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“Lanthanons — these elements perplex us in ouarekes, baffle us in our speculations,
and haunt us in our very dreams. They stretchdikenknown sea before us; mocking,

mystifying and murmuring strange revelations ansgisgailities.”

Sir William Crookes, in an address to the Royali&y¢ February 1887
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ABSTRACT

Bacterial spores, or endospores, are produced hgircgenera of bacteria under
stress and are considered to be one of the maksémésorms of life on Earth. Detection
of endospores is vital in areas ranging from bidbarreduction to homeland security.
Rapid bacterial spore detection is achieved byetarg dipicolinic acid (DPA), a
chemical marker unique to endospores. An improveroa the current bacterial spore
detection assay based on sensitized lanthanidenédstence is presented through the
implementation of a dipicolinate-specific *fbreceptor site. The use of a chelating
ligand such as DO2A1(4,7,10tetraazacyclododecarig?-bisacetate) can increase both
the sensitivity and selectivity of the assay. Timainescent series of Ln(DO2A)(DPA)
complexes (Lh = Sm, Eu, Tb and Dy) is fully chaesiled in terms of structure,
photophysics and stability, and the Tbh(DO2Abinary complex in particular is
investigated as a sensing complex for bacteriakespo The ‘ligand enhancement’
observed in all cases improves dipicolinate bindiffqhity by approximately one order
of magnitude over the lanthanide ion alone. Bigdihthe DO2A ligand also appears to
generate a ‘gadolinium break’ effect, creating scdipancy in binding affinity in the
lanthanide series and rendering the terbium compihex most effective dipicolinate
receptor site of all investigated. We have alsemrded the application of this receptor
site design technology to the targeted detectiontloér aromatic analytes of biological
relevance, such as salicylates and catecholami@es.work indicates that construction
of effective receptor site complexes is not govedrbg net electrostatic considerations,
and that local charge variations from the liganddiced perturbation of lanthanide

electron density may play a significant role. Tk sets the stage for the development



viii
of the next-generation terbium(macrocycle) comg@xbacterial spore detection, with
the aim of constructing a solid-state endosporeaaensor for applications ranging from

sterilization validation to life detection in extne environments.
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DEFINITIONS AND NOMENCLATURE

In this dissertation the conventions of photophysand photochemistry as
described inPrinciples of Fluorescence Spectroscof@y R. Lakowicz) andModern
Molecular PhotochemistryN. J. Turro) will be followed. ‘Fluorescence’ defined as
the process of “allowed” radiative emission thatws from a singlet excited state to a
singlet ground state {(S—» S + hv). ‘Phosphorescence’ is defined as the “forbidden”
transition from a triplet excited state to a sihgtgound state (T — S + hv).
‘Luminescence’ is an all-encompassing term thagrseto emission of light from any
substance, and occurs from electronically excitates. Therefore ‘luminescence’ will
be used to describe any radiative transition thanhot be defined as either fluorescence
or phosphorescence, such as lanthanide luminescence

Electronic states are represented according toRbssel-Saunders coupling

scheme by the expression

25+1 L
J

where L is the total angular momentum, S is spirtiplicity and J is the total angular
guantum number. Electron spins are coupled togstmarately from the orbital angular

momenta, and the orbital moment is unquenched.



