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Small quantities of different gases were added to separate portions of a non-in-

flammable mixture of dry carbonic oxide and oxygen, and the spark was then

passed. In all cases where a gas containing hydrogen was introduced, the mixture

exploded; in all cases where a gas containing no hydrogen was introduced, the

mixture did not explode.

— Harold Dixon, The Combustion of Carbonic Oxide and Hydrogen, 1886.
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Abstract

This dissertation describes laboratory studies of three oxygen isotope exchange reac-

tions — O(1D) + CO2, O2 + CO2, and O(3P) + CO2 — and their importance to oxygen

cycling in the upper atmosphere. First, we studied the isotope exchange reaction O(1D) +

CO2, which is believed to govern the oxygen-isotope budget of CO2 in the stratosphere. Our

combined field, laboratory, and modeling study of the exceptionally rare 16O13C18O isotopo-

logue revealed that O(1D) + CO2 explains only part of the stratospheric CO2 isotopologue

budget, not all of it as previously thought: O(1D) + CO2 could not explain the large en-

richments of 16O13C18O (i.e., of the “∆47” tracer) at high Northern latitudes. Mesospheric

and heterogeneous chemistry of CO2 were proposed as possible sources of this meridional

variation in 16O13C18O. Therefore, we performed crossed-molecular-beam experiments to

investigate the chemistry of CO2 at hyperthermal collision energies; this class of reaction

could be important in the upper atmosphere, where low gas densities and high rates of pho-

tochemistry increase the relative probability of hyperthermal reactions. Our experimental

and theoretical study of the O2 + CO2 isotope exchange reaction showed that the reaction

can occur through a short-lived CO4 reaction complex, which leads to O2 + CO2 products

that are highly internally excited, but possibly still in their ground electronic state. Our

study of O(3P) + CO2 collisions at hyperthermal energies showed that O(3P) + CO2 iso-

tope exchange can occur in the upper atmosphere, proceeding through a short-lived CO3

reaction complex. The O(3P) + CO2 → O2 + CO reaction was also observed, and our data

suggest that it can proceed through a ‘stripping’ mechanism or a CO3 complex. These reac-

tions demonstrate new ways in which oxygen can be cycled through CO2 in the atmosphere;

their isotope effects, manifest in the isotopic composition of atmospheric CO2, may impose

independent constraints on atmospheric transport and biosphere-atmosphere interactions.
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