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Chapter 7: Investigations into the Role of the Unusual Disulfide in
the nAChR Agonist Binding Site

7.1 Introduction

Disulfide bonds are generally viewed as stabilizing elements in protein function.
However, available high-resolution structural data over the last two decades have revealed that
many important proteins contain so-called “forbidden disulfides,” or highly constrained S-S
linkages that may be a net destabilizing presence in the protein. Various potential roles have
been ascribed to these special case disulfide bonds, including as redox, mechanochemical, or
structural switches. > One of the most interesting “forbidden disulfides” is the vicinal disulfide,
in which two adjacent cysteines form a disulfide bond. Examples of this type of disulfide have
been found near the active site of a small number of enzymes,** as well as in the agonist

binding site of the nicotinic acetylcholine receptor (nAChR).>*®

In the case of the nAChR, conformational changes in the ring formed by this vicinal
disulfide have been proposed to play a role in modulating receptor function.>” Specifically,
changes in the cis-trans preferences of the peptide backbone between these residues could be
altered by the binding of acetylcholine, contributing to the opening of the central ion conducting
pore. In support of this hypothesis, it has been known for some time that proper function of the
nicotinic receptor is highly sensitive to the oxidation state of these cysteines.® In addition, Cys-
to-Ser mutations at either residue lead to a non-functional receptor.’ Alternatively, this
unusual disulfide bond could be important in localizing a diffuse negative potential near the

agonist binding site or conferring additional rigidity on the C-loop.

Computational and NMR studies of small model peptides have yielded conflicting results

about the putative native conformation of this unusual eight-membered, disulfide-containing
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ring.>® Part of this is likely due to the unique nature of these eight-membered rings. Although
otherwise unconstrained peptide bonds have a strong trans preference, small amide-containing
rings may adopt a cis conformation to minimize ring strain. In a systematic study of the
conformational preferences of amide-containing rings,™ it was found that rings with fewer than
eight atoms prefer the cis geometry, while those with greater than eight atoms adopt the trans
conformation. In rings containing exactly eight atoms, such as the one formed by the vicinal
disulfide, both cis and trans isomers can be accommodated, making it difficult to predict which

geometry will be preferred.

Avizonis et al.” performed natural abundance *C and proton NMR spectroscopy in
aqueous solution on a pentapeptide (TCCPD) corresponding to amino acids 191-195 of the
nAChR. They additionally performed molecular mechanics calculations to predict the lowest
energy conformers and to estimate the barriers to interconversion. Good agreement was found
between theory and experiment, with both cis and trans conformations detected and having
AG” values at 20 °C of approximately 15 and 21 kcal/mol, respectively. Molecular mechanics
calculations found the lowest energy conformation to be a cis-boat-chair conformation.
Similarly, high level (B3LYP/6-31++ G(d,g)) ab initio calculations on the eight-membered ring
4,5-ditiaheptano-7-lactam and a small model dipeptide HCO-ox-[Cys-Cys]-NH, identified the

lowest energy conformers for both molecules as containing cis amide bonds.*

NMR and Monte Carlo simulations by Creighton et al.® on the small peptide fragment
Ac-ox-[Cys-Cys]-NH, also revealed interconverting cis and trans conformations. However, in this
study the trans amide was found to be preferred over the cis amide by a ratio of 60:40, a ratio
subsequently confirmed by Hondal and co-workers.™ Similar to the study by Avizonis et al., this

ratio implies a relatively low barrier to interconversion between the two conformers.
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Both the Acetycholine Binding Protein (AChBP) crystal structures’*™® and the a; nAChR
crystal structure® reveal a trans amide bond, regardless of the presence of agonist or antagonist
(Figure 7.1). However, these structures are static snapshots, and, in the case of the AChBPs,
they are images of a binding protein - a protein lacking an ion conducting pore and thus
presumably lacking some of the elements that enable signal transduction. As such, one must

always interpret these structures with care.
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Figure 7.1: Crystal structures of a, (orange) and AChBP in the absence (green and yellow) and presence of various
antagonists (magenta and blue) and agonists (red, cyan, and grey).

In addition, the ability to correctly identify the amide-bond conformation relies on the
structure refinement program used in structure determination. Many of these programs allow
for the cis conformation only in the instance of a proline residue or where explicitly defined by
the crystallographer. Furthermore, at medium resolution the electron density of a cis peptide
bond appears remarkably similar to that of a trans peptide bond and the wrong conformation
can easily be accommodated with only minor distortions in the surrounding protein

17,18

environment. The C-loop vicinal disulfide in the original medium resolution structure of

AChBP could not be definitively identified as in the trans conformation,™ although this bond
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preference is shown in the crystal structure. This structure was used to aid in structure
determination for subsequent, higher-resolution structures'****®, drawing into question the

trans bond assignment given in these AChBP structures.

