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The hydrodynamic equations for a ciemlcally reacting and inter-
nally relexing fluid are cbtained in a suitable form, and are then used
to find the dispertion and absorpticn of plane infinitesimal sound waves,
Cnly the case of no viscosity, heat conduction, and diffusion is con-
sidered, It is shown that the interference effects between relaxation
processes are not, in general, negligible compared to the relaxation
effects themselves. A specific example, that of oxygen gas at 2500° ¥
is considered giving an idea of the relative magnitudes of the several

effects which are involved.
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INTRODUCTION

In spite of activity in the field of ultrasonics since Einstein's
original suggestion of their application to chemical reaction rates(l’Z’B)
there does not seem to be an adequate treatment of the interference be-
tween the two principle mechanisms of internal relaxation, thermal relaxa-
tion and chemical relaxation (chemical reaction). In most treatments of
ultrasonics which do treat both of these phenomena, they are covered
separately, and it is at most implied that these may occur together, in
which case they are presumably to be treated as parallel processes, that
is processes which occur simultaneously but which do not directly effect
one another,

In general we may divide the processes which effect sonic propa-
gation into two broad groups, external and internal. The external pro-
cesses include dynamic effects, heat conduction, diffusion, and viscosity.
The thermal relaxations include the slow energy exchange between the
several degrees of freedom, principally between the molecular transla-
tional degree and the rotations and the vibrations of the molecule, and
are treated as though they consisted of independent fluids occupying the
same physical space, but only weakly coupled with each other, and not of
necessity in equilibrium with each other. The internal relaxations are
in general more sensitive to the structure of the molecules than are the
external processes, and it is clear that a chemical reaction may, by means
of changing the molecular structure, drastically alter or destroy a parti-

eular mode of vibration or rotation. In the case of the dissociation of
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diatomic molecules: we shall loose all of our rotational and vibrational
degrees of freedom upon reaction, For this reason it is desirable to
examine the coupling between the chemical reaction and the thermal de-
grees of freedom,

When we speak of a relaxation process we here refer to systems
vwhich approach equilibrium in a certain manner, according to definite
rate laws, The rate law which we refer to is the familiar linear decay

d U

1
- t = ~ (u - uo)

for the arbitrary quantity u. uo is the equilibrium of u in the sense of
a small object approaching thermal equilibrium with an infinite heat
bath at a temperature corresponding to the energy content uo. The general

solution to this equation is well known, and is

-u ] e-t/? +u
o

= [u
[e]

Yie) (t = 0)

If however we impress upon this system the requirement that the equilibrium
value uo is made to vary periodically with time, as will be the case for
sonic waves, so that u = Uelari we find that the general solution takes

the form

U iwt ., =t/
(t) "1 4+ iwe

The general solution consists of two parts, the first is the steady state
wave solution which is the part we are interested in for sonic studies,
and the second part decays to zero exponentially, representing a transient

response to the initial conditions. In our treatment we shall systematically
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assume that the transient has had time to decay to zero, so that we need
consider only the steady state wave solution.

We may write the coefficient of U eiQH:of the steady state solution
in the form (1 - iw?) / (1 + w2?2?), In this form we may see that if
is small that the coefficient is essentially unity, if w~ is large the
coefficient is very small and almost purely imaginary, and as «w< increases
the relative size of the imaginary part to the real part increases, becom-
ing equal at wv = 1 although the absolute value of the term continuously
decreases. The complex character of the coefficient represents a phase
shift which results in the absorption of the sonic wave by internal
relaxation., We may consider the two waves which are somewhat out of
phase to interfere destructively by means of the weak coupling of the
energy exchange. We may expect this form of absorption to occur most
strongly in the region of w~ = 1, as at low frequencies there is only a
small phase difference, and at high frequencies there is negligible ampli-
tude for the energy u.

Throughout the following discussion we shall make the assumption
that we may neglect the dynamic effects of viscosity, diffusion, and heat
conduction., These effects may not always be negligible in practice, but
their inclusion here would unduely cloud what we are attempting to show.
For all discussions on ultrasonics proper we shall assume that we are
dealing with plane waves traveling in the x direction, and with small
(infinitesimal) amplitude,

There seems to be no great unity in the manner in which the final
equations for the sonic propagation are obtained. However, it seems that
when one wishes to investigate several simultaneously occurring processes

k)

it is advantageous to use a method similar to the one used by Mazo s @s
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it provides a uniform procedure which more clearly suggests the algebraic
steps which are to be taken. In the following presentation we shall
utilize this procedure, and we shall try to use the language of chemical

thermodynamics, and methods in keeping with its spirit where possible.



