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ABSTRACT

A new approach to studying the electronic energy band

structure on solids has been developed and calculations are re-
ported for lithium metal. This framework, the GI method, leads to

| one-electron orbitals which in general are singly occupied, have no
~ orthogonality constraints, are no longer required to have the full
symmetry of the éystem, and lead to a description which is valid
at all internuclear distances. Yet they still retain an independent
particle interpretation.

In the application to solids, similar considerations apply.
It is found that, for the alkalis, the resulting one-electron conduc-
tion orbitals can be taken to be Bloch functions for a smaller sym-
metry group than the bcc symmetry of the lattice, Thus, the re-
sulting Brillouin zone (BZ) is smaller than that in Hartree-Fock
(HF), and gaps can occur at the Fermi surface where none were
previously permitted. For lithium these gaps are found to be suf-
ficiently small so that many of the expected properties are not sig-
nificantly affected and the resulting Fermi surface is found to be
quite spherical in good agreement with, for éxample, position an-
nihilation results. However, for such properties as the high field
transverse magnetoresistance, the soft X-ray emission spectrum,
the optical absorption spectrum, the thermoelectric power, and the
Hall coefficient, striking alterations in the description are obtained
which lead to an appealing explanation of many of the anomalous
properties of the alkalis, and seem to be in at least qualitative

agreement with the experimental observations. The Mott paradox
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is also resolved; the metal is found to change continuously from a

conductor to an insulator as the system is dilated.
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I. A NEW APPROACH TO ENERGY BAND CALCULATIONS ON
METALS AND APPLICATION TO LITHIUM METAL



A. INTRODUCTION

In the past, the Hartree-Fock (HF) method1 has been
the basic framework for calculations of electronic energy bands
in metals. However, many of the experimental_ properties of
even the simplest metals, the alkalis, appear to be inexplicable
within the context of this model.

This research was undertaken in the wake of a major ex-
tension and genefalization of the HF method as applied to atoms and
molecules. The GI methvodz’3 while 'quité similar in basic structure
to the HF formalism makes use of a more general operator than
the antisymmetrizer. The G’{ operator when applied to a product of
one electron spacial and spin orbitals produces a wavefunction which
éimultaneously satisfies Pauli's Principle and is an eigenfunction of
S* so that it automatically possesses the correct total spin symmetry.
Since in HF this latter criterion has to be independently satisfied,
somewhat artifactual constraints on the fesulting wavefunction (and

hence on the orbitals) are necessary. That is, the orbitals are



required to be doubly occupied. No such restriction is imposed in
the GI method, and all orbitals are singly occupied. Variational
optimization then always leads to a lower energy than that obtained
in HF. .Other differences also result in the form of the orbitals
which are discussed in more detail in Parts II and IIIL

It became clear that the same orbital restrictions which
caused difficulties in the description of atoms and molecules within
the HF framework could also be the key to some of the conceptual
problems in the application of the theory to the band structure of
solids. It was realized that use of the G}i/ operator for constructing
many electron wavefunctions in a solid could in the case of body-
centered cubic (bcc) structures lead to singly occupied orbitals
which had a periodicity smaller than that of the lattice. This in
turn woeuld lead to qualitative changes in the band structure of the
alkalis, * sinee gaps could now‘occur where none were
previouslyy permitted. We will consider in detail the theory behind
'this approé.cii‘"and;&theﬁresults of calculations on lithium metal.

E“*In §ection,s B and C we will see how the HF and GI methods
differ. In '9Sectiori"‘11) a method for replacing the core electrons by
ab initio pseudopotentials is described. Section E deals with the
application‘of the GI method to band calculations in solids and
Section F treats the resulting GI band structure for lithium metal

and the properties obtained,'@from this description.



B. The Hartree-Fock Method

We seek to describe a good approximation to the solutions

of the exact many electron Hamiltonian4

N N
= YAV e vl ¢ ) & @)
i=1 i>j U

where V(;i) is the electrostatic potential seen by electron i at r
due to all the nuclei. Since this Hamiltonian commutes with the
total spin and total spin projection (§* and éz), we can take our
approximate solution also to be eigenfunctions of these spin opera-
tors. In addition our solution must satisfy the Pauli Exclusion
Principle (that is, it must be antisymmetric under the exchange of
two electrons). But these formalistic restrictions dictate no speci-
fic form to the wavefunction expansion. Physically we want an ex-
pansion which would lead to separation of‘vthe Hamiltoniah into one
particle type Hamiltonians for which the solutiohs are mathematically
tractable and for which the eigenstates can be given an independent
particle interpretation. With this set of criterion we are led, in

the Hartree-Fock (HF) method, to the wavefunction expansion.

YUrp (1,2, 20+, N) = VNI A.®X (2)

1 -
where ({ is the antisymmetrizer, ( = N1 Z, CT T (here the sum is
over all N permutations, and {,r is the parity of the transposition).
The spacial part of this function is taken to be a product of one particle

functions:
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where the ¢, are a set of doubly occupied orthogonal functions, and

the spin part is given by
x(1,2, -+ ,N) = a(l)a(2)--+ a(n)Bn+1)---B(N), (4)

a pi'oduct of spin functions a(i), B(i) such that éz ¢(i) = 3 a(i) and
§Z B(i) = - 3 B(i). The orbitals ¢ in (3) are then

optimized by applying the variation principle, that is by requiring
that E = (Vg loe|vyp) / (Wyp|¥gp) be stationary under first order
changes in the orbitals (with the restriction that the orbitals remain
orthonormal). This leads to a set of simultaneous equations for the

one-electron orbitals

HF

where HHEF jg a nonlocal one-electron operator involving the solu-
tions to (1). It is this result which leads to an independeht par-
ticle interpretation for the cpi's since HHF is compqsed of all one-
electron interactions for any electron i and the best average of the
field due to the rest of the electrons in the system. Such a one
particle description is crucial not only to a meaningful description
of atomic and molecular properties but also ‘t‘o our understanding
of metals in terms of energy bands, Fermi surfaces, and electronic
properties.

However this approach has several attendant difficulties.

(These are considered at greater length in Part III.) We know that



for thetlF wavefunctiontohave the correct spin symmetry the orbitals
must be doubly occupied. But for say, a diatomic molecule, as the
nuclei are pulled apart the bonding orbital must remain doublvy occu-

pied, and the wavefunction cannot describe the dissociated atoms

in their ground state. This spurious behavior also causes difficul-
ties in calculations on solids, since such properties as the cohesive
energy depend on the difference in energy between the equilibrium
lattice configuration and the dissociation limit(which is incorrectly

| described).

Another problem in treating solids is that the conduction orbitals
must have nodes in the vicinity of each lattice site, in order that they
be orthogonal to the core orbitals. Since the core electrons are

tightly bound, it would be desirable to replace them with an
effective field, but the nodes in the conduction orbitals mean
that the resulting potential must have singuiarities at these
points if the lowest solutions ’are to be the conduction orbitals.
With these restrictions, there seems to be no way to obtain
unique local potentials to describe the core interaction.

Finally HF orbitals must be symmetry functions kfor the
full symmetric group of the system. This is true for the core or-
bitals as well as the conduction orbitals in a metal, Thus, one

can never obtain localized orbitals as a solution to the HF equa-
tions. A transformation to more localized orbitals, e.g., Wannier
functions, can be made, but these resulting functions are not solu—
tions of the original one -electron Hamiltonians and hence do not

lead to an independent particle interpretation.



We will now discuss a generalization of the HF method and

see how these difficulties can be overcome.

C. THE GI METHOD

It is clear that the major difficulties encountered in the HF
approach result from the use of a single Slater determinant which
imposes unnecessarily stringent restrictions on the one-electron
orbitals., It has been shown that it is possible to construct a more

2 G'{, which when operated

general operator, the Group Operator,
on any many-electron wavefunction both guarantees that Pauli's
principle is satisfied and that the resulting wavefunction is an
eigenstate of the total spin operator. The operator is mathemati-
cally tractable in that it utilizes Wigner projection operators con-

structed from Young's orthogonal representa,tion5

for the symmetric
group JN' The spin coupling is then explicitly demonstrated in
terms of Young's tableaux.5 The superscript ¥y is determined by

the total spin projection § and implies a specific Young shape of

one or two columns and 1 represents one of the several possible
independent spin coupling schemes (corresponding to a standard
tableau or a particular way of coupling the individual electron spins)
for a given choice of § and 1\718. In this representation i can assume
any integer value fromk 1 to f:y designating which of the f¥ standard

spin functions (or tableau) is being considered. The operator is

then defined as
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where O)II'i is a specific linear combination of permutations of the

electronic spacial coordinates,

o = L Z_/f Uz, (7)

Te N

QV(T) are matrices for the v irreducible representation of J N°

Y . | . . : .
wr is a corresponding sum operating on the spin coordinates,

i
and ¢ 0, is the parity of the permutation 0.
Rather than going intothe properties of these operators and
the resulting general form of the Hamiltonian equations (which are
4thoroughly described elsewhere), we will consider some general
features of the method.
In practice, although the actual equations are more compii-»
cated than those encountered in HF, the method of solution is quite
similar. Since the Harhiltonian commutes with all spin functions,

the total energy expression reduces to

(l ex|ie|d) @x)y  (alx|oy @
= (8)
(G} ®x|al &%) (2|0 ,

where all the spin terms have been eliminated and only the spacial

part of the wavefunction need be considered. The energy is
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required to be stationary under any first order variation in the
orbitals, from which a set of N simultaneous equations is obtained

(for an N electron system) of the form

where
hj = -3 v? 4 Uj. v (10)

Here Uj is a complicated nonlocal potentia.l3 containing the nuclear
electrostatic potential and the average potential due to the re-~
maining N-1 electrons. The orbital 4)]. can be interpreted as the
eigenstate of an electron moving in the average field due to the
other N-1 electrons, therefore yielding an independent particle
interpretation., It is this feature which lends credence and utility
to this method and justifies the additional labor required in these
calculations,

We have said that the Gg/ operator yields functions which
have the correct spin symmetry. It is then a restriction to take
the orbitals to be doubly occupied, and variational optimization
always leads to singly occupied orbitals. Since these orbitals
satisfy different one-electron Hamiltonians (10),they need not be
symmetry functibns for the full symmetric group of the system,
and in general have a reduced symmetry. AlsQ this means that
there are no orthogonality constraints between orbitals which satisfy
different one-particle Hamiltonians., We will see in the next sec~-

tion how these new nodeless orbitals can be used to obtain unique



ab initio pseudopotentials to replace core electrons.

Of the various independent ways of coupling the individual
spins, two are found to be particularly important.6 i =1, generally
referred to as the Gl method, corresponds to strong pair-wise
coupling of the spins, and is equivalent to a generalized valence
bond description.'7 The other type of coupling which is thought to be
important for the conduction electrons in metals is i = f (the GF
method).3 Here one set of electrons is coupled to maximum spin,
then the remaining set is coupled to maximum spin and these sets
are coupled together to minimum spin. These two means of coupling spins
are found to be the dominant ones in describing atoms and mole-

culés, and as we will see in Section E, must both be considered

when treating metals.

D. PSEUDOPOTENTIAL FORMALISM

Recently there has been broad progress in the replacement
of atomic cores by pseudopotentials in describing molecules and
solids, In particular numerous approaches to describing such
effective interactions have evolved, resulting in varying degrees'of
success in describing the electronic structure and properties of
systems.

The general theory encompasses methods of arriving at a

pseudo-Schoedinger equation

-5 Vi + VPS(r) o = £ (11)
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replacing the nonlocal potential by a weak local term resulting in
a description valid within the nearly free electron (nfe) model in a
solid. Thus, within the HF framework VP® incorporates terms8
which effectively orthogonalize the valence orbitals to the core,
therefore eliminating the oscillatory character of the HF valence
orbital in that region. In this approach the effective potential is
nonlocal, nonunique, and not necessarily Hermitiavn.9 a Alternatively,

9bto define effective

use can be made of atomic spectroscopic levels
potentials useful in a solid. However, the formulation of these
potentials is arbitrary with choices dictated for optimum applica-
bility to a specific property descriptibn.

However, it has been shown that there is a simpler, non-
arbitrary, and ab initio method for obtaining such pseudopotentia.'ls.,1O
The Gl method characteristically yields nodeless atomic valence .
orbitals which retain an independent particle interpretation. Thus
it is possible to use this self-consistent orbital directly, together
with its orbital energy to solve for the effective local potential in
which this electron moves, simply by replacing the nonlocal Ui(r)

in (10) by

€ + 31990
¢

velffe) - (12)

There is no problem with singularities since the orbital is nodeless.

This pseudopotential V‘af:f

(r) is Hermitian, local, weak, derivable
from ab initio calculations, and in turn yields the same eigenstates

as does the correct nonlocal potential.
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Now we know that the Li core orbitals for LiH and Li,

11

are essentially unchanged from the atom. The same has been

found true for boron and carbon compounds and we would hope that
in general the tight inner electron orbitals would be little changed
by valence electron bonding. A test of the validity of using such
pseudopotentials for replacing the core electrons has been applied

11 12

to the excited states of Li atom, to LiH, Li, as well

13

and BH,
as to the ground and excited states of LiH ° and C2H414 using the
potentials derived from atomic G1 calculations and the results were
compared to full ab initio calculations on these systems. For Li
the effective potentials obtained for the atomic 22S and 2?P states
were found to'be quite different, while the 22P, 3°D and subsequent
states yielded quite comparable potentials. These are shown in
Fig. 1.

Of course one criterion which must be satisfied for an v
effective potential to be useful is that it must be able to reproduce
not only the ground state but also the excited states of the system,
When the ngsf(r) potential was used to calculaite the ns excited
states of the Li atom, the resulting energy levels were found to be
in good agreement with experiment.11 However, this same potential
gave vefy poor results for np and nd stai:es}1 Nevertheless, when
the potential derived from the 2°P state Waé used, the excited np

states were well described.11 The same was true for the nd state

eff . 411
t 1
3d potentia

These potentials were then used for replacing the Li cores

using the V

in molecules and it was found that use of an angular momentum
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dependent pseudopotential Veff(r) = Vﬂ(r)lﬁ) (|, where vV, for
£ = 1 was replaced by VZp’ quite accurately reproduced the
valence eigenStates of LiH and Liz%1 In addition such properties as
the dipole moments and electric field gradients calculated using
thesé eigenfunctions were in good agreement with those from ab
initio calculations.™
One further feature of these pseudopotentials which is
crucial for any application to solids concerns the behavior of
excited states, To this end the excited states of the LiH molecule
were calculated using both the two-electron pseudopotential descrip-
tion and the full four electrons. For the lowest excited states of 1Z+,
33, 111, and 311 symmetry, the energies obtained from the two methods were
in excellent agreement%2
Thus, such effective potentials might be used to replace
the field due to the core electrons in band structure calculations,
Lastly to establish their applicability to metals and to make a direct
comparison of this method with past approaches based on OPW,
quantum defect, and other methods, HF calculations on the band
structure of body centered cubic (bce) lithium metal were carried
ou’c!‘5 Simple plane wave expansions of the conduction orbitals were
found to converge rapidly and a band structure quite similar to
those derived from other well-accepted HF methods was obtained.
Hence the use of such angular-momentum-dependent Hermitian

pseudopotentials determined from ab initio atomic calculations would

seem to be well justified for large molecules and solids.
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E. APPLICATION OF THE GI METHOD TO METALS

We wish to construct a many-electron wavefunction satis-
fying the total Hamiltonian for the metal from a product of one
electron orbitals within the GI framework. Based on the optimum
spin coupling appropriate to various atomic and molecular sys-
tems, we expect16 that the important coupling for the core elec-
trons (which are tightly bound to their respective nuclei and are
little affected by the conduction electrons) is G1 since this cor-
re_sponds to a strong valence bond type pair bond. On the other
hand, the conduction electrons are expected to be delocalized
throughout the lattice with a minimum of pair-wise coupling and
hence should be GF coupled (strong pair-wise coupling would
result in a highly correlated solid). Then the tableau5 for this
system is as given in Fig. 2 where electrons m+1 through
m+n are coupled to give maximum spin, and m+n+1 through
m+2n likewise, and the resultant pair is coupled to give a total
singlet state. The core electrons are of course all coupled in
pairs to give a singlet state. This description then yields' a
total singlet wavefunction. Since the core orbitals are tight,
localized, atomic-like states, far removed in enérgy from the
conduction states, and should be little changed in going from an
atom to a molecule to a solid, it is no restriction to replace
those electrons with a knonloca,l pdtential operator representing
the average field seen by an electrdn due to these electrons
centered at each of the nuclei. Since the G1 valence orbital for
the lowest state of any symmetry in the atom is nodeless,

except at r=o for £#0, we showed in Section D that the use of an
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effective potential derived from this orbital could justifiably be
used to replace the nonlocal potential terms representing the inter-
action with the core, not only to obtain eigenfunctions equivalent to
those obtained from ab initio calculations on the atom but also for
bigger molecular system and solids. Hence we assume that we can
replace these core electrons by an effective potential and consider
only the conduction electrons. Doing this we obtain for our many-

electron wavefunction:

-t [p2 a veodh@ b b
wr) = Gf log () o) -e0f @) oy () ()

cos (,ollzzn(r)alaz cos aan+16n+2 ces an] (13)

where 2n is the total number of conduction electrons and k; is the
wave vector of the one electron states. The many electron Hamiltonian
in the Born Oppenheimer approximation can be written as

e = ) [-% vi2 + Uylr) + D ;,1.—‘] (14)
i <o M

where the sum is over all electrons, Ui(g) is the nonlocal potential due to
the ion cores, and the last term is the electron-electron interaction
energy. |

Variational optimization of the GF orbitals leads to a pair
of one particle Hamiltonians, one for each of the two sets of orbi-
tals associated with the two columns (disregarding the core elec-
trons) in the tableau in Fig. 2. We will refer to the set associated

with the left column as the a orbitais and that with the right the b
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orbitals. The one-particle Hamiltonian operator for which this set

of a orbitals is a solution is

hy = =3 V® + Uy(r) (15a)

Here Ua(}l) is a nonlocal potential which includes the interaction of
an a electron i with all the remaining conduction electrons and the

cores. An analogous Hamiltonian for the b orbitals is given by

hy = -1 v? g U (x)- (15b)

Since all of the a electrons are solutions of this Hermitian operator h,,
it is no restriction to take these orbitals to be orthogonal among them-
selves and similarly for the b orbitals.

It is appropriate at this point to discuss the symmetry restrictions
which apply to these orbitals. In H, and other homonuclear diatomics, 3
square H4,16 and hexagonal Hﬁ6 the optimum orbitals are found to have
a symmetrﬁr lower than that of the total system. Even so the total many-
electron wavefunction has the correct spatial symmetry. Since these
allowed reductions in symmetry lead to more stable molecular descriptions,
it is necessary to investigate and classify the permissable symmetry
properties.of orbitals for a bcec metal in a framework in which there are
two sets of linearly independent functions instead of one doubly occupied
set (as in HF).

One normally assumes that the appropriate basis vectors

17 for the symmetry group of the system.

must be Bloch functions
However, proof of Bloch's theorem18 for a set of states explicitly
assumes that the states spanning the space are normalized and

orthogonal, ‘and hence that the mairix representations of the lattice
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translations both commute and are unitary. Under these condi-
tions a unitary transformation of these matrices can be found which
diagonalizes them and hence a translation cannot mix these states.
This clearly holds in the case of HF states where the orbitals are
doubly occupied and orthogonal.

