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Abstract

The thermoplastic formability (TPF) of metallic glasses was found to be related to
the calorimetrically measured crystallization temperature minus the glass transition
temperature, T, - Tx = AT. Alloy development in the ZrTiBe system identified a
composition with AT = 120 °C. Many alloys with AT > 150 °C and one alloy,
Zr35Ti30Be,; sCuy s, with AT = 165 °C were discovered by substituting Be with small
amounts of fourth alloying elements. The viscosity as a function of temperature, n(T),
and time temperature transformation (TTT) measurements for the new alloy are presented
and combined to create N TT plots (viscosity time transformation) that are useful in
determining what viscosities are available for a required processing time. nTT plots are
created for many alloys used in TPF in the literature and it is found that for processes
requiring 60 - 300 s, Zr3sTizoBey7 sCuy s provides an order of magnitude lower viscosity
for processing than the other metallic glasses. Injection molding is demonstrated with
Zr35Ti30Be,7 5Cuy s and the part shows improved mechanical properties over die cast
specimens of the same geometry. Changes of slope in n(T) measurements were observed
and investigated in some quaternary compositions and found to be present in ternary
compositions as well. Traditionally metallic glasses show a single discontinuity in heat
capacity at the glass transition temperature. Alloys with the changes in slope of (T)
were found to show two discontinuities in heat capacity with the changes in slope of n(T)
roughly correlating with the observed T, values. These two T, values were assumed to
arise from two glassy phases present in the alloy. Further heat capacity analysis found
systematic trends in the magnitude of the heat capacity discontinuities with composition

and the single phase compositions of a metastable miscibility gap were discovered.
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Microscopic evidence of the two phases is lacking so we must limit our claims to
evidence of two relaxation phenomena existing and can’t definitively claim two phases.
The alloy development led to the discovery of alloys with densities near Ti that
are among the highest strength to weight ratio materials known. Alloys with corrosion
resistances in simulated sea water 10x greater than other Zr based glasses and commonly
used marine metals were discovered. Glasses spanning 6 orders of magnitude in
corrosion resistance to 37% w/w HCI were discovered. Corrosion fatigue in saline
environments remains a problem for these compositions and prevents their utility as

biomaterials despite good evidence of biocompatibility in in vitro and in vivo studies.
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