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Abstract

The measurement of nanoparticle size is of primary importance to the fields of aerosol
science and nanotechnology. Size affects the aerosol dynamics and impacts the optical,
magnetic, and catalytic properties of nanoparticles. The size range from 1 to 10 nm is of
particular interest because quantum effects and ambient aerosol nucleation occur in this range.
Differential Mobility Analyzers are the primary instruments used currently to measure the size of
aerosol particles, but diffusion impairs significantly their ability to size in the lower range (1—
3 nm).

A primary focus of this thesis work has been to design, construct, and test a Radial
Differential Mobility Analyzer, termed “nano-RDMA,” capable of measuring nanoparticles in
the 1 to 12.5 nm size range with high resolution and transmission. The nano-RDMA was
calibrated using electrospray techniques to aerosolize molecular ions for mobility analysis. The
instrument was determined to have significantly improved resolution and transmission than the
commercially available nano-DMA. Simulations of the nano-RDMA operation were performed
to determine how the resolution could be improved.

The nano-RDMA has been employed to characterize in-situ size distributions of particles
produced in an atmospheric pressure microplasma reactor. The operating parameters of the
microplasma (i.e., plasma current, flow rate, precursor concentration, and precursor composition)
were investigated to determine the effect on particle size distribution. The microplasma was
further examined as a calibration source for narrow size distributions. Iron nanoparticles
produced with the microplasma were used to grow nanotubes catalytically. A correlation was
established between the size of the grown carbon nanotubes and the catalytic particles produced

in the microplasma.
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The nano-RDMA was also used as a size characterization and selection device in particle
overgrowth experiments. Silicon nanoparticles produced in the microplasma were introduced
into two different processing stages: a second microplasma and a furnace. The nano-RDMA
permitted quick evaluation of how the operating conditions of the second processing stage
affected overgrowth. The broad size distributions indicated that agglomeration was contributing
to the measured size distribution, leading to the adoption of a Tandem DMA (TDMA)
arrangement for overgrowth experiments. Limiting the size distribution with the first nano-
RDMA permitted homogeneous overgrowth of silicon nanoparticles.

The microplasma was also investigated as a possible calibration source using the TDMA
arrangement.  While the microplasma produced a stable size distribution with a high
concentration of nanoparticles, the measured resolution was lower than expected. The TDMA
arrangement permitted studies of the thermal annealing of silicon nanoparticles. The particle
size was observed to decrease with increasing temperature in a manner consistent with hydrogen

evolution.
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List of Nomenclature

b Electrode gap spacing (mm)

E Electric field (V m™)

k Boltzmann constant (1.38 * 102 J K™

m Mass of background gas molecule (kg)

P Pressure (pascal)

q Elementary unit charge (1.602 * 10" coulomb)
0. Aerosol inlet flow rate (LPM, SLM or sccm)
0. Excess outlet flow rate (LPM, SLM or sccm)
Os Sample outlet flow rate (LPM, SLM or sccm)
Osn Sheath inlet flow rate (LPM, SLM or sccm)

R; Inner radius of electrode (mm)

R, Outer radius of electrode; aerosol inlet radius (mm)
T Temperature (K)

Vi Migration velocity (cm s'l)

Zp Electrophoretic mobility (cm® V' s™)

Zr Ideal electrophoretic mobility (cm” V' s7™)

5 Mobility shift (Zp / Zp )

n Transmission





