

Chemical Fractionation at Environmental Interfaces

Thesis by

Jie Cheng

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2010

(Defended October 14, 2009)

© 2010

Jie Cheng

All Rights Reserved

Acknowledgements

Looking back at my years at Caltech, I have every reason to be grateful. Caltech has not only offered abundant resources and a creative environment for scientific research, but has also provided enriching opportunities for self-discovery. Above all, I would like to extend my gratitude to all those who have made my years at Caltech rewarding and enjoyable.

First, I would like to thank Professor Michael Hoffmann for being a great advisor. In my junior year of college, I read a few of his articles on TiO₂ photocatalysis and got very interested in the work. So I sent him an email, expressing interest in doing graduate work with him, and he replied with six words: “I strongly recommend you to apply.” Thus, here I am. Although I did not end up working on TiO₂ photocatalysis, Professor Hoffmann has allowed me the freedom to explore my interest and to work on a variety of topics in environmental chemistry. Professor Hoffmann was always ready to listen to me and to provide guidance on many issues that matter to me.

I wish to thank my other committee members, Professors John Seinfeld, Richard Flagan, and Paul Wennberg, for their valuable time and comments. Working with Professor Richard Flagan on the pollen project was a great learning experience and a lot of fun. The wonderful courses taught by Professor John Seinfeld and Professor Paul Wennberg further developed my interest in atmospheric chemistry.

I owe many thanks to Dr. A. J. Colussi, with whom I have worked closely on several projects. Dr. Colussi impressed me with his unfailing passion for science, and his ability to connect the dots and come up with new ideas.

I benefited a great deal from collaboration with Dr. Chad Vecitis and Dr. Hyunwoong Park on the ion fractionation project and the perfluorochemical remediation project. Dr. Chad Vecitis was able to use analytical instrument in very creative ways and was always willing to help other group members. Dr. Hyunwoong Park had excellent multitasking skills and worked very efficiently in the lab. I enjoyed working with Cherrie Soetjipto, a SURF student, on the ice–pH project. Waiting endlessly for our samples to freeze on the microscope stage could have been boring without those interesting stories she told me about Indonesia. Dr. Shinichi Enami and I collaborated on the ozone–electrospray project. He did not talk much but consistently produced quality work. I would also like to thank collaborators Professor Deming Zhao and Professor Elefteria Psillakis.

My thesis could not have been completed without the help of a number of people. Dr. Nathan Dalleska at the Environmental Analysis Center graciously shared his expertise in analytical chemistry with me. Dr. Sonjong Hwang and Dr. Chris Waters provided training and support for the solid–state NMR and the confocal microscope, respectively. Mike Vondrus at the machine shop, Tom Dunn at the electronics shop, and Richard Gerhart at the glass shop made it possible for me to conduct experiments with tailor–made equipment. I want to thank Cecilia Gamboa, Fran Matzen, Linda Scott, and Dian Buchness for keeping the department running smoothly.

I cannot forget other members of the Hoffmann group who have helped me along the way, including Dr. Christopher Boxe, Dr. Marcello Guzman, Dr. Suyoung Ryu, Dr. Angela Rincon, Jina Choi, Tammy Campbell, Will Ford, and Rifkha Kameel. I enjoyed the time we spent together in group meetings, and group activities such as barbecue on the beach, celebrations at the Hoffmann house, and Friday nights at the Athenaeum.

