19	7	1062	-1030	3
27	649	-100	10	7	1792	-1760	6	22	1607	1559	3	8	399	539	-7
28	547	-424	2	8	545	-162	17	23	156	-411	-3	9	746	800	-4
29	244	229	0	9	2693	2696	0	24	898	-970	-11	10	758	-631	9
				10	-55	-306	-6	25	-283	145	-2	11	1271	-1151	14
1	k	4		11	2017	-2079	-13	26	843	854	0	12	1291	1198	11
				12	878	810	7	27	418	-357	1	13	582	698	-8
0	447	412	1	13	1606	1644	-6	28	1226	-897	16	14	1105	-1115	-1
1	499	665	-15	14	930	-848	8					15	1075	-1097	-2
2	1519	1467	11	15	780	-821	-3	1	k	9		16	462	844	-22
3	1162	1049	20	16	-317	378	-13					17	1443	1266	19
4	986	906	12	17	138	660	-22	1	-385	40	-7	18	1215	-1177	3
5	2102	2129	-6	18	-462	-193	-13	2	771	563	14	19	1201	-1263	-4

Di-iridium complex.

Page 12

20	870	1149	-14	10	327	386	-1	7	606	224	12	11	925	1008	-3
21	1161	1925	-11	11	2043	2269	-34	8	192	-296	-2	12	1181	-1065	6
22	656	-979	-13	12	602	-685	-4	9	-260	-71	-2	13	467	-431	0
23	1065	-1929	-15	13	2270	2290	-3	10	716	-56	20	14	1291	1139	9
24	-438	789	-20	14	567	746	-9	11	-308	176	-3	15	765	655	3
25	1050	1041	0	15	1335	-1379	-4	12	-269	39	-2	16	741	-1034	-12
26	701	-684	0	16	852	-800	2	13	-637	-532	-18	17	330	-610	-8
				17	1929	1845	7	14	-537	-187	-8	18	378	615	-6
1	k	12		18	935	777	7	15	-689	480	-18				
				19	1558	-1532	1	16	794	128	15	1	k	21	
0	4510	4609	-13	20	411	-441	0	17	201	-397	-3	1	767	-171	12
1	446	599	-7	21	636	1081	-19	18	-874	-70	-20	2	-660	-63	-9
2	3627	-3553	13	22	204	161	0	19	746	136	13	3	-810	-169	-15
3	-288	241	-7	23	1292	-1189	6	20	-514	34	-7	4	-451	72	-4
4	3901	3803	18	24	-122	-374	-3	21	389	-381	0	5	-541	-230	-7
5	437	531	-4					22	637	-56	10	6	-855	-268	-18
6	3729	-3618	21	1	k	15						7	0	-232	-1
7	1139	-1022	12					1	k	18		8	785	706	2
8	4096	4142	-8	1	261	-332	-1					9	300	124	1
9	1030	975	5	2	-117	139	-1	0	-892	-391	-23	10	841	-651	6
10	3083	-3018	12	3	-291	569	-17	1	192	9	1	11	777	-108	13
11	506	-204	11	4	460	-194	7	2	314	376	-1	12	750	546	6
12	3251	3292	-7	5	-657	-138	-19	3	-606	-434	-19	13	-277	-29	-1
13	97	437	-8	6	-196	26	-1	4	-681	-187	-18	14	432	-720	-8
14	3044	-3053	-1	7	575	-334	9	5	-156	244	-3	15	699	-142	11
15	547	-251	10	8	190	125	0	6	-452	82	-8	16	537	769	-7
16	2237	2327	-13	9	420	-49	7	7	261	-125	1	17	-404	199	-5
17	598	358	10	10	662	388	12	8	827	4	26				
18	2176	-2113	8	11	393	299	2	9	679	633	1				
19	939	-327	21	12	503	-311	6	10	354	-10	3	1	k	22	
20	2420	2303	12	13	542	-526	0	11	-477	8	-6				
21	-112	22	0	14	877	881	0	12	531	14	7	0	1859	1833	1
