

**Refined BPS Invariants, Chern-Simons Theory,
and the Quantum Dilogarithm**

**Thesis by
Tudor Dan Dimofte**

In partial fulfillment of the requirements
for the degree of Doctor of Philosophy

California Institute of Technology
Pasadena, California

2010

(Defended March 30, 2010)

© 2010
Tudor Dan Dimofte
All Rights Reserved

There are many individuals without whom the present thesis would not have been possible. Among them, I especially wish to thank Dan Jafferis, Sergei Gukov, Jonatan Lenells, Andy Neitzke, Hirosi Ooguri, Carol Silberstein, Yan Soibelman, Ketan Vyas, Masahito Yamazaki, Don Zagier, and Christian Zickert for a multitude of discussions and collaborations over innumerable hours leading to the culmination of this work. I am extremely grateful to Hirosi Ooguri and to Sergei Gukov, who have both advised me during various periods of my studies. I also wish to thank my family and friends — in particular Mom, Dad, and David — for their constant, essential support.

Abstract

In this thesis, we consider two main subjects: the refined BPS invariants of Calabi-Yau threefolds, and three-dimensional Chern-Simons theory with complex gauge group. We study the wall-crossing behavior of refined BPS invariants using a variety of techniques, including a four-dimensional supergravity analysis, statistical-mechanical melting crystal models, and relations to new mathematical invariants. We conjecture an equivalence between refined invariants and the motivic Donaldson-Thomas invariants of Kontsevich and Soibelman. We then consider perturbative Chern-Simons theory with complex gauge group, combining traditional and novel approaches to the theory (including a new state integral model) to obtain exact results for perturbative partition functions. We thus obtain a new class of topological invariants, which are not of finite type, defined in the background of genuinely nonabelian flat connections. The two main topics, BPS invariants and Chern-Simons theory, are connected at both a formal and (we believe) deeper conceptual level by the striking central role that the quantum dilogarithm function plays in each.

This thesis is based on the publications [1, 2, 3], as well as [4] and [5], which are in preparation. Some aspects of Chern-Simons theory appear additionally in the conference proceedings [6]. The author's graduate work also included [7], which is not directly related to the present topics.

Contents

1	Introduction and Overview	1
I	Refined Wall-Crossing	12
2	Multi-Centered Black Holes and Refined Microstate Counting	13
2.1	BPS states in $\mathcal{N} = 2$ supergravity	14
2.2	Physical wall-crossing formulas	23
2.3	BPS states of D-branes	29
2.4	Invisible walls	34
3	Refined Wall Crossing via Melting Crystals	40
3.1	Wall crossing for the conifold	42
3.2	Crystals and quivers	47
3.3	Pyramid crystals and wall crossing	49
3.4	Refined crystals	57
4	Refined = Motivic	63
4.1	Classical and motivic KS wall crossing	64
4.2	Refined = Motivic	68
4.3	Examples: $SU(2)$ Seiberg-Witten theory	73
II	Chern-Simons Theory with Complex Gauge Group	80
5	Perturbation theory around a nontrivial flat connection	81
5.1	Basics	82

5.2	Coefficients and Feynman diagrams	83
5.3	Arithmaticity	86
5.4	Examples	90
6	Geometric quantization	95
6.1	Quantization of $\mathcal{M}_{\text{flat}}(G_{\mathbb{C}}, \Sigma)$	95
6.2	Analytic continuation and the Volume Conjecture	99
6.3	Hierarchy of differential equations	101
6.4	Classical and quantum symmetries	105
6.5	Brane quantization	108
6.6	Examples	111
6.6.1	Trefoil	111
6.6.2	Figure-eight knot	114
7	Wilson loops for complex gauge groups	119
7.1	Some representation theory	120
7.2	Representations as coadjoint orbits	123
7.3	Quantum mechanics for Wilson loops	128
7.4	Wilson loops <i>vs.</i> boundary conditions	130
8	The state integral model	135
8.1	Hyperbolic geometry	136
8.1.1	Example: figure-eight knot complement	141
8.2	Hikami's invariant	144
8.3	Quantum dilogarithm	146
8.4	A state integral model for $Z^{(\rho)}(M; \hbar)$	152
9	Saddle points and new invariants	158
9.1	Figure-eight knot 4₁	159
9.1.1	Checking $\hat{A} \cdot Z = 0$	163
9.2	Three-twist knot 5₂	164
9.3	Direct analytic continuation	166

