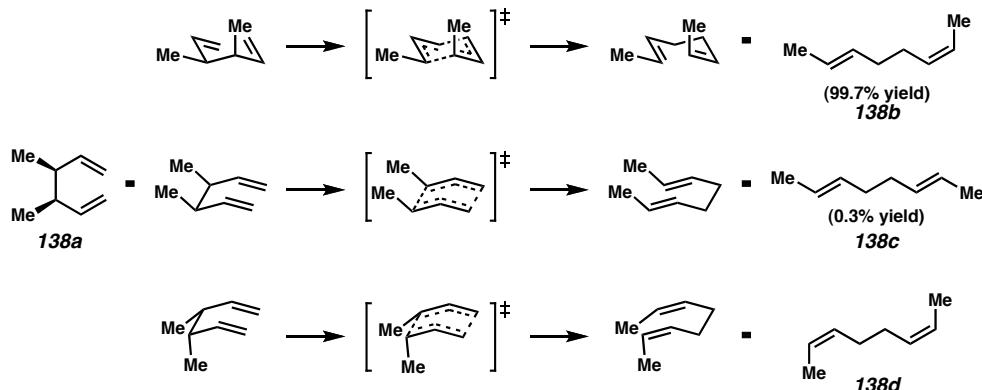

APPENDIX TWO

The Cope Rearrangement

A2.1 The Cope Rearrangement

In 1940, Arthur Cope discovered a thermal rearrangement of 1,5-diene **137a** to a more conjugated isomeric 1,5-diene (**137b**, Scheme A2.1.1).¹ Cope postulated that his rearrangement was an all-carbon analogue of the Claisen rearrangement,² and was intramolecular. He speculated that the reaction proceeded through a six-membered transition state. Cope published these hypotheses 25 years before Woodward and Hoffmann³ disclosed the first papers on conservation of orbital symmetry, a theory that explained the molecular orbital basis for synchronous Cope rearrangements, calling them [3,3] sigmatropic rearrangements.

Scheme A2.1.1 The Cope rearrangement

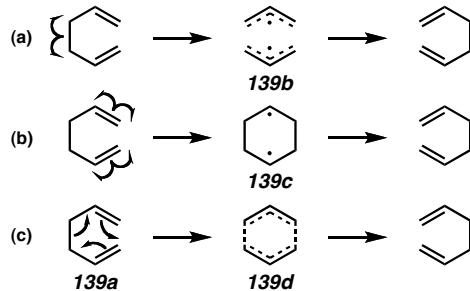


A2.2 Transition State Geometry in Concerted Cope Rearrangements⁴

Thermal [3,3] sigmatropic rearrangements occur with suprafacial–suprafacial geometries³ through a six-membered cyclic transition state in either a chair or boat conformation. In 1962, Doering and Roth⁵ determined that in simple cases, the Cope rearrangement proceeded through a chair-like transition state (Scheme A2.2.1). On the basis of product ratios, Doering and Roth estimated that $\Delta\Delta G^\ddagger$ (boat–chair) for meso

138a was 5.7 kcal/mol. Subsequent experiments by Hill excluded the twist (helix) arrangement,⁶ which had not been considered by Doering and Roth.

Scheme A2.2.1 Feasible transition states for the Cope rearrangement

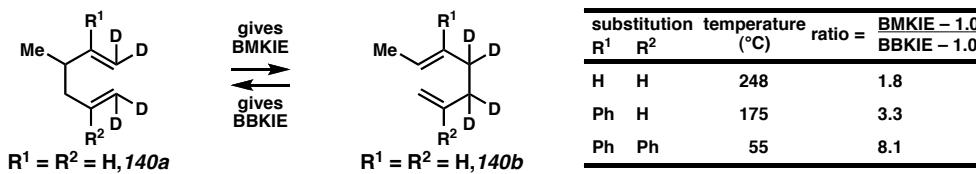


While simple Cope rearrangements employ a chair transition state, the boat transition state is used when molecules are geometrically constrained, as is the case with 1,2-divinyl cyclopropanes in which the vinyl groups are nearly elipsed.⁷ Most 1,2-divinylcyclobutanes also proceed through boat transition states,^{8,9} but their larger ring size accompanies greater structural flexibility.

A2.3 Mechanistic Variety: Stepwise Biradical Vs. Concerted Pericyclic Processes⁴

The Cope rearrangement mechanism is controversial. Disputes focus on whether the Cope rearrangement occurs through a stepwise biradical process (either dissociative or associative), or a concerted pericyclic process (synchronous¹⁰ or asynchronous). In the first scenario, the σ bond breaks before a new σ bond is made, to generate a pair of allyl radicals (Scheme A2.3.1a). In a second biradical sequence, σ bond formation precedes σ bond cleavage, resulting in an intermediate 1,5-cyclohexanediyl biradical (**139c**, Scheme A2.3.1b). In the pericyclic process, the transition state is symmetrical (**139d**, Scheme A2.3.1c).