22	1386	-1292	5	15	416	678	-8	13	-748	222	-15	1	1761	-1858	-6
23	-308	-152	-3	16	831	-491	12	14	814	332	13	2	1717	-1767	-3
24	723	1222	-22	17	1229	-1054	10	15	201	-187	0	3	1118	1346	-11
25	-814	-62	-18	18	850	897	-2	16	895	16	21	4	1381	1630	-14
26	1250	-1358	-6	19	677	533	4	17	119	243	-1	5	1000	-1428	-20
				20	386	-735	-10	18	120	-37	0	6	1358	-1513	-9
1	k	13		21	932	-447	17	19	-518	-140	-7	7	1477	1500	-1
				22	208	192	0	20	-821	114	-18	8	1676	1505	10
1	280	-435	-4	23	-534	685	-18	21	453	289	3	9	1503	-1447	3
2	323	-5	4	24	305	-445	-2					10	1562	-1343	14
3	566	328	10					1	k	19		11	1683	1649	2
4	653	-565	5	1	k	16						12	1430	1308	7
5	471	-78	10					1	226	49	1	13	1503	-1327	10
6	-610	257	-22	0	831	-716	4	2	540	-401	4	14	1427	-1325	6
7	189	-45	1	1	539	302	7	3	-492	-29	-8	15	1196	1092	5
8	150	-608	-17	2	1151	1201	-4	4	767	339	16	1	k	23	
9	-416	404	-17	3	-235	507	-12	5	808	-337	13				
10	1311	1090	24	4	1245	-1351	-10	6	-760	32	-14				
11	1205	-1196	1	5	715	-696	1	7	-383	471	-9	1	680	65	9
12	697	-990	-22	6	828	725	6	8	199	21	0	2	-586	188	-7
13	1097	1195	-9	7	630	686	-3	9	701	-232	11	3	1183	-262	28
14	1213	1052	15	8	1199	-1146	4	10	-663	-366	-14	4	-618	-124	-8
15	119	-707	-20	9	916	-702	14	11	666	794	-4	5	527	594	-1
16	967	-1099	-10	10	985	968	1	12	-824	53	-17	6	-571	-167	-8
17	941	952	0	11	671	435	10	13	870	-523	12	7	-1043	-363	-28
18	889	838	2	12	868	-781	5	14	529	45	7	8	-520	24	-6
19	1099	-759	17	13	470	-232	4	15	266	530	-5	9	649	837	-8
20	936	-1028	-4	14	779	864	-3	16	-713	217	-14	10	-224	525	-7
21	1106	813	14	15	1126	780	17	17	711	-498	6	11	802	-757	1
22	1257	870	19	16	916	-821	4	18	-493	-68	-6	12	583	-290	5
23	205	-365	-2	17	879	-819	10	19	572	551	0	13	1080	1050	1
24	1073	-959	5	18	631	685	-1	20	456	201	4	1	k	24	
25	-536	678	-17	19	827	289	15								
				20	291	-870	-17	1	k	20					
1	k	14		21	-693	-503	-19					0	1081	1302	-10
				22	-506	331	-9	0	1503	-1230	16	1	2313	1967	26
0	-680	-274	-16	23	-891	278	-22	1	1311	-1112	10	2	1695	-1682	0
1	3706	3772	-11					2	1369	1278	5	3	1966	-1905	4
2	775	834	-4	1	k	17		3	878	1203	-14	4	1730	1638	5
3	2550	-2380	27					4	1196	-1194	0	5	1799	1743	3
4	762	-837	-5	1	431	-235	4	5	380	-736	-9	6	981	-1150	-7
5	2976	2922	9	2	-226	-198	-3	6	942	1150	-9	7	1925	-1733	13
6	625	601	1	3	380	154	4	7	429	794	-10	8	1565	1445	7
7	2490	-2483	1	4	85	131	0	8	1030	-941	4	9	2060	1894	12
8	354	-948	-36	5	-423	50	-6	9	-356	-771	-17	10	1267	-1266	0
9	2210	2218	-1	6	113	-57	0	10	952	1038	-3	11	1905	-1717	13