HYDRODYNAMICS

To begin our study of the ultrasonic effects on a fluid due to
simultaneous chemical reaction and internal relaxations we must first
obtain the appropriate hydrodynamic equations for the fluid, Hydrodynmamic
equations for such fluids have been developed, see for example Wood and
Kirkwood(s), however, these equations are not in the form which we should
prefer for our present purposes, Thus we shall develop our own equations
in a suitable form.

In this development we shall assume an arbitrary number of thermal
degrees of freedom, labeled i, and an arbitrary number of chemical reac-
tions, labeled «a,

We shall single out one of the thermal degrees.of freedom, that
degree containing the translational degree along with any other rotational
and vibrational degrees which may remain in thermodynamic equilibrium with
it for the entire range of experimental conditions considered, aad denote
this degree of freedom as the external degree of freedom, and set i = 1
for this degree. The other thermal degrees will be the internal degrees
with i = 2, 3, etc. and are those usually vibrational degrees which are
so weakly coupled with the translational degree that they are not able to
maintain thermodynamic equilibrium, or remain undetectibly close to that
equilibrium, with the translational degree for the dynamic conditions
imposed upon the system, The classification of the i degrees of freedom
is thus seen to be operational in nature. TFurther it may be seen that in

general the internal degrees will represent individual vibrational modes
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of a single type 'of molecule, and will thus have a zero contribution from
all but that one component of the mixture, although we may treat them
thermodynamically as though they were a property of the fluid as a whole
in their hydrodynamic effects.

The notation used for the chemical reaction is that commonly used

(6) We shall

for the thermodynamic treatment of irreversible processes,
use Greek indices to denote the chemical reaction and Latin indices for
the individual components. Thus the ath chemical reaction is written
e % % O

where we may adopt either of the standards, that Xs represents either the
number of moles or the mass of the component s in the chemical reaction.
We shall adopt the latter standard, so that VS“ is the specific stoichio-
metric coefficient, that is the number of grams of s required to convert
1 gram of the reactants in their proper proportions into one gram of
productss,

For any extensive property of the system we may write

o
vg X d Aa

(1) ax = 5 s

s a
in which % is the partial specific value 6f x: for the component s, and the
rate of the chemical reaction is: d ,aa/at, In particular we know that if

we consider the mass of a component s, that 2; is unity, and we then obtain

[+
dms = Za )/s d.Ra

We now divide our thermodynamic properties, such as temperature,
heat capacity, entropy, etc., according to the thermal degree with which
they are associated. Thus we have that T, is the external temperature,
and will be the same for all components, g;i is the partial specific entropy

of the component s in the ith degree of freedom, and so forth. We have
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thus assumed implicitly that there exists thermodynamic equilibrium within
each degree of freedom i, although this does not necessarily obtain between
the several degrees. The approach to equilbrium between the several de-
grees will be assumed to obey appropriate relations depending only upon
these stated variables.

The assumption of thermodynamic equilibrium within each degree of
freedom gives us the i equations defining thermodynamic equilibrium,

dE, = T, dS, - & (Pav) + Z_pg dm

in which the Kroneker delta function & i1 tells us that the external degree
alone is dependent upon the state variable V, the specific volume, and it
alone specifies the pressure,

Considering for the moment only the internal degree of freedom i,
we may choose to specify the state by the internal temperature Ti and the
state of the chemical reaction ,&a. Writing the entropy in terms of these

variables we may express the entropy change by

(3) as, =/°5% df, + S 985, da
1 BT P 1 [+ 4 S A [+
i a’TyA
B
d8 , -
z( i) ar, + 55, v B 4A
AT; /A

Now ( asi/ aTi);\ constitutes the definition of the internal heat capacity,
being just Ci/Ti. The chemical potential term of equation 2 may be written

in the form

Tg Py dmg = Xy Voo Fy a A
= e I - " o &
- Za Y5 Vg Hsi d A Za Z‘s s T‘isi d Aa

Combining this with equation 3 and substituting into equation 2 we find,

for the ith internal degree of freedom
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dT. ~
b4 3, — «
(&) dE, /dt = ¢; = Sa2s V& HydA

In as much as the internal degrees are unaffected by the pressure-volume
parameter the internal energy and the internal enthalpy will be the same
and may be used interchangeably.