Scheme A2.3.1 Stepwise biradical and concerted pericyclic mechanistic proposals¹¹

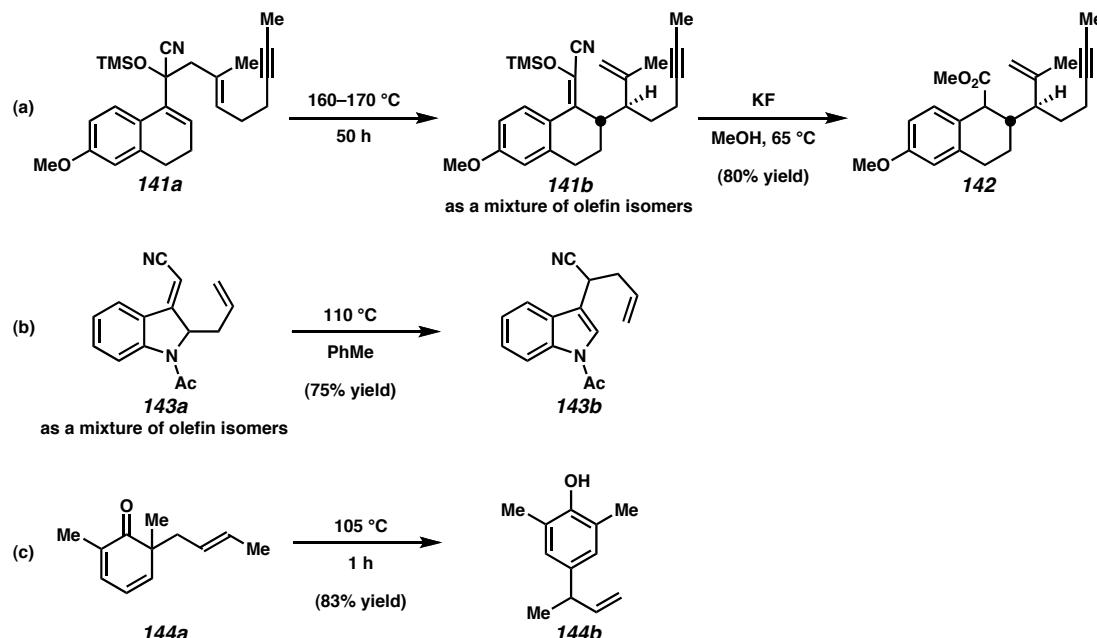

Parent system **139a** does not proceed through a dissociative biradical mechanism (**139b**). In 1,5-hexadiene (**139a**), the heat of formation is less than would be expected for two allyl radicals. Additionally, Humski excluded the dissociative mechanism by determining that this reaction involved only a [3,3]- and not [1,3]-shift.¹² Nevertheless, a few geometrically constrained systems involved bis-allyl radicals.¹³

Doering pointed out that an associative radical mechanism was not ruled out by kinetics of the Cope rearrangement of 1,1-dideutero-1,5-hexadiene (Scheme A2.3.2).¹⁴ Further, a 1,5-cyclohexanediyil biradical was consistent with dramatic substituent effects on the Cope reaction rate.⁴ In fact, several key experiments were advanced in order to differentiate between the associative radical and concerted mechanisms, but without providing clear support for a single mechanism.

To differentiate between associative radical and concerted mechanisms, Gajewski defined two secondary isotope effects: the bond making and bond breaking kinetic isotope effects (BMKIE and BBKIE, respectively, Scheme A2.3.2).¹⁵ He used the ratio of the two to indicate the relative extents of bond formation and breaking in transition state structures. This ratio varied with substitution – radical stabilizing groups at C(2) and C(5) correlated with a greater degree of bond formation (more associative character), while radical stabilizing groups at C(3) and C(4) facilitated earlier bond fission (more

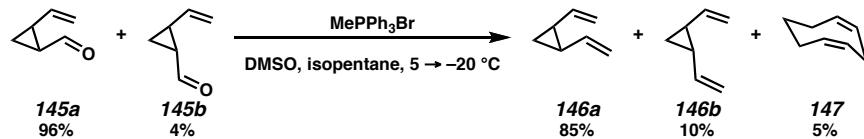
dissociative character). This type of analysis was represented with a More O’Ferrall–Jencks plot,¹⁶ and described with the concept of a “perpendicular” effect by Thornton.¹⁷ Taken alone, these advances did not provide clear evidence favoring a single mechanism.

Scheme A2.3.2 Gajewski defined the BMKIE and BBKIE

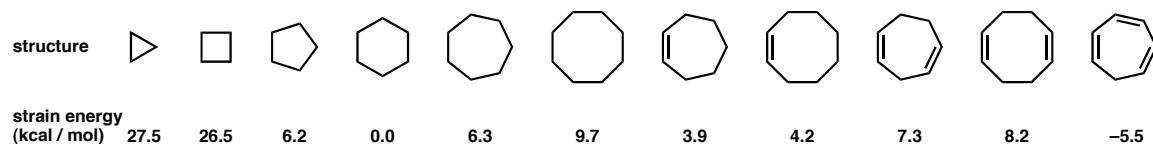

This controversy has driven advances in computational¹⁸ methods. Ab initio quantum mechanical calculations consistently suggest that 1,5-hexadiene reacts in a predominantly concerted mechanism.¹⁹ In more complex systems, the Cope rearrangement may be regarded as a hybrid of three processes: a single concerted transformation, a dissociative (bis-allyl), or an associative (1,4-cyclohexanediyl) stepwise diradical process. The Cope mechanism can be shifted toward either of the diradical intermediates when the system incorporates radical-stabilizing substituents,^{19a} or is geometrically constrained.¹³

A2.4 Favoring Product Formation in the Cope Rearrangement

The Cope rearrangement is reversible, but any practical process must furnish the product “irreversibly.” The product may be favored because it contains more substituted double bonds, or because the newly formed double bonds are stabilized through conjugation (Scheme A2.4.1a).²⁰ The Cope product may incorporate a new olefin into an aromatic ring (Scheme A2.4.1b).²¹ Alternatively, the Cope product alkene may be able to tautomerize into an aromatic ring (Scheme A2.4.1a).²² Similarly, the Cope product double bonds may be able to tautomerize to a carbonyl (vida infra). In alicycle-forming


Cope rearrangements, ring strain may be used to pre-pay any energetic costs associated with formation of larger rings (vida infra).

