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Abstract

An experimental investigation was undertaken to examine the effect of a morphing surface on the flow over
a sphere in the Reynolds number range of 5 x 10* to 5 x 10°. Here, a morphing surface is defined as a
continuous surface that undergoes small amplitude changes in order to excite flow instabilities, rather than
utilizing large mechanical changes to the overall shape as with traditional aerodynamic control surfaces. The
sphere was chosen as an ideal geometry for testing morphing surfaces, because of the well-known sensitivity
of the flow to small asymmetries on the surface. In this study, an approximation of a morphing surface was
made by dynamically moving a small isolated roughness element along the sphere, thus producing small
amplitude time-dependent changes to the surface shape. An experimental apparatus was designed that pro-
duced the actuation with an internal motor, which moved the roughness element via magnetic interaction.
A three-component piezoelectric force sensor placed inside the sphere allowed for accurate, instantaneous
measurements of the global effect of the actuator on the flow. It was found that the moving roughness could
produce an instantaneous lateral force as large as the drag. Simultaneous force and particle image velocimetry
measurements in the subcritical regime were used to show that there is a relatively long timescale associated
with the instability growth, entrainment of fluid, and local change of the position of separation. This allowed
the roughness to trip an extended region of the flow at once. It is shown that the three-dimensionality of
the disturbance leads to the production of two helical counter-rotating vortices in the wake. In addition, it
is demonstrated that a mean side force can be obtained by oscillating the roughness element about a point,
producing a lateral force an order of magnitude larger than the force caused by a stationary roughness ele-
ment. Finally, the results from the dynamic roughness were used to help interpret the underlying physical

mechanisms that govern the forcing on a smooth sphere.
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Chapter 1

Introduction

1.1 Motivation

The research detailed in this thesis is motivated by the broad goal of understanding the effect of morphing
surfaces on wall-bounded flows, with the aim of improving performance and efficiency for a wide range of
technologies, as well as utilizing these surfaces to gain insight into the fundamental physical mechanisms that
govern the behavior of the flow.

A morphing surface is different from traditional control surfaces, such as flaps on an aircraft, in that there
is a continuous surface (a “skin”). The interest is in exciting and utilizing flow instabilities to coerce the flow
to perform as desired, with minimal energy input. This is accomplished by making small amplitude, targeted
changes to the surface, rather than large mechanical changes to the overall shape.

Because true morphing surfaces with a quick response time are not currently readily available, an exper-
imental apparatus was developed which mimics some of the desired features. In order to demonstrate the
potential of a morphing surface, a sphere was chosen as the base geometry, because it is well known that the
flow is extremely sensitive to small changes in the surface condition. Instead of examining the effect of a true
morphing skin, small amplitude changes to the surface were produced by moving a small isolated roughness
element (a “stud”) along the sphere surface at a fixed streamwise angle. Because the flow is so sensitive to
the surface finish, the stud was held in place by a small magnet located inside the hollow sphere, which was
itself moved with the use of a small motor, removing the need to have slots or other discontinuities.

The flow regime examined in this study was that of flow over a sphere in which there is a large turbu-
lent wake, with flow separation occurring near the equator. This “bluff body” flow is characterized by two
instabilities, that of the wake and that of the free shear layer. Many objects in daily use are bluff, from cars
to sports balls. Understanding why the flow separates, and how it can be enticed to remain attached, allows
for the possibility of making more-efficient and better-performing devices. In addition, the dynamics of the
separation share some similarities with stalled airfoils, as will be discussed in chapter 5.

The effect of the morphing surface was primarily determined with the use of a time-resolved three-

component force sensor, and supplemented with simultaneous particle image velocimetry and hot-film mea-
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Figure 1.1: Dye visualization at a Reynolds number of 3.8 x 103, showing the roll-up of the shear layer in the
near wake.

surements when needed to interpret the force measurements. As will be shown, a single moving roughness
element has a profound effect on the flow, dramatically altering the separation point over the entire sphere,
and completely changing the dynamics of the wake. In addition, the response of the flow to the prescribed
disturbance provided a better understanding of sphere flow in general.

This is a first step toward understanding the effect of a dynamic surface on the flow field and forces, and
paves the way for future studies which will utilize true morphing surfaces. In addition, it is demonstrated that

the new experimental apparatus is an excellent testbed for examining the effectiveness of morphing surfaces.

1.2 Background

The flow field around a sphere is very rich (see, e.g. figure 1.1), beckoning theorists, numerical modelers,

and experimentalists alike. Here is given a brief overview of the literature that is relevant to the current study.

1.2.1 Flow Over a Smooth Sphere

Despite geometrical axisymmetry, aspects of the complexity of flow over a sphere for a wide Reynolds num-
ber range (where Re = pU.D/ U is based on sphere diameter D, free stream velocity Us, density p, and
dynamic viscosity () are well known and reported in the literature. The instabilities of the wake and the
sensitivity of the flow to perturbations to either the external flow field or the sphere surface lead to asym-
metry of the separation line and wake in the instantaneous and/or mean senses on long and short timescales,
depending on the Reynolds number. As noted by Willmarth & Enlow (1969), the unsteady forces on a sphere

have been observed since the time of Newton, and their exact nature has continued to remain elusive, despite



the ubiquity of spheres in sports.

For the Reynolds numbers of this study, there are three flow regimes of interest. In the subcritical regime,
laminar boundary layer separation occurs at about 80°, producing a large mean drag coefficient that is nearly
independent of Reynolds number. Following this is the critical regime, which is associated with the separation
location moving from about 80° to 120°, causing a rapid drop in the drag coefficient (the “drag crisis”), and
ending at the lowest drag state, the “critical Reynolds number”. In this regime the global flow is highly
dependent on the condition of the boundary layer and in particular the transition process. In the supercritical
regime, a separation bubble which decreases in size as the Reynolds number is increased has been identified
using oil film visualization (Taneda, 1978; Suryanarayana & Prabhu, 2000). Achenbach (1972) did not detect
the separation bubble in the supercritical regime when measuring the shear stress, though the previously
cited studies and the similarities to cylinder flow (Roshko, 1961) suggest that it is present and contributes to
producing the low drag state. At higher Reynolds numbers (beyond the scope of this study), the drag begins
to increase again, transitioning to the transcritical regime, which begins when the point of boundary layer
transition begins to move upstream (Achenbach, 1972).

There is conflicting evidence concerning the mean lateral force in the supercritical regime. Taneda (1978)
observed a mean wake offset, corresponding to a side force, in early experiments. The observation that the
direction of this offset could be manipulated using a small stud positioned on the sphere surface suggests
that this could be the result of an initial asymmetry in the experiment. In simulations of sphere flow, the
investigations of Constantinescu & Squires (2004) also showed a mean supercritical side force, although the
authors noted this may be a result of the relatively short simulations rather than a physical result.

The fluctuating, three-component force distribution acting on the sphere reflects the instabilities and struc-
ture of the wake. For sphere Reynolds numbers above approximately 800 and below the critical Reynolds
number, Re.; = O(10%), frequencies corresponding to both a small-scale shear layer instability and a larger
wake instability dominate the force spectrum, while below this lower limit only the larger scale is observed
(Sakamoto & Haniu, 1990; Kim & Durbin, 1988; Baki¢ & Peri¢, 2005; Achenbach, 1974b). With increasing
Reynolds number the Strouhal number (St = fD/U.., where f is the frequency) of the shear instability in-
creases as Re" (Kim & Durbin, 1988), with 0.5 < n < 1 for 10> < Rep < 10°, while the large-scale Strouhal
number remains approximately equal to 0.2, typical of vortex shedding. The wake instability has been de-
scribed as both a helical instability (Chomaz er al., 2006) and as vortex shedding in a randomly rotating
azimuthal plane (Sakamoto & Haniu, 1990). In the subcritical regime, computational studies (Yun et al.,
2006; Constantinescu & Squires, 2004) have also found evidence of low frequency oscillations of the wake,
below that of the large-scale vortex shedding frequency.

Though the mean drag force has been measured by many researchers, the literature concerning the dy-
namic forces on a sphere is sparse. In the subcritical regime, Lauchle & Jones (1998) indirectly measured
the forces on a suspended sphere using an accelerometer, obtaining the decay of the frequency spectrum for

St > 1.5. For the supercritical regime, Willmarth & Enlow (1969) reported the experimentally obtained fre-
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quency spectrum and the mean squared lift for the case of a rough sphere. The subcritical Reynolds number
range has been examined computationally by Yun et al. (2006) with large eddy simulation (LES), while both
the subcritical and supercritical regimes have been investigated by Constantinescu & Squires (2004) using
detached eddy simulation (DES). The phenomenological model for subcritical Re developed by Howe et al.
(2001) by considering the spectra developed by the shedding of randomly oriented vortex rings appears to
give reasonable agreement with the trends in the existing literature for high St.

The combination of axisymmetry, extreme sensitivity of the flow to boundary conditions, and the long
sampling times required to obtain converged statistics make this a challenging flow to investigate either ex-
perimentally or numerically, especially in comparison to the nominally two-dimensional flow over a cylinder.
In particular, obtaining the three-dimensional velocity field required to fully capture the sphere wake remains
challenging in experiments, while the resolution requirements imposed by a very thin (possibly transitioning)

boundary layer and a broad wake, combined with the low frequency content, are numerically exacting.

1.2.2 Effect of Static Changes to the Sphere Shape

Though the effect of distributed surface roughness on the mean drag force experienced by a fixed sphere in
uniform flow has been examined in detail (e.g., Achenbach, 1974a; Choi et al., 2006), there are few studies
that consider asymmetric roughness distribution or isolated roughness elements. In the presence of distributed
roughness the boundary layer at all azimuthal locations transitions to a turbulent state at a lower Reynolds
number than it does for the smooth sphere, reducing the critical Reynolds number at which the flow changes
from the high drag subcritical regime to the lower drag supercritical regime. This phenomenon is used as
a control technique in the familiar example of the dimpled surface of golf balls, designed to maximize the
velocity range during which the ball experiences the low drag regime. Similar drag curves have been observed
by using a two-dimensional trip wire (Maxworthy, 1969). For a rough sphere beyond the critical regime, the
drag increases well beyond smooth sphere levels (Achenbach, 1974a).

When the symmetry of the surface condition is broken, the condition of the boundary layer has an az-
imuthal dependence that is reflected in the mean separation location and therefore the mean force vector.
Mehta (1985) notes that a positive side force at subcritical Re, and a negative side force at supercritical Re
was recorded by Hunt in experiments on a half-roughened cricket ball. If instead of distributed roughness
there is a single isolated roughness element (a “stud”), both the streamwise angle, ¢ (see figure 2.2) and the
local Reynolds number, Re;, = pU;Dy /1L, must be considered, where Uy is the local velocity at the top of the
stud. For Re; above about 500, the flow behind a small element is expected to separate and rapidly becomes
turbulent. Morkovin (1985) notes that at Re; above about 450, intertwined hairpin vortices form behind an
element in a zero pressure gradient boundary layer. Therefore it is expected that if Rey is large enough the
stud will cause a region of transition of the boundary layer, of extent dependent on the details of the local
boundary layer, and will potentially alter the location of boundary layer separation.

The roughness element will disturb the base flow, which has distinct features in the subcritical and su-
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percritical regimes. The subcritical near wake is approximately the size of the sphere, and experiments
and numerical simulations (e.g., Taneda, 1978; Yun et al., 2006)) have shown periodic vortex shedding at a
Strouhal number (St = fD/U.) of about 0.2, with an apparently random orientation. The boundary layer
separates at approximately ¢ = 80° (Achenbach, 1972), and the shear layer subsequently rolls up, forming
vortex tubes with a Strouhal number that increases with Re (Sakamoto & Haniu, 1990). In the supercritical
regime using smoke visualization, Taneda (1978) observed that the wake was much smaller and composed
of a pair of offset counter-rotating vortices, with circulation such that they pushed each other away from the
sting. Constantinescu & Squires (2004) found a similar wake offset in their detached-eddy simulations, and
also found the shedding of hairpinlike vortices at St ~ 1.3. Taneda (1978) visualized the boundary layer by
covering the sphere with oil and examining the resultant pattern. He found that, on average, the supercrit-
ical boundary layer separates laminarly at about ¢ = 100°, after which there is a recirculation bubble with
turbulent reattachment at about ¢ = 117°, and turbulent separation at about ¢ = 135°.

Several studies have been performed that can be used to identify the influence of an isolated roughness
element. Bacon & Reid (1924) examined the effect of their supporting spindle (diameter not stated) as a
function of angle, at supercritical Re, finding that the largest drag coefficient, Cp, occurred for a streamwise
spindle angle of ¢ ~ 77°. They also examined the effect of a support wire with diameter 0.0023D at super-
critical Re, at several streamwise angles. At ¢ = 60° the wire only had a small effect, but at 67.5°, 80°, and
90° the drag nearly doubled for 3 x 10° < Re < 4 x 10°. In addition, Taneda observed that the orientation of

the mean supercritical wake offset could be controlled by placing a stud at ¢, = 90°.

1.2.3 Active Manipulation of the Flow

There have been far fewer studies examining the use of active methods for altering the flow over a sphere.
Kim & Durbin (1988) acoustically excited the flow instabilities, leading to an increase in drag. Jeon et al.
(2004) were able to achieve a drag reduction at a subcritical Re of 10° by applying periodic blowing and
suction just upstream of the separation point, producing a similar effect as dimples. They attributed this to
exciting the boundary layer instability, which lead to a delayed separation and a laminar separation bubble
(similar to the supercritical state).

Though the geometry of the body plays an important role in the specific dynamics of the separation, the
fundamental mechanism is the same: fluid entrainment keeps a flow attached that would otherwise separate.
In the context of an airfoil at a high angle of attack, Seifert ef al. (2004) note that in order to keep the flow
attached using periodic excitation, between one and four vortices from the actuator must be over the body at
all times. Darabi & Wygnanski (2004a,b) describe the temporal evolution of the attachment process, showing
that when periodic excitation is abruptly started, the peak lift can be obtained within a dimensionless time of
about f = tU./D = 16 (where D is the characteristic length, in this case the chord). They also examined the
separation process, finding that when the forcing is abruptly stopped, the flow becomes fully detached after

about 7 = 20.



Table 1.1: Parameter space investigated in this thesis. The stud is a circular cylinder with width and height k,
and stud parameters are indicated with a k subscript. The entire parameter space of the first three parameters

was investigated and used to select a more narrow parameter space for the dynamic stud (k/D = 0.01 and
9 = 60°).

Property Range Description

Re = pU.D/u | 5x10%to 5 x 10° | Reynolds number

k/D 0.01, 0.02, 0.04 Dimensionless size of the stud

O 10° to 120° Streamwise angle of stud

0" =6D/U. | 0to 1.1 Dimensionless angular frequency of the stud

Using plasma actuation on a circular cylinder, Jukes & Choi (2009a,b) examined the effect of a single
short pulse near the subcritical separation point, finding that the flow was modified for up to 7 = 40 after the
pulse. Flow visualization revealed that the pulse produced a spanwise vortex, which traveled downstream
and momentarily changed the separation point to about 120°. Similarly, Williams et al. (2009) examined
the effect of a single blowing/suction pulse near the leading edge of a low Reynolds number stalled airfoil,
finding that after the disturbance is introduced into the flow, the lift gradually increases until it reaches a

maximum after 7 & 3, and then the lift decays in a similar amount of time.

1.3 Thesis Outline

An integral part of this research was the design of an experimental apparatus which was capable of answering
fundamental questions related to the unsteady forces on a sphere, along with the ability to instantaneously
determine the effect of surface actuation. This design is detailed in chapter 2. In chapters 3 and 4 the
framework is laid for understanding the effect of surface actuation by taking a close look at the unsteady
forces and the effect of in isolated roughness element on the flow field. In chapter 5 the significant effect
that a small dynamic roughness element has on flow separation and the near wake is examined in detail,
where the stud is moved in the azimuthal direction, 6 (see figure 2.2). Table 1.1 lists the parameter space
investigated in this study. Lastly, our most significant findings are summarized, and suggestions for future

work are provided.



