
 
 

Chemical­Scale Studies of the Nicotinic Acetylcholine Receptor: 
Insights from Amide­to­Ester Backbone Mutagenesis 

 
 
 
 
 

Thesis by 
 

Kristin Rule Gleitsman 
 
 
 
 
 

In Partial Fulfillment of the Requirements  
 

for the Degree of  
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

 
 
 

Division of Chemistry and Chemical Engineering 
California Institute of Technology 

Pasadena, California 
2010 
 

(Defended April 12, 2010) 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2010 
 

Kristin Rule Gleitsman 
 

All Rights Reserved 



iii 
 

Acknowledgements 
 

  First and foremost I would like to thank my advisor, Professor Dennis Dougherty, who 

has supported me throughout my graduate career both personally and professionally.  Although 

it took me longer than most to find my way in the lab, I have come to appreciate the level of 

intellectual freedom he affords his graduate students.  While this meant plenty of room to make 

(and learn from) mistakes in the first few years of my graduate career, it has ultimately fostered 

a degree of independence that I believe will serve me well throughout my scientific career.  

There is nothing like graduate school to instill a strong sense of humility, occasionally trending 

toward insecurity, so these acknowledgements would not be complete without thanking Dennis 

for being there with words of encouragement at critical moments during the last five and a half 

years.   

  The expertise of Professor Henry Lester and his laboratory were critical to the 

completion of the research contained in this thesis.  Henry's depth of knowledge and experience 

in the field of electrophysiology provided essential perspective for interpreting unusual results.  

In addition, Henry served as a wellspring of experimental suggestions, whose value lay not only 

in the ideas themselves, but also in honing my critical thinking skills in deciding which 

experiments to pursue.  Of the Lester lab, I am particularly indebted to Dr. Rigo Pantoja for 

helping me design and execute my single‐molecule TIRF experiments. 

  I would also like to thank my committee, Professors Peter Dervan, Harry Gray, and Shu‐

ou Shan.  Their guidance and advice have been invaluable, especially when planning the next 

steps in my career.  In addition, it has truly been a pleasure to interact with people who are not 

only brilliant, but also kind, encouraging, and interesting.  I only wish there had been more 

opportunities for interaction. 



iv 
 
  Past and present members of the Dougherty lab have certainly shaped my graduate 

school experience.  In particular, the candid humor of Dr. Michael Torrice was incredibly 

important in getting me through some rough patches.  Likewise, Jai Shanata has been an 

incredible colleague and friend.  Several chapters of this thesis (4 and 5, in particular) would not 

have been possible without his intellectual contribution, as well as moral support.  Sean 

Kedrowski has also been a pleasure to work with since he joined the lab.  More recently, he and 

Ethan Van Arnam have been extremely tolerant of the not infrequent baby‐induced disruptions 

to our otherwise quiet bay.  I owe my deepest gratitude to the entire lab for their support of me 

and their enthusiastic acceptance of my daughter, Malina, over the past year, as I attempted to 

juggle new motherhood with research and thesis writing.  In particular, Ariele Hanek not only 

helped in proofreading parts of this document, but also brought us numerous delicious meals in 

the early weeks of Malina's life.  Nyssa Puskar has been an exceptional colleague over the last 

year, acting as a sounding board for proposal ideas and other professional quandaries, as well as 

being an excellent copy editor.  Although I wouldn't accuse Nyssa of being quiet, her 

unassuming manner has come to define the meaning of "still waters run deep" for me.  Finally, I 

must thank Angela Blum for indulging my desire to do one last project as I was finishing up in 

the lab by agreeing to tackle the experimental component of the research described in Chapter 

7 (and for proofreading that chapter).   

  Since moving to Pasadena more than five years ago, I have been blessed in the 

friendships that I have made here.  I specifically want to mention Heidi Privett, Michael Adams, 

and Valerie Scott.  Their friendship over the years has had a tremendous impact on my life, more 

than I can even begin to describe here.   

  Several people from my pre‐Caltech existence also deserve acknowledgement.  My 

mother has provided support and encouragement my entire life.  Her sacrifices through difficult 



v 
 
times in our family's history ensured that I had the opportunity to pursue my passions.  My awe 

of what she was able to accomplish as a single parent has only increased over the years, 

especially since becoming a parent myself.  My biology teacher from high school, Spike Black, 

initially sparked my interest in science.  My freshman chemistry professor, Dr. Bob Olsen, is the 

reason that I decided to major in chemistry in the first place.  Karen Wovkulich, herself currently 

a graduate student in the physical sciences, has been with me every step of the way‐ choosing 

the seat next to her in first semester freshman year is one of those happy twists of fate that 

likely changed the course of my life.  Not only did she help inspire my early passion for 

chemistry, by providing help with problem sets and friendly competition, she also introduced 

me to my husband.   

  I also owe an enormous debt of gratitude to my husband, Wolfe Gleitsman.  Beginning 

with his willingness to follow me to California in the fall of 2004, Wolfe has supported me in 

innumerable ways throughout my graduate career.  Most recently, he has been sharing in the 

adventure of new parenthood, whether that meant staying up with Malina so that I could get 

some much needed sleep or filling in for gaps in childcare so that I could complete some final 

experiments.  And to Malina, who will not remember this somewhat hectic chapter in our life, 

thank you for the excited smiles when I come home in the evening, for the occasional night of 

good sleep, and for just being the charming little person you are. 

 

 

 
 
 
 
 



vi 
 

Abstract 
 

  This thesis describes the use of peptide backbone amide‐to‐ester mutations to study the 

structure and function of ligand‐gated ion channels.  The research described herein has been 

done on the muscle nicotinic acetylcholine receptor, a prototypical ligand‐gated ion channel in 

the cys‐loop superfamily.  Backbone mutagenesis in these proteins provides insight into specific 

intermolecular interactions that are critical to function, as well as answering more fundamental 

questions about the role of the peptide backbone in long‐range conformational changes in these 

allosteric receptors.  

  Chapter 2 describes the identification of a key hydrogen bond near the binding site that 

is involved in the gating pathway.  We found that the backbone N‐H of a loop C residue makes a 

hydrogen bond to an anionic side chain of the complementary subunit upon agonist binding.  

The hydrogen bonding partner is not the residue predicted by structural data, but instead an 

aspartate that was originally believed to participate directly in agonist binding.   

  In chapter 3 we consider the involvement of the peptide backbone in the binding‐

induced conformational changes that lead to channel gating.  Single backbone mutations in the 

β‐sheet‐rich extracellular domain were well tolerated, whereas two proximal backbone 

mutations led to nonfunctional receptors.  These results support a model in which backbone 

movements in the outer β‐sheet are important for receptor function. 

  Chapter 4 describes a new method ‐ elucidating long‐range functional coupling in 

allosteric receptors (ELFCAR) ‐ that should be broadly applicable to determining functional roles 

of residues in allosteric receptors. 

  Chapters 5 and 6 describe electrophysiological and computational investigations into 

the role of amide‐to‐ester mutations in the aromatic binding box of the nicotinic receptor.  
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Echoing the results of chapter 3, these mutations largely reveal an overall tolerance of backbone 

mutations in the binding site.   

  Finally, in chapter 7, we explore the use of ester and N‐methyl backbone modifications 

to uncover the role of conformational changes at an unusual vicinal disulfide bond near the tip 

of the C‐loop.  Using ab initio calculations, we demonstrate that N‐methylation and 

esterification of this ring structure in model peptides dramatically impacts its cis‐trans 

conformational preferences.   
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