However, we have seen that while each of our sets of
orbitals, a and b, is comprised of orthogonal vectors, the sets
need not themselves be necessarily the same nor orthogonal. There

is a theorem in group ’cheory19

which states that given a vector
space ¥ which is invariant under a group 9/ N of transformations
then the vector space ¥ must be either irreducible and contain no
invariant subspace or it must be reducible into a sum of orthogonal
invariant subspaces.

The first case corresponds to the condition that all the
vectors in ¥ i.e., all |¢>, must be invariant under the complete
set of translations generating the lattice (by which we say they
must be symmetry functions). In this case, all of these I<¢>>
can be taken to be doubly occupied and orthogonal and we return to
the HF description, or the |¢) must all be singly occupied and
orthogonal which would lead to a very high excited state descrip~
tion.

However, we have seen that in the GF framework, the set
of |¢a ) can be taken to be orthogonal and also the set of lqbb)
but no further condition is imposed on these vectors or on the |
relation of |¢a> to |¢>b>. We will consider for example the bee

lattice., It now remains to be shown that the second condition of
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the theorem applies, namely that the space group of the bee lattice is
reducible into a sum of two orthogonal subspaces. If this can be shown
we need merely take the set |<j)a) to be basis vectors spanning one of
these subspaces and |¢b> as basis vectors for the other, provided the
operators h, and h;) commute with the elements of these subgroups, and
the requisite symmetry properties are obtained. In fact the space group
for the bcce lattice clearly contains the simple cubic translation group as
a sub“group. That is, the lattice is reducible info two interpenetrating
‘simple cubic sublattices. Hence, if we consider some lattice point in the
crystal, the eight points at the corners of the cube surrounding it belong
to the other sublattice.

Now we know that we can take our set Iq)a) to transform according
to the irreducible representations for the simple cubic (sc) subgroup since
ha has less than the total symmetry and commutes with the sc subgroup.

Then for any simple cubic (sc) translation ﬁsc’

Ree fal®) = f@+Reo) = X Rg @) (16)

so that B_ldch’s theorem applies to this vector subspace. Thus this vector

space |¢a> is invariant under simple cubic translations. Consider now a

~

translation from an a site to any b site, Ropb? which does not commute
with ha‘ In order that the many electron wavefunction have the correct
total symmetry, it must be true that Rab%\a = >k:’> Cy’ d@(\'b’ Rabqb}gb =

27 Cye! qbk, . But we can only mix functions of the same symmetry (i.e.,
kl ~ = a .

k-vector) and hence

ik

Rap fa®) = A+ Bap) = % %0 oq . (A7)
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We see that this operation takes an a orbital into a phase factor times the
b orbital for the same k-vector (and so the many-clectron wavefunction

is still a symmetry function for the full symmetric group of the system).
Therefore these two sets of orbitals are equivalent, but spacially removed
from each other by the set of translations relating these simple cubic sub-
structures. This means that the eigenvalue solutions of these equations
15(a) and (b) will be the same and it suffices to consider only one of these
sets.

In this description since we need to consider only the a orbitals
which form symmetry orbitals for the simple cubic group, then the
primitive unit cell is a simple cube of twice the volume of the corresponding
HF cell. Thus the BZ is also a simple cube inscribed withih the HF
dodecahedral BZ and occupying half its volume. If the system we are con-
sidering has one electron per lattice site (as in the alkalis), the Fermi
surface must occupy the same volume as this cubic BZ and hence must
intersect it.

We have seen that the potential due to the core electrons can
rigorously be replaced by a weak effective potential obtained from ab initio
calculations on the atom. Because this potential is weak and the orbitals
are nodeless in the core region, expanding the orbitals in simple plane
waves should lead to rapid convergence. We take - |
@ = L ol el +Kj) 1 (18)

J
where d)l? is a Bloch function for the simple cubic (sc) sublattice
of a sitgs. Thus the 5 are reciprocal vlattice vectors spanning the
cubic substructure and k is the wave vector. We want to solve a

Schroedinger equation in which the one-electron Hamiltonian is
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e Dl (s ) (19
1 . )

Here R; are the a-site ion center coordinates and we consider here only
a-site potentials. Then (18) and (19) give

) = 39 Lo SETR)X

! 21: el (lz-R&D) ? o) KR 20)

Now the Hamiltonian matrix elements are obtained by multiplying through

with ¢ 1E+Km) R 514 integrating over the crystal,

k+K [h*do = N®, 6.
+ 2 &M Km) By ) .9 x
i j

' £f
k+ &K |v¥*H@)k + K, 21
<" "m| a ( )l“ k’*]>crysta1 1)

where €, is the volume of a sc unit cell and N is the number of sc
cells. Note that the structure factor Z el ~Km) Ri gums to

just N si_n(:e each element in the sum 1:1 1. We now make the Wigner
Seitz approximatioﬁ to account for the seli-term due to the a-orbital
we are c‘onsidering and also to correct for exchange and correlation.
(We discuss this approximation in more detail in Appendix 2.) Thus
the potential is taken to extend to the simple cubic cell boundary and
is zero outside. Hence the integral reduces to one over the sc cell

and we obtain
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k k k
Z[M (k + K) 6 +EJQ(-—Z \% (Iﬁmlfl,li)] -0 (22)
] 0
where
eff
VaEnKik) = k+X |V k+ I§j>go - (23)

Now we will consider the form for Veff.

ngf

We saw in section D that

can be written
Ve - % vaw) |0 1]

where Vi‘(r) is the effective ion core potential for the symmetry
state ¢ of the atom and |£) {¢| is the angular momentum projection
operator. In lithium we saw that we can take Vp(r) to be the

effective potential for all ¢, ¢ = 1 so that
L VA |0 e = vm)]e (s] + V) o) (e 24)
0 P™ 7 920

which, using the closure relation, becomes

L V@10 (] = V@) +[Ve) - Vo] [0 6] (25)

Thus

Va EnKil) = V(G -Kpy) +

. (|k
J e Em) X v (r) - v, )] Sm‘ "‘”“{'Jl 2 o o
o n "j
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where

Vg Ky = [ Vo) o) Ry 7

0

We note here that all integrations over surfaces in these equations
are carried out exactly over the cubic cell. We tested the approxi-
mation of replacing the integrations over a simple cube or a bcc
Wigner Seitz cell by an equivalent volume sphere. Using the
spherical approximation we found that the Fourier components for
the correct surface was a smooth function of k whereas the spheri-
cal approximation led to spurious oscillations in the components.
Comparisons of Fourier coefficients with empirically derived form
factors and a more complete discussion of this behavior are given
in Appendix 1. _

Thus, ’inserting (26) into (22) we have only to solve the
matrix equation (22) as a function of k to obtain the band structure.

However, for treating high symmetry points in the BZ, that

is, points which transform predominantly as some pure sjzmmetry
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type, or equivalently whose cubic harmonic expansion is dominaled
by the first spherical harmonic, we have found that by using the
local potential appropriate to that symmetry type and similarly
symmetrizing the orbital expansion (thus treating the potential as
purely local), yields eigenvalues generally wellvwithin 1% of the
correct value, even for high lying states. In Table 3 in section F
(1) we will see that the error involved in this approximation is
small. This amounts to assuming that a state such as M, mixes in
little d character and is predominantly s~like, In this case the

appropriate matrix equation is

599 EW

2
k +K.) 8.
3- —— & +K)

jm

. Cj (E)

Vy &5 -Kp)l =0 (28)
R ()

Use of this expression facilitates the calculation since the potential
interaction is no longer k-dependent and we have found this form
.convenient for calculating the symmetry points over a wide range
of lattice constants. This form is also convenient for another ex-
tension which we will now describe. |

Expressions (22) and (28) treat the conduction electrons as
being distributed throughout the lattice in such a way that if an
electron is in the vicinity of a given a site, it is unlikely that
another a site electron will be in the vicinity of that cell, that is,
it is screened from other a sites. However, as yet we have not

included any interaction with b site electrons. Since the GI sc
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primitive cell contains on the average two electrons (due to the
presence of these b sites at its corners) we must modily our expres-
sion to treat the interaction with these b sites. In fact we wish to
include the interaction with all other b sites throughout the lattice.
The question arises now of what potential interaction is appropriate.

20a

GI calculations on the Li~ ion lead to a stable Lié g singlet, but

the 2p-state is not stable. However, the 2s stability is primarily

20b

due to the strong two-electron exchange energy. In the metal

the situation is significantly different from the atomic case since
there is no longer the pair-wise coupling characteristic of Li~ ionzoa.
In fact for an N-electron system this exchange interaction is
diminished by a factor of 1/N which goes to zero as N -~ « and all
that remains is the Li~ Coulomb interaction. The effective potential
for this interaction is readily obtained by evaluating the self-Coulomb
term due to the atomic valence orbital and combining it with the

eff

appropriate V!Z for the case potential to obtain the corresponding Vﬂ'

effective potential. That is

@(I') atom I t0m> + Veff(r) | (2 9)

We can now evaluate the Fourier coefficients in a Fourier expansion of
(29) and include these with appropriate phase factors in (28). (For a
more complete discussion of this pdint see Appendix 2.) However, these
phase factors alter the symmetry of the transformation properties of the
orbital at the b sites relative to that appropriate for a given symmetry
state at the a site. That is, an orbital which transforms according to
some irreducible representation at an a site in a simple cubic

lattice when translated by a
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vector other than a lattice translation vector can have a different
symmetry with respect to that site. Thus incorporating the re-

quired phase factors equation (28) becomes

k -
Z {[c k ) e (k )](k+§j)2 -
(k)
P TV - Ky
&5 ~Em) 'Ry v,,- (K - Kp)1}= 0 (30)

where {’ is determined by the symmetry at a and the phase factors
i - Em)'Bi, R

(9_

is a translation vector between an a and a b

[

site, e.g.,

Do |

, %) and Vﬂ,-(g) which will be defined below is

the Fourier transform of the potential. At this point we want to
reconsider the effective field at the b sites. Thus far we have

found the correct bare potential to represent such an effective inter-
action and we say that all b sites are included in this term, since

we will integrate over all space and thus effectively treat these
potentials as overlapping and having an infinite extent. In fact

the potential goes to zero before 9 a, so that the furthest sites which
could contribute are one unit cell removed from the nearest b
neighbors. Now we know that these electrons are also screened by
the conduction electrons. We show in Appendix 2 that the Wigner

Seitz approximation is inappropriate here and that a reasonable screening
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correction is the Bardeen screening factor. In the form of
equation (30) which is applicable to high symmetry states such

an expression is readily incorporated. Thus, we define

V- &) = [ Vi) e Zar/e (IK]) (31)

all
space

which is a special case of the more general expression derived in

Appendix 2. Here,

e(K]) = 1+ (121 [ 220 4 1)/2m i, 2, (32)
2n 1-7 :
IIEI oom
n = —— and k; = (37) (=), a = lattice const.
2kf a

Inserting this definition for Vj,- (K) into (30) then provides
us with an expression for calculating the band structure of the

alkalis within the GI framework.

F. RESULTS AND DISCUSSION
1. BAND STRUCTURE OF LITHIUM METAL

- The formalism described in the last section has been ap-
plied to bcc lithium metal. All calculations were carried out for
an equilibrium lattice constant of 6.575 aO.ZIa The Li,y and Li2p

pseudopotentials in Fig. 1 were used for the a site interaction. In
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Appendix 1 w‘e discuss the method used for evaluating the Fourier
components of these effective potentials out to the correct cell
boundary. The resulting Fourier coefficients of these potentials
for all simple cubic (sc) lattice vectors up to a (4,1,1) are re-
ported in Table 1. Fig. 3 shows the band structure resulting from
using these potentials only as per (22) thus neglecting electron in-
teractions with b sites. For this case a set of 57 reciprocal lat-
tice vectors up to |I§| = 2m/a(2,0,0) was used in the wavefunction
expansion (18) and points tﬁroughout the zone in increments of 4k
= 0.1 (27/a) were calculated. In this figure are shown the energies
along thé principal symmetry directions where the high symmetry

points for a sc lattice are I', X, M, and R.zlb

For reference, Table
2 gives the transformation properties of states at these points in
terms of spherical harmonics.

Then the curves in Fig., 3 are based on energies at the
high symmetry points and four intermediate equidistant points along
each axis. The lines shown have been interpolated through this
energy grid. The distance between the vertical lines representing
high symmetry points are proportional to the k-space separations
of these points. - The energies for the symmetry points corres-~
ponding to those in Fig.v 3 are reported in Column 2 of Table 3.

| For comparison, the calculated HF band structurels’ 22
is given in Fig, 4., Here the same pseudopotential expression as

15 giffer

above was used but the respective Fourier components
because in HF the cell over which it extends is the bcec cell of

half the volume appropriate to the GI case. Also only high
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symmetry points were evaluated here and the lines connecting these
points are only approximate. The plane wave expansion for this HF
structure contained bce reciprocal lattice vectors up to |§|
= 2r/a(2,1,1) (a set of 43 vectors).

The most striking difference between these two structures
is that, whereas in HF the Fermi surface is well inside the'first’ ,
BZ, in the GI band structure the Fermi surface goes beyond the
point X on the zone boundary. This point X splits into two states
}Xl and X, separated by a small gap, 0.016 a.u. (0.435 eV). Along
the synjmetry direction from X to M this splitting decreases to
zero,' so that the separation of the bands at the Fermi surface
is ~ 7 of that at the X point. Similar behavior is observed along
the X to R direction and the band gap at the Fermi surface in this
direction is about the same.

Another interesting distinction between the HF and GI band
structures is that at the N point in HF (corresponding in the sc structure
to the M point) the lowest energy state is N,” which is singly degenerate.

In the GI band scheme, this state becomes M,’ which is doubly degenerate

and the band is continuous.
In fact we have three states M resulting from a four-fold

degenerate point in the sc free electron band scheme, whereas in

HF there are only two singly degenerate N states. This comes

about because in this sc structure the H[27/a(0,0,1)] point is mapped
back into the I' point to yield three states.r‘1 , I';s, and Ty, (corres-
ponding to H; , H,,, and H;,). The point about which it is reflected

[2m/a(0, O, 1)] generates the two X states. Hence the symmetry
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lines which connected H to N here become I' to M with the new
states being similarly connected. One further interesting observa-
tion is that the M state (here M,;) which would in HF have connected
to the first excited T state, in the GI scheme crosses the band
which would have connected the H point to a high lying N state.
Here this crossing is forbidden (since both T',, and M, have ¥, sym-
metry along the axis) and M, in fact connects with I',,. Similar
behavior is noted along the R to T'axis where the same considera-
tions apply. Hence the strange turning over of some of the bands
results from a crossihg of bands which in HF could never have
intersected. Thus, this additional X-symmetry point leads to a
much more complex band structure than that encountered in HF.

Using the data available for the energies at a grid of points
throughout the BZ, an approximate interpolation scheme was used to
determine the Fermi level and the anisotropy of the Fermi surface.
In fact it is found to be quite spherical (~5% distortion) and the
Fermi energy is determined to be at about 0. 153 hartrees
(~4.16 eV) above I',, This calculation also indicates that the sur-
face bulges out slightly in the M direction and is pulled inward
along the [100] and [111] axes. The amount of distortion in the
’vicinity of the BZ interSection appears to be minimal, and the gap
is found to be nearly isotropic.

Now we will consider how the inclusion of the b site poten-
tials in the energy expression modifies this structure. The un-
screened Li~ 2s and 2p Fourier coefficients are given in Table 1.

These were derived from the coulombic Li~ potentials described in
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Section E. Then using expression (30), encrgies for the high sym-
metry points were cvaluated to yield the structure in Fig. 5. For these
energies our basis set included all reciprocal lattice vectors up to

|K| = 2w/a(2,1,1), a set of 81 vectors. These energy values are tabu-
lated in Column 1 of Table 3. |

Comparison of Figs. 3 and 5, i.e., the band structures without

ahd with the b site included, leads to a surprising observation. Gen-
erally the structure is little affected by including the b potentials

except for minor shifts in some high lying states. This result facili-
tated inserting the lines connecting the states in Fig. 5 by reference

to Fig. 3. However, the one major change which has occurred is that
the X state has been reflected above the X, state resulting in a gap
which is nearly identical with that previously obtained with only a sitee.
Now the X, state lies nearest the Fermi level. This should result in a
slightly more distorted Fermi surface than thaf discussed above, but in
fact it still appears to be nearly isotropic although it has shifted down to
~. 15 hartrees (4.1 ev) above T;. The energy gap at the Fermi surface should
be little affected by this shift since the X point separation is essentially
unchanged and the M; state to which they are connected has also undergone
an insignificant shift. Based on the calculation throughout the zone as
shown in Fig. 3, the band gap is estimated to be . 005 hartree (.13 eV).

One further point about the Fermi surface determination should

be made here. For the HF band scheme, the Fermi surface does not
_intersect the zone boundary so that the major distortions which occur

should be along the principal symmetry directions, and it is only
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necessary to calculate the energies at points along these axes to char-
acterize the shapé of the Fermi surface. Using the Gt method, the
first BZ occupies the same volume as the Fermi surface, and thus the
Fermi surface extends well into the second zone. It is gratifying that
the surface still appears to be nearly isotropic, but a calculation of the
density of states is by no means as simple as in HF. Energy bands in
the vicinity of the BZ intersection must approach normal to the bound-
ary and even if this distortion of the bands occurs over only a small .
region in k-space, this behavior introduces singularities into the
density expression, enormously complicating the calculation. In addi-
tion this means that the enérgy over a fine grid of points throughout
the whole BZ must be evaluated, rendering the venture quite costly in
terms of computer time. Estimates which have been made for the
Fermi surface parameters were based on a hand intérpolation of E(k)

values in the vicinity of points of interest, since no density of states

results are as yet available. Based on the calculated states nearest
the botton of the band, we estimate an effective mass of 1.21 at
k= 0.

We will now consider some of the physical properties of the
- alkalis and see what modifications in their interpretation result from

this new band structure description.
|

2. OPTICAL ABSORPTION

In the HF description of the band structure of the alkalis, the
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smallest interband transition which can occur is albng the axis to the
high symmetry BZ point N which is split into two states, N; and N,’.
Since the Fermi surface lies below this point, the gap from the surface
to the vertical excited state along this direction is larger than the
N,-N,’ splitting, and is on the order of 1.2 ev for K, 2.0 for Na, and

3.6 for Li. 2"

We saw that in the GI band scheme, a high symmetry
point X occurs inside the Fermi surface and half way to the HF sym-
metry point H. In the GI band structure, the point H is reflected back
into the T point. This X point splits into two states separated by a
small gap which decreases to zero along the X to M and X to R direc-

tions on the BZ. Thus direct transitions down to very small energies
can now occur where none were previously permitted, as illustrated in
Tig. 6. |

The optical absorption spectra of the alkalis have recently been
the subject of some controversy. In 1963, Mayer and El Naby24
reported a strong peak in the optical absorption of K centered at about

0.6 ev, well below the expected threshold of 1.2 ev, and in 1965 Mayer

and Hietel25 showed that a strong absorption peak occurred in Na at

1.6 ev, prior kto the 2.1-2.5 ev threshold. This led to numerous specu-

lations that the existence of such peaks indicated the presence of a

collective resonance state, 26 spin density waves, 27 strong phonon

29_ More recently Smi’ch30 has

interactions, 28 and exciton states.
reported optical spectra for Na and K in which he finds no structure
below the normal interband transition threshold. However he does

find the abserption in the upper Drude region to be much larger than

expected (starting at 0.5 eV for K). He suggests that this may be
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due to relaxation time anisotropy.