Chapter 2

Experimental Methods

2.1 Experimental Facility

The experiments were performed in the temperature controlled 61 cm X 61 cm X 244 cm recirculating
Merrill wind tunnel at the California Institute of Technology, which is powered by a 12 kW (50 HP) variable
speed AC induction motor. The motor rpm was controlled with a variable frequency inverter, and the fan
pitch was adjusted to minimize the free stream turbulence (controlled with a pressure regulator, which was
set for 83 kPa). The free stream turbulence intensity, as measured by a hot wire located at the entrance of
the test section, was Vid /U < 0.3%, similar to that used by Achenbach (1972) and Willmarth & Enlow
(1969) (where u'(r) = u(r) — u is the streamwise fluctuating velocity and % is the mean velocity at a point).
The dynamic pressure was measured at the entrance of the test section using a pitot-static probe from United
Sensor, along with an MKS 220D pressure transducer, with a useful range of up to 2600 Pa. This was
converted to velocity by using Bernoulli’s principle and taking into account the temperature, atmospheric
pressure, and humidity. The test section velocity ranged from about 5 m/s to 50 m/s, corresponding to a unit

Reynolds number range of about 3.3 x 10° to 3.3 x 10° per meter, and a Mach number of at most 15%.

2.2 Model and Test Stand

In order to measure the unsteady forces on a sphere, a new apparatus was constructed which consisted of
a rigid test stand mounted to an optical table, a lightweight sphere, a three-component piezoelectric force
sensor, and a hollow sting to allow for the passage of wires (figure 2.1). In addition, the unsteady flow was

examined using hot-film and particle image velocimetry measurements (PIV).

2.2.1 Coordinate System

In order to account for the time-dependent nature of the forces on the sphere due to the unsteady wake, the

following notation was used. The force vector is written as Cr(f) = Cp(7)% + Cy(1)9 + C,(F)2 (figure 2.2),
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Figure 2.1: Sphere centered in test section, showing the support structure for the sting and the piano wires,
along with the PIV camera and optical table.
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Figure 2.2: (a) Coordinate system chosen with x as the streamwise direction. The streamwise angle from the
stagnation point is ¢, with the k subscript indicating the streamwise angle to the stud. The drag coefficient is
labeled Cp. (b) Looking downstream: the lateral force coefficient vector is labeled Cyr, and is composed of
C,y+C.Z. 0 is the lateral angle from the y-axis to Cr.

where 7 = tU., /D is the dimensionless time, and £, §, and Z are unit vectors. The lateral force vector is defined
to be C1(7) = Gy (1)9+C, ()2, with the lateral angle to Cy (7) being (7). The mean lateral force (which should
be zero for symmetric flow) is given by EL = Cy9+ C.2, and the fluctuating forces are indicated by a prime,
Cy(f) = Cy +Cy(f). The magnitude of the lateral force as a function of time is ICL()| = /G2 +C. ()2,
which is always greater than zero due to the unsteady flow. The streamwise angle from the stagnation point

is labeled ¢, and the k subscript is used to indicate the position of the stud.

2.2.2 Rigid Stand

Considerable attention was paid to the sphere support system with a view to minimizing its effect on the
sphere wake while keeping the natural frequency high in order to optimize the frequency range of forces that
could be resolved. A stainless steel sting with an outside diameter of 2.54cm, an inside diameter of 1.27cm,
and length 39cm beyond x/D = 0.5 was attached to a 5cm x 2.5cm stainless steel beam tilted 15° with respect
to the flow direction normal. A streamlined fairing covered the beam to reduce blockage effects (see figure
2.3).

The sting diameter was selected based on a study of the influence of the ratio of sting to sphere diameter
on the wake statistics (see appendix A). It was concluded that in the subcritical regime the presence of the
sting has a negligible effect on the velocity statistics for Dy;,e < 0.25D, approximately. In the supercritical
regime, however, Hoerner (1935) has shown a noticeable decrease in the measured mean drag with increasing
relative sting size, an enhanced sensitivity that should be expected due to the narrower supercritical wake.
Nevertheless, for the sting size used in this study, Dgng /D = 0.17, only a negligible change to the wake
should be expected.

The addition of piano wires with a diameter of 0.1cm to anchor the sting at three streamwise locations
(x/D=1.5,2.1, and 2.6) increased the minimum natural frequency of the system from about 35Hz to 75Hz,

or from St = 0.1 to 0.2 at Re = 5 x 10° (worst case). The position of the closest supporting wires was chosen
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as a compromise between increasing the natural frequency and minimizing the disturbance to the flow. Wires
placed at x/D = 0.8 noticeably altered the statistics of the unsteady forces, whereas there was only a small
broadband change in the spectral density centered on St = 0.1 at high subcritical Reynolds numbers when
the closest wires were at x/D = 1.5. The minimum wire Reynolds number was 300, indicating that vortex
shedding occurs behind the wires over the Reynolds numbers investigated in this study, with a potential
influence on the development of the shear layer. However a downstream wire location of x/D = 1.5 meant
that the wires were located essentially downstream of the recirculating wake region, which was observed
using particle image velocimetry to have a mean reattachment point (the point were the mean streamwise
velocity is zero) of x/D = 1.43 at a subcritical Re of 2.1 x 10° and an x/D = 0.63 at a supercritical Re of
4.1x10°,

2.2.3 Sphere Model

(b)

Figure 2.3: (a) Model in 61cm by 61cm recirculating wind tunnel test section, with piano wires used to
increase the natural frequency of the sphere-support system. (b) Inside of the sphere showing the motor,
motor arm and magnet, and three-component force sensor attached to a stainless steel base.

Two different sphere models were produced, one for the basic measurements, and then one with a low
friction coating for the dynamic roughness element experiments. Both had a diameter of D = 15cm and were
rapid prototyped, consisting of two hollow pieces with a smooth seam located at ¢ = 125°, i.e. downstream
of the supercritical separation point (Achenbach, 1972) (figure 2.3). The internal structure was designed such
that it was rigid and allowed room for the placement of the force sensor and steel mount, which attached to
the sting while leaving room for the passage of wires.

The basic sphere was ordered from American Precision Prototyping, and was fabricated using the stere-
olithography Accura Bluestone plastic, with an out-of-round build tolerance of +0.002D, and was subse-
quently sanded to 600 grit to remove stair stepping, which gives a conservative estimated rms surface rough-

ness of k/D ~ 1 x 107*. A varnish coating was then applied to the sanded surface to further improve the
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Figure 2.4: Stud with a width and height of k/D = 0.01, held in place with a magnet that is inside of the
sphere.

finish. The low friction sphere was ordered from Scicon Technologies and was fabricated using selective
laser sintering with the DuraForm HST plastic, after which it was finished and a Teflon coating was applied.
The accuracy of this surface finish was more stringent than that of the basic sphere, in order to provide a

smooth, low friction surface for the roughness element.

2.2.4 Surface Actuation

Surface actuation was achieved with a hollow-core DC motor that was placed inside the sphere (figure 2.3b).
The arm, attached to the motor shaft, had a magnet on the end of it which was positioned about 3mm from the
outside surface of the sphere, where a small cylindrical magnet was placed (henceforth the “stud”). As the
motor shaft turned, it pulled the stud along the azimuthal direction. The position of the stud was determined
from a magnetic encoder attached to the motor, which produced 512 square wave pulses per revolution in
two channels (to indicate the direction of rotation). A high-speed camera revealed that the stud followed the
motor arm to within about +2°. The streamwise angle of the stud was chosen to be ¢, = 60°, because a static
stud produces the largest force close to this angle (see chapter 4). The advantage of pulling the stud by using
a magnet was that no holes or gaps needed to be machined in the sphere, allowing for a continuous, polished
surface.

The stud consisted of a neodymium magnet that was a circular cylinder, with equal width and height, &,
such that k/D = 0.01, 0.02, and 0.04 (an example of a small stud is shown in figure 2.4). For the dynamic
tests, only the small stud was used. Though many different roughness geometries could have been used, the

basic requirement was that the stud eventually trip the boundary layer. A cylindrical geometry was selected



12

to remove issues of alignment with the mean flow direction, with consideration of other geometries reserved
for future work. In terms of the boundary layer momentum thickness, 6, the stud height in the subcritical
case is estimated to fall into the range 0.04 < 6 /k < 0.13 (with the exact value depending on Re and ¢)
for the smallest stud. This estimate was obtained using Thwaite’s method (see, e.g., White, 2006) and an
experimentally measured velocity profile measured by Fage (1937). The drag contribution of even the largest
stud to the total drag is negligible, as its area is about three orders of magnitude smaller than the sphere. Thus,
any changes to the forces on the sphere in the presence of the stud are caused by its local alteration of the
state of the flow, and not directly by the forces acting on the stud itself.

The motor was powered by two DC power supplies, to allow for both positive and negative voltage to be
supplied. The voltage was calculated in Labview (based on the desired trajectory) and output as a low current
voltage signal, which was amplified using an op amp (741) in a follower configuration, with the TIP 33C and
34C complementary transistors (see, e.g., Horowitz & Hill, 1989).

In order to reduce the friction of the dynamic stud, a Teflon pad with a diameter of about 0.03D was glued
onto the bottom of the stud. This reduced friction, combined with the strong neodymium magnets, allowed
the stud to move at up to 7Hz (over 3m/s), after which point the magnetic pull was not strong enough to keep
it attached to the sphere.

In order to eliminate the effect of frictional forces on the force sensor, the motor was attached directly to
the sphere instead of the support structure. Thus, the friction force was canceled by the equal and opposite
force on the motor arm. With the motor aligned in this way, the motor had to be precisely balanced (due to
centripetal force), which was accomplished by making a symmetric arm, and attaching small weights to the

arm until the no flow lateral forces were near zero at the highest rotation rate.

2.3 Actuation Method

In order to obtain precise control of the motor, which controls the position of the roughness element, a linear
quadratic regulator (LQR) was implemented. Here the focus is on controlling the position, but a similar

approach was also followed to obtain a separate velocity controller. The motor dynamics are given by
JO =K,i—b0, 2.1
where 0 is the rotational angle, J is the moment of inertia, K; is the torque constant, i is the current, and b is

the damping constant. This equation is coupled to the applied voltage by

di .
V:Ld—; T Ri+K6, 2.2)

where L is the motor inductance, € = K,Q is the electromotive force, R = R,, + Ry is the combination of the

motor resistance (R,,;), and a small resistor placed in series (Ry), which was used to measure the current.
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The motor was a hollow core DC motor purchased from MicroMo (part number e 2232 — 012SR). This
motor was chosen because it was small enough to fit inside the sphere (22mm in diameter and 41mm long,
including shaft), and the hollow-core allowed rapid acceleration, as compared to solid-core motors. The
physical constants for the motor, as supplied in the specifications, are J = 2.42 x 107> Nms? (this includes
the encoder, and the calculated moment of inertia of the rapid-prototyped arm and magnets), K; = 1.6 x
10_2Nm/A, R, =4.09Q, and L = 1.80 x 10~*H. The damping constant was estimated using the no-load
current and no-load speed, giving b ~ Klpwy = 3.8 x 10~ Nms.

In order to calculate the LQR gains, it is convenient to put the equations in state-space form. Using

standard notation (see, e.g., Astrom & Murray (2008)),

X =Ax+ Bu, 2.3)

y = Cx+Du, (2.4)

where x is the state vector, u is the control input, y is the measured output, and A, B, C, and D are constant
matrices. Defining x; = 6, x;, = 6, and x3 = i, with measurements y; = 0 and y, = i, combined with the

governing equations yields

0 0 1 0 0 0
% 6 =] 0 —-bJ K/JJ 6 |+ o |V (2.5)
i 0 —-K,/L —-R/L i /L
0
y= 2 - (1) 2 ? o | 2.6)

With the voltage as the control input, precise control of 6 could only be accomplished if there was no
uncertainty in the system. Since this is impossible, feedback is added in order to control the position of the
roughness element. Now, define the control input to be dependent on the state of the system and the setpoint,

u = Kx+ Mr. This gives

X =Agx+ Bgr, 2.7

y = Ckgx+ Dgr, (2.8)

where Ax = A+ BK, Bx = BM, Cx = C+ DK, and Dx = DM. The feedforward gain M is found by setting
X = 0 and noting that 8 should equal r in steady state. The feedback gain K is found by minimizing the cost

function,

i= ()T Qx(t) + u(e)” Rue))de = / ()T x(r) + ule)dr, 2.9)
0 0
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subject to (2.3) and u(r) = Kx(¢). There is only one input, and hence R can be set to 1 without loss of
generality, since the solution is a function only of the ratios of the components of Q to R.

In order to avoid sharp high-amplitude changes in the voltage when there are step changes in the angular
frequency, and instead have an optimal transition, a preview controller was also implemented. Instead of just
feeding the controller the desired position or velocity, a few hundred milliseconds of the future setpoints is
also passed along. This is more easily explained by considering the following suitably defined discrete-time

model, where the input is applied with a zero-order hold:

Xjy1 =ApX;+Byuj, (2.10)

Vjit1 =Cpxj+Dpu;, 2.1

Now, the state is augmented to include the future N setpoints (r; = Oy (f + jAt), j=0, ..., N and Az is

the sample period):

0 (2.12)

=
I

r

N

And the equivalent discrete-time system’s dynamics matrix @ := ¢** is augmented with an (N 4 1) x

(N + 1) matrix, which shifts the setpoint values up by one time step:

A, = , (2.13)

where A, is the following matrix of compatible dimensions:

0 1
A = M. (2.14)
0 0
Here, u is still the applied voltage, and B), is obtained by augmenting the discrete-time control matrix by
a zero column vector of length N 4 1. The C and D matrices are also padded with zeros so that they are of

the appropriate size, because no new states are being measured. Now, set the control input (the voltage) to be

dependent on all of the augmented states: u; = K,%;. Note that a feedforward matrix M is not needed if the
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preview horizon N is sufficiently large.
With the new state space that includes a preview of the upcoming trajectory/velocity, a similar routine is

followed to optimize the voltage: a series of gains are found by minimizing the following discrete-time cost:

Jpy=Y 50,5 +u3. (2.15)
j=0

In order to penalize an error in position, Q, is given by

0 0 —gq
00 0
0 00 O
0p= ; (2.16)
-q 0 0 ¢

that, when multiplied out, just gives xTQ,,x = equ, where e := 0 — ry.

In order to provide reduced noise measurements to the LQR controller, a Kalman filter was implemented
to provide an estimate of the state. It was designed by first augmenting the continuous-time system with
a constant, unknown, additive disturbance d acting on 6, to take account of unmodeled effects such as the

damping actually being a function of angular frequency. Defining the augmented state as

X
xX= )
d
and with measured variables
0
Y= )

the continuous-time model was converted to an equivalent discrete-time model of the form:

Xjt+1 :@ij+l=‘uj+G_Wj,

yj=Cxj+Duj+vj,

where w; represents process noise and v; denotes measurement noise. Under the assumption that the co-
variance matrix of the process noise was the identity matrix, the method described by Rajamani & Rawlings
(2009) was applied to some measured data in order to estimate G and the covariance matrix of the mea-
surement noise; it was found that a G with column rank 2 gave acceptable performance when designing the

Kalman filter.
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Sampling at 1000Hz and utilizing the preview controller along with the Kalman filter, excellent trajec-
tory control was obtained, and a similar controller provided precise velocity control. The measured system

response agreed quite well with a Matlab simulation of the motor and controller.

2.4 Measurement Techniques

The primary tool used to investigate the flow was a three-component piezoelectric force sensor. This allowed
for a relatively quick analysis of a large parameter space, after which more detailed, time-consuming methods
were used to gain an understanding of the flow physics, such as particle image velocimetry and hot-film
anemometry. Other techniques that were used, including dye visualization in a water tunnel, and pitot and

hot-wire measurements of the free-stream flow, will not be described in detail.

24.1 Time-Resolved Three-Component Force Measurements

The three-component piezoelectric force sensor (Kistler Type 9317B), with dimensions of 2.5 cm x 2.5 cm
x 3.0 cm, was placed inside the sphere, connecting the sphere and the sting (figure 2.3b) such that the sphere
was not in contact with anything other than the force sensor. Each of the three piezoelements was connected to
a charge amplifier (Kistler 5010B), which output a voltage to a data acquisition board (National Instrument’s
PCI-6014 with a board-2120 connector block).

Piezoelectric force sensors have been used in wind tunnel testing extensively by Schewe (see, e.g.,
Schewe, 1983) in examining the flow over a cylinder. The advantage of the sensor is that it is extremely
rigid and has a linear charge-load relationship over several decades. The main disadvantage is that the charge
drifts slowly with time, however, this limitation can be overcome with careful use, as described in detail in

section 2.5.