Functional studies probing the role of cis-trans isomerization of this vicinal disulfide are
largely absent in the current literature. One hint as to the conformational proclivities of this
region comes from a solution NMR study of AChBP, where >N-cysteine was incorporated at the
native cysteines involved in both the C-loop and Cys-loop disulfide bonds.?® In the absence of
agonist, five distinct cross-peaks associated with the C-loop vicinal disulfide are observed, where
only two are anticipated. Additional cross-peaks indicate multiple distinct conformations and
could potentially be ascribed to cis-trans isomerization of the peptide backbone at this position.
In the presence of the agonist acetylcholine, the number of cross-peaks associated with this
disulfide is reduced to the expected two cross-peaks, indicating a single predominant

conformation in the agonist-bound state.

Structure-function studies at the C-loop vicinal disulfide have largely failed due to the
intolerance for substitutions at these positions. While conventional mutagenesis of these
residues has been unable to provide insight as to the specific functional role of this unusual
disulfide, unnatural amino acid mutagenesis may afford us the opportunity to probe the role of
conformational flexibility in this region. Specifically, N-methyl amino acids (Figure 2A) have a
lower energy barrier between cis and trans isomers.?* In addition, N-methylation of the amide
bond has been shown to increase the population of the cis conformer in peptides.”>** Most
recently, the presence of the N-methyl group in a model vicinal disulfide-containing dipeptide
led to a dominant cis-conformation (by NMR), whereas both cis and trans conformations were

observed in the amide-containing dipeptide.'* Thus, incorporation of N-methyl cysteine affords
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one possible opportunity to better understand the role of backbone isomerization at this

position.

SH SH

HO : HO
NH OH

Figure 7.2: Cysteine analogues used in this study. A) N-methyl cysteine B) a-hydroxy cysteine

Incorporation of an a-hydroxy cysteine analogue (Figure 2B) could provide another
avenue for addressing this question. Generally speaking, the resulting ester backbone has a

lower barrier for cis-trans isomerization, but a stronger overall trans preference.”*

Before incorporating these analogues into full-length receptors, ab initio calculations
using the Gaussian software package® were undertaken, comparing the native eight-member,
disulfide-containing ring with model peptides containing the two unnatural analogues. By
finding the lowest energy conformations and the relative energy differences between the cis
and trans backbone conformations in each of these three cases (amide, ester, and N-methyl),
we seek to gain a better understanding of the influence of the unnatural substitutions on the

backbone conformations of the vicinal disulfide.

7.2 Results and Discussion

The cis and trans isomers of a model peptide of the form CH3CO-ox-[Cys-Cys]-NH, were
constructed using GausView*> molecule building tools with the S-S disulfide torsional angles of
+/-90. The dihedral angles for these starting structures were derived from the lowest energy

conformers from high-level ab initio calculations on a similar model peptide, HCO-ox-[Cys-Cys]-
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NH,.* These structures were then subject to B3LYP/6-311++G(d,p) level of theory. The
optimized structures then served as the starting point for the ester and N-methyl model
systems, where GausView was used to replace the backbone NH between the two cysteines
with an oxygen or N-methyl moiety, respectively. In total, the energies for twelve geometry-
optimized structures were calculated, with four conformers for each model system (Table 7.1,

Figure 7.3).

cis (+90)

Figure 7.3: Geometry optimized structures. The amide is shown in cyan, the ester in green, and the N-methyl in
pink.
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Energv[Hartrees}I 9, 9, v, v, W, b4 % %3
Cis WT (+90) -1499.30857804] -153.77 -139.05 151.87 143.30 6.80 -159.45 -54.61 95.53
Cis WT (-90) -1499.30727674] -104.83 -152.82 130.89 148.79 -1.83 177.16 -94.14 -80.94
Trans WT (+90) -1499.30315553 68.60 -166.68 -77.03 23.25 -146.12 175.91 43,10 90.12
Trans WT (-90) -1499.29771128) -147.27 81.89 173.00 -43,19 144.01 77.08 -55.71 -86.81
Cis Ester (+90) -1519.16938950| -155.17 -135.07 150.70 -3.48 7.48 -161.49 -58.20 95.37
Cis Ester (-90) -1519.16561903 -63.07 -142.84 129.31 61.65 -2.90 175.34 -86.42 -92.62
Trans Ester (+90) -1519.17167390 67.48 -161.54 -86.89 8.42 -154.74 179.98 44,28 85.90
Trans Ester (-90) -1519.16449190] -146.02 80.28 176.17 -36.01 147.11 74.05 -56.52 -83.20
Cis N-methyl (+90) -1538.62309456| -155.54 -133.60 146.86 34.85 13.82 -162.22 -55.58 95.68
Cis N-methyl (-90) -1538.62226175| -70.28 -134.67 131.89 69.80 -6.52 176.43 -84.12 -92.57
Trans N-methyl (+90) -1538.59575667 -32.31 -158.51 -67.98 63.27 -148.05 173.35 30.46 91.96
Trans N-methyl (-90) -1538.60825774) -147.99 85.38 172.74 -49.22 144,11 73.56 -55.06 -86.15

Table 7.1: Relevant parameters for the geometry-optimized structures in this study. See Figure 7.4 for definitions
of dihedral angles.

