
65 

APPENDIX TWO 

 

The Cope Rearrangement 

 

 

A2.1  The Cope Rearrangement 

In 1940, Arthur Cope discovered a thermal rearrangement of 1,5-diene 137a to a 

more conjugated isomeric 1,5-diene (137b, Scheme A2.1.1).1  Cope postulated that his 

rearrangement was an all-carbon analogue of the Claisen rearrangement,2 and was 

intramolecular.  He speculated that the reaction proceeded through a six-membered 

transition state.  Cope published these hypotheses 25 years before Woodward and 

Hoffman3 disclosed the first papers on conservation of orbital symmetry, a theory that 

explained the molecular orbital basis for synchronous Cope rearrangements, calling them 

[3,3] sigmatropic rearrangements. 

Scheme A2.1.1 The Cope rearrangement 
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A2.2 Transition State Geometry in Concerted Cope Rearrangements4 

 Thermal [3,3] sigmatropic rearrangements occur with suprafacial–suprafacial 

geometries3 through a six-membered cyclic transition state in either a chair or boat 

conformation.  In 1962, Doering and Roth5 determined that in simple cases, the Cope 

rearrangement proceeded through a chair-like transition state (Scheme A2.2.1).  On the 

basis of product ratios, Doering and Roth estimated that ΔΔG‡ (boat–chair) for meso 
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138a was 5.7 kcal/mol.  Subsequent experiments by Hill excluded the twist (helix) 

arrangement,6 which had not been considered by Doering and Roth.  

Scheme A2.2.1 Feasible transition states for the Cope rearrangement 
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 While simple Cope rearrangements employ a chair transition state, the boat 

transition state is used when molecules are geometrically constrained, as is the case with 

1,2-divinyl cyclopropanes in which the vinyl groups are nearly elipsed.7  Most 1,2-

divinylcyclobutanes also proceed through boat transition states,8,9 but their larger ring size 

accompanies greater structural flexibility.  

A2.3 Mechanistic Variety: Stepwise Biradical Vs. Concerted Pericyclic Processes4 

The Cope rearrangement mechanism is controversial.  Disputes focus on whether 

the Cope rearrangement occurs through a stepwise biradical process (either dissociative 

or associative), or a concerted pericyclic process (synchronous10 or asynchronous).  In the 

first scenario, the σ bond breaks before a new σ bond is made, to generate a pair of allyl 

radicals (Scheme A2.3.1a).  In a second biradical sequence, σ bond formation preceeds σ 

bond cleavage, resulting in an intermediate 1,5-cyclohexanediyl biradical (139c, Scheme 

A2.3.1b).  In the pericyclic process, the transition state is symmetrical (139d, Scheme 

A2.3.1c). 
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Scheme A2.3.1 Stepwise biradical and concerted pericyclic mechanistic proposals11 
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Parent system 139a does not proceed through a dissociative biradical mechanism 

(139b).  In 1,5-hexadiene (139a), the heat of formation is less than would be expected for 

two allyl radicals.  Additionally, Humski excluded the dissociative mechanism by 

determining that this reaction involved only a [3,3]- and not [1,3]-shift.12  Nevertheless, a 

few geometrically constrained systems involved bis-allyl radicals.13  

Doering pointed out that an associative radical mechanism was not ruled out by 

kinetics of the Cope rearrangement of 1,1-dideutero-1,5-hexadiene (Scheme A2.3.2).14  

Further, a 1,5-cyclohexanediyl biradical was consistent with dramatic substituent effects 

on the Cope reaction rate.4 In fact, several key experiments were advanced in order to 

differentiate between the associative radical and concerted mechanisms, but without 

providing clear support for a single mechanism. 

To differentiate between associative radical and concerted mechanisms, Gajewski 

defined two secondary isotope effects: the bond making and bond breaking kinetic 

isotope effects (BMKIE and BBKIE, respectively, Scheme A2.3.2).15  He used the ratio 

of the two to indicate the relative extents of bond formation and breaking in transition 

state structures.  This ratio varied with substitution – radical stabilizing groups at C(2) 

and C(5) correlated with a greater degree of bond formation (more associative character), 

while radical stabilizing groups at C(3) and C(4) facilitated earlier bond fission (more 
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dissociative character).  This type of analysis was represented with a More O’Ferrall–

Jencks plot,16 and described with the concept of a “perpendicular” effect by Thornton.17  

Taken alone, these advances did not provide clear evidence favoring a single mechanism.  