2.4.2 Particle Image Velocimetry

Particle image velocimetry (PIV) data was taken with simultaneous force measurements by triggering a LaV-
ision PIV system using a TTL signal from Labview (which was utilized to collect force data). The system
consisted of a 30 W Photonics Industries pulsed ND-YLF laser, a high speed Photron Fastcam camera with
a 1-megapixel CCD (of which only half was used) and 10-bit depth, and a computer with a precision timing
unit. The laser sheet illuminated an aerosol of Bis(2-ethylhexyl) Sebacate particles, which have been found
to have a mean diameter of about 1 um (Raffel et al., 2007), and thus, for the present application, are suffi-
ciently small to accurately follow the flow. Image pairs were recorded at 500 Hz for 4 s, corresponding to a
nondimensional time greater than f = tU../D = 500 for all of the average vector fields shown in the following
chapters, which is long enough to get decent convergence (see chapter 3 and appendix A). For the dynamic

stud runs, data was collected for at least 12 stud revolutions.
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The accuracy of the LaVision PIV system and the associated DaVis software has been reviewed and

compared with other systems (Stanislas et al., 2003, 2005), and is certainly sufficient for our needs.

2.4.3 Hot-film Anemometry

A hot-film was used to examine the boundary layer near the separation point. The sensor was a glue-on
type (Dantec Dynamics S5R47), and temporarily placed at ¢, = 70° using a silicone adhesive. The sensing
element was a 0. lmm by 0.9mm thin nickel layer deposited onto a 50 um thick Kapton foil base. This caused
the sensor to protrude part way into the boundary layer, which was estimated to have a momentum thickness
of less than 100 um. The sensor was operated in constant temperature mode using an AA Lab Systems
(AN-1005) unit, with an overheat ratio of 1.43, corresponding to a sensor temperature of about 150° C. Fluid
movement causes cooling, thus the applied voltage is related to the shear stress and free stream velocity. For
our experiments a calibration relating the voltage to the shear stress was not necessary (and would have been
difficult given that the probe was not flush with the wall) because our primary interests were determining
whether the boundary layer was turbulent (based on the intensity of the fluctuations), and determining the

timescales associated with a change to the base flow.

2.5 Data Reduction

2.5.1 Signal Conditioning

The three-component piezoelectric force sensor allowed time-resolved force measurements with a very low
rms noise level of about ImN. However, true static measurements were impossible because the charge on a
piezoelement drifts with time due to imperfect electrical insulation. This apparent zero drift can be overcome
by limiting the sensor “on” time to the duration of the static measurements, such that any charge drift is not
significant or can be corrected using a simple compensation scheme. The static force results were obtained
with short duration runs in which the tunnel was at the full operating speed for 15 seconds, and a careful
linear interpolation between the zero flow data points was used to estimate the drift. This allowed static
measurements with an error of a few millinewton.

Dynamic force data at a given run condition were obtained over an extended period of time (usually
f=1.5x10%) and the zero drift was estimated using a combination of the least squares method and cubic
splines. Very similar results were obtained using the amplifier’s high-pass filter on the uncorrected time signal
or an external pass filter during postprocessing. The cubic spline method was chosen due to its simplicity and
zero-phase shift. The number of knots used in the cubic spline was found to have a negligible effect on the
convergence of the dynamic force statistics. A single polynomial curve was sufficient to estimate the drift for
shorter acquisition times.

To isolate the signal from structural vibrations of the support system, a non-causal low-pass Butterworth
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filter with a cutoff frequency of 50 Hz was applied to the force signal in both the forward and reverse di-
rections, which doubles the order of the filter and produces a zero-phase shift. The natural frequency of the

sphere-support system was approximately 75 Hz, well above the subcritical vortex shedding frequency.

2.5.2 Current Correction

In an ideal motor, all of the electrical energy is converted to rotational energy. Neglecting damping, the torque
is proportional to the current. This torque is generated through the Lorentz force: electrons move through
the motor coils, which are surrounded by a magnetic field such that F = g(E + v x B) produces torque. This
cross product is very unlikely to produce only a torque, but also a mean force on the motor coils. In most
situations this is not a problem because (1) it is only relevant during acceleration, and (2) most of the energy
is converted into torque. Because our motor is sitting directly on top of the force sensor, this force is detected,
interfering with the desired measurement of the forces caused by fluid motion. However, because the force
is directly proportional to the current, it is easy to correct for, given that the applied current is measured:

Frtiuia = Froral — Fnoror- The experimentally determined correction factor is given by

Fnoror = i(0.088% — 0.06259 — 0.0145%). (2.17)

Comparing with the torque, this indicates that about 6% of the force goes into a mean force, while 94% is
converted to torque. Note that this equation is a function of the motor orientation. With this correction, fairly
large oscillating currents only increased the sensor noise by a few millinewtons. The correction is applied to

the raw data, before any filtering is done.

2.5.3 Analysis Routines

Force and pitot-static data were collected at a sampling frequency of 1 kHz, and the temperature, humidity,
and atmospheric pressure were noted for each run. A series of Matlab programs were written to load the
data and automatically correct for the drift, filter the signal, nondimensionalize the data, and calculate the
statistics, the spectral density and the probability density.

In order to quantify the effect as a function of stud speed, the forces were examined in a stud reference
frame such that the +y-direction always pointed toward the stud. This allowed the measurement of the phase
even when the unsteady force vector loops around the origin.

A particularly important calculation included finding the lateral force and phase difference between the
stud and the force vector, for the dynamic stud runs. In this case it is most useful to examine the force with
respect to the stud position, so a coordinate transformation was used on the temporal lateral force data such
that the new coordinate system rotated with the stud (with the +y-direction pointing at the stud). Then, the
mean C, and C; (in the stud frame, based on many rotations) were found and converted to the mean Cy, and

0. An alternative method would be to calculate C; and 6 at each time step, and then average at the end.
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However, this gives incorrect results because for a stationary stud the fluctuating force takes on all angles,

which would yield a mean lag of 180° instead of zero.

2.6 Error Analysis

The linearity of the force sensor, as measured by the manufacturer, is < £44 mN over the calibration range of
0— 10 N for the three force components. The actual linearity is likely much better, as it is difficult to calibrate
the sensors down to small loads due to the charge drift. To verify the calibration, small weights were placed
on the sensor and the method described above was used to correct for zero drift. The results reported here are
similar to those found by Schewe (1982), who assumed that the sensor was linear over several decades. The
cross talk between components is < £2.2%, as measured by the manufacturer.

Zero-flow measurements of the noise floor on each component of the force sensor revealed a standard
deviation of o, = 1.7 mN in the drag direction and lower standard deviations of about 6, = 0; = 0.5 mN in
the lateral components. The noise was for the most part between 2 to 6 orders of magnitude lower than the
amplitude of the measured data, depending on Re and the force component being examined.

Despite considerable care in the experimental setup, the (well-known) sensitivity of sphere flow to the
input boundary conditions was observed during these experiments. The mean force variation and especially
the critical Re are greatly affected by surface roughness, free stream turbulence, tunnel blockage, and method
of support, as has been systematically demonstrated by others (see, e.g., Bacon & Reid, 1924; Hoerner,
1935; Achenbach, 1974a). In this study, rotation of the sphere or relocation with respect to the center of the
test section led to small but noticeable changes to the mean forces. However, for a given configuration the
results were repeatable, and changes caused by boundary conditions were minimal compared with purposely
imposed changes caused by, e.g. placing a small roughness element on the sphere, with a diameter of only
1% the sphere diameter (see chapter 4). In other words, the nature of the flow leads to a large bias error,
which is setup dependent, while the uncertainties in our measurements result in comparably small random
error.

The most important factor governing the error in calculating the Reynolds number was uncertainty in
temperature. Though the temperature was controlled, there could still be a slow drift, usually 1K at most. An
error of 3K corresponds to a Reynolds number uncertainty of 2%, which is likely an upper bound since the
effects of errors in humidity and atmospheric pressure are much smaller. In addition, the uncertainty in the

pitot-static measurement leading to a measurement of velocity was comparably negligible.
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Chapter 3

Forces on a Smooth Sphere

3.1 Overview

A three-component piezoelectric force sensor was used to verify the presence of low frequency energetic
forcing on a smooth sphere, and provide guidance as to how long the flow needs to be examined to provide
converged statistics. It is argued that the low frequency forcing and modulation of the wake is caused by local
variation of the separation location, and that this needs to be taken into account in any attempts to model the

flow. In addition, a simple model is proposed which captures much of the energetic behavior of the wake.

3.2 Fluctuating Forces

The variation of the mean drag force observed over a range of Reynolds numbers is shown in figure 3.1, and
can be seen to be in good agreement with the classical results of Achenbach (1974a). The critical Reynolds
number, defined by Achenbach to indicate the onset of the drag crisis, falls between that of Achenbach’s
smooth (k/D = 0) and slightly rough (k/D = 2.5 x 107 sphere results, in good agreement with our earlier
estimate of k/D = 1 x 10~*. The subcritical, critical and supercritical regimes can be clearly distinguished.
Figure 3.2 shows a time history of the lateral forces, i.e., a phase diagram for C;, and C,, for both subcritical
and supercritical Re. The subcritical force history has a strong oscillatory component, which will be shown to
be associated with vortex shedding, and is qualitatively similar to the simulation of Yun et al. (2006). In the
supercritical case, the phase of the force appears to be significantly more random, with a noticeable bias to a
nonzero mean for this time record. Note that the maximum St that could be resolved for the supercritical case
was about 0.2 because the dimensionless natural frequency of the mount structure decreased with increasing
Re. At these Reynolds numbers, therefore, the force history was effectively low-pass filtered, such that higher
frequency oscillations and/or supercritical vortex shedding were not recorded. If there is significant energy at

higher frequencies, this will affect the supercritical standard deviation estimates that are presented later.
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Figure 3.1: Variation of the coefficient of mean drag with Reynolds number: present data (o) compared with
the results of Achenbach for a smooth (—) and slightly rough sphere (k/D = 2.5 x 1074, =+).

3.3 Statistical Convergence

In order to verify statistical convergence of the dynamic force data, and to allow us to address the open
question concerning observations of a nonzero mean lateral force at supercritical Reynolds numbers, the time
variation of the force statistics were examined for both subcritical (figure 3.3) and supercritical (figure 3.4)
Reynolds numbers. Long dynamic data records were taken at each Re (f = 1.5 x 10°), such that each data set
could be split into 75 subsets of length N (each assumed to be independent). The running mean (u), standard
deviation (o), skewness (s), and kurtosis (k) were then calculated for all force components (i-subscript) and

for each subset (j-superscript), as a function of the time step ¢, (1 < n < N):

w0 = 2 L), G.1)

o/ (1) = ¢ “x (€))7, (3.2)
sH(t) = 4 (€)1 1)/ (1), (.3
K) = 21, (1)~ 1 0))* 07 1) (3.4)

The final statistics were then formed by taking the running standard deviation of the 75 subsets.

convergence(m;(t,)) = %235:1(’",](1‘;1) —m;(ty))?, (3.5)
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Figure 3.2: Time trace of the lateral forces for (a) subcritical Re = 1.1 x 10 with A7 = 250 and (b) supercrit-
ical Re = 4.1 x 10° with A7 = 800.

where m represents one of the four statistics being examined, and m; is the expected value of the statistic
based on all of the subsets, m;(t,) = %ZZilm{ (tn)-

Examining the convergence of the mean in figures 3.3a and 3.4a, the limit as n — 1 should be equal to the
standard deviation of the forces, given enough subsets of data. Using 75 subsets, this limit is approximately
held. Note that there is very little measurement noise (see section 3.5), so the convergence rate is dependent
on the unsteady forces caused by the flow. After the relatively long sample time of 7 = 500, the calculated
mean value of all three force components is within 0.01 of the true mean, which would be barely noticeable
on mean force plots.

Accurately estimating the standard deviation takes more time, as can be seen in figures 3.3b and 3.4b.
After a f of 1000, o for the lower Re will be within (on average) about 5% of the actual value for the lateral
forces, and for the higher Re within about 8%. The convergence of the supercritical drag compared with its
actual standard deviation is somewhat slower.

The convergence of the skewness and kurtosis of the probability distribution are also shown in figures 3.3
and 3.4. Of particular note is that the drag kurtosis converges more slowly than those of the lateral forces. By
af of 2,000, the mean error in skewness and kurtosis is still quite large compared with our estimate based on
the full data set (figure 3.5). In addition, the convergence statistics are still rapidly converging toward zero,
indicating that more time would be needed to accurately estimate these higher-order statistics.

The slow convergence of all measures of the mean and fluctuating forces represents a challenge for sim-
ulations of sphere flows, and may contribute to the apparent supercritical mean lateral force observed in the
literature. The results presented in the next section are based on data records with length 7 of 1.5 x 10° and

thus represent fully converged results. This is also evident by noting the small scatter of the data in the sub-
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of averaging time, subcritical Re = 1.1 x 10°,
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Figure 3.5: Statistical summary of the force coefficients, C;,: (a) mean (b) standard deviation (c) skewness
and (d) kurtosis.

critical and supercritical regimes, where it is well known that the flow undergoes only gradual change as a

function of Re.

3.4 Mean Force and Higher Moments

Figure 3.5a shows the Reynolds number variation of the mean values of all three force components, C;. The
mean lateral force is close to zero in both subcritical and supercritical regimes (figure 3.5a), in apparent
contradiction to earlier results suggesting a mean side force (Taneda, 1978; Constantinescu & Squires, 2004).
Of more interest, in the critical regime both C, and C, take large nonzero values, indicating that a large mean
lateral force develops as the Reynolds number increases through the critical value. If the sphere is rotated,
the angle corresponding to the mean lateral force rotates accordingly, indicating that the flow in the critical
regime is controlled by imperfections on the sphere (asymmetric roughness and/or shape), even though the
sphere was designed with precision in mind. A mean lateral force in the critical regime has also been observed

in cylinder flow by Schewe (1983), although in that study the direction of the mean force varied from run to
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run.

The second moment of each force component is shown in figure 3.5b. For most of the Reynolds number
range investigated the variance of drag is approximately a factor of three smaller than the variance of the
lateral forces, which are in good agreement as would be expected for a nominally axisymmetric flow. Force
histories in the critical regime at Re = 3.09 x 107 reveal an intermittent drag signal, alternating between
the subcritical and supercritical values (manifest as the bimodal probability density 4 shown in figure 3.6,
described in detail later) and giving rise to the large variance observed over the narrow critical Reynolds
number band. Interestingly, there is little appreciable difference in the variance of the drag from sub to
supercritical Reynolds numbers, despite the inferred difference in wake structure (see section 3.5).

The second moments of the lateral forces, oy and o; increase rapidly with increasing Reynolds number
to a maximum in the critical regime at a Reynolds number slightly below the value at which a maximum was
observed in 0. An approximately constant, lower value of oy, =~ 0.04 is observed for supercritical Re. This
value is in reasonable agreement with the root-mean-square lateral force (which is equivalent to the standard
deviation only if the mean lateral force is zero) of approximately 0.06 reported by Willmarth & Enlow (1969)
for 5 x 10° < Re < 1.8 x 10°, considering that they examined a rough sphere with a smaller ratio of sting to
sphere diameter.

Despite small differences between the standard deviation of the streamwise and lateral forces, all compo-
nents reach a minimum at around Re = 3.5 x 10°, at which Re the mean forces have taken their supercritical
values.

Figures 3.5¢ and 3.5d show that the skewness and kurtosis of all three force components are approximately
0 and 3, respectively, indicative of a Gaussian distribution in the subcritical regime. In the supercritical regime
the lateral forces take similar values, but the supercritical drag has a large skew and kurtosis, reflecting a
different wake structure, in particular with respect to vortex shedding (see section 3.5). In the critical regime,
the skewness and kurtosis deviate from Gaussian, and the exact values are likely dependent on the minute
imperfections associated with the sphere (section 2.2.3). The extreme values of skewness and kurtosis near
Re = 3.0 x 10° are associated with the intermittency of the drag history as the wake alternates between the
subcritical and supercritical states. It is worth repeating that the limitation of the natural frequency of the
sting system at supercritical Reynolds numbers constrains our results to lower bounds on the true moments if
there is significant forcing above about St = 0.2.

