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Abstract 

The thermoplastic formability (TPF) of metallic glasses was found to be related to 

the calorimetrically measured crystallization temperature minus the glass transition 

temperature, Tg - Tx = ΔT.  Alloy development in the ZrTiBe system identified a 

composition with ΔT = 120 °C.  Many alloys with ΔT > 150 °C and one alloy, 

Zr35Ti30Be27.5Cu7.5, with ΔT = 165 °C were discovered by substituting Be with small 

amounts of fourth alloying elements.  The viscosity as a function of temperature, η(T), 

and time temperature transformation (TTT) measurements for the new alloy are presented 

and combined to create ηTT plots (viscosity time transformation) that are useful in 

determining what viscosities are available for a required processing time.  ηTT plots are 

created for many alloys used in TPF in the literature and it is found that for processes 

requiring 60 - 300 s, Zr35Ti30Be27.5Cu7.5 provides an order of magnitude lower viscosity 

for processing than the other metallic glasses.  Injection molding is demonstrated with 

Zr35Ti30Be27.5Cu7.5 and the part shows improved mechanical properties over die cast 

specimens of the same geometry.  Changes of slope in η(T) measurements were observed 

and investigated in some quaternary compositions and found to be present in ternary 

compositions as well.  Traditionally metallic glasses show a single discontinuity in heat 

capacity at the glass transition temperature.  Alloys with the changes in slope of η(T) 

were found to show two discontinuities in heat capacity with the changes in slope of η(T) 

roughly correlating with the observed Tg values.  These two Tg values were assumed to 

arise from two glassy phases present in the alloy.  Further heat capacity analysis found 

systematic trends in the magnitude of the heat capacity discontinuities with composition 

and the single phase compositions of a metastable miscibility gap were discovered.  



 v

Microscopic evidence of the two phases is lacking so we must limit our claims to 

evidence of two relaxation phenomena existing and can’t definitively claim two phases. 

The alloy development led to the discovery of alloys with densities near Ti that 

are among the highest strength to weight ratio materials known.  Alloys with corrosion 

resistances in simulated sea water 10x greater than other Zr based glasses and commonly 

used marine metals were discovered.  Glasses spanning 6 orders of magnitude in 

corrosion resistance to 37% w/w HCl were discovered.  Corrosion fatigue in saline 

environments remains a problem for these compositions and prevents their utility as 

biomaterials despite good evidence of biocompatibility in in vitro and in vivo studies. 
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Table 5.1 Effects of rod diameter and overheating above melt temperature  5.7 
 on ΔT as well as variation in arc melted button ΔT are tabulated.   
 Temperatures given in °C. 
 
Table 6.1 DSC data for alloys considered in this article.  Data shown in  6.8 
 parentheses taken at 5 K/min.  Other data taken at 20 K/min.   
 Temperatures in °C.  Δcp1 values in J/(g*K). 
 
Table A1.1 Mass loss and ICPMS measurements of NaOH solution after  A1.2 
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 for ICPMS. 
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Table A2.5 6 Month Bone Implants: Significance of Material Type  A2.16 
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Table A2.7 12 Month Bone Implants: Significance of Material Type  A2.16 
 vs Parameter. 
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Table A3.1 Data for corrosion and corrosion fatigue in 0.6M NaCl.   A3.4 
 Fatigue values are the stress amplitudes at which the  
 samples endured 107 loading cycles normalized by the 
 material yield strength.  The yield strengths of Zr35Ti30Be35,  
 Zr35Ti30Be29Co6, and Zr52.5Cu17.9Ni14.6Al10Ti5 are 1850 MPa 
 [22], 1800 MPa [22], and 1700 MPa [7], respectively.   
 Corrosion data for 18/8 Stainless Steel, annealed Monel,  
 and Alclad 24S-T are taken from [10], while data for fatigue  
 in air and 0.6M NaCl are taken from [11-15]. 
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