Scheme A2.4.1 Strategies to facilitate irreversible product formation


In 1958 and 1960, Vogel reported the first rearrangements of divinylcyclobutanes²³ and divinylcyclopropanes.²⁴ Vogel could not isolate divinylcyclopropane **146a** because it rearranged to cycloheptadiene **147** too rapidly. It was not until 1973 that Brown²⁵ was able to observe parent divinylcyclopropane **146a** (Scheme A2.4.2). Brown found that the half-life of this divinylcyclopropane (in CFCl_3) is 90 seconds at 35 °C, or 25.75 min at 11.3 °C, and the free energy of activation is 20.6 kcal/mol.

Scheme A2.4.2 Brown observed the parent divinylcyclopropane

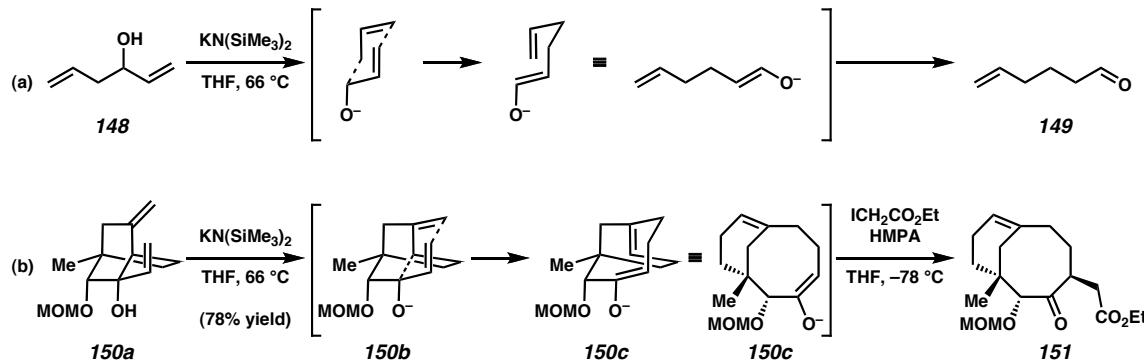
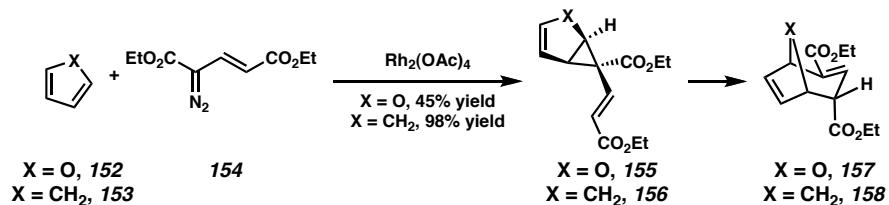

In Cope rearrangements where the breaking sigma bond is part of a strained ring, the reactant–product equilibrium usually favors the product because energy is released when this strained ring is broken (e.g., Scheme A2.4.2; Figure A2.4.1). For example, a 1,4-cycloheptadiene involves around 20.2 kcal/mol less strain energy than a cyclopropane that would be the backbone of a Cope precursor. Similarly, a 1,5-cyclooctadiene involves around 18.3 kcal/mol less strain energy than a cyclobutane that could be part of a Cope precursor.

Figure A2.4.1 Strain energy of relevant structural motifs²⁶

Shortly after Vogel's seminal publications, Jones and Benson²⁷ found that product formation could be favored through hydroxy substitution at C(3) or C(4). Such substitution furnished an enol upon Cope rearrangement, and this enol could tautomerize to a carbonyl. Benson and Walsh²⁸ showed that in this oxy-Cope rearrangement, the hydroxy group lowered the bond dissociation energy by 24 kcal/mol. This reaction became more practical when Evans²⁹ reported rate enhancements of 10^{10} – 10^{17} by using an alkoxide in lieu of a hydroxy to enable an anionic oxy-Cope reaction. Evans and Goddard³⁰ determined that the alkoxide facilitated the Cope rearrangement by weakening the carbon–carbon σ -bond.