The probability density functions (pdfs) for several representative Re (normalized such that the total
area under the curve equals one) shown in Figure 3.6 summarize these results. Here only the drag force is
examined because it exhibits the widest variation in pdf form. The pdfs for subcritical Re (1-2) are essentially
Gaussian, while the supercritical state (6) is highly skewed around Cp ~ 0.06, with occasional deviations
to higher drag. The pdf in the critical regime (4) is bimodal, leading to the large values of skew, kurtosis,
and standard deviation discussed above. Lines 3 and 5 correspond to the minima and maxima in skewness

and kurtosis, respectively, indicating that the corresponding Reynolds numbers approximately bound the
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Figure 3.6: Probability density for: subcritical Reynolds numbers (1) 1.1 x 10°, (2) 2.6 x 10°; critical Re (3)
3.07 x 10°, (4) 3.09 x 10°, (5) 3.11 x 10°; and supercritical Re (6) 4.1 x 10°.

beginning and end of the regime in which the drag force switches intermittently between sub and supercritical
values. However, small variations in the Reynolds number (o (Re) = 800 based on hot-wire measurements)
do not allow for precise conclusions about the sharpness of the change. The pdf at the intermediate Reynolds
number (line 4) shows that the drag is approximately evenly distributed between the two states, leading to

smaller values of skew and kurtosis, but a maximum in standard deviation.

3.5 Force Spectral Density

The dimensionless spectral density of the forces, ®;(St), obtained in these experiments are presented for
a range of representative Re in figures 3.7 through 3.10, where the i subscript represents one of the force
components. Data at specific Re and St ranges reported in the literature are also plotted, where applicable.
Each spectral component was calculated using Welch’s method (Welch, 1967) and was normalized such that

the total area under the spectrum was equal to the mean squared force fluctuations:
c?= / D, (S1)d(St). (3.6)
0

The present lateral force spectra at subcritical Re in figure 3.7 show a gradual reduction in the energy
associated with vortex shedding (at St = 0.2) as the critical regime is approached, accompanied by an increase
in energy at lower frequencies. The peak associated with vortex shedding is no longer detected by Re ~

2.7 x 10° (not shown).



28

10° 107 10" 10° 10"

St

Figure 3.7: Normalized power spectral density of the subcritical lateral forces, compared with the literature.
The lateral force spectra were averaged. Present results, Re = 8 X 10* (+) and Re = 2.3 x 10° (x); Constan-
tinescu & Squires (2004) (——), Re = 10*; Yun et al. (2006) (—.—), Re = 10*; Howe et al. (2001) model (-);
Howe experiments ((J), 7 x 10° < Re < 1.7 x 10*; Lauchle & Jones (1998) (0), 7 x 103 < Re < 3.5 x 10%;
St3 ().
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Figure 3.10: Normalized power spectral density of supercritical drag force, compared with the literature.
Symbols as in figure 3.9.

This figure also shows results averaged over the two lateral force components from the DES of Con-
stantinescu & Squires (2004) and the LES of Yun et al. (2006) for a subcritical Re of 10*. Both confirm
the peak near the vortex shedding frequency and also a lower frequency peak, with a lower mean squared
lift. The model of Howe, Lauchle & Wang (2001), with a tilt of 10° to vortex rings being shed randomly
from the sphere, leads to significantly larger force amplitudes at high St and a corresponding higher mean
squared lift coefficient. The primary goal of the model was to simulate the high St decay rate of the spectrum,
proportional to S¢3, which is in good agreement with the experimental data of Howe et al. (2001), with
7 x 103 < Re < 1.7 x 10*. However the power is four orders of magnitude larger than the present data. The
model assumption of inviscid flow, namely a superposition of an array of vortices superimposed on potential
flow, and matching of the drag coefficient to experimentally measured values likely leads to an overestimation
of the vortex circulation to compensate for the contribution of the separated region to the drag, consequently
leading to a higher value of mean squared lift relative to our data and the absence of a peak at the shedding
frequency. However the earlier experimental results of Lauchle & Jones (1998) (subsequently suggested to
have been an underestimate due to the sphere support mechanism) with 7 x 103 < Re < 3.5 x 10* are in good
agreement with the trend suggested by our data.

A low peak corresponding to the vortex shedding frequency is observed in the subcritical drag spectrum of
figure 3.8 at low Re, though it is not nearly as prominent as it is for the lateral force, and it mostly disappears

by Re = 2.3 x 10°. Once more, agreement with the simulations results is reasonable while there is significant
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disagreement with the model of Howe et al. (2001).

The force spectra for supercritical Re in figures 3.9 and 3.10 do not exhibit a peak near the subcritical
vortex shedding frequency (the measured frequency range shown barely reached St = 0.2, though lower
supercritical Re data reaches St = 0.24 and also shows nothing). The lateral force data are in fairly good
agreement with the results of Willmarth & Enlow (1969) for a rough sphere in the range 4.8 x 10° < Re <
1.7 x 10°. The simulations of Constantinescu et al. for a fully turbulent sphere boundary layer (Re = 1.1 x
10%) suggest that a noticeable but low amplitude peak might be observed close to St = 0.2 at higher Re
than examined in this study, while the peak near St = 1.3 (figure 3.10) that those authors correlated with the

shedding of hairpinlike structures was beyond the frequency range of our measurements.

3.6 Synchronous Velocity Field and Force Histories

In an effort to correlate the temporal force history with the structure of the wake, force measurements along
with simultaneous high speed PIV of the near-wake (x-y plane) were examined over many vortex shedding
cycles. Figure 3.11 shows a sample time trace of all three force components, and PIV images at instants
corresponding to positive, near zero, and negative lateral forces in the direction that corresponds to the plane
of the image (Cy). The PIV images show the clear imprint of the roll-up of the shear layer and a large scale
oscillation. Reflection and resolution issues prevent any conclusions being drawn about the instantaneous
location of separation. Examining the full time series, on average the recirculation region is smaller when
the force is positive, and larger when it is negative. However, when the force is near zero, it is difficult
to tell what the force should be just by looking at the velocity field. This is due to the flow being highly
three-dimensional: there is a large azimuthal variation in the pressure distribution and the condition of the
shear layer (Taneda, 1978; Yun et al., 2006), and the force vector is rarely aligned in the x-y plane. Note
though, that some of these issues can be overcome by imposing a deterministic perturbation to the flow, such
as a discrete static or dynamic surface roughness element, as will be shown in chapters 4 and 5. A better
correlation between the flow and the force would likely be obtained by comparing the velocity adjacent to
the separation point to the forces, which Willmarth & Enlow (1969) found to have up to an 80% correlation

in the supercritical regime, using hot wire anemometry.

3.7 A Simple Force Model

As shown in the previous sections, the side forces exerted on a sphere when fluid flows over it in the subcritical
Reynolds number range appears to be mostly random with a dominant frequency component associated with
vortex shedding. The lateral force history shown in figure 3.2a is reminiscent of the trajectory of a double

spring system with some random forcing, which led to the following model.
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Figure 3.12: Schematic of a two-dimensional harmonic oscillator, with the restoring force being proportional
to the distance from the origin.

The equations for a two-dimensional oscillator with a forcing and damping term are

d k Fr(t
P+ —F+—r= R(), (3.7)
m  m m
where m is the particle mass, d is the damping constant, k is the spring constant, r = Y is the position

z
vector, and Fg(#) is a random forcing (figure 3.12). A random forcing is chosen since the probability density

function (pdf) of the side forces is Gaussian. Assume that the applied force is constant, but that the direction
of application changes with time. Define this direction in the y-z plane to be 8. Now, assume that O
gradually changes with time.

6R(l‘nJrl) = eR(tn) + G.S‘lepG7 (38)

where 60y, is a constant and G is a random variable chosen from the unit Gaussian distribution. This leads

to the equations

d k F
F4 —y+ —y= —cos(6g(t)), (3.9)
m m m

d. k F
P+ =it —z= —sin(Or(r)).
m m m

These equations produce a particle motion similar to the forces on the sphere. Making a change of

variables: y — F, and z — F; yields for the y-direction (and similarly for the z-direction),

.d .k a
F,+ %Fy + %Fy = %cos(GR(t)), (3.10)

where Fr — a because the units of the constant (and hence the physical interpretation) have changed.
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The equations can be made dimensionless using the free stream velocity (U), sphere diameter (D) and
£y

fluid densit :f="= and C, = ——2 . This yield
uid density (p) 7= and G, %pU&,(nDTZ) is yields
d*cy, d/m dCy  k/m a/m .
= - C, = Or(1)). 3.11
@ U b a T uzpre T Tpua s Orl) G-

For a lightly damped system, % ~ (27 f)?, where f is the frequency of oscillation. Inserting the dimen-

sionless frequency, or Strouhal number (St = fﬁD), and defining the constants { = % and o = % gives

d*C, ¢ dc, 5 o .
— 4+ (218t)“Cy = —cos(0(7)). 3.12
a7 LD @ TS Ce= ppaeos(6(E) (3.12)
Defining 6 = —UE/D and § = ﬁ, yields the two equations:
d*c, .dC N
—m 8+ (2mS1)’C, = Beos(6k (7)), (3.13)
d’C, | .dC, ) o
o +6 yr + (2781)"C, = Bsin(6g(7)).

This leaves five adjustable constants: &, St, B, Oy.p, and the time step A7 between 6,(f) and 6,.(7). The
Strouhal number effects the location of the vortex shedding peak, and 8 changes the width of the pdf, so it
can easily be set to achieve the experimentally determined standard deviation.

Comparing to the two-dimensional harmonic oscillator analogy, the net effect of the random forcing term
is to add energy to the system. This energy addition must be balanced by energy loss, which is produced by
the damping term. Hence, & keeps the force coefficient finite. Thus, three adjustable parameters are left that
need to be adjusted to achieve an optimal model.

For A7 = 0.001, good agreement with the data is obtained by setting 6 = 0.069, St = 0.173, § = 0.0546,
and 6., = 0.0158. Figure 3.13 shows a comparison between the model and data pdf, and figure 3.14 a
comparison of the power spectrum. Varying both 6., and 0 produces a better agreement with either the
power spectrum or with the probability distribution, but not both at the same time. The cited constants are a
compromise. With these values, the standard deviation of the change of 6 per vortex cycle is about 70°.

In figure 3.15 a time trace of one of the lateral force components is compared with the experimental
measurements and the literature, where the width of the line indicates the uncertainty in reproducing the data.
The model appears qualitatively similar to the measured data and the numerical simulations. On the other
hand, the results are quite different than the potential flow model of Howe, which is to be expected based on
the spectral density plots discussed earlier. An interesting result is that the forcing is quite distinct from that
of a cylinder, which has much higher forcing amplitude, without significant low-frequency motion.

A model with so many adjustable parameters may possibly be useful for some sort of control approach,

but from a theoretical standpoint it needs to be developed much further. Here a physical interpretation of the
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Figure 3.13: Probability density function of the side force, Cy, compared with measurements at Re = 1 x 10°.
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model is presented, which may prove useful in improving it.

Consider the instantaneous near wake with positive circulation in a control volume surrounding the near
wake, such that the wake is tilted down. The tilt produces a higher maximum fluid velocity on the top of the
sphere. This enhances entrainment, and leads to higher vorticity addition in the top shear layer than on the
bottom. Hence, a physical argument for the restoring force is that when I' > 0 in the near wake, % < 0 and
vice versa.

The random forcing comes into play when considering the local dynamics of the separation point. As
is shown later in chapter 5, a dynamic stud introduces a disturbance into the boundary layer, which then
alters the separation point and the rate of entrainment in the shear layer. The timescale associated with the
disturbance is 7 ~ 4 until the change in force due to the disturbance amplification reaches a maximum, which
is similar to the period of vortex shedding. For the case of the smooth sphere, it is proposed that disturbances
from the free stream interact with the boundary layer, and after amplification alter the forces based on the
nonlinear dynamics of the flow separation. The proposed model takes into account the random forcing,

though the details could be improved by, for example, allowing the magnitude of the random force to vary.

3.8 Discussion and Summary

3.8.1 Structure of the Sphere Wake

This study has corroborated and extended the findings in numerical simulations that there is significant low
frequency forcing on the sphere in the subcritical Reynolds number regime. It was discovered that at low
Reynolds numbers, the spectral energy is split nearly evenly between low frequencies and the vortex shedding
frequency, but as the critical regime is approached, the energy is transferred solely to the low frequencies. A
likely explanation for these observations is that the low frequency forcing is caused by the long timescales
associated with the dynamics of separation (to be discussed in chapter 5), combined with the energizing of
the separated shear layer as the Reynolds number is increased. Both the boundary layer and shear layer are
unstable to a range of frequencies/amplitudes, leading to the amplification of the random forcing present in
the free stream. As the critical Reynolds number is approached the free shear layer becomes unstable to
shorter wavelengths, making it more likely that the roll-up will occur near the sphere and cause enough fluid
to be entrained to keep the flow attached. This change to the base flow then likely interferes with the normal
vortex shedding process.

An analogous phenomenon can explain the supercritical statistics, though in this case the instabilities
would affect the separation bubble. It is likely that if there is a strong enough disturbance, it causes a local
change to the wake that increases drag (due to locally breaking up the separation bubble) and produces a
side force. This could cause the drag distribution to be skewed, if the strong disturbances are somewhat

intermittent. Because the supercritical spectrum also has a low frequency motion, it is postulated that the
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disturbances to the supercritical flow are also long lasting, though more data would be necessary to verify

this.

3.8.2 Sampling Time for Statistical Convergence

Due to the low frequency motion, it is essential to examine the flow field for a relatively long amount of time
in order to get converged statistics. There is significant energy at %th of the vortex shedding frequency, so
to resolve just five of these low frequency oscillations would take A7 = 500. The convergence study reveals
that this should be a sufficient time to estimate the mean and standard deviation. However, it is better to
integrate over A7 > 2000 to fully understand the forcing distribution, which is encapsulated in the skewness
and kurtosis.

The need to sample for a very long time may explain the mean supercritical side force found by Constan-
tinescu & Squires (2004), who ran their simulation for a total of A7 = 50. However, they found a fairly large
mean side force, compared with our standard deviation measurements, so a more detailed explanation of the

discrepancy may be required.
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Chapter 4

The Effect of a Small Stationary Isolated
Roughness Element

4.1 Overview

The effect of an isolated roughness element on the forces on a sphere was examined for a Reynolds number
range of 5 x 10* < Re < 5 x 10°. The roughness element (or “stud”) was a circular cylinder and its width
and height was varied to be 1%, 2%, and 4% of the sphere diameter. It was found that the isolated roughness
element has the largest effect on the lateral forces when it is located between a streamwise angle of about 40°
and 80°. At subcritical Re, a lateral force is produced in the direction of the roughness, while at supercritical
Re, the force is in the opposite direction. This is caused by asymmetric boundary layer separation, as is
shown using particle image velocimetry (PIV). At supercritical Re, a roughness element that is only 1% the
sphere diameter produces a lift to drag ratio of almost one. In addition to the mean forces, the unsteady forces
were also measured. It was found that at subcritical Re, the vortex shedding is aligned to the plane of the
roughness element. In addition, the probability distribution of the forces was nearly Gaussian for subcritical
Re, but for supercritical Re the skewness and kurtosis deviates from Gaussian, and the details are dependent
on the roughness size. These results form the basis of comparison for examining the effect of a dynamic
isolated roughness element.

In order to form a complete picture as to the effect of an isolated roughness element, the parameter
space, C; = f(Re,k/D, ¢;) is examined in detail for each force component (see table 1.1), and the forces are
correlated with the mean flow field by using PIV. For the unsteady force and PIV results the stud is placed
between ¢ = 60° and 70°, because as will be seen, the stud has a large effect at these angles. This study aims
to resolve some of the fundamental questions regarding the effect of an isolated roughness element, and it
will also form the basis of comparison for examining the effect of a time-dependent surface morphology on

the flow over a sphere.
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4.2 Reynolds Number Dependence of the Mean Forces
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Figure 4.1: Mean force coefficients (C;, where i represents the drag or one of the lateral force components)
as a function of Re without a stud (a) and with a stud placed at 6; = 0°, ¢ = 70° with diameter (b) 0.01D,
(c) 0.02D, and (d) 0.04D.