List of Figures

2.1	Split attractor flows in supergravity. The walls of marginal stability shown correspond to $\gamma \rightarrow \gamma_1 + \gamma + 2$ and $\gamma_2 \rightarrow \gamma_3 + \gamma_4$	24
2.2	Possibilities when t_∞ is on the “stable” (LHS) and “unstable” (RHS) side of the wall.	25
2.3	A “gas” of black holes with charges $k\gamma_2$ binding to a γ_1 center in physical space.	27
2.4	An example of a quiver with four nodes.	31
2.5	A three-center rearrangement.	35
2.6	An invisible wall located at a three-way split.	37
2.7	Possible multi-center tree topologies in the simplest non-primitive case. Here we draw two separate γ_3 attractor points just to distinguish flows of charge γ_3 and $2\gamma_3$; physically, they are the same point in moduli space.	38
3.1	Walls and chambers for the refined conifold.	44
3.2	The conifold quiver for the C_1 chamber, with charges of nodes and θ -parameters as indicated. The superpotential is $W = \text{Tr}(A_1 B_1 A_2 B_2 - A_1 B_2 A_2 B_1)$	49
3.3	A set of atoms melted from the C_1 crystal (right); and assignment of arrows A_1, A_2, B_1, B_2 to atoms (left).	50
3.4	The “empty room configurations” for the crystals that count BPS states in chambers C_n and \tilde{C}_n	50
3.5	The relation between pyramid partitions and dimer states, illustrated for $n = 2$	52
3.6	Even and odd boxes of dimers.	52

3.7	The weights assigned to edges of the dimer lattice of “length n ,” for $n = 2$. (The $n = 2$ ground state has been shaded in.) All vertical edges have weight 1 and all horizontal edges have an additional factor of $(-Q)^{-1/2}$	53
3.8	The directions in which dimers move under the shuffle \tilde{S} , and an example of shuffling a partition of length $n = 2$ with odd boxes deleted.	54
3.9	The brick-like lattices around the upper and lower vertices as $n \rightarrow \infty$. The ground state state of the dimer is shaded in. As before, each horizontal edge also carries a weight of $(-Q)^{-1/2}$	55
3.10	The map between the length-infinity dimer model and a pair of topological vertices. (The extra q_1 and q_2 notations are for the refined case in Section 3.4.)	56
3.11	Weights of atoms for the refined partition function in chamber C_1	58
3.12	Refined weights of atoms for chambers C_n and \tilde{C}_n , with $n = 3$	59
3.13	Refined weighting of the length- n dimer, for $n = 2$	60
3.14	Neighborhoods of the refined upper and lower vertices as $n \rightarrow \infty$	61
4.1	Left: the K_1 quiver. Right: the BPS rays of states γ_1 , γ_2 , and $\gamma_1 + \gamma_2$ in the <i>central charge plane</i> for stable (t_+) and unstable (t_-) values of moduli.	69
4.2	The K_2 Krönecker quiver.	74
4.3	The approximate structure of the wall of marginal stability separating weak and strong coupling in the u -plane of Seiberg-Witten theories. We also indicate different local regions within the strong-coupling chamber. For $N_f = 0, 2, 3$, there are BPS states of two different charges that become massless at singularities in the moduli space (the dots here), and for $N_f = 1$ there are three.	76
5.1	Two kinds of 2-loop Feynman diagrams that contribute to $S_2^{(\rho)}$	84
6.1	Recurrent examples: the trefoil knot 3₁ , figure-eight knot 4₁ , and “three-twist” knot 5₂ , courtesy of KnotPlot.	111
8.1	An ideal tetrahedron in \mathbb{H}^3	137
8.2	The 2-3 Pachner move.	139
8.3	Oriented tetrahedra, to which matrix elements $\langle p_1, p_3 \mathbf{S} p_2, p_4 \rangle$ (left) and $\langle p_2, p_4 \mathbf{S}^{-1} p_1, p_3 \rangle$ (right) are assigned.	144

8.4	The complex z -plane, showing poles (X 's) and zeroes (O 's) of $\Phi_{\hbar}(z)$ at $\hbar = \frac{3}{4}e^{i\pi/3}$	149
9.1	Plots of $ e^{\Upsilon(\hbar,p,u)} $ and its logarithm at $u = 0$ and $\hbar = \frac{i}{3}$	160
9.2	Plots of $ e^{\Upsilon(\hbar,p,u)} $ and its logarithm at $u = \frac{1}{2}i$ and $\hbar = \frac{i}{3}$	160
9.3	Poles, zeroes, and critical points of $e^{\Upsilon(\hbar,p,u)}$ for $u = \frac{1}{2}i$ and $\hbar = \frac{3}{4}e^{i\pi/6}$	161

List of Tables

6.1	Hierarchy of differential equations derived from $\widehat{A}(\hat{l}, \hat{m})$ $Z^{(\alpha)}(M; \hbar, u) = 0$. . .	103
6.3	Perturbative invariants $S_n^{(\text{geom})}(u)$ up to eight loops.	117
6.4	Perturbative invariants $S_n^{(\text{abel})}(u)$ up to six loops.	118