There are many people at Caltech who have been great friends over the years. Dinners out with Yue Zou, Dr. Xin Guo, Dr. Dongping Zhuang, Dr. Bo Li, Yingying Wang, Le Kuai, Xiaobai Li, Ying Wang, Dr. Hua Wang, Hongjing Tan, Tong Chen, and Jinghao Huang were always relaxing and full of fun. I had a great time working with Yizhou Liu, Yao Sha, Lijun Liu, Dr. Ruihua Fang, Molei Tao, and Brian Yu at the Caltech Chinese Association. Dr. Mingshr Lin, Dr. Wanwan Yang, Dr. Hilary Glidden, Dr. Shankar Kalyanaraman, Dr. Shripad Thite, Dr. Jonas Osgaard, Dr. Guangxi Wang, Kai Shen, Ming Gu, and Jay Chen shared interest in management consulting. Will Yardley helped me better understand the American culture and the Chinese culture! Susanna Tran taught me Italian of which I can still speak a few words. Jim Endrizzi and Athena Trentin at ISP worked hard to ensure that international students like me quickly adjust to life in the United States. Yvonne Banzali at the Career Development Center offered useful job-hunting tips. I am also thankful to Dr. Ling Zheng, Dr. Yi Liu, Dr. Mo Li, Dr. Yajuan Wang, Dr. Chengzhong Zhang, Dr. Xiao Lu, Dr. Changlin Pang, and many other friends for their help.

My friends from Tsinghua University have been a good source of encouragement as well as entertainment. Dr. Xin Dong kept me updated with all the exciting news of old friends from college. Yeqing Zheng kindly provided professional literature search services at no charge. Shuo Wang and I agreed on both the danger of procrastination and the awesomeness of certain video games.

My final thanks go to my family for their unconditional support and love. My parents, Yongfang Cheng and Jing Zhang, always gave me the freedom to chart my own course and respected my decisions. My fiancée Li Liu has been my best friend. We have learned and will continue to grow together and to nurture, support, and encourage each other.

Abstract

Chemical processes at the interfaces often differ kinetically and mechanistically from the bulk counterparts, partly due to the concentration inhomogeneity of different chemicals at the interfaces. The fractionation of chemicals at the interfaces not only determines their interfacial concentrations, but also affects the physicochemical properties of the interfaces. In this thesis, three sets of chemicals/interfaces with important environmental implications are studied: (1) anion fractionation at the gas–liquid microdroplet interfaces, (2) fractionation of perfluoroalkyl surfactants and matrix components at the bubble–water interface in ultrasonically irradiated solutions, and (3) ion fractionation across the ice–water interface during the freeze–thaw cycle of electrolyte solutions.

The relative anion affinity for the air–water interface, as measured by Electrospray Mass Spectrometry (ES–MS), is exponentially correlated with ionic radius. The affinities respond differently to different additives, suggesting that specific anion effects are due to different energy levels of physical interactions. Relative anion affinities at the air–methanol interfaces are almost identical to those at the air–water interface, suggesting that surface structure is not the primary driving force for interfacial anion fractionation.

Perfluoroalkyl carboxylates and sulfonates can be transferred from the ocean to marine aerosols due to their high affinity for the air–water interface, but transfer to gas phase is unlikely as they remain deprotonated in aqueous phase because of their low pKa. Organic matrix components may reduce the sonochemical kinetics of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) by competitive adsorption onto the bubble–water interface or by lowering the interfacial temperatures. Inorganic anions, but not cations, may significantly enhance or reduce the sonochemical kinetics of PFOS and PFOA. The

specific anion effects following the Hofmeister series are likely related to anions' partitioning to and interaction with the bubble–water interface.

Time–resolved confocal fluorescence microscopy of freezing electrolyte solutions reveals that the thickness of interstitial liquid films depends non–monotonically on electrolyte concentration. It also confirms that selective incorporation of cations (anions) into the ice lattice decreases (increases) the pH of the interstitial liquid films. Since the magnitude of pH change during freezing is smaller than during the subsequent thawing process, it is likely to be limited by the seepage of H^+ (OH^-) slowly produced via water dissociation.