The magnitude and direction of the mean force exerted on the sphere is dramatically changed when a
stud of varying height is placed at a streamwise angle of ¢, = 70° (figure 4.1). In the absence of a stud, the
mean lateral forces are close to zero away from the critical regime, as expected. The critical regime does
not have well defined boundaries, but was classified by Achenbach (1972) to be the region in which the drag
rapidly changes, with the minimum drag coefficient occurring at the upper limit of the regime, Re.;. This
definition requires refinement in the presence of a stud because there is not a well-defined minimum in the
vicinity of the smooth sphere Re.;;. However, a similar Re definition of the critical regime can be determined
by examining the lateral force with a stud in place. In the presence of a stud the lateral force in the symmetry
plane (C,) is positive at low Re and negative for supercritical Re. Hence the critical regime can be defined to
be the Re range in which the derivative of C,(Re) < 0. The lateral force in the plane normal to the plane of
the stud, Cy, is close to zero except in the critical regime, where small sphere asymmetries become important

and the force arises due to the combined effect of the stud and small imperfections on the sphere (see chapter
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3). With the stud at this angle, the mean forces do not change significantly as the stud size is increased from

k/D = 0.01 to 0.04, though this is not the case at other angles, as described later in this section.

120 120 0.2
100 100 01
%\ 80 § 80
> 60 g 60 0
S kS
s 40 s 40
-0.1
20 20
0 -0.2
% 0
120 120 1
100 100 0.8
. 2 80
2 80 8 0.6
2 60 S 60
) =S 0.4
s 40 g 40
20 20 0.2
0 0
% 0 1 2 3 4 5
Re x 10°

(d

Figure 4.2: Contour plots showing the effect of the stud’s streamwise angle, ¢, and Re for a 1% stud: (a)
ACp, (b) ACy, (¢) AC;, and (d) |AC,/Cp|.

4.2.1 Influence of Streamwise Location of the Roughness Element

Figure 4.2 shows the net change in the mean forces from the smooth sphere case in the presence of the
smallest stud as a function of Re and ¢, and figure 4.3 shows a cut of these plots at ¢y = 70°. The data for
these plots were obtained by taking measurements every 10° in ¢. The Re step was generally 3 x 10* and
smaller in the critical regime.

Figures 4.2a and 4.3a show the change in the drag coefficient, ACp = Cp — Cp(smooth). The stud has very
little effect on subcritical drag, however, the drag is more than doubled in some of the supercritical regime,
centered on ¢ = 60°. These results are similar to those found by Bacon & Reid (1924) when examining the
effect of a support wire with diameter 0.2%D.

Unlike the drag, the lateral force in the plane of the stud (Cy) changes significantly for subcritical Re.

Figures 4.2b and 4.3b show that there is a large positive change to the force over a wide range of Re and ¢. For
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Figure 4.3: 70° cut: ACp (0); ACy (+); AC; (x); |AC,/Cp| (V).

small ¢y the stud has little effect on Cy, which is expected because the local Reynolds number, Rey, is small.
This is also the case for larger ¢ at lower Re. As the stud is moved beyond the mean separation angle and
into the recirculating region, it eventually has less and less of an effect. Note that even beyond the separation
point a sufficiently large stud can still influence the shear layer and therefore the force development. In the
supercritical regime there is a large negative force over a similar range of angles.

Examining the effect of the lateral force that is perpendicular to the streamwise plane of the stud (C;)
highlights the behavior of the critical regime (figures 4.2c and 4.3c). Here, there is essentially no change
in the subcritical and supercritical forces, yet in the critical regime there is a large change. The exact flow
pattern through the critical regime is difficult to determine, however note that figure 4.1 shows a large negative
force in the y-direction for the smooth sphere. If the sphere is rotated, the direction of the lateral force vector,
Cy, rotates accordingly, i.e. there is a bias to flow through the critical regime even for this extremely smooth
sphere. Thus, since the flow is already strongly influenced by small sphere asymmetries in the critical regime,
the full effect observed in figure 4.2c is a combination of the influence of the stud and the model bias. The
exact details in the critical regime would clearly be dependent on the sphere being tested.

Figures 4.2d and 4.3d show the relative change in the lateral force from the smooth sphere case, i.e.,
|ACy/Cp| where Cp is evaluated with the stud in place. Interestingly a roughness element with k/D = 0.01

produces a large lift to drag ratio of nearly one in the supercritical regime, over a broad range of Re and ¢.

4.2.2 Associated Near-Wake Structure

Particle image velocimetry was used to quantify two-components of the velocity field in a planar cut of the
near wake and permit correlation between measured forces and the flow structure in a streamwise-radial
plane, at subcritical and supercritical Re of 2.0 x 10° (figure 4.4) and 4.1 x 10° (figure 4.5). Based on the

contour plots of the mean force components, these conditions should be representative of the entire subcritical
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Figure 4.4: Mean velocity field and Reynolds stresses at a subcritical Re of 2.0 x 103 for (left) the smooth
sphere and (right) with a 0.01D stud placed at ¢ = 60° (shown in red) in the plane of the image (6; = 0°).
Top to bottom: u/t// /U2, V'V /U2, and u'V' /U2
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and supercritical regimes (all that will change is the magnitude of the effect). For example, the mean field at
Re = 50,000 with a stud placed at 20° should look essentially similar to the smooth sphere case, because the
influence of the stud on the mean forces is negligible. In these figures the vector field of the two-dimensional
mean velocity is superimposed on isocontours of the mean Reynolds stresses, with the smooth sphere shown
in the left-hand panels and the case of the stud placed at ¢, = 60° in the plane of the PIV laser sheet (visible
on the left-hand side of the images) in the right-hand panels.

For the smooth sphere in the subcritical regime the boundary layer separates far upstream, close to the
equator, producing a large recirculating wake. When the isolated roughness is added, the boundary layer
appears to separate slightly further downstream, and the size of the near wake shrinks (figure 4.4). The center
of the mean recirculation region moves from x/D = 0.8 to 0.6 and y/D = 0.4 to 0.3. In addition, the mean
wake length, defined as the location near the sting where the mean streamwise velocity is zero, moves from
an x/D of about 1.4 to 1.1.

A primary effect of the stud can be seen to be an increase in the level of Reynolds stresses in the shear
layer close to the sphere (figure 4.4, near x/D = 0.3), accompanied by a reduction in the overall levels further
downstream, both of which can be attributed to inducing earlier instability of the shear layer and a locally
narrower wake due to the later separation of the boundary layer. A particularly interesting observation is that
the effect of the stud on the mean velocity field is localized to the upper half plane. When the stud was placed
at 6 = 90° and 180° away from the PIV plane, the mean velocity field was very similar to the no-stud mean
field.

These results suggest the physical mechanism that is responsible for the change in the mean force caused
by the stud (figure 4.1). The positive lateral force is caused by the separation delay, which allows the fluid to
reach a higher maximum speed before separation, corresponding to lower integrated pressure acting on the
upper hemisphere. In addition, the curvature of the shear layer is increased, indicating more fluid entrainment
in the near-wake, which would contribute to the decrease in pressure. Combining this with the fact that the
mean wake is barely influenced 180° from the stud indicates that on the hemisphere opposite the stud the
pressure is likely approximately equal to the smooth sphere case, while on the stud side there is reduced
pressure, producing a net positive force.

The supercritical mean velocity field for the smooth sphere (left column of figure 4.5) shows a separation
point of about 140°, based on the location of initial increase in the Reynolds shear stress. This is only a rough
estimate, =10°, because the PIV field of view is large. In addition, the Reynolds stresses are likely small
immediately downstream of the separation point, so the angle is likely over-estimated. In contrast, Achen-
bach (1972) directly measured the shear stress and found turbulent separation at ¢ = 120°, while Taneda
(1978) observed an average turbulent separation at about ¢ = 135°. A rapid downstream reattachment of the
separated flow to the sting occurs, corresponding to a narrower wake, with mean reattachment occurring at
x/D =0.6. This late separation and subsequent reduction in wake diameter results in an increased importance

of the relative size of the sting on the flow field (since the total volume of fluid in the recirculating region
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Figure 4.5: Mean velocity field and Reynolds stresses at a supercritical Re of 4.1 x 10° for (left) the smooth
sphere and (riglﬁwith a 0.01D stud plﬁed at ¢ = 60° (shown in red) in the plane of the image (6; = 0°).
Top to bottom: /' /U2, V'V /U2, and u'V' JU2.



46

stud counter-rotating

vortices

mean
separation line

Figure 4.6: The stationary stud locally delays separation in the subcritical regime, likely leading to the pro-
duction of weak counter-rotating vortices.

is greatly reduced when compared to the subcritical case), in agreement with the observations of Hoerner
(1935) of a decreasing supercritical drag with increasing dimensionless sting size. From the mean velocity
field it is clear that as the sting size is increased, the sphere and sting will very quickly resemble a streamlined
body.

When the small stud is in place, the mean wake is dramatically changed (right column of figure 4.5).
The separation point moves from about 140° to 125°, and locally the wake has a large mean radius. Either
the stud directly causes the boundary layer to separate on encounter or it influences the transition process. In
agreement with this latter hypothesis, Achenbach (1972) found boundary layer transition to turbulent to occur
for supercritical flow at almost 100°, while in the higher drag transcritical regime it naturally transitioned
earlier on the sphere. Note also that the wake appears to be tilted toward +y, in the direction of the perturbed
surface of the sphere. As in the subcritical regime, the mean flow is mostly unchanged when the stud is 90°
and 180° away from the PIV plane. Near the equator of the base supercritical flow, the velocity is similar
to the potential flow solution, whereas the local velocity at the equator behind the stud is reduced due to
the early separation and large wake. This indicates that the local pressure near the stud is higher than the
base case, which would contribute to the downward force. Thus the combination of earlier separation and
larger wake radius associated with the top hemisphere produces a mean downward force, in a reversal of the
trend associated with subcritical flow. An increased mean wake diameter leads to a significant supercritical
increase in drag coefficient.

The mean flow field slices at 90° azimuthal intervals in the presence of the stud (not shown) are in
good agreement with the oil flow visualizations of Taneda (1978), which revealed a horseshoe pattern on the
downstream side of the sphere at supercritical Re. While this pattern arose with the same orientation for a

nominally smooth sphere, it was noted that the pattern could be aligned using a small surface stud. Given
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the sensitivity of the flow to small surface perturbations, it is likely that the primary result arose because of
an intrinsic asymmetry in either model or experimental setup. With this in mind, figure 2 in Taneda’s paper
shows that the asymmetry is localized, with strong similarity in the oil patterns at 90° and 180° away from

the large separated region.
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Figure 4.7: Effect of 2% stud: (a) ACp, (b) ACy, (c) AC;, and (d) |ACy/Cp|.

Our essentially zero mean force measurements confirm that our smooth sphere setup does not induce a
noticeable asymmetry in the flow (away from the critical regime). However there is good agreement between
Taneda’s inference of two counter-rotating vortices dominating a tilted wake and our measurements of force
and velocity field in the presence of the stud. A mean asymmetry in the angular location of the separation line,
in our case induced by the stud, would cause a local roll-up of the shear layer into a counter-rotating vortex
pair, with the sense of rotation determined by the perturbation to the mean separation. In the supercritical
regime the self-induced vortex motion is away from the sting. It is likely that in the subcritical regime the
presence of a stud also leads to the development of counter-rotating vortices, but in the opposite sense to the
supercritical case because the local separation is closer to the equator, indicating a reduced pressure compared
with the base flow. The hypothesized mean separation line and counter-rotating vortices are sketched in figure

4.6. The mutual interaction of these vortices would push the pair toward the sting, a mechanism that may
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play a part in locally forming the shorter recirculation region

4.2.3 Effect of Stud Size
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Figure 4.8: Effect of 4% stud: (a) ACp, (b) ACy, (c) AC;, and (d) |ACy/Cp|.

Stud sizes of k/D = 0.02 and 0.04 were also considered. As would be expected, a stud that is twice
the size affects the mean forces over a larger range of streamwise angles (figure 4.7). For smaller angles, a
doubling of the local stud Reynolds number means that the perturbation to the boundary layer is larger, while
at angles beyond the separation point the larger stud height means that it protrudes into and influences the
separated shear layer over an extended range.

When the stud size is increased to 4%D a secondary ridge occurs in the force contour plots in the super-
critical regime (figure 4.8). The peak of this ridge occurs at about ¢, = 90°, and the magnitude of the drag
and lateral force changes are larger than the original peak occurring at lower ¢. A likely cause for this second
peak is the interaction of the stud with the separation bubble initiating at close to 100° (Taneda, 1978). For
increasingly large studs, the induced flow disturbances become big enough to induce premature azimuthally

local separation with associated dramatic changes in the mean forces.
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4.3 Spectral Density
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Figure 4.9: Subcritical Re of 8.0 x 10* showing the normalized spectral density of the dynamic forces without
a stud (a) and with a stud placed at 6; = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.

Here, the power spectral density of the forces, ®;, as a function of Re and stud size are examined. A
representative low Re example is shown in figure 4.9, where the spectral density was normalized as in chapter
3 (Eqn. 3.6).

The spectral power of Cp has been plotted on a different scale to make it visible. For the smooth sphere
lateral force (both components), there is a distinct peak at the vortex shedding frequency, and there is also
significant broadband power at lower frequencies (figure 4.9a). The data for the lateral forces match almost
exactly, which should be the case for a symmetric object. The drag force fluctuations have significantly less
power than the lateral fluctuations, but do exhibit a small peak at the vortex shedding frequency. When a
roughness element is added (figure 4.9b), the strong lateral force vortex shedding peak remains in the plane
of the stud (y — x), but almost disappears in the opposite lateral plane. This can be interpreted as a preferential
alignment of the orientation of vortex shedding associated with the mean asymmetry in the separation caused
by the influence of the stud on the boundary layer development. The effect on the opposite lateral plane
is to produce more broadband low frequency fluctuations, perhaps associated with slow dynamics of the

separation. Increasing the size of the stud slightly decreases the power levels associated with vortex shedding
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in the C; direction.
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Figure 4.10: Subcritical Re of 2.0 x 107 showing the normalized spectral density of the dynamic forces
without a stud (a) and with a stud placed at 8; = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.

As the Reynolds number is increased, the contribution to the fluctuating forces associated with vortex
shedding decreases, until it disappears near Re,,;. At an intermediate subcritical Re of 2.0 x 10°, the vortex
shedding is very weak, and most of the power is concentrated in a broadband low frequency range (figure
4.10a). The presence of a small stud at ¢ = 70° dramatically alters the force distribution (figure 4.10b). The
low frequency content is significantly decreased in the C, direction (which is in the plane of the stud), while in
the C, direction the vortex shedding peak is essentially gone. As the stud size is increased, the low frequency
content in the C, direction continues to decrease, and the fluctuations become fairly evenly distributed below
a Strouhal number of about 0.2. These changes appear to confirm that this low frequency activity, observed
also in earlier studies, is a real feature of sphere flow rather than an artifact of the experimental method.

In the supercritical regime there is no vortex shedding detected near the subcritical vortex shedding fre-
quency of St = 0.18. As the Reynolds number is increased, the dimensionless minimum natural frequency of
the supporting structure decreases, so the maximum St that is detectable also decreases. At an Re of 4.4 x 10°,
this limits the maximum St to about 0.18, making it impossible to detect the vortex shedding that is likely
occurring at a higher St in the supercritical regime (see, e.g., Constantinescu & Squires, 2004). However there

is a clear change in the spectral shape associated with a surface stud. For the smooth sphere the spectrum has
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Figure 4.11: Supercritical Re of 4.4 x 10° showing the normalized spectral density of the dynamic forces
without a stud (a) and with a stud placed at 8; = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.
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significant power at low frequencies (figure 4.11a). When the small stud is added, the fluctuations become
more broadband, and the fluctuating drag levels significantly increase. As the stud size is increased, the lateral
force spectra begin to diverge, accompanied by further increases in drag fluctuations. It would be interesting
to see the effect on the supercritical vortex shedding, however, it was not possible in these experiments to
make a sufficiently rigid structure without requiring a sting large enough to change the dynamics of the base

flow.

4.4 Moments

The higher-order moments of the forces as a function of Re were previously described for the case of a smooth

sphere (section 3.4), and here are extended to examine the effect of an isolated roughness element.
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Figure 4.12: Standard deviation of the force coefficients as a function of Re without a stud (a) and with a stud
placed at 6; = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.

In the subcritical regime a stud placed at ¢, = 70° affects the moments, with the stud size playing only a
small role, as would be expected from the preceding figures. The standard deviation in the plane of the stud
(figure 4.12) decreases, while it increases in the opposite lateral direction. This is explained by the spectral

density plots in section 4.3 which suggested that in the plane of the stud the vortex shedding was aligned
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Figure 4.13: Probability density for: subcritical Reynolds numbers (1) 1.1 x 10°, (2) 2.6 x 10°; critical Re
(3) 3.07 x 10°, (4) 3.09 x 10°, (5) 3.11 x 10°; and supercritical Re (6) 4.1 x 10°. (a) no stud, (b) 0.01D stud.

and the lower frequency motion decreased, while there was more irregular motion in the opposite plane. The
combined effect of the change to the lateral forces is to increase the standard deviation of the lateral force
vector magnitude by about 15% in the subcritical regime, and 30% in the supercritical regime (not shown).

