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Maxima pars uatum, pater et iuuenes patre digni, 
 decipimur specie recti. Breuis esse laboro,  

obscurus fio; sectantem leuia nerui  
deficiunt animique; professus grandia turget;  

serpit humi tutus nimium timidusque procellae;  
qui uariare cupit rem prodigialiter unam,  
delphinum siluis adpingit, fluctibus aprum. 

 
The vast majority of poets, both the laureate 
And the young ones some day laurelworthy, 

We all are deceived by the appearance of right. 
I strive to be succinct, yet I become obscure. 

My mind and nerves fail in the pursuit of eloquence. 
Turning epic, I merely might appear swollen. 
Or fearful of such storms I could creep along 

Safely upon well-trodden ground. 
Since he who wants to remake a world 
With overweening genius often paints  

A dolphin burrowing in the woods 
Or a boar at play in the rolling waves. 

 
Quintus Horatius Flaccus, Ars Poetica 
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Abstract 

The study of the modern martian atmosphere is (1) a key to the climate of Mars’s past; (2) useful 

for comparison with other terrestrial planets such as the Earth; and (3) can support hazard 

analysis and weather forecasting for future exploration and habitation of the planet. Recently, it 

was found that middle atmospheric downwelling near the south pole during southern winter is 

much more vigorous than predicted by most Mars general circulation models. This underestimate 

may be due to models erroneously representing the radiative forcings in the atmosphere due to 

aerosol and/or the mechanical forcings due to wave breaking. Errors of this kind would influence 

middle atmospheric dynamics and likely would result from incomplete understanding of lower 

atmospheric processes such as dust transport. Here, retrievals of vertical profiles of temperature, 

pressure, dust, and water ice from the Mars Climate Sounder (MCS) on Mars Reconnaissance 

Orbiter (MRO) are used to characterize the atmospheric circulation of Mars and its forcings. First, 

I consider the annual cycle of the thermal structure and aerosol distributions of the lower and 

middle atmosphere and investigate the degree of coupling between the lower and middle 

atmospheric mean meridional circulations. To evaluate the role of wave breaking, I look for local 

convective instabilities in the martian middle atmosphere: a key indicator of saturating vertically 

propagating waves such as the gravity waves and the thermal tides, which are important sources 

of wave drag in the Earth’s mesosphere. I then characterize the vertical distribution of dust and its 

approximate radiative effects during northern spring and summer and show there is usually a 

maximum in dust mass mixing ratio at ~15—25 km above the tropics, which is not currently 

simulated by models. Next, I evaluate the relative importance of dust storm activity, pseudo-moist 

convection due to the solar heating of dust, orographic effects, and scavenging by water ice 

clouds in producing this maximum. Finally, I show that published models underestimate the 

thickness and altitude of water ice clouds in northern summer.
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