

**Chemical-Scale Studies of the Nicotinic Acetylcholine Receptor:
Insights from Amide-to-Ester Backbone Mutagenesis**

Thesis by

Kristin Rule Gleitsman

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California
2010

(Defended April 12, 2010)

©2010

Kristin Rule Gleitsman

All Rights Reserved

Acknowledgements

First and foremost I would like to thank my advisor, Professor Dennis Dougherty, who has supported me throughout my graduate career both personally and professionally. Although it took me longer than most to find my way in the lab, I have come to appreciate the level of intellectual freedom he affords his graduate students. While this meant plenty of room to make (and learn from) mistakes in the first few years of my graduate career, it has ultimately fostered a degree of independence that I believe will serve me well throughout my scientific career. There is nothing like graduate school to instill a strong sense of humility, occasionally trending toward insecurity, so these acknowledgements would not be complete without thanking Dennis for being there with words of encouragement at critical moments during the last five and a half years.

The expertise of Professor Henry Lester and his laboratory were critical to the completion of the research contained in this thesis. Henry's depth of knowledge and experience in the field of electrophysiology provided essential perspective for interpreting unusual results. In addition, Henry served as a wellspring of experimental suggestions, whose value lay not only in the ideas themselves, but also in honing my critical thinking skills in deciding which experiments to pursue. Of the Lester lab, I am particularly indebted to Dr. Rigo Pantoja for helping me design and execute my single-molecule TIRF experiments.

I would also like to thank my committee, Professors Peter Dervan, Harry Gray, and Shou Shan. Their guidance and advice have been invaluable, especially when planning the next steps in my career. In addition, it has truly been a pleasure to interact with people who are not only brilliant, but also kind, encouraging, and interesting. I only wish there had been more opportunities for interaction.

Past and present members of the Dougherty lab have certainly shaped my graduate school experience. In particular, the candid humor of Dr. Michael Torrice was incredibly important in getting me through some rough patches. Likewise, Jai Shanata has been an incredible colleague and friend. Several chapters of this thesis (4 and 5, in particular) would not have been possible without his intellectual contribution, as well as moral support. Sean Kedrowski has also been a pleasure to work with since he joined the lab. More recently, he and Ethan Van Arnam have been extremely tolerant of the not infrequent baby-induced disruptions to our otherwise quiet bay. I owe my deepest gratitude to the entire lab for their support of me and their enthusiastic acceptance of my daughter, Malina, over the past year, as I attempted to juggle new motherhood with research and thesis writing. In particular, Ariele Hanek not only helped in proofreading parts of this document, but also brought us numerous delicious meals in the early weeks of Malina's life. Nyssa Puskar has been an exceptional colleague over the last year, acting as a sounding board for proposal ideas and other professional quandaries, as well as being an excellent copy editor. Although I wouldn't accuse Nyssa of being quiet, her unassuming manner has come to define the meaning of "still waters run deep" for me. Finally, I must thank Angela Blum for indulging my desire to do one last project as I was finishing up in the lab by agreeing to tackle the experimental component of the research described in Chapter 7 (and for proofreading that chapter).

Since moving to Pasadena more than five years ago, I have been blessed in the friendships that I have made here. I specifically want to mention Heidi Privett, Michael Adams, and Valerie Scott. Their friendship over the years has had a tremendous impact on my life, more than I can even begin to describe here.

Several people from my pre-Caltech existence also deserve acknowledgement. My mother has provided support and encouragement my entire life. Her sacrifices through difficult

times in our family's history ensured that I had the opportunity to pursue my passions. My awe of what she was able to accomplish as a single parent has only increased over the years, especially since becoming a parent myself. My biology teacher from high school, Spike Black, initially sparked my interest in science. My freshman chemistry professor, Dr. Bob Olsen, is the reason that I decided to major in chemistry in the first place. Karen Wovkulich, herself currently a graduate student in the physical sciences, has been with me every step of the way- choosing the seat next to her in first semester freshman year is one of those happy twists of fate that likely changed the course of my life. Not only did she help inspire my early passion for chemistry, by providing help with problem sets and friendly competition, she also introduced me to my husband.

I also owe an enormous debt of gratitude to my husband, Wolfe Gleitsman. Beginning with his willingness to follow me to California in the fall of 2004, Wolfe has supported me in innumerable ways throughout my graduate career. Most recently, he has been sharing in the adventure of new parenthood, whether that meant staying up with Malina so that I could get some much needed sleep or filling in for gaps in childcare so that I could complete some final experiments. And to Malina, who will not remember this somewhat hectic chapter in our life, thank you for the excited smiles when I come home in the evening, for the occasional night of good sleep, and for just being the charming little person you are.

Abstract

This thesis describes the use of peptide backbone amide-to-ester mutations to study the structure and function of ligand-gated ion channels. The research described herein has been done on the muscle nicotinic acetylcholine receptor, a prototypical ligand-gated ion channel in the cys-loop superfamily. Backbone mutagenesis in these proteins provides insight into specific intermolecular interactions that are critical to function, as well as answering more fundamental questions about the role of the peptide backbone in long-range conformational changes in these allosteric receptors.