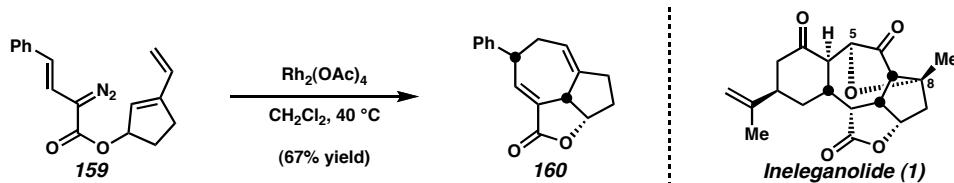
Scheme A2.4.3 Examples of the anionic oxy-Cope rearrangement that are (a) general, or (b) from Paquette³¹



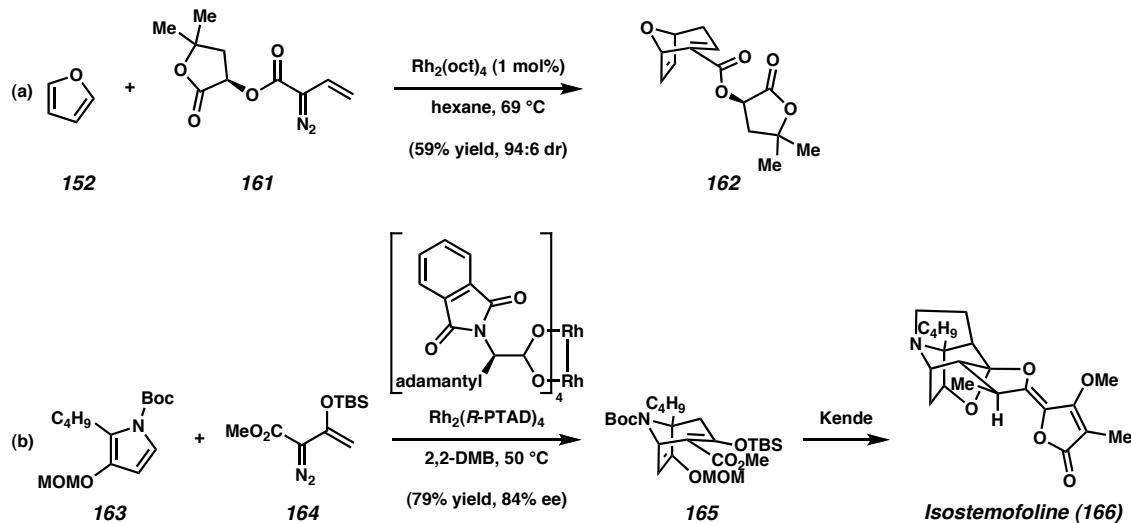
A2.5 Tandem Cope Rearrangements in Synthesis

The Cope rearrangement has been co-opted in many tandem reactions, two of which feature prominently in efforts toward the total synthesis of ineleganolide: the tandem cyclopropanation/Cope, developed largely by Davies³²⁻³⁶ and Wolff/Cope rearrangements, investigated by Stoltz.

Davies reported the first cyclopropanation/Cope in 1985 with the reaction of furan (**152**) with vinyl diazoester **154** in the presence of rhodium(II) acetate to furnish 45% isolated yield of a bridged [2.3.1] bicycle (**157**, Scheme A2.5.1).³³ Within two years, he had unraveled its mechanism: he reacted cyclopentadiene (**153**) with vinyl diazoesters (e.g., **154**), and isolated divinylcyclopropane **156** that underwent a Cope rearrangement on heating to form bridged **158**.³⁴


Scheme A2.5.1 Davies initial tandem cyclopropanation/Cope systems

Davies advanced this method to diastereoselective intramolecular reactions.³⁵


Among the systems tested was a scaffold that was similar to the framework of ineleganolide (e.g., **159** → **160**, **1**).

Scheme A2.5.2 Davies intramolecular cyclopropanation/Cope systems

Davies developed technologies to enable asymmetric cyclopropanation/Cope sequences. Chiral auxiliaries, such as (*R*)-pantolactone, direct diastereoselective formation of oxabicycles, such as bridged **162**,³⁶ which is used as an intermediate in Phillips synthesis of norhalichondrin B, a macrolactone containing 55 carbon atoms.³⁷ Additionally, enantioselective rhodium catalysts enabled these inter³⁸ and intramolecular³⁹ cyclopropanation/Cope sequences. With this technology, Davies undertook an asymmetric formal synthesis of isostemofoline (**166**),⁴⁰ using the key cyclopropanation/Cope reaction employed by Kende in its racemic synthesis.⁴¹

Scheme A2.5.3 Davies innovations facilitated enantio- and diastereoselective reactions

These developments have been extended through their application in total syntheses,⁴² a few via [3.2.1]bicyclic cyclopropanation/Cope products.^{43, 36b}

A2.6 Notes and References

- (1) Cope, A. C.; Hardy, E. M. Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System. *J. Am. Chem. Soc.* **1940**, *62*, 441–444.
- (2) Hurd had disclosed that pyrolysis of 4-phenyl-1-butene did not generate any *o*-allyltoluene, though he anticipated this reaction as an all-carbon analogue to the Claisen rearrangement: (a) Hurd, C. D.; Bollman, H. T. The Allyltoluenes. *J. Am. Chem. Soc.* **1934**, *56*, 447–449. Hurd had also observed the rupture of the C(3)–C(4) bond in 4-phenyl-1-butene upon pyrolysis, and proposed a radical bond scission: (b) Hurd, C. D.; Bollman, H. T. The Pyrolysis of Alpha Unsaturated Hydrocarbons. *J. Am. Chem. Soc.* **1933**, *55*, 699–702.