As a result of the direct transitions now allowed in the GI
framework, (corresponding to indirect transitions in the HF band
scheme since half of the HF BZ must be mapped back into the GI BZ),
we would expect that these would lead to increased absorption in the
region prior to the absorption edge over that nofmally predicted in the
Drude region. Although the matrix elements for these tranéitions should
be nonzero, they may still be quite small (they are zero for the HF band
scheme). There seems to be no reason to assume that these new transi-
tions would peak at some energy. Hence we would expect a small increase
in absorption intensity below the expected threshold,in qualitative agree-
ment with the experimental results. However to establish agreement it
is necessary to calculate the expected absorption intensity, preferably for

Na or K on which reliable experimental results are available.
3. SOFT X-RAY EMISSION SPECTRA

Emission spectroscopy is a direct experimental method for ob-
taining information about .the density of occupiedstates in the conduction
band of a metal. The spectra are generally in good qualitative agreement
with what would normally be expected based on the standard nfe theory.

However in this respect, the spectra of the alkalis have been viewed as

31

~ anomalous. The results for Li have been interpreted as implying that

31

the Fermi surface (FS) must intersect the BZ, "~ but band structure cal-

culations within the HF framework lead to nowhere near the amount of

distortion of the F'S to account for this. 23 In addition, the amount of

distortion required for the FS to intersect the HF BZ would lead to long

necks on the surface which would be readily detectable in deHaas van

32,33

Alphen, radio frequency size effects34 and other experiments
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which on the contrary indicate a very spherical surface.,

Now we will consider what might be expectéd in the GI band
scheme. In the experiment, a metal is bombarded with high energy
electrons which ionize the core electrons (i. e., the K and L levels)
thus inducing transitions from the occupied states in the conduction
band. Since the core levels are quite sharp in energy, the observed
emission band scans the breadth of the Fermi distribution. A sharp
high energy drop in intensity called the emission edge corresponds to
the Fermi energy above which the states are unoccupied. Angular mo-
mentum separation is achieved due to the selection rules imposed by
the vacated core state. Thus in lithium, the only level which can be
ionized is the K level leading to a spectrum which samples the p-like
states in the conduction band. On the other hand in sodium, the L
level is vacated thus yielding information on the s- and d-like density
of states. The intensity of emission as a function of energy is directly
proportioné,l to the transition probability multiplied by the density of
states of conduction electrons at that energy, i(E) o P(E)N(E). Hence
in lithium if the Fermi surface does not ihtersect the BZ, we would
expect, going from the bottom of the band, an increase in intensity,
since the density of p-like states is increasing and of course at the
Fermi level a sharp emission edge is expected.

The actuajl experimental spectrum is shown in Figure 7. This
spectrum was reported by Skinner31 in 1940 and has the same features
as more recently published spectra. 35, 36, 37 As seen the spectrum is
generally as anticipated except for the sharp peak prior to the high

energy edge. This behavior is perhaps best illustrated by considering
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the expected behavior based on a HF OPW calculation reported by

Pa.rmenter38

also shown in Fig. 7. This prepeaking has been inter-~
preted as indicating that the Fermi surface intersects the first BZ,

in which case the energy at which this peak occurs should correspond
to a point of pure p-like symmetry. This can only occur at a high sym-
metry point on the zone boundary. We saw that in the GI band scheme,
the first BZ occupies half the volume of the corresponding HF BZ and
that the Fermi surface does intersect this BZ. On this zone boundary,
the high symmetry X point produced a splitting into two states, X, and
X,’, separated by a small gap, with both states lying within the Fermi
surface. Therefore we would interpret the energy at which the peak
occurred (relative to the bottom of the band) as corresponding to that of
the pure p state X,’. To the high energy side of this peak, a fall-off in
intensity of p-like character should occur since s-like symmetries are
again mixing into the states, and clearly a sharp edge is expected.
Approximate calculations of the Fermi level discussed earlier indicate
that X,’ state is about 0. 8 ev below the Fermi level. The emission
spectrum shows the peak as occurring about 0.9 ev short of the Fermi
edge. This is in good agreement with our estimation of its position at
0. 8 ev below the edge. Several theoretical approaches have been used
to attempt to account for the spectrum by incorporating electron-1s

40, 41 The former of these

hole sca.ttering_;39 and many body effects.
can possibly explain the Li spectrum but cannot account for the Na spec -
trum (discussed below). However, we see that within the GI framework
at least qualitative agreement is achieved with no recourse to electron-

electron or electron-phonon interactions. Of course a calculation of

)
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the transition matrix elements would be required to establish the
actual degree of quantitative agreement.
Similar features are also observed in the sodium emission

31 shown in Fig. 8, although in this case the experiment

spectra
samples the s- and d-like density of occupied states since it is the L,
and L, core levels which are vacated. Here a distinct kink occurs
short of the emission edge. Preliminary calculations on sodium at the
high symmetry points of the BZ lead to a band structure quite similar
to lithium in the occupied energy region, and likewise the band gap at
the Fermi surface is found to be small. Then in this framework, since
the s-like character of states is decreasing going from the bottom of
the band while the electron density is increasing, the intensity should
initially rise, then come to a maximum and start to fall off. But the
onset of the X, state should cause a surge in the intensity curve fol-
lowed by a sharp Fermi edge. As can be seen, this is again in good
qualitative agreement with the observed spectrum.

Hence it would seem that the GI description of the energy bands
in the alkali metals resolves the dilemma introduced by the experi-

mental soft X-ray emission spectra.
4. MAGNETORESISTANCE AND THE HALL COEFFICIENT

The galvanomagnetic properties of the alkalis, in particular the
transverse magnetoresistance, have been the subject of the continuing
experimental interest for a number of years. Theoretically only two
types of behavior are predicted in the limit of high magnetic fields,

namely saturation resulting from closed orbits and a quadratic dependence
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in the presence of open orbits. To the contrary extensive experiments

on K42 and also on Na43

have demonstrated an anomalous linearity up
to very high fields. In addition the slopes were found to be orientation
dependent in single crystals of K. These observations are at clear
variance with the saturation expected for closed nearly spherical Fermi
surfaces.

The GI band structure on the other hand leads to a two band
description with small gaps occurring at the intersections. In this
model, high fields can lead to magnetic breakdown (or interband transi-
tions) yielding extended random orbits in intermediate fields, but in
extremely high fields where total breakdown has occurred, the resulting
closed Fermi surface should lead to eventual saturation. We have
carried out calculations on the magnetoresistance incorporating mag-

netic breakdown44

and for two field orientations find broad ranges of
essentially linear behavior. For the [100] direction the maximal orbit
has closed electron and closed hole orbits, but the [110] direction pos-
sesses an open orbit in the first zone and closed electron orbits in the
second. This open orbit results in one transverse component which has
an initial quadratic dependence but eventually saturates. These calcu-
lations are considered more thoroughly in Part II, but it suffices to
say that this description leads to the same type of behavior as is
observed experimentally.

The field dependence of the Hall coefficient is also determined
in these calculations. Since the effective number of electrons in low

fields is smaller than that under total breakdown conditions, the Hall

coefficient is found to decrease with increasing field until free electron
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value is attained after which it remains constant. A similar sloping
off with increasing fields has been observed in K by several workers45
in agreement with these predictions. It is hoped that more thorough
experimental investigation of this property with single crystals will

permit a more quantitative comparison.
5. de HAAS-van ALPHEN EFFECT

The question now arises of how the GI band structure compares
with information gleaned on features of the Fermi surface through
studies of the de Haas-van Alphen effect which appear to be in accord
| with the HF band structure, and for which no discrepancies are appafent.
Lee32 has reported de Haas-van Alphen studies on Na, and Shoenberg
and Stiles3%zave carried out similar investigations on K and Rb. The
field at which these experiments were conducted was 50 kG, which,
for the size gap found in our calculations, would probably be in the
total magnetic breakdown region, so that the GI band structure would
reduce from the two band Fermi surface description to one effective
band with orbits similar to those expected from the nearly free elec-
tron (nfe) model. Nevertheless the distortions of the Fermi surface
should be directly relatable to the geometry of the first (simple cubic)
BZ. The second GI BZ is bounded by just the familiar dodecahedral
HF BZ.

| Experimentally very small distortions of the Fermi surface

were found (on the order of 0.1% for Na32 and K, 33 and 1% for R.b32).
This is not unexpected since in lithium we found little distortion from

sphericity (about 5%) and in Na and K the distortion should be even
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smaller due to the effect of the existence of high lying core p (and d)
levels which cause smaller Fourier component contributions from the
resulting weaker p (and d) pseudopotentials. The measurement con-
sists of observing phase changes ( with crystal orientation) in magnetic
susceptibility oscillations induced by quantization of electron orbits in
a magnetic field. The phase of the oscillations is directly proportional
to the extremal area of the orbits. The experimental extremal area
changes for K are shown in Fig. 9. This indicates a maximum in the
(110) plane and minima in the (100) and (111) planes. It is of interest
to compare these results with those obtained for Na. With the field
oriented in the indicated directions, the angles of planes for extrema
for K and Na are given in Table 4. This shows that the Fermi surface
anisotropies for these two alkalis are somewhat different. If we now
consider the GI band scheme, and assume that the field is such as to
result in total breakdown, we are led to conclude that extrema are
likely for a number of planes which seem to be unimportant directions
in the HF band. Such planes are given in Table 4, and Fig. 10 shows
the type of planar configurations which might be important here when
consideration is made of the Fermi surface intersection with the BZ
boundary planes. Whether such points would be a maximum, minimum,
or extrema at all would depend upon the individual band structure of
the system, the lattice constant, the size of the energy gap, the
Fourier coefficients resulting from s, p, d, etc. core electron inter-
actions, and so on. However for lithium we have found that the (110)
plane to be a maximum and the (111) and (001) plane to be minima.

This as seen in Fig. 9 is the case for potassium. Hence it seems that
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the GI band scheme would not lead to any drastic changes in the inter-
pretation of de Haas van Alphen results, but may shed some light on

some of the minor structure observed.
6. POSITRON ANNIHILATION

Evidence on the amount of distortion of the Fermi surface of Li
from sphericity is afforded by positron annihilation studies reported by
Donaghy and Stewart. 46 These experiments were conducted at tem-
peratures above that at which the martenistic phase transformation is
known to occur in Li so that only the bcc phase was present. Their
analysis of the differences in the momentum distribution of electrons
with crystal orientation yielded probable values for the relative k vectors
at the surface for high symmetry directions as given in Table 6. With
these values we report estimates of the relative vector lengths using
our band structure data throughout the zone. For cbmparison, I‘eSLrlltS

23 HF band structure calculation on Li are included. The |

of Ham's
proximity of our results to experimental is probably fortuitous since our
estimates are only reliable to ~1%, but this comparison indicates that
the GI band structure for lithium predicts a distortion from sphericity

comparable with HF band calculations.
7. CYCLOTRON RESONANCE

Azbel-Kaner Cyclotron Resonance measurements (of surface

impedance in a magnetic field in the anomalous skin effect region) have

47

been reporfed on K and Na by Grimes and Kip. but-as yet no data is
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available on Li. These experiments made use of field ranges from 1
to 20 kG. Despite the relatively low fields used heré as opposcd to
those required in magnetoresistance and de Haas van Alphen studies,
the relevant quantity is w cT which here is > 1, thus being in the break-
down region, at least for K. Assuming that such is the case, the GI
two band de scription coalesces into one double band and essentially
iree electron-like behavior is expected. If complete breakdown is not
effective, then random orbits would lead to few resonances and a very

weak signal would be observed. Assuming no breakdown, since the

surface is very spherical, dA/de would have the free electron value
for closed orbits and the cyclotron mass for most directions would be
isotropic. However the (110) plane possesses an open orbit and for
such orbits, no resonance would be expected. For this condition,
quite accurate field alignment would be required.

The studies on K led to free electron-like isotropic resonance
signals, but a slight tilting of the crystal plane relative to the field led
toa splitting in the peaks which with large enough tilt became inverted.
This could imply similar cyclotron masses which change somewhat
with tipping, but the isotropy of the resonances tends to invalidate this
conclusion and Grimes and Kip postulate a refocusing mechanism to
explain this behavior. The results for NA are less clear. The experi-
ment is complicated by the martenistic phase transformation which it
undergoes at low temperafures. For crystals with (111) planes and

for polycrystalline samples, weaker signals than in K were obtained.
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These all possessed split peaks and all orientations gave similar
results. However their crystals with (110) planes yiclded no reso-
nances at all. Of course some interference may have been due to
hexagonal close packed crystals formed in the samples and so an
interpretation based on assuming a bcce structure might be premature.
It is tempting to interpret these split peak resonances as due to a com-~
bination of resonances resulting from several breakdown orbits. Such
an analysis could only be corroborated by a careful theoretical treat-
ment incorporating magnetic breakdown so that no more conclusive

statements can as yet be made.
8. THERMOELECTRIC POWER

One readily measurable transport property reflecting direct
information about the geometry of the Fermi surface is the thermo-
electric power, Q, in that it is proportional to the logarithmic deriva-
tive of the conductivity o(e) with respect to the electron energy,

specifically

Q = T T [a in G'(f)_] . (33)

This expression is valid for high temperatures and not limited to any
particular Fermi surface shape. Here the familiar form for the con-

ductivity applies

1 2
G=Z;"§%"13—'IVde, (34)

where the integral is over the Fermi surface Sf, so that
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7 being the relaxation time and A the mean free path. Thus for a

spherical free electron Fermi surface, the thermopower is given by

Q_1r2k2T_1_

KT 1 _ _2.45x107°T
-5 -

& &6v) microvolts/degree (36)

assuming an isotropic mean free path, A, so that Q is expected to be
negative. Interms of these straightforward considerations the baffling
positive thermopower observed in Li and the wide range of negative
values assumed by the other alkalies seem inexplicable.

This simple argument however is in flagrant disregard of the
contribution of electron diffusion to the thermopower, resulting from
electron-phonon interactions via mean free path anisotropy A (k) and
this factor has been shown to contribute quite sﬁbstantially to Q.
Bortolani and Calandra48 using the Heine-Abarenkov pseudopotevntialq‘9
(including the nonlocality and energy dependence explicitly) and accu-
rate phonon structure factors obtained thermopower coefficients for
the alkalis which agreed in sign and in trend with experimental values
although there is some apparent discrepancy in Rb and Cs. While the
sign in Li was correct the magnitude was off ~29-40%50 (depending on
which experimental value was accepted). While these results are very
encouraging, a closed sphere surface was assumed.

Using the band scheme proposed in this paper, considerable

overlap of the Fermi surface into the second zone results, but the
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surface remains quite spherical. Within the spherical approximation,

a simple calculation can illustrate the type of effect such a BZ inter-
section might have on Q. The pertinent term to consider is (9 {n S[/ o¢€) €
in which that part of the surface enclosed within the first zone will

have hole-like character and hence diminish the 1/ € dependence clas-

sically expected. Elementary geometry leads to

- 2 - .
. ,Shole = 4k - Selec Selec = 12m kf(kf a)
1277 i
Selec(€p) = 2411»ef - —-51 2ep)*
| 1277 1
Shotel€r) = 5 (2€p)° - 167 ¢, .
- Therefore
, - 31
o In By ) ake  1-1.42 1 0.37 37)
" PN T ok 2 € ,
€=€; f EEE

This would diminish the factor of 1 in the assumed diffusion thermo-

power coefficient

A(llz) (1. +2 tn A®K)/3 In e(k)] - €f)

av

- _
; i 27 Ak) (38)
k

by -1 + .37, changing the Li coefficient calculated by Bortolani et al. ,48

Ea.v
values of -6. 7 and -5.2. However such a correction would also alter

= -4,5 to -5.13, in reasonable agreement with the experimental

the values for Na and K in the same direction thus rendering them in
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even poorer agreement with experiment. Although the estimate is
admittedly crude, the trend should be reliable, with the following
reservations.

It is also imperative here to consider the possibility that the
size of the band gap could be quite important. If the gap in Na and K
is significantly smaller than that found in Li, thermal breakdown
across the gaps at room temperature and above could lead to significant
changes in the number of effective carriers. If the gaps are small
enough, no correction such as described above would be appropriate
because the double zone would be in effect. Certainly serious consider-
ation should be given these possibilities to establish the type of quanti-

tative behavior which would result from this band scheme.
9. MOTT PARADOX

We have said that the GI description for molecules is valid at all
internuclear distances. For the solid, the system at equilibrium has
orbitals which are localized at alternate sites throughout the lattice. Now
as the lattice is pulled apart, this localization can increase until the
orbitals resemble atomic states in the vicinity of any lattice site.

Within the HF framework, since the orbitals are doubly occupied,
there are N/2 occupied states for a system with N electrons, and this
remains true for all internuclear distances. However when the nuclei
are at infinite separation the stable configuration is a lattice of infinitly
separated neutral atoms, requiring N singly occupied states. Thus the
HF approach leads to improper dissociation, and since the BZ is

always 1/2 full, the system must be a conductor at all distances. This
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problem with dissociation is known as the Mott Paradox. Mott
has suggested}that as one brings a set of atoms in from infinity, there
is a critical distance at which an electron, interacting with neighbor -
ing electrons can suddenly delocalize and contribute to shielding the
other electrons from their nuclei, thus forming a conductor. This des-
cription may well apply to known metal-oxide conductor to insulator
transitions. o2 Of course such considerations are of little consequence
in the alkalis since such a transition would occur at an internuclear
separation much too large to be experimentally accessible. Neverthe-
less the same type of theoretical considerations could very well be
épplicable to both systems.

Actually although Mott's description of what physically occurs
may very well be valid, the problem with the theoretical description of
the dissociation of the alkalis lies in the limitations inherent in the HF
method, and is similar to the problems encountered in the description
of the dissociation of even such simple molecules as H,. We have said
that the GI method leads to a description for molecules which is valid
at all internuclear distances. For the solid, the system at equilibrium
has N singly occupied orbitals which are localized at alternate sites
throughout the lattice. Now as the lattice is pulled apart, this locali-
zation can increase until at infinite separation the orbitals resemble
atomic states in the vicinity of any lattice site and the system is cor-
rectly an insulator. Calculations have been carried out on Li metal at
a number of different lattice constants, and indeed the system is found
to change continuously from a conductor at equilibrium (a = 6.575 a,)

to an insulator at about 10 a, and finally to look like a system of
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isolated ground state Li atoms at 18 a,. The details of these calcula-
tions and a more complete discussion of this phenomena are given in
Part III. It suffices to state here that although Mott's physical
descrip’cion54 of what takes place may be qualitatively correct, a valid
theoretical description of the transition from a conductor to an insu-
lator is afforded by the GI method without invoking any discontinuous

changes in the basic framework for carrying out calculations.

G. SUMMARY AND CONC LUSIONS

The alkali metals have often been thought to have the simplest
electronic sti'ucture and to be describable in terms of the nearly free
electron (nfe) model. However, it has been quite difficult to explain
many properties of these systems. For example, it has been neces-
sary to assume (1) highly anisotropic relaxation times to explain the
behavior of the Hall coefficient with pressure, the sign and magnitude
of the thermopower, and low energy optical absorption; (2) extremely
large Umklapp electron-phonon scattering to explain the variation of
magnetoresistance and Hall coefficient with magnetic field and (3)
deviations from the Koopmans theorem approximations to explain the
soft X-ray emission. If all these deviations from the nfe model are
so important for the alkalis, then similar complications might be
expected for all metals.