Di-iridium complex.

Page 13

1	k	25	16	781	-717	5	21	1664	1536	15	4	268	471	-8	
1	-476	-191	-5	19	494	-18	12		2	k	6	5	1345	-1287	-8
2	-584	216	-8	20	549	-302	9	0	6104	6029	9	6	759	797	-3
3	965	94	19	21	-264	44	-3	1	3739	3808	-14	7	798	778	1
4	-677	-302	-11					2	5805	5846	-7	8	1209	1119	11
5	555	-181	5		2	k	3	3	3265	3144	25	9	1041	-1049	0
6	339	518	-3					4	3539	3396	30	10	404	162	7
7	-632	141	-9	1	-206	-168	-4	5	2186	2186	0	11	1130	1135	0
				2	1376	1415	-6	6	3170	3140	6	12	281	-285	0
	2	k	0	3	-509	-282	-23	7	2308	2381	-15	13	899	-916	-1
				4	477	377	5	8	2815	2675	-13	14	-338	131	-6
0	2029	-2076	-11	5	873	-895	-2	9	2482	2463	4	15	1383	1426	-5
1	1570	-1469	26	6	770	-786	-1	10	3196	3174	4	16	291	-268	0
2	997	-983	3	7	-347	-40	-8	11	2436	2436	0	17	1623	-1617	0
3	574	-241	34	8	1508	1582	-13	12	2657	2609	10	18	-204	-205	-3
4	4126	4124	0	9	446	210	10	13	2127	2000	23	19	1811	1928	-15
5	1039	-1146	-24	10	657	-697	-3	14	2431	2496	-12	20	675	-130	12
6	952	-1014	-12	11	-212	-92	-3	15	1819	-1899	-13		2	k	10
7	1212	1084	26	12	-482	113	-16	16	2868	2781	-21	0	3390	-3424	-4
8	-167	2	-2	13	-337	265	-11	17	1722	1705	2	1	2664	-2740	-14
9	407	-383	1	14	314	4	6	18	2076	2242	-26	2	1766	1874	-16
10	240	-171	2	15	342	400	-2	19	1404	-1377	3	3	3115	3132	-3
11	714	586	15	16	997	1060	-8	20	1725	1758	-4	4	2141	-2212	-12
12	514	366	12	17	757	455	19				5	3342	-3318	9	
13	619	-545	7	18	809	-827	-1	2	k	7	6	1421	1446	-3	
14	617	-458	10	19	351	-120	5				7	2957	2919	7	
15	886	772	10	20	624	680	-3	1	-519	100	-13	8	1501	-1596	-14
16	277	464	-8	21	-453	282	-13	2	699	869	-13	9	1863	-1795	11
17	741	-874	-11					3	788	606	13	10	1772	1800	-4
18	227	-57	2	2	k	4		4	786	-830	-3	11	2451	2432	3
19	453	684	-12					5	964	-1007	-4	12	1431	-1526	-12
20	611	556	2	0	3730	3789	-9	6	813	723	8	13	2361	-2259	17
21	616	-806	-11	1	6070	-6164	-16	7	-446	-200	-15	14	1840	1838	0
				2	2027	-1946	18	8	967	-1033	-7	15	1982	1969	2
	2	k	1	3	3876	3829	10	9	246	405	-6	16	1178	-1180	0
				4	2162	2186	-5	10	1855	1907	-9	17	1742	-1769	-3
1	688	-698	-1	5	1531	-1479	8	11	578	272	16	18	1169	1157	1
2	932	-932	0	6	3171	-3150	4	12	2114	-2087	4	19	1867	1938	-6
3	305	300	0	7	2507	2445	13	13	212	106	1	20	1123	-1152	-1
4	1002	-900	17	8	1872	1874	0	14	1511	1365	20		2	k	11
5	2106	-2046	17	9	2425	-2543	-26	15	-370	-264	-11				
6	476	-430	3	10	1141	-1115	3	16	1867	-1963	-15				
7	673	222	35	11	1994	2025	-6	17	448	315	4	1	332	-126	4
8	405	-333	4	12	1918	1914	0	18	1883	1882	0	2	527	468	2
9	-203	-361	-13	13	1372	-1447	-11	19	330	-245	2	3	279	559	-11
10	1008	-946	9	14	-281	-504	-19	20	1709	-1602	13	4	-106	303	-5
11	182	41	2	15	1906	1914	-1				5	-323	63	-5	
12	-501	339	-31	16	909	1031	-12	2	k	8	6	-162	-324	-6	
13	335	-283	2	17	1272	-1234	4				7	702	414	16	
14	455	-691	-16	18	958	-817	12	0	4619	-4558	8	8	1265	1234	3
15	831	-706	11	19	1767	1706	8	1	4353	4359	-1	9	379	-432	-2
16	500	131	13	20	934	1006	-6	2	4029	3990	7	10	680	-719	-2
17	495	66	13	21	1474	-1532	-6	3	3959	-3882	15	11	521	-234	11
18	825	-917	-8					4	3688	-3638	10	12	1161	1174	-1
19	250	39	3	2	k	5		5	2538	2533	1	13	-397	116	-8
20	-468	395	-17					6	2134	2123	2	14	1259	-1202	6
21	442	-421	0	1	826	775	4	7	3026	-2996	6	15	402	66	7
				2	612	859	-20	8	2850	-2741	22	16	1195	1042	14
	2	k	2	3	430	-347	3	9	2671	2650	4	17	375	359	0
0	1971	-1971	0	5	777	743	3	10	2865	2837	5	18	1007	-1142	-7
1	584	378	14	6	331	262	2	11	2546	-2543	0	19	-562	100	-9
2	1491	-1415	14	7	494	-322	8	12	1979	-1958	3	20	1414	1345	4
3	130	101	0	8	-251	0	-4	13	2290	2298	-1				
4	1675	-1641	7	9	502	615	-8	14	2407	2364	7		2	k	12
5	615	451	12	10	-137	-141	-2	15	2082	-2146	-10				
6	1644	1503	26	11	810	-815	0	16	1808	-1716	13	0	1475	1495	-1
7	420	-320	5	12	407	281	5	17	2223	2210	1	1	2066	-2052	2
8	1102	-1116	-1	13	2046	1979	12	18	1699	1761	-8	2	1897	-1799	13
9	1120	-1034	11	14	-335	67	-6	19	1941	-1844	13	3	307	634	-14
10	506	232	13	15	1534	-1525	1	20	1533	-1466	4	4	2344	2341	0
11	288	458	-8	16	-513	-72	-14	2	k	9	5	776	-689	6	
12	1180	-1217	-5	17	1023	1132	-11				6	1998	-1954	7	
13	747	748	0	18	-343	-216	-8	1	598	-533	3	7	829	808	1
14	1189	1196	-1	19	1762	-1756	0	2	-483	128	-13	9	775	-733	3
15	772	570	16	20	-458	37	-9	3	465	298	6	10	1685	-1584	13

Di-iridium complex.