We are now in a position where we must make some assumptions as to
the actual form 9f the processes by which the energy content of the inter-
nal degree i changes. As is conventional we assume that there is a

"leakage" of energy at a rate governed by the difference in the two

temperatures Ti and Tj as(7)
T, = Ti
d = = .
(5) (3E,/3t) 5, C.Q; Q Zj .

T&. is thus the relaxation time for the process between degrees i and j
and is clearly symmetrical with respect to i and j. PFor most cases it
will be only the transfer of energy between the external degree and the
given internal degree which will be important, although other cases have
been discussed as well.(g)
In addition to the thermal relaxation, however, we must consider
the possibility of there being a simultaneous addition of or withdrawal of
energy from the degree due to the chemical reaction which we have supposed
to be present at the same time.(g) We may think of the average properties
of the molecules which react or are formed in the chemical reaction, say
between the collision which forms the "activated complex' and the imme-
diately preceding collision for a molecule, or between the breakup of the
"activated complex" and the immediately subsequent collision, and write
these special averages for the "activated state" using a special subscript

A, We thus define the '"activated state' not by its own properties but by

the properties of the more stable components of the fluid which produce it.
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It is interesting to note that if a single component enters more
than one chemical reaction it may have very different activation proper-
ties, especially if it is in one case a product and in another case a
reactant. In such a case it would be necessary to also designate which
reaction one was referring to as well,

In order that the thermodynamic approach to the problem be rea-
sonable we must have that the deviation from equilibrium properties
rapidly redistribute among all of the molecules which contain that degree,
so that on the whole the deviation from a statistical thermal distribu-
tion be small for the fluid as a whole. It is known that in gases this
redistribution takes place on the order of a few molecular collisions for
the translational degree and on the order of a few tens of collisions for
rotational degrees, with the translational degree. Vibrational degrees,
however, may take many thousands of collisions for such an equilibrium to
be achieved. It is reasonable to assume, however, that for vibratioms,
resonant collisions may redistribute the excess energy more rapidly than
this within the degree, If this is indeed the case we may talk of an
internal temperature which only slowly comes into equilibrium with the
external (translational) degree temperature,

If in equation 1 we set i; to be(ﬁ;s)A we obtain the change of
internal energy due to the chemical reaction. Combining this with equa-
tion 5, we may obtain a second equation for the rate of change of the
internal energy. Equating this expression to equation 4 we may find the
rate of change of the internal temperature with time in terms of the pro-
perties of the fluid which are assumed to be known and those which we

desire to know, in particular the rate of the chemical reaction.
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daT, ‘

S S e o
(6) Ci at Ci Ql + Zazs VscJL I:(Esi).ll. - Esi:I A

a
In the same manner one may obtain the rates for the external tempera-

ture and the pressure (for the latter case one sets the entropy to be a

function of the pressure, density, and the extent of the chemical reac-

tion, where as in the former case it is to be a function of the external

temperature, density, and the extent of the chemical reaction). In ob-

taining these relations one makes use of the equations of state as ex~

pressed by the coefficients of thermal expansion and of compressibility,

which we define as

1 (av 1/3V
o= [ K - o [ ——
B = Vv Va3 /7,a =Ty (67’)1',/1

In the present case our second equation for the rate of change of
the energy content, takes the form of the principle of conservation of
energy so that

Eojge = By = 25 Iy
in which the primed summation over i implies that the summation is carried
out only over i 2 2, The same, of course, holds for the energies in the
"activated state'" but due to the way in which they are defined we must
set the total energy change there equal to zero.

For the total energy change dE/dt, we make the local assumption
that for each small volume element of the fluid the motion is adiabatic,
that is that no heat flows across the boundary, and thus that dE is just
the pressure-volume work done, If we make use of the equation of continuity,
dpr/dt = - P v o i, we may write for the changes in the external tempera-

ture and pressure
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-l
and u.

d’P ﬁ , B o ~t ~ ’
Cv . /K Zi C;Q + /K L 5, v & [(E A - H 1 A,
-€ . ¢ a ¥ ]
P/K Vveu + P "p/k zazs Ve Vs 2y

We now have i + 1 equations for our i + 2 unknowns, the Ti's, P,

The remaining equation needed to define the system is just the

equation of motion, which for our simple fluid is

(9)

du
— = -VP
£ dat

The important hydrodynamic equations are collected in table 1,
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= - 7P
at
4ap B . B = > )
it - /K Zi C;Q + KI I, VSO [(Esi)A - H,] /la

~ .

