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ABSTRACT

Part T _

We have investigated the efficacy of ab-initio effective
potentials in replacing the core electrons of atoms for use in
molecular calculations. The effective potentials are obtained
from ab=initio GI calculations on atoms and are unique and
‘local. We find that the use of these effective potentials to
replace the core orbitals of such mblecules-as LiH, Liz, BH,
or LiHa, leads to wavefunctions in excellent agreement with
all-electron ab-initio results. The use of such effective
potentials shouldvallow ab-initio quality wavefunctions to be
obtained‘for systems too large for the ab-initio consideration

of all the electrons;

Part IT

We have investigated the Sternheimer correction for the
calculation of the nuclear quadrupole couplihg constants and
its relation to the approximate nature of the zero~order wave-
function. The first-~order perturbed Hartree~Fock equations,
and some approximations to them, are solved fof the 2 2P state
of Li, and the resulting Sternheimer type corrections are com-

pared with Sternheimer!s approximate calculations and with

results from non-perturbation theory approaches.
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Part TII

The_Ling;”h potential energy curve has been calculated
with a Multi~Cbnfiguration SCF (MCSCF) wavefunction. Several
different types of wavefunctions and basis sets have been
examined and their accuracy determined. The most asccurate
wavefunction used predicts a binding energy of 0.301%5 e.V.
(84% of the experimental value of 0.362 e.V. ), and predicts
& potential hump of 0.072L e.V. with its maximum in the vi-
cinity of 10.6 Bohr. It is argued that the theoretical value

of the hump 1s an upper bound to the experimental value.
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I. INTRODUCTION

Empirically, it seems clear that we can think of the states of a
molecule or solid as if only the description of the outer or valence elec-
trons changes significantly as the atoms are brought together to form the
bound system. Thus, in considering the Na, molecule as a function of
internuclear distance, we should be able to ignore the ten inner or core
electrons on each Na and consider Na, as a two-electron problem. How-
ever, quantum mechanically the situation is less clear. Since the elec-
trons are indistinguishable, there are certainly not two electrons of Na,
that are different from the other twenty and which can be isolated out and
considered as the valence electrons. Then what do we mean by the valence
electrons of Na? In order to discuss the many-electron wavefunction in
terms of one electron at a time, we must turn to one of the variational
methods, such as Hartree-Fock (HF) or GI, 1 which lead to independent-
particle interpretations. In these methods the many -electron wavefunc-
tion is composed of N different orbitals, each of which can be interpreted
as the state of an electron moving in the field due to the other electrons.

That is, each orbital is the solution of an equation

(h+U)o; = ¢y (1)
where U, contains the interaction effects due to the other electrons.
Thus, it is the orbitals we interpret, not the real electrons of the
molecule. In the case of a molecule such as Na,, twenty of the orbit-
als (the core orbitals) are essentially the same as for the Na atoms,
and only the other two orbitals (the valence orbitals) change upon

bonding. Thus, if we had some way of incorporating the effect of



the core orbitals into the U; of (1), we could then completely for-
get about the core orbitals and solve iust the fwo equations (1) for
the two valence orbitals of the Na, molecule. We could then also
solve for the low-lying excited states of Na and Na, in the same
way, and indeed we could even include correlation effects in the
interactions between the valence electrons.

-Wé will be concerned here with how to include the effects
of the cozfé orbitals into an effective potential, U;, equivalent to
the U, of (1). Pfogress has been made along these lines based
on Hartre'e‘-Fock wavefunctions, leading to what are usually called
pseudopotentials. However, certain difficulties avrise involvihg, for
~ example, 'i‘mique.ness of the potential. | We will review certain
aspects of‘ these approaches and then turn to a new method based on
the GI wavefunctions. 2 Compariéon between the full electron ab-~
initio calculations and the corresponding calculations using the
effective potentiais will be made for several syste11133 (e. g. , LiH,
Li,, BH, and Lii,). In addition some results on larger systems

(e.g., Li;, LiH, and BH,) will be presented.

II. LOCAL POTENTIALS FROM HARTREE-FOCK_WAVEFUNCTIONS -
‘In this section we will review some of ‘the previous approaches
used to replace core electrons by effective potentials,} with particular
emphasis on the local repre‘sentation of these cffective potent.ia.ls.4
~ Early work along these lines was due to erllmann5 and

6

Gombds. > The theoretical basis was sought in a combined procedure



whereby the core-electron charge distribution was described by
the Thomas-Fermi theory, while the valence electrons were des-
cribed by a Schrodinger equation containing a repulsive potential
due to the core electrons. For practical applications, as for K,

and KH, 5 a simple local 'functional‘form was assumed for the

repulsive potential,
A exp(-2Kr) (1)

and the para,meters A and K were adjusted so ‘as to fit the appro-
priate atomic valence spectra. Later work &sing the Hellmam
approach was carried out by Preuss on_alkali.moleCular ions such
| An alternative theoretical basis for efféctive potentials can
be obtamed from the Har tree~-Fock (HF) approxlmatxon Consider
an atom with one valence electron, say L1, Be" , or K; the HF

equa.tlon for the valence orbital is
_ ﬁgF

where the VEF is a sum of Coulomb and exchange operators con-

¢V = ("%vz - 'IZ-" + {}HF)‘P = €V¢V ’ (2)

v .

structed from the core orbitals and can be thought of as the potentialy
due to the core electrons. [ For simplicity, in Eq.(2) we have ignored
the off—diagonal terms coupling the valence and core orbitals; these
terms are discussed in Appendix II. ] Then, assuming the core orbi-
tals are unchanged upon going to a m‘ole’ciile, one can take the atomic
VHF to simulate the interaction of each valence electron in a molecule

with the corresponding core electrons. However, note that VHF is of

of the form



b

VER1) = T [27 (1) - K,(D)], (32)
C -

where the sum is over all core orbitals ¢ and where
AP 1
T =T 5 o @an (3D)

is the usual Coulomb potential and

K1) =1 942 £ Pu .2 dr, (3¢)
is the usualk exchange operator (P,, interchanges clectrons 1 and 2).
In partiéulé.r, the exchange potential, Kc’ is a nonlocal or integral

operator' in the sens_e. that it depends on the function on which it

operates,’
KD ¥ (D) =90 [ 6o(2) J- w2 dra). ®

Because of these nonlocal operators in VHF the solution of a Hamil-
tonfan for the valence electrons in a molecule is still of comparable
difficulty to that of the original full-electron problem because all two-
electron "m‘ulticenter int'egrals between the valence and core orbitals
have to be explicitly evaluated. 8 In order to avoid these difficulties, we
want to repléce the nonlocal potential PHF by a local potential UHF‘. In this
way insofar as core-valence interactions are concerned only onc- |
electroh-like integrals would have to be evalﬁated, and the specific
form of ihc'core orbitals would not have o be explicitly included.

Toward this end we consider the local operator derived from

?HF by right-multiplying and dividing it by ¢,
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: >HF ,
. viFg |
UHFg) - v (5)
Y
With this definition of UNF(r), ¢ is clearly a solution of
-3 -2 . UHF (g = 0, . @

Howevei'_we want to use UEY to solve for states in a molecule; hence
in addition to satisfying (6) (this is just an identity), we want URT to

be such that it has the same spectrum of states as {IHF . If this is the

case, we might hope that U,HF would describe the distortions and
changes in the valence orbitals upon molecule formation as well as
does VHF

In discussing the spectrum of UHF,

Z HF
v [""é“f"-f:+U v (I)]‘l’i = €i¢i"

we take UHF to be indépendent of ¢, [being defined through ¢, in (5)].
From (5) we see that if the radial part of q>v has a node at some r, # 0,
then UH-F will be singular at r, unless GHF% =0 at r,. But since {IHF
is nonlbcal, GHF¢V does not in geﬁeral possesé a zero at a zero of

¢, hence pHF (r) will in general have a

m— ‘singularity at a zero.
of ¢v. The Hartree-Fock valence orbitals are generally taken as ortho-
gonal to the core orbitals, and hence the straightforward use of (5)
would lead to singularities in the resultihg local potential (5). In Fig. 1
we sho'w. a plot of such a local potential derived from the 2s HF orbital
of Li.g Clearly the singularity at r, in the potential is not a physical
one, but ah artifact of the method. Because of Lhis singularity in UHF, :

all the solutions of (6) will have a node at 'eXactly ) P
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An alternative to the singular HF local potential can be found
in the pseudopotential formalism developed by Phillips and Kleinman. 10
Basically the idea is that the HF equation (2) can be transformed into

the equivalent equation,
-4v -2+ vEFL vFE ey )
where

VEK. zci(ev—éc) 6 (&,] (®)

is a repulsive Hermitian nonlocal potential (called the pseudopoten-
tial) and x is a valence-like function not required to be orthogonal
to the core orbitals. Since both by and ¢ ¢ are degenerate solutions

of (7), the general form of x must be

X=¢v+zcac¢c: T - . (9

where the coefficients a, are arbitrary.l In particular the a, can
generally be chosen such that x is a nodeless function, and thus one

can then find a corresponding nonsingular local effective potential

SHF -PK
X X
The PK-potential (8) has been generalized by Weeks and Ricell’ 12 to

vGPK - _ ﬁf}FP - Pﬁf}F + i’ﬁEFIS + e, P, (11a)
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‘where _ |
| B - ch |6, X 8| - (11b)
The importance of these developments is that since the transformation
(9) from ¢, to X leaves the total HF wavefunction and energy invariant
and changes the one-particle Eq. (2) intoa comparab_lé one-particle
Eq. (7), one can rigorously transfer any physical interpretation from
;/HF ' and‘<¢>v to (\AIHF + VPK) and ¥x. However,_ since x'is not unique, the | ;
effective local potential (10) is not unique. | -
Figure 2 shows a few of the smooth local potentials cori'esponding to
different choices for x. Two approaches have generally been used to choose
among the infinite possibilities. One approa;c‘h is to use a model poten-
tial with a physically reasonable form and to optimize parameters in |
this potential so as to fit experimental data [one can think of this as an
attempt to approximate (10)]. Typicai forms for the model potentials
are the Hellmann potential (1) and generalizations of it, and Coulomb-~

11,13

cutoff type potentials. A second approach would be to choose some

appropriately smooth function, x, to define a new function x’',
X = @ l0e, ) @l - @)
c .

so that x’ has the form of (9),and to use X' in (10) to generate the corre-
sponding local potential. 14

Still, this non-uniqueﬁess is an ﬁnsa{isfactory feature. Cohen and
Heine15 suggested several criteria which might be used to obtain rea-
sonable forms for the pseudopotential. One of their criteria which is
appealing . is to choose X so as to minimize its kinetic energy.
Clearly the choices are manifold, each of which might have its own char-
acteristic set of eigenstates. Another aspect to consider is that the use

of . (10) for a molecular system leads to molecular orbitals which look
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10
different from those one would obtain from full-electron Hartree-Fock
calculations. We will consider next an alternative approach which by-
passes these vambiguities and in turn provides a basis for better under-

standing of (10).

II. Gl ATOMIC'EFFECTIVE POTENTIALS AND THEIR USE IN
| MOLECULAR CALCULATIONS
In this section we will examine unique efféctivé local potentials
as derived from the G1 wavefunction and will consider their use in
molecular calculations. For clarity we will consider here the Li atom,'
although the procedures to be outlined hold generally. The Gl wave-

function for Li can be expanded into determinants as

Gy (P12 b1pP0a8%) = [ [(B1,01y, + b1,912)85,282] (12)

where ¢1a and ¢1b are core orbitals and ¢2a is the valence orbital. We
see that in contrast to the HF case, it would be a constraint to require |
prthogonaiity among any of the orbitals of (12).

The requirement that the orbitals of (12) be Optimu_m‘ leads to
one-particle variational equations which must be solved self-consistently.

The equation for the valence orbital Poq 18

o - . Z < ’
fpabpe = (39 -2+Vgy, = 00y, (13)
where {/Gl is an integral operator involving the two core orbitals. But

now, in contrast to the HF case, ¢2a is the first solution of ﬁZa and is

16a

nodeless and unique. 16b Because of this we can now proceed to find a

corresponding local potential straightforwardly. First we assume (13)
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has been solved for ¢‘Za and €9 then we consider the similar equation

[-3v* - % +UG1(£)]¢2a = €3a%a (14)

where the nonlocal potential VG'1 is to be replaced by a local potential

UGI(;:). In (14) only UGI(;;) is unknown and we find thatz’17

zZz v ,
UGI(;:) = €, t7 + -zg-:f’- . (15)

Note that since the valence orbital is nodeless (except at r = 0 for £ =0,

which causes no singularity), we do not obtain a singularity in yCl (r).