Page 14

11	888	964	-6	19	-573	-137	-8	3	293	73	1	1	-722	83	-11
12	1957	1979	-3	20	476	-92	5	4	538	-111	6	2	228	-183	0
13	886	-701	13					5	872	-348	14	3	805	-378	9
14	1600	-1539	7	2	k	16		6	763	57	12	4	-351	326	-5
15	879	759	8					7	-788	589	-21	5	-268	278	-2
16	1342	1455	-12	0	1005	1017	0	8	-290	-459	-6	6	-641	-326	-10
17	487	-775	-9	1	254	1	2	9	760	-790	-1	7	639	-542	2
18	1254	-1260	0	2	40	-945	-12	10	980	715	9	8	-775	203	-12
19	312	344	0	3	333	275	7	11	-620	346	-11	9	739	514	5
20	979	1266	-15	4	969	845	8	12	268	-403	-2	10	497	-187	4
				5	-527	-55	-11	13	733	-354	9	11	266	-481	-3
2	k	13		6	808	-510	4	14	556	417	3	12	654	447	4
				7	677	689	0	15	406	695	-7				
1	664	380	13	8	938	920	1	16	1146	-675	19				
2	664	-58	19	9	623	-416	8	17	1022	-917	4	2	k	24	
3	757	-524	13	10	772	-670	5	18	1040	784	10				
4	330	-565	-9	11	-712	228	-22	19	920	863	2	0	2138	2023	7
5	222	8	2	12	661	722	-2					1	523	492	0
6	401	-114	6	13	-577	-267	-10	2	k	20		2	1732	-1822	-5
7	251	-204	1	14	514	-678	-4					3	790	-608	4
8	-355	-52	-6	15	196	574	-7	0	3141	-3069	6	4	1613	1840	-13
9	744	740	0	16	770	925	-6	1	489	175	4	5	-528	457	-9
10	359	51	5	17	-581	-391	-11	2	2982	2886	9	6	1926	-2067	-9
11	952	-1085	-11	18	514	-416	2	3	727	122	10	7	547	-440	2
12	-502	-36	-11	19	293	576	-5	4	2563	-2774	-18	8	1893	1749	9
13	619	637	-1	20	1226	684	26	5	579	-54	-7	9	305	756	-9
14	-232	-31	-2					6	2608	2688	-7				
15	871	-729	9	2	k	17		7	-323	-5	-2	2	k	25	
16	793	-155	15					8	2736	-2727	0				
17	473	668	-5	1	210	-73	1	9	-366	185	-3	1	458	-61	4
18	442	-389	1	2	417	111	5	10	2453	2203	20	2	195	-61	0
19	435	-538	-2	3	537	4	10	11	347	-238	1	3	619	-158	6
20	498	12	6	4	528	-344	5	12	2177	-2020	12	4	637	-444	4
				5	-650	400	-21	13	581	140	6	5	-540	219	-6
2	k	14		6	163	474	-7	14	2369	2094	22				
				7	372	-446	-2	15	906	-11	18	3	k	0	
0	270	73	2	8	483	-560	-3	16	1759	-1782	-1				
1	280	-160	2	9	-271	272	-5	17	-221	25	-1	0	1413	-1550	-18
2	1275	-1307	-3	10	868	433	13	18	1517	1393	7	1	2625	2607	4
3	551	-609	-2	11	276	-527	-5					2	650	-601	4
4	287	-188	2	12	1173	-737	19	2	k	21		3	566	-384	14
5	759	681	4	13	582	489	2					4	1047	892	24
6	-553	-234	-16	14	1225	690	25	1	-732	102	-11	5	1467	1405	13
7	857	-758	7	15	-616	-458	-13	2	-487	-338	-7	6	2216	-2236	-5
8	475	70	9	16	-235	-202	-2	3	-282	48	-1	7	532	-545	-1
9	830	834	0	17	753	550	6	4	-438	376	-7	8	1218	1200	3
10	-374	97	-6	18	0	295	-2	5	-539	-409	-9	9	726	597	15
11	-227	-494	-12	19	211	-498	-4	6	536	-327	3	10	900	-916	-2
12	-486	-238	-12	20	1208	-830	18	7	504	473	0	11	570	-486	8
13	667	268	15					8	-765	169	-13	12	1141	965	30
14	-727	82	-22	2	k	18		9	765	-265	11	13	1095	1126	-3
15	601	-656	-1					10	1233	-912	13	14	1347	-1363	-2
16	-154	-98	0	0	305	173	1	11	126	626	-7	15	1490	-1477	1
17	-608	255	-10	1	2244	2263	-2	12	1260	974	13	16	549	414	6
18	575	-65	8	2	-658	-267	-17	13	-220	-665	-10	17	424	531	-5
19	669	-494	4	3	1841	-1853	-1	14	931	-753	6	18	923	-777	11
20	-508	142	-7	4	-437	254	-8	15	794	621	5	19	495	-737	-13
				5	2041	2128	-10	16	734	749	0	20	773	830	-3
2	k	15		6	658	-750	-4					3	k	1	
				7	2023	-2007	1	2	k	22					
1	-127	-60	0	8	381	420	0								
2	222	156	1	9	1641	1793	-11	0	-530	543	-11	1	1066	894	16
3	517	-71	10	10	-872	-182	-18	1	2939	-2647	24	2	398	-419	0
4	-122	42	0	11	1449	-1719	-19	2	-930	-348	-19	3	192	-135	1
5	595	316	10	12	659	224	8	3	2614	2728	-9	4	190	121	1
6	-237	-88	-2	13	1609	1543	4	4	799	65	14	5	457	514	-4
7	490	-148	9	14	679	-300	9	5	2060	-2184	-8	6	617	227	24
8	618	-15	16	15	1533	-1515	1	6	758	-278	9	7	536	381	8
9	-380	5	-6	16	828	520	2	7	2272	2212	4	8	1525	-1443	16
10	743	298	19	17	1649	1457	12	8	-224	227	-2	9	1673	-1721	-10
11	635	-182	15	18	-123	-250	-1	9	2450	-2462	-1	10	1177	1180	0
12	-149	-200	-2	19	1385	-1390	0	10	-388	-161	-3	11	931	895	4
13	-594	200	-15	20	657	183	9	11	2333	2265	5	12	661	-644	1
14	-628	250	-12					12	-520	325	-7	13	773	-746	2
15	110	-4	0	2	k	19		13	2081	-2019	4	14	338	423	-3
16	-112	-87	0					14	1008	-240	22	15	690	632	4
17	-820	270	-18	1	-653	-14	-9					16	517	-1025	-40
18	-1165	3	-32	2	-727	84	-12	2	k	23		17	716	-739	-1