Given that the amide structures served as a starting point for the ester and N-methyl
structure geometry optimizations, it is not surprising that geometric preferences of the resulting
amide, ester, and N-methyl structures are, on the whole, similar (Figure 7.4). The largest
differences between these molecules is seen in the external dihedral angles, ¢; and . In
general, a larger range of values is observed for the cis-conformers, versus the trans conformers.
The internal angles, by contrast, remain tightly clustered among the three molecules in both the

cis and trans conformations.

Energetically, however, there are some striking differences among the three molecules.
In agreement with previous studies, a moderate energy difference of 3.4 kcal/mol is seen
between the two lowest energy conformers of the amide, with the preference for the cis-form
(Figure 7.5). As would be predicted from the literature, the N-methylation of the internal amide
leads to a stronger cis preference, resulting in a 9.3 kcal/mol energy difference between the cis
and trans conformations. The ester modification has exactly the opposite effect. In fact, the
lowest energy ester conformer contained a trans bond (w = -154.74°), which was 1.4 kcal/mol

lower in energy than the lowest energy cis conformer.
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Figure 7.4: Selected conformational parameters of the structures evaluated in this study. Torsion angles are
defined in the structure on the right.
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Figure 7.5: A) Correlation of the relative energies of the conformers in this study with the dihedral angle, w. B)
Relative AE between the lowest energy cis and trans isomers.
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These results lead to some clear experimental predictions for models of nAChR function

that implicate the vicinal disulfide. In the first model, the cis/trans preferences of the vicinal
disulfide are altered by agonist binding. This leads to a conformational change in the C-loop that
contributes to receptor activation. In this case, both the N-methyl or ester modifications should
impact receptor function and these effects should be opposite. In other words, if the native
conformation has a slight cis preference in the absence of agonist, then the N-methylation of
the amide nitrogen will stabilize the apo conformation, making the receptor more difficult to

open.

A second model ascribes a primarily structural role to this unusual disulfide; the
conformational constraints of the eight-membered ring provide the correct geometry to the C-
loop, allowing it to make the necessary intermolecular interactions with the agonist and
intramolecular interactions with other residues in the receptor. If this is the case, one
reasonable expectation would be that only the modification that contains the same
conformational inclination as the native peptide bond will be able to produce functional
receptors (e.g., a-hydroxy cysteine, if the wild-type receptor is predominantly trans or N-methyl

cysteine, if the wild-type receptor is predominantly cis at the vicinal disulfide).

In our simple model system, the cis over trans preference was strengthened by 6
kcal/mol in the case of the N-methyl- containing compound. In the case of the ester, the
backbone conformational preference was reversed, an energetic effect worth nearly 5 kcal/mol.
A ten-fold shift in macroscopic ECsg is approximately equivalent to a AAG of + 1.4 kcal/mol.
While these simple model dipeptides cannot possibly capture the complexity of a 280 kilodalton

protein such as the nAChR, even moderately attenuated effects on the cis-trans preferences of
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the vicinal disulfide should be easily detectable in a full-length receptor, provided that the bond

conformation at this position is important for receptor function.

7.3 Conclusions and Future Directions

Ab initio studies with model peptides indicate that the N-methyl and ester modifications
in the eight-membered ring created by the vicinal disulfide do alter the cis-trans preferences of
the protein backbone. The amide backbone has a slight cis preference, which is strengthened by
N-methylation of the amide nitrogen. In contrast, the ester backbone leads to a preference for
the trans conformation. As such, the incorporation of these cysteine analogues into the full-
length nAChR should provide insight as to the importance of cis-trans preferences at the C-loop
vicinal disulfide. However, the calculated cis-trans preferences tell us little about the relative
barrier to cis-trans isomerization for the constrained eight-membered ring. To address this
issue, future ab-initio characterization of the transition states for cis-trans isomerization in the

model peptides is additionally planned.

Synthesis of N-methyl cysteine and a-hydroxy cysteine by Angela Blum is currently
underway. Incorporation of these unnatural analogues at positions 192 and 193 in the muscle
nAChR, followed by electrophysiological characterization is planned. In the event of no
detectable ionic currents, surface expression will need to be confirmed using radiolabeled a-

bungarotoxin and binding studies or fluorescently labeled a-bungarotoxin and TIRF microscopy.

7.4 Materials and Methods

Geometric parameters used in this study are defined in Figure 7.4. Structure building
and subsequent ab initio calculations were carried out using the Gaussian 03 software

package.” at the B3LYP/6-31++G(d,p) level of theory in the gas phase. Geometric parameters
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for the initial structures of the amide-containing model dipeptides were derived from the work
of Hudaky et al.* Cis and trans isomers with both the +90 and -90 conformations of the
disulfide dihedral (x.13) were considered. These geometry-optimized structures then served as
starting points for the ester and N-methyl calculations. Conformational characterization of the

optimized structures was done in GausView and Pymol.?®
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