(3) (a) Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. *J. Am. Chem. Soc.* **1965**, 87, 395–397; (b) Hoffmann, R.; Woodward, R. B. Selection Rules for Concerted Cycloaddition Reactions. *J. Am. Chem. Soc.* **1965**, 87, 2046–2048; (c) Woodward, R. B.; Hoffmann, R. Selection Rules for Sigmatropic Reactions. *J. Am. Chem. Soc.* **1965**, 87, 2511–2513; (d) Hoffmann, R.; Woodward, R. B. Orbital Symmetries and endo-exo Relationships in Concerted Cycloaddition Reactions. *J. Am. Chem. Soc.* **1965**, 87, 4388–4389; (e) Hoffmann, R.; Woodward, R. B. Orbital Symmetries and Orientational Effects in a Sigmatropic Reaction. *J. Am. Chem. Soc.* **1965**, 87, 4389–4390. For an early review of these papers, see: (f) Hoffmann, R.; Woodward, R. B. Conservation of Orbital Symmetry. *Acc. Chem. Res.* **1968**, 1, 17–22.

(4) This has recently been reviewed, see: Gajewski, J. J. *Hydrocarbon Thermal Isomerizations*. Amsterdam; New York: Elsevier, 2004. This section highly resembles Anslyn, E. V.; Dougherty, D. A. *Modern Physical Organic* University Science Books, U.S.A., 2006, pp. 916–920.

(5) Doering, W. von E.; Roth, W. R. Overlap of Two Allyl Radicals or a Four-Centered Transition State in Cope Rearrangement. *Tetrahedron* **1962**, 18, 67–74.

(6) Hill, R. K.; Gilman, N. W. Asymmetric Induction in the Cope Rearrangement. *Chem. Commun.* **1967**, 619–620.

(7) The activation energy for a divinyl cyclopropane Cope rearrangement has been reported to be 19.0–20.0 kcal/mol for the parent systems. See, (a) Reference 25; (b) Brown, J. M.; Golding, B. T.; Stofko, J. J., Jr. *cis*-Divinylcyclopropane and the

Hexafluoroacetylacetone-rhodium(I) Complexes of *cis*- and *trans*-Divinylcyclopropane. *J. Chem. Soc., Perkin Trans. 2* **1978**, 436–444; (c) Schneider, M. P.; Rau, A. Synthesis and Cope rearrangement of *cis*-1,2-dialkenylcyclopropanes. *J. Am. Chem. Soc.* **1979**, *101*, 4426–4427.

(8) (a) Berson, J. A.; Dervan, P. B. Incremental Substituent Effects Leading to Steric Blockade of the Boat-Like Six-Center Cope Rearrangement of *cis*-1,2-Dialkenylcyclobutanes. *J. Am. Chem. Soc.* **1972**, *94*, 7597–7598; (b) Berson, J. A.; Dervan, P. B.; Jenkins, J. A. Stereospecific Double Rearrangement of *trans*-3,4-Dimethyl-*cis*, *trans*-cycloocta-1,5-diene to *cis*-3,4-Dimethyl-*cis,cis*-cycloocta-1,5-diene. *J. Am. Chem. Soc.* **1972**, *94*, 7598–7599.

(9) The activation energy for a divinyl cyclobutane Cope rearrangement has been reported to be 24.0kcal/mol for the parent systems. See, Hammond, G. S.; DeBoer, C. D. Multiplicity of Mechanisms in the Cope Rearrangement. *J. Am. Chem. Soc.* **1964**, *86*, 899–902; (b) Trecker, D. J.; Henry, J. P. Cumulative Effects in Small Ring Cleavage Reactions. A Novel Cyclobutane Rearrangement. *J. Am. Chem. Soc.* **1964**, *86*, 902–905.

(10) For a review that concludes that the Cope rearrangement is often synchronous, see: Borden, W. T.; Loncharich, R. J.; Houk, K. N. Synchronicity in Multibond Reactions. *Ann. Rev. Phys. Chem.* **1988**, *39*, 213–236.

(11) This figure strongly resembles Figure 15.24 in Anslyn, E. V.; Dougherty, D. A. *Modern Physical Organic* University Science Books, U.S.A., 2006, p. 918.

(12) Humski, K.; Malojcic, R.; Borcic, S.; Sunko, D. E. Thermodynamic and kinetic secondary isotope effects in the Cope rearrangement. *J. Am. Chem. Soc.* **1970**, *92*, 6534–6538.

(13) For examples, see: (a) Zhao, Y.-L.; Suhrada, C. P.; Jung, M. E.; Houk, K. N. Theoretical Investigantion of the Stereoselective Stepwise Cope Rearrangement of a 3-Vinylmethylenecyclobutane. *J. Am. Chem. Soc.* **2006**, *128*, 11106–11113; (b) Suhrada, C. P.; Selçuki, C.; Nendel, M.; Cannizzaro, C.; Houk, K. N.; Rissing, P.-J.; Baumann, D.; Hasselmann, D. Dynamic Effects on [3,3] and [1,3] Shifts of 6-Methylenebicyclo[3.2.0]hept-2-ene. *Angew. Chem. Int. Ed.* **2005**, *44*, 3548–3552.

(14) Doering, W. von E.; Toscano, V. G.; Beasley, G. H. Kinetics of the Cope rearrangement of 1,1-dideuteriohexa-1,5-diene. *Tetrahedron* **1971**, *27*, 5299–5306.

(15) Gajewski, J. J. Energy Surfaces of Sigmatropic Shifts. *Acc. Chem. Res.* **1980**, *13*, 142–148, and references therein.

