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Small quantities of different gases were added to separate portions of a non-in-
flammable mixture of dry carbonic oxide and oxygen, and the spark was then
passed. In all cases where a gas containing hydrogen was introduced, the mixture
exploded; in all cases where a gas containing no hydrogen was introduced, the

mixture did not explode.

— Harold Dixon, The Combustion of Carbonic Oxide and Hydrogen, 1886.
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Abstract

This dissertation describes laboratory studies of three oxygen isotope exchange reac-
tions — O('D) + CO,, O, + CO,, and O(’P) + CO, — and their importance to oxygen
cycling in the upper atmosphere. First, we studied the isotope exchange reaction O('D) +
CO,, which is believed to govern the oxygen-isotope budget of CO; in the stratosphere. Our
combined field, laboratory, and modeling study of the exceptionally rare '°0'*C!80 isotopo-
logue revealed that O('D) + CO, explains only part of the stratospheric CO, isotopologue
budget, not all of it as previously thought: O('D) + CO, could not explain the large en-
richments of '°0'3C!30 (i.e., of the “A4;” tracer) at high Northern latitudes. Mesospheric
and heterogeneous chemistry of CO, were proposed as possible sources of this meridional
variation in '°0'*C!80. Therefore, we performed crossed-molecular-beam experiments to
investigate the chemistry of CO, at hyperthermal collision energies; this class of reaction
could be important in the upper atmosphere, where low gas densities and high rates of pho-
tochemistry increase the relative probability of hyperthermal reactions. Our experimental
and theoretical study of the O, + CO, isotope exchange reaction showed that the reaction
can occur through a short-lived CO4 reaction complex, which leads to O, + CO, products
that are highly internally excited, but possibly still in their ground electronic state. Our
study of O(P) + CO, collisions at hyperthermal energies showed that O(*P) + CO, iso-
tope exchange can occur in the upper atmosphere, proceeding through a short-lived COj;
reaction complex. The O(*P) + CO, — O, + CO reaction was also observed, and our data
suggest that it can proceed through a ‘stripping’ mechanism or a CO; complex. These reac-
tions demonstrate new ways in which oxygen can be cycled through CO, in the atmosphere;
their isotope effects, manifest in the isotopic composition of atmospheric CO,, may impose

independent constraints on atmospheric transport and biosphere-atmosphere interactions.
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