We have found that by relaxing the double occupation restriction
in Hartree-Fock and by properly taking the spin symmetry into account

one arrives at a band structure which is nfe-like, however, with a



47

smaller Brillouin zone (BZ) so that energy gaps occur within what is

the usual BZ. For the alkali metals this slight modification in the
electronic structure is sufficient to explain these puzzling propertics
without any strong deviations from the nfe model. Thus the removal

of the double occupation restriction would seem to be important and it
may be that the GI description of the electronic structure of the solids
can provide a useful framework for discussing the electronic properties

of these systems.
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APPENDIX 1

It has been commonly assumed in the past that the Fourier
components for éay a bee structure could be accurately approximated
by replacing the cell by a sphere having the same volume. This greatly
simplifies the computation, but it appears that little investigation has
gone into establishing the validity of this assumption.

At the onset of this research we carried out a HF type calcula-
tion but replaced the usual HF type potentials by the weak GI pseudo-
potentials obtained from ab initio calculations on Li atom and used
plane wave expansions. However instead of using the spherical approx-
imation to the Fourier transforms we correctly evaluated these
integrals over the truncated octahedron. The techniques used in this
evaluation will be discussed shortly. We then compared these resulting
values with those evaluated using a sphere of the same volume, and
also using an inscribed sphere. It was found that any spherical integra-
tion led to Fourier components which when plotted as a function of
k had oscillations superimposed about the correct curve. The
strongest deviations occurred for the smaller k-vectors and died
off rapidly as k increased. The type of behavior observed is shown
in Fig, 11 for the Fourier coefficients over the cubic cell. (A
similar type of oscillatory behavior is apparent in the Heine
Abarenkov? and Ashcroft®® form factors for Li and the other al-
kalis, but here they are at least in part dependent on the choice of

the ion core radius.) These errors in the HF matrix elements and

the resulting differences in the eigenspectrum are reported in Ref.
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15, It is thus concluded that significant errors could be introduced
into a band calculation by using a spherical approximation to the
cell boundary.

Several techniques for evaluating these transforms were
investigated to determine a method which gives rapid convergence.
Typically the integral to the inscribed sphere was evaluated using a
Simpson integration. From the inscribed sphere to the cellular sur-
face, either a truncated octahedron (bcc) or a cube (sc), three different
method have been tried. Initially solid angle subdivisions were made
and a Simpson type integration was carried out. This approach was
found to result in poor convergence. Next a Conroy type54 integration
technique was used in which multidimensional numerical integrations
are evaluated using a systematic distribution of points generated for
traversal over the (9, ¢) variables. Again consistent accuracy was not
achieved. Finally a technique was developed which yielded good con-
vergence. A grid of points was generated on the surface, forming the
centers of squares for the cubic faces and triangles for the hexagonal
faces. Using the point group for a system with cubic symmetry, only
a half-octant of the bce cell and 1/48 of the simple cube need be used.
Thus a set of radial pyramids were formed which were truncated by the
inscribed sphere. A Simpson type integration was then carried out
over the radial elements, associating the appropriate volume element
with each point, and an adjusted internal radius for each pyramid at
the inscribed sphere was used to give the correct volume. A Riemann
integration was then made over all the truncated pyramids. An ana-

lytic expression for the Fourier transform of -1/r from the inscribed
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sphere to the cube was obtained and the convergence features of this
method of evaluation were studied. The results are shown in Table 6
along with some Fourier transforms for the atomic pseudo-potentials
(values linearly interpolated from an increment in r of 0. 01 a,). The
set using 19 divisions from the center to the edge of the cube was

used in all calculations. It is seen that for this set, convergence to
0.013% is achieved. This accuracy is quite sufficient for our purposes

and this size set was used throughout the calculations reported here.
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Appendix 2

One of the crucial features of any band structure calculation is the
manner chosen to treat the interactions of the conduction electrons with
each other and with the ion cones. We will describe here the approach
we have taken in solving for the conduction orbitals in lithium metal.

We write our one-electron hamiltonian for the a-site electrons as
a
ha(pk = (-z¥ +V )¢k = &k¢k (1b)

where V2 represents the potential due to the cores and all of the other
conduction electrons in the crystal. Since the effective potentials due to

the ion cores are weak, we can expand P in plane waves
e ) = Yaplet® KL (2b)
: K

where the expansion is over the sc reciprocal lattice vectors K appro-
-priate to the a sublattice. Multiplying (1b) through by e ik + Kp)x

and integrating over all space, we obtain

k + K] 2 a
NQ, Lz_Al_aKl(k) +7T e+ K [V K + Ky) aK]_(k)

= N g aKl(k) (3b)

where §, is the volume of the sc unit cell, N is the number of unit cells
in the crystal, and the matrix element (g + /I\(l |Va[ k + I§j> is evaluated
over all space.

We now consider more explicitly the form to be used for Ve,
Since the a-orbitals are more localized near the a-sites, and the b-
orbitals are more localized near the b-sites, it is appropriate to write
V? in terms of potentials centered at these respective sites, that is,

a eff eff
Ve = Z[Va (;-Bj)+vb (r - R,

: ]

- R,,)] (4b)



52

th th

a-site (centered in the j

where Bj is the vector to the j sc unit cell),

R ab is a vector from the center to a corner of the sc unit cell, and the
sum extends over all a-sites. Since there is a one-to-one correspond-
ence between a- and b-sites, all b-sites are also covered in this sum.

If there are N = 2m conduction electrons in the crystal, then v2
includes field terms due to m a-orbitals and m b-orbitals. But the
orbital (pka should see a field due to (m - 1) a-orbitals and m b-orbit-
als. Thus there is a self term present in V2 which has no physical
significance and should be subtracted out.

In addition there are two other effects which facilitate determin-
ing a form for Va.> One of these is the electrostatic repulsion which
acts to keep the electrons apart and thus introduces correlation into
the electronic motion. The other is the exchange term which arises
from the interaction of électrons with parallel spins and which gener -
ates an exchange hole around each electron. Therefore if an a-site
electron is in the neighborhood of some ion core, then it is surrounded
by an exchange hole which tends to exclude other a-electrons. It
should then see a field due'fo neutral lithium atoms at all the other a-
sites, thus correctly including (m - 1) a-valence orbitals, plus the
field due to the lithium core in its immediate vicinity, and finally a
field due to neutral lithium atoms centered on all of the b-sites (m of
these) throughout the lattice.

Now if we say that there is an exchange hole associated with our
a-site orbital tending to exclude orbitals with which it is triplet coupled,
then recalling that the spin coupling between a-orbitals corresponds to

triplet coupling, we expect that the interaction between these orbitals
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will be quite small. We know that the potential due to a neutral atom
is very weak and goes to zero by ~ 9a, (as compared to the ion core
potential it behaves asymptotically like 1/r). If in addition considera -
tion is made of the screening of these a-site potentials by the nearest
neighbor b-site orbitals, it is a reasonable assumption to take these
other a-site potentials to be zero. We thus make the Wigner-Seitz ap-
proximation, but here applied only to the a-sites, and say that the ion
core potential extends to the boundary of the immediate sc unit cell
and is zero past this surface. (Note that this correctly accounts for
the self-term and also includes corrections for exchange and correla-
tion.)

Thus we take ), Vaeff(;: - Bj) =V ion( r - B—j) where R. is the

a J
R.
vector to the ] nearest a-site. Hence we have that

ion 5
e+ K|V, 0 - Bj)’l‘?*;??

= Yk +K |V, - R, D+
j

"1 cell j

-

th

where cell j indicates that the integration is over the j = cell. But this

integral is independent of j, so that we can write
(kK + Ky 1Qnr—R k + K.
Z ~ =~ I & )l “1>ce11 j

Ry

= NEK V@K (5b)
0

We now consider the b-site orbitals. We have stated that these

also contribute to the field seen by an a-orbital in the form of a neutral
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atom potential. Thus we have that

Germll V- By - Ryl Ky
]

- N(§+I§ eff

Vi, (r - R,

R - Ryp)lk + Kp

1|

where these matrix elements extend over the entire crystal. As dis-

eff is just the sum of V%" and the coulomb po-

cussed in section E; Vb
tential due to the valence electron at the b site (takeﬁ to be the atomic
valence orbital). However, these potentials are unshielded and we
know that the conduction electrons will act to screen them. We there-
fore consider the form that the screening will take due to the presence
of the other electrons in the crystal. We can use the conventional |
first-order perturbation approach to obtain an expression for this
shielded potential. Since we are concerned only with the screening cor-
rection for the l_o_—site potentials we take our zero-order wavefunctioﬁ

to be a plane wave, @, = e’ and assume that these b-potentials per-
turb the system leading to a wavefunction

P = ga.; + Z’ aKei(§+I§)'£ = «p{; + @ : | (6b)

where the prime on the sum indicates all K, K=#0. The to first order

we have

eff(lr

V4 —— Y ’ 7 0
2V o+ Vy A'Babl)ﬁ"ﬁ =Epop +EL o

therefore

ik-r _

& 2 . ‘ .
5 EE (g BRI v S Ry, PetRE -

K



55

P 2_‘/, K2 (k)e ik + K)-r +5, ik -r ' ()
K 2
Multiplying through with e—i(,lg +K)r and integrating we obtain

Ik +K|? g , o-iK Rab &+ K[V @) = a (k) (8D)

Solving for aK(k) ,

et ERabge kv G+ K|V - Ry W
3K - [k kP i - ks k)

aglk) = (9b)

The total electron density due to the b-orbitals is

p(r) = %NQ ( on Gok)

(where we have taken P to be normalized to one electron per unit vol-

ume). Using (6b) this becomes (to first order)

1
r) = - — * 0 x % 2)
p(r) Nﬂoéwk% N0§(¢k<p + @A)
Thus the zero order changé density is uniform, p° = ~ Qi, and the
’ 0
first order charge density is
ro— 1 Ox .y s ’ %k 0
= e E“”k QL+ OL*o,

which becomes

i

pr) = -2V ¥ [ag ke’ X ragr(ke KL
K

o k
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+ aK* (k)e (10b)

Here Qf indicates integration over the fermi volume. This expression

can be rewritten as

pr() = -2 ) @R [k [agl) +a gt ®)]
27)° ¢ O
f
- Y Py oKL . (11b)
K

Now we can use Poisson's equation to determine the local screening

potential GVS c resulting from this oscillating charge density,

v? 6V (r) = 4mp(r) . (12b)
Taking a Fourier transform on this equation we obtain

K26VSC(K) = 47py - (13b)
To be self-consistent our original potential should have included this

6VS . giving a total potential of

Vit ) = 8V, () v (e -R, D) (141)

Thus replacing Vﬁff(|£ - Babl) in (9b) with Vg)t(r), and using (11b)

and (13b) we obtain

v < [ | &+ K|V - K|V
£ +
S¢ K \@nP) o 30¢ -k +K[1 3K -k -K]]

dk . (150)
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Now GVSC(r) is local so that

G+ KV ) = ovg () + e Rab g4 g viHT o)
If Vﬁff(r) can also be taken as local we are then left with the expres-

sion

oV C(K)‘ . (L) Re[VEH(k)e K Rab 1 ov_ (k)]

K?* \(27)®
dk
X = 16b
) e Tk kF] e
O ~ N
The integral in this expression can then be readily evaluated,
ar [ 4 dk 1 1-72)., m+1
— = 1 - = - 1 1
K sz)s) é%[kz _[k +K|2] €(K) Zmzkf[ 2n nln -1 ’ + ]
f
(17b)
where 71 = K/2l«:f and €(K) is the usual Bardeen screening factor. 26
Thus (16b) reduces to
_ _ -iK ‘Rapy,eff
oV, .(K) = [1 e(K)]Re[éVSC(K) +e R Rabvy (K1,
and ' - K.
ov_ (K) = L2 €K Rap veH(x)]
SC €(K)
so that -iK‘Rgp
VidkK) = Re{t——— veH(k)) (18D)

€(K)

(Note that in a centrosymmetric system such as we have, this expres -
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sion is real.) This form is appropriate at the high symmetry poinfs
in the lattice where predominately one of the angular momentum de-
pendent potentials contributes, and the matrix elements of ngf can
then be taken to be local. However, for general points in the zone,

55, 56

(16b) is invalid and we must return to (15b). oV c(K) can still

be removed from the integral, and we are then led to

s 2¢7ERab (kv GvER ]k - KO

+
K*e(K)  (2n) éf%n?4§+§ﬁl e -k - K7

0V (K) =

(19b)
Going one step further, in lithium metal the general expression

for ngf (see section E) is

ville) = Y vP - @ al = vi- @) + [VRr) - V2(0)][1 - 1S>I<S|]
I

leading to

= -l _ 1] e-iK'R
6V .(K) [e(K) 1] e-1K-Rap Vp_(K) +
are K Fab G + K| Vg~V -|8)(s|k)
- +
®® @0 g 3K - [k + K]

(| VgV -[s)s|k - K
e - |k - K[ B

(20D)

(Note that the principal value should be taken at critical points.) This
is then the requisite screening factor appropriate for general points

in the zone.
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Table 1. Fourier Transforms® of Li GI pseudopotentials. The 2s
and 2p potential transforms are evaluated over the cubic
primitive cell with a = 6,575 a,. The 2s” and 2p~
coulombic potential transforms are calculated to a radius

where the potentials go to zero.

a FT FT FT FT
K ( o ) Vas V?..p Vos~ VZp'
000 -0, 29097 -0, 37563 -0. 057767 -0, 13947
100 -0. 00745 -0.07070 0. 00628 -0, 05676
110 0. 01227 -0,.03754 0. 01446 -0. 03517
111 0.01363 ~0. 02685 0. 01419 -0. 02626
200 0. 01610 -0. 01724 0.01204 -0. 02144
210 0.01074 -0, 01753 0. 01005 -0, 01826
211 0.00842 -0, 01579 0. 00827 -0, 01598
220 0. 00541 -0, 01294 0. 00544 -0. 01289
221 0. 00439 -0.01181 0. 00439 -0, 01181
300 0. 00265 -0. 01364 0. 00439 -0. 01181
310 0. 00323 -0, 01119 0. 00350 -0. 01092
311 0. 00266 -0, 01021 0. 00272 -0. 01016
222 0. 00206 -0. 00949 0. 00206 -0. 00949
320 0. 00153 -0, 00890 0. 00150 -0. 00891
321 0. 00102 -0. 00841 0. 00102 -0, 00840
400 0. 00125 -0. 00649 0. 00024 -0. 00755
410 0. 00005 -0. 00705 -0. 00008 -0. 00719
322 -0. 00008 -0, 00719 -0. 00008 -0. 00719
411 -0.00033 -0. 00683 -0. 00037 -0. 00686

2 ypits are in Hartree atomic units. See Ref. 4.
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Table 2. Transformation properties of the lower states for simple

cubic (sc) and body centered cubic (bec) structures and

their lowest spherical harmonic types.

States
bce and sc bee sc Symmetry Type
r, H, R, 1 s
Tis Hys Ris XY, z p
Ty Hy, Rip x2 - y2, 72 - 3(x% + y?) d
L' Hy' Rys' | Xy, ¥z, ZX d
Los Hos Ros z(x? - y?), x(y? - 22), y(z® - x2) f
r,' H,' R,' XyZ f
States-bcc | Symmetry | Type States~-sc | Symmetry | Type
N, 1 S X | M (1 s
N,' X+y p X' M |z p
N,' Z p X' M X,y p
N,' X-y p X | M, | x2-y? d
N, z(x - y) d X, | My |vyz, zx d
N, X2 - Y2 d X, | M, |z(x2-y?) d
N, z(X +Y) d LM | xy f
N,' z(x2 ~ y3 f X' M | xyz f
States~bcc Symmetry Type
P, 1 s
P, X, ¥, 2 p
P, X2 - y2, 22 - (2 + y?) d
P z(x2 - y2), x(y? - 22), y(z* - x2) f

5
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Table 3. Energiesa calculated for high symmetry states in bee

lithium.

State a and b sites” a sites® a sites (local)®
I, 1st -0. 2992 -0. 2978 -0. 2969

 2nd 0. 2013 0.2138 0. 2152
T, © 0. 0630 0. 0553 0. 0553
T, 0. 1534 0.1303 0. 1306
X, - -0,1942 -0.1941 -0, 1920
X,' -0, 1783 -0.2107 -0, 2110
X' 0. 1450 0.1141 0.1141
M, ' -0.1339 ~0. 1332 -0.1333
M, -0. 0743 -0, 0818 -0. 0791
M, | -0, 0491 ~0, 0492 -0. 0493
M,' 0. 1790 0. 1652 0. 1606
R, ~0. 0412 ~0. 0600 -0. 0641
R,.' 0. 0030 0. 0411 0. 0427
R, 0. 0337 0. 0543 0. 0533
R,' 0.1163 0.0913 0. 0906

2 Al energies are in hartree atomic units and are calculated using a
set of 81 plane waves up to K = 2r/a(2,1,1),

b calculated assuming pure spherical harmonic type with appropriate
local potential, (a and b sites include shielded b-site potential. )

C Calculated using general projected potential,
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Table 4. Relative extrema observed in de Haas van Alphen experi-
ments associated with orientations which could be impor-
tant in the GI band scheme for the alkalis. Extrema in
parenthesis indicate peaks or directions not clearly
defined in the spectra.

(100) Plane
[100] [310] [210] [110]

Na min (max) min

K min 0 max

Rb min max min

(110) Plane
[100] [311] [211] [111] [o11]

Na (min) max 0 min max

K min max min max

Rb min max min max

(211) Plane
| - [110] [311] [312] [201] [1-11]
K | max min min
(111) Plane
i [110] [211] [101]
Rb | max min max
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Table 5. The GI wave veclor lengths along symmetry axes relative

to the isotropic Fermi wave vector compared with experi-

mental and calculated HF values.

EXPERIMENTAL CALCULATED
Positron Annihilation®  GI° HFC
£110 1.04 1.046 1.023
_?' . . -
¥100 0.99 0. 994 0.973
"Ef_'_ . . -
K111 0.99 0.996 0.983
"EE'—‘ - . .

2 Donaghy, J. J. and A. T. Stewart, (1967).
b a=6.575a.u.

 Ham, F. S. (1962); a = 6.651 a.u.
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TABLE 6. Convergence properties of method used to cvaluate the
Fourier Transforms from the inscribed sphere (radius - 3. 2875 a,)
to the cubic cell boundary.

9% . 45P 15 - 120 19 - 190 Exact®
—1/rd’ € -.123160 -.123112 -.123102 -. 123085
Ver (0) -. 121719 -.1216%75 -.121665
s
\% (0) -.123433 -.123384 -. 123374
FTp
ANumber of pts. from center of face to cube edge.
bTotal number of points required on the section of the cubic
surface.