(16) For the first published application of More O’Ferrall–Jencks plot to [3,3] shifts, see: Wehrli, R.; Schmidt, H.; Bellüs, D. E.; Hansen, H. J. Über den Mechanismus der Cope-Umlagerung. *Helv. Chim. Acta* **1977**, *60*, 1325–1356.

(17) Thornton, E. R. A Simple Theory for Predicting the Effects of Substituent Changes on Transition-State Geometry. *J. Am. Chem. Soc.* **1967**, *89*, 2916–2927.

(18) For a review of computational results, see: Staroverov, V. N.; Davidson, E. R. The Cope rearrangement in theoretical retrospect. *Theochem* **2001**, *573*, 81–89.

(19) (a) Hrovat, D. A.; Morokuma, K.; Houk, K. N.; Borden, W. T. Cooperative and Competitive Substituent Effects on the Cope Rearrangements of Phenyl-Substituted

1,5-Hexadienes Elucidated by Becke3LYP/6-31G. *J. Am. Chem. Soc.* **2000**, *122*, 7456–7460; (b) Staroverov, V. N.; Davidson, E. R. Diradical Character of the Cope Rearrangement Transition State. *J. Am. Chem. Soc.* **2000**, *122*, 186–187; (c) Jiao, H.; Schleyer, P. v. R. The Cope Rearrangement Transition Structure Is Not Diradicaloid, but Is It Aromatic? *Angew. Chem. Int. Ed.* **1995**, *34*, 334–337; (d) Kozlowski, P. M.; Dupuis, M.; Davidson, E. R. The Cope Rearrangement Revisited with Multireference Perturbation Theory. *J. Am. Chem. Soc.* **1995**, *117*, 774–778; (e) Weist, O.; Black, K. A.; Houk, K. N. Density Functional Theory Isotope Effects and Activation Energies for the Cope and Claisen Rearrangements. *J. Am. Chem. Soc.* **1994**, *116*, 10336–10337.

(20) For a clever use of conjugation, see: (a) Ziegler, F. E.; Nelson, R. V.; Wang, T.-F. A homologous ester Claisen rearrangement via the Cope rearrangement of O-trimethylsilylcyanohydrins. *Tetrahedron Lett.* **1980**, *21*, 2125–2128; (b) Ziegler, F. W.; Wang, T.-F. A formal, stereocontrolled synthesis of (\pm)-estrone employing the trimethylsilylcyanohydrin Cope rearrangement. *Tetrahedron Lett.* **1981**, *22*, 1179–1182; (c) Ziegler, F. E.; Wang, T.-F. Synthesis of (\pm)-11-Ketoprogesterone, a Precursor to the Corticosteroids. An Improved Method for the Introduction of the Carbon 19 Methyl Group into A-Ring Aromatic Steroids. *J. Am. Chem. Soc.* **1984**, *106*, 718–721. For use of allene-containing starting materials as a means to generate conjugated dienes, see: (d) Duncan, J. A.; Aki, L. Y.; Absalon, M. J.; Kwong, K. S.; Hendricks, R. T. Photosensitized Cope rearrangement of syn-7-(1,2-

butadienyl)bicyclo[2.2.1]hept-2-ene [syn-7-(3-methylallenyl)norbornene]. *J. Org. Chem.* **1988**, *53*, 196–198. The example was taken from reference c.

(21) (a) Bramley, R. K.; Grigg, R. Thermal Sigmatropic Rearrangement of 3-Allylindolenines to Indoles and of a 4-Allylisopyrazole to a Pyrazole. *J. Chem. Soc. D* **1969**, 99–100; (b) Kawasaki, T.; Nonaka, Y.; Watanabe, K.; Ogawa, A.; Higuchi, K.; Terashima, R.; Masuda, K.; Sakamoto, M. Reverse Aromatic Cope Rearrangement of 2-Allyl-3-alkylideneindolines Driven by Olefination of 2-Allylindolin-3-ones: Synthesis of α -Allyl-3-indole Acetate Derivatives. *J. Org. Chem.* **2001**, *66*, 1200–1204. The example is from (b).

(22) This example is from Miller, B. Dienone–Phenol Rearrangements of 6-Allylcyclohexa-2,4-dienones and 4-Allylcyclohexa-2,5-dienones. Acid Catalysis of Cope Rearrangements. *J. Am. Chem. Soc.* **1965**, *87*, 5115–5120.

(23) Vogel, E. Kleine Kohlenstoff-Ringe I Über den Mechanismus der Butadien-Dimerisation Zum Achtring. *Justus Liebigs Ann. Chem.* **1958**, *615*, 1–13.

(24) Vogel, E. Klein Kohlenstoff-Ringe. *Angew. Chem.* **1960**, *72*, 4–26.

(25) Brown, J. M.; Golding, B. T.; Stofko, J. J. Isolation and Characterisation of *cis*-Divinylcyclopropane. *J. Chem. Soc., Chem. Commun.* **1973**, 319b–320.

(26) (a) Wiberg, K. B. The Concept of Strain in Organic Chemistry. *Angew. Chem. Int. Ed.* **1986**, *25*, 312–322, and references therein; (b) Turner, R. B.; Mallon, B. J.; Tichy, M.; Doering, W. von E.; Roth, W. R.; Schröder, G. Heats of Hydrogenation. X. Conjugative Interaction in Cyclic Dienes and Trienes. *J. Am. Chem. Soc.* **1973**, *95*, 6605–8610.