In the critical regime, the smooth sphere peak in the drag fluctuations (due to the drag transitioning from
the subcritical to the supercritical state (chapter 3.4)) is also associated with a peak in the Cy, fluctuations. This
is likely caused by the large mean force in the y-direction (see figure 4.1) at this Reynolds number, indicating
a tilted wake. With a stud in place, the mean force at this Re becomes more associated with the z-direction,
and likewise the fluctuating force increases in the same direction. This reason for the change in the mean
force is given in section 4.2.1: the exact details of the critical regime are dependent on the interaction of the
sphere asymmetries and the stud.

In the supercritical regime, the most noticeable change associated with surface asymmetry is an increased
standard deviation of the drag component and higher levels of lateral fluctuations in the plane perpendicular
to the plane containing the stud for k = 0.04D. Note, however, that these supercritical results represent a
lower bound on the true values of standard deviation, since oscillations above St ~ (0.2 cannot be detected
with our setup.

The statistics are more easily understood by comparing the probability density functions (pdfs) for no stud
and small stud data sets (figure 4.13). More details of the smooth sphere case can be found in section 3. The
subcritical pdfs are not significantly changed by the addition of a stud, and while the critical regime shows a
bimodal distribution similar to the smooth case, the spacing between the different modes has decreased. The
most notable change is a shift to a broader supercritical distribution centered at higher Cp, which is supported
by the drastic change to the wake structure illuminated by the PIV results. Once again the effect of stud size
does not appear to be significant over the range considered.

In the subcritical regime the skewness (figure 4.14) and kurtosis (figure 4.15) show that the statistics of

the distribution are approximately Gaussian, even when the stud is in place. In the critical regime, both the
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skewness and the kurtosis have extreme peaks, which are associated with the bimodal drag distribution which
was described earlier. In the supercritical regime, the smooth sphere drag distribution is highly skewed,
while when the stud is added, the drag becomes less skewed and the C, force component becomes negatively
skewed. The kurtosis shows a similar trend: without the stud the drag has a high kurtosis, and with the stud
C; has a high kurtosis. This odd behavior of C, comes from a very lopsided bimodal distribution when the
stud is in place (not shown), where most of the energy is centered on C; = 0.05, while there is a very small
secondary peak at C, = —0.04. As the stud size is increased the kurtosis becomes more Gaussian, due to the
energy becoming more evenly distributed between the peaks. The effect of the stud on the lateral distributions
seems to mainly be that it brings more order to the plane in which the stud is located, while it brings less to

the opposite plane (not shown).
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Figure 4.14: Skewness of the force coefficients as a function of Re without a stud (a) and with a stud placed

at 6, = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.
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Figure 4.15: Kurtosis of the force coefficients as a function of Re without a stud (a) and with a stud placed at
6, = 0°, ¢ = 70° with k = (b) 0.01D, (c) 0.02D, and (d) 0.04D.

4.5 Summary

The effect of an isolated stationary roughness element on the flow over a sphere has been examined over a
broad range of Reynolds numbers, and the results are in good agreement with and extend the relatively sparse
literature. A piezoelectric force sensor was used to obtain precise force measurements, which were correlated
with the behavior of the flow using particle image velocimetry. The flow is significantly affected when a stud
with k/D = 0.01 —0.04 is placed over a large range of streamwise angles from the front stagnation point,
from about 40° < ¢ < 80°.

In the subcritical regime, it was found that the stud caused a local delay in separation, leading to a positive
mean force in the +y direction while having little effect on the drag. It is argued that the roll-up of the shear
layer produces a pair of streamwise vortices, with mutual induction toward the sting. At lower Re, there is a
distinct peak in the spectral density associated with large-scale vortex shedding, along with broadband lower
frequency motion. When a stud is placed on the sphere, the vortex shedding aligns with the plane of the stud.
As Re approaches Re,,;;, the force contribution near the vortex shedding frequency gradually decreases until

the peak is gone. The statistics of the subcritical regime are found to be nearly Gaussian, even in the presence
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of a stud.

The behavior in the critical regime will always be highly dependent on small asymmetries of the sphere,
even though steps were taken to ensure an accurate sphere model. However, this is not surprising since the
boundary layer is transitioning from laminar to turbulent, and is thus highly sensitive to imperfections. If the
sphere was rotated, the mean side force in the critical regime rotated accordingly (but note that the mean side
force was essentially zero either side of this regime). When a stud was in place, the forces were dependent
on some combination of the effect of the stud and the effect of other small asymmetries. The statistics were
far from Gaussian during the transition, especially when the drag was in a bimodal state, changing from the
high drag subcritical state to the low drag supercritical state.

In the supercritical regime, the stud caused a premature, rather than delayed, separation of the boundary
layer, leading to a negative force. In the absence of a stud, the flow very quickly attaches to the sting, leaving
a very narrow mean wake, while the early separation caused by the stud produces a locally large wake and a
significant increase in drag. Over a large range of Re and ¢, the lift to drag ratio is nearly 1, even when the
stud dimensions are only 1% the sphere diameter. As the stud size is increased to 4%D, a secondary mean
force peak occurs at about ¢, = 90°. This is attributed to the stud being near the beginning of the separation
bubble. The statistics in the critical regime are not Gaussian, and vary depending on the size of the stud.

The variation of the forces acting on the sphere with a surface perturbation that is only a few percent of
the sphere diameter underline the extreme complexity of this flow. Through this study the wake structure
associated with the presence of a local asymmetry imposed by a stud has been suggested, namely a pair of
counter-rotating vortices that trail the stud on a scale much larger than the stud diameter, and it is proposed

that this may be a useful concept for understanding the behavior of the flow over a smooth sphere.
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Chapter 5

The Effect of Small-Amplitude
Time-Dependent Changes to Surface
Morphology

5.1 Overview

Typical approaches to manipulation of flow separation employ passive means or active techniques such as
blowing and suction or plasma acceleration. Here it is demonstrated that the flow can be significantly altered
by making small changes to the shape of the surface. A proof of concept experiment is performed using a
very simple time-dependent surface perturbation: a roughness element of only 1% of the sphere diameter is
moved azimuthally around the sphere surface upstream of the uncontrolled laminar separation point, with a
rotational frequency as large as the vortex shedding frequency. A key finding is that the nondimensional time
to observe a large effect on the lateral force due to the perturbation produced in the sphere boundary layers as
the roughness moves along the surface is 7 = tU. /D ~ 4. This slow development allows the moving element
to produce a tripped boundary layer over an extended region. It is shown that a lateral force can be produced
that is as large as the drag. In addition, simultaneous particle image velocimetry and force measurements
reveal a pair of counter-rotating helical vortices are produced in the wake, which have a significant effect on
the forces, and greatly increase the Reynolds stresses in the wake. In addition, it is shown that oscillating the

roughness element, or shaping its trajectory, can produce a mean lateral force.

5.2 Roughness Element Moving at Constant Speed

The forces on the Teflon coated sphere used in the dynamic stud experiments (which is different than the one
used previously) and the effect of a stationary stud as a function of Reynolds number are shown in figure 5.1.
The results are similar to those for the sphere which was examined in chapter 4, though the critical Reynolds

number is higher (indicating that the effective roughness is lower), in good agreement with the smooth sphere
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Figure 5.1: Static forces and a comparison with the smooth (—) sphere results from Achenbach (1974a): (a)
smooth sphere results and (b) the same sphere with a 0.01D stud placed at ¢ = 60°.

results of Achenbach (1974a).
Figure 5.2 shows a time trace of the lateral forces for a total time of 7 = 100 without a stud and with a

dynamic stud moving at two different constant angular frequencies, expressed as the dimensionless quantity

o* = 6,D/U... ;5.1

The forces due to a stationary stud are very similar to the no stud case, except with a small mean offset
(chapter 4). By adding time-dependence to the stud’s position, the lateral forces are completely altered,
with most of the spectral energy centered on the frequency of stud rotation. Though the mean force is not
altered (see section 2.2.1 for notation), the fluctuating forces increase substantially. At any given instant the
magnitude of the lateral force is approximately |Cy (7)| = 0.46 for @* = 0.52, an order of magnitude larger
than the mean lateral force due to a stationary stud. This is surprisingly large considering that the effect is
caused by a very small perturbation to the sphere morphology, yet when an entire golf ball spins about an axis
perpendicular to its direction of motion at $ D/U.. = 0.52, it has a mean lateral force of about 0.2 (Bearman &
Harvey, 1976), due to the Magnus effect. Not apparent in figure 5.2 is that the angle to the lateral force vector

(0) lags behind the stud angle, where the phase difference, 8 — 6y is dependent on the angular frequency.

5.2.1 Effect of Reynolds Number

The mean phase difference between the direction of the lateral force and the azimuthal location of the stud is
plotted along with the mean of the lateral force magnitude in figure 5.3 for a large range of Reynolds numbers,
showing that @* provides very good collapse of the data for subcritical Reynolds numbers. These calculation
are based on the mean force in the stud reference frame, and are described in section 2.5.3.

As the stud speed is increased, the lateral force first increases from its stationary zero-speed value until it

reaches a maximum near ®* = 0.5, after which point it begins to gradually decrease. Note that the magnitude
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Figure 5.2: Time trace of the lateral force coefficients for Re = 5 x 10%, showing that the dynamic stud
completely changes the force characteristics. The mean of the lateral force magnitude of the moving stud is
up to seven times larger than that of the stationary stud.

of the lateral force is dependent on the magnitude of the stationary stud force (w* = 0). The stud makes
one revolution during an average vortex shedding cycle when w* = 1.1. Near this angular frequency there is
not an amplification of the lateral forces (compared with adjacent frequencies), as might be expected if the
dramatic effects were caused by a direct interaction with the wake instability. However, the peak is close to a
subharmonic, and Chomaz et al. (2006) interpreted the wake instability as a helical instability, so there may
be some connection.

The phase difference between the force vector and stud exhibits three distinct regimes (figure 5.3). First
there is a sudden decrease in the phase with increasing w*. This levels off near 8 — 6, = —90°, and then the
phase difference begins to decrease nearly linearly beyond @* = 0.35. These results are extremely indepen-
dent of Reynolds number in the subcritical regime, and are not dependent on the magnitude of the stationary
stud force, as is the case for the mean lateral force.

The effect of the dynamic stud is quite different in the supercritical regime, as is to be expected because
the flow separates turbulently, further downstream. Figure 5.3 shows the results for Re = 4.1 x 10°, indicating
that in the supercritical regime the mean lateral force and phase do not change significantly over the range
of angular frequencies examined. Note also that the phase is approximately —180°, which is the same phase
that a stationary supercritical stud would produce, due to the lateral force vector pointing away from the stud.

The focus of this chapter will be on Re = 5 x 10%, because the stud has the highest dimensionless speed
at this Re. However, figure 5.3 reveals that the physics appear to be essentially the same over the entire

subcritical Reynolds number regime examined here, at least from 5 x 10* < Re < 3.1 x 10°. Thus, the results
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Figure 5.3: Mean Cy and phase (6 — 6) (in stud reference frame) vs. dimensionless angular frequency.
Re =0.5%x10° (A); Re = 0.8 x 10° (>); Re = 1.1 x 10° (V); Re = 2.0 x 10° (<1); Re = 3.1 x 10° (0);
Re =4.1x10° (D).



61

-0.31

-0.35¢

Voltage
Voltage

20 300 0 10 20 30
Gk (deg tUeo/D
(a) (b)

0 100

Figure 5.4: (a) Uncalibrated hot-film voltage: lower voltage indicates greater heat transfer. Results are for
Re = 5.0 x 10* and are averaged over 100 revolutions, as a function of the stud angle, in order to suppress
voltage oscillations caused by vortex shedding. (b) Normalized with respect to time since the stud passed.
No stud mean (-); ®* = 0.15 (0); 0.34 ($); 0.52 (A); 0.70 (=>); 0.89 (V).

presented below are applicable to the subcritical regime, and more generally, it may be possible to draw

conclusions for other bodies that have a variable, laminar separation point.

5.2.2 Flow Response Time

Hot-film measurements at ¢ = 70° reveal the phase relationship between the location of the stud and the
response of the boundary layer (figure 5.4). The vertical axis shows the uncalibrated voltage signal, with
lower voltage indicating greater heat transfer and thus higher velocity/shear stress. The horizontal line shows
the mean voltage produced without a stud, and the other data are the phase-averaged voltage over many
stud revolutions as a function of stud position, with varying angular frequencies. The boundary layer and free
shear layer are receptive to disturbances, and it is likely that the passing stud locally triggers these instabilities,
which then grow and convect downstream, gradually entraining more fluid and delaying the separation, which
would change the velocity near the hot-film. At the lowest frequency, it is seen that the local velocity has
time to readjust to the smooth sphere value before the stud makes a full revolution. However, with all of the
other speeds the flow does not have time to fully readjust.

In figure 5.4b the x-axis was rescaled to show the nondimensional time since the stud passed instead of
the position of the stud, revealing that the flow does not fully respond until 7 = tU../D = 4 after the stud has
passed. This is similar to the response time of a stalled airfoil to a perturbation of the boundary layer upstream
of separation (Williams et al., 2009). As will be seen in the flow visualization results presented in the next
sections, this time delay is associated with a large-scale change of both the location of flow separation and

the wake.
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Figure 5.5: Mean velocity field and mean Reynolds shear stress for (left to right then top to bottom): no stud,
o* =0.15, 0.34,0.52, 0.70, and 0.89.
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5.2.3 Effect on Mean Flow

The dramatic change to the mean wake due to a moving stud is shown in figure 5.5, with the color contours
indicating the mean Reynolds shear stress, #/v//U2. The top left image corresponds to the smooth sphere
base flow, which is very similar to the no-stud higher subcritical Re results shown in chapter 4. With the
stud moving at ®* = 0.15 (which corresponds to 1Hz at this Re), there is very little change to the wake
structure. As the speed is increased the mean separation point moves further downstream and the mean wake
gradually shrinks, and at ®* = 0.89 the mean velocity field looks more similar to the supercritical wake than
the subcritical wake (chapter 4), though the Reynolds stresses have dramatically changed, with the maximum
value being more than a factor of four larger than the supercritical case. Note also that as the stud speed is
increased, the position of the maximum Reynolds shear stress moves closer to the sphere. This holds for the

streamwise and radial Reynolds stresses as well (not shown).

5.2.4 Instantaneous Velocity Field

A better understanding of what causes the significant changes to the flow can be found by examining the
instantaneous velocity field. Synchronous force and particle image velocimetry measurements were taken in
the top half of the x-y plane (i.e. the streamwise plane with 8 = 0°) for five different stud speeds, three of
which are shown in figures 5.6 — 5.8. Image pairs were acquired at a frequency which allowed at least 100
vector fields to be calculated per stud revolution. Results for the smooth sphere, which reveal a large and
slowly varying wake, can be found in chapter 3.

For the lower speed run (w* = 0.15, figure 5.6), there is a clear effect of the stud in the force history,
and the force can be related to a change in the flow field. Four velocity fields which cover one full rotation
of the stud are plotted, with the first one corresponding to the time when C, was close to a maximum, with
the stud at 6y = 81°. This first velocity field has a small recirculation region, compared with the other three,
indicating enhanced entrainment in the shear layer. This pattern repeats itself with each oscillation of the
stud, with random force variations superimposed on top of the stud frequency, as can be seen by examining
the adjacent maxima on the force plot. The overriding impact of the stud allows for a phase-averaged force
and flow field to be calculated, which will be described in the next section.

At a higher stud speed of ®@* = 0.52, the magnitude of the lateral force becomes as large as the drag, and
the wake structure is strongly modified (figure 5.7). Once again, when the lateral force in the PIV plane is a
maximum (with the stud at 6, = 123°), the flow remains attached much further downstream, and there is a
very small recirculation region. The second and fourth vector fields are quite distinct, yet the mean in-plane
lateral force is near zero on both, showing that there is a clear asymmetry in the wake. This also highlights
the difficulty of correlating the velocity field with the forces for smooth sphere case with random forcing: the
streamwise cut of the vector field is not only dependent on the in-plane force, but also the out-of-plane force.