From (13) we also obtain the alternative (but equivalent) form18
-G
\"/
UG1(£) = '_____22_@. . (16)

Pa

Factoring ¢y, into radial and angular parts

: _92(1‘) | . |
ta = () Y@ an)
we obtain : ’
' 200 +1) o7,
Gl 4
U, (r) = ¢_+ + (18)
0= 9T 20,
where

. &
9"1(1') = ';1‘;2‘ 92(1')

The effective potential for replacing some orbitals of a system obtained
as above by using the atomic GI orbitals we will refer to as the G1 atomic

effective potential or GAEP.
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In order to determine how sensitive Ufl is to the angular momentum 1,

we have used the 28, 2p, and 3d orbitals from ab-initio calculations on the
lowest °S, ’P,: and D states of Li to derive the corrésponding local poten-
tials. (See Appendix I for details.) The resulting U ¢ [from (18)] are
shown in Fig. 3 where we see that the potentials are smooth and nonsingu-
lar and that the s potential is much more repulsive that the p and d poten-
tials. In Fig. 4 we show U l(r) plus the nuclear attraction potent'\al' (for
the case of U s this is the total effective radial potential). These potentials
possess the correct limiting forms of -Z/r for r approaching zero ard -1/r
for large r. Note that the total s potential is actpaliy positive in the core
region; it is this repulsion that forces the s valence orbital out of the core
region. (This just reﬂects-the radial kinetic energy of the 2s orbital; for
the 2p orbital a corresponding amount of kinetic energy is separated into
the angular term 2(£+1)/2r%.) . '

An important test of the validity of these local potentials is whether
or not they can reproduce the excited states of (13). The results frorp

solving (14) for the lower excited states 19

are compared in Table I with
the ab-initio and experimental results.. We see that the Ug Uy, and Uy
potentials reproduce quite well the respective ns, np, and nd series. From
these results we conclude that the local po'tential derived [using (18)] from
the first G1 Li valence orbita_l of each symmetry is a valid represcntation
of the nonlocal potential due to the core.20

Since the local potential U 1,‘(;:) depends on the angular momentum £,
we need to combine these potentials into a total potential U(r) so that when
U({) operates on a general functionl f(x;), the correct U 0 acts on each ¢

compohent of f(r); t.e.,
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Tanre 1. Spectrum of Li using the G1 atomic effective poten-
tials (GAEP) compared with the results of ab initio G1 calcula-
tions and experimental results.” All quantities are in Hartree
atomic units.*

€ GAEP - Gi® Experiment®
2s —0.19616 —0.19615 ~ —0.19814
3s —0.07479 ~0.07376 -0.07418
4s —0.03895 —0.03862
Ss ~0.02382 - —0.02364
6s —0.01605 —0.01595
s —0.01136 —0.01148
2p —0.12875 -0.12872 ~0.13024
3 —0.05685 ~0.05679 —0.05724
4 —0.03182 —0.03198
5p ~0.02030 —0.02037
6p ~0.01405 —0.01411
7 —0.00983 -0.01034
3d ~0,05558 —0.05556 ~ 0.05561
4 —0.03126 -0.03127
5d ~0.02000 - 0.02001
6d -0.01388 —0.0139
7d —0.00977

8d —0,00525

® One atomic unit of energy==1 hartree =27.2117 €V, and one atomic
unit of length=1 bohr =0.529177 &; | ¢| =1. See B. N. Taylor, W. H.
Parker, and D. N, Langenberg, The Fundamental Constants and Quantum
Electrodynamics (Academic, New York, 1969).

b The G1 results for the 2s, 2p, and 3d states are in Appendix I, and the
results for the 35 and 3p states are from Ref. 37,

® C. Moore, Atomic Enecrgy Levels (National Bureau of Standards, U. S.
Government Printing Office, Washington, D. C., 1949), Vol. I, p. 8.
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U@EG) = B U @Y, @) ) , - (19)
£, m »
where f(r) has been expanded as f(r) = Z Y h'n(ﬂ)f lm(r)' (The sum in
. Im
*(19) is from £'=0 to © and from m = -£to +£.) The general effective

potential satisfying (19) is

U(R) = Z Uyx)|[tm){m| , | (20)
4,m

where |£m) {#m| is an angular momentum projection operator (onto
angular momentum £) and U l(r) is the effective potential from (18). Al-
vthougli (20) involves an infinite number of Uy's, in practice we find thct

there is an L such that
Uy(r) = Uy () ) 2=L , (21)

- where typically (L - 1) is the largest angular momentum used by core
orbitals. In particular for Li we find that U(1 o Up, and that the nd spec-
trum of Uy is well given by Up' Thus for Li we will set U, = Up for £ #2,
m general, if we assume U, = UL for £ = L, we can use the closure

property of the projection operators to write

U

[

. 4 A , :
Uy, (r) +I;>20 n713_(U£(r) —Up(r))[lm)(£m| . (22)

In Appendix I we report the data necessary to generate the s and p G1 local
potentials for Li through F*°.

Next, we proceed to thbe use of the G1 effective local potentials to
replace core electrons in molecules. To illustrate the ideas we again
turn toa specific case, the LiH molecule. Consider the Hamiltonian

for the two valence electrons of LiH in the field of the nuclei and Li core

electrons,
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_ 1
J(1,2) =h; + hy + = | (23a)
here h, = -1 v + lAl (r) - 3 -1 | (23b)
wnere i =3 i Li\k . . » :

Li,i  TH,i
In addition to the usual kinetic and pdtential energy terms, (23b) contains
the i-ntera}ction potential fJLi(}:) of the valence electrons with the Li core.
Since the Li core orbitals are essentially unchanged upon going from
the atom to the fnolecule,‘ we take the interaction potential of the LiH
valence electrons with the Li core to be the same as that of an Li atom
valence electron with the Li core, nam’ely,' the effective potential (20).
Note that the effective valence Hamiltonian (23) is not the resﬁlt

of an exact reduction of the all-electron G1 description to the x}alence
~ electrons, but rather is an approxilﬂate reduction motivated by physical
‘considerations the validity of which will be investigated in the following
sections. An analogous approach can also be used in the case of Hartree:

Fock wavefunctions. For example, for a Hartree-Fock description of

‘the core orbitals the two-electron Hamiltonian for the valence electrons

R becomesll’ 21
o %(1,2) = BB, e, 4 Flg 19,9, , (24a)
where s o 3 ) ' E |
-hl = -3V; - == " Fy Vi (24b)
V‘and i)i is the pr.ojection ﬁoperator ‘ /
B=1- g, s,0 5 (24c)

which projects onto the space orthogonal to the core space of electron i.

- An approximation to (24a) thatv leads to a considerable simplification and

that puts (24a) into a form comparable to (23a) isll’ 14
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5(1,2) = b, + 1) +—— (252)

T
where

R T

&GPK .

and Vii is the Generalized Phillips-Kleinman pseudopotential (11a).

The difference between (23) and (25) is that the local representation of
(VLl E}D K) is nonunique and that, if chosen without "'sufficient"
repulswe character, problems can arise 1nvolv1ng variational collapse
of the valence orbitals into the core. This problem is avoided in the use
of the unique G1 atomic effective potentiai ﬁLi since the atomi‘c valence
orbital is its lowest energy solution.

Ha.vmg specified the valence electron Hamiltonian (23b) the prob-
lem remaining is to solve for the correSpondtng molecular valence
states. To this end one could choose a Hartree-Fock or GI type of
approximate wavefunction, or one coxylld' choose a configuration inter-
-action typé of wavefunction and solve the valence electron problem to a
high degree of accﬁracy. However, in order to assess the validity of .
the effective valence Hamiltonian (23) we have chosen in this case to
use a Gl type of wavefunction so that we might compare the resulting
orbitals with those from the corresponding all-electron G1 calculation,
Before giving the resulté, we discx'xss in the next section the evaluation
of matrix elements of the local potential (20) necessary for the varia-

tional solution of wavefunctions for (23a).
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IV. CALCULATIONAL DETAILS
In this section we will discuss the evaluation of local potential

matrix elements, i.e.,

x,|0m)x,) = 2 U] m) @mllx,) (26)

where {xu} are the basis functions and the interior brackets refer
to the -angular spaces only. - We will consider the basis functions
to be either Slater-type functions or gaussian functions.z-2

In the case of Slater-type functions an integral program

specific to diatomic molecules was written. We made use of the Zeta

function 23,24

expansion in cases when it was necessary to expand a basis
function about the center of the potential. After aill angular integrations
were carried out, »the remaining radial integrals were evaluated by
Gauss-Legendre and Gauss-Laguerre quadratures over the intervals
(0, R AB) and (R AR’ ) respectively.24 Ali integrals were found to
be accurate to six decimal places.

In the case of gaussian functions an integral progrém for poly-
atomic molecules was written. In contrast to the Slater-type functions,

the property of ga.ussians25

2 af .
exp(-étrA) exp(-Br"’B) = exp (— P 'A_ﬁz)exp(-.(a +B)r) (27a) |

allows one to avoid infinite series in the three-center integrals.
Because the projection operators are fixed on the center of the poten-
tial, we use the following expa.nsion26 for a gaussian on center B about

the center A of the potential,

exp(—!r%) = exp(—&KBz)eXp(-Erz) 220(2,2 +1)M,(2£ABr ) Pylcos 6,), (27b)
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where M 2()() is the Modified Spherical Bessel function of the first kind

defined as 26

M, (X)= x! (-,1{ %7() . (§_§_Lx.) : (27¢)

Note that since the expansion (2'7b) is based on the relation

Ty = Tp +AB* - 2AB1, cosf, , (28)

it is valid only if .the z-axis of coordinate system A has been

rotated so as to point at center B.

Using the expansion(27b), all necessary integrals are reduced
to radial integrals involving the local potential U l(r). One approach
to evaluate the integrals is direct numerical integration. First we
tried Gauss-Hermite quadi'ature but found it not suitable for many of
the integrals encountered. Then, for the calculations reported in this
paper, we used a Simpsbn's-rule quadrature with a square-root grid
distribution of points about the maximum of the integrand.- However,
we found that this straightforward numerical integration led to integral
times of the order of ten to one hundred times longer than for the usual
nuclear attraction one-electron integrals. A second approach;\ alterna-
tive to numerical integration, has since been developed and found to lead
to integral times of the same order as those of the usual one-electron
integrals. | This second approach is based on least-squares fitting the
local potentiais with gaussian functions and then integrating analytically
over the gaussian expansion functions.zl7 The evaluation of some of the
integrals that arise this way requires the use of the integral represen-

tation of the Modified Spherical Bessel functions M (XD



20
V. RESULTS

Having established some of the properties of the G1 atomic
effective pbtentials (20), we will now use these potentials for molecu-
lar calculations in which only the valence electrons are treated. In
order to test the efficacy of these potentials we will describe the
valence eleétrons:with a Gl wavefunction and compare the resulting
valence orbitals with those resulting from an all;-electron G1 calcula-

tion. Thus we should have a sensitive test of the validity of the local

potential approximation.

A. LiH Ground State

Consider the ground state (X'Z) of the LiH molecule with
R =R, ='3.015 Bohr. There are a total of four electrons and
hence four orbitals, but we deal only with the two valence orbitals
involved in bonding. One of these orbitals [ Fig. 5] corresponds in the
separated atoms limit to a H 1s orbital. Upon molecule formation it
remains eséentially a hydrogen-like orbital but with a slight increase
in amplitude in the internuclear region. In céntrast, the second valence
orbital [ Fig. 6], which in the separated-atoms limit corresponds to a
Li 2s orbital, strongly sp-hybridizes towards the H atom and has a
large H-like component on the H atom. The net result is a large trans-
fer of auibiitude from the Li to the internuclear region and onto the H atom,
and is reflected in the large LiH dipole moment of 5.8 Debye. This latter
orbital is essentially the orbital responsible for binding in LiH. 28 In

Figs. 5 and 6 we show these orbitals as obtained from all-electron G1

29

and G1 atomic effective potential (GAEP) calculations. The agreement

is very good. In the same figures we also show the orbitals from a
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| .2
caiculation. vusing only the Li Us potential (in this case the potential is
purely local, possessing no anguiar momentum). The resulting orbital
¢s is poofly described, primarily because Ug is muéh more repulsive
than U, and hence leads to too little hybridization. As a result, the
valence energy is higher than the GAEP energy by 0.031 Hartree.

Upon using both the Li Ug and U potentials we obtain the orbital ¢°P

, P
which is in very good agreement with the orbital from the all-electron

GAEP

G1 calculation. The orbital designated ¢ corresponds to using

the U, Up, and Uq4 potentials and is Virtually identical to ¢SP.

In Table I we compare various electronic properties 3 for the
GAEP and all-electron wavefunctiohs. Since the different properties
sample different -a’spects of the electronic charge distribution, the
close agreement for all these properties between the all-electron
and the effective potential G1 wavefunctions indicates the usefulness
of the effective potential approximation.

The total energy is calculated by adding to the valence energy
~ the self-energy of the cores (from the atomic calculation) and coulomb
interactions with other cores and nuclei (analogous to the nuclear- |
nuclear repulsion potential) a‘ssuming}non-overlapping spherically
symmetric core charge distributions. This method of estimating the
total molecular energy is consistent with the philosophy behind the
effective pdtehtial approximation. We have tested this appro:drhation
by calculating the four electron LiH energy as given by the corresponding
four electron G1 wavefunction constructed from the two Li atom G1 core
orbita1530 and the two LiH GAEP valence orbitals, with all two-electron
integrals calculated exactly., The resultant total energy of -8.01725
is in good agreement with the SCF-G1 energy, and is better thah the
GAEP energy estimate (see Table II).
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31 such as the dipole moment,

‘ Thé other electronic properties,
wefe found bﬁr éalculating the \;alence contribution as given by the two-
valence orbital wavefunction and adding to it the core contribution.

This lattexj part, if not zero because of the spherical syminetry -of the

core, was calculated for the two atomic-core:orb’ital wavefunction.
However, it usually suffices (and is conststent with the effective potential
assumptions) to take the core contribution to be that of a spherically sym-
metric charge distribution that has no amplitude'outside a small region
about its center. For cxargple, we found that the explicitly calculated Li
core contribution to (1/rH), (Pr/r;i), and (P;/r;i)'differed from Z/RLiH'
2/R} 45> and 2/R];py, respectively, in the fifth to sixth decimal place.

B. Li, and Li}

Next we consider the ground state (X ‘z;) of the Li, molecule with
R= Re = 5.051 Bohr. Although there is a total of six electrons, we deal
again only with the two valence orbitals involved in bonding. In the disso-
ciated-atoms limit, each of these two valence orbitals corresponds to a
Li 2s orbital. Upon molecule formation éach of these orbitals sp-hybridizes
towards the opposite center and thus increases the amplitude in the inter-
nuclear region. However, the orbitals remain essentially localized on their
original center with little actual buildup of amplitude on the opposite Li,
and a relatively weak bond is formed (expez:{mental ‘De = 1,02 eV). In Fig.
7 we show one of these valence orbitals (the other is symmetrically related)
and we see that the agreement between the GI atomic effective potent‘\al32
(we used the Us, Up’ 33
tal_s is very close. In Table III we present the corresponding comparison

and Uy Li potentials) and the all-electron G1°° orbi-

of electronic properties and again find good agreement, except for the
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total field gradieht at the Li nuclehs, for which the GAEP and all~-clectron
G1 calcu}ations yield opposite signs. However, the corresponding elec-
tronic contributions are -0.047 564 and -0,044 626 for the GAEP and all-
electron Gl,' respcétivély, whereas the nuclear contribution is 40,046 561,
Thus, the discrepancy is in the third decimal place of the clectronic

contribution34

and the differing sign is due to the nearly canceling nuclear
contribution. o

~ In Fig. T we also show the orbital ¢s resulting from a calculation
using only the U s Li potential. Just as for LiH, this angular-momentum-
independent potential leads tb poor agreement with the all-electron results.