Chapter 2 describes the identification of a key hydrogen bond near the binding site that is involved in the gating pathway. We found that the backbone N-H of a loop C residue makes a hydrogen bond to an anionic side chain of the complementary subunit upon agonist binding. The hydrogen bonding partner is not the residue predicted by structural data, but instead an aspartate that was originally believed to participate directly in agonist binding.

In chapter 3 we consider the involvement of the peptide backbone in the binding-induced conformational changes that lead to channel gating. Single backbone mutations in the β -sheet-rich extracellular domain were well tolerated, whereas two proximal backbone mutations led to nonfunctional receptors. These results support a model in which backbone movements in the outer β -sheet are important for receptor function.

Chapter 4 describes a new method - **elucidating long-range functional coupling in allosteric receptors (ELFCAR)** - that should be broadly applicable to determining functional roles of residues in allosteric receptors.

Chapters 5 and 6 describe electrophysiological and computational investigations into the role of amide-to-ester mutations in the aromatic binding box of the nicotinic receptor.

Echoing the results of chapter 3, these mutations largely reveal an overall tolerance of backbone mutations in the binding site.

Finally, in chapter 7, we explore the use of ester and N-methyl backbone modifications to uncover the role of conformational changes at an unusual vicinal disulfide bond near the tip of the C-loop. Using ab initio calculations, we demonstrate that N-methylation and esterification of this ring structure in model peptides dramatically impacts its *cis-trans* conformational preferences.

Table of Contents

Acknowledgements	iii
Abstract	vi
List of Figures	x
List of Tables	xii
Chapter 1: Introduction to Chemical-Scale Neuroscience	I-1
1.1 Toward a Chemical-Scale Understanding of the Brain	I-1
1.2 The Nicotinic Acetylcholine Receptor: The Prototypical Cys-Loop Receptor	I-2
1.3 Heterologous Expression of Synaptic Proteins and Electrophysiological Characterization	I-4
1.4 Unnatural Amino Acid Incorporation	I-7
1.5 α -Hydroxy Acid Incorporation for Probing the Peptide Backbone	I-10
1.6 Dissertation Research	I-11
1.7 References	I-13
Chapter 2: An Intersubunit Hydrogen Bond in the Nicotinic Acetylcholine Receptor Contributes to Channel Gating.	II-1
2.1 Abstract	II-1
2.2 Introduction	II-1
2.3 Results	II-4
2.4 Discussion	II-9
2.5 Materials and Methods	II-13
2.6 References	II-17
Chapter 3: Probing the Role of Backbone Hydrogen Bonding in a Critical β-Sheet of the Extracellular Domain of a Cys-Loop Receptor.	III-1
3.1 Abstract	III-1
3.2 Introduction	III-1
3.3 Results	III-5
3.4 Discussion	III-11
3.5 Materials and Methods	III-14
3.6 References	III-17
Chapter 4: Long-Range Coupling in an Allosteric Receptor Revealed by Mutant Cycle Analysis.	IV-1
4.1 Abstract	IV-1
4.2 Introduction	IV-1
4.3 Results	IV-5
4.4 Discussion	IV-16
4.5 Materials and Methods	IV-24
4.6 References	IV-28
Chapter 5: Probing the Role of the Peptide Backbone in the Aromatic Binding Box of the nAChR	V-1
5.1 Introduction	V-1
5.2 Results and Discussion	V-3

5.2.1 α -Hydroxy Incorporation at Aromatic Box Residues in the Primary Subunit	V-3
5.2.2 Biphasic Behavior of Complementary Binding Subunit Ester Mutations	V-6
5.2.2.1 Whole-cell Electrophysiological Characterization of the Biphasic Phenotype	V-6
5.2.2.2 Biphasic Behavior is Theoretically Possible from a Single Receptor Population	V-8
5.2.2.3 Anomalous Receptors Display Normal Subunit Stoichiometry	V-11
5.2.2.4 Biphasic Behavior: Novel Phenomenon or Experimental Artifact?	V-14
5.3 Materials and Methods	V-17
5.4 References	V-20
Chapter 6: Studies of α-Hydroxy Acid Incorporation <i>in silico</i>	VI-1
6.1 Introduction	VI-1
6.2 Results and Discussion	VI-1
6.2.1 Homology Modeling	VI-2
6.2.2 Ester Parameterization	VI-3
6.2.3 Molecular Dynamics Simulations	VI-5
6.2.3.1 Structural Analysis of MD Trajectories	VI-5
6.2.3.2 Correlated Motion in MD Trajectories	VI-11
6.3 Conclusions and Future Work	VI-13
6.4 Materials and Methods	VI-14
6.5 References	VI-29
6.6 Appendices	VI-31
6.6.1 Constructing a Basic Homology Model using Modeller	VI-31
6.6.2 Backbone Ester Parameters for GROMACS	VI-35
6.6.3 Minimization and Molecular Dynamics Parameter Files	VI-38
Chapter 7: Investigations into the Role of the Unusual Disulfide in the nAChR Agonist Binding Site.	VII-1
7.1 Introduction	VII-1
7.2 Results and Discussion	VII-5
7.3 Conclusions and Future Directions	VII-10
7.4 Materials and Methods	VII-10
7.5 References	VII-12