Even so, the general trend for the smooth sphere case is the same, with a smaller wake when the in-plane
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Figure 5.6: Time trace of the forces along with four instantaneous velocity fields equally spaced over one
stud revolution (indicated by vertical line on force history), with the stud moving at ®* = 0.15. The vector
field is in the x-y plane, and the forces are marked as C; (---); C, (-); C; (- -).
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Figure 5.7: Same as figure 5.6, except with @* = 0.52.
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force is large (chapter 3).

When the angular frequency of the stud is increased to ®* = 0.89 (figure 5.8), the lateral forces decrease,
but at the same time the mean Reynolds stresses are increased (as was seen in figure 5.5). At this speed the
recirculation region is essentially gone when the in-plane force reaches a maximum. This is not to say that
the flow does not separate; with the wide field of view this cannot be precisely determined. Another feature is
that the stud is almost on the opposite side of the sphere (6, = 162°) when the in-plane force is a maximum.

The instantaneous velocity fields suggest the physical mechanism which is responsible for both the vari-
ation in the mean lateral force (figure 5.3) and the hot-film results (figure 5.4a). Examining a full time series
(not shown), it was found that the hot-film reading was highly correlated with the local position of separation.
This holds for all of the stud speeds examined, with small variations in the predicted and actual azimuthal
angle of the smallest wake, indicating that three-dimensional effects in the wake do not need to be taken into
account when interpreting the hot-film data. As an example, consider the @* = 0.15 hot-film result in figure
5.4a, which could be interpreted in the following manner: immediately after the stud passes, the separation
point begins to move downstream, reaching a maximum streamwise angle when the hot-film voltage is a
minimum, and then very gradually returning to the initial separation angle. Note that the separation angle is
not being measured, though the trends in the PIV data are clear.

The variation in the magnitude of the mean lateral force (in the stud reference frame, figure 5.3) has an
analogous interpretation as that of the hot-film results. At low speeds, the wake is only slightly altered by
the passing stud. As the speed is increased, the minimum size of the wake continues to decrease, and at the
same time the azimuthal extent is increased. When the maximum lateral force is produced, there is a local
region where there is no detectable wake. As the speed is increased further, the azimuthal extent continues to
increase, but at the same time the wake on the opposite side begins to decrease in size due to increased fluid
entrainment (as is evident in figure 5.4a, or from the progression of the velocity fields, which are not shown),
thus partially canceling out the effect.

Although a planar cut of the flow field yields significant insight into the forcing, it will be shown in the

next section that the position of the separation is inextricably linked to vortical structure in the wake.

5.2.5 Phase-Averaged Flow Field

Since the flow field is dominated by the position of the moving stud, it is possible to find a phase-averaged
flow field. The azimuthal angle was divided into 100 bins, and each velocity field was placed in one of
the bins based on the simultaneous measurement of the stud position. In order to average over the random
variations in the wake that were not associated with the stud, time resolved PIV images were acquired for at
least 12 stud revolutions per stud speed. Averaging over the velocity fields in each bin yielded 100 velocity
fields, each corresponding to a different azimuthal distance from the stud.

Figure 5.9 shows two of these phase-averaged plots for the faster @* = 0.89 run, # = 1 and 1.6 after the

stud has passed, with the separation point just beginning to move downstream. To highlight the structure in
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Figure 5.8: Same as figure 5.6, except with @* = 0.89.
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Figure 5.9: Phase averaged velocity fields with 0.6U. subtracted off, with roughness element moving at
®* = 0.89. Grayscale shading indicates value of dimensionless vorticity. The stud is at 65° in the top image
and shows a negative vortex on the top right, and a positive vortex forming behind the sphere. In the bottom
image the stud is at 100° and the positive vortex is now fully formed.

Figure 5.10: Three-dimensional phase-averaged flow field, with roughness element moving at ®* = 0.89.
Azimuthal vorticity contours are —3 (dark gray) and +3 (light gray). Radial velocity contours are —0.2
(blue) and +-0.4 (red). The lateral force vector is attached to the front of the sphere.
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Figure 5.11: Angled views showing the radial component of the phase-averaged wake, with @* = 0.15.
Contours are of the normalized radial velocity: —0.2, —0.1, 0.1, 0.2, 0.3, 0.4.

the wake, 0.6U.. was subtracted from the streamwise velocity, and the vorticity that is normal to the image
is indicated using grayscale shading. This shows a pair of very clear counter-rotating vortices, and hints at
some very rich structure in the wake. In terms of the radial velocity, U, (where r is in the lateral force plane,
and is the distance from the sting), there is a large positive U, in between the two vortices, with negative U,
on either side. This radial velocity will be used to help interpret the structure in the wake.

To gain a better understanding of the wake structure, the phase-averaged three-dimensional wake was
reconstructed out of the U, and U, velocity components (Uy is not available from the planar data). This was
possible because the sphere is symmetric, with the only important variable being the position of the PIV plane
(always at 8 = 0°) compared with the position of the stud. Thus, when the phase-averaged stud position is
located at 20°, the phase-averaged velocity field is —20° from the stud. In this way the three-dimensional
phase-averaged wake was constructed, with the stud chosen to be at 6 = 0°.

Figure 5.10 shows both contours of radial velocity (in red and blue) and azimuthal vorticity (grayscale).
The vorticity contours lie in between the positive and negative velocity contours, indicating that the radial
velocity provides a reasonable indication as to the location and shape of the counter-rotating vortices. The
azimuthal vorticity does not provide a good indication of the structure in the wake at lower stud speeds,
because the vorticity is then mostly aligned with the streamwise direction. Thus, the radial velocity will be
used to highlight the structure in the wake as a function of stud speed.

Figures 5.11 — 5.15 show contours of the phase-averaged radial velocity for several different stud speeds.
Both a front and a back angled view are shown, with the approximate position of the stud indicated. The

orientation and contour levels are the same for all plots, and were chosen in an attempt to highlight the
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Figure 5.12: Same as in figure 5.11, with @* = 0.34.

Figure 5.13: Same as in figure 5.11, with * = 0.52.
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Figure 5.14: Same as in figure 5.11, with ®* = 0.70. Note the high speed positive velocity fluid, with negative
U, fluid on either side, indicating counter-rotating vortices in the shape of a helix.

Figure 5.15: Same as in figure 5.11, with @* = 0.89.
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Figure 5.16: Schematic simplification of a spanwise cut of the near wake, showing the progression of the
counter-rotating vortices as the region of influence of the stud increases: (a) the stationary stud produces
vortices which push each other toward the center, (b) vortices move away from each other and (c) meet on
the opposite side, now pushing each other away from the center.

vortical structure. In addition the lateral force vector (which corresponds to the phase-averaged force when
the stud is at 8 = 0°) is shown on the front of the sphere, and has the same scale between figures.

The average wake for the lowest speed (figure 5.11) is mostly symmetric, with a small change in the wake
due to the passing of the stud (which is moving clockwise as viewed from upstream) indicated by the streak
of negative U, and also by the decrease of positive U, near the equator, both due to a local change in the
position of separation and the size of the wake.

When the angular frequency is increased to @* = 0.34 (figure 5.12), the extent of the affected area is
increased, and from the downstream view some of the fluid has a negative velocity of greater than 0.2U
directly next to the sting, indicating that the fluid passes from the upper to the lower plane, with the sign of
its velocity changing.

In figures 5.13 — 5.15 the stud frequency is greater than w* = 0.52 and there is a clear signature of the
counter-rotating vortices, following a helical path. As the stud moves faster, the streamwise period of the
helices gets shorter. Note that in all cases the orientation of the structure in the wake is well correlated with
the position of the stud.

The orientation of this helical vortex pair is such that it would induce a velocity field (due to the azimuthal
vorticity) that would contribute to locally keeping the sphere boundary layer attached further downstream.
For comparison, the effect of a trip wire in the subcritical regime is to keep the flow attached until about 120°,
leaving a recirculating region behind the sphere (Bakié, 2004). Thus it is possible that tripping the boundary
layer alone would keep the flow attached to about 120°, while the addition of the large scale vortices in the
wake locally cause the flow to not even separate (as in figure 5.8).

A simplified two-dimensional schematic is shown in figure 5.16 to illustrate a possible mechanism that
leads to the production of the counter-rotating vortices. The views are of a spanwise cut of the near wake,

ignoring three-dimensionality. The dashed circle represents the center of the shear layer for the base flow,
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and the arrows represent the change in the shear layer caused by the stud, with each view oriented such that
the force is in the +y direction. For a stationary stud (figure 5.16a), it was argued in chapter 4 that increased
entrainment locally causes the flow to stay attached slightly further downstream than for the rest of the flow,
producing weak counter-rotating vortices, such that they push each other toward the sting. As the stud begins
to move at low speeds (figure 5.16b), an extended region of the flow becomes tripped, causing the flow to
remain attached over a larger portion of the sphere, with the inward moving fluid being forced into the un-
tripped region, again producing two counter-rotating vortices, that are stronger and further apart. Finally, as
the stud is moving fast compared with the timescale associated with the movement of the separation location
(figure 5.16¢), most of the flow remains attached to the sphere, causing fast moving fluid to be forced into
the only region that has not been tripped, producing two very strong counter-rotating vortices with mutual
induction away from the center (similar to supercritical flow with a stationary stud), as opposed to toward the
center. This is of course a very simplified explanation, because the flow not only moves out of plane, but the
time-dependence of the disturbance also produces the helical shape, which influences the dynamics of the

separation.

5.3 Shaped Trajectories

In order to gain further insight into the flow, the following sections briefly examine the effect of an oscillating
stud, the effect of shaping the stud trajectory, and the step response of the flow to a change in the stud’s

angular frequency.

5.3.1 Oscillating Roughness Element

To demonstrate that it is possible to produce a mean lateral force, the stud was oscillated about the y-axis
(6 = 0°), with varying frequency and amplitude (figure 5.17). The general trend is that as the frequency or
amplitude of the oscillations increase, so does the mean side force, providing more evidence that the stud
locally alters the separation point. The low amplitude, low speed oscillations of the stud produced a mean
side force of about 1.8 times larger than what was produced by a stationary stud, whereas the high amplitude,
high speed mean oscillations caused a side force that was about 4.6 times larger. However, when a trip-wire
was placed over half of the sphere a mean side force of C, = 0.38 was produced, which indicates that there
is still a large margin for improvement, especially considering that a dynamic surface was shown to produce

structure in the wake, which could possibly be taken advantage of to produce an even greater side force.

5.3.2 Velocity Profile Shaping

Figure 5.18 shows the effect of shaping the trajectory of the stud such that @* depends only on 6, with the

intent of producing a mean side force without changing the direction of rotation. For the constant frequency
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Figure 5.17: Mean lateral force (Ey), with stud oscillating about 8 = 0°, with amplitude: +40° (<1); £60°
(>);£80° (A). C, and C, were not notably changed.
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Figure 5.18: Shaped trajectories, with a step up in angular frequency at 8y, and a step back down at 8 = 0°:
o* =0.17-0.55(x); 0.34-0.55(+).
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case a fast moving stud produces a large lateral force, while a slow-moving stud produces a small lateral
force. This indicates that it should be possible to obtain a mean lateral force with the stud moving in just one
direction, by varying its speed. To verify this, the stud frequency was set to a constant, small value (0* =0.17
or 0.34) at 6 = 0°, then at 6y, it was increased to @* = 0.55 (figure 5.18). The step response of the motor
was not instantaneous, so the LQR preview controller was used to smooth out the step and produce an optimal
transition without overshoot. The mean lateral force and phase are plotted, where the phase is taken to be the
angle between the center of the low frequency region (6y.,/2) and the mean lateral force vector.

The largest mean lateral force occurs approximately when the stud is moving slowly for a 90° span,
and quickly for the rest. When it is moving slowly the local separation point is not significantly changed.
However, if too much time is spent on the low speed side, the delayed separation begins to move back
upstream on the high speed side of the sphere. The magnitude of the mean lateral force is similar to that of
the oscillating stud that has a frequency of 1Hz and covers a span of +40°. This is not very large, but the
non-constant angular frequency gives insight into the dynamics. Note that the significant scatter in the data
is due to the forces being very small (Cz = 0.01 corresponds to 3mN). This has a big effect on estimating the
angle to the mean force, when the force is small.

The angle to the mean force generally points about —120° away from the center of the low frequency
region (figure 5.18). This clearly points to an effect of three-dimensionality, as the direction of rotation is
important.

One example of a shaped trajectory is shown in figure 5.19a, corresponding to a step from w* = 0.17
to 0.55 at 90°, and a step back down at 360° /0°. Both the phase-averaged force and the angular frequency
(scaled by a factor of two) are plotted against the position of the stud, demonstrating precise control of the
stud trajectory, and a difference in the orientation of the force trajectory and the stud frequency, due in part to
the time delay associated with the movement of the separation location.

The lateral force and phase as a function of stud speed are compared with the constant frequency results in
figure 5.19b. The range of the phase for the constant frequency case, between @* = 0.17 and 0.55, is not very
large, and neither is the range for the shaped trajectory. On the other hand, the lateral force for the constant
frequency case changes significantly, and so does that of the shaped trajectory. The large open symbols are
the same in figures 5.19a and 5.19b, and show the direction of the hysteresis. Starting at the bottom left of
the rectangle (adjacent to the open circle in figure 5.19b): the force is small when the stud speed quickly
increases. When the stud has reached the higher speed, the force gradually increases. While the stud slows
down there is little change to the force, and then at the low speed the lateral force gradually decreases again.
This is explained by the dynamics of the attachment region: the stud produces a local disturbance that excites
the instabilities in the flow, which gradually locally change the location of separation. It is this time delay

which causes the hysteresis.
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Figure 5.19: Shaped trajectory corresponding to a step from @* = 0.17 to 0.55 at 90°. (a) The angular
coordinate is the stud position, with the stud moving counter-clockwise: Phase-averaged force (...); ®*/2 (x).
(b) Mean C;, and phase (6 — 6;) vs. constant frequency ®* results for Re = 0.5 x 10° (A), compared with the
current trajectory.



77

T \,:--hw--:w—-:n-'-:---:---:\' I
0.6f ; ' 1
. i,,.' = = == =3 =3 -i‘—
3 0.4 :_-._..__._.{' ‘L\-.I..-.-n--l-:
0.2f 1
0 . . . . .
0 10 20 30 40 50

0.4} I\'f{}{‘#ﬂ‘ﬁﬁg'ﬂ*xl -
\I “ \IN:I\I\

© 0.2 ?
O 1 1 1 1 1
0 10 20 30 40 50

~~ _80 1

ol E &

E -100 = ,I:-‘I"

o —-120t Sk A N ]

S —140} L. TR -

c .. /

< -160} | - E1-3-3-1- -

10 20 30 40 50
tu_/D

o

Figure 5.20: Three mean step responses, each averaged over 120 periods, with the error bars indicating 6.

5.3.3 Effect of a Step in Angular Frequency

Figure 5.20 shows a preliminary investigation of the step response, which is useful in examining the time
response of the system due to a step change in the actuation frequency. Here, the motor “step” in frequency
takes about 7 = 3, where the frequency step is a function of time, as opposed to 6 as in the previous section.
This is slightly faster than the 7 = 4 for the separation point to move to its furthest downstream position after
the stud passes. The results are an average over 120 periods, with the error bars indicating +¢. The variation
of the motor speed from one period to the next is very small, while that of the lateral force and phase are large.
This standard deviation of the forces is close to that for the no-stud case (o = 0.5, chapter 3), indicating that
they are of similar origin, with the random fluctuations of the wake superimposed on top of the effect due to
the stud. Thus, for control purposes, it is not possible to say what force a certain stud trajectory will produce,

only what force it will produce on average.
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This plot indicates some of the interesting dynamics that could be exploited with a control scheme. For
example, the response time of the wake to an increase in frequency is much faster than the response time to
a decrease, for all three steps. This is explained by the hot-film results (figure 5.4) for the lowest stud speed,
which showed a peak response to the passing of the stud after 7 = 5, while the decay back to the base flow
took 7 ~ 30. Another interesting feature is the overshoot of the phase lag for the smallest step down, and also
the slow change in the phase for the largest step up. This rich behavior not only opens up a lot of possibilities

for a control scheme, but also makes the problem very challenging.