For' Li: the use of Ehe GAEP leads to a one-electron system, and

assuming that the core orbitals are not involved in binding, should repro-
duce the experimental potential energy curve. | The comparison of the
results of the GAEP and all-electron G1 calculations33 for the ground state
of Li; (X "’z;) are presented in Fig. 8 and Table IV. Note that in compar-
ison to the Li, orbitals the Li;’" orbital has far more p character and has a
much larger amplitude in the internuclea.? region, leading in turn to a
stronger bond (1.5 eV as compared to 1.0 eV). Upon varying the inter-

nuclear distamce:;5

we found the equilibx;ium distance to be at 5.856 Bohr
and obtained 82% of the experimentai binding energy. However, our basis
set contained only s and p Gaussian functions; it is well known that d func-
tions are important in accurately describing bonding energies, and indeed
are responsible for about 16% of the bonding energy in BH. Thus, it is still
expected that the exact solution of the GAEP equations for Li: would account
for nearly all of the bonding. |

Next we consider the G1 atomic effective potential approximation in

some three-center molecular systems.
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C. LiH, (2‘2) System.

The reaction -
LiH+H -~ Li+H,

has previously been considered for linear geometries with all electron
socr3’
and R(H A; Hp) = 3.00 Bohr and an energy barrier of 5.14 keal/mole.

cé.lculations, leading to a saddle point near R(Li, H A) = 3. 20 Bohr
‘ | | 38

Using the Li s and p G1 effective potential (GAEP) this system reduces
' 39 '

to a three electron problem.”” The resulting valence.orbitals are
compared ﬁvith those from the all-electrbn SOGI calculations in Fig. 9,
and the energies are compared in Table V. For both the orbiials and

| the energies:the agreement is quite gqod. The éhefgy barrier height
obtained with the GAEP calculation is 5. 43 kcal/ mole, in good agree-

ment with the ab-initio value.

D. LiH and Li, (°%) Systems.

AUsing the Li G1 atomic effectivé potentials the seven and
nine ele.ctron systems Li,H and Li; become three electron problems
leading tq self-consistent calculations no mofé time consuming than
'Hs. Here we show what the GAEP SOGI valence orbitals for these

39

systems are like. There are at présent no corresponding all-

electron SOGI calculations with which to compare these resuits.

39 at a linear geometry

The Li,H (*x) system was considered
with R(Li,, Li,) = 5.051 Bohr and R(Lip, H) = 7.0 Bohr. The resulting
'SOGI orbitals are shown in Fig. 10, where we see that ¢, and ¢, closely
resemble Li, bonding orbitals and ¢, is essentially an H non-bonding

~ orbital hut with a node between the Li nuclei. FEven for this large LiB~H
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TasLE V. Total energy (E) and orbital energies (¢;) for LiH,
as obtained using the Gi atomic effective potential (GAEP).
Comparison is made with an ab fnitio all-electron calculation. All
quantities are in atomic units.»

E a o «

GAEP® —8.509429 —0.285504 —0.478256 --0.334714
SOGI® --8.509202 = —0.286547 —0.481200 —0.339251

* All units are defined in footnotes to Table II.

bSee Ref. 39. The LiH GAEP energy In the corresponding gaussian
basis is —~8.018221, and the H energy is ~0.499859, This leads to an energy
barrier of 0.008650 hartree =5.43 keal/mole.

®See Ref. 38. The LiH all-electron G1 energy in the corresponding
gaussian basis is —~8.017537 and the H energy i3 —0.499859, This leads to
an energy barrier of 0.008193 hartree =S5.14 kcal/mole.
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distance, the Li,-like orbital ¢, has delocalized a bit onto the H atom.
The orbitals for the 'Z state of Li,H" at the same geometry are shown
in Fig. 11 where we see that the sysiem is essentially an isolated Li;
molecule and an isolated H atom.

The .Li; (*2) system was cohsidered39

for a linear geometry
‘with R (Li A? LiB) = 5:.051 Bohr and R(LiB, Lic) = 6.949 Bohr. First
in Fig. 12 we consider the single valence orbital of L‘t;" *, which is
gsimilar toa Li;" orbital in the region between LfA and LiB with a little
extra component betwéen Lip and Lis. In Fig. 13 we consider next
the orbitals for the 'Z state of Li'{, and We find that they are similar

to Lij orbitals between Li, and Lip, and between Lip and Lig, res-
pectively. Upon introducing the third electron to obtain the %5 state of
Li, we see from Fig. 14 that the third orbital is localized near center
Li A but hybridized away from center LiB.. At the same time, orbitals
¢, and ¢, are distorted toward the right, the net result being that ¢,

is quite similar to the orbital of Li;H.

~ E. Be Ground State.

In Be atom we have two core-like orbitals which are rela-
tively 'unchanged upon ionization or molecule formation and two valence
orbitals, ‘lrespOnsible for the chemical properties of Be. Here we.
will replace the cbre orbitals by using the G1 effective potentials ob-
tained for Bet (see Appendix I). Using this GAEP for Be leads toa
two-electron system, the G1 orbitals for which are compared in’

Fig. 15 with the all electron Gi results.41’ 42 The energies are com-

pared in Table VI, where we seec that the agreement here is not quite
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as good as in the previous cases. The discrepancy here is probably
mainly due to the presence of a term in ¥C? that depends upon ¢, in

v
(as in going from Be” with €, = -0. 665 to Be with €, = -0.351), yC!

that it i{s proportional to €. In cases in which 3 changes significantly

might lead to a poorer approximation to ¥C1. Since this extra term .
propdrtiona_lh to e, is also proportional to the overlap between the core
orbital and the valence orbital, it shQuld be of much less importance
for excited states. - |

- The Be ('S) calculations reportéd here are spatial-symmetry
unre;stricteci Gl calculations in which the o'rbitals are allowed to mix
different anvg‘ular momenfum componenté subject t_Q minimization of the
total energy... The resulting optimum orbitals have the shape of sp-like
hybrids (abdut 19% p ché.racter). 42 One of these orbitals is shown in |
Fig. 15 (the other is symmetrically related).

F. BH (X'z) and BH, (X®A))
‘In the same manner as for Be 'S, we considered B *P as
a three-electron system using the G1 effective potentials obtained from

B*? (see Appendix I).43 In agreement with the éorreSponding all-

44

electron G1 result, two of the orbitals are singlet coupled sp-like

| hybrids,(lG%.'p character), analogous to the Be r_esult; and the third.‘

| orbital'is. a p orbital orthogonal to the sp-hybrid pair.“ Similarly, BH
becomes a four-electron problem in the field of the B and H nuclei and
the B* G1 atomic effective potential. ¥ The bonding orbitals for the
X '5* state arc shown in Figs. 16 and 17, wherc the GAEP and all-clectron

44, 45

G1 results are compared; we scc that the comparison is good.

These bonding orbitals can be considered as deriving from the B p



13

_ "SuOLIRRIEY 1) dAAVO) Pue 15 manE

91 d A xﬁomv mUCmeﬁ O o B WOy gy jo jeiqro 3upuoq awyualorply sy ‘91 'org
O00¢ 00b 00¢ 002 OO0l 000 OO0k OO.NL OO.M..
. 1 | T I - 1 - 1 I m _ O

5

AS)

O
(V) epnydwy

Hst0

-1090

i - ] _.. 0 1 | ! : l | : L0



“SuohyEnaEd 1D JAVD pue

. : A gLOmv MOCO._.m _Q | 19 55%-:«. wosy i Jo [eugio Suipuoq axt-¢g Sy L1 "o
000S 000» 000E 0002 000 0000 000I— 000Z— 000E-
. l i i L | | l ,
A k 0020
&wdmuﬂu
A 0010
0000 5
=
=
Q.
H{ooro @
>
. c
- 0020
Hoog0
I 1




15

and the H s orbitals of the separated atoms. The other valence pair
of the B bends back as shown in Fig. 18, where the GAEP and all-
electron G1 results are compared (Figs. 18 and 19 each show one
of the pair of orbitals, the other is symmetrically related). The |
gpatial omentatton of these latter orbitals is remlmscent of the sp’-
like hybrids (thetr composition is about 76% s, 17% p,, and 6% P,
character), and they are separated by an angle of about 127°. The
corresponding energies are compared in Table VI, where again the
agreement is good. |

Fmally, using the B*? GAEP we consuler BH, as a five-

46 e experimental geometry47 for the %A, state

electron system.
of BH, is R(B,H) = 1.18 & and 6(HBH) = 131°. The orbitals for this
geometry are given in Fig, 20, where the orbitals of Fig. ‘20a and 20b
correspdnd to one BH-like bonding pair (the other pair is symmetrically
related) , and Fig. 20c shows the non-bonding orbital. Upon consider—
ation of the BH orbitals shown above one can readily rationalize the
_present BH, results by considering the coupling of a second H atom
to one of ”the non-bonding BH orbitals. Thué, a strong second BH-like
bond is formed resulting in a bent BH, molecule.

We varied the angle 0(HBH) keeping the bond length fixed and
found thé minimum angle to be at 129°, which is'in good agreexﬁent ‘
_ with the eﬁperimental value and coincides with the result of a recent

all-electron CI calculation by Bender and Schaefer. 48
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-40
40

,(b) BH,

~a0 Hyy B 7 , YY)
' Fig.20

.y

Fie. 20. The RHL(XHRH 131" valence orbitals from a
GAEE Gl calculation. Fizures (a) and (h) show one pair of
bonding erhitals; the other pair is symmetricatly related and con.
centrated in the other bonding region. Figure (¢) shows the non-
bondiny orbital, which points away from both benad regions.,
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- VI. CONCLUSIONS

' Unique hermitian G1 local potentials derived directly from

ab gé__i_t_i_e_w_ ‘G1 atomic calculations have been used to replace core electrons
of first-row atoms in molecular systems.. The molecular problem is
then reduced to the description of the valence electrons in the field of
the cores and nuclei. Upbn solVing for the GI wavefunction for the valence
electroné of molecular systems such és LiH, Li,, BH, and LiH, we
| find veryv good agreémeﬁt with the correspondihg all-electron SCF-GI
results. - |

The approach used here differs from previous approaches in
“that the Gl local potential used is unique, ab initio, and that its angular
momentumv'dependence is properly taken into account. Further, upon
using it' fd: replace core-electrons in molecules, the GI solution for
the valehdé orbital has bée‘n directly compared to the ab initio all-
electron GI solution, thus providing a direct test of the approximations
involved. -In addition, one-electron properties, such as the dipole mo-
ment, and geonietric parameters, such as the bond angle, seem to be
accurate_1§ predicted. Thus we may reasonably expect that the usc of
effective potentials»to replace coré electrohs as described here may
lead to ab gm_l_‘gg quality results in llarger systems, i.e., large cores
and ma.nyA centers, but with consideration of only the valence eleétrons.l

Inz summary, the uSe of ab initio cffective local potentials as‘

- described here yields wavefunctions which are bona fide approximations

to the wavefunction of a system,
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APPENDIX 1. Gl Effective 'Potentials for Lt through' 'F Atoms

tn Tabie .A-I we present the data required to ger;ei'ate the Us and Up Gl
atomic effective potentials. These potentials replace the He-like cores of
the first row atoms and are taken from the 28 and 2 P. G1 wavefunctions for
the ions Li, Be®, B, C*3, N™, 0% and F*e, The basis set used to obtain
the Gl‘ wa'vefur}ctions for the 25 states consfsts of seven optimized s-like

Slater func:tions',_22

and for the 2P states this s set was augmented by five

* optimized p-like Slater funct{ons. Thesé basis sets satisfy the cusp condi-
~ tion, and the most diffuse basis fugctton hag an exponent of "/“;F;T . The
total G1 energy (E) and'the virial ratio (V/2E) foxj each three-electron wave-
function are also included in Table A-I. In Table A-II we present the data
to gengrate the 'Lt ﬁd potéﬁtial. Since wé 'found that U Pl Up for Li, we
have not generated the U, for the other systems.

We find thaf the optimum orbital exponents of these basis functiohs

are very nearly a linear function of the nuclear charge (Z) » A few excep-
tions were found, and in those cases a change to an extrapolated value
raised the energy very slightly (sixth decimal place)." The pax;ameters for

a least-squares fit of the exponents to a linear function,
are given in Table A-TIL. These adjustments in the orbital exponents would

leadto a negligible change in the atomic energies.
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TABLE A-T. Data for the Gl atomic effective potential for Li 2D.

'n ' - ey
1 0 3.0 0.0
4 0 5.13 0.0
-3 o 5.31 0.0
3 0 2,921 . 0.0
3 2 1.0 0,028 299
5 2 0.98 0.129 081
5 2 0.6 0. 466 498
5 2 0. 404 0. 490 804
5 2 1.762 - 0.008 777
€34 o -0.055 562

ECD) ~ -7.306 973
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TABLE A-III. Analytic form for the basis function exponents. Each

exponent is expressed as Ci = atz + bt .