Scheme A2.3.2 Gajewski defined the BMKIE and BBKIE 
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This controversy has driven advances in computational18 methods.  Ab initio 

quantum mechanical calculations consistently suggest that 1,5-hexadiene reacts in a 

predominantly concerted mechanism.19  In more complex systems, the Cope 

rearrangement may be regarded as a hybrid of three processes: a single concerted 

transformation, a dissociative (bis-allyl), or an associative (1,4-cyclohexanediyl) stepwise 

diradical process.  The Cope mechanism can be shifted toward either of the diradical 

intermediates when the system incorporates radical-stabilizing substituents,19a or is 

geometrically constrained.13 

A2.4 Favoring Product Formation in the Cope Rearrangement 

The Cope rearrangement is reversible, but any practical process must furnish the 

product “irreversibly.”  The product may be favored because it contains more substituted 

double bonds, or because the newly formed double bonds are stabilized through 

conjugation (Scheme A2.4.1a).20  The Cope product may incorporate a new olefin into an 

aromatic ring (Scheme A2.4.1b).21  Alternatively, the Cope product alkene may be able to 

tautomerize into an aromatic ring (Scheme A2.4.1a).22  Similarly, the Cope product 

double bonds may be able to tautomerize to a carbonyl (vida infra).  In alicycle-forming 
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Cope rearrangements, ring strain may be used to pre-pay any energetic costs associated 

with formation of larger rings (vida infra).  

Scheme A2.4.1 Strategies to facilitate irreversible product formation 
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 In 1958 and 1960, Vogel reported the first rearrangements of 

divinylcyclobutanes23 and divinylcyclopropanes.24  Vogel could not isolate 

divinylcyclopropane 146a because it rearranged to cycloheptadiene 147 too rapidly.  It 

was not until 1973 that Brown25 was able to observe parent divinylcyclopropane 146a 

(Scheme A2.4.2).  Brown found that the half-life of this divinylcyclopropane (in CFCl3) 

is 90 seconds at 35 °C, or 25.75 min at 11.3 °C, and the free energy of activation is 

20.6 kcal/mol.  

Scheme A2.4.2 Brown observed the parent divinylcyclopropane 
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In Cope rearrangements where the breaking sigma bond is part of a strained ring, 

the reactant–product equilibrium usually favors the product because energy is released 

when this strained ring is broken (e.g., Scheme A2.4.2; Figure A2.4.1).  For example, a 

1,4-cycloheptadiene involves around 20.2 kcal/mol less strain energy than a cyclopropane 

that would be the backbone of a Cope precursor.  Similarly, a 1,5-cyclooctadiene 

involves around 18.3 kcal/mol less strain energy than a cyclobutane that could be part of 

a Cope precursor. 

Figure A2.4.1 Strain energy of relevant structural motifs26 
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Shortly after Vogel’s seminal publications, Jones and Berson27 found that product 

formation could be favored through hydroxy substitution at C(3) or C(4).  Such 

substitution furnished an enol upon Cope rearrangement, and this enol could tautomerize 

to a carbonyl.  Berson and Walsh28 showed that in this oxy-Cope rearrangement, the 

hydroxy group lowered the bond dissociation energy by 24 kcal/mol.  This reaction 

became more practical when Evans29 reported rate enhancements of 1010–1017 by using an 

alkoxide in lieu of a hydroxy to enable an anionic oxy-Cope reaction.  Evans and 

Goddard30 determined that the alkoxide facilitated the Cope rearrangement by weakening 

the carbon–carbon σ-bond. 
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Scheme A2.4.3 Examples of the anionic oxy-Cope rearrangement that are (a) general, or 

(b) from Paquette31 
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A2.5 Tandem Cope Rearrangements in Synthesis 

 The Cope rearrangement has been co-opted in many tandem reactions, two of 

which feature prominently in efforts toward the total synthesis of ineleganolide: the 

tandem cyclopropanation/Cope, developed largely by Davies32–36 and Wolff/Cope 

rearrangements, investigated by Stoltz. 

 Davies reported the first cyclopropanation/Cope in 1985 with the reaction of furan 

(152) with vinyldiazoester 154 in the presence of rhodium(II) acetate to furnish 45% 

isolated yield of a bridged [2.3.1] bicycle (157, Scheme A2.5.1).33  Within two years, he 

had unraveled its mechanism: he reacted cyclopentadiene (153) with vinyldiazoesters 

(e.g., 154), and isolated divinylcyclopropane 156 that underwent a Cope rearrangement 

on heating to form bridged 158.34 

Scheme A2.5.1 Davies initial tandem cyclopropanation/Cope systems  
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Davies advanced this method to diastereoselective intramolecular reactions.35  

Among the systems tested was a scaffold that was similar to the framework of 

ineleganolide (e.g., 159 → 160, 1). 

Scheme A2.5.2 Davies intramolecular cyclopropanation/Cope systems  
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Davies developed technologies to enable asymmetric cyclopropanation/Cope 

sequences.  Chiral auxiliaries, such as (R)-pantolactone, direct diastereoselective 

formation of oxabicycles, such as bridged 162,36 which is used as an intermediate in 

Phillips synthesis of norhalichondrin B, a macrolactone containing 55 carbon atoms.37  

Additionally, enantioselective rhodium catalysts enabled these inter-38 and 

intramolecular39 cyclopropanation/Cope sequences.  With this technology, Davies 

undertook an asymmetric formal synthesis of isostemofoline (166),40 using the key 

cyclopropanation/Cope reaction employed by Kende in its racemic synthesis.41 
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Scheme A2.5.3 Davies innovations facilitated enantio- and diastereoselective reactions 
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 These developments have been extended through their application in total 

syntheses,42 a few via [3.2.1]bicyclic cyclopropanation/Cope products.43, 36b  
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