®Evaluated from analytic expression.

dDefini’cion includes division by volume of cubic cell. (Equal

to 284.24126 a,)

€All values are in Hartree atomic units. (See Ref. 4)
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Fig. 1 The GI effective potentials for lithium.
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Fig, 2 The tableau appropriate for the alkali metals.
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Fig. 3 The GI energy band structure for Li, using a-site

potential only.
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Fig, 4 The HF energy band structu.re using GI effective
potentials. Lines between symmetry points are only
approximate, Solid lines indicate HF bands. Dashed
lines indicate how these HF bands map into the smaller

GI zone.
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Fig. 5 The GI energy band structure for Li in which the

b-site interaction is included.
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Fig. 6 Nlustration of the types of optical transitions which
can occur in HF and the new transitions permitted

in GI corresponding to indirect transitions in HF.
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Fig., 1 The experimental soft X-ray emission spectrum for
Li and a HF calculated curve reported by Parmenter

(1952).
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Fig. 8 The experimental soft X-ray emission spectrum for

Na (taken from Skinner, 1940).
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Fig. 9 The orientation dependence of the cross sectional area

in K (reported by Shoenberg and Stiles, 1964),
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(110) plane
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Fig. 10 INlustration of the types of planar configurations which

could lead to cross sectional area extrema in GI.
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(110) Plane
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Fig. 11 Form factors (Fourier transforms) for Li based on
integrations over the correct surfaces and over spheres

having the same volume. The abscissa is in units of

q/2 ky.
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I. THEORETICAL EXPLANATION OF THE ANOMALOUS

MAGNETORESISTANCE AND HALL EFFECT OF THE .

ALKALI METALS
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A. INTRODUCTION

'bThe behavior of the transverse magnetoresistance (hercafter
simply referred to as the magnetoresistance) of the alkali metals has
been the subject of some controversy in past years. Numerous experi-
mental studiesl'6 have repeatedly demonstrated a linearity in the mag-
netoresistance up to fields as large as 60 to 100 kG. However, in the
traditional theoretical framework (Hartree-Fock) the Fermi surface is
closed and nearly spherical for these metals, and as a result the mag-
netoresistance should saturate at low fields (since only closed orbits
can occur).

In recent years the GI method’7 has been developed for going
beyond Hartree-Fock (i.e., including many-body effects) while retaining
the convenient orbital interpretation of the wavefunction. This method
has been applied to a number of molecules 'and atoms, in order to study
molecular excited states, 8 chemical rea.ctions,9 and such properties as
the hyperfine structure. 10

We find that the application of this inethod to body centered
cubic alkali metals leads to a splitting of the usual band into two over-
lapping bands. As a result the Fermi surface is no longer closed and
upon applications of magnetic fields unusual magnetic transport properties
can result. We find that the resulting behavior of the magnetoresistance
and Hall coefficient is in qualitative agreement with the experimental
results.

In section B we review some relevant aspects of the GI method

and its applications to band structures. In section C we discuss the
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calculation of the magnetoresistance and Hall effect including inter-
band transitions (magnetic breakdown). In section D we review the

experimental results and compare with the theoretical results.
B. THE GI METHOD

In the Hartree-Fock method the total wavefunction is taken as

the Slater determinant

ALdydg - 187 - by 00 o= @ pe--B] (1)

with each orbital doubly occupied (once with each spin). In (DA is the
antisymmetrizer (the determinant operator), electron number is devoted
by positions in the product, and « and g are the usual one-electron spin
functions. The orbitals in (1) are required to be the best ones, resulting

in the variational condition

HF

H d)k = Ek ¢k s (2)

where HHF is the usual Hartree~-Fock Hamiltonian (containing Coulomb
and exchange-operators). For the ground state of an alkali metal HHF has
the full translational symmetry of the lattice (body-centered cubic, bcc)
and hence the Hartree~Fock orbitals are Bloch functions for all transla-

tions Rbcc in the bcc space group,

ik - RbCC (I‘)

RPCC o (1) = X" K gy (3)

One can generally improve upon the Hartree~Fock wavefunction (1) by
allowing the up spin orbitals to be different from the down spin orbitals

to obtain the unstricted Hartree~Fock (UHF) wavefunction
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Al 1 P22 Pra P10 P20 P @9 fyﬁﬁ -« Bl (4)

However, even for the ground state,(4) does not describe a pure spin

state (eg singlet) unless
‘Pla = q)ib '

for all i. In order to obtain pure spin states and yet allow the orbitals
to split,we must replace the 4 (which takes care of the Pauli principle

but not the spin symmetry) by the group operator,11 Gz’, which has the
- property that for any set of orbitals

G)i’ [¢la¢2a"' ¢ a Do Pop G G see G- 8] (5)

it is a pure spin state and satisfies Pauli's principle. The orbitals of
(5) are required to be optimum, resulting in self consistent equations
similar to (2) but with more complicated exchange terms in the one-
electron operators. These optimum orbitals are referred to as the GI
orbitals. 7 This method is discussed in more detail elsewhere. T 1tis
sufficient to note several points, however. 12,13, 14

(1) For Li metal there are two self consistent field equations to solve
H, Pka = ka Pka - (6)
A R N

(2) The one-electron operators of (6) are expected to have only simple
cubic (sc) symmetry and hence the GI orbitals should be Bloch functions
only for translations of the simple cubic subgroup of the usual bce space

group. However, translations interchanging corner and center lattice
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sites take Ha into Hy and vice versa so that the P4 Orbitals are sym-
metrically related to the Pxb orbita.ls. Consequently, the total many
electron wavefunction (5) for the ground state still retains the correct
bce symmetry.
(3) Because of (2) the eigenvalue spectrum of H a is the same as that of
Hb and only one (say the I-Ia spectrum) need be discussed.
(4) Since H, has only sc symmetry the Brillorium zone (BZ) for the
orbitals is sc and of half the size of the usual bce BZ.
(5) The energy spectrum of (6) is similar to that of (2), but because of
(4) there are two partially occupied bands rather than one as in Hartree-
Fock. This is illustrated in Fig. 1 which shows the band structure for
k-vectors in the [ 001 ] direction. Note that the second GI band has been
mapped into the second sc BZ in order to compare with the Hartree-
Fock band. The major difference here is an energy gap within the first
bce BZ.

The differences in the Fermi surfaces for the Hartree-Fock (HF)
and GI bands are illustrated in Fig. 2 and Fig. 3, which show the cross~-
sections in the (001) and (110) planes. At low fields the semi-~-classical
descriptions of the motion of a wavepacket in k~-space would in each case
be essentially a closed circle for the Hartree~-Fock band structure. How~
ever for the GI band structure and B ||[001] we obtain closed hole
orbits and closed electron orbits. For B || [110] we obtain closed
electron orbits and an open orbit.  Thus, these band structures should
lead to drastically different magnetic properties as will be discussed in

the next sections.
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Before proceeding we should note that since the spin symmelry
is correctly taken into account there are no spin density waves as would

occur in the UHF method.
C. MAGNETORESISTANCE AND MAGNETIC BREAKDOWNV

As was noted from Fig. 2 and 3 the classical orbitals in the
presence of small magnetic fields are quite different for Hartree-Fock
and GI. Further differences arise from GI because of the small energy
gaps (~ 0.1 eV) separating the first and second occupied bands. As a
result magnetic breakdown (interband transitions) become important
even for small fields, (e.g.,2 kG). Because of magnetic breakdown the
closed orbits of Fig 2b become extended at intermediate fields and
eventually at sufficiently high fields thé orbits are effectively as in Fig. 2a.
Similarly, for even small fields the open orbits in Fig. 3b arev made finite
and eventually for sufficiently large fields the orbits become circular as

in Fig. 3a.

1. The Semi-classical Descri.Qtion

The semi-classical (LAK) description15 derives from the assump-
tions that the electrons behave classically and can be treated by Fermi
Dirac statistics. That is, there is no restriction on the type of dispersion
relation followed. Thus the results should be quite general. Nevertheless
in the high field limit when the electrons are confined to single orbits only
two types of behavior are expected. For the case where only (uncompen-
sated) closed orbits exist, saturation to a constant resistivity is the

expected high field behavior. If open orbits or compensated (n e = nh) closed
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oi‘bits are present then the transverse component is predicted to
exhibit a quadratic field dependence. Similarly the Hall resistivity
should be linear with field, with a Hall coefficient 1/[ (n -n)ec] for
uncompensated closed orbits.

This theory has had some success in explaining the transverse
behavior of the high field magnetoresistance for many metals, (e. g., the an-
isotropy exhibited by the noble monovalent metals Cu, Ag, Au, and
numerous divalent and trivalent meta_ls),1 6 but has been conspicuously
inept in accounting for the observed linearity of the magnetoresistance
of the alkali metals, often thought to be the simplest of metals. It has,
however, been shownl'7 that other types of behavior can result when
small energy gaps are present to allow magnetically induced interband
transitions (hereafter called magnetic breakdown). In the HF band
description of the alkali metals there is only one partially occupied
band, and hence magnetic breakdown is not relevant. However, these
effects can be quite important for the GI band sgheme.

We will briefly review the semi-classical theory of magneto-
resistance and the modifications resulting from the incorporation of mag-
netic breakdown. From the equations of motion of an electron in a mag-

netic field.
k = z= (v xB), y = VE (7)

We can consider the electron to move along a constant energy trajectory
with its momentum component in the direction of the field and its energy

conserved. Inserting the electric field, the Lorentz force becomes
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Hk = S(xB)+eE . (8)

Para

Assuming that the system can be described in térms of an electron

distribution function varying in space and time,
fk (E’ k ) t) = fo(g) + gk (‘E, kB’ t): (9)

where £ o is the Fermi Dirac distribution function, and kB is the wave
" vector in the direction of the field B, a steady state Boltzmann equation

is obtained

g  dgy

_ . o
T+HF‘GEX

ag

, (10)

where we have assumed an isotropic relaxation time. 7 The solution to

this equation results in the conductivity tensor]‘8
‘ t(k) :
t'-t
0., == € \ ofo dk vy (t') exp——)dt’ 11
A TN (&t )ar, @)

where the volume integral is over all occupied k states and the path
integral has been converted to a time integral.

This form of the conductivity was derived assuming that the
electrons were confirmed to a single orbit. If the Fermi surface touches
or intersects the Brillorium zone and if the energy gaps at the point of
intersection is small, we may have interband transitions (magnetic break=~

down) in the presence of large magnetic fields B. It has been shm,vnlgm21

that
the probability of breakdown is significant if the interorbit energy gap

satisfies the condition
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5w = s <1 (12)

where & g is the energy gap, € £ is the Fermi energy,
2
w B oo
c me’ 8,\8 - IAE XE) 5
b is the unit vector in the direction of B, k is the vector at the energy
gap, and K is the reciprocal lattice vector corresponding to the energy

gap. The probability of transition between orbits is

C&2 me
_ .. =B /B, _ R
P-e» J whereBo-.E—f—g-,ﬁ-—
cez

or defining w 0= E—;ﬁg- we obtain
P =e W0/ W | | (13)

Thus the probability of continuing along the next segment of the same
closed orbit, that is, making no transition, is given by Q = 1-P.
Falicov and Sievert22 have developed a method for incorporating
this behavior into the theory by rewriting the Chambers path integral
equation (11) as
e2mw n o °0 t

T C of 0] ' t o H

o=-17wrF 4 Jo = d [, ds, [oo vy, 01 (", 0 dt’, (14)
=1

Where the path has been broke into m segments, £, of equal length

(transit time t 0)°

7 t' 7
Ij (t',ﬂ)=e-t /T{ f 0 Y (s',0)e?® /T ds' + K].(Q) } (15)

and

K =e /T ([ 1-Me 0T p} v,

i (16)
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where 1 is the identity matrix (n X n), n is the total number of indepen-
dent branches necessary to account for all possible paths in the reduced

zone,

T
Vj(r)=fto vj(s',r)eS/T ds;r=1,2, -+ n (17)
)

and T is the zero field relaxation time. In (16) the ( n X n) matrix M deter-
mines the probability of transition to various branch points at the termina-
tion of traversal of each segment. That is, the matrix elements Mij
represents the probability that an electron just leaving segment j will appear

in segment i. Thus, it may assume one of the values 0, 1, P, Q.

These expressions can be generalized to different length path
segments by allowing the time of the le branch to be variable (call it t o 2)s
and multiplying each matrix element in M by the appropriate etOQ/ T, It we
assume that the Fermi surface is nearly spherical (as has been established
experimentally and theoretically for the alkalis) and hence that we have |
nearly free electron behavior at the surface, then the total velocity vector

will have the same magnitude at all points on the surface (except in the

regions near the energy gaps which because of their small size will result
R TN

. o kel
in minimal distortion, here neglected). Then hlﬁf: my, implying |V‘ = ——%1-—-—'- .

Since electrons are driven around orbits at the frequency of the applied field,
then the time for traversing one orbit segment is 6/w ? where 8 is the

angle subtended by a given branch. Having divided t into increments of tog
then we can write GQ = H(tﬁ)and since V=V, sin@ and vyz v, cosf, we can
write vi=v(t0, W, 92 ). Thus the conductivity integral for any kZ (where B

is taken to be in the z direction) becomes analytic, and it is necessary

only to integrate over kZ(-k[ to k,f). Qi course, for each slice, Akz, the
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number of segments (i.e. the dimension £), the probability matrix, and the
0 Q’s may vary.
2. The Model

As an example of the types of orbits encountered, figures 2b
and 3b illustrate the maximal orbits for the GI Brillouin zone and Fermi
surface of the bee alkali metals with the field oriented along the | 001}
and [ 110 ] axes,respectively.

However, the k-space orbits may have different geometries
for other kZ (we must consider all k z, in the range [ k, ] = kf). The
three dimensional geometries corresponding to the [ 001] and [110]
field orientations are illustrated in Figure 4. Here websee that the
various Fermi surface sections (perpendicular to the field), can be
approximated by a series of cylindrical discs., Two dimensional cross
sections for the various types of orbits encountered for these two
orientations are shown in Figure 5. |

It is to be noted that we have what would generally be considered
a compensated system, that is, the "number of electrons' in the second
GI zone is equal to the "number of holes' in the first zone. However,
consideration of Figure 5 illustrates that in general there is a portion of
the volume in the first zone which cannot be counted as contributing to the
"hole volume.' That is, n, #n. There is a significant part of the first
zone which has closed electron orbits, ana this vo_lume varies with field
direction. Hence (ne - nh) for B L (001) and (110) are different (although
for the (11,0.) case the definition of such effective carriers is obscured
by the presence of the open orbit section). However, the distinct difference

in behavior will become apparent when the results of our calculations of
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the Hall coefficient are discussed.
3. Results

We have applied the above formalism to calculations of the mag-
netoresistance tensor for the model described. Thus the available para-
meters are the lattice constant, 8 the relaxation time, 7, and the energy
gap,£ o

Lattice constants appropriate for lithium, sodium, and potassium
were used. 23 a1 energy band structure calculations12 on lithium and
preliminary calculations on sodium indicate that the band gaps for these
metals are on the order of from .08 to .15 eV. It is anticipated from

24,25 and theoreticalze' considerations that the

experimental properties,
gap in potassium is somewhat smaller. Hence, to determine the sensi-
tivity of the magnetoresistance components to the gap size, values from
0.02 to 0.15 eV were investigated for all three lattice constants.

A study was also undertaken to test the dependence of the curves
onthe relaxation time. This is of particular interest since experimentally
the crystals used possess a wide range of residual resistivity ratios
(RRR), and any significant dependence on this quantity should be reflected
in thevexperiments. Actually the longitudinal component should be more
directly related to the relaxation time, but this quantity is not so directly
relatable to the topology of the Fermi surface and the theory has not been
fully explored. |

In Figure 6a we show the transverse components for lithium

with the field oriented in the [ 001 ] direction,using four energy gaps

0.02, 0.04, and 0.1 and 0.15 eV, while Fig. 6b shows the corresponding
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curves for the field along the (110) axis. In Fig. 6a the diagonal com-
ponents, p;; and p,,, are equal. As can be seen, the gap size determines
the field at which onset of breakdown occurs and the breath of the field
range over which extended orbits predominate (leadmg to the observed
pseudo-—linearity). It is important to notice that saturation does occur, but
not until quité high fields when the gaps are largé. The larger the energy
gap, the greater will be the percentage change in resistance relative to
zero field at saturation. ‘Another important feature is the behavior of p,,
with the field in the [110] direction (Fig. 6b). The field dependence of

this component déviates markedly from the behavior observed in the others.
As we saw in Fib. 3b this direction has a maximal open orbit in the first
zone. Hence p,, exhibits an initial quadratic behavior. However, the

onset of interband transitions leads to finite sized orbits so the resistivity
cannot go asymptotically t‘o infinity, but begins to drop off as electron paths
are randomized, and finally for larger fields, p,, saturates. Again the

gap size controls how far the resistivity increases before the onset of
breakdown. In lithium the resistance peak for the 0.1 eV gap exceeds

that corresponding to the 0. 02 eV gap by a factor of 140.

The similar plots for lattice constants appropriate to sodium and
potassium are shown in Figures 7 and 8. The general features are the
same as seen ih lithium, but since the lattice constants of Na and K are
larger, we find that larger fields are required to obtain the same effects
as in Li (for the same gg). Thus in potassium a gap of .02 eV

corresponds roughly to a gap of .04 eV in lithium. In potassium
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a gap of .04 leads to an approximately linear field dependence from
15 — 50 kG for all components except p,, (110).

Now we will consider the dependence on the relaxation time,
7. Throughout the calculations we have assumed that 7 is isotropic,
the same for small orbits as for the large post breakdown orbits.
We have looked at the magnetoresistance tensor using relaxation times
appropriate to the experimentally studied specimens of these alkalis.
In Figure 9 a, b, we show the 7 dependence of lithium for Eg =.04 eV
using 7 = 0.05, 0.3, 0.7, and 1.3 (in units of 10™° sec). Similar
behaviors are seen for the other tensor components and other gap sizes.
Corresponding curves for potassium are shown in Figure 10 a, b. We
see that for relatively large relaxation times, little difference among
the curves is observed.” However, as the relaxation time decreases to a
value such that w,7 < 1,differences in the behavior become apparent.
This is because W, T (B) does not attain a value of 1 until fields which

are already in the extended orbit region. That is, an electron cannot

complete transversing an orbit before it is scattered and thus may not
have an opportunity to undergo breakdown. For high 7, as long as w cT > 1
before the onset of breakdown, the resistivities are similar. The only
component which demonstrates a significant sensitivity to T is p,, (110) for
which the open-orbit quadratic field dependence enhances the 7 dependence,
showing that the onset of the extended orbit region is slightly different for
different 7.

The remaining tensor component to consider is the Hall resistivity
(proportional to p,,). This is shown for lithium in Figure 11 for different gap
sizes. Sodium and potassium p,, lield dependencés are shown in Figures

12 and 13. Here we see a low field linear region, an intermediate sloping



102

off, and an aéymptotic linear region. The theory predicts that the Hall
coefficient (the slope of p,,;) should be RII':HlE (in emu) where n is the
effective number of electrons per unit volume. A simple calculation
shows that the high field asymptotic slope in all the figures corresponds
to n, = 1 electron/cell volume which is the expected value for closed
circular free-electron-like orbits. This is just the asymptotic condition
under total magnetic breakdown. Hence, it is only in high fields (the mag-
nitude of the required field being determined by Eg) that the free electron
value of the Hall coefficient should be observed. At low fields, the slope
varies with the directional orientation of the field and should always be
greater than asymptotic value. Since n=n e Ty in the two band scheme, the
first zone always has some‘ hole orbits. Consequently n < g and for low
fields R‘H should be larger than the free electron value (unless ny exceeds
n, in which case Ry; is negative). Again, the lo‘w field slope depends on

the fopology of the surface in the particular B orientation.