St 2y by

1s 1.0 0.0

4s 2. 173092 -1.178329
3 2.229530 ~1.946333
3s’ 1.160029 ~0. 516728
3s” 0. 766204 ~0.931708
35" 10.589050 -0, 931025
35" 0. 515898 -0. 915956
2p 0.5 0.0 |
ap 1. 464840 -2.309723
ap’ 0. 867440 ~1,315033
4p” 0. 647957 -1.177179
ap’ 0. 508922 ~1.017834
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APPENDIX II. Off-Diaggnal Lagvgangg Multigliers and the Generalized
K Pseudopotential :

As it stands Eq.(2) and hence (7) are not quite correct since we have
neglécted to include the off-diagonal Lagrange multipliers.49 Assuming a

single open shell, the correct HF equation for the valence orbital is

&I’:IF% = (-47"- %‘ * VHF)"’V = Pyt };’ evcl“bc » (A-1)
where - Lo le) =0 | | (A-2)
and . e = <¢c|fkl,{F|¢v> . | (A-3)

Using (A-3) we can rewrite (A-1) as

ﬁqu)v - %:(‘pclﬂgFMv)‘pc = €%,

or as ' (1-9) ﬁ§F¢v = evifv , (A-9)
-where . P= (2;, |62 e,] -
Since - -Pe, =0,

we can rewrite (A-4) as
aHF _ ' _
(1-PA( - P)g, = €,(1 -Bey, (A-5)
[where (A-2) is no longer required}. Since any function of the form
X= Oy é: 2P

satisfies

(1-P)x =9,
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and since t-P1-p=01-9 ,

we see that x is also a solution of (A-5). ‘Thus

(- AT - B)x = (1 -B)x (A-6)

and expanding (A-6) we find |
HF aaHF _oHF HF _

(i?v -Pf?lv 'f_:_lv ?+ﬁﬁv i?-t-gﬁ’)x— €,X - (A-T)
Upon inspectioh we find that the pseudopotential based on the correct HF
equation, (A-1), is | - '

pseudo _ g aHF _ aHF HF 4 o
\ i = ﬁif;v fi; ﬁ+§fg, B+ ev? . (A-8)

The pseudopotential (A-8) 18 just the generalized PK pseudopotential first
derived by Weeks and Ri.ce11 by a somewhat different procedure.

Note that if the core orbitals were also solutions of ﬁ?F (not generally

true), ﬁfrm‘pc - €c¢c ,

then (A-T) would reduce to the usual PK form (8).
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APPENDIX I

Local Potential Integrals

In this Appendix we give the formulae for the integrals of the local
potential necessary for variational calculations. We consider two cases

depending on the type of basis function.

In the case of Slater Functions, we will restrict ourselves to two -
centers since a third center would introduce i'ntegrals with infinite series.
First we define and give the properties of the functions to be used. A

real Slater fimction is defined as

W = N7 E o) S (o)

where

(1) 5,,:(¢)= tes M 6 =0

= Sn Wnct) ¢ =1
: | % ,
(“‘) . j; ‘)M.(q)) S'm;,(d)) dq} = q (‘ t S’MUO) g'mnﬂml SG-HGZ
. T a, iti! 4\
(i4d) § ) P (tmb) anpdo = 2 (b)) §
0 Q; ﬁz ££§+] H.‘ -«'\H,)! j;uQ,l
— "

““” N = / CO™! (e (¢

— )] |

A L A R A A .
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If a Slater function is located on center B, its expansion in Associated

Legendre Polynomials about another center A, as shown in the accomp-

anying figure,
?’fA Y,
lxi//// A Xg /'/‘ B

=% -
;{f’g | -She %W(cmea) =3 (Ah+Y) 7] (8,7, Rap) P, (t08,)
=m s )
where
/ b (A-m)! t4m (-QH’Y! t v -1
! xi,n . P M -1 _ Q1
ylnﬁrm;; RM) gh*l (')\‘r'm)\ E‘;%' ( ) L+mMm (gnA) (Q AS | x
‘ - ”1 -R B\
x B (hwm]im) QS M %(gnA)tR‘A&)
1 . n-L )‘)
v =m, (1), { i-—-M-—L!,(M,(MH
and where " v v
o , (M\") ( ‘“l’m ’mz,l ( WM it -y |
f)ﬁxf., m, | 0y M, ) ,~-~,;—— (‘ W‘“ ‘{N ? S P {x) .{,l(x) ?2 () da
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We will also need the decomposition of the product of two Associated
Legendre Polynomials,

W, my [, ~wy|

%l(eme) %ﬁ(@me) = % %U« mllfzéﬂz) 1}(@%9\

i

C=14-4), (), {4+ )

Given these formulae, we can derive the needed integrals over Slater

functions of the local potential
A
U= UL(nA) [ { tan)
Lo .

There are three types of integrals depending on the centers of the basis

functions and given that the potential always is on center A.

) Type (A|UMIAY :

=4

oy
waty, - (545, A
IQZ B'mc“mh 4,0, N ( gofb ¢ 2 Ué‘(i) d}L

where

\
N LA i A aly
() (ap,)

2)  Type {A] ‘:}(A)IB> 2

oo ! ST S R st
- N| e T Y (- M)y ) R
%““"ﬂ"“zb‘r\gx N [(%)%Q"" % T = { Mﬂ.) ﬁa SRl ““)“k/\s
i

[ el -4n ~5 1n-g
AL g ! £ a6 ) d )

4 " X
s .g.,y£

| SUS——
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whe‘re t=m, (04, 4= -0, (), (L)

Ve (1%@51":.‘1'. (20 (8- m! \( LI (1) (4!

‘i (‘d 7‘1” L (gg + Wln l’! (Qﬂz}! l {(g '%’h;;; T.:T

3)  Type (5lU(ne) :

We take the approximation to the local potential

A (mAx~t -4
U Ula) 4 200, AU, () [y L]

HMAX Lo m=g

where

AU () = U () ~ U ()

L LMAX

We consider the integrals of each of the two centers separately.

3-a) Type <F~[U(nA 1))

LMAX

B mm,, 6.5, [hg -2 }f 3 L1ty m,) (gﬁgz)ei ('l)i(g)

le 1=0

({)())L §‘+§,) I’L R‘Aﬁl 2 B(\“gz}h (; *51 KAJ U (n} dh.) ?

) RTINS N IMAY

where L= h-y] (@), (4+ )

MA)( | -

3-b) Type (b >' BY O gy o] | B

,"(} W=
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LMAX -}

o €-m) iy \
- N [ A s L (061) == 57y l“'”ﬁ'}*
l 2 L I g % i""mé {'(‘& N‘[ 4‘ \‘12{. ity

!

Q.—i s+ Ly-i
Rss | S (ot m) Z m) - ZZ =°/ (G 4w -
- 3' fl ‘ll 1+lm‘ fjA L

v (64, In- o 7 1H+J 1
R 5 ) 7 (68 B0 107 ]|
o “q Q”O Py~ Qz,). [ J
where

ema 0L L Sl ), (i)
(= w,, (0,4 j; 10-4,0, (@), £+ dy)

This finishes our work with Slater functions. We consider the

Gaussian Function next.

In the case of Gaussian Functions, we do not have to restrict our-

selves to the case of two centers. The most difficult three-center inte-
gral still has a closed~formula expression. First, we give the properties

of the functions to be used. A Gaussian basis function is defined as

i

J ., = N "\3( ”‘(“:b

ﬂ,t,tm

where N is an appropriate normalization factor. The general form of

the integrals to be evaluated is

<\s ‘\ Hw)U(n IRQETIRN A

L m
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where the potential is on center A and in general the basis functions

G, and G, are on centers B or C. See Fig. 1.

K \?
%% | |
A i, 7
<~
x .
A
Since the potential, in particular the [{m ><Q‘m§ operators, are
fixed on center A, it is convenient to first work out the <.Q,m l G >

projections of the basis functions onto center A. For this purpose it is
convenient to rotate the coordinate system on A so that its new z-axis is

pointing at the center of the basis function, as in Fig. 2.

In these new coordinates, one has that
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) ? — — '
Ny = Iy + T My o3 @
and consequently the expansion of a spherical Gaussian on B onto A is
=2 2 T
SBK _tn, 25BAMEm®
¢

¢BA” -3k & oA (t28)
e:-} ¢ E;D (Q,Q‘H) MX (Qg BAhA)a“wef

where M ) is the Modified Spherical Bessel function of the first kind

defined as follows
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= = [ ek (et (e e

The angular functions on center B are readily translated onto center A by

'TLB.: = )LM - (Bi“ Ai) = iLA\, — BA; A= L%y y g

where the rotation matrix [J is given by
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Using these results, one can work out the [Qqﬂ) projections of a

Gaussian on center B onto center A. We first define

- “2/_ 2 —
(i) GMJL: QQBA Qm“ ML(UBAM)

(i) Zg (2)  is a real Spherical Harmonic function.
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In terms of these, we have:
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In turn one can take these projections and assemble the necessary radial -
integrals. These radial integrals, which contain the radial local poten-
tials, can be directly evaluated numerically. Alternatively, the radial
local potential can be expanded in Gaussians, and then each radial inte-
gral becomes a sum of radial integrals. This is the approach pursued
by Mr. Carl Melius in collaboration with the author, and it has proven
to be the most successful approach. We illustrate this approach for the
most difficult three-center integral and postpone at this time a complete
review of all the formulae. First, we define a basic radial integral
o

-§ “\:'L N h T ¢
5 s Mh(zgcc;\n) MAQE(ZLSEBAIL) dh.

0

J

¢ BR _¢ T
ety O Y
Ve

where {y = 4 +3, ; we will not include in our notation any powers
of r, which arises from the expahsion of U(r)r2 in terms of spherical
Gaussians, i.e., from terms in
TOL N Wil e
v
then, upon ’multiplying the appropriate projections and summing over
all m components of { we obtain the results illustrated in the next

example.
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In turn, these formulae can be further simplified some by use of

the recursion relation

Ml = M_ (0 = (2 +1) _P%Q

for example, we find that‘
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II. THE STERNHEIMER CORRECTION, PERTURBATION THEORY, AND
APPROXIMATE WAVEFUNCTIONS.



I. INTRODUCTION

The electric hyperfine interaction energy is due to the
interaction of the electrons of an atom or molecule with the non-
spherical charge distribution of the nucleus. For a nucleus with a
quadrupole moment (Q) the correspdnding interaction energy is pro- .
portional to the product of Q times the electric field gradient (q)
at the nucleus due to the electrons. Since only the product qQ
can be measured (nuclear quadrupol.e coupling constant), the nuclear
quadrupole moment Q can be determined from such experimeﬂts
only if an accurate theoretical value of q can be calculated. A
common procedure is to carry out a Hartree-Fock (HF) calculation
for the wavefunction of the atohi or molecule, and to use this to
determine the electric fieid gradient, q°. For a typical atom the
HF wavefunction has a core of closed-shell doubly occupied orbitals
which do not contribute to q° and an open shell of non-s functions
‘which determine q°. For example, in the 2 *P state of Li the
doubly-occupied 1s orbital forms the core and the 2p orbital forms
the open shell and determines ¢°. Sternheimerl’ % ‘3 pointed out
that the quadrupole field due to the open shell could induce quadru-
pole character into the closed shell which would in turn lead to an

additional electric field gradient at the nucleus, ql. In this case

the total quadrupole interaction is given by

\

Qle® + q').

He also pointed out that since the s-core electrons are quite close

to the nucleus, q' might be comparable to q° and neglecting it might
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lead to erroneous values of Q. In a series .of papers Sternheimer
has calculated approximate values of q' for a number of atoms
using a number of different approkimations. In this paper we
report an exact HF calculation of :q‘ ‘f,or‘the 2 2p state of Li and

- compare the results to"the values obtained using various previous
approximations. In addition, we discuss the relation of the
Sternheimer correction to general perturbation expansions and to

spatial symmetry and orbital restrictions.

II. FIRST-ORDER PROPERTIES FOR APPROXIMATE
WAVE FUNCTIONS'

A. Exact( Zero-Order Wavefunctions

Suppose we have the exact eigenfunction ¥° for some zero-

order Hamiltonian, H,
HO\IIO = EO\IIO , (1)

and that H' is some perturbation operator (for example due to the
quadrupole moment of the nucleus) then expanding the total energy

E of the system, and taking ¥ to be normalized
E = (¢|H® + H'|W),
we obtain the usual expressioh for the zero-order energy,

E° = (¥ |H°|¥°), - (2)

but for the first-order energy we obtain



.
E' = (¥ |H'[%°) + 2R (¥|H® - E°|¥°), (3)
etc. H‘owever, since ¥° is an éxact eigenfunction of H®, |
AE' = 2R (¥ |H° - E°|®0) @)
is zero and we obtain
E' = (¢ |H'|¥°). o (5)

Unfortunately, we usually do not have exact eigenfunctions
of H° and so the question arises as to whether (3) or (5) should
be used in the evaluation of E' for an_approximate ¥°. The use of
(5) involves the contradictory assumption of that ¥° is exact when
it is not, but (5) is n‘evertheless more commonly used because,
although presumably less accuré.te, it is simpler in that it does
not require the solution of a firstéoider equaﬁon to obtain ¥'. We
show below that if H' is the nuclear quadrupole perturbation and if
¥° is the Hartree-Fock wavefunction, then AE]l is just the
Sternheimer correction to the quadrupdle splitting. First, however,
we must consider more carefully the‘ case in which ¥° is only an

approximate wavefunction.

B. Approximate Zero-Order Wavefunctions

Wé Will denote the approximate zero-order wavefunction as
3. Although ¢°° is not an eigenfunction of H°, we can define an
approximate Hamiltonian, H®, of which y*° is an eigenfunction.