Table of Contents

List of Figures	xiii
List of Tables	xii
List of Schemes.....	xiv
Chapter 1: Introduction	1
1.1 Overview of Chemical Fractionation at Environmental Interfaces.....	2
1.2 Ions at Air–Water Interface.....	3
1.3 Sonochemical Degradation of Perfluorochemicals at Water–Bubble Interface	7
1.4 Chemical Fractionation during Freezing of Electrolyte Solutions.....	10
1.5 Outline of the Thesis	13
1.6 References	18
Chapter 2: Experimental Anion Affinities for the Air–Water Interface	26
2.1 Abstract.....	27
2.2 Introduction	28
2.3 Experimental Section.....	29
2.4 Results and Discussion	30
2.5 Acknowledgments.....	35
2.6 References.....	36
Chapter 3: Anion Fractionation and Reactivity at Air–Water and Air–Methanol Interfaces: Implications for the Origin of Hofmeister Effects.....	50
3.1 Abstract	51
3.2 Introduction.....	52
3.3 Experimental Section.....	53
3.4 Results and Discussion	55
3.5 Acknowledgement.....	59
3.6 References.....	59
Chapter 4: Enrichment Factors of Perfluoroalkyl Oxoanions at the Air–Water Interface ...	72
4.1 Abstract.....	73
4.2 Introduction.....	74

4.3 Experimental Section	75
4.4 Results and Discussion.....	77
4.5 Acknowledgments	81
4.6 References.....	81
Chapter 5: Acid Dissociation versus Molecular Association of Perfluoroalkyl Oxoacids: Environmental Implications	93
5.1 Abstract.....	94
5.2 Introduction.....	95
5.3 Experimental Section	96
5.4 Results and Discussion.....	97
5.5 Acknowledgments	100
5.6 References.....	100
Chapter 6: Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effect	113
6.1 Abstract.....	114
6.2 Introduction.....	115
6.3 Experimental Methods	117
6.4 Experimental Results.....	119
6.5 Discussion.....	122
6.6 Acknowledgements	127
6.7 References.....	127
Chapter 7: Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics	144
7.1 Abstract.....	145
7.2 Introduction.....	146
7.3 Experimental Methods	147
7.4 Results.....	149
7.5 Discussion.....	153
7.6 Acknowledgements	159

7.7 References.....	159
Chapter 8: Confocal Fluorescence Microscopy of Interstitial Fluids in Freezing Electrolyte Solutions.....	172
8.1 Abstract.....	173
8.2 Introduction	174
8.3 Experimental Section	175
8.4 Results and Discussion.....	177
8.5 Acknowledgements	180
8.6 References	180

List of Figures

Figure	Page
Figure 2.1 ES–MS spectrum of equimolar aqueous SCN [–] , NO ₃ [–] , Br [–] , BF ₄ [–] , ClO ₄ [–] , and I [–]	42
Figure 2.2 Anion affinities versus anionic radius	43
Figure 2.3 Normalized anion affinity versus free energy of anion dehydration.....	44
Figure 2.4. Normalized anion affinity versus anion polarizability.....	45
Figure 2.5 Ratios of normalized anion affinity versus urea concentration	46
Figure 2.6 Ratios of normalized anion affinity versus (CTAC) concentration.....	47
Figure 2.7 Ratios of normalized anion affinity versus Triton X–114 concentration.....	48
Figure 2.8 Normalized anion affinity versus SDS concentration.....	49
Figure 3.1 ES–MS spectrum of equimolar aqueous NO ₃ [–] , BF ₄ [–] , ClO ₄ [–] , PF ₆ [–] , and IO ₃ [–]	65
Figure 3.2 Normalized anion affinity versus ionic radius	66
Figure 3.3 (a) Relative anion affinities of NO ₃ [–] , BF ₄ [–] , ClO ₄ [–] , PF ₆ [–] , and IO ₃ [–] (b) The surface coverage of –CH ₃ groups (c) The dielectric permitivity versus methanol molar fraction....	67
Figure 3.3 (c) The dielectric permitivity versus methanol molar fraction	67
Figure 3.4 Interfacial iodide concentration versus [O ₃ (g)] in H ₂ O and MeOH	68
Figure 3.5 The product branching ratio [IO ₃ [–]]/[I ₃ [–]] versus [O ₃ (g)]/[I [–]]	69
Figure 4.1 ES–MS calibration curves of perluoalkyl sulfonate	88
Figure 4.2 ES–MS spectrum of a 1 μM equimolar multianion aqueous solution	89
Figure 4.3 Enrichment factor versus n–alkyl chain length.....	90
Figure 4.4 The effect of NaCl and 1–octanol on the enrichment factor	91
Figure 5.1 ES–MS titration curves of n–hexanoic and n–octanoic acids	107
Figure 5.2 ES–MS spectra of PFOS under different pH and electrolyte conditions	108
Figure 5.3 ES–MS spectra of PFO under different pH and electrolyte conditions	109
Figure 5.4 ES–MS titration curves for PFOSA and PFOA.....	110
Figure 5.5 Signal intesity ratio of (PFOA) ₂ H [–] to the sum of PFOA species versus pH.....	111
Figure 6.1 PFOX sonolysis in MilliQ water and landfill groundwater at 354 kHz.....	134
Figure 6.2 The effect of five VOCs on PFOX sonolysis kinetics	135
Figure 6.3 The effect of alkyl benzenes and MIBK on PFOX sonolysis kinetics	136