D. Comparison with Experiment

1. vExperimental Observations

Numerous experimental studies over the past forty years have
been conducted to investigate the transverse magnetoresistance of the
alkalis. Early workers4’ 5 using probe techniques and polycrystalline
samples, obtained large Kohler slopes I—?—% @ behavior inexplicable
within the traditional theory. Ros’e2 inves(éigated Na, Li, and K using
probeless helicon techniques and still observed a linear field dependence

up to quite high fields although the slopes were somewhat smaller than
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those previously obtained, perhaps implying that part of the linearity was
attributable to the probes. _

More recently, several experiments have been reported on
potassium investigating the behavior of the magnetoresistance of single
crystals and the effects of strain and inhomogeneities on the apparent
transverse linearity. Penz and Bowersl(1968) using the helicon method
found that single crystal potassium exhibits a linear magnetoresistance
up to 60 kG and polycrystalline samples up to very high fields (~ 110 kG)
with no indication of saturation and that the Kohler slopes varied with
crystal orientation. By subjecting their samples to various stresses
effecting up to a 27% increase in strain, they found an enhancement of
the Kohler slope by as much as a factor of 3. Since their experimental
technique utilized probeless samples under minimum stress, it was
concluded that these factors were not the basic cause of the anomalous
behavior.

Babiskin and Siebenmann6 (1969) studied the magnetoresistance
of potassium to determine the effect of Fermi surface anisotropy. In
their experimenfs they observed a knee in the curves at about 10 kG
and attributed the large subsequent linear component to classical geome-
tric effects and non-uniform current distribution. Upon subtracting out
this presumably spurious linear component, the resulting curve exhibited
saturation of the magnetoresistance at about 10 kG with a %—Q of 2.2% at
4, 2°K which they interpreted as due to mean free path anisoi:ropy resulting

from Umklapp processes. 21

However, some recent studies on potassium by Taub and Bowers28

indicate that this interpretation may require revision. They have
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investigated the effect of annealing on very pure samples and find that
this leads to an increase in the Kohler slope, implying that strain
actually decreases the slope. (Their gi; is ~ 100% at 100 kG). They
also observe a knee at about 5 kG but note that its occurrence and shape
correlates with the RRR. In addition they report evidence for size effects
affecting the resistance in very pure samples. Thus it would appear
that the influence of size effects, inhomogeneities, and strain need to be
better characterized before any unambiguous conclusions on the intrinsic
behavior of the magnetoresistance of the alkalis can be made. In view

of the inconclusive nature of the results thus far oh K, an interpretation
based on the theoretical implications as put forth in this paper can only
be qualitative and postulatory. But clearly the theory does lead to a
description capable of accounting for the observed behavior. We will

now examine these observations in light of our theoretical results.

2. Theoretical Interpretation

We have found that going beyond HF leads to a two band scheme
in which small gaps occur at the Fermi surface. In the presence of high
magnetic’ fields, interband transitions across these gaps can occur, resulting
in a markedly different field dependence than expected on the basis of the
LAK theory. In particular, for the_ simple cubic geometry of our model,
most field directions result in a large field range over which the magneto-
resistaﬁcé is linear. However, with the field oriented perpendicular to
the (110) plane an open orbit is present which leads to a p,, component
with an initial quadratic field dependence. Breakdown then leads to a

decrease in p,, with field until saturation is attained.
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Most of the experiments discussed in the last section used
polycrystalline samples, which means that the observed behavior
represents an average over the orientations of the crystallites. In this
context the knee observed at ~2-7 kG could result from the contribution
of the open orbit to the average. The peak is generally sharp and occurs
prior to the long linear region characteristic of other orientations.

When sample purity is such that w T is<1lin the region where this peak
would occur, it disappears from the spectrum. (See Fig. 9-11). This
means that an electron cannot complete traversing an orbit before it is
_scattered, and the concept of an orbit becomes obscure. The same

effect occurs in the remaining components for small 7 at the lower fields,
but the higher field linearity is still obtained. Experimentally (forb poly -~
cfystal]ine samples) the linear region in K extends to ~100 kG; ‘from

our calculations this would require a gap size of . 05 to . 06 eV (based on
the [100] direction). However, as the gap increases, the field for the
onset of this pseudolinearity increases. Of course, different orientations
and hence different orbit geometries could lead to significant changes in
the extent of this linear range. Penz and Bowers1 in their study of single
crystals observed a linearity from 10 to 60 kG for different orientations
with quite different average Kohler slopes (the averages were based on
widely scattered slopes). Although they did experiments with the field in
the [110] direction, they reported only a linear dependence. However, the
helicon technique only measures an average of p;; and p,,, and it is pos-

sible that slight misorientations could mask the quadratic dependence.
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This theory does not treat the effects of strain or inhomogeneities
on the magnetoresistance, but if in fact decreasing strain does increase
the Kohler slope, the dramatically larger slopes which we obtain as
opposed to thbse observed may not be unreasonable.

In this regard theoretical considerations might also be relevant.
There é.re several approximations and assumptions inherent in the theory
we have presented. It might well be the case that the relaxationtime is k-
dependent or that various scattering mechanisms have field dependent
probabilities. These possibilities would introduce significant complexi-
ties into the theoretical description. One prime factor subject to improve-
ment is the form of the expression for the interband transition probability.
Small changes here could have large effects on the conductivity tensor.

In particular, local orbit geometries in the immediate neighborhood of

the gap could significantly affect the transition probability making some
orientations much more favorable than others. These possibilities are
under investigation.

Hence, this theory does provide a qualité.tive explanation of the
dbserved behavior of the transverse magnetoresistivity. Other explana-
tions have also been put forth to éxplain this behavior. Reitz and Over-

hauser29

has suggested that charge density waves would produce heterdyne
gaps in the band structure which would undergo magnetic breakdown, pos-~
sibly accounting for this anomalous magnetoresistance. However, this
description required a considerably distorted peaf -shaped Fermi surface
in disagreement with the de Haas van Alphen experiments26 which

indicate the surface to be quite spherical. Ashcroft30 has also postulated a

'super lattice' possibly due to strain which would lead to a description similar
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to ours. Young27 has considered the possibility of Umklapp scattering

and has parametrically included this mechanism in the theory. His

model wé.s a simple cubic lattice in which the Fermi surface was

spherical and came in close enough proximity of the BZ to cause a

mixing with states in the adjacent cell thus producing phonon-assisted

Bragg reflections. He considered "hot spots'' (points nearest the zone
boundary) as the only regions where such mixing was allowed. To

achieve a description approximating the experimental curves for K, he

had to assume values for his parameters which implied a solid angle of

"hot spot" area which was extremely small (10~ )and a value for the
transition probability constant,~ 10*® The expression for the transition
probability should contain a proportionality factor of (K/ q)2 where K is the
smallest reciprocal lattice vector length and g is twice the distance from the
surface to the nearest zone face. This implies the Fermi surface must

be on the order of 10~° a, away from the zone boundary. For the body
centered cubic structure of the alkalis, this would require that the Fermi
surface be quite distorted, since a sphere would be 18% away from
the edge. Such a surface seem unrealistic in view of band calcﬁ.‘la.tions26
and other experimental evidence. 24,25 Of course, such considerations
may be pertinent in the GI band scheme since it is in direct contact with
’the BZ in some regions (here there is no need to resort to a non-

spherical Fermi surface),

3. The Hall Coefficient -~ Experimental

Elementary transport theory leads to an expression for the Hall
coefficient, R = 1/ne (in emu),where n is the effective carrier density.

Since a closed spherical Fermi surface is thought to be a good model
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for the alkali metals, R is lsimply determined using n - 1 clectron per atom.
However, experimental studies have indicated that R in lact decreases in

32, 33, 37 81 (1962) using the

very high magnetic fields. Chambers and Jones
helicon method also report a significant decrease (about 5%) in the Hall
coefficient in the region of 3 to 7 kG. Extrapolating these values to the high
field limit they obtained values of R 5% higher than for free electron value.
However, Goodma,n32 (1968) repeated the experiment using a more accurate
treatment of the boundary value problem and found that in the range of
25-35 kG the Hall coefficients for Na and K were within 0.5% of the theo-
retical value. Penz33 (1968) also studied the field dependence of the Hall
coefficient of K and reported a decrease of ~5% in the field range from 20
to 100 kG.‘ No measurement of the absolute value was made.

The above measurements were all conducted at about 4°K, and
for Li and Na are complicated by the martenistic transformation which
they undergo at low temperat_ures; However, measurements of the Hall
coefficients of the alkalis have been made between liquid nitrogen and
room temperatures and a study of their pressure dependence was carried
out by Deutsch, Paul, and Brooks34 (1961). At room temperature they
reported that the number of effective charge carriers, n*, decreased by
5% for Li, 6% for Na, 6-8% for K, and 8% for Rb as the pressure is
increased to 15,000 kg/cm®. For Cs n* passed through a 7% minimum
at 5000 kg/cm® to increase to a value 20% higher at 15, 000 than at
 atmospheric pressure. They also reported Hall coefficients at room tem-
perature (at ~6 kG) which were higher than the free electron values by 15%,

5%, and 5% for Li, Na, and K, respeetively. Their temperature

dependence study showed an increase in R by 37% in Li, 3% in Na,
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and 2% in X upon decreasing the temperature to 77 K.

4, Theoretical Hall Field

All of these observations are in sharp contradiction with
theoretical predictions based on a closed Fermi surface, and nearly
free electrons. Within this model the Hall coefficient should be a
constant independent of temperature or field, the pressure ‘dependence
should be small, and based on band structure calculations using the HF
theory would lead to changes in the direction opposite to that observed. 34
Only an agssumption of a strongly anisotropic relaxation 1;ime34 would
appear to be capable of accounting for the effect within the HF model.

| We have seen, however, that the gaps which occur on the Fermi
surface in the GI zone lead to a smaller number of effective electrons in
low fields than normally expected, and only in the high field limit where
total breakdown has occurred is the expected free electron value achieved.
Thus the Hall coefficient should be a consté.nt in low fields, with a value
higher than the free electron value, should undergo a sloping off in inter-
mediate fields, and should attain the free electron value in very high fields.
(If T is small enough that w 7 is ~1 in the region where saturation occurs,
the low field slope will be closer to the free electron value). This
description agrees with the reported experimental field dependences.
The field range over which the decrease would be observed is dependent

on the size of the energy band gap and hence may vary among the alkalis.
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Hence we would expect a témperature dependent Hall coefficient

at constant field if the temperature is in the range where thermal break-
down could be occurring. If the energy gap is of the order kT (0.026 eV
at room temperature) then such behavior would be expected and lower-
ing the temperature would cause a decrease in the number of effective
electrons and hence an increase in the Hall coefficient. This in in
agreement with thé observed behavior.

It has been shown13 that the GI bands for Li change significantly
as the lattice constant is increased or decreased from equilibrium. There-
fore the size of the band gaps at the Fermi surface would also change and
could actually go to zero at some point as the bands cross at the surface.
Not only would distortion of the Fermi surface cause changes in the num-
" per of electrons occupying the second band, but shifts in the band gap
would affect the field at which breakdown saturation would occur. Thus
it is quite conceivable that this description could lead to a decrease
followed'by a possible increase in the Hall coefficient of the alkalis with-
out the necessity of invoking relaxation time anisotropies into the
theory. |

At low fields we have seen that this description leads to Hall
coefficients which are dependent on the crystallographic orientation. In
particular the [ 110 | direction has an open orbit leading to a higher slope
than that found in the [ 100 ] direction in which only closed electron and
hole orbits occur. Thus we would expect in low fields that the Hall

field would be anisotropic. 35 A study on the same crystal over a variety
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of field orientations and a wide field range would certainly be of

interest.
E. CONCLUSIONS

In summary, since the GI band scheme for the alkalis allows
the orbitals to have a lower than bce symmetry and yet leads to a many-
electron wave function for a pure singlet state, we obtain a band structure
qualitatively capable of accounting for the observed non-saturation of
the transverse magnetoresistance. In fact, magnetic breakdown leads
to a broad range of approximately linear behavior into very high fields
before the onset of eventual saturation. In addition the Hall coefficient
decrease with field is accounted for and a possible explanation of its

pressure dependence is afforded by the description.
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Figure 1. Energy bands along [ 001] direction in HF and GI

band schemes.
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Figure 2. Central cross sections in the (001) plane of (a) the HF and

(b) the GI Fermi surface and Brillouin zone boundary.
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Figure 3. Central cross section in the (110) plane of (a) the HF and

(b) the GI Fermi surface and Brillouin zone boundary.
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Figure 4. The top half of the Brillouin zone showing the Fermi
- surface intersection for the field B, oriented in (a)

the [001 ] direction, and (b) the [ 110] direction.
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Figure 5. (a)-(e) The various types of orbits contributing to
the transverse magnetoresistance with the field

oriented in the [ 110] direction.
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Figure 6. The transverse components, p,, = pp, for lithium with

the field perpendicular (a) to the (001) plane and (b) to

the (110) plane. The behavior for four energy gaps Eig~
.02, .04, .1, and .15 eV are given for v = 0.7 x 10

=10

sec. (1 abohm = 10"° ohms).
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Figure 7.

128

The transverse components, p,, = ps», for sodium, with
the field perpendicular (a) to the (001) plane and (b) to
the (110) plane. The behavior for four energy gapsEg=
.02, .04, .1, and .15 eV are given for 7 = 0.7 x 107*°

sec.
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Figure 8. The transverse components, p,; = p.,, for potassium,
with the field perpendicular (a) to the (001) plane and
(b) to the (110) pléne. The behavior f‘or four energy gaps
ég =.02, .04, .1, and .15 eV are given for 7 = 0.7 x 107*°
sec. (1 abohm = 10° ohms).
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Figure 9. The relaxation time (7) dependence of the transverse
components for lithium. (a) for B L (001) and Eg = 0.04
and 0.1 eV's (b) for B L (110) and £g = 0,04 eV.
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Figure 10. The relaxation time (7) dependence of the transverse com-
ponents for potassium. (a) for B 1 (001) and Flg = 0.04 and
0.1eV's (b) for B 1 (110) a,ndgg =0.04 ¢V.
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Figure 11. The Hall resistivity (p,;) of lithium for the indicated energy
gaps with 7 = 0.3 x 10™*° sec. The curves are identical.
The dotted line indicates the type of behavior resulting

whom 7 = 0.05 x 107*° sec.
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Figure 12, The Hall resistivity (p,,) of sodium for the indicated
energy gaps with 7 = 0.7 x 107*° sec.
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Figure 13. The Hall resistivity (p,,) 6f potassium for the indicated
energy gaps with 7 = 0.7 x 10™"° sec. (The dotted line
indicates the type of behavior resulting when 7 = 0.05 x
107 sec, the longer 7's all shows the same behavior as

T=0.7%x10""° sec.).
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II. RESOLUTION OF THE MOTT PARADOX
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A. INTRODUCTION

The usual band description of metals often leads to a poor

description of the system as the crystal is pulled apart.l’ 2

For
example consider a body centered cubic alkali metal such as sodium.
If there are N lattice sites? there are N states in the first Brillouin
zone (BZ). Thus, if each orbital in the conduction band were doubly
occupied, the band would contain 2N electrons. But sodium is mono-
valent so that there are only N electrons in the band therefore |
filling only N/2 of the states., Hence, we would correctly expect
the system to be a metal (since there are many empty orbitals with
energies infinitesimally close to the occupied states). Thus, this
band description would lead to the idea that sodium is a metal even
for infinite lattice constant (a = =), However, at a = « the ground
state of the system should have every isolated Na atom in its
ground state; hence in order to obtain conduction we must move an
electron from one sodium atom to another which requires an energy
of 4,6 eV. Thus, for a = » sodium should be an insulator and the
usual band description is clearly inappropriate. This result that the
band picture implies a metal for a system which clearly must be
an insulator is sometimes called the Mott Para,dox.2
Mott considered a system with a large lattice constant, g_,‘
in which the valence orbitals were localized at the various lattice
sites. He proposed that as a decreases and the orbitals start
overlapping, eventually a point is reached at which each orbital is

shielded from its own nucleus sufficiently to delocalize over the

various sites and thus help shield other orbitals from their sites
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leading to more delocalized orbitals, etc. Consequently, there should
be some critical a at which the system changes discontinuously from
an insulator to a metal. Such a transition from localized to delo-
calized valence states is called a Mott transition, and has been used
to discuss metal semiconductor transitions in V,0, and similar
systems.

However, the difficulty for a system such as sodium just
results from the double-occupation restriction in Hartree-Fock. For
a = © we require N singly-occupied orbitals each localized in its
own region of space. However, we saw that the HF wavefunction
contains N/2 doubly-occupied valence orbitals and, thus, cannot
correctly describe the separated atoms limit [this same problem
also occurs in the HF description of many diétomics (e.g., H,, Li,,
LiH, N,, etc.) resulting in improper dissociation].

In this paper we will be concerned with the consequences of
the removal of the double-occupation restriction in HF. We find that
proper band calculations with this restriction removed correctly lead
to a metal for equilibrium and an insulator for large internuclear

distances.

B. WAVEFUNCTIONS

We will first consider a simple molecular system, H,, and
see what problems are encountered in removing the double-occupation
restriction from the HF wavefunction. Here the HF wavefunction is

given by
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LA H2)a()B@)] = (1) ¢2) a1)8(2) - B(1)a(2)] (1).

where (/ is the antisymmetrizer, ¢ is a spacial orbital and o and 8
designate spin up and spin down orbitals respectively., We take ¢
as doubly-occupied and functionally optimize (1) to minimize the
total energy. The resulting orbi’ca.l4 is shown in Fig. 1b and is seen
to have og symmetry, even for large internuclear distances. We
can separate ¢ into components localized on the left and right

protons,

¢=X£+Xr (2)

such that X, and X, have essentially no overlap for large internuclear

distances. Thus, the spacial part of (1) becomes

A1) H2) = [Xp(1)X,(2) + X, (1)%,(2)]
+ Xg@)xg(2) + x @)x,(2)]. 3)

But for well separated nuclei the spacial wavefunction should be just

a product of separated atomic functicns (properly symmetrized),
xﬂ_(l)xr(z) + X (1) Xy(2). (4)

The spurious ionic terms in (3) cause the HF wavefunction to behave
poorly at large distances, as shown in Fig. 2.'7 These terms arise
because the orbital ¢ is forced to be doubly~occupied. I we allow
the orbitals to be different (obtaining the Unrestricted Hartree-Fock

or UHF wavefunction), (1) becomes
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AL6,(1) @) 2(1)B@)] = 9,,08 - ¢ 0 fa. (5)

Now as we separate the system, ¢a becomes an orbital localized on
say the left center (Xg) and ¢b an orbital on the right (xr) and the
molecule dissociates correctly. However, the ground state should
be a singlet state; thus,‘ applying the spin raising operator, S+, to
(5) should give zero. But,

Qs ¢a8] = 29, bacl = (8,8, - ¢ 6,)a0 (6)

yields zero only if ¢a is proportional to ¢b. Thus, to obtain the
correct spin symmetry the orbital must be doubly occupied. But as
we saw this leads to incorrect dissociation. In order to circumvent
this problem and obtain both the correct spin symmetry and disso-
ciation properties, we replace the antisymmetrizer by a more general
operator, the Group Operator G’i' 10 to obtain wavefunctions of the
form Giy ¢a¢baB. The Group Operator has the property that the

resulting many-electron wavefunction is an eigenfunction of S? and

satisfies Pauli's Principle;l 0 thus, no restriction need be imposed on

¢

a
tion is

and dlb For a two-electron singlet state the resulting wavefunc-

Gl [6,9,08] = (0,8, + $,9,)(a8 - pa). (M)

Applying the variational principle, we functionally optimize the orbi-

tals of (7) to obtain a pair of coupled integro-differential equaticns11
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ho = E¢

aa a a

bty = €y (8)

The resulting optimum orbitals6 for H, at equilibrium (R = 1.4 a;)
are shown in Fig. 1a. »

| We see that not only are ¢a and ¢ different but they have a
lower symmetry than that of the molecule. They belong to C., -
while the molecule has Dooh symmetry. But iflwe apply the inver-
sion operator i to the orbitals (thus interchanging the nuclei), we

obtain
i, = Y
igy = &, ()

Hence, under this operation, the many-electron wavefunction is

unchanged,
1(¢a¢b + ¢b¢a) = (ba(pb + ¢b¢a (10)

and is correctly a 'Zg" state of D, Symmetry.