Thus, we can consider the difference between H® and H®,



H” = H® - H" | (6)

as a correlation perturbation which is present along with the

original perturbation H', which we will also denote as
H® = H. )

Thus, starting with §* as the zero-order wavefunction and H® as
the zero-order Hamiltonian we must apply both perturbations H®!
and H" ‘to obtain the exact wavefunctions and energies. This
approach is known as Doubie‘ P‘erfurbation theory .4

In order to obtain the exact first-order energy due to Hl°
~ we must include the perturbation due to correlatlon (H° Jl) to all

orders. Hence, the E! of (3) is given by
E! = E(,0) .+,E(1,D + E,u,z) 4 eoes (8)

where E(l’ Dy is the correction energy to 11th—order in H1° and jith-

order in H (correlatmn), for example
B0 - ;<*Jz/>°°'IH°°|z/»°°> = ey ©)

E(L,0 = (zp°° iH‘°|¢°°) (¥° [H |e°)

BGD = R(¥® [P - B [3) + Ry [B - B |*)

Thus, to evaluate the qué.drupole coupling energy, we would have to
sum (8) to all orders.
Neglecting all terms in (8) which are higher than first-order

in the correlation correction, H° , we obtain
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Vo <¢OOIH1°I¢QO> + Re<¢oolHlo - E1°|¢°1> + Re'<¢oo lHM _ Emlll)m)- (10)

" In (10) it appears that the first-order wavefunction z/)m due to the
external perturbation contributes to E*. However, it is well known
that the second two terms of (10) are related (Dalgarno s inter-

change theorem )
R (¥ [H - E¥[4%°) = R (3"'|H" - E” [y*™) (11)

so that (10) can be rewritten in two equivalent forms,

,El

WO [H[4®) + RV ED-E )Y (12)

or as

]

E' = @™ |u*° Iz/»°°> + 2R (9% |B* - E |¢%°). (13)

Thus the correction term to (5) for the case of an approximate

wavefunction has the two equivalent forms

AE' = 2R_(§* [H" - E* [ 4

AE' = 2R(¥™ [H™ - B[4 = 2R |H - B [y, 5

From the appearance of H", E°1, and z])°1, one might argue
that these terms represent a correlation effect but using the usual

definition of Ha1 tree- Fock energy,
= (0 e B B PO 4 0 4,

these terms are already included so that they are not properly a

correlation effect.
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Next, we shall consider a specific commonly used approxi-
- mate wavefunction, the Hartree-Fock wavefunction.
C. The Hartree-Fock Wavefunctions
We consider the unrestricted Hartree-Fock wavefunction
bupp = 22 (16)

where & is the antisymmetrize’r,e‘and ® is a product of spin orbi-

tals
& = 2 (1¢% (@) -+ 2 gh, (m+1)se 4B 0. an

Here the superscript a indicates that ¢ is a product of a spatial
orbital ¢, and a spin function o (sz = +4), and analogously for ¢iB .
In the unrestricted Hartree-Fock method (UHF) we consider the

total energy expression

E = ('<I>UHF|H|CUI> (18)

o

and require that the energy be stationary with re_spéct to variations
of the orbitals. The resulting variational equations are usually

written as |
Hof = €xafra k=1, e0n (19a)
Hepfb = €x0®ib k=1.0m (19b)

where Hy . is a one-electron operator containing .Coulomb and
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exchange operators due to the various orbitals. Alternatively,
directly from (18) we see that the variational conditions equivalent

to (19) are that

1
o

(o5, |H - E| &), = (20a)

!
o

(o5, |H - E| B = (20b)

where ‘I’llia denotes that spin orbital ¢l¢<xa has been deleted from the
product ¢, and the indicated integration is then being perfornied
over fche remaining (N - 1) electron coordinates.7 These conditions
are also called Brillouin's th‘eorem.8

Next, conside;* an externél' perturbation H!, and suppose that
we have solved (20) using H° (and E°) to obtain the optimum orbi-
tal {¢%}. We next want the new optimum orbitals {¢,} obtained
from (20) using H = H® + H' where H' = 2J hl(i)v, a one-electron
perturbation. One way to solve for the new orbitals through first

order is by using perturbation theory. Substituting

¢ = Pp + Ppo (21)

H=H+H, and E = E° + E into (20) [or (19)], and equating
terms of equal order of magnitude yields the equations defining the
first-order changes gbl'{. In this case the first-order change in the

total wavefunction is .

FEIED ) SRS (22)
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'
where §11:° denotes that ¢1°{ is replaced by qbll{, and the sum is over

all N spin-orbitals.
Now, let us consider AE' from (15) for the UHF wavefunc-

tion.

: 1
AE" = 2Re(@ o1~ E°[¥7, ) = 2Re kZ_)l @ - E'Aep  (29)

but from the Brillouin condition (20), each term of (23) is zero

regardless of the form of ¢11{, and hence for a UHF wavefunction
AE' = 0

for all possible one-electron pertﬁrbations.

However if the UHF method is applied to the ?P state of Li,
it is found that the up-spin orbitals are not related to the down-
spin orbitals, and that the orbitals are not pure symmetry functions.
Consequently the resulting many electron wavefunction (16) is
neither an eigenstate of s nor an eigenstate of f.z, i.e., it is not

a pure P state. If one restricts the down-spin orbitals to be

equal to the up-spin orbitals [double occupation (DO) restriction ],
¢kb = ¢ka k = 1: °er,n (24)

and restricts the orbitals to be symmetry functions (e.g., pure s
or p symmetry) (L2 restriction), the resulting wavefunction is
denoted as restricted Hartree-Fock (RHF) or éften merely as HF.
Because of the double occupation restriction, new terms often
appear on the right side of (20) [or (19)] involving off-diagonal

Lagrange multipliers (used to force orthogonality between the
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orbitals; this type of new term does not appear for this state). In
addition, because of the spatial symmetry restrictions, equation
(21), which is valid in the unrestricted space of ¢k’ must be re-

placed by the corresponding equation for the spatially restricted P

P (@y|H - E[2) = 0

where f’k projects away all undesired spatial symmetries. In
summary, either because the double occupation restrictions or the

- spatial symmetry restrictions equation (20) is no longer satisfied,
and correspondingly the terms in (23) no ionger need be zero. The

net result is that for a restricted HF wavefunction
AR 20

in general.

D. The Li °P State

The restricted Hartree-Fock wavefunction for Li P is
Ypur, = Ab150¢1Ptap, @) m = 1,0,-1 (25)

which is an eigenfunction of §2, §z’

-

~2 .
I°, and ‘f"z if ¢,  and ¢2pm

have the forzh
¢ls = RISY°’° (26a)
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where R. (r) is a function of the radial coordinate and Y.Q m

usual spherical harmonics. The resulting RHF equations9 for these

are the

orbitals are

-1
Hls¢ls = [h + J]_s + :f Z) (szm' 2K2p )]¢IS = €1s¢ls (273)

Hapap, = [B+ 25 - Kyglog, - Copbap  W=1,0,-1. (2T)

The potential in each equation is spherically symmetric so that the
solutibns will be spatial-symmetry functions as assumed in (26).

If we had assumed double occupancy, i.e. (24), but had not
restr1cted the orbitals to be symmetry functions, the resulting

var1at1on‘a1 _equ'atmns for Li °P would become

. = - 1y -'.‘ |
HFls¢1s =[h+ Jls fJme aKme ]¢ls = €15%1s (282)

Now the field terms in (28a) are not spherically symmetric, but
have only D ol symmetry, and the main result is that ¢15 Mmixes

in d character. Furthermore, since now ¢ls is no longer spheri-
cally symmetric, the field term in (28b) is also aspherical resulting
in qbzpm mixing in f character. If equatmns (28) are solved for
self—cons1stently, the resulting wavefunctlon will be referred to as
UHF(L) to indicate that the orbital restrictions of RHF have been
removed, but that the double-occupation restriction is retained.

For systéms such as Li these equations again lead to (20), and
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again we obtain
AE' = 0

for a UHF(L) Wavefunction. |
Next we will consider further the form of_ AE! for the case
of an RHF wavefunction. Starting with (27) we make the perturba-

tion expansions
ok = Sk + bk
h=h +h

€

0 [
€k+€k

to obtain the zero-order and first-order RHF equations. Thé zZero-
order equations are just (27) with a superscript 0 on all terms,

and the first-order equationsm are

’ ‘ 0 0 0 1
M -€eS)pi =1[n° + 3% +222 (3. -4k )-€l.]
1s “ls Pis [ 1s * 3 m me 2 2pm 15 1%1s
= Tet -h-F 1Y (5 - ) 140
= ey - B -3 - 5 20 (3 - 3Ky, )16

. .
= (ells " His)‘pls (292)

(29b)
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where we have taken the many-electron perturbation to be of the

form
= Z hl(i)ry
i

a’ sum of one—electron~pertﬁrbations

Since szm and sz involve ¢2p , and since Jls and Kls
involve ¢ls’ we see that equatlons (29) are coupled. For this
reason they are somet1mes referred to as the coupled perturbed
HF equatibns. We will just refer to them as the HF vperturbation
eq\iations or PHF.

Note that in (29) we have taken
B = [ dx()032@65,@ = (6l 63
and

TV = [e(I1631@01,0) + 615093, @)]

i

= 2R¢(¢},| ;11—2 |¢3s) (30)

and similarly for the other J and K terms.
Next we consider the first-order change in the RHF wave-~

function due to H,

‘I’l = 0 o 1 0 1 )
REF, - Q915241805 @) + R(91261695, o)
* Qp15a45pe5, )

and evaluate
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=1 1 o 01,0 .
AE, = 2Re(\IrRHFm|H - E “I’RHFm>'

We have (taking (¢;{|¢f{) = 0 for convenience)

0o 0 1 1] 0 0, _ 0 0 1 ] _
Re(¢lsa¢lsﬁ¢2pma|H -E |G ) - (€3 - E )Re(¢2pm|¢2pm) ,—,0

0 1 0 ) 0
Re<¢1sa¢lsﬁ¢§pma |H'- E°|@8°) = R (1 (0° + 3 + J‘gpm |61

1 0 0 1 0 0 0
Re($152¢1sP03p AW~ |48 = Re(py5[0° + i + Ty - Ky 10)

where spin has been summed over in the one-electron expressions.
Adding these terms and using the equations (29) (for the zero-order

functions) we obtain that for the RHF wavefunction

iE 1.0 15 0® - K3 0 # 0.
&E;, = ZRe{@:lls‘z‘]gpn; K;pmkb;s) - §(¢1s‘% (2J2p“ 2pu)‘¢1s)}
(31)

which is not zero (note however that EKE‘;I = 0).
: m

Consider a perturbation H to be nonspherically-symmetric
so that qblls has no s cdmponent and hence the second term of (30)

vanishes. The remaining term is
1 - 1 0 0 0
AE, = 2Re(¢ISlZJ2pm - szmlqbls). .(32)
We can also write this as

RE, = (9o, 12715 - Kgleg, ) (33)
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Comparing back to (12) and (13) we see that the expressions (31)
and (32) for KE“m are in the form of (13). However, we can use

(27b) to convert (33) to resemble the form of (5). Adding (33) to
0 1 0
($3p_[01¢5, ),
we obtain-

E = (¢;pm|h1+ 233 - K;s|¢;pm) = (qb;pmlH;plqb%pm). (34)

Thus, insofar as E is concerned, we can consider our system as
a one-electron system (qb‘épm) and the perturbation as HIZp [i.e.,
E' has the form of (5)]. The induced non-spherical field due to
the core electrons is now considered part of the external pertur-
- bation.
As will be d1scussed in more detail in section III, the

correctlon term (33) is referred to as the Sternheimer correction.
We see below that such correctipns correspond to the effect on E'

due to relaxing the symmetry to first order.

OI. NUCLEAR QUADRUPOLE COUPLING AND THE

STERNHEIMER CORRECTION

The interaction between a nuclear quadrupole and the elec-
tronic charge distribution is referred to as the quadrupole
coupling.n’ 12 The nuclear quadrupole moment can be described
either (1) as a Cartesian tensor Qij whose components are the

integrals over the nuclear charge density of 31'irj - éijrz where
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ry=X%x Y, 2 depending'on i, or (2) as a spherical tensor Qm whose

components are the integrals over the nuclear charge density of

2rZCl‘;’ where the functions Cg{) are defined in terms of spherical

harmonics Ykm by Cgl{) = \[ 47/(2k + 1) Ykm'

The interaction oper.étor is, for an n electron system,
b>
Hn = h, (1)
Q9
where
_ 1 _ 1 *
hQ(ﬂ) = 6‘21] Qijqij(”') = Izm qum(”)

and the %5 are the Cartesian, and [P the spherical, electric field

gradient tensor operators:

qll(}l) = _e(srl-'-irllj - ﬁiJrfL)/riJ.

- - (2)
A () = -2eCf2 (Gu,cp“)/r;.

Within a manifold of atomic states described by the quantum
numbers I, L, S, which have their usual significance, HQ can bel
reduced to an angular momentum operator equivalent form. By
the Wigner-Eckart theorem the nuclear quadrupole moment tensors

are proportional to the analogous angular momentum tensors:
Q. = QI3@1 + 11) - 5,.1%]
1) 2717 J1 13- -

where the angular momentum operators here and throughout this

paper are defined without the factor of h.
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The proportionality constant Q’ is usually expressed in
terms of eQ, thé diagonal matrix element of sz in the MI =1

state:
eQ = QIQI-1).

For the exact non-relativistic electronic wavefunctions, the first-
6rder energies‘ are determined from matrix elements of HQ S0
that the field gradient operator can be replaced by an orbital
angular momentum operator in an analogous way using the constant

~q'. Then the Hamiltonian is

HQ = q'Q’ [(3/2)(IeL)2 +(3/4)(I-L) - 111+ L)L(L+1)] (35a)

When the total electronic angular momentum quantuffn number J 'is a

good quantum number, the Hamiltonian can be further reduced to
Hg = ojQ [3/2)0+3)" + (3/4)1+3) - $1I+1IT +1) (35b)

where

g SKE-1) - ALLDIE+Y)
J 23(F + 1)(2J - 1)(27 + 3)

and

X =JJ+1) + L(L+1) - S(S+1).
The constant q& is related to the more usual constant oAy by

qJ = Q:]J(ZJ - 1).
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‘For an approximate eiectronic wavefunction, the additional
terms in the first-order part of the matrix elements of the total

Hamiltonian are

AEqrm = (Yoo (B[R0 + () B[ )

Where the subscripts refer to possibly different members of the set
of functions degenerate with respect to H°, and the wavefunctions
have both nuclear spin and electronic dependence. These extra
terms are usually referred‘ to as the Sternheimer correction.

