

RAPID CONSTRUCTION OF PROTEIN CAPTURE AGENTS
WITH CHEMICALLY DESIGNED STABILITY
AND ANTIBODY-LIKE RECOGNITION PROPERTIES

Thesis by

Heather Dawn Agnew

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended January 6, 2010)

© 2010

Heather D. Agnew

All Rights Reserved

ACKNOWLEDGEMENTS

During the past five years at Caltech, I have had the opportunities to learn and grow scientifically in unprecedented ways. I owe much to my advisor Professor James R. Heath, who was been a major figure in my growth as a research scientist. His enthusiasm and intensity about science continue to motivate me to think creatively about the next big problem to solve. I was lucky to join the group during the time when Jim organized the NanoSystems Biology Cancer Center (NSBCC) between Caltech, UCLA, and the Institute for Systems Biology (ISB), which provided us students with access to resources and personnel who are leading researchers in cancer research. Jim truly has an intuition for good science, and I can only hope that I am also developing that capability through our interactions. I am very looking forward to continuing my relationship with Jim at Integrated Diagnostics.

Second, I must thank the members of my thesis committee, namely Professor Robert H. Grubbs, Professor Jacqueline K. Barton, and Professor Mark E. Davis, for being great sources of academic insight and advice, especially during this last year.

I am very grateful to the current members of my subgroup, namely Dr. Rosemary D. Rohde, Dr. Steven W. Millward, Kaycie M. Butler, and Arundhati Nag. It has been a pleasure to work with all of you, and to witness the progress we have all made in the area of protein capture agents. I must also acknowledge the scientists who gave me advice in the early days of the project, Dr. Hartmuth Kolb, Dr. Leroy Hood, and Dr. Alok Srivastava.

I must also thank the rest of the students, postdoctoral scholars, and staff in the Heath group, past and present. I thank Kevin Kan for his overall management of our lab facilities. I thank Diane Robinson for her warm advice and all of her assistance

throughout the years. I thank Dr. Gabriel A. Kwong, Dr. Steven W. Millward, and Young Shik Shin for the times we have talked about science in the office. During my early years of graduate study, I was mentored by two outstanding postdoctoral scholars, Dr. Ryan C. Bailey and Dr. Woon-Seok Yeo. I thank Ryan and Woon-Seok for their patience and guidance, and I am looking forward to great things from their independent scientific careers.

I have also had the great privilege of working with a group of amazingly bright undergraduate students, namely Abdul Ahad Tariq, Russell J. Krom, Vanessa M. Burns, Marissa Barrientos, Eric M. Johnson Chavarria, Andreea D. Stuparu, Michelle Bobrow, and Lucas Carreño. I wish them all the best in their future endeavors, and I hope that their time here gave them an opportunity to consider science as their ultimate career.

I am also very appreciative of the opportunities for collaborative research in Jim's group. I value the times I worked with Dr. Michael C. McAlpine, Dr. Mario Blanco, and Dr. William A. Goddard III on utilizing peptides as the specific recognition elements incorporated on a silicon nanowire gas-sensing device. Similarly, I appreciate the opportunity of meeting with Dr. K. Barry Sharpless, Dr. Valery V. Fokin, Dr. Jason E. Hein, and Dr. Suresh M. Pitram at The Scripps Research Institute. Barry is a wonderful teacher and mentor, and he emanates an infectious passion about science.

Since 2007, I have been interacting with Dr. Su Seong Lee, Dr. Jaehong Lim, Dr. Junhoe Cha, Sylvia Tan, Shi Yun Yeo, and Yiran Zheng from Singapore's Institute of Bioengineering and Nanotechnology. It has been really great to witness the transition of protein capture agent discovery from a strictly academic project to a significantly more high-throughput strategy.

Over the last year, I have had the privilege of working with Chang Ho Sohn, Dr. Jack L. Beauchamp, and Proteome Exploration Laboratory. I am grateful for the skills and experience I have built in mass spectrometry through this collaboration.

During meetings of the NSBCC, I have spent many enjoyable times with Dr. Michael E. Phelps and Dr. Clifton K.-F. Shen. In particular, Mike has been a source of great advice and support of my research.

During my graduate study at Caltech, several individuals have provided access to instrumentation that furthered my research. I thank Dr. Harry B. Gray and Dr. Jay R. Winkler for the use of the Beckman Institute Laser Resource Center. I thank Dr. Jost Vielmetter of the Protein Expression Center and Dr. David A. Tirrell for use of the SPR. I thank Dr. Carl S. Parker for essentially opening up his biology lab to my use. I thank Dr. David A. Baltimore for use of the ELISA plate reader. I thank Dr. Mona Shahgholi for assistance with MALDI-MS measurements. Last, I thank Genomics Facility for use of the Genepix 4200 array scanner.