Now as the nuclei are separated to large distances, the orbi-
tals become more and more like H 1s functions and, hence, they
dissociate correctly as shown in Fig, 2.7

6,10 cannot

For more than two electrons, the wavefunction
be factored into spacial and spin parts as in (7), In the Giy operator

for a given system there may be several operators which one can
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construct. ¥ represents the total spin projection and the index i
designates the particular spin coupling to be used (there are in
general several independent ways of coupling the spins of the N
electrons to ‘obtain some total spin, S). This spin coupling must be
optimized alohg with the orbitals to obtain the spin-coupling optimized
GI or SOGI Wavefunction.12 We will now discuss fhe GI description
of two molecular systems, square planar H, and hexagonal H,.

The resulting wavefunction for H, yields the orbitals shown
in Fig. 3. The optimum spin coupling for this system is extremely
close to what is generally referred to as f-type cbupling.s’ 10,14
Here half the spins are coupled to maximum spin, the other half
are coupled to maximum spin, and these two sets are coupled

together to give minimum spin. For this description the many-

electron wavefunction for singlet H, is
Gf (91, P91, P 8]
= Qb 109,01, Popl 20088 - (@B + pa)(ap + pa)

+ 28Baal}t. (11)

It is clear in this expansion that qba and d)b are not uniquely asso-
ciated with any given spin and yet it is exactly a singlet state.

The orbitals in’(ll) are determined by applying the variational
principle to minimize the energy of (11) which leads to the following

set of simultaneous equations:



1,2

B Pa = EkaPrar K= 1,2

By = Epfi K= 1,2 - (12)
In (11) it is no restriction to take the a orbitals to be mutually ortho-
gonal and similarly to take the b orbitals as orthogonal; however, in
general the a orbitals do not have any special relationship to any of
the b orbitals. We see in Fig. 3 that the one—electfon: orbitals of H,
are symmetry functions of D2h rather than D 4h’ Thus, just as in H,,
the orbitals hdve symmetry lower than that of the full spatial sym~
metry group. Even so the many-electron wavefunction still has the fuil
symmetry of the molecule. For example, consider the effect of the

operation C, on the wavefunction of (11). Since
Caf1a = P10 Calrp = P1a
Cabgy = Pap; CaPgp = ~%94

(see Fig. 3), we have that C,G; @x = -G;®x. Similarly, considering the
other operations of D 4 Ve find that the wavefunction (11) correctly pos-

sesses 1B1 symmetry. Note that this symmetry reduction is not forced

on the orbifals. We solve for the variationally optimum orbitals which are
found to have D2h symmetry,; they could have had D 4h symmetry if this
would have lowered the energy.

We now examine Hg with D6h symmetry [ a regular hexagon of H
atoms (R=2a 0)] . 15 (This can be considered a molecular prototype to a
one dimensional crystal). As in H, the optimum spin coupling is found to

16 are shown

be very near the f-spin coupling. The resulting H,; orbitals
in Fig. 4. Once again, we find that the orbitals have a reduced symmetry,

here they belong to D3h rather than the Dgj, of the molecule.
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In each of these cases since our orbitals are singly-occupied,
we obtain o description which is valid as the system is pulled apart.
Other altemptls have been made Lo construcet uselul wavelunctions
which behave Correctly for all internuclear distances. We have seen
that the UHF wavefunction has incorrect spin symmetry. To circum-
vent this dif-fiéulty, it is necessary to project out the desired spin
component. But then the spin projected orbitals are not optimized

11 discussed above

in the new description. Actually the GF method
can be shown to be equivalent to spin-polarized UHF in which the
orbitals are optimized after spin projection. ‘

Numerous schemes using alternate molecular orbital

have been developed. This treatment couples ground
state HF orbitals to their corresponding excited state orbital in
symmetric and antisymmetric combination. A parameter determining
the degree of localization is optimized to minimize the total energy.
However, this approach is applicable only to the ground state of a
system and the orbitals are parametrically, not functionally, optimized
so -that an independent particle interpretation is not obtained.

Another attempt to describe electron correlation in a consis-
tent manner utilizes Heitler London pairwise coupling of the orbitals,
but attempts to extend the application to highly resonating structures
and metals involves many equivalent pairs which render the calcula-
tion impractical, if not impossible. In addition, the model implies
localized spatial orbitals with strong spin coupling between nearest
neighbors which has been shown to be applicable only to low electron

density systems.
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It should be noted that the GF orbitals are not strongly
coupled with neighboring orbitals, Such a description involves a
quite different spin representation generally referred to as G1, the
use of which corresponds to a generalization of the valence bond

method and will not be considered here.

C. APPLICATION OF THE GI METHOD TO METALS
NV\M’WV\NWV\MNVVW\NVW\/V\M/\MJ\/\AN\MN\M/\NVW

We will now consider how this method might be applied to
an alkali metal such as lithium. The many electron wavefunction

can be written as
G} [01,09* " * @i P« ** By @@ * - BB + 8] (14)

where we are considering only the conduction orbitals. As before,

these sets of orbitals {d)a} and {q’lb} are solutions of two equations,

hoPyn = gka(bka k= 1,2,--¢,n

il
ok
3

o~
[y
(7]
N

bty = CipPp k= L,2,-00,m

where here k denotes a particular wave vector. These orbitals are
all singly occupied and, as per previous considerations, would be
expected to have higher amplitude on alternate sites in the bcc
lattice and thus to have simple cubic symmetry. That is, if R is a
symmetry operation belonging to the simple cubic (sc) subgroup of

the bce space group, then the orbitals transform as
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| ik - R
R ) = ex = ¢ (r) (16)
with a similar relation holding for the { (/)kb(?\)}' That is, these
operalions produce two sc sublattices. The operations of the bee
group not contained in this set are those translations interchanging
corner and center atoms, or those which map one substructure into

the other, denoted by R, and yielding

R, %@ = X Rab g ()

Rab Gp®@ = e'" Rap PpaL)- (17)

Thus, these orbitals are Bloch functions only for the sc subgroup,
a condition equivalent to that found in (9) and (13). Therefore, for
a lattice constant, a, the set of inequivalent k-vectors can be taken

to be:

-g < ky ko, K, = 2 (18)
which defines the first Brillouin zone (BZ), a simple cube. This
cube occupies half the volume of the usual bec dodecahedral BZ
(which in this case is just the second BZ). We now have two sets
of orbitals localized on different sublattices and equivalent except
for a spacial translation. For N conduction electrons there are N/2
singly occupied conduction orbitals in each set and these are suffi-
cient to just fill the first BZ. 1In fact, this is exactly what occurs

for large lattice constants, but near equilibrium the Fermi surface
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is very nearly a sphere and, hence, intersects the zone boundary,’
introducing new gaps inio the usual band scheme.22 Thus, both
the first and the second band are only partially filled and we have
a conductor. Since buth of these sublattice sets yield exactly the
same band structure, it suffices to treat just one of them.

For our one-electron Hamiltonian we have (in Hartree atomic

units24)

h, = -4+V2 4+ U | o 19)

where Ua is a nonlocal operator somewhat more complicated than:
that appropriate in HF representing the inter_actioh of the electron
with N-1 other conduction electrons and the core electrons. Since
ab-initio GI calculations on Li atom lead to nodeless valence orbi-

tals,zo weak effective potentials21

derived from these calculations
can be used to construct an effective Ua' In this context plane

wave expansibns of the orbitals are found to converge rapidly, and,
hence, there is no need to orthogonalize the conduction orbitals to
the core. A description of the construction of the potential is lengthy

and will be given in a subseqyuent paper.

D RESULTS_AND_DISCUSSION

We have used this approach to calculate the band structure of

23

Li metal at the high symmetry points I, X, M, and R“° of the GI

Brillouin Zone for lattice constants ranging from 5.48 a, to 18 a,.

24

The resulting energy bands“® as a function of 27/a are reported in
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526 25 _ 6.575 a, (3.48 R)

Fig. The equilibrium lattice constant is ag
and the two adjacent values correspond to +15% volume changes.
At equilibrium the first two bands overlap significantly and the
system is clearly melallic. However, as the latti_ce constant is
increased, the bands gradually separate until at 10.3 a, (5.45 A)
the overlap between the bands goes to zero. For larger a the
first BZ is full and the second BZ is completely empty (since as
we have seen we have just enough occupied states to fill the first
zone) and there is an energy gap separating all the states in the
first band from vthose in the second. Hence;' the system is an
insulator, Further increase in the la.ttice constant leads to a con-
tinuous separation of thé bands toward the atomic limits until at
a = 18 a, the first band (2s) is completely flat, the 2p band is quite
narrow, and the higher bands are likewise merging. This is more
clearly shown ih Fig. 6. To the right of the figure are the atomic
valence orbital energies obtained from self-consistent GI calculations
 on the respective atomic states of lithium using large basis sets.
For the calculation of‘ the band states an expansion of 1 plane waves
using all reciprocal lattice vectors up to and including 27/a(2,1,1)
was used. This basis set was tested at a, where we found that an
increase to 93 plane waves [up to 2m/a(2,2,0)] decreased the energy
of I' by 0.001 and decreased the energy of X,' by 0.002. Such ac-
curacy is quite adequate for illustrating the effects of lattice para-
meter on the band structure.

As seen in Fig. 6 the first energy gap corresponds to the

energy required for a 2s - 2p atomic transitions.- However, to
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obtain conduction, the required energy should be larger than this
since an clectron must be transferred from onc neutral atom (o
another lo create an ion pair Li" Li~. For atoms lar enough dis-
tant so that they have no overlap, this energy should be about
0.179 h = 4.9 eV [the ionization potential of Li (0,198 h) minus the
electron affinity (0.019 h)].

A crude estimate of the transition point to go from an insula-
tor to a mefal can be made in the following way. We assume that
the atoms do not overlap so that the energy of the normal covalent
state is essentially independent of a. The energy of the state with
one Li* Li~ pair will drop as - 1/R where R is ‘the nearest neighbor
distance, V3 /2 a. Thus, the ionic state will cross the covalent
state at 2/V3a = 0.179 or a = 6.8 a,. Actually, the crossing point
is at a = 10.3 a, indicating that the no overlap assumption is rather
poor (there is an overlap of 0.02 between two ground state valence
orbitals of Li even at 15 a;).

The dotted-dashed line in Fig. 5 corresponds to the free
electron Fermi energy for the various lattice constants. We see that
this line passes through the point at which the two bands separate.
This is no doubt just a coincidence since a free electron type of
dispersion relation is certainly inappropriate when the bands have
distorted to fhe extent shown at 10.3 a,. Even at equilibrium the
approximate Fermi level as indicated is well below the free electron |
value, that is, the dispersion relation leads to a higher density of
states in the occupied part of the band than would be predicted on the

basis of the face electron model.
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Thus, the GI band model leads to a description which changes
smoothly and continuously from a metal near the equilibrium latlice
separation to an insulator at large distances and no Mott paradox
is encountered. We see that the problem arises solely from the HF
restriction that the orbitals be doubly occupied which in the case
of odd electron systems cannot correctly describe the dissociated
system. However, Mott's physical discussion of the reason that a
system can be an insulator at large distances and a metal at short
distances remains valid, and may be applied directly to interpret
the changes which occur in thé GI band description.

One aspect of considerable importance in considering the
changes which a system undergoes in the transition from a metal
to an insulator is the drastic change which must occur in the resis-
tivity. Our band calculations suggest a rather continuous change in
the resistivity with dilation rather than the sharp first-order transi-
tion proposed by Mott. Considering again Fig, 5, the amount of
Fermi surface overlapinto the second zone for large lattice constants
is determined by the proximity of the point X,' (at the center of the

Fermi)'
The fact that these energy changes are quite smooth indicates that

cube face) to the Fermi level above it (or alternatively Ep - E
1

the occupied volume in the second zone quite continuously goes to
zero, in turn implying that no first-order transition occurs. However,
in the neighborhood of 10 a, there must be a functional change in
the temperature dependence of the lattice contribution to the resis-
tivity, from aT as is characteristic of good metals to an eB T

dependence appropriate for semiconductors. A theoretical calculation
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of the resistivity in this region would be of interest to clarify this
point,

There is an alternative consideration which might prove to
be pertinent to the description of lattice dissociation. We have
stated that in the GI method the spin coupling as well as the orbi-
tals must be ‘optimized. Although the coupling appropriate to a
metal at equilibrium i\s predominantly f-type coupling, we have no
assurance that this assumption is x}alid for spanning the range of
internuclear distances through a semiconductor to an insulator. If
significant coupling changes are found to be important in this region,
it is quite possible that Mott's conjecture of a discontinuous change
in the bands at some critical distance could be the case.

Although there is no physical means of dilating lithium metal
through the range considered here, there may be other systems
which would exhibit similar changes and for which ag is above the
transition poin’t. In such a system a could be decreased by com-
pression and could perhaps undergo an insulator to metal tfansition
as indicated in Fig. 5. In fact, there are a number of transition
metal oxides (e.g., V,0; and V02)27 which undergo metal-insulator

transitions and are thought28

to perhaps be examples of the kind of
transitions discussed by Mott. In these transition metal oxides the
GI band scheme would again lead to lower symmetries for the orbi-
tals. Thus, it could well be that these systems just correspond to
cases in which a; » a, in which case the GI band scheme might

well provide a convenient basis for discussing the transitions.
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We will now consider the changes which occur in Li as the
lattice is compressed. We see that the point X which is within the
Fermi surface is split at equilibrium into two states, X; and X,'.
The X, state here lies below the X,' state, although there is no
a priori restriction that this be so. As the lattice constant is de-
creased, the gap between these states decreases until at 6.1 a, the
two states coalesce. Further compression leads to a crossing and
again the states separate, now with X,' lower. A similar crossing
of étates occurs between M; and M,, but since these states lie
significantly above the Fermi level, this behavior is of little physical
significance, However, the behavior exhibited by the X-states could
be physically relevant if detectable changes occur in a region which
can be experimentally reached by pressure or temperature changes.
Of course, the critical feature here is the gap at the Fermi surface,
but the behavior of the X states implies that the gap might be under-
going strong modification in this region. In this event considera-
tions discussed elsewhere lead us to expect significant changes in
the galvanomagnetic properties and in the Hall coefficient as the
lattice is compressed. Such effects have been observed in the latter

25

property”” for the alkalis, but more careful study of the surface gap

is required before any theoretical conclusions can be made.
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E._CONCLUSIONS

The Mott Paradox for a system such as an alkali metal is
due solely to the double~occupation restriction in the Hartree-Fock
method. Relaxation of this restriction and incorporation of the cor-
rect spin symmetry leads to a band structure for a conductor at
equilibrium and which changes conti'nuously to lead to an insulator

at large distances.
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Fig. 1  (a) The GI and (b) the HF orbitals for H, at equili-

brium.
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Fig. 2. The encrgy of H, as a function of the internuclear distance

for the HF, GI, and CI descriptions.



170

0G

ot

(‘N'v) o

0t

O¢

Ol

00

T

12

I9

+0z1-

~ori-

O0|-

4H

 (SIIYLYVH) A9YINT



171

Fig. 3. The GF orbitals for H, at the equilibrium separation

(2.54 a,).
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Fig. 4. Three of the GF orbitals for H; near the equilibrium.

The remaining three orbitals are mirror images of these.
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Fig. 5. Energies at high symmetry points in the GI band scheme
as a function of the lattice constant. The lines on either
side of equilibrium (6.575 a,) are for a = 6.25 a, and
6. 90 a,, respectively.
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Fig. 6. The energies at the high symmetry points in the Brillouin
Zone at a = 18 a,. The levels indicated to the right of
the figure are the orbital energies from GI calculations

of the indicated atomic states.
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Lithium Energy-Band Structure Calculations Using Ab Initio Pseudopotentials*
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A recently suggested method for constructing ab inilio pseudopotentials has been applied to Li and used
to calculate the energies at high-symmetry points of the Brillouin zone for lithium metal. This potential is
unique, local, and Hermitian and is much weaker than the Hartree-Fock potential. As a result of the weak-
ness of the potential, the conduction-band orbitals are smooth in the core regions, and plane-wave expansions
are found to converge rapidly. (There is no restriction that the conduction orbitals be made orthogonal to
the core orbitals.) The lowest energy band has character similar to the band obtained from orthogonalized
planes-wave calculations using the Seitz empirical potential.

INTRODUCTION

IGNIFICANT progress has been made in eluci-
dating the electronic band structure of metals.!
Although it has not been possible to carry out ab initio®
calculations for solids, techniques have been developed
for estimating the crystal potential -7
Once one has an approximate Hartree-Fock crystal
potential in a metal, it is necessary to solve for the
conduction orbitals in this potential. Orthogonality
restrictions imposed by the Hartree-Fock method result
in rdpid oscillation of the conduction orbital near the
atomic cores, so that plane-wave expansions converge
extremely slowly here, requiring high momentum
waves.! This behavior is incorporated in the basis set
by orthogonalizing the plane waves® to the core func-
tions. Expansion of the conduction orbitals in these
orthogonalized plane waves (OPW) then converges
rapidly.%?®
In recent years a different approach, using pseudo-
potentials,'®! has received much attention. In this
approach one deals not. with Hartree-Fock states but
rather with pseudo-orbitals which are “‘smoothed”
Hartree-Fock orbitals. These pseudo-orbitals are eigen-
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states of a pseudopotential which is the sum of the
Hartree-Fock potential and a repulsive potential. Such
an approach has several distinct advantages. Since the
pseudopotential is much weaker than the Hartree-Fock
potential, perturbation theory may be used in describing
scattering due to impurities or electron-phonon inter-
actions.’’® In addition, since the orbitals are smooth,
plane-wave expansions are rapidly convergent.0:11

However, as has long been recognized,'%!? the funda-
mental foundation for pseudopotentials is tenuous in
that the pseudopotential is not unique,™ is not Her-
mitian,'®!% and, within the Hartree-Fock framework,
has not been derived from ab initio® calculations.

It has been shown elsewhere!® that an alternative
approach, the G1 method, for electronic-wave functions
automatically leads to a smooth, nodeless valence

TasLe I. Band energies (Ref. 19) in hartree atomic units
(Ref. 20) for the lowest state I'; in the lowest band, and for
another low-lying state Ny, calculated using basis-set sizes as
indicated. The lowest energies calculated in the same way using
the Seitz Fourier coefficients (Ref. 9) are included for comparison.