When these terms are included, the quadrupole coupling Hamilto-
nians still have the form (35), but the constants q’ and dy will now
contain additional terms dependent, 6n the first-order wavefunctions.
- By analogy with (31), we see that, for the ’p state of Li, the
correction terms to the Mi‘ (= m’), M; (= m) matrix element’

become
AEQm'm = 2o | e’ Ppm)] + 2 losgers|oqy’ wz%@]
- [cpa‘;,m' 9% e fswe%m] - [Cpg%m' 5] ‘Pl%‘?aoprﬂ
B % S'm Re (o] Ty ( EJz%m” '.Ka%m” LAY (36)

Considering the equations for the perturbéd Hartree-Fock
orbitals when the pérturbation is hQ, it is clear from (29a) that
gois will have only d(£ = 2) angular dependence. Thus the last term
in (36) is zero by symmetry, and the remaining terms can be re-

}written as
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_ 0 1 1 0
AEqm = (Papm’ |25, - Kls|¢2pm) (37)

where Jis is given by (30) and Kis is defined similarly. Thus we

obtain for the total first-order matrix elements,
_ 0 1 1 0 ;
Eqm'm = (Papm’ [Pq *+ 21g - Kis|92pm) (38)

which are the same as the matrix elements of the first-order

Hartree- Fock Hamiltonian. This expression (38) is the.sa.me as if

S
hQ. Since these additional terms are just the potential due to the

the nuclear quadrupole potential were hQ + ZJ;S - Kl1 rather than

quadrupole character induced in the core electrons by the nuclear
quadrupole moment, the Sternheimer correction is often interpreted
as the interaction between the (distributed) induced quadrupole
moment of the core and the distributed electric field gradiént due
to the outer electrons. This interpretation seems so physical that
it may not be obvious that the correction term disappear513 as one
improves the wavefunction to the exact (or even the UHF) function.
Thus the Sternheimer correction is not a physical effect, but a
correction of limited extent which is necessitated only by approxi-
mations in the zero-order wavefunction.

Ne.xt'we'consider the Sternheimer correction for the Li °P
using the first-order quadrupole-perturbed Hartree-Fock wavefunc-
tion and compare the calculated "total" field gradient obtained with

values obtained from CI and other calculations.
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IV. STERNHEIMER CORRECTIONS FOR Li 2 P

A, First-Order Hartree-Fock Eguations

We choose our approximate unperturbed wavefunction to be
the_spatiai-symmetry—restricted Hartree-Fock wavefunction (that is,
the orbitals are restricted so that the wavefunction is an eigen-
function of L’ and Sz). The spatial symmetry restriction for the

zero-order. orbitals is expressed by
¢ngm = Rng¥om: (39)
Similarly, defining hg as the angular part of h,

g = Ty
the symmetry restriction for the first-order orbitals can be ex-

pressed by

go;lm = Ell :lﬁllzzjllYllml (Yﬂlmflhle£m>- (40)
In writing the perturbed Hartree-Fock equations, we denote
the zero- and first-order Hartree-Fock Hamiltonians for the nf set
of orbitals by %ﬂ and f;!l' In taking account of the degeneracy of
. . ’ 1
the zero-order orbitals, we need the matrix (go;ﬂm: lfnl“p;!lm)’

. . R A :
which can also be written as qnﬁ(Yme ]hQ {Yg_m) by separating the
radial integrals into the quantity qgl. The equations for the first-
order orbitals are essentially (29a) and (29b), but generalized to

take account of the zero-order degeneracy:
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0 o .1 0 0 0 1 o
(0 ~€n0)%nem * 00 %nim 'Zm' Pnom’ Potn’ lfn,e_l‘/’;_qm) =0 (41)

Off-diagonal Lagrange mliltipliers were not included in (41) since
they are not necessary for the present examplé.

The operators f:ll and f:m contain averaged potentials de-
fined by

.
I = m'IEmJnlm

for &oulomb potentials, and similarly for exchange potentials. The

zero- and first-order averaged Coulomb potentials are

0 0 -.1-. 0 ‘
I = (R, ITS IR, (42)
1 _ o A o0 +1 ,0°20.2,.0 (¥ 1
T = 26 2y =5~ (o) <an|;';“3nu') (43)
> .

where here and in the following, Wigner 3 - j and 6 - j symbols are
used. Matrix elements of the zero- and first-order exc’hange

operators are
0 1
(Yl'in” iKn,Q l (pnlllml >

A 0 2"k 2.2, 0 rg( 1
= (Yo [0 | Yy RG24 (5 90 <Rnfz‘;‘>i‘:ﬂRn'n'z"> (44)
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1
(Y g [x nd | ‘P;'!L',m' )

L4t (5a8)
= II ” 1 + ” " 1 O
| (o00)
: | k
.Q” 2 ll lllk l”’ .Q I
okt o00200 nu"<R l et Rae) +
k
lll 9 .Q' 2_” k ¢ _Q"' k .Q' o 1 by < 0
{om x 03 0000 0 0B (Ryge”] Y Ry @49

For the Li °P problem there are three radial functions to be
found: R;Sd, Rgpp’ and Rf?.pf‘ The set of three coupled equations
determining them can be found from (41) by the appropriate sub-
stitution of (39), (40), and by the use of (42) through (45) as well
as the properties of spherical harmonics. The resulting equations
are, in atbmic 'units,

(-2l &

1
2T ar? r +;— - 2 + (RlS, "’lRls) + <R2P| ""lep) - E‘:Ls)RlSd

- (Tl§ (Rgpl;—g[Rlsd) + ’7‘5 (REP'FT!Rlsd”ReP -
+ ( ( 13‘ ‘Rlsd> + 35 25 (R-’-’P‘ lRZ’PP) Y25 5 (RZPII‘ 3|R2Pf>)Rls

- ‘]‘%‘ (Rgpl |R15>Rspp - 1‘5 (Rzpl !R15>R2pf

1 <' (o} (o]
- (15 (Rappl lRls) + o= {0 °p£!’f;?[Rls))Rzp = 0 (46)
2 : S E 1 . !‘<.
( "lf % —q—-—-. r <+ —1-5 - }. +v 2<R?Sl—--—ch1’s) - egp)Ral‘p'p - '3' (Rc],_s"!:;‘é" Répp)Rls
r T
+ (3’.)?&‘ +g‘ (Rw |R1°d> - Qap)Rap ) (Rlsl glﬂgp)Risd

- 31‘ (qudl‘l“;’:l R81\>Rgs' = O (47)
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a N
(-3 % %TZ r+ '1'-6'5." rt 2(R18"""R38> - €3p)R3pr - H (Rlsl lkzpf)R
' 1
+ (-;13- ;-5 Rlsl lRlsd))Rap -5 L (xe | >2l32p>Rlsd -3 <Risd[;->T|Rap)Rls |
=0 - (48)
where

qu = (Rap!TlREP) + -— (Rgp(Rgs lRlsd)Rgp) -3 (Rzp(Rgsl lRap)Rlsd> (49)

The three equations (46) to (48) are coupled integro-differen-
tial equations, for which there are two well established solution
techniques: (1) finite basis set expansion; and (2) numerical finite
difference approximations. In the basis expansion approach, the
expansion coefficients and orbital exponents aré chosen to minimize
the second-order energy. Because of the 1/r3' behavior of the per-
turbation operator, the function R;sd’ for example, behaves as 1/r
for small r, so that the_basis set must contain 1/r like functions if
an accurate solution is to be obtained. Such functions lead to
divergent terms in the second-order energy, but this difficulty can
be surmounted, as has been shown in an analogous problem. None-
theless we decided to carry out a direct numerical solution of the

equations, and the procedures used will be described next.

- B. N\imerical Solutions of the First-Order Eguations

By using central first and second differences to approximate
the first and second derivatives, the integro-differential equations are
reduced to three coupled sets of simultaneous linear equations.

These matrix equations were solved by iteration until full self-
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consistency was attained. Since the pefturbatibn operator is very
large for small r, we used a square-root grid (i.e., the coordi-

" nates were transformed from r to X = vT ). The integrals of the
k,. k+l |
< /s

functions were evaluated by integrating successively, over the

necessary combinations of an r function and two radial

square-root grid, two first-order differential ‘equations in a manner

14. The difference equations

analogous to that described by Froese.
were iterated until the résults of _t-Wo sucéessive cycles differed by
at most 107 at all points considered. |

The behavior of the first-order radial functions for r near
zero ‘can be derived by making power series éxpansions just as is
done in dériving cusp t:onditions for the zero-order radial functions.

For a nuclear charge Z,
N . o‘:
Rllsd = "%[R]_s;]r:o (1/r = 3Z + O(r) +eev)

Rlzpp= -[Rgp/r ]réo(l -3ZrInr + O(r) + (1/6)Z°r2lnr + o(rg) + oos)

1

Ryog = ~(L/O)[R /] o1 - (2/5)2r + 04 +oe- ]

In solving for Rllsd and Rlzpf it was convenient to make the
usual substitulion 911111’ = arM" which, as well as removing the
first derivatives in the kinetic energy, led to simple boundary con-

ditions at r = 0
0154(0) = -$R1O)

1
Ohor0) = 0.
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The corresponding substitution for R;vap was not used because the
resulting function has a second derivative which varies as Inr for
small r and hence cannot be described by a second difference

approximation. The substitution v = r’-’Rgpp was made instead;

p
the second derivative of vp varies as r In r for small r, which we
found to be sufficiently smoothed for the second difference approxi-

mation to be successful. The r = 0 boundary condition is
©) = o.
vp( )
A possible alternate substitution is

but we did not find it necessary to investigate it.

 The second boundary condition on all of the solutions is, of
course, that they go to zero for large r, and the only orthogonality
condition is that R;.pp be kept orthogonal to R‘ép. The equations
were solved for 600, 800, and 1000 points, out to 25 a.u. in each
case, and the resulting Sternheimer corrections for the different
mesh sizes differed only in the eighth decimal placé. The program
was tested by solving the corresponding hydrogeﬁic perturbed equa-

15 and the solutions obtained agreed with fhe exact solutions

tions,
within 107", The calculations were carried out in double precision
on an IBM 360/75 computer.

In addition to solving the coupled perturbed Hartree-Fock
(PHF) equations (37}) and (38), we solved the uncoupled approxima-

tion (UPHF) to PHF, obtained by removing the term
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1 1 - ig?
3 Z>m (Jme 3K2pm)

from equation (37). Doing this also makes it unnecessary to solve
equation (38). The next approximation, denoted UPHF-1, was to
neglect J ; s from the previous (UPHF) appfoximation to equation
(37). The final simplification and approximation of equation (37)

was to replace the average electron repulsion potential
o L, 13 ° 1
Iig * ?Em (J2pm aK2pm)’

which contains a nonlécalf term, K‘é

pm? by the local potential

e‘is + Z/r + %(l/go;s) v? (p;s'

This approximation has been used by Sternheimer and we denote
it by UPHF-S.

Specifically, in his latest calculation on Li 2 %p,
Sfer‘nhe_imer1 chose to a.pprd:dmate ‘P‘i‘s by a single 1s Slater func-
tion which_ had an orbital exponent, {, of 2.69. The corresponding
local potential is then just (Z - £)/r and ‘P'lls can be obtained
'analytically. The replacement of the nonlocal poténtial by a local
potential in this instance seems questionable sinée ga’ls has d
angular dependence, and thus "sees" different terms than would
tp‘is, which has s angula.i'v dependence. This is merely restating
the _fact thét local potentials are angular-momentum dependent. We
found that the SCF process did not converge when we used the

local potential in the UPHF approximation to equation (37).
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C. Resulls

The contribution of a particular open shell orbital to the
overall field gradient parameter q’ can be expressed in terms of a
q,, Parameter defined by

! (o5 |(3/2(u £ 04 - 6,022, )= qF(¢° l9%,. )
% P’ Yty + 2509 - 8358 {0f ) = a (@70t |70y 0h, )-
The ratio of q;, to qS.Q can be evaluated most easily for the m' =

m=20 i=j=2 case,
.. qfl[-ze(u "t "(2) BP0+ = f2/1@e - 1@ +9) oo,
For our particular example, in at»om‘icv: units, |
@ = 1y, = @R |A/)]|RY)
+ (4/5K Ry, [(RY e /2. 0) [Rygq I RG )
- 3 <R;‘p<n‘is I<r</f:> |R3p) Risa) ]

Sternheimer defines parameters RD and R to express the
ratios of the two-electron integral termé in q’ to the one-electron
integral term. Thus RD is the ratio of the second (direct or
coulomb) term to the' first and RE is the ratio of the third

(exchange) term to the first. R is the sum of RD and Rp.

q' = (2/5)(1 + R) (Ry, | (1/r3|Ry))

In Table I we compare the values of these Sternheimer correction



102
‘factors‘: as calculated in the different approximations. Values of
the field gradient parameter q’, with and without the Sternheimer
terms, are given correspondingly in Table II.

‘We note that the accurately solved coupled first~order PHF
equations lead to a total field gradient of -0.02062 a.u., which
corresponds to a change of 11.85% in the zero-order RHF field
gradient of -0.02339 a.u. Moreover, we note that this value is
insensitive to the coupled nature of the equations since neglect of
the coupling, UPHF, le’ads to no change in the total field gradient.
Further neglect or approximation of terms,A as in UPHF-1 and UP-
HF-2, still leads to essentially the same change in the RHF field
gradient, 12.23%, as do the PHF-corrected field gradients.

These results are unfortuna;tely not directly comparable to
the calculations by Sternhéimerl_ because his zero-order field
gradient, -0.02597 a.u., is derived from a 2p-orbital adjusted to
empirical data rather than determined from a variationally adjusted
wavefunction. Nonetheless, using a single scaled ls-orbital for the
Li core orbital, and a procedure equivalent to UPHF-2,
Sternheimer finds a total field gradient of -0.02297 a,u. This
value is 11.56% of his initial field gradient, and it differs from the
RHF value by 0.0004 a.u. This final value is however dependent
on the particular choice of the zero-order wavefunction, and the
authors believe that a consistent formulation of the correction
term should be based on the RHF wavefunction and not the empirical

one,



TABLE I.

Compa.fison of the Calculated Sternheimer.Correc'tions

Ry, Ry R

PHF? -0.18497 +0. 06645 -0.11852
UPHF?® -0.18495 +0. 06636 -0.11859
UPHF-1% -0.19139 " +0, 06905 -0.12234
UPHF-§? -0.19142 +0. 06907 -0,12235
Sternheimer® -0.1819 +0.0663 -0.1156
stonecCT O 5 2630 40,1069 - -0.1561
unr . | -0.11629
Codstonee -0.17

cf 40,0187
Bethe-Goldstone® ~0.0255

—
—

Apresent work.

bsee Ref 1.