8 pLgLelR a

K u+f K Zdzs Vs s a
dTi -~ ~ »
—_—t . o5 a -
dt Z:i. c;iQi + zazs Vs [(Esi)A Hsi} ;La

T, T.

£x K acs s s "ta
4T,

_—];- a ~ - ~ [
at = CiQi +Zaz s Vs C(Esi)A Esi] Aa
Table 1,

hydrodynamic equations: for a reacting and relaxing fluid.



SONIC PROPAGATION

We shall now proceed to apply the hydrodynamic equations which we
have just obtained, to the problem of the ultrasonic properties of the
fluid. From this point on we shall, for simplicity and clarity, assume
that there is only one internal degree of freedom which we shall continue
to denote by the subscript i, and only one chemical reaction allowing us
to drop all summations over the index a.

At this point we could insert the appropriate terms for viscosity
etc. which work as essentially parallel processes for the most part, but
we shall not attempt to include these terms as they would vastly compli-
cate the presentation of what we are endeavoring to show.

We may now consider the chemical reaction rate., We may assume that
during the passage of the ultrasonic waves the chemical reaction never
deviates greatly from its equilibrium value for the conditions at that part
of the wave, It is thus advantageous to express the state of the reaction
as its deviation from the equilibrium value ¢R°° Further we shall assume
that the rate of the chemical reaction is proportional to its instantaneous
deviation from the local equilibrium, and depends only upon the tempera-
ture, and the densities of the several components,

(10) A=A, o+ €

-l -1,
d/l/dt = /.( = /Ta g = /‘G. (7(-/7.0) = 'f(To f’a)
b

For the reaction rate we shall now adopt the linerization of

(10,4)

Kirkwood and Crawford o In accord with such a procedure we define
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the: quantity

, BAFA )
1) G = (MB )T’P =2 5, v,* vpP (_gz‘_‘xz_)
S

in which the notationux for the extensive gquantity x is used to denote the
change of that quantity due to the change of the progress variable by one
unit, that is 44 = 1 gm,

Vg X5

Keeping only the linear term in a Taylor series expansion, we obtain our

reaction rate linearized about the equilibrium value AO.

: i i ap
12 G A= 08, == 08, —= . Ay &
(12) ’ iat T i dt Vi
;1- _]_-_[AHi dTi . AHi dTi _QVQ.E]
el 1, at T dt dt

We now impress upon the hydrodynamic equations the requirements of
a steady state (after the transients have died out) wave motion., If in
the absence of the sound wave the pressure and temperature would attain
the values Po and To for all Ti’ and there would be no flow, u = O, we re-
quire that in the presence of the steady state sound wave the values which
obtain are

u Su exp f i(wt - kx)}

H

P

L

P +0 P expfi(wt - kx)}

s T, o+ S T, expfi(wt = kx) }

The quantities J P, o Ti’ and & @, are the complex amplitudes of the varia-

tions; often these variations themselves are called excess pressure, etc,
If we now put these values into the hydrodynamic equations and

carry out the differentiations, we obtain a set of four linear, homogeneous

equations in the excess pressure, temperatures, and velocity. The solution
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to these equations requires that the determinant of the coefficients vanish.
However, prior to forming this determinant we note that it shall be conven-

ient to write the several terms in terms of the dimensionless variables

@ aP
1 w)r - ($E

= [reference speed of sound high

= @
iXr PK frequency]?
kVo
6 = T
Z, = w7, 2 = @7
i i a a
(aE, -oH, )(s H,
aC - iA i J)
ij T.GC
J P
g B D) SRR CLICh
B T, GB B T. GB

If we were to attempt to solve the secular determinant as it would
now be obtained, we would run into a bit of formidable algebra which at
best would be clumsy to use, and at worst would hide the significant terms
in a welter of small terms. We shall thus neglect the term [( & Ei)A -bEi],
which we hope will be small, The justification for the neglect of this term
is that according to present notions about the mechanism of vibrational
relaxation, the process goes in a series of steps through the several vi-
brational quantum levels with successively slower rates of relaxation, so
that effectively (f&)A should correspond to only a few vibrational levels
at most. Now it may be that this is comparable to or even large compared
to ﬁi, however it would be a rather extraordinary case in which this term
will not be small compared to the size of the chemical reaction terms re-

lated to the external degree, We shall thus neglect the effect of this

term from this point on, and we may later examine its effect by an
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approximate method.

