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Abstract 

  Glass and gel formers exhibit unusual mechanical characteristics and amorphous phases 

which are highly dependent on their thermal history.  We introduce a lattice model with T-

shaped molecules that exhibits glassy and gel-like states without introducing artificial 

frustration.  This system has a large number of degenerate energy minima separated by small 

barriers leading to a broad, kinetically-explored landscape.  It particularly replicates valence-

limited materials, which can form self-assembled materials with highly controlled physical 

properties.  Despite its remarkable simplicity, this model reveals some of the fundamental 

kinetic and thermodynamic properties of the glass transition and of gel formation.   

  A dearth of low temperature experimental and simulation measurements has inhibited 

investigation in this field.  We overcome this difficulty by using a modified Metropolis 

Monte Carlo method to quickly provide equilibrium samples.  Then kinetic Monte Carlo 

techniques are used to explore the properties of the equilibrium system, providing a 

touchstone for the non-equilibrium glassy states.  

Fully-dense simulation samples reveal a fragile-to-strong crossover (FSC) near the mean-

field (MF) spinodal.  At the FSC, the relaxation time returns to Arrhenius behavior with 

cooling.  There is an inflection point in the configurational entropy, cs .  This behavior 

resolves the Kauzmann Paradox which is a result of extrapolation from above the inflection 

point.  In constrast, we find that the cs  remains finite as 0T → .  We also observe different 

kinetics as the system is quenched below the FSC, resulting in non-equilibrium, amorphous 

states with high potential energy persisting for long periods of time.  Simulation samples 

remain at non-equilibrium conditions for observation times exceeding those permitting 

complete equilibration slightly above the FSC.  This suggests the FSC would often be 
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identified as the glass transition without indication that there is true arrest or a diverging 

length scale.  Indeed, our simulations show these samples do equilibrate if sufficient time is 

allowed.  To elucidate the complex, interdependent relation time and length scales at the FSC 

will require careful consideration of the spatial-dynamic heterogeneity.   

Dynamic mean-field simulations at high density and in the solvated regime reveal a rich 

range of morphological features.  They are consistent with simulated and experimental 

results in colloidal systems.  Stability limits of decreasing length scales beneath the phase 

separation bimodal coincide into a single curve, which terminates at the fully-dense MF 

spinodal, suggesting that gelation and vitrification are the same phenomena.  Our work 

indicates that gelation is, therefore, a result of phase separation arrested by a glass transition. 
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 where 1R
R

T TT k
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Overview of Thesis 

Amorphous materials are ubiquitous in our daily lives.  As a high school teacher in the 

state of California, our curriculum acknowledges four states of matter: solid, liquid, gas and 

plasma. We give a nod to polymers and large biomolecules and move on.  Inevitable when 

discussing materials in class, the items which catch students’ eye are much more 

complicated.  What is an LCD?  Why are there different recycling codes, shouldn’t we be 

able to mix it all together?  What was that stuff they served down in the cafeteria today?  It is 

wonderful to explain what we know and then challenge them to pursue open questions.   

The center of this thesis is to develop an understanding of the characteristics and dynamics 

of amorphous materials.  We are able to draw connections between two broad classes of 

glasses and physical gels by introducing a strikingly simple T-shaped molecular model on a 

two dimensional lattice.  Having gained important insight into this relation, we then pursue 

more fundamental issues of the nature of the glass transition.  

The focus of chapter one1 is to identify and connect amorphous materials that are arrested 

on some time scale without invoking artificial frustration.  The mean-field phase diagram of 

this model mimics those phase diagrams calculated for other systems2 and seen in 

experiments3.  Dynamic mean-field simulations demonstrate a wide variety of phases 

including liquid, solutions, glassy materials, foams and gels.  Further evaluation 

demonstrated a kinetic preferred alignment and highlighted the large number of degenerate 

energy minima on the landscape.  The calculated instabilities within the two phase region of 

the phase diagram converged along a line terminating in the fully-dense spinodal, suggesting 

a strong connection between gelation and the glass transition.  Initial results of the dynamics 

of the simulations suggested the possibility of a return to strong behavior at the lowest 
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temperature.  We thus were able to define gelation in this model as phase separation arrested 

by vitrification.  As we could investigate equilibrium at low temperatures, we noticed that 

there was behavior consistent with the fragile-to-strong crossover. 

In the time between publishing our first paper1 (chapter 1) and now as we are finishing 

work leading towards a second paper (chapter 2) several powerful conclusions were drawn in 

other research groups.  In models capturing a wide range of experimental observations, from 

specific DNA tetramers3 to silicon4, a commonality was emerging.  The controlling feature in 

the modeled potentials was the ability to suppress the isotropic portion allowing anisotropic 

forces to dominate5.  This leads to local ordering which stabilizes the overall amorphous 

materials inducing dynamic arrest, observed as vitrification or gelation2.  This suggests that 

the overall behavior of many of these materials can be reduced to generic descriptions of 

their valency6, 7 .   

However, as a field we are still bound by the fundamental difficulty encountered in 

simulation: computation time.  Achieving low temperature results, particularly those which 

are able to avoid vitrification, will require the development of complex mechanisms to 

overcome difficulties in time scales in the potentials studied thus far8.  Based on our success 

with this model in our initial work, we sought to overcome this difficulty.  Placement of our 

T-shape molecules on a lattice naturally invokes the valence-limited potential with a 

computationally efficient Hamiltonian.  We correctly postulated that using a combination of 

Monte Carlo simulations would allow us to investigate our system at the desirable low 

temperatures. 

The second chapter is also formatted as an independent paper, although it includes a more 

extensive discussion relating to what may often be framed as future work in a dissertation.  
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Within this work, we concentrate on the glass transition in the fully-dense region.  Our model 

allows us to quench the simulation samples to very low temperatures using a modified 

Metropolis Monte Carlo recipe.  We can then apply the appropriate kinetic Monte Carlo 

approach to study the dynamics and structure of the equilibrium systems.  This provides a 

backdrop against which we consider the temperature quench of simulation samples using the 

kinetic Monte Carlo method.  Glassy states which persist for long lengths of time are 

documented.  Overall, we see a clear signature of the fragile-to-strong crossover (FSC) at low 

temperatures.  However, we do not observe evidence of a divergent length scale consistent 

with a thermodynamic critical point.  We also find that the Kauzmann paradox is resolved by 

the change in the temperature dependence of the relaxation time at the fragile-to-strong 

crossover and, indeed, observe a positive configurational entropy as 0T → .  There is a 

dramatic change in the relaxation behavior at the FSC which would lead to a lower limit of 

the experimentally observable relaxation to equilibrium; however, this is not a fundamental 

kinetic arrest.  

In seeking simplicity of explanation, we do not want to lose sight of the rich complexity 

and wide variety of glassy materials.  However, with this in mind, we sally forth into an 

investigation of a simple model with surprisingly rich dynamics and thermodynamics. 

 