Figure 6.4 The effect of humic and fulvic acids	137
Figure 6.5 Sonolysis and sonozone of PFOX in MilliQ and landfill groundwater	138
Figure 6.6 Surface tension curves for the VOCs in figure 6.2	139
Figure 6.7 PFOX sonolysis in MilliQ water and landfill groundwater at 612 kHz.....	140
Figure 6.8 PFOX sonolysis under Ar, O ₂ , and O ₃	141
Figure 6.9 Temperature dependence of C _{p,g} and k _{law} for the VOCs in figure 6.2.....	142
Figure 6.10 LC/MS calibration curves for PFOX	143
Figure 7.1 PFOX sonolysis in MilliQ water and groundwater at 612 kHz.....	165
Figure 7.2 The effect of anions on PFOX sonolysis kinetics	166
Figure 7.3 The effect of cations on PFOX sonolysis kinetics	167
Figure 7.4 Rate constant for sonolysis of PFOX versus solution pH	168
Figure 7.5 Effect of pH adjustment on PFOX sonolysis kinetics in groundwater	169
Figure 7.6 PFOX sonolysis in MilliQ water and groundwater at 354 kHz.....	170
Figure 7.7 The acid–base titration curve of the groundwater sample	171
Figure 8.1 Temperature profile during the freeze–thaw cycle of sample	185
Figure 8.2 Fluorescence emission ratio versus pH by fluorometer and CLSM.....	186
Figure 8.3 C-SNARF-1 in MilliQ, NaCl and (NH ₄) ₂ SO ₄ solution during freezing.....	187
Figure 8.4 Fluorescence image of C-SNARF-1 in NaCl during freeze–thaw cycle	189
Figure 8.5 Fluorescence image of C-SNARF-1 in (NH ₄) ₂ SO ₄ during freeze–thaw cycle ..	191
Figure 8.6 Fluorescence emission ratio versus pH curves at different temperatures	193
Figure 8.7 Fluorescence emission ratio versus laser intensity and probe concentration	194

List of Tables

Table	Page
Table 2.1 Interfacial affinities and molecular properties of anions.....	41
Table 3.1 Interfacial affinities and molecular properties of anions.....	64
Table 4.1 Relative anion enrichment factors f at the air–water interface.....	87
Table 5.1 Isotope ratios of PFO species observed by ES–MS.	106
Table 6.1 Primary components of the landfill groundwater.....	131
Table 6.2 Physical and thermodynamic properties of the five VOCs in figure 6.2.....	132
Table 6.3 Representative analytical results of quality-control samples.....	133
Table 7.1 Primary components of the groundwater sample.....	164
Table 8.1 Fitting parameters of equation (8.2)	184

List of Schemes

Scheme	Page
Scheme 1.1 Sonochemical PFOS transformation into its organic constituents	25
Scheme 3.1 Iodide oxidation by ozone in water.....	70
Scheme 3.2 Schematic diagram of the iodide–ozone reaction chamber.....	71
Scheme 4.1 <i>Anti</i> - and <i>gauche</i> -perfluorobutanoate at the air–water interface.....	92
Scheme 5.1 Schematic drawing of The MM2 structure of the (PFO) ₂ H [−] cluster.....	112
Scheme 8.1 The chemical structure of C-SNARF-1	195