If we do set this term equal to zero, we see that the relaxation

uB, s C, aC,,
parameters -—EA ’ "Ei s+ and o 2l are reduced to zero., The bottom line
P P

of our determinant may now be easily eliminated, and simultaneously we -
arrange our terms so that the intermal relaxation time occurs only in the

forms 1/(1 + iZi). If we also take advantage of the thermodynamic relations

BT, . Cp
> - ¢ -c =R pv2k = %B/cy = ¥

we may reduce our determinant to a three by three form.

(14) | 2% 0
o k(TR w) L RE e )
.
~! ! 1 /
(b’-/)o- _;T AgA ? %{&) I+?:2.,¢( £ 1+I,2‘ ‘\Cl‘]’L ~{_ﬁ 7 A ])
R
I+,20 Ty -/

We may now expand the determinant and solve for ¢, Upon doing this

we obtain a quadratic equation in ¢, of the form

(15) Ac?2 + B = O
AC11 AC . C.
A"'(:Ll'z[c *1312. cil]* l+liZ E}'*l>
+ 12, N 5 p .
B b, ([AC11 . 1 Acia'__1+ s K . 7'-1 ABj_._A_
1+ iz c 1+ iz, cp K Y B

K;II ABB1+ 1 Aﬁ-i—D.g. Ci/Cv (l+ AK’_IE\) L

s g " . +
l+1Zi B l+1Zi 1+1Za
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In solving this equation for ¢ it must be remembered that ¢ is complex, and
we must find both the real and the imaginary parts. In the event that the
several parameters are small we may satisfactorily use an approximate method
for the solution of this equation. By expanding as power series and keeping
only the terms. through the first power in the relaxation parameters we ob-

tain an approximate expression for ¢ ,

1l- iZi aC A K

K

X-l[kC11 12.:

(16) 1 - iz (
= = +

, L
1+ Z2g2 2

,_l[ABm (Aﬁ1 1-iz, ABi)D 1 -1z, z’-lci/cp
- -+ — +*~ =
2 B B 1+2;2 B 1+23% 2

If however we find that the relaxation parameters are not small com-
pared to unity we may, at somewhat greater labor, obtain an algebraic solu-
tion. Since A and B are both complex numbers we may divide each into its
real and its imaginary components and label them Ar, Ai' Br’ and Bi' There
should be no confusion between subscripts denoting as imaginary part of a
number and the subscript denoting the internal degree of freedom.

In terms of these quantities equation 15 is written

- (4B + Aﬁ) + i (ArB].;- AB) C oy e ik

Ar;z + Ai_zj r i

But we know how to take the square root of a number, in terms of X, and X,
the values for the real and the imaginary parts of are given by

( Gr)z %['fxr? + xi?41 +x ]

1]

( <7“i)2 wl xrf + x,2 7 - xr]

i -
Upon examination we see that X being the sum of two comparable

numbers, is likely to be large compared to X which is the difference of
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these two numbers., We may then expect, to a good degree of approximation,
to be able to expand our solution on this basis and obtain a simpler re-
sult. This approximate result in terms of the variables Ar’ Ai’ Br’ and

Bi will finally be

AB + A.B,
id

(17) 5;2 = r r g
(AB, - A.,B)?
6i: = TS GT Tn
* W(ABy + AgBi)(ALL + Aj)
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CALCULATIONS

Now that we have obtained our results for the ultrasonic absorption
and dispersion properties of the fluid, we shall compare the relative
magnitudes of the several terms for a specific case, One system in which
there is some current interest is the dissociation at high termperatures of
molecular oxygen. Because it has attracted some interest there is suffi-
cient data on the several effects that we may calculate the desired quanti-
ties. We shall see that the temperature which is necessary for this re-
action to become important is rather high, thus much of the interesting
data has been obtained from shock tube measurements., This system is con-
sidered more because the data is available than because the usual type of
ultrasonic measurements could be easily carried out on this system,

The reaction, written in terms of the reacting masses is written

0 + —2 m - 0, -2 m = O

Mn My

The species m in the third body which microscopic conservation of energy
and of momentum demand. We shall assume that any third body, such as atomic
or molecular oxygen, argon, etc., will serve the third body purpose with
equal efficiency.