CFirst order contribution as obtained by Brueckner-Goldstone Theory.
See reference 20. '

dUnrestric‘ted Hartree~Fock result allowing d basis functions to mix
in the 1s? Li core. See Table IV,

®Includes higher-than-first order contributions. Séé reference 20,

fSee reference 18 and 19.

€see reference 21,
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TABLE II. Comparison of Total Field Gradients® P

W

2 Atomic units are used; 1 unit of field gradient = 3.241394 x 10>

e.s.u./cm®. See reference 22.

b

€ Calculated using a slight
Table III.

Zero-Order - Total
HF -0, 02339° -0, 02339
PHF -0.02339 -0. 02062
UPHF -0. 02339 -0. 02062
UPHF-1 ~0. 02339 -0.02053
UPHF-S. -0. 02339 -0. 02053
Sternheimer -0. 02597 © -0.02297
Brueckner-Goldstone -0, 0234 © -0.01974
UHF | -0. 02067 -0.02067
Brueckner-Goldstone -0.0234 ~0.01941
CI - -0.02339 -0.02383
Bethe~Goldstone -0.02342 ~0.02282

All relevant references are the same as in Table 1.

ly improved 9 basis function Li 2°P wave-
function originally due to A. W. Weiss, See reference 18 and
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Upon removing the spatial symmetry restrictions on the RHF
wavefunction and optimizihg the energy, we find that 3d-character
mixed into the ls-orbital. This is now allowed because the )
variational field due to the 2p-orbital is aspherical. Although the
total energy change,. 0,00001 a. u.:,” was minimal, the corresponding
new field gradient, -0. 02067 a.u., corresponds to a change of
<11.63% from the RHF value,'16 and it agrees well with the PHF-
corrected field gradient of -0.02062 a.u. This close agreement is
also consistent with our previous discussion of the origin of the
Sternheimer cprrection in the spatial symmetry festrictions on
approximate wavefunctions, i.e., upon removal of these restrictions,
the correction is automatically included in the zero-order expecta-
tion value of the ‘property.” ‘ |

Although we found the UHF field gradient to be insensitive
to equivalence restrictions of the core-orbitals (-0.02064 a.u.) or
to spin projection of the UHF wavefunction (-0. 02062 a.u.), we did
find the UHF field gradient to be sensitive to the nature of the d-
basis functions. For example, a preliminary calculation .with three
d-functions (8.7, 3.398, 2.544) resulted in a field gradient of
-0.02234 a.u. which is a change of only 4.08% in the RHF value.

Using a 45 term Configuration Interaction (CI) wavefunctioﬁ
by Weiss, 1 Ardill and Stewart'® found a field gradient of -0. 02383
a.u., or 0.019% of the RHF value. This differs from the PHF-
corrected field gradient, and the origin of the discrepancy lies in
that this CI wavefunction kept the core description to a IS, there-

fore not allowing for the polarization effect needed to include the
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TABLE IIl. The Zero-Order Wave Function Li 22p® P

nf £ $1s ¢2p
1s 3.0 ~0.89125 ——-

3 8.7 -0.00104 -

.3s 3.398 0.10448 ——-

3s 2. 544 0. 05427 cm-

2p, 1.5 == 0.13268
4p, 2.12 - 0.04423
4p, - 1,275 - ©0.32469
ip, 0.785 --- 0. 50652
4p, | 0.566 —— 0.16117
Orbital Engenvalue -2.?-53073 -0. 12867
Total Energy ~7,365069

T S r—— room——
o ———— et

@Atomic units are used, i.e., one unit of energy = 1 hartree =
27.211652 eV, See reference 22.

bThis wave function is similar to that of A. W. Weiss, see reference

18, except that the s basis functions have been reoptimized for the
2%P state. |
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Table IV. The UHF Wavefunction for Li 22pd

n{ ] ®1a %1p t
1s 3.0  0.890 678  0.891 819 0.0

3s 8.7  -0.000 967  -0.001 110 0.0

3s 3.398  0.103 267 0.105 652 0.0

3s 2,544 0.056 612 0.051 971 0.0

3d 8.7 0,000 028  -0.000 003 0.0

3d 7.0  -0.000 229 0.000 026 0.0

3d 6.3  0.000 289  =-0.000 035 0.0

3d 4.6 -0.000 155 0.000 009 0.0

3d 3.398  0.000 300 0.000 361 0.0

3d 2.544 -0.000 984  -0.001 406 0.0

3d 1.5 0.001 401  -0.000 006 0.0

3d 0.8  0.000 506 0,000 001 0.0

3d 0.4 -0.000 009  -0.000 0001 0.0

2p 1.5 0.0 0.0 0.132 815
4p 2.12 0.0 0.0 0.044 292
4p 1.275 0.0 0.0 0.324 827
4p 0785 0.0 0.0 0.506 491
4p  0.566 0.0 0.0 0.160 903
Orbital -

Eigenvalue -2,631 297 -2.530 008 -0.128 703
Total .

Energy ~7.365 085

V/T -1.999 999

2 Atomic units are used, i.e. one unit of energy =1 Hartree =

21. 211652 eV. See reference 22.
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St_ernheimer\ correction. Alternative calculations by Lyons, Pﬁ, and
Da's,20 using Brueckner-Goldstone many-bo[dy perturbation techni-
ques, yield a first-order correction of 15.61% in the RHF field
g'radienf, which corresponds to a total field gradient of -0.01974
a.u. Upon extending their calculations to second-order these
authors find a valﬁe of -0.0194 a.u. ,. or 17% of the RHF value.
It would thus seem that the first-order term is the dominant change
above the RHF value. However, recent Bethe-Goldstone variational

calculations by Nesbet‘21

find that, although the first-order like
terms correspond to a change of 11.88%; the second-order and
higher terms lead to a final change of only 2.55% of the RHF
value, or a total field gradient of -0.02282 a,u. This result would
indicate that the property is not cbnverging rap_idly at all. A
resolution of these questions must at this time await further cal-

culations on more diverse systems.

~ V. CONCLUSIONS

We have investigated the relation of the Sternheimer correc-
tion to first-order proper,ties to the approximate nature of the
wavefunction in connection with Brillouin's theorem. In particular
we have examined the case of the calculatiori of electronic field
gradients for use in the nuclear quadrupole coupling with Hartree-
Fock wavefunctions in the Li 2 ’p state. We find that in such a
case the correction is nonvanishing if there are spatial symmetry

restrictions on the orbitals of the RHF wavefunction. Accurate
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solution of the first-order perturbed equations leads to a change in
,the RHF Li “P field gradient of 11.85% to yield a total first-order
result.of -0.02062 a.u. We also find that this~resu1t is insensitive
to approximations in the PHF equations, and that a spatial symme-
try unrestricted UHF(I) calculation /yields essentially (—0.02067 a.u.)

the same result, in agreement with the theoretical considerations.

I wish to thank Dr. Nicholas Winter for his
gencrous advice on the numerical solution of the PHF equations,
and overall helpful comments. . I also wish to thank Dr. Thom.
Dunning for helpful discussions, and Mr. Jeffrey Hay for the use

of his unrestricted Hartree-Fock program.
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ITI, THE THEORETICAL DETERMINATION OF THE Li, B “TT_
POTENTIAL ENERGY CURVE,
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INTRODUCTION:

In addition to any inherent features of interest, the nature
of the potential curve of the BIIIu electronic excited state of Li, has
been closely connected with the spectroscopic determination of the
dissociation energy of the x‘zg" electronic ground state of Li,. In
1931 Loomis and Nusba,um:1 from an extrapolation of the vibrational
energy spacings of the BIIIu state; determined the dissociation energy
of the B'Il_ state to be D, = 3,738 cm™ = 0.46 + 0.03 eV.2 From
this datﬁm they then deduced the dissociation energy of the X'> +

g
ground state as follows:

D, (x’zgf) = Voo + Dy (B ) - v(Li's~"P) 1)
= 20,398 cm™" + 3,738 cm™ - 14, 904 cm ™!
= 9,232 cm™ = 1,14 £ 0,03 eV

Here v,, is the energy between the zeroth vibrational levels of the

1o+
X Zg :
from the Li 2 8 to the Li 2° P states.

and B'I  states and »(Li’S—"P) is the atomic excitation energy
Alternatively, thermochemical data by Lew133 indicated a
disscciation energy for the X12g+ state of D, = 1.03 + 0.04 eV, and

a thorough theoretical calculation by Das4 recently placed the
dissociation energy at D, = 0.99 eV (a lower limit). Thus, a need
arose to reexamine the spectroscopic data.

Inherent in the analysis by Loomis and Nusbaum, as sum-

marized by equation (1), is the assumption that the B]LIIu potential
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energy curve contains no humps at long internuclear distances.
However, for molecular states which arise from a 2S atom and a
*P atom, such as the Li,, B'Il, state, King and Van Vleck® & have
showh that the corréspdnding 1'Hu potential curve is repulsive at
large internuclear separations. Analogous results were also found
by Mulliken7 who reexamined the nature of théée 1ohg~range inter~
actions in great detéil, Coupl’iﬁg this long: distance behavior with
the known stability of the ]311'[u state one can then pi'ed'ict that this
state has a potential hump,‘: and as a COﬁseQuence the spectroscopic
data by Loomis and Nusbaum is really insufficient to deduce the
ground state dissociation energy of Li,.

8

In 1969, Velasco, Ottinger and Zare, ° redetermined the dis-

sociation energy for the ground state of Li, by direct extrapolation

of the grouhd state vibrational energies which they obtained from

+
g

dissociation energy - which is independent of any'assumptions about

the fluorescence spectra BIIIu» X'z T of Li,. Their value for the
the nature of the BIIIu potential curve - is D, = 1.025 + 0.006 eV.
This value is in .agreément with the previous thermochemical data
bjr Lewis, as well as g:onsistént with the expected accuracy of the

. theoretical calculations by Das. Using this new vaiue for the ground
state dissociation energy together with the previous data by Loomis

and Nusbaum, Velasco et al. 8

predict that the potential energy curve

for B'Il | state of Li, has a hump of magnitude 0,115 « 0,036 eV.
In this paper we will present the results of fheoreticalvcal—

culations on the Li, Blllu state to show the nature of the full potential

energy curve and of the electronic structure which characterizes
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this state.

. BASIC APPROXIMATE ELECTRONIC WAVEFUNCTION FOR THE
NWMWWWWWW

DESCRIPTION OF THE Li, B'Il | POTENTIAL ENERGY CURVE

The Hartree-Fock wavefunction is of the following form for

the B'IL state of Li,:
A [ lag 1oy, }Zogl‘.IIuo}tBaB(aﬁ-Ba)] (2)

where lagzloru2 are. linear combinations of the two lithium core orbitals,
and Zoglllu are the valence orbitals, and A is the antisymmetrizer.
Although such a wavefunction_ gives a reasonable description of the
electronié state about the equilibrium distance, it is not adequate to
describe the dissociation of the Li, (Blllu) molecule because as R~
the wavefunction does not go into the correct séparated- atoms limit,
i.e., Li2’s +'Li22P, but into a mixture of atomic states. In ‘order to
study the potential energy curve at all R, especially about the potential

hump, one needs to start W1th a wavefunctmn which allows for the

correct descrlptlon of the separated~atoms limit, wh1ch is
. - .
A[lS L, 185" (@sy 2pp + 2sR2pL)aﬁozBaB_(anBa)] (3)

where the orbitals are just the Li atom orbitals, and the subscripts
L and R refer to the center (left or right) on which the function is
localized. A wavefunction which satisfies this requirement is a

slightly modified form of wavefunction (2) namely,

A[ 10g210;2(2og111u - ?x220u1H g)a@ozﬁ(aﬁ -‘Bcg)] (4)
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where all orbitals and the coefficient A’ are to be variationally

optimized at all R. One can see that (3), the separated atoms wave-

function, is a special case of (4) by noting the relation

(20,111, 7\220 1 )=3 (2ag+120u)(1r;1-nng)+(20g-120u5(1nu+x1ng)] (5)

T

and that when A—~1 (or R~ °°), then the lbcaliz_ed molecular orbitals

in the right-hand side of equation (5) become the atomic orbitals as

follows
(Zag 5 ).20“) "2SL - (6a)
(11, - A1) ~2pg (6b)
(Zoé - J\Zou)A »ZsR (6c)
(11, + A1) ~2p, (6d)

and therefore the wa\}efunction (3) is a special case of (4).

We note that with the addition of the 20, 111 g configuration to

the chll'l conﬁguratmn of _(2), the optimal molecular orbitals, can

be put in localized form (5) instead of having to be symmetry functions
‘as in (2). B‘ecause’ of this, one refers to the effect of introducing
the 20 lIIg configuration as "left-right" correlation, |
A wavefunction of the type (4) in which all orbitals are optimized
ha.s been called the "optlmlzed double conflguratlon" method (ODC). 8
In general, wavefunctions consisting of a sum of Slater deter.minations
[as in (4)] and in which all orbitals and linear coefficients are optimized

10

are called MC-SCF wavefunctions. In the next section we will
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describe our calculations of the LizB’LIIu potential curve first in
terms of the use of an ODC wavefunction and then we will describe
the changes that occur upon going to 'a'multi‘-conf'iguration. wave-

function.

