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ABSTRACT 

This thesis describes technologies for the rapid and scalable production of high-

affinity, high-specificity protein capture agents which possess the affinities and 

specificities of antibodies, but also exhibit improved chemical, biochemical, and 

physical stability.  I will discuss how the chemical flexibility of comprehensive, one-

bead-one-compound (OBOC) libraries of oligopeptides may be combined with iterative 

in situ click chemistry to select multi-ligand capture agents.  Large OBOC libraries form 

the basis of individual peptide ligands, and also permit chemically designed stability 

through the incorporation of artificial (azide or acetylene) and non-natural amino acid 

building blocks.  The in situ click chemistry method then utilizes the target protein as the 

catalyst, or template, for assembling its own biligand via formation of a 1,2,3-triazole 

linkage between two individual ligands (azide and acetylene).  This process can be 

repeated to produce triligands, tetraligands, and other higher-order multi-ligands with an 

accompanying increase in affinity and specificity through cooperative interactions.  

Once found, multi-ligand capture agents can be produced in gram amounts via 

conventional synthetic methods such as the Cu(I)-catalyzed azide-alkyne cycloaddition 

(CuAAC).  This is a general and robust strategy for the inexpensive, high-throughput 

construction of protein capture agents that can be exploited to detect protein biomarkers 

in multi-parameter clinical diagnostic assays. 

While high-affinity protein capture agents represent a significant technology 

advance, they are just one component of what is necessary for highly multiplexed 

measurements of protein biomarkers.  It is also important to develop or optimize the 

actual assay platforms that can enable sensitive multi-parameter protein measurements 

using these capture agents.  Silicon nanowire (SiNW) nanoelectronic sensors can 
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provide quantitative, label-free multi-parameter measurements of protein biomarkers in 

real time.  However, SiNW sensors can be challenging to deploy because unprotected Si 

forms a native oxide layer that can significantly reduce the detection sensitivity of the 

nanowire sensors via dielectric shielding.  Another technical challenge is the 

development of chemistries which allow for the selective encoding of nanowire surfaces 

with the capture agents.  To overcome these challenges, the final part of this thesis 

presents a general method to functionalize organic and biological molecules on highly 

passivated Si(111) surfaces with minimal surface oxidation. 
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