Refined BPS Invariants, Chern-Simons Theory,
and the Quantum Dilogarithm

Thesis by
Tudor Dan Dimofte

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

California Institute of Technology

Pasadena, California
2010

(Defended March 30, 2010)



ii

© 2010
Tudor Dan Dimofte
All Rights Reserved



il

There are many individuals without whom the present thesis would not have been possible.
Among them, I especially wish to thank Dan Jafferis, Sergei Gukov, Jonatan Lenells, Andy
Neitzke, Hirosi Ooguri, Carol Silberstein, Yan Soibelman, Ketan Vyas, Masahito Yamazaki,
Don Zagier, and Christian Zickert for a multitude of discussions and collaborations over
innumerable hours leading to the culmination of this work. I am extremely grateful to
Hirosi Ooguri and to Sergei Gukov, who have both advised me during various periods of
my studies. I also wish to thank my family and friends — in particular Mom, Dad, and

David — for their constant, essential support.



v

Abstract

In this thesis, we consider two main subjects: the refined BPS invariants of Calabi-Yau
threefolds, and three-dimensional Chern-Simons theory with complex gauge group. We
study the wall-crossing behavior of refined BPS invariants using a variety of techniques,
including a four-dimensional supergravity analysis, statistical-mechanical melting crystal
models, and relations to new mathematical invariants. We conjecture an equivalence be-
tween refined invariants and the motivic Donaldson-Thomas invariants of Kontsevich and
Soibelman. We then consider perturbative Chern-Simons theory with complex gauge group,
combining traditional and novel approaches to the theory (including a new state integral
model) to obtain exact results for perturbative partition functions. We thus obtain a new
class of topological invariants, which are not of finite type, defined in the background of
genuinely nonabelian flat connections. The two main topics, BPS invariants and Chern-
Simons theory, are connected at both a formal and (we believe) deeper conceptual level by
the striking central role that the quantum dilogarithm function plays in each.

This thesis is based on the publications [1, 2, 3], as well as [4] and [5], which are in
preparation. Some aspects of Chern-Simons theory appear additionally in the conference
proceedings [6]. The author’s graduate work also included [7], which is not directly related

to the present topics.
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