List of Figures

Figure 1.1	General topology of the muscle nAChR	I-4
Figure 1.2	Basics of an electrophysiology assay	I-6
Figure 1.3	Natural and unnatural amino acids	I-7
Figure 1.4	Overview of unnatural amino acid incorporation	I-8
Figure 1.5	Implementation of the suppression methodology in <i>Xenopus laevis</i> oocytes	I-9
Figure 1.6	Amide-to-ester mutations	I-11
Figure 2.1	Structure of AChBP with agonist bound, highlighting the potential interaction partners of the α S191 backbone NH	II-3
Figure 2.2	Natural and unnatural amino acids and their EC ₅₀ ratios	II-4
Figure 2.3	Mutant cycle analysis between α S191 and γ D174/ δ D180	II-7
Figure 2.4	Coupling energies between α S191 and its potential interaction partners	II-8
Figure 3.1	The outer β -sheet of the nAChR	III-2
Figure 3.2	Schematic of the backbone amide versus backbone ester bond in the context of a β -sheet	III-4
Figure 3.3	Characteristics of nAChR with backbone mutations in β -strands 7 and 10	III-6
Figure 3.4	Analysis of nonfunctional nAChRs containing two amide-to-ester mutations by TIRF microscopy	III-10
Figure 4.1	Residues in the nAChR that do and do not exhibit long-range coupling with the pore domain	IV-3
Figure 4.2	The relationship between EC ₅₀ and Θ	IV-7
Figure 4.3	Scheme for double mutant cycle analysis	IV-10
Figure 4.4	Values of Ω for mutations in the extracellular domain	IV-10
Figure 4.5	Single-channel currents for select mutants	IV-12
Figure 4.6	Values of Ω for various reporter mutations	IV-13
Figure 4.7	Variation in I _{max} in response to introduction of a β L9'S reporter mutation	IV-15
Figure 5.1	Overall structure of the muscle nAChR	V-1
Figure 5.2	EC ₅₀ shifts and Ω -values for α -hydroxy mutations in the binding box of the primary subunit	V-3
Figure 5.3	Hydrogen bond existence maps for α L199	V-5
Figure 5.4	Dose-response relations for the wild-type and backbone mutants at γ 55/ δ 57	V-7
Figure 5.5	Basic kinetic scheme for the muscle nAChR	V-9
Figure 5.6	Photobleaching histograms	V-13
Figure 5.7	Dose-response curve for partial agonists	V-16
Figure 6.1	DOPE profiles for selected homology models	VI-3
Figure 6.2	RMSD and energy minimization profiles for model peptides	VI-4
Figure 6.3	RMSF profiles and B-factors of the WT and ester-containing proteins	VI-6
Figure 6.4	RMSD profiles	VI-7
Figure 6.5	Side chain plane angle fluctuations of the aromatic box residues	VI-8

Figure 6.6	Movement of the C-loop at the α/γ interface	VI-9
Figure 6.7	Hydrogen bond existence maps between the α_1 C-loop and the γ -subunit	VI-10
Figure 6.8	Positions of the C-loops in the first and second MD simulations on the ester-containing protein at 2650 ps	VI-11
Figure 6.9	Correlated fluctuations of the C^α atoms	VI-13
Figure 6.10	Sequence alignment between <i>Lymnaea stagnalis</i> AChBP and the muscle nAChR	VI-15
Figure 7.1	Conformation of vicinal disulfide in various crystal structures	VII-3
Figure 7.2	Cysteine analogues used in this study	VII-5
Figure 7.3	Geometry optimized structures	VII-6
Figure 7.4	Selected conformational parameters	VII-8
Figure 7.5	Relative energy differences between amide, ester, and N-methyl model compounds	VII-8

List of Tables

Table 2.1	EC ₅₀ values ± standard error for mutations made in this study	II-5
Table 3.1	EC ₅₀ and Hill coefficient (\pm SEM) values for mutations made in this study	III-7
Table 3.2	Puncta densities and corresponding estimated current sizes from TIRF microscopy experiments	III-9
Table 4.1	EC ₅₀ values with and without β L9'S reporter mutation for coupled and non-coupled residues	IV-23
Table 4.2	Coupling parameters, Ω , and I_{max} ratio from whole-cell data	IV-24
Table 5.1	Fold shifts in EC ₅₀ values and Ω -values for backbone ester mutations in the α -subunit	V-4
Table 5.2	Parameters used in STOIC simulations	V-11
Table 7.1	Relevant parameters for the geometry-optimized structures in this study	VII-7