In as much as the relaxation terms are multiplied by the factor
1/(1 + i%Z), or equivalently (1 - iZ)/(1 + Z2) we shall expect the maximum
absorption to occur in the region Z = 1, that is, when the frequency is in
the range w = 1/7. Also we might expect the maximum effect from the

chemical reaction to occur at a temperature for which the equilibrium
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constant is of the order unity, so that both species are present in appre-
ciable quantities, and a small displacement of the equilibrium will signify
the reaction of a larger quantity of material, This condition obtains in
the region above 3500° K, however, and this is a temperature at which it
does not seem practical to work with ultrasonics., If instead we ask that
both Z's have the value unity at close to the same frequency, we shall
find that this condition is met in the region just about 2500° K. We
shall choose the temperature 2500° K for our comparison.

(13) that the dissocia~-

For the temperature 2500° we find from tables
tion constant for molecular oxygen is 1,56 x 10°, The molecular weights
are 32 for molecular oxygen and 16 for atomic oxygen. If we assume an
equilibrium mixture of these two species, with no impurities present, we
shall obtain for m the average molecular weight of 28,8, Similarly we
find that the pertinent data for the reaction, assuming the perfect gas
law to hold at this temperature, will be

aH, = 3900 cal gm ' oH, = -61.8 cal gn '

aV = 6,411 gm" £ = 0.147 gn 1”°

From these data we may calculate the relaxation parameters. If we
again utilize the perfect gas assumption we find for the coefficients of
compressibility and thermal expansion

= /T = bx10"" deg '

B
K = 1/? = 1 atm™?

We now require only G in order to find the values of the relaxation
parameters., G is given by eguation 11, and for a perfect gas we may write
down the chemical potential for the component r at once. To within the

arbitrary zero of potential

1
A =3~ BT lnx + (constant w.r.t. x_)

r My
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£ = L RT L6 rs
d xg My xr

If we restrict ourselves to a single chemical reaction as before, we see that

( vr)2

G = BT I_ cal gn

Mp xp

For our case of 0, — 20, we have that all of the specific stoichiometric
coefficients are unity, and we obtain the value 182 cal gm_z for G, The
corresponding values of the relaxation parameters are shown in table 2,

¢ 011/cp = 113

Aag

Bo, o 31
“Pig = 205

ABi/B

[}

0.55

AK7K

Y

0,03

Table 2.

We see quite clearly that the chemical terms are large compared to
the vibrational terms, and indeed that the term2 C,, may, to a reasonable
approximation be considered to be the only effective term. Thus we con~
clude that if we were to actually perform an ultrasonic experiment on this
gas, we would obtain essentially only chemical reaction rate information.

In practice we would expect to perform such experiments at a lower
temperature, and most likely in a diluted gas. ILowering the temperature
will have two effects; first, it will directly lower T, and its correlated

i

E, and second, it will lower the equilibrium constant and hence raise the
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value of G through the concentration dependence. The major effect of
dilution will be to decrease the relaxation parameters due to the rise in
G, If we dilute one volume of oxygen gas at 2500° with 99 volumes of
argon at that temperature, the relaxation parameter 1\011/Cp drops off to
the value 4,3, with the other heat capacity terms falling off in the same
ratio.

Returning to table 2, we see that the parameter & Gli is not small
compared to Ci’ even though the usual treatment of the subject would not
consider the term, as it would not arise in strictly independent parallel
processes., From equation 16 in which 2 Cli appears multiplied by the
factor 1/(1 + iZi)(l + iZa), we may expect this term to be negligible if
the relaxation time of the two processes are sufficiently different, however
it may become appreciable if the two processes have similar relaxation times,
Although the ratio 4 Cli/Ci will depend upon the temperature, it will not,
to our approximation, depend upon the dilution as both 1/G and Ci must have
the same dependence upon the concentration of total oxygen at any one
temperature,

Returning to equation 10, if we once again examine the rate,
linearized about the equilibrium condition, we see that the relaxation

time for the reaction will be

o fr
Ta = L st Vs(afs>equil.]-1

Thus the relaxation times, using the rate equations obtained from shock
tube experiments,(lz) will be T& = 10,4 seec. and T, o= 2.1 sec,

Ve now have all of the data needed for a sample calculatior of the
sonic properties of the fluid just described. The results of such a calcu-

lation are presented in figure 1 and figure 2, Figure 1 gives the dispersion

as V/VO, which is l/cr° Figure 2 gives the absorption as oy which is
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aVo/w s Or al°/277, where « is the absorption per unit length, and lo is
the "reference" wave length, the wave length which the sound wave would
have at a given frequency if it traveled at the reference speed of sound,
These calculations were made using equation 17.