(27) Berson, J. A.; Jones, M., Jr. A Synthesis of Ketones by the Thermal Isomerization of 3-Hydroxy-1,5-hexadienes. The Oxy-Cope Rearrangement. *J. Am. Chem. Soc.* **1964**, *86*, 5019–5020.

(28) Berson, J. A.; Walsh, E. J., Jr. Allylic and α -oxygen resonance energy effects on the “strengths” of carbon–carbon bonds. Activation parameters in stepwise biallyl rearrangements. *J. Am. Chem. Soc.* **1968**, *90*, 4730–4732.

(29) Evans, D. A.; Golob, A. M. [3,3] Sigmatropic rearrangements of 1,5-diene alkoxides. Powerful accelerating effects of the alkoxide substituent. *J. Am. Chem. Soc.* **1975**, *97*, 4765–4766.

(30) Steigerwald, M. L.; Goddard III, W. A.; Evans, D. A. Theoretical Studies of the Oxy Anionic Substituent Effect. *J. Am. Chem. Soc.* **1979**, *101*, 1994–1997. This rate acceleration was also demonstrated in the gas phase: Rozenboom, M. D.; Kiplinger, J. P.; Bartmess, J. E. The anionic oxy-Cope rearrangement: structural effects in the gas phase in solution. *J. Am. Chem. Soc.* **1984**, *106*, 1025–1029.

(31) Paquette, L. A.; Sturino, C. F.; Wang, X.; Prodger, J. C.; Koh, D. A Unified Strategy for Stereocontrolled Construction of Structurally Unusual Sesquiterpene Lactones. Asymmetric Synthesis of Vulgarolide and Deoxocrispolide. *J. Am. Chem. Soc.* **1996**, *118*, 5620–5633.

(32) (a) Tei, T.; Sugimura, T.; Katagiri, T.; Tai, A.; Okuyama, T. Application of modified hydroxy-directed diastereodifferentiating Simmons-Smith reaction to an unreactive conjugated triene. Stereocontrolled tandem cyclopropanation–Cope rearrangement-cyclopropanation. *Tetrahedron: Asymmetry* **2001**, *12*, 2727–2730;

(b) Davies, H. M. L.; Calvo, R. L.; Townsend, R. J.; Ren, P.; Churchill, R. M. An Exploratory Study of Type II [3+4] Cycloadditions Between Vinylcarbenoids and Dienes. *J. Org. Chem.* **2000**, *65*, 4261–4268; (c) Davies, H. M. L. Tandem Cyclopropanation/Cope Rearrangement: A General Method for the Construction of Seven-Membered Rings. *Tetrahedron* **1993**, *49*, 5203–5223; (d) Davies, H. M. L.; Clark, T. J.; Smith, H. D. Stereoselective Synthesis of Seven-Membered Carbocycles by a Tandem Cyclopropanation/Cope Rearrangement Between Rhodium(II)-Stabilized Vinylcarbenoids and Dienes. *J. Org. Chem.* **1991**, *56*, 3817–3824; (e) Cantrell, W. R., Jr.; Davies, H. M. L. Stereoselective Convergent Synthesis of Hydroazulenes via an Intermolecular Cyclopropanation/Cope Rearrangement. *J. Org. Chem.* **1991**, *56*, 723–727.

(33) Davies, H. M. L.; Clark, D. M.; Smith, T. K. [3+4] Cycloaddition Reactions of Vinyl Carbenoids with Furans. *Tetrahedron Lett.* **1985**, *26*, 5659–5662.

(34) Davies, H. M. L.; Smith, H. D.; Korkor, O. Tandem Cyclopropanation/Cope Rearrangement Sequence. Stereospecific [3+4] Cycloaddition Reaction of Vinylcarbenoids with Cyclopentadiene. *Tetrahedron Lett.* **1987**, *28*, 1853–1856.

(35) (a) Davies, H. M. L.; McAfee, M. J.; Oldenburg, C. E. M. Scope and Stereochemistry of the Tandem Intramolecular Cyclopropanation/Cope Rearrangement Sequence. *J. Org. Chem.* **1989**, *54*, 930–936; (b) Davies, H. M. L.; Oldenburg, C. E. M.; McAfee, M. J.; Nordahl, J. G.; Henretta, J. P.; Romines, K. R. Novel Approach to Seven-membered Rings by the Intramolecular Tandem

Cyclopropanation/Cope Rearrangement Sequence. *Tetrahedron Lett.* **1988**, *29*, 975–978.

(36) (a) Davies, H. M. L.; Ahmed, G.; Churchill, M. R. Asymmetric Synthesis of Highly Functionalized 8-Oxabicyclo[3.2.1]octane Derivatives. *J. Am. Chem. Soc.* **1996**, *118*, 10774–10782. For related uses of chiral auxiliaries in cyclopropanation/Cope reactions, see: (b) Davies, H. M. L.; Matasi, J. J.; Hodges, L. M.; Huby, N. J. S.; Thornley, C.; Kong, N.; Houser, J. H. Enantioselective Synthesis of Functionalized Tropanes by Rhodium(II) Carboxylate-Catalyzed Decomposition of Vinyldiazomethanes in the Presence of Pyrroles. *J. Org. Chem.* **1997**, *62*, 1095–1105.