. CALCULATIONS AND REFINEMENTS IN THE APPROXIMATE
WAVEFUNCTION . -

‘We started our calculations with a [2(14s),” 3(2s), 3(2po), (3do)/
3(2pIl), (3dM)Jbasis set of Slater functions centered on each atom
with the exponents for the s ,arid p basis functions optimized for the
2’s and 2°P states of the Li atom, and the d éxponent chosen so as
to have maximal overlap with the atomic p orbital. We call this

basis set I. 11

In this basis, the 2°S state of lithium has an energy
of ~7.43273 Hartree and the 2°P state an energy of -7.36507 Hartree.
. Next, we proceeded fo calculate the Li, Eﬂu potential curve
'with the ODC wavefunction (4) and using the above basis set I to
expand the orbitals. The results obtained are shown in Fig. 1 together
- with part of the corresponding Hartree~-Fock results. “The abcissa
corresponds to the separated-atoms energy (~14. 79780 Hartreé). We
note that, as éxpected from the discussion in the pre\}ious section,
the ODC potential énergy curve ccrreétly approaches the separated
atoms energy. Furthermofe, we also note thét the curve exhibits
the potential hump predicted by King, Van Vleck, and Mulliken. In
Fig. 1 we have also indicated tfxe experimental height of the hump and

its range of possible error as given by Velosco et al. 8 The ODC
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curve agrees closely with experunent in the reglon about the hump,
however, it leads to a ___g]:ybound state accountmg for only 0.018%
12 hich s 0,013 = 0,0002
Hartree or 0.362 + 0. 007 eV. In order toifind' the source of this

of the expemmental binding energy, De

inadequate description Vc':vf the binding, which could easily have a |
~ bearing on the final c‘alculated ‘height and shape of the hump, we first
mvestigated other conﬁguratmns which might lead to a better descrip-
tion of the binding of thzs state o

From the wavefunction for the X Eg ground state of Li, as
calculated by Das, 4 we find that the main contnbutions to binding
beyond the Hartree- Fock conf1gurat1on 2ag2(~ 16% De) arise from the
Zouz, 30; and llluz configurations. ‘The 20": configuration
corresponds to allowing the "left~right' type of correlation in the
wavefunction, and it aéCount_s for about 19% of the binding energy.
The 3c:rga configuration correspbnds to allowing the '"in~out" type
of correlation into the wavefunctmn a.nd it accounts for about 22% of
the binding energy. Finally, the III conf1gurat1on, which corres~
ponds to allowing for "angular" type of cgrrelétion about' the bpnd,
has the largest contribution and accounts for about 43% of the
binding energy. Thus, it is pos»sible that inclusion of "angular' and
"in-out" correlation could have a large efféct upon the potential
curve of the BIIIu state. B

"In-out" type of correlation can be intréduced into the ODC

wavefunction (4) by the configuration

30g2flu - v))
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Adding this configuration to the HF eonfiguration we obtain

2
Zoglllu-x 30‘g2H I;(?og+h30g)(1Hu-7t2[[u)+(2crg-h3crg)(IIIuMZIIu)] (8)

In the right-hand side of relation (8) we see that in the first term
the new molecular orbital (2og+7\3o ) becomes more diffuse than the
20 _ orbital, wh1le concurrently the (111 211 ) molecular orbital

besomes contracted in relation to the IHu orbital, and vice-versa for
the second tei-m. , |
| "Angular™ type of correlation can be introduced into the ODC
wavefunction (4) by adding 8Il-like configurations, such as
lbglﬂu | (9)
and -

e 20, . (10)
Although (9) is a single excitation with respect to the Hartree- Fock
Wavefunetion, it cannot be eliminated in this case by use of Brillouin's
theorem. 13 This is because the variational condition on the 20

g
orbital in the ODC wavefunction is not exactly the Brillouin condition

(620, 1, 5 |e) =0 (11)

but rather it is (11) subject to the constraint that the variations in

20 be in the og space, i.e., the field due to the 1II orbital is

cyhndrlcally averaged in the equation (11). Thus, the lég 1L,
configuration has the dualrole of allowing for the polarization of
the 20 orbital in the variational field of the lllu orbital, and of

g
allowing simultaneous distortion of both orbitals off the line of the
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nuclei, or "angular" correlation.

Having introduced the 16 IIIu configuration does not eliminate

g

the need for the explicit consideration of the 16 ZI'I,u configuration (10)

g
because the variational condition on the 111, orbital is not

s, o1M [H|w) =0 (12)
thus, not necessarily leading to
18, nnu[H»I\II). =0

with n = 2 as a special case,' but rather the condition is the MC-SCF

equation

gamuIHI ¥) =0 i (13)

(20, 6111, - C16

The 16 g2IIu configuration iptroduces solely "angular' correlation. It
can in turn be analyzed in a manner analogous to (5) or (8) to show

f:hat it allows the Zog orbital to mix lﬁg character and distort off of

the line of the nuclei while allowing the IIIu orbital to mix 2IIu
~ character .and adjust its shape in a manner corresponding to the changes
in the 2(7g orbital. | |

Finally, for the sake of completeness, we also included the

configurations 16u11'1g and 16u211g which also describe angular
‘correlation although we expected their contributions to be minor in
relation to the others. The total wavefunction is now made of these

seven configurations.
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For the purpose ‘vof’ calculations with this seven configuration
wavefunction, we added two 3d6 Slater functions on each center to

the basis set I. We call this basis set 11, 14

The results of the seven
‘configuration MC-SCF calculations with basis set II on the Li,B'I
-about the‘_equilibrium distance R, = 5. 51 Bohr are shown in Fig. 2
along with the previous ODC results, We see that although there is

a ma.rkéd imprdvement in the binding energy,' namely 0,00677 Hartree
or 0.184 eV, we are still only accounting for 51% of the experiinental
binding energy. This seems anomalous when viewed against the size
of the MC-SCF wavefunction employed. At this point we searched

for analogous situations in other electronic systems. ‘

The Be 2'P atom has an electronic structure closely resembling

that of the Li‘2 B‘Hu’state with the 2s2p singlet~coupled open shell of
the atom analogous to the 2¢

g
CI calculation on Be 2'p by Dunning and Bender

1IIu configuration of the molecule. A
15,which we have used
as a guide in the choice of additional cénfigurations, reveals an
anomalous situation similar to the one we find for Li, BIIIu. These
authors find that with a (4s 3p) Slater basis optimized for the Hartree-
Fock configuration é.nd augmented with 3d- and 4f- funétions, é full
valence' electron CI accounted for only 62% of the valence correlation
energy (of 0.029 Hartree). A recent CI calculation on the Be 2'P by
Tatewaki, Taketa, and Sasaki, 16 ,ithough employing fewer configu-
rations than the previous work, yielded a much improved result,
accounting for 86% of the vé.lence correlation energy. The essential

difference in the two calculations is the use of a 3p Slater function
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with its exponent optimized for the CI wavefunction. It would thus
appear that a 3p Slater function plays an essential role in the CI
wavefunction for Be, a role which may not be adequately mimicked
bj use of 2p~functions.

Because of this, we added a 3pII Slater function to basis set
II, the orbital exponent beihg chdsen'on the basis of the Beryllium

calculations. 17

In addition; we also inodified the basis set II by
deleting} the' tightest 2po function since previoﬁs calculations had
shown that this vfunction made a negligible coﬁtribution. We call

this basis set III. 18 Using this basis set and the two and seven con-
figuration wavefunction wé thai'ned the results shown in Fig. 3 and
tabulated in Tables I, II and IlI. We see that thére is a marked
improvement in the region about the equilibrium geometry. The
seven configuration wavefunction now yields a binding energy of

0.26 eV, which is 71% of the experimental binding energy. Although
fhe two configuration potential curve ié also shifted down by a similar
amount as the seven configuration curve, vit ié evidently still a rather
poor representation for the Li, B‘Hu'state since it only accoﬁnts for
22% of the experimental binding energy. We also note‘ that in going
from the 2 configuration result to the seven conﬁgur‘ation_result'there
is a marked chahge in the overall shape of the curve, and a significant’
lowering of thé height of the potential hump from 0,11 eV to 0.077 eV,
as well as a shift in the position of the maximum from 9.4 Bohr to

10. 6 Bohr. |
Finally, in order to assess the convergence of our results in

terms of basis set III, we enlarged our basis set even further by:
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Table 1
‘Calculated Energies with the Two and Seven Configuration Wave-

functions in Basis Set II.* All Quantities are in Hartree Atomic

'Units.b'

R g®  E@.pe) M EM_E(w)
5.0 -14,797 53 0. 000 27 -14.804 74  ~0.006 94
5.5  -14.80044  -0.002 64  -14.80718  -0.009 38
5.75  -14.80076  -0.002 96  ~14,807 18  -0.009 38
6.0  -14.80059  ~0.002 79 -14.80670  -0.008 90
6.5  -14.79937  -0.00157 - -14,804 99  -0.007 08
8.0  -14.79494  0.00286  -14,79842  -0.000 62
9.0  -14.79386  0.003 94  -14.79602  0.001 78
10.0.  -14.79388  0.00392  -14.79510  0.002 70
11,0  -14.79434  0.00346  -14,79501  0.002 79
12.0  -14.79488  0.002 92  -14.79526  0.002 54
13.0  -14,79538  0.00242  -14.79560 0,002 20
15.0  -14.79615  0.001 65  -14.79623 0,001 57

2 See Reference 17.

b see Reference 2.



126

Table 2

Relative Contributions of the Terms in the Two Configuration

Wavefunction in Basis Set III.2 All Quantities are in Hartree

Atomic Units.

jR | 2§g1nu 20,111,
5.0 © 0.98308 ' -0.18317
5:5 0.97744 -0.21122
5.75 0.97381 -0.22735
6.0 0. 96903 -0. 24694
6.5 0. 95677 -0. 29086
8.0 0. 89220 -0.45165
9.0 0. 84743 .+ =0.53090

10.0 0. 80758 -0.58975

11.0 0. 77749 -0. 62890

12.0 0. 75607 -0. 65449

13.0 0.74110 -0. 67139

15.0 0.72290 0. 69095

2 See Reference 17.

b See Reference 2.
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(1) adding a 3s- and 3p~ function to the o-basis, and (2) splitting

the 3p- functioh in the IIset into two functions. We call this basis
set IV. 19
function, we calculated the Li, Blrgl energy at R = 5.5 Bohr and R =

In terms of this basis and with the seven configuration wave-

11.0 Bohr. From these calculations we find our best binding energy
to be 0,0724 eV, or 84% of experimental binding energy, which is in
error by only 0, 002 Hartree. In maghitude this is approximately
the same error as found in the MC-SCF calculations by Das for the

| x‘z:g*’ | |
more, it is of interest to note that the energy lowering at R = 11,0

Li, ground state (see Tables IV and V for the results). Further-

Bohr with respect to the results with basis set ’III is minimal (just
.0002 Hartree). Thus we expect the shape about the hump to be

insensitive to any further refinements in the wavefunction.
. DISCUSSION

The final calculated potential energy curve for the Li, B‘Hu
state is shown in Fig. 3. It shows that this state does have a hump
as predicted by King, Van Vleck, 5 and Mulliken. ©

Upon examining the corresponding wavefunctioh, we conclude
that the qualitative nature of the electronic changes upon bringing
the atoms together is as follows: the 0~o,rbita1,v20 shown in Fig. 4,
delocalizes slowly onto the opposite center until the maximum is
reached; }a.fter this point the orbital hybridizes significantly toward
the other center to form a stronger one-electron bond (as in Liz+).

In turn, the m- orbital, 20 shown in Fig. 5, is adjusting to these



Table 4

- Calculated Energies with the Seven Configuration Wavefunction in

Basis Set IV. 2 Al Quantities are in Hartree Atomic Units.b

R g™ - E.Ew)
5.5 -14.808 88 -0.01108
11.0 -14.795 14 0. 00266

2 See Reference 18.

b See Reference 2.
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Table 5

Relative Contributions of the Terms in the Seven Configuration Wave-

function in Basis Set IV. 2 All Quantities are in Hartree Atomic Units. P

R 2°g1nu 2ou111g lﬁg'lﬂu '16g2Hu lﬁulllg IGuZIIg 30‘g211u

5.5 0,96852 -0.18139 -0.12587 -0.09596 -0.00995 0.00520 0.06240
11.0 0.78944 -0.61054 -0.04297 ~-0,01480 0.00810 -0.00068 0.04355

a See Reference 18.

b See Reference 2.
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changes in the o-orb1ta1 (with whlch is interacts via a repulsive
(J + K) potential)by becoming more diffuse. It is here that the
3plIl function is unportant, as opposed to the 2pII's for use of it
allows a localizing of the maximum farther out while diminishing
the émplitude in the region near the internuclear axis. .

The accuracy of the potential energy curves about the equili-
brium distance is gauged best from a comha.rison of theoretical and
experimental spectroscopic constants, These are shown in Table VI,
and we note that there is good agreement.

" We find that the hump in the Bll'Iu potential curve has its
maximum at R ~ 11.0 Bohr, and that the height of the hump is 0, 00266
Hartree or 0.0724 eV. While this value is outside the range of error
for the experimental value of 0,004 + 0,001 Hartree, or 0.115 + 0,036
eV, as given by Velasco et al. 8 the final experimental value depends
on the accuracy of the dissociation energy for the ‘Liz B‘Hu determined
by Loomis and I\Tu_sba.um.1 Upon reanalyzing the experimental data -

21 suggests that perhaps larger error

of Loomis and Nusbaum, Gaydon
bounds would be safer. Alternatively, because of the use of the
variational principle in our calculations, we can say that the theoretical
value oi the height of the hump is expected to be an upper bound on the
experimental value., The only assumption involved is that the correla~-
tion energy within the Li cbres and between the core and valence
electrons is the same at R = 11.0 Bohr as at the separated atoms limit,
Based on previous experience of the insensitivity of the cores to such

relatively minor changes of environment as occur upon going from R=<

to the maximum of the hump at R = 11,0 Bohr, this is expected to be



60

12.0

60

00

-6.0

132

e

120

I
60

|
00

f \
\ |
2 Ny |
~____________—-—-~\\\\25’////f—--\__‘____‘__-—_4
1Q
[{+}
1y
- Q
1
: |
‘ 3

-60

-60



133

18.0

12.0

6.0

00

~
\X

|
2.0

00

-6.0

60

|
o)
S

-60F



‘Table 6

Calculafed and Experimental Spectroscopic Constants for the B'II u
State of Li,.2 Basis Set: (160101145)

8 | ' ) +6
xw B o ko x10

4 | e _, , e e
- R,A) D(eV) (cm ) (cm"l_‘.) (cm™) (em™) (dynes/cm)

opc® 3.05 0.081 240 5.7  0.52 0.01 1.19
ovc® 2.97 0.26 260 3.8 0.54 0.01 1,39

Expt? 2.934 0.362 269.69 2.74  0.557 0.008

2 All units are defined in Reference 2.
P Optimized Double Configuration.
? Optimized (seven) Valence Configuration.

d See Reference 2.
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the case.
' The final test of these considerations must, however, await a
more detailed experimental determination of the dissociation energy of

the Li, Bll'Iu state.
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