5.4 Summary

The effect of a time-dependent perturbation to the surface of a sphere was examined by varying the position
of a roughness element in real time. It was found that this produced a significant change in the flow field,
much larger than that caused by a stationary stud. This was linked to the long timescale associated with the
dynamics of a changing separation line. Hot-film and particle image velocimetry results revealed that after
the stud passed by the streamwise measurement plane, the local position of flow separation gradually moved
downstream, reaching a maximum downstream position after about 7 = 4, and then slowly returning back to
the initial position of separation. This timescale was nearly independent of stud speed, and the effect was
attributed to an excitement of the boundary and shear layer instabilities, which increases fluid entrainment
and keeps the flow attached, with the azimuthal extent at any given time being dependent on the speed of the
stud.

It was found that an instantaneous lateral force as large as the drag was produced when the dimensionless
angular stud frequency was ®* =~ 0.5. This is close to a subharmonic of the wake instability, which Chomaz
et al. (2006) referred to as the helical instability. PIV and hot-film revealed that this maximum force was
produced when the flow separated near the back of the sphere in the streamwise plane associated with the
force direction (the “first” side), and near the equator on the opposite side (the “second” side). At lower stud
speeds, the flow does not remain attached as far downstream on the first side, yet it still separates near the
equator on the second side, leading to a smaller force. At higher speeds, the local separation point cannot
move any further downstream on the first side, and on the second side the separation near the equator begins
to move downstream, canceling the effect.

The time-dependence of the stud position produces a coherent structure in the wake, which is dependent
on the stud speed. A planar PIV velocity field in the streamwise/radial plane revealed two counter-rotating
vortices with a mutual induction that moved them away from the sting. Because the flow field is strongly
dependent on the stud motion, it was possible to construct a phase-averaged velocity field based on the angle
between the stud and the PIV plane. Only two of the three velocity components were measured, but the
structure of the wake can be visualized using just the radial (distance from the sting) velocity component. By

relating the three-dimensional radial velocity contours to the counter-rotating vortices, it was determined that
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these vortices form a helical shape. The orientation of these vortices was such that the induced velocity field
would help to locally keep the flow attached to the sphere.

The production of the counter-rotating vortices was described using a simplified two-dimensional schematic,
showing that at near zero speed the vortices are formed with mutual induction toward the sting. As the extent
of the boundary layer trip is increased, these vortices move away from each other and meet on the opposite
side of the sphere, with the mutual induction now away from the sting.

Finally, the effect of non-constant stud trajectories were briefly explored. It was demonstrated that a
mean side force could be obtained by oscillating the stud about a point, in the azimuthal direction. A mean
side force of almost five times that of a stationary stud was achieved by moving the stud between +80° at a
frequency of 4Hz. The mean force due to a trip wire being placed over half of the sphere was almost twice as
large, indicating that a larger mean side force would be achieved by oscillating the stud at a higher frequency.
In addition, it was also shown that it is possible to get a small mean side force by preferentially changing the
speed of the stud depending on its position, without completely changing directions as with the oscillating

stud.
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Chapter 6

Conclusion

An experimental apparatus was designed which allowed for the examination of the effect of small amplitude
time-dependent changes to the morphology of a sphere. A true morphing surface was approximated by
moving a small roughness element (a “stud”), which was only 1% of the sphere diameter, along the surface
in the azimuthal direction. The trajectory of the stud was controlled with a motor located inside the sphere,
which had a magnet attached to the end of an arm, pulling the stud along the sphere surface as the motor shaft
rotated. In addition to surface actuation, simultaneous three-component force measurements and particle
image velocimetry were utilized to understand the effect of the actuation on the flow. Due to the limited
amount of data in the literature on the unsteady forces on a sphere, both the nature of the forcing on a smooth
sphere and the effect of an isolated roughness element were studied before performing the dynamic stud tests,

in order to have a base for comparison.

6.1 Summary and Major Findings

The flow over a smooth sphere was examined both in the subcritical and supercritical regimes. It was found
that the spectra had significant energy at frequencies well below the vortex shedding frequency, which cor-
roborated the numerical findings of Yun et al. (2006) and Constantinescu & Squires (2004). Based on the
observation from the dynamic stud runs that there is a relatively long timescale associated with the separa-
tion dynamics, it was proposed that a similar mechanism is responsible for the smooth sphere low-frequency
forcing. In addition, long data sets were recorded that allowed for the examination of the convergence of the
statistical properties of the forces. It was found that the flow must be investigated for at least 7 = 500 to get
converged results of the mean and standard deviation, and longer for higher-order statistics. Based on the
observation that the unsteady lateral forcing had a Gaussian distribution, a simple model was developed to
mimic the lateral forces, using an analogy with a two-dimensional harmonic oscillator.

The effect of an isolated roughness element was examined over the same Reynolds number range, and
it was found that in general, the stud produced a maximum lateral force when it was position between a

streamwise angle of 40° and 80°. In addition, the subcritical lateral force vector pointed in the direction of
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the stud, while in the supercritical regime the sign of the force changed. PIV was used to understand the
physical mechanism behind this change, and as hypothesized the stud caused the subcritical wake to separate
further downstream (locally), and the supercritical wake further upstream. In the supercritical regime the
small stud produced a tilted and much larger wake, leading to a lift-to-drag ratio of almost one. It was
proposed that for the subcritical regime, the stud produces a pair of streamwise counter-rotating vortices in
the near wake, with mutual induction toward the sting. This mechanism may also form an important part of
the dynamics for flow over a smooth sphere, but on a smaller scale.

Moving the stud along the surface of the sphere in the subcritical Reynolds number regime produced
dramatic results, quite different from the findings for the stationary stud. The reason for the large effect
was due to the long timescale associated with the dynamics of the separation line. It was proposed that
the passing stud locally perturbed the boundary layer and free shear layer, exciting instabilities and causing
enhanced entrainment, which lead to delayed separation. Hot-film and PIV measurements revealed that the
dimensionless time until the advancement of the separation point stopped after the stud had passed was about
f = 4. This was fairly independent of the angular frequency of the stud, with the retreating separation point
taking longer to return to the base separation location. This long timescale allowed the moving stud to
influence a large azimuthal extent of the boundary layer. This lead to instantaneous lateral forces as large
as the drag, due to the boundary layer separating asymmetrically. A simplified schematic was proposed
to illustrate the progression of the wake structure as the dimensionless angular stud speed was increased,
arguing that counter-rotating vortices, with mutual induction similar to that of the supercritical case, were
formed at the higher speeds. Due to the time-dependence of the stud, the vortices formed a helix in the wake,
oriented such that the induced velocity field helped keep the flow attached further downstream. Additionally,
by oscillating the stud about a point it was demonstrated that a mean side force could be produced, which

was about 5 times larger than that caused by a stationary roughness element.

6.2 Future Research

The new experimental apparatus proved to be an ideal setup for testing the effect of small amplitude changes
to a surface. Therefore, it is suggested that morphing surfaces be tested using the same setup. However,
because the flow is so sensitive to small changes in the sphere surface, extreme care must be taken to mount
the actuator such that it forms a continuous, smooth surface in the unactuated state.

Further investigations using the present setup would be useful. Particularly, well-resolved stereo PIV of
the separation region could yield insight into the dynamics of separation. Smoke visualization could also
help verify the role-up. Additionally, hot wire measurements of the perturbed boundary layer at different
streamwise locations would provide a more detailed understanding of the amplification of the perturbation
from the stud.

If a morphing surface can be produced that covers the azimuthal extent of the sphere near a streamwise
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angle of 60°, it would be useful to compare the effect of both uniform and asymmetric perturbations of the
boundary layer with the present results. In particular, it may be possible to introduce an actuation pattern
(both spatially and temporally) that optimizes the vortical structure in the wake, such that a mean lateral force
could be achieved that is larger than that produced by simple periodic actuation of one side of the sphere. This
observation comes from noting the significant effect caused by the helical vortices in the present experiments.

Finally, the effectiveness of perturbations produced using a morphing surface near the separation of a
stalled airfoil should be compared with other methods, such as blowing and suction, to verify similar perfor-
mance, with a view to developing a simple, cost effective actuation method for the control of separation and

the shaping of the force trajectory.
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Appendix A

Effect of Sting Size at Subcritical
Reynolds Numbers

This material was presented at the 2008 AIAA Fluid Dynamics Conference (Norman & McKeon, 2008).

A.1 Overview

Vortex shedding and turbulent motion in the wake of a sphere that is supported using a streamwise-aligned
cylindrical sting are investigated at a subcritical Reynolds number of Re=3800, using high speed particle
image velocimetry. The mechanism by which the presence of a sting of increasing diameter relative to the di-
ameter of the sphere influences the wake, in terms of both the small-scale shear instability and the larger wake
instability, is explored and briefly compared with the two-dimensional analog of the splitter plate introduced
into a cylinder wake. The difficulties associated with obtaining converged statistics, along with the effect
of free stream turbulence and sphere vibrations are detailed. An understanding of the mechanism by which
the blockage, or interference, arising from the presence of the sting influences cross-wake communication
and downstream development is a necessary precursor to studies of active control of the wake using surface

actuation on a sting-mounted sphere.

A.2 Introduction

Whereas there have been numerous investigations on the effect of an obstructing, or splitter, plate on the de-
velopment of the wake behind a cylinder, there has been less study of the weak analog for a three-dimensional
axisymmetric bluff body, namely the influence of a cylindrical support sting on the development of the wake
behind a sphere. While an interesting problem in its own right, identification of the effect of a finite-sized
sting on both the shear layer that is shed from the sphere and the downstream wake is a necessary precursor
to detailed studies of active control of the sphere boundary layer (i.e., experiments in which a tether mount

is less desirable than a rear sting), with a view to manipulating the magnitude and direction of the resultant
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forces on the sphere.

For sphere Reynolds numbers (where Re = pU.D/ L is based on sphere diameter D, free stream velocity
U, density p, and dynamic viscosity () above approximately 800 and below the critical Reynolds number
for transition of the sphere boundary layer, Re ~ 3 x 10°, frequencies corresponding to both a small-scale
shear layer instability and a larger wake instability are present in the wake, while below this lower limit
only the larger scale is observed (Sakamoto & Haniu, 1990; Kim & Durbin, 1988; Baki¢ & Perié, 2005;
Achenbach, 1974b). With increasing Reynolds number the Strouhal number (St = fD/U.., where f is the
frequency) of the shear instability increases as Re”, with 0.5 < n < 1 for 10* < Rep < 10° (Kim & Durbin,
1988), while the large-scale Strouhal number remains approximately equal to 0.2, typical of vortex shedding.
In the subcritical regime, computational studies (Yun er al., 2006; Constantinescu & Squires, 2003) have also
found a low frequency motion of the wake, below that of the large-scale vortex shedding frequency.

The ratio of sting diameter to sphere diameter, ¥ = Ds/D (figure A.1), in the cited experimental stud-
ies ranges from 0.055 to 0.15, indicating an unwritten rule of thumb for the size of the sting for minimal
interference on the wake. However, Hoerner (1935) investigated the effect of y on the drag coefficient and
found a negligible effect on the subcritical drag and on the Reynolds number of transition, whereas the drag
decreased with increasing y in the supercritical regime where the size of the wake is greatly reduced due to
the boundary layer becoming turbulent before separation.

Flow over a cylinder has been heavily investigated, and here we review only a few examples of obstructing
the wake of a cylinder. Roshko (1955) investigated the effect of a splitter plate, placed on the wake centerline
and with varying length and distance from the downstream separation point on the cylinder, and found that
for a length of 4-5D, communication between the opposing separated shear layers could be prevented and
large scale, organized vortex shedding completely suppressed, with an accompanying decrease in cylinder
drag. Unal & Rockwell (1988a,b) further investigated the wake formation region in the presence of a long
plate placed a varying distance downstream of the cylinder, while Anderson & Szewczyk (1997) incorporated
the effect of mild three-dimensionality, and Gerrard (1966) investigated the controlling effect of a plate that
was normal to the flow.

In the case of the sphere, the mechanism by which obstructions affect the wake is less clear. On the one
hand, a large sting may reduce cross-wake communication for the axisymmetric shear layer, but in order to do
this the sting must present a large reduction in wake area. In this study, we seek to investigate the mechanism

by which a sting affects the wake development.

A.3 Experimental Setup

The experiments were performed in the NOAH free surface water tunnel at the California Institute of Technol-
ogy, which has a test section width of 0.46m, depth of 0.50m, and length of 1.6m. Uniform flow is achieved

by employing honeycomb flow straighteners, turbulence-suppressing screens, and a four-to-one fifth-order
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Figure A.1: Experimental setup showing test section, notation, and coordinate system

polynomial contraction (Gharib, 1983). The test section velocity range is between 0.03 and 0.40m/s and the
sphere is centered in the test section, approximately 0.5m downstream from the end of the contraction.

The spheres were fabricated from polycarbonate, with a diameter tolerance of better than £0.0032D,
and a sphericity of better than 0.0025D. The roughness height, k, is estimated to be less than Sum, or a
maximum k/D < 2 X 107, and the maximum area blockage ratio was less than 1%. Both blockage and
roughness are expected to have negligible effect on the sphere boundary layer and wake development at
the Reynolds numbers being investigated (Achenbach, 1974a), such that the influence of the sting size is
effectively isolated.

The stings consisted of stainless steel rods with a straightness tolerance of better than 0.05%, and a diam-
eter tolerance of better than —0.0016Dg. The minimum allowable rod diameter due to structural constraints
was determined by estimating the angular misalignment of the sting to the oncoming flow due to deflections
caused by gravity and unsteady fluid forcing using linear beam theory. The sting length was a minimum of
eight times the diameter of the spheres under test (for comparison, Strouhal numbers in the wake of a cylinder
were influenced by the splitter plate up to six diameters downstream (Roshko, 1955)).

High speed particle image velocimetry (PIV) was used to investigate planar cuts of unsteady flow over
an axisymmetric body. A LaVision system consisting of a pulsed ND-YLF laser, a high speed camera with
a 1-megapixel CCD and 10 bit depth, and a computer with a precision timing unit was used. The laser sheet
was split and directed to enter the test section from the top and bottom. The laser sheets were aligned to the
flow to within ~ 1°, and to each other within 0.3°. This allowed illumination of the entire field of view even
with the opaque sting, which was necessary for structural stability. Saturation of the CCD due to reflections
was avoided by spray painting the spheres and stings black and carefully aligning the stings with the laser
sheet.

The high frame rate elucidates the temporal evolution of the wake vortex dynamics, but it limits the

amount of data that can be taken on the relatively slow large-scale wake shedding, due to memory limitations.
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Table A.1: Run conditions

D(m) | Us(m/s) | x symbol
0.051 | 0.070 0.09,0.13,0.16,0.19,0.25 O
0.026 | 0.139 0.25,0.31,0.39,0.50 @)
0.016 | 0.223 0.50,0.60,0.80 A

In order to increase the total time of data collection, the laser pulse separation was increased as large as
possible, to the point where further increase would lead to bad correlations due to out-of-plane velocity and a
strong shear layer. This corresponds to a nondimensional pulse separation of approximately Af = $ =0.016,
which will vary depending on laser sheet thickness and post-processing techniques. In comparison, the
timescales of interest for Re = 3800 are approximately A7 = 0.9 for the shear layer instability and A7 = 5 for
the wake instability. By minimizing the resolution of our images, we were able to collect continuous data for
AF = 260.

The parameter space for this investigation included three different sphere sizes and five different sting
sizes, which, taking into account the structural integrity of the stings, allowed for the range of y shown in
table A.1. The free stream turbulence, Vild /U, was measured using PIV and found to be 1.7% for the
smaller two spheres and 2.6% for the larger sphere, where u/(¢) = u(t) — i is the fluctuating velocity at a
point, and i = %Z{-\Ll u; is the mean at a point over all N samples. The larger free stream turbulence for the
biggest sphere is likely due to flow unsteadiness at the low free stream velocity. The smallest sphere had low
amplitude vibrations of less than 0.002D, due to slight vibrations of the supporting mount at the higher speed.
This was determined from the time series of images, and no vibrations were detected for the larger spheres.
Previous researchers have shown that free stream turbulence (Baki¢, 2004) and acoustic excitation (Kim &

Durbin, 1988) can alter the wake development, so it is not expected that the results for the different sphere

sizes will completely collapse for a given x.

A.4 Results

A4.1 Convergence

Taneda (1978) suggested that the wake of a sphere oscillates in a streamwise-aligned plane that rotates slowly
and randomly about the sphere center. Hence, in order