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“Lanthanons – these elements perplex us in our researches, baffle us in our speculations, 

and haunt us in our very dreams.  They stretch like an unknown sea before us; mocking, 

mystifying and murmuring strange revelations and possibilities.” 

 

Sir William Crookes, in an address to the Royal Society, February 1887
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ABSTRACT 

Bacterial spores, or endospores, are produced by certain genera of bacteria under 

stress and are considered to be one of the most resilient forms of life on Earth.  Detection 

of endospores is vital in areas ranging from bioburden reduction to homeland security.  

Rapid bacterial spore detection is achieved by targeting dipicolinic acid (DPA), a 

chemical marker unique to endospores.  An improvement on the current bacterial spore 

detection assay based on sensitized lanthanide luminescence is presented through the 

implementation of a dipicolinate-specific Tb3+ receptor site.  The use of a chelating 

ligand such as DO2A (1,4,7,10-tetraazacyclododecane-1,7-bisacetate) can increase both 

the sensitivity and selectivity of the assay.  The luminescent series of Ln(DO2A)(DPA)- 

complexes (Ln = Sm, Eu, Tb and Dy) is fully characterized in terms of structure, 

photophysics and stability, and the Tb(DO2A)+ binary complex in particular is 

investigated as a sensing complex for bacterial spores.  The ‘ligand enhancement’ 

observed in all cases improves dipicolinate binding affinity by approximately one order 

of magnitude over the lanthanide ion alone.  Binding of the DO2A ligand also appears to 

generate a ‘gadolinium break’ effect, creating a discrepancy in binding affinity in the 

lanthanide series and rendering the terbium complex the most effective dipicolinate 

receptor site of all investigated.  We have also extended the application of this receptor 

site design technology to the targeted detection of other aromatic analytes of biological 

relevance, such as salicylates and catecholamines.  Our work indicates that construction 

of effective receptor site complexes is not governed by net electrostatic considerations, 

and that local charge variations from the ligand-induced perturbation of lanthanide 

electron density may play a significant role.  This work sets the stage for the development 
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of the next-generation terbium(macrocycle) complex for bacterial spore detection, with 

the aim of constructing a solid-state endospore microsensor for applications ranging from 

sterilization validation to life detection in extreme environments. 
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DEFINITIONS AND NOMENCLATURE 

 

In this dissertation the conventions of photophysics and photochemistry as 

described in Principles of Fluorescence Spectroscopy (J. R. Lakowicz) and Modern 

Molecular Photochemistry (N. J. Turro) will be followed.  ‘Fluorescence’ is defined as 

the process of “allowed” radiative emission that occurs from a singlet excited state to a 

singlet ground state (S1 → S0 + hυ).  ‘Phosphorescence’ is defined as the “forbidden” 

transition from a triplet excited state to a singlet ground state (T1 → S0 + hυ).  

‘Luminescence’ is an all-encompassing term that refers to emission of light from any 

substance, and occurs from electronically excited states.  Therefore ‘luminescence’ will 

be used to describe any radiative transition that cannot be defined as either fluorescence 

or phosphorescence, such as lanthanide luminescence. 

Electronic states are represented according to the Russel-Saunders coupling 

scheme by the expression 

J
12S L+

 

where L is the total angular momentum, S is spin multiplicity and J is the total angular 

quantum number.  Electron spins are coupled together separately from the orbital angular 

momenta, and the orbital moment is unquenched. 


