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ABSTRACT 

 The -stack of double stranded DNA is a competent bridge for mediating charge 

transport (CT), both by single-step (coherent) and multi-step (hopping) mechanisms. The 

yield of long-range single-step CT from photoexcited 2-aminopurine, a fluorescent 

analogue of adenine, to guanine across adenine tracts has a shallow, periodic distance -

measure total CT yield to the DNA bases, herein we employ the fast radical traps N2-

cyclopropylguanine (
CP

G), N6-cyclopropyladenine (
CP

A), and N4-cyclopropylcytosine 

(
CP

C), which are energetically similar to the unmodified bases, but undergo rapid 

decomposition upon oxidation or reduction. We find that decomposition of 
CP

G by a 

photoexcited rhodium intercalator across an adenine tract has a similar periodic distance 

dependence to the quenching of 2-aminopurine by guanine, and the same temperature 

dependence as well. In contrast, decomposition of 
CP

G by photoexcited 2-aminopurine is 

monotonic with respect to adenine tract length, and also competes with back electron 

transfer. Eliminating back electron transfer by separating 2-aminopurine from the adenine 

tract with three high-potential inosine bases restores the non-monotonic distance 

dependence. We also determined decomposition of 
CP

A along adenine tracts by 

photoexcited rhodium, and found the CT yield to be distance-independent, demonstrating 

that the periodicity associated with guanine oxidation is with respect to adenine tract 

length, not donor-acceptor separation. This length-dependent periodicity, and the 

associated temperature dependence, support a model of conformational gating in the 

formation of CT-active domains along the DNA. 
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 DNA-mediated electrochemistry is facile in self-assembled monolayers on 

electrodes, and redox-active dyes are reduced through the DNA -stack at potentials far 

lower than those of the individual bases. Since cytosine is the most readily reduced base, 

we incorporated 
CP

C into DNA monolayers to assay for bridge occupation, and 
CP

C 

decomposition was not observed. 

 To explore the relative contributions of single-step and multi-step mechanisms to 

CT yield across adenine tracts, we compared quantum yields previously collected from 2-

aminopurine fluorescence quenching experiments to those from 
CP

G decomposition. We 

find that for seven or eight intervening adenines, single-step CT accounts for the entire 

CT yield, while for four to six adenines, multi-step CT is the dominant mechanism. We 

interrupted multi-step CT by substituting 
CP

A for an adenine on the bridge, and found the 

total CT yield across five or six intervening adenines is lowered to the single-step CT 

yield. Blocking coherent CT by replacing the terminal guanine with redox-inactive 

inosine does not affect 
CP

A decomposition on the bridge. These results imply that single-

step and multi-step CT processes are not in direct competition for these assemblies, 

consistent with the model of conformationally gated CT-active states.
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