Di-iridium complex.										Page	15				
18	1071	1143	-7	2	-511	54	-13	12	-347	233	-9	8	526	230	10
19	585	428	7	3	265	-18	3	13	2412	2362	8	9	-483	-265	-13
20	1026	-967	5	4	1190	1233	-5	14	-117	-120	-1	10	501	-325	6
				5	633	-737	-8	15	2274	-2333	-9	11	522	-252	9
				6	834	-787	4	16	-369	12	-6	12	314	398	-2
				7	905	-882	2	17	2345	2310	5	13	330	1	4
				8	589	551	2	18	-431	343	-13	14	423	-264	4
0	2898	-2843	8	8								15	-645	-11	-17
1	1277	1286	-1	9	1415	1419	0								
2	4872	4847	4	10	923	-869	5								
3	1709	-1671	6	11	1115	-921	21								
4	2767	-2732	7	12	1298	1303	0	1	533	362	7				
5	914	902	1	13	1028	1103	-8	2	-64	-203	-2	1	512	-348	5
6	2832	2856	-5	14	1184	-1168	1	3	-611	104	-19	2	103	-187	-1
7	860	-867	0	15	1447	-1442	0	4	534	258	11	3	-728	57	-22
8	2432	-2438	-1	16	1376	1382	0	5	1181	-1125	6	4	-560	39	-13
9	1492	1502	-1	17	1295	1259	4	6	764	328	25	5	-270	71	-3
10	2825	2800	5	18	1103	-1193	-8	7	430	288	5	6	608	248	13
11	1502	-1392	17	19	1150	-1059	8	8	1097	-1057	4	7	603	-173	14
12	2179	-2152	5					9	838	-531	21	8	507	-54	11
13	323	616	-18					10	526	587	-3	9	361	-133	4
14	2072	2115	-7					11	-195	519	-15	10	-445	95	-9
15	1166	-1196	-3	0	7118	7001	13	12	620	-702	-5	11	-709	109	-21
16	1585	-1610	-3	1	624	359	12	13	420	-636	-11	12	-635	217	-19
17	591	595	0	2	5409	-5453	-7	14	917	827	7	13	257	-330	-1
18	1748	1855	-15	3	969	1019	-5	15	635	591	2	14	-195	-398	-8
19	1140	-977	14	4	4631	4553	14	16	948	-632	21				
20	1486	-1397	10	5	905	-721	17	17	653	-621	1				
			6	3352	-3259	19									
			7	-596	68	-22									
			8	3998	4041	-8									
1	-470	-107	-11	9	982	-1005	-2	0	2251	-2315	-7	2	1325	1239	8
2	1751	-1801	-8	10	5033	-5033	0	1	-229	-513	-15	3	-178	186	-2
3	-306	-359	-12	11	603	387	12	2	2392	2424	-5	4	1392	-1545	-16
4	197	249	-1	12	3201	3304	-20	3	362	649	-13	5	546	-717	-8
5	541	298	11	13	813	-345	29	4	2180	-2232	-8	6	1709	1670	4
6	1587	-1749	-19	14	2917	-2942	-4	5	388	-575	-8	7	631	155	15
7	331	308	0	15	675	362	16	6	1360	1340	2	8	1578	-1542	4
8	1168	1236	-9	16	3304	3360	-10	7	-267	-205	-5	9	498	-530	-1
9	343	13	5	17	-560	-56	-15	8	1735	-1692	6	10	1114	1076	3
10	770	-528	19	18	2592	-2513	12	9	252	-298	-1	11	328	561	-8
11	1073	1061	1	19	529	293	8	10	1313	1199	13	12	1283	-1350	-6
12	693	738	-3					11	-476	187	-13				
13	1114	-1089	2					12	1288	-1389	-11				
14	1202	-1182	2					13	228	-36	2				
15	1271	1218	6	1	506	502	0	14	1312	1295	1	1	400	369	0
16	1175	928	25	2	845	850	0	15	134	598	-15	2	164	-296	-2
17	470	-767	-17	3	375	-243	4	16	1394	-1311	8	3	848	-436	19
18	803	-827	-1	4	279	-380	-3	17	490	-302	6	4	622	670	-2
19	1540	1540	0	5	544	483	3					5	-180	164	-2
20	1128	1213	-8	6	437	287	6					6	761	-757	0
			7	380	-646	-15						7	-225	135	-2
			8	439	-408	1	1	405	-285	3	8	703	365	14	
			9	1007	1100	-10	2	931	-892	3	9	129	-57	0	
0	1920	-1886	3	10	-93	206	-2	3	417	168	6	10	898	-407	24
1	5395	-5406	-1	11	850	-695	13	4	-507	-46	-12	11	742	18	21
2	1334	1240	11	12	750	-811	-4	5	494	253	8				
3	5851	5783	11	13	1082	1170	-9	6	222	-39	2				
4	1646	-1610	5	14	586	889	-22	7	509	590	-4				
5	3779	-3706	15	15	1120	-1042	7	8	302	254	1	0	1471	1555	-5
6	330	552	-11	16	708	-765	-3	9	178	-254	-1	1	2223	-2207	2
7	3242	3184	12	17	1153	1159	0	10	-475	-5	-10	2	1569	-1655	-9
8	1167	-1047	15	18	985	1054	-5	11	603	578	1	3	1803	1802	0
9	3401	-3331	14	19	1540	-1419	13	12	581	-472	5	4	1109	1068	3
10	-297	67	-5					13	228	-174	0	5	2234	-2359	-17
11	3300	3227	14					14	-413	-41	-7	6	1318	-1135	15
12	1296	-1379	-11					15	971	784	13	7	1839	1883	-5
13	3474	-3548	-15	0	480	291	5	16	-55	-33	0	8	1155	1375	-19
14	849	572	21	1	3972	4005	-6					9	2008	-2096	-11
15	2908	2869	7	2	317	78	4								
16	1007	-852	14	3	4637	-4590	8								
17	2725	-2664	10	4	488	279	8	0	-298	-45	-2				
18	817	742	5	5	3293	3269	4	1	-379	-273	-9	1	703	180	16
19	2352	2293	9	6	314	-99	4	2	-319	40	-4	2	714	206	16
20	491	-401	3	7	3243	3149	18	3	193	-644	-16	3	-310	-155	-4
			8	-518	-117	-15	4	542	635	-4	4	-359	-38	-4	
			9	3427	3478	-9	5	-183	263	-4	5	771	438	13	
			10	653	-492	9	6	827	-642	12	6	-533	142	-10	
1	514	116	12	11	3121	3108	2	7	358	71	5				

Di-iridium complex.