We may note that both the maximum absorption and the maximum rate
of change of the dispersion occur in the vicinity of 2 megacycles. This
corresponds roughly to Za = 100, Normally one expects these to occur in
the region of Z being unity, however in the case of the dispersion a glance
at equation 17 shows that the dispersion should not become unity until Ar
and Bf' and Ai and Bi become equal., This condition is not approached until
the dominant relaxation parameter 2 C,,./(1 +vZa2) becomes small compared to
one, as may be seen from equation 15.

The low: frequency dispersion, V/Va is 0,919, The maximum absorption
is about k.4% for the distance 10/2'77°

We are now ready to inquire into the effect of the quantity
[(AEi)A - A Ei] on the propagation of the sound waves in the fluid. First
we consider the magnitude of the terms, As we have mentioned before, we do
not expeet the size of this term to exceed a few times the vibrational level
spacing, and if 4 EiA were sufficiently small we might indeed have it be
zero. If we assume that the term [(4 Ei)Av_ A»Ei] has the value of one
vibrational quantum per molecule, it will take on the value 14l cal gm-1,
which is indeed a value which is comparable to the value of Ei at this
temperature., At lower temperatures we would expect ﬁi to have a lower value
and [(A-Ei)A -Aa Ei} to have a higher value, so that at low temperature
this cross term may be the most significant of the cross terms, We will
expeet the value of a Ci to be of about the same size as A C

1 1
a ﬂiA will be about the same size as A'Bio The quantity 2 Gii will be

.9 and
i?
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appropriately smaller than the other heat capacity parameters,
If we return to our original four by four determinant, we find that

the bottom row now reads

0 Ll E e s AL
¥ (g )1+2) ¢ (1520 )(+e2) L Ce /h&»}[} (+:2:)(1+22) Cp -

We may immediately notice two things about these quantities, first that all
of the relaxation parameters appear multiplied by the factor[iZi/(l + iZi)}x
1+ iZajqwhich takes on a very small value when either Zi or Za is far from
unity, and secondly that all of these parameters are multiplied by the
number Cp/Ci. However, these quantities, upon expansion of the determinant,
will all be multiplied by at least one other relaxation parameter, so that
their effect on the final result will be small at least in the case of a

dilute gas, The values of the heat capacity parameters are

4 C.l aC,,

—== . 4,08 L 0.112
Cx c
P P

If we now expand this determinant, keeping only first order terms
in the relaxation parameters we will obtain an expression corresponding to
equation 16 for © 4 which will have all of the inherent limitations which

equation 16 has.

- - C -
) el 1 -4z U--_L[AC“ . 1 -dZpy 41 -i3% [ aC.y
» 6 = 1+22\ 2 C 1+ 226" 2 1+22 C
a P i i P
+l-lZ%- ACiiJ+ ¥ oK [ABlA +l J.Zi 4B le_l
. 2 2
1+ Zl Cp K B 1+ Zi B 2
Y- 1 [ 4By . 1-i4iz ABiD+ 1-1iZz ¥ =1 9_1_
- 2 )
2 B 1+ Zi B 1+ Zi 2 Cp
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The only difference between equation 16 and equation 18 is that the latter

includes the term ¥ -1 l-lﬁ._ [ ° Ci; + - izi ‘ Cii] and the term
2 1+2.2 Cp 1+22 ¢
ic i P

y=-1 l-iZi aBya

> T+ 7% B For the above case this amounts to about 4% of the
Py 12

1l =-4iZ A4 (G

other terms, and in effect just doubles the term T Z<} Cli found in
i2 P

equation 16, The small difference between equation 16 and equation 18 gives
no indication of the increase in the number of terms which would appear

in the analogue of equation 18, as all terms which were products of relaxa-
tion parameters were discarded in arriving at equation 18. The analogue

of equation 15 will have the same form as equation 15, however the coeffi-
cients A and B will be more complicated and more difficult to use in cal-

culations,
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