Financially, I was supported by the NSF, the P.E.O. sisterhood, and Iota Sigma Pi that significantly defrayed my cost of study.

There are a few final people whom I need to thank. It has been great working with Enrica Bruno on the patenting process. I thank my parents and sisters for always being there for me. I thank Bert Lai for his encouraging and positive nature, and I am lucky to have found such a great partner to share my life with. I would finally like to acknowledge Dr. Song Tan for giving me, for the first time in my life, a feeling for exactly what it meant to perform research, and for letting me run with that.

ABSTRACT

This thesis describes technologies for the rapid and scalable production of high-affinity, high-specificity protein capture agents which possess the affinities and specificities of antibodies, but also exhibit improved chemical, biochemical, and physical stability. I will discuss how the chemical flexibility of comprehensive, one-bead-one-compound (OBOC) libraries of oligopeptides may be combined with *iterative* in situ click chemistry to select multi-ligand capture agents. Large OBOC libraries form the basis of individual peptide ligands, and also permit chemically designed stability through the incorporation of artificial (azide or acetylene) and non-natural amino acid building blocks. The in situ click chemistry method then utilizes the target protein as the catalyst, or template, for assembling its own biligand via formation of a 1,2,3-triazole linkage between two individual ligands (azide and acetylene). This process can be repeated to produce triligands, tetraligands, and other higher-order multi-ligands with an accompanying increase in affinity and specificity through cooperative interactions. Once found, multi-ligand capture agents can be produced in gram amounts via conventional synthetic methods such as the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This is a general and robust strategy for the inexpensive, high-throughput construction of protein capture agents that can be exploited to detect protein biomarkers in multi-parameter clinical diagnostic assays.

While high-affinity protein capture agents represent a significant technology advance, they are just one component of what is necessary for highly multiplexed measurements of protein biomarkers. It is also important to develop or optimize the actual assay platforms that can enable sensitive multi-parameter protein measurements using these capture agents. Silicon nanowire (SiNW) nanoelectronic sensors can

provide quantitative, label-free multi-parameter measurements of protein biomarkers in real time. However, SiNW sensors can be challenging to deploy because unprotected Si forms a native oxide layer that can significantly reduce the detection sensitivity of the nanowire sensors via dielectric shielding. Another technical challenge is the development of chemistries which allow for the selective encoding of nanowire surfaces with the capture agents. To overcome these challenges, the final part of this thesis presents a general method to functionalize organic and biological molecules on highly passivated Si(111) surfaces with minimal surface oxidation.

TABLE OF CONTENTS

LIST OF FIGURES, SCHEMES, AND TABLES.....	xiii
CHAPTER 1: Introduction.....	1
1.1 High-Affinity Protein Capture Agents in Medical Diagnostics.....	2
1.2 Assay Platforms for Multi-Parameter Protein Measurements.....	8
1.3 References.....	12
CHAPTER 2: Selection of a Multi-ligand Capture Agent for Carbonic	
Anhydrase II by Iterative In Situ Click Chemistry.....	15
2.1 Introduction.....	16
2.2 Materials and Experimental Methods.....	18
2.2.1 Materials.....	18
2.2.2 Artificial Amino Acids.....	20
2.2.3 OBOC Oligopeptide Library Construction.....	24
2.2.4 Screening Procedures for Anchor Ligand.....	25
2.2.5 In Situ Click Screening Procedures for Biligand.....	28
2.2.6 In Situ Click Screening Procedures for Higher-Order	
Multi-ligands.....	32
2.2.7 Validation of In Situ Click/OBOC Multi-ligand	
Screening Procedures.....	32
2.2.8 Bulk Peptide Synthesis.....	33
2.2.9 On-Bead Biligand and Triligand Synthesis.....	39

2.3 Results and Discussion.....	41
2.3.1 Screening for Anchor (1°) Ligand against bCAII.....	41
2.3.2 Identification of Secondary (2°) Ligands: Biligand Screens..	43
2.3.3 Identification of Tertiary (3°) Ligands: Triligand Screens....	50
2.4 Conclusions.....	52
2.5 Acknowledgements.....	53
2.6 References.....	54