Original Size of Next Lowest
plane- reduced Lowest lowest Seitz
wave set matrix energy energy vajue
1 1 —0.3220 —0.5011
7 2 —~0.3239 —0.5035
I 19 3 —-0.3275 0.7876 —0.7291
43 4 —0.3296 0.7683 ~(.8420
51 5 —0.3296 0.7679 —0.8767
75 6 —0.3297 0.7648 —-0.9532
123 7 —0.3297 0.7644 —1.024
2 1 —0.1821 —0.1823
6 2 —0.1852 0.7321 —0.1915
14 3 —0.1946 0.7145 —0.2049
NY 16 4 —0.1973 0.7111 —0.2074
20 5 -~0.1977 0.7102 —0.2075
24 6 —0.1986 0.7052 —0.2076
32 7 —~0.1988 0.7041 —0.2076
36 8 —0.1990 0.7032 —0.2078
44 9 —0.1993 0.6980 —0.2079
52 10 —0.1993 0.6972 —0.2080

1 7, M. Ziman, Advan. Phys, 13, 89 (1964).

(119“ 6]5) J. Sham and ). M. Ziman, Solid State Phys. 15, 221
¥ M. H. Cohen and V. Heine, Phys. Rev. 125, 1821 (1961).
1 8. J. Austin, V, Heine, and L. J. Sham, Phys. Rev. 127,

276 (1962).

18 W. A. Goddard, ITI, Phys. Rev. 174, 659 (1968).
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TasrE II. Band energies (Ref. 19) in hartree atomic units
(Ref. 20) based on G1 pseudopotentials. The two lowest values
are reported for each state (Ref. 21). OPW results are included
for comparison.

Lowest solution

Second lowest solution
State Type Gi(exact) Gi(spl)  OPW»  Gi(exact) Gl(sph.) OPW»
1 5 = 0.3290  ~-0.3353  --0.3432 07684 0.8022 1.9303
I'is Fd 0.308.3 0.3085 0.3085 1.346 1.334 . 1,355
'’ d 0.4778 0.4196 0.427 2,178 2.142 2,178
' d 0.5242 0.5633 0.573 1,365 1,306 1.42
I'ss i 0.5471 0.5680 0.578 2.330 2.384 2.425
1y ! 2.222 2,213 2,245 5.128 5.121 5.09
Ny F4 ~0.1990 —0.2021 —0.202 0.7032 0.7120  0.7165
N s —0.0890 —0.1001 —0.088 0.4025 0.4189  0.4355
Ny ] 0.1515 0.1293 0.1370 1.064 1.003 1.055%
Ny P 0.2115 0.2263 0.2375> 0.6174 0.6401  0.685b
N3 d 0.2841 0.2653 0.262 1.150 1.128 1.22
N d 0.7198 '0.7220 0.7385 1.181 1.221 1.245
N; d 1.092 1,087 1.105 1.650 1.646 1.675
Ny f 1,224 1.198 1.20 3.448 3.402 see
Hy P —0.01700 -0.0431 —0.046 0.8568 0.8949  0.8695
Hya ¢ 0.0805 0.1133 0.1135 1.754 1.785 1.76
H, s 0.2066 0.2104 0.2855 1.154 1.195 1.30
Hy' d 0.9233 0.9095 0.92 1.824 1.785 1.855
Hy f 0.9535 0.8492 0.865 3.562 3.528 3.59
Hy f 1.816 1.818  1.85 1.930 1.964 2.00
Py b4 ~0.0882 —0.0901 -—0.0945 0.6410 0.6502  0.669
P s 0.0538 0.0296 0.165 1.090 1.042 1.375
Ps a 0.7924 0.7845 0.8015 1.756 1.748 1.785
Py ! 0.8893 0.9089 0.930 1.738 1.758 1.825

* Glasser and Callaway (Ref. 9).
¢ These values may be incompletely converged.

orbital for the lithium atom and consequently a weak
effective potential V,4m® for this orbital. This G1
potential (being Hermitian, unique, and local) possesses
all of the properties required for pseudopotentials, and
is derived from eb initio calculations.!s

Making use of this @b inmitio pseudopotential, we
present here the initial results of band calculations
which we are carrying out on lithium metal.

CALCULATIONS AND DISCUSSION

For the crystal potential ¥V, we make the common
approximation!? that within any one Wigner-Seitz cell
V= Vawm9," with the origin taken to be the center of
the cell. Since Vawm® is weak, the orbitals ¢, were
expanded in simple plane waves. In this case, the solu-
tion of the G1 wave equation for ¢ requires only the
Fourier transform of Vaom%' over the Wigner-Seitz
cell.

In order to test the rapidity of convergence of the
plane wave expansion, we considered the low-lying
states I'; and V{8 All orders of the reduced matrix

17 The pseudopotential derived for the 25 valence orbital of
Li atom was used for the s symmetry states in the metal and the
corresponding 2p potential was used for the p, d, and f states.
Since the s pseudopotential is quite different from the p pseudo-
potential, it would approximate the p states poorly (see Ref. 1).
However, the d and p potential are rather similar, so that the p
potential leads to a good approximation for d states. Of course,
all of these atomic pseudopotentials are spherically symmetric.

18 For a bec lattice, T, H, P, and N represent, respectively, the
reciprocal vectors (a/2mk=(0,0,0), (1,0,0), (:,4,3), and (},4,0).
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were considered up to the set based on 123 and 52 plane
waves, respectively. These encrgies are reported in
Table I. We see that the planc-wave expansion does
indeed lead to rapid convergence for the G1 functions,
whereas in the Hartree-Fock case it shows extremely
slow convergence for the I'y state. Tn Tuble 11 we report
the calculated cnergies™® for many of the lower states®!
at the center (I') and at several points on the surface
of the Brillouin zone (W ,H,P).** These values are
compared to those for an OPW calculation® utilizing the
empirical Seitz potential.* We see that the G1 energies
and those obtained from OPW’s agree to about 109
In most cases, indicating that either method yields
a qualitatively correct band structure. However, the
G1 results are based on ab initio pseudopotentials and
lead to smooth conduction orbitals and, as such, are
more likely to be useful for scattering calculations and
other considerations.!?-13

In the past, it has been a common practice to calcu-
late the Fourier transforms over the Wigner-Seitz cell
by assuming the bcc cell to be spherical.? Although this
greatly simplifies the calculations, we have found the
resulting coefficients to often be in poor agreement
with the exact values (obtained by numerical inte-
gration®) as is shown in Table III. We note several
cases (e.g., n’=4, 8, 10, 14, 18) in which the spherical-
cell approximation leads to sizeable errors in the Fourier
coefficients. Since the spherical approximation was used

Tasie IIL. Fourier coefficients® for the s and p potentialsb as
calculated exactly using the spherical approximation

n?  (a/27)K Exact Spherical s Exact p  Spherical p
0 (000) —032197  —032342 —049122 —0.48996
2 (1,1,0) 0.01957 0.01435 —0.08086 —0.08611
4 (2,0,0) 0.02427 0.04861 —0.04328 -0.01832
6 (2,1,1) 0.01888 0.02101 —0.02945 —0.02734
8 (2,2,0) 0.01223 0.00165 —0.02425 —0.03514

10 (3,1,0) 0.00658 0.00191 —0.02214 -0.03075

12 (2,2,2) 0.00287 0.00197 —0.0202f —0.02103

14 (3,2,1) 0.00142 0.00574 —~0.01717 —0.01285

16 (4,0,0) 0.000765 0.00624 —-0.01456  —0.00900

18 (3,300 —0.000557 0.00366  —0.01358 —0.00902

18 (4,1,1) —0.000768 0.00366 —0.01334 —0.00902

20 (4,2,0) -—-0.00157 —0.000324 —0.01196 —0.01102

22 (3,3,2 —0.00185 -—0.00401 —0.01096 —-0.01311

24 4,2,2) -—-0.00274 —0.00633 ~0.01070  —0.01412

26 (4,3,1) —0.000888 —0.00701 —0.00999 —0.01368

26 (5,1,00) —0.00107 —0.00701 ~0.01016 —0.01368

a Defined by Ver(K) = (1/90) Qqe’x TV (r)dr, where Qo is the atomic
volume and K is a reciprocal-lattice vector.
b All values are in hartree atomic units (Ref. 20).

1 We have used a lattice constant of a=6.575a, corresponding
to an atomic volume of 142.12068a,* (see Ref. 16).

® The units used throughout are hartree atomic units; thus
the unit of energy is the hartree or 27.2107 eV.

L A bagis set of 43 plane waves was used in the calculations of
these energies. This corresponds to using all reciprocal-lattice
vectors up to (¢/2m)K=(2,1,1).

B A Riemann integration was performed under the exact
surface. For choosing the optimumn integration points, we used
the technique of H. Conroy, J. Chem. Phys. 47, 3307 (1967).
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in the OPW calculation on lithium, we have also in-
cluded in Table II the energies corresponding to the
use of this approximation for the G1 potential.

SUMMARY

We have found that band calculations using ab initio
pseudopotentials on lithium metal are simple and lead

749

to reasonable encrgies. The resulting conduction
orbitals are smooth and may be useful for considering
various properties of metals. Because the orbitals are
smooth, plane-wave expansions are found to converge
rapidly. Band calculations to further characterize the
electron-band structure of lithium for points within the
Brillouin zone are currently in progress.
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NEW APPROACH TO ENERGY-BAND CALCULATIONS WITH RESULTS FOR LITHIUM METAL*

Patricia M. O’Keefet and William A, Goddard, IIO{
Arthur Amos Noyes Laboratory of Chemical Physics,
California Institute of Technology, Pasadena, California 91109
(Received 23 June 1969)

A new method, the GI method, for electronic wave functions has been applied to the
study of energy bands in bee lithium metal. The GI method leads to energy bands for
lithium comparable with the Hartree-Fock bands except that small gaps occur within the
first Hartree-Fock Brillouin zZone. This leads to a compelling interpretation of several
anomalous experimental properties of alkali metals (such as the very low optical absorp-
tion threshold and the lack of saturation of the transverse magnetoresistance).

Band structures for solids have usually been
calculated using the Hartree-Fock (HF) method.’
In this method the total wave function is a Slater
determinant of spin orbitals,

a¥, (1)

where ¥ ig a product of spin orbitals and « is the
antisymmetrizer. For a singlet state, the spin
orbitals are required to occur in pairs which in-
volve the same spatial orbitals but different
spins, say ¢,;a and ¢,p (i.e., the orbitals ¢, are
doubly occupied) in order that the total wave func-
tion have the correct spin symmetry. One of the
most valuable features of the HF method is that
each orbital can be interpreted as the eigenstate
of an electron moving in the average field due to
the other electrons.

Recently it has been shown that it is possible to
go beyond the HF framework while retaining an
independent particle interpretation.” In the GI
method? the antisymmetrizer in (1) is replaced
by the group operator® G,?, which ensures that

G, (2)

is an eigenfunction of 82 and satisfies the Pauli
principle for all choices of orbitals in ¥, Thus
every spatial orbital is allowed to be different
(no double occupation). This method has been ap-
plied to a number of atoms and molecules, in-.
cluding Li* and Li,,>® and always leads to a bet-
ter energy than HF. In calculations on Li it was
found that the core orbitals could be exactly re-
placed by an effective local potential (the ab ini-
tio pseudopotential),” and it was found that this
potential accurately reproduces the states of
Li,.* In Li,, instead of one symmetric (o,) doub-
ly occupied bonding orbital as in the HF method,
we obtain two bonding orbitals, each concentrat-
ed on one of the respective Li centers.

We have now applied the GI method to studying
the band structure of Li metal. Just as in the Li,
molecule, the GI orbitals have lower symmetry
than the HF orbitals. In order to describe the
states of Li metal, it is convenient to view the
bec lattice in terms of the two equivalent inter-
penetrating simple cubic (sc) sublattices. The
GI conduction orbitals divide into two sets: The
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a orbitals { ¢,, } are mutually orthogonal, are ei-
genfunctions of the one-electron self-consistent—
field Hamiltonian J/,, and are concentrated (or
localized) more on the a sublattice (sc,); simi-
larly the b orbitals { ¢,,} are orthogonal, are ei-
genfunctions of a different Hamiltonian H,, and
are concentrated more on the b sublattices (sc,).?
No orthogonality conditions exist between the sets
{¢;s} and {¢,,}, but they are related by the
translation vectors between sc, and sc,. The GI
orbitals are Bloch functions, but only for the sc
space group, not for the bcc space group; how-
ever, the many-electron wave function (2) still
transforms according to the bece space group.
Hence, since the unit cell for sc is twice the vol-
ume of the bec unit cell, the resulting sc Bril-
louin zone (BZ) is only half the volume of the bee
BZ and is a cube inscribed in the HF dodecahe-~
dral BZ. In terms of this reduced sc BZ each
HF band becomes two bands, and in this new con-
text it is possible for small energy-band gaps to
occur on the boundary of the sc BZ. We will see
below that since this first BZ has the same vol-
ume as the Fermi surface, and since the Fermi
surface is roughly spherical, the Fermi surface
overlaps the first two GI bands.

As discussed below, the existence of two par-
tially filled bands seems to provide a cogent ex-
planation of several properties observed in the
alkalis which afford no natural explanation within
the HF framework. These properties are the fol-
lowing: (1) The observed linearity of the trans-
verse magnetoresistance®'® of the alkalis is in
contradiction to the saturation in high fields ex-
pected for the closed orbits found in HF,!! (2) The

of
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Hall coefficient' exhibits a significant decrease
in increasing fields which i8 not expected for the
HF schema. (3) The optical absorption threshold
observed for alkali metals is far lower than ex-
pected from the HF energy bands.'* (4) The soft-
x-ray spectra' are difficult to expluin for the

HF energy band.

We have carried out GI calculations for band
states at the center and at three symmetry pointg!®
on the surface of the sc BZ, The wave functions
were expanded in plane waves and solved in the
field of the Li atom ab initio effective potential”®
centered at the center of the cell, As for Li,,®
the potential is angular-momentum dependent
(i.e., different for s and p states). The energies
of the states calculated using the GI approach
and the connectivity of these states are shown in
Fig. 1,

We find that the splittings are small, 0.5 eV at
k=(2n/a)(3,0,0) and dropping to 0.0 at £ = (2n/a)
X(%,3,0). Thus the Fermi surface should be
nearly spherical. However, the Fermi surface
overlaps the first two GI bands and intersects the
sc BZ at about 0,734 of the distance from k= 27/
a)($,0,0) to k= (27/a)(3,3,0), at which point (k&
=0.59a, ') the energy gap should be about 0.08 to
0.16 eV.!” This gap size should cause little dis-
tortion from sphericity for the Fermi surface,
which is in agreement with de Haas ~van Alpen,™®
cyclotron-resonance,’® and positron-annihilation
experiments,?® and with the x-ray determination
of electron moments.?* But optical transitions
are now allowed between occupied states of the
first band and empty states of the second band,
and thus the threshold for optical transitions

X3

N

k=& 3h  k-Fooo

FIG. 1. GI energy~band states at the center and at high~symmetry points on sc BZ boundary for bec lithium met-
al. [All quantities are in Hartree atomic units (the unit of energy is the Hartree=27.211 eV), A lattice constant of
6.575a, has been used.] Lines indicate only the connectivity of the states and the dashed line denotes the approxi-

mate location of the Fermi level,

301
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FIG. 2. Maximum orbitals in & space (Fermi-surface
radius kg =0.5298a,"Y. (2) The (001) plane (appropri-
ate for B 11{001]); 8=72°; 6’ =18° side of square
=0.9556a,™1. (b The (110) plane (appropriate for B
(1{1101); 8=72°; ¢ =108°; sides of rectangle=0.9556a, !
and 1.3514¢,™1,

should be very small. These new transitions
from the first to the second GI band correspond
to indirect (or k-symmetry-forbidden) transitions
in terms of the HF band. Such indirect transi-
tions have also been detected in other materials®
and it may be that GI energy bands could be used
to explain these.

As shown in Fig. 2(b) it is possible to have
open orbitals in some planes [e.g., (110)] whereas
for other planes [e.g., (001) in Fig. 2(a)] both the
electron and hole orbits are closed. The very
small energy gap is expected to allow magnetic
breakdown which would lead to transitions be-
tween open and closed orbits and between closed
orbits. As discussed by Falicov and Sievert®
such band-to-band transitions can lead to unusual
variations in the magnetoresistance as a function
of magnetic field. We have carried out similar
calculations for the cases in Fig. 2 and find re-
sults similar to theirs. In order to make a rele-
vant comparison with experimental resuits, we
have extended the calculation to an integration
over the entire Fermi surface rather than just
over the maximal orbits. QOur results for the
field in the [001] direction are reported in Fig, 3,
We find a distinctly linear behavior (20 to 80 kG)
in the transverse magnetic resistance over a
large part of the field range (10 to 60 kG) investi-
gated by Penz and Bowers.® In addition we find
that p,, (the Hall coefficient R times the magnetic
field) is linear at low fields, decreases in slope
at intermediate fields, and is again linear (with
smaller slope) at high fields. This is consistent
with the decrease in R found by Penz for interme-
diate fields. The large slope at small fields oc-
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FIG. 3. The lithium-metal resistivity components py;
=Py and py; =—py, a8 a function of the magnetic field
(oriented in the [001] direction). Calculations were
carried out allowing transitions between orbits. An en-
ergy gap of 0.08 eV =0,002 94 Harirees and a relaxation
time 7=0.7 x10~1 gec were used.

curs because of the large fraction of hole orbits.
On account of magnetic breakdown in the limit of
high fields all orbits are electron orbits. On the
basis of the band-structure calculations the ratio
of these slopes is expected to be about 4:1, which
is consistent with the p,, calculations for various
values of the energy gap and relaxation time (7).
The HF wave function for Li has a half-filled
conduction band for all lattice constants, includ-
ing a=», However, as noted by Mott®* this can-
not be correct for large a since the system must
be an insulator at sufficiently large internuclear
separations. This is known as the Mott paradox"!
and has been explained in terms of electron cor-
relation.’** We have carried out GI calculaticns
on Li at larger internuclear distances and {ind
that the energy gap increases and the bandwidths
decrease with internuclear distance until for
large a (15q,) the gap corresponds approximately
to the Li atom 2s-2p excitation energy and the
width of the first band is negligible. Thus the
first cubic BZ is completely filled and the second
zone completely empty, and bee Li is an insula-
tor at larger distances, just as it should be,
That is, for the GI band structure, bcc Li chang-
es continuously from an insulator at large a to a
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metal at small g, and we see that the Mott para-
dox merely arises as an artifact of the HF band
scheme. (It actually results because the HF or-
bitals are forced to be doubly occupied which re-
sults in an incorrect dissociation of the wave
function as a— «. The analogous incorrect be-
havior also occurs for the HF wave function of
Li, molecule.)® It may be that a study of the GI
band structure of transition-metal oxides would
provide an understanding of the Mott-like transi-
tions which occur in these and related systems.**?

In addition to the aforementioned properties, it
may be possible to explain the anomalous soft x-
ray emission spectrum'® of Li from the GI ener-
gy bands. However, here it is essential to calcu-
late the states within the sc BZ. We are now in
the process of carrying out such calculations,
which are required for a consideration of the in-
tensities of both optical and x-ray transitions and
are also necessary for a more accurate deter-
mination of the magnetoresistance.

Other attempts to explain the anomalous prop-
erties of the alkali metals have been made by
Phillips and Cohen,?® postulating a collective res-
onance state, and by Overhauser and co-work-
ers,”” postulating spin-density or charge-density
waves, The GI wave function (2) for Li leads to
an alternative to these explanations; however, it
retains the correct bee periodicity and is exactly
a singlet state with no net spin density anywhere.

In conclusion, we find that the band structure
of Li metal obtained directly from GI calculations
leads to two partially filled bands and small ener-
gy gaps. The existence of these gaps leads to a
direct and simple explanation of several anoma-
lous properties of alkali metals.
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