(37) Jackson, K. L.; Henderson, J. A.; Motoyoshi, H.; Phillips, A. J. A Total Synthesis of Norhalichondrin B. *Angew. Chem. Int. Ed.* **2009**, *48*, 2346–2350.

(38) (a) Davies, H. M. L.; Stafford, D. G.; Doan, B. D.; Houser, J. H. Tandem Asymmetric Cyclopropanation/Cope Rearrangement. A Highly Diastereoselective and Enantioselective Method for the Construction of 1,4-Cycloheptadienes. *J. Am. Chem. Soc.* **1998**, *120*, 3326–3331; (b) Davies, H. M. L.; Peng, Z.-Q.; Houser, J. H. Asymmetric Synthesis of 1,4-Cycloheptadienes and Bicyclo[3.2.1]octa-2,6-dienes by Rhodium(II) N-(*p*-(*tert*-butyl)phenylsulfonyl)proline Catalyzed Reactions Between Vinyldiazomethanes and Dienes. *Tetrahedron Lett.* **1994**, *35*, 8939–8942.

(39) Davies, H. M. L.; Doan, B. D. Enantioselective Synthesis of Fused Cycloheptadienes by a Tandem Intramolecular Cyclopropanation/Cope Rearrangement Sequence. *J. Org. Chem.* **1999**, *64*, 8501–8508.

(40) Reddy, R. P.; Davies, H. M. L. Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4+3] Cycloaddition. *J. Am. Chem. Soc.* **2007**, *129*, 10312–10313.

(41) Kende, A. S.; Smalley, T. L., Jr.; Huang, H. Total synthesis of (\pm)-Isostemofoline. *J. Am. Chem. Soc.* **1999**, *121*, 7431–7432.

(42) (a) Miller, L. C.; Ndungu, M.; Sarpong, R. Parallel Kinetic Resolution Approach to the Cyathane and Cyathiwigin Diterpenes Using a Cyclopropanation/Cope Rearrangement. *Angew. Chem. Int. Ed.* **2009**, *48*, 2398–2402; (b) Olson, J. P.; Davies, H. M. L. Asymmetric [4+3] Cycloadditions between Benzofuranyldiazoacetates and Dienes: Formal Synthesis of (+)-Frondosin B. *Org. Lett.* **2008**, *10*, 573–576; (c) Davies, H. M. L.; Loe, Ø.; Stafford, D. G. Sequential Cycloaddition Approach to the Tricyclic Core of Vibsanin E. Total Synthesis of (\pm)-5-*epi*-10-*epi*-Vibsanin E. *Org. Lett.* **2005**, *7*, 5561–5563; (d) Davies, H. M. L.; Doan, B. D. Total Synthesis of (\pm)-Tremulenolide A and (\pm)-Tremulenediol A via a Stereoselective Cyclopropanation/Cope Rearrangement Annulation Strategy. *J. Org. Chem.* **1998**, *63*, 657–660; (e) Davies, H. M. L.; Doan, B. D. Asymmetric Synthesis of the Tremulane Skeleton by a Tandem Cyclopropanation/Cope Rearrangement. *Tetrahedron Lett.* **1996**, *37*, 3967–3970; (f) Davies, H. M. L.; Clark, T. J. Synthesis of Highly Functionalized Tropolones by Rhodium(II)-Catalyzed Reactions of Vinyldiazomethanes with Oxygenated Dienes. *Tetrahedron* **1994**, *50*, 9883–9892; (g) Davies, H. M. L.; Huby, N. J. S. Enantioselective Synthesis of Tropanes by Reaction of Rhodium-Stabilized Vinylcarbenoids with Pyrroles. *Tetrahedron Lett.* **1992**, *33*, 6935–6938; (h) Davies, H. M. L.; Clark, T. J.;

Kimmer, G. F. Versatile Synthesis of Tropones by Reaction of Rhodium(II)-Stabilized Vinylcarbenoids with 1-Methoxy-1-[(trimethylsilyl)oxy]buta-1,3-diene. *Tetrahedron Lett.* **1992**, *33*, 6935–6938.

(43) (a) Davies, H. M. L.; Hodges, L. M. Rhodium Carboxylate Catalyzed Decomposition of Vinyldiazoacetates in the Presence of Heterodienes: Enantioselective Synthesis of the 6-Azabicyclo[3.2.2]nonane and 6-Azabicyclo[3.2.2]nonanone Ring Systems. *J. Org. Chem.* **2002**, *67*, 5683–5689; (b) Lautens, M.; Stammers, T. A. Oxabicyclo[3.2.1]oct-6-enes as Templates for the Stereoselective Synthesis of Polypropionates: Total Synthesis of Callystatin A and C19-*epi*-Callystatin A. *Synthesis* **2002**, *2002*, 1993–2012; (c) López, F.; Castedo, L.; Mascareñas, J. L. A Practical Route to Enantiopure, Highly Functionalized Seven-Membered Carbocycles and Tetrahydrofurans: Concise Synthesis of (+)-Nemorensic Acid. *Chemistry—A European Journal* **2002**, *8*, 884–899; (d) Davies, H. M. L.; Saikali, E.; Young, W. B. Synthesis of (±)-Ferruginine and (±)-Anhydroecogonine Methyl Ester by a Tandem Cyclopropanation/Cope Rearrangement. *J. Org. Chem.* **1991**, *56*, 5696–5700.