CHAPTER 3: Affinities, Specificities, and Implementation of Multi-ligand Capture Agents in Standard Assays of Protein Detection.....	59
3.1 Introduction.....	60
3.2 Materials and Experimental Methods.....	62
3.2.1 Chemicals.....	62
3.2.2 Characterization of Affinity by Fluorescence Polarization....	62
3.2.3 Characterization of Affinity by Surface Plasmon Resonance.	63
3.2.4 Enzymatic Activity Assay of Carbonic Anhydrase II.....	65
3.2.5 Circular Dichroism of Triligand.....	65
3.2.6 Dot Blot Specificity/Sensitivity Assays of Biligand and Triligand in Serum.....	65
3.2.7 Western Blot Analysis Using Triligand.....	66
3.2.8 Sandwich (ELISA-like) Assays Using Triligand.....	67
3.3 Results and Discussion.....	67
3.3.1 Characterization of Anchor (1°) Ligand Affinities.....	68

3.3.2 Characterization of Biligand Affinities.....	70
3.3.3 Characterization of Triligand Affinities.....	74
3.3.4 Enzymatic Activity Assay of Carbonic Anhydrase II.....	74
3.3.5 Circular Dichroism of Triligand.....	77
3.3.6 Dot Blot Specificity/Sensitivity Assays of Biligand and Triligand in Serum.....	77
3.3.7 Western Blot Analysis Using Triligand.....	83
3.3.8 Sandwich (ELISA-like) Assays Using Triligand.....	86
3.4 Conclusions.....	89
3.5 Acknowledgements.....	90
3.6 References.....	91
CHAPTER 4: Assays for Quantifying Protein-Catalyzed Multi-ligands and Extensions to Other Proteins.....	92
4.1 Introduction.....	93
4.2 Materials and Experimental Methods.....	94
4.2.1 Materials.....	94
4.2.2 On-Bead Detection of In Situ Triazole Formation.....	95
4.2.3 QPCR Assay for the Detection and Quantitation of the Formation of On-Bead, Protein-Catalyzed Triligand Capture Agent.....	96
4.2.4 Selection of Biligand Capture Agent for Prostate- Specific Antigen.....	98

4.3 Results and Discussion.....	101
4.3.1 Initial Validation of Protein-Catalyzed Multi-ligand Product.	101
4.3.2 Direct Detection of Protein-Catalyzed In Situ Multi-ligand....	102
4.3.3 Strategies for Improving Signal-to-Noise Ratio during In	
Situ Click/OBOC Screens.....	107
4.3.4 Selection of Biligand Capture Agent for Prostate-	
Specific Antigen.....	112
4.4 Conclusions.....	119
4.5 Acknowledgements.....	120
4.6 References.....	121

CHAPTER 5: A Non-Oxidative Approach toward Chemically and	
Electrochemically Functionalizing Si(111).....	124
5.1 Introduction.....	125
5.2 Materials and Experimental Methods.....	128
5.2.1 Chemicals.....	128
5.2.2 Acetylenylation of Si(111).....	129
5.2.3 Synthesis of Electroactive Benzoquinone 1	131
5.2.4 Click Reaction to Attach 1 onto Acetylene-Terminated	
Si(111).....	134
5.2.5 Electrochemical Activation to Attach Ferrocene Carboxylic	
Acid and Biotin.....	135
5.3 Surface Characterization.....	137

5.3.1 X-ray Photoelectron Spectroscopy.....	137
5.3.2 Contact Angle Goniometry.....	137
5.3.3 Electrochemical Characterization of Surface Coverages.....	138
5.3.4 Fourier-Transform Infrared Spectroscopy.....	138
5.4 Results.....	139
5.4.1 XPS Survey Scans and Contact Angle Measurements.....	139
5.4.2 High-Resolution XPS Measurements.....	139
5.4.3 Electrochemical Measurements.....	145
5.5 Discussion.....	147
5.6 Conclusions.....	154
5.7 Acknowledgements.....	154
5.8 References.....	155
 APPENDIX A: Iterative In Situ Click Chemistry Creates Antibody-Like Protein Capture Agents (<i>Angewandte Chemie International Edition</i> 2009, <i>48</i>, 4944–4948).....	 161
APPENDIX B: Complete Hit Sequencing Results.....	167
APPENDIX C: Custom Edman Degradation.....	176
APPENDIX D: A Non-Oxidative Approach toward Chemically and Electrochemically Functionalizing Si(111) (<i>Journal of the American Chemical Society</i> 2006, <i>128</i>, 9518–9525.....	179

LIST OF FIGURES, SCHEMES, AND TABLES

FIGURES, Chapter 2:

Figure 2.1. Schematic of preparing a multi-ligand capture agent.....	19
Figure 2.2. Structures of representative 1° ligands, 2° ligands, and biligands....	35
Figure 2.3. Structures of biligand anchors.....	37
Figure 2.4. Structures of 3° ligands and triligands	38
Figure 2.5. Results of selecting a primary or anchor ligand of bCAII.....	42
Figure 2.6. Schematic of two types of biligand screen.....	44
Figure 2.7. Identification of a 2° ligand against bCAII.....	46
Figure 2.8. Distribution of D-amino acids found in biligand hits.....	48
Figure 2.9. Binary component in situ click chemistry screen.....	49
Figure 2.10. Method to validate protein-templated formation of multi-ligand capture agent.....	51

FIGURES, Chapter 3:

Figure 3.1. Fluorescence polarization for a fluoresceinated anchor ligand.....	69
Figure 3.2. SPR interactions of anchor ligands with bCAII.....	71
Figure 3.3. SPR interactions of biligands with bCAII.....	73
Figure 3.4. SPR interactions of triligand with bCAII and hCAII.....	75
Figure 3.5. Enzymatic activity of bCAII in the presence of triligand.....	76
Figure 3.6. CD spectrum for triligand capture agent.....	78
Figure 3.7. Structures of biotinylated triligand and biligand anchor.....	80
Figure 3.8. Dot blot of triligand and biligand for b(h)CAII detection.....	81

Figure 3.9. Dot blot of triligand vs. antibody for b(h)CAII detection.....	82
Figure 3.10. Denaturing and non-denaturing Western blots detected with a triligand capture agent.....	85
Figure 3.11. Sandwich (ELISA-like) assay utilizing a triligand as primary capture agent for bCAII detection.....	87

FIGURES, Chapter 4:

Figure 4.1. In situ click assay for on-bead triazole formation.....	103
Figure 4.2. On-bead multi-ligand detection by QPCR.....	106
Figure 4.3. General screening strategies to improve signal-to-noise ratio and reduce number of false positives in OBOC selections.....	109
Figure 4.4. Screening and anti-screening strategies to target a particular protein epitope or modification	110
Figure 4.5. Two-stage in situ/click OBOC screening strategy to identify a biligand capture agent for PSA	111
Figure 4.6. Representative image of an in situ click/OBOC screen with enzymatic amplification.....	117
Figure 4.7. Structures of active site targeted cyclic anchor and cyclic biligand, and SPR interactions with PSA.	118

FIGURES, Chapter 5:

Figure 5.1. XPS data of H-C≡C-[Si(111)].....	142
Figure 5.2. High-resolution XPS spectra of H-C≡C-[Si(111)].....	143

Figure 5.3. Cyclic voltammograms (CVs) for 1s and 3s	146
Figure 5.4. ATR-FTIR characterization of H-[Si(111)] and H-C≡C-[Si(111)]..	150
Figure 5.5. Demonstration of bioattachment to acetylenylated Si(111).....	153

FIGURES, Appendix C:

Figure C.1. Pulsed-Liquid cLC Extended method and gradient.....	177
Figure C.2. Final steps of Flask Normal Extended flask cycle.....	178
Figure C.3. Edman traces for artificial azide-containing amino acids.....	178

SCHEMES, Chapter 2:

Scheme 2.1. Artificial amino acid synthesis.....	22
Scheme 2.2. Selection of anchor ligand by OBOC screen.....	27
Scheme 2.3. Selection of biligand by in situ click/OBOC screen.....	31
Scheme 2.4. Acetylation and click reactions for a 6-mer peptide.....	40

SCHEMES, Chapter 3:

Scheme 3.1. Esterase activity of bCAII.....	76
---	----

SCHEMES, Chapter 5:

Scheme 5.1. Strategy for the functionalization of Si(111).....	130
Scheme 5.2. Synthesis of electroactive benzoquinone 1	132
Scheme 5.3. Steps required to non-oxidatively activate Si(111) surfaces.....	136

TABLES, Chapter 2:

Table 2.1. Libraries used in selecting a triligand capture agent for bCAII.....	26
Table 2.2. Screening summary.....	29

TABLES, Chapter 5:

Table 5.1. Measured contact angles for various Si(111) surfaces.....	140
Table 5.2. Measured molecular surface coverages for Si(111) surfaces.....	148

TABLES, Appendix B:

Table B.1. First-generation anchor ligand screen An1	168
Table B.2. Second-generation anchor ligand screens An2a and An2b	169
Table B.3. In situ biligand screen Bi1	170
Table B.4. On-bead biligand screens Bi2a and Bi2b	171
Table B.5. First-generation in situ triligand screen Tri1	172
Table B.6. First-generation on-bead triligand screen Tri2	173
Table B.7. Second-generation triligand screens Tri3 and Tri4	174
Table B.8. Azide-free in situ triligand screen TriX (control).....	175