Page 16

4	k	0	9	1734	-1641	15	2	986	-824	13	2	673	605	3	
			10	217	-234	0	3	-70	102	0	3	-152	102	-1	
0	3301	3307	-1	11	1099	1096	0	4	-142	0	4	-205	287	-5	
1	1832	1872	-8	12	490	-27	12	5	-322	-199	7	5	-360	94	-6
2	4305	-4236	15	13	1431	-1513	-11	6	94	269	-3	6	-705	258	-25
3	1840	-1855	-3	14	297	362	-2	7	293	-98	4	7	-300	167	-5
4	2764	2741	5	15	1848	1719	18	8	597	-328	12	8	690	-511	9
5	1538	1484	11	16	393	-345	1	9	-334	51	-5	9	-274	342	-8
6	2403	-2322	19	17	1473	-1383	16	10	540	-405	6	10	570	480	3
7	1303	-1312	-1	18	903	543	23	11	880	-744	10	11	-176	-508	-12
8	4179	4142	8					12	-344	105	-6	12	-344	165	-6
9	1552	1549	0	4	k	4		13	1077	991	8	13	397	358	1
10	3537	-3619	-21					14	-332	-11	-5	14	-422	523	-17
11	801	-779	2	0	2778	-2841	-8	15	891	-975	-6				
12	2436	2334	25	1	2882	-2858	4	16	862	201	31	4	k	12	
13	507	571	-3	2	2899	2901	0	17	860	1056	-15				
14	2333	-2353	-3	3	2593	2603	-2					0	1272	1155	7
15	1103	-1082	2	4	2633	-2613	3	4	k	8		1	2839	2856	-2
16	2364	2254	17	5	2529	-2520	1					2	591	-760	-9
17	840	1025	-15	6	1993	2003	-1	0	336	240	1	3	1959	-2114	-21
18	2167	-2281	-17	7	2118	2037	14	1	1223	1175	5	4	708	766	-3
19	-450	-387	-15	8	2334	-2341	-1	2	770	-785	-1	5	1739	1831	-11
				9	1965	-1979	-2	3	696	-727	-2	6	463	-609	-6
				10	2885	2841	8	4	606	899	-20	7	2233	-2220	1
				11	2357	2434	-14	5	923	876	4	8	-270	163	-4
1	-243	-374	-9	12	1922	-2027	-17	6	942	-995	-5	9	1720	1692	3
2	815	728	6	13	1970	-2013	-7	7	-395	94	-8	10	767	-623	8
3	1154	-996	17	14	2367	2297	11	8	549	505	2	11	1826	-1605	26
4	194	-104	1	15	1587	1587	0	9	419	536	-5	12	830	362	21
5	622	776	-15	16	1772	-1679	12	10	519	-755	-13	13	1864	1872	-1
6	-496	-245	-22	17	1774	-1687	11	11	898	-773	9				
7	482	620	-11	18	1371	1360	1	12	537	564	-1	4	k	13	
8	385	-480	-5					13	-422	123	-9				
9	1016	828	23	4	k	5		14	573	-585	0	1	586	-472	4
10	698	909	-18					15	743	-732	0	2	498	334	5
11	295	-516	-10	1	1071	1023	4	16	699	308	17	3	789	576	11
12	1585	-1523	9	2	1196	-1173	2					4	209	-436	-5
13	-253	92	-4	3	493	-164	11	4	k	9		5	218	-195	0
14	1288	1334	-5	4	330	18	5					6	107	535	-10
15	-142	-400	-9	5	399	-180	6	1	519	-394	5	7	-211	-160	-2
16	1153	-1186	-3	6	636	-209	19	2	313	429	-3	8	565	-762	-10
17	763	544	12	7	521	-357	7	3	-441	-109	-9	9	490	-343	4
18	1289	1349	-6	8	1388	1355	4	4	-96	-33	0	10	461	503	-1
19	-200	-151	-2	9	-357	164	-8	5	586	393	8	11	555	719	-7
				10	1020	-1070	-5	6	517	-330	7				
				11	-213	359	-9	7	595	-270	13	4	k	14	
				12	921	1019	-9	8	-101	-139	-1				
0	1629	-1818	-20	13	575	-409	8	9	338	91	4	0	3206	-2873	36
1	3808	3915	-20	14	1404	-1496	-11	10	251	195	1	1	-500	592	-21
2	1197	1009	19	15	-553	45	-14	11	538	-317	8	2	2619	2670	-7
3	2789	-2781	1	16	1606	1451	19	12	122	-151	0	3	640	-586	2
4	2127	-2080	8	17	423	-526	-4	13	757	736	1	4	2554	-2694	-20
5	3871	3888	-3	18	1369	-1241	13	14	687	255	17	5	475	618	-5
6	2022	1909	20					15	-34	-160	-1	6	2302	2385	-11
7	3829	-3855	-5	4	k	6		16	277	-226	1	7	110	-705	-17
8	2209	-2120	12									8	2389	-2430	-5
9	2947	2927	3	0	1957	1965	0	4	k	10		9	666	528	6
10	2487	2564	-15	1	2619	-2650	-5					10	2668	2613	7
11	3029	-3033	0	2	2758	-2889	-24	0	1783	1723	5				
12	1990	-1999	-1	3	2301	2330	-4	1	1065	-1121	-5	4	k	15	
13	2858	2909	-9	4	2888	2749	26	2	1050	-1085	-3				
14	1326	1400	-9	5	855	-697	12	3	695	585	6	1	657	471	7
15	2571	-2624	-9	6	2114	-2188	-13	4	1191	1292	-10	2	868	-685	9
16	1041	-1147	-10	7	1653	1569	12	5	776	381	20	3	621	116	13
17	1980	2052	-10	8	1681	1624	8	6	990	-934	4	4	-409	166	-8
18	1091	1155	-6	9	1606	-1631	-3	7	370	349	0	5	552	-382	5
19	1958	-1936	3	10	1040	-1198	-17	8	301	633	-14	6	-335	-196	-5
				11	1256	1213	5	9	-301	-38	-4	7	-229	491	-10
				12	1361	1532	-22	10	1091	-1027	5	8	558	740	-8
				13	1084	-1049	3	11	276	-224	1				
1	-593	-502	-29	14	1258	-1382	-14	12	709	580	6	4	k	16	
2	27	-68	0	15	870	823	3	13	-365	-296	-9	0	-542	-355	-10
3	281	331	-1	16	1222	1211	1	14	687	-559	6	1	2902	-2821	11
4	326	241	2	17	1208	-1201	0	15	253	43	2	2	286	583	-8
5	759	-507	18									3	3236	3283	-8
6	392	286	4	4	k	7						4	658	-59	15
7	1402	1393	1	8	839	684	13	1	609	363	11	1	-72	216	-2

Di-iridium complex.

Page 17

5	k	0	16	879	-860	1	0	1745	-1592	13	1	483	109	8		
0	5150	5191	-7		5	k	4	1	-514	-62	-11	2	546	437	3	
1	1579	-1575	0	0	2640	-2691	-6	2	1271	1472	-21	3	207	197	0	
2	4032	-3949	17	1	905	963	-4	3	415	81	6	4	832	-239	22	
3	957	1020	-8	2	636	859	-14	4	1345	-1398	-5	5	411	363	1	
4	3371	3408	-9	3	-651	256	-22	5	310	-129	3	6	409	496	-2	
5	1386	-1318	11	4	2032	-2042	-1	6	1324	1333	-1	7	388	-154	4	
6	3996	-3973	5	5	871	-948	-6	7	-542	-180	-14		5	k	14	
7	1109	1073	5	6	2289	2332	-7	8	1200	-1145	5		0	2052	-2096	
8	3202	3194	1	7	483	639	-8	9	293	-427	-4	1	2943	2955	-1	
9	827	-749	8	8	1719	-1662	8	10	882	782	6	2	2193	2283	-11	
10	3071	-3127	-13	9	507	-362	6	11	412	-37	7	3	2569	-2516	7	
11	484	503	-1	10	1468	1375	11	12	1133	-947	15	4	1936	-1924	1	
12	2837	2827	2	11	424	226	6	13	-771	-89	-24		6	k	0	
13	782	-886	-7	12	1667	-1569	12	14	1123	1058	5		0	1142	1262	
14	2846	-2757	15	13	243	-223	0		5	k	9	1	2218	-2211	1	
15	1101	1209	-10	14	1212	1287	-7		2	-623	73	-16	2	1222	-1079	12
16	2666	2605	9	15	-234	147	-3	1	225	284	-1	3	1934	1917	2	
17	697	-543	7	16	1499	-1408	10	2	-623	73	-16	4	1943	1882	8	
5	k	1		5	k	5		3	614	-466	6	5	1795	-1794	0	
1	880	928	-3	2	-351	-387	-12	6	535	-702	-8	6	1559	-1370	20	
2	218	-281	-1	3	-276	-439	-12	7	-473	-300	-12	7	1692	1779	-11	
3	482	-104	10	4	446	434	0	8	1089	929	12	8	1481	1529	-5	
4	216	398	-5	5	540	317	8	9	-473	236	-11	9	1935	-1955	-2	
5	1107	1179	-7	6	229	205	0	10	608	-540	3	10	1204	-1035	15	
7	991	-991	0	8	340	-210	3	11	225	185	0	11	1809	1920	-14	
8	201	-504	-10	9	522	-301	8	12	459	419	1	12	1314	1254	5	
9	1122	1176	-6	10	287	170	-5	13	291	-192	1	13	1628	-1723	-11	
10	865	674	14	11	-586	0	-16					14	1154	-1116	3	
11	574	-333	10	12	200	307	-2		5	k	10		6	k	1	
12	1017	-1066	-4	13	384	4	6									
13	838	840	0	14	292	-28	3	0	1431	1372	4	1	691	-111	19	
14	1110	1054	5	15	435	-147	7	1	3265	-3256	1	2	346	-226	2	
15	1234	-1073	15	16	382	-124	5	2	1044	-1126	-6	3	586	-307	10	
17	1140	1021	10	17	323	430	-3	3	2635	2602	5	4	256	8		
5	k	2		5	k	6		5	2110	-2214	-14	5	-296	484	-13	
1	-459	-117	-7	0	-614	-193	-12	6	1128	-1285	-14	6	684	-221	18	
2	3394	3396	0	1	-387	-486	-17	7	1642	1777	-16	7	540	-728	-10	
3	321	-170	3	2	616	195	15	8	1217	1189	2	8	185	612	-14	
4	3887	-3858	5	3	448	149	8	9	2167	-2262	-13	9	568	624	-2	
5	771	599	11	4	630	498	6	10	739	-474	12	10	-351	-311	-9	
6	2161	2151	1	5	320	-235	2	11	2118	1916	26	11	1017	-855	12	
7	468	-32	11	6	605	-354	11	12	1005	1191	-14	12	490	275	6	
8	3136	-3240	-19	7	-613	195	-19	13	5	2110	-2214	-14	13	580	901	-19
9	790	776	1	8	-556	343	-20	14	197	144	-2	14	505	-434	2	
10	2548	2495	9	9	740	-289	21	1	70	524	-10		6	k	2	
11	78	-73	0	10	121	-163	0	2	-204	-654	-17	0	1884	1935	-4	
12	2850	-2880	-5	11	-569	45	-14	3	-351	-77	-4	1	-187	273	-4	
13	802	586	14	12	749	636	6	4	658	426	9	2	776	-743	2	
14	2818	2662	26	13	626	-216	15	5	-226	83	-2	3	690	-919	-14	
15	-209	-194	-3	14	594	-289	11	6	537	-721	-8	4	713	359	15	
16	2208	-2299	-14	15	509	265	8	7	539	349	6	5	1357	1510	-16	
	280	-41	3					8	603	609	0	6	658	-853	-12	
5	k	7		10	174	-290	-2	9	1156	-925	19	7	1156	-925	19	
5	k	8		11	1134	-1047	7	8	705	396	14	9	670	706	-2	
1	1155	-1059	9	1	417	-8	7	5	k	12		10	810	-586	13	
2	868	805	4	2	-591	-261	-18	6				11	955	-755	14	
3	361	-140	5	3	45	395	-6	0	4180	4220	-4	12	578	608	-1	
4	672	-795	-8	4	404	-169	6	1	2354	2270	11	13	616	561	2	
5	473	371	4	5	346	-418	-2	2	3599	-3693	-14		6	k	3	
6	1028	768	22	6	722	634	5	3	1770	-1741	3					
7	328	-360	-1	7	391	64	6	4	2382	2475	-13					
8	577	-635	-3	8	679	-172	19	5	1271	1347	-6	1	273	361	-2	
9	631	-355	13	9	423	-53	7	6	2579	-2680	-14	2	157	295	-2	
10	289	-89	3	10	359	355	0	7	991	-982	0	3	-390	-197	-7	
11	607	-12	17	11	879	-494	21	8	2518	2595	-10	4	-526	-572	-25	
12	439	-667	-11	12	879	-494	21	9	1645	1608	3	5	-261	-182	-4	
13	748	-592	9	13	114	-51	0		5	k	13	6	228	298	-1	
14	602	729	-7	14				7	685	189	18	8	413	-211	5	

Di-iridium complex.

Page 18

9 249 -13 2	9 1466 1467 0	2 1014 880 8	7 -480 -233 -10
10 517 -.99 11	10 1304-1192 10	3 2979 2986 0	8 674 -797 -6
11 -272 -119 -3	11 1404-1317 8	4 -472 -369 -12	
12 -598 111 -15	12 831 699 7	5 2479-2594 -15	7 k 3
13 -549 194 -13		6 756 854 -5	
	6 k 7	7 2473 2495 -2	1 411 -138 5
6 k 4	1 -359 -37 -5	6 k 11	2 251 -42 2
0 994 866 6	2 353 111 4	3 562 -96 10	
1 327 -265 1	3 457 -404 1	4 383 337 1	
2 357 -347 0	4 182 108 0	5 -234 -115 -2	
3 -505 -312 -14	5 588 -17 13	6 382 -162 4	
4 414 510 -3	6 317 313 0	7 464 -314 4	
5 305 -315 0	7 349 383 0	8 -490 -25 -9	
6 -538 175 -13	8 1081 -712 24		7 k 4
7 67 302 -3	9 896 -928 -2		
8 364 154 4	10 301 423 -3	0 692 571 3	
9 -228 -149 -3	11 406 267 3	1 2221-2199 2	
10 442 -42 7		2 850 -390 20	
11 153 546 -10	6 k 8	3 2402 2532 -18	
12 -143 -128 -1		4 250 115 1	
13 167 -625 -14	0 2502-2545 -4	5 1676-1851 -18	
	1 780 1161 -26	6 -444 -315 -10	
6 k 5	2 2595 2675 -11	7 2281 2334 -7	
	3 1242-1214 2		
1 -250 -302 -6	4 2237-2196 5	7 989 718 16	7 k 5
2 -677 29 -18	5 1111 1050 4	8 454 292 4	
3 -275 115 -3	6 2350 2496 -20	9 655 -393 10	1 306 113 2
4 310 208 2	7 891 -923 -2		2 158 18 0
5 -460 53 -8	8 2032-1986 5		3 310 65 3
6 -536 -26 -11	9 788 859 -4	1 205 325 -2	4 645 -20 14
7 521 224 9	10 2197 2205 -1	2 233 -133 1	5 269 186 1
8 -147 -325 -5		3 524 309 6	6 626 -279 11
9 567 603 -1	6 k 9	4 182 -252 -1	
10 531 113 11		5 582 405 6	7 k 6
11 656 -617 2	1 -291 74 -3	6 -585 -28 -12	
12 -215 -480 -11	2 407 -187 4	7 733 -57 19	0 3021 2984 3
6 k 6	3 -435 375 -12	8 -485 15 -9	1 1020 1122 -7
	4 662 271 13	9 -412 -21 -6	2 2479-2406 9
	5 497 -489 0		3 914 -971 -3
0 920 918 0	6 -543 -369 -15	7 k 2	4 2252 2490 -31
1 1823 1918 -12	7 635 598 1	5 928 791 7	
2 1052-1124 -5	8 634 49 14		
3 1298-1322 -2	9 554 -735 -8	0 1464-1456 0	
4 1313 1470 -15		1 438 -439 0	7 k 7
5 1103 1070 2	6 k 10	2 825 831 0	
6 965-1063 -7		3 -237 196 -3	1 -293 31 -2
7 1545-1451 10	0 626 -960 -12	4 1062-1008 3	2 697 237 14
8 893 1236 -27	1 2883-2918 -5	5 -627 -11 -14	3 279 -70 2
		6 1324 1284 3	