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ABSTRACT

The nt-stack of double stranded DNA is a competent bridge for mediating charge
transport (CT), both by single-step (coherent) and multi-step (hopping) mechanisms. The
yield of long-range single-step CT from photoexcited 2-aminopurine, a fluorescent
analogue of adenine, to guanine across adenine tracts has a shallow, periodic distance -
measure total CT yield to the DNA bases, herein we employ the fast radical traps N,-
cyclopropylguanine (*G), Ng-cyclopropyladenine (“*A), and Ny-cyclopropylcytosine
(°"C), which are energetically similar to the unmodified bases, but undergo rapid
decomposition upon oxidation or reduction. We find that decomposition of “"G by a
photoexcited rhodium intercalator across an adenine tract has a similar periodic distance
dependence to the quenching of 2-aminopurine by guanine, and the same temperature
dependence as well. In contrast, decomposition of G by photoexcited 2-aminopurine is
monotonic with respect to adenine tract length, and also competes with back electron
transfer. Eliminating back electron transfer by separating 2-aminopurine from the adenine
tract with three high-potential inosine bases restores the non-monotonic distance
dependence. We also determined decomposition of “"A along adenine tracts by
photoexcited rhodium, and found the CT yield to be distance-independent, demonstrating
that the periodicity associated with guanine oxidation is with respect to adenine tract
length, not donor-acceptor separation. This length-dependent periodicity, and the
associated temperature dependence, support a model of conformational gating in the

formation of CT-active domains along the DNA.
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DNA-mediated electrochemistry is facile in self-assembled monolayers on
electrodes, and redox-active dyes are reduced through the DNA m-stack at potentials far
lower than those of the individual bases. Since cytosine is the most readily reduced base,
we incorporated “"C into DNA monolayers to assay for bridge occupation, and “"C
decomposition was not observed.

To explore the relative contributions of single-step and multi-step mechanisms to
CT yield across adenine tracts, we compared quantum yields previously collected from 2-
aminopurine fluorescence quenching experiments to those from “*G decomposition. We
find that for seven or eight intervening adenines, single-step CT accounts for the entire
CT yield, while for four to six adenines, multi-step CT is the dominant mechanism. We
interrupted multi-step CT by substituting “*A for an adenine on the bridge, and found the
total CT yield across five or six intervening adenines is lowered to the single-step CT
yield. Blocking coherent CT by replacing the terminal guanine with redox-inactive
inosine does not affect “"A decomposition on the bridge. These results imply that single-
step and multi-step CT processes are not in direct competition for these assemblies,

consistent with the model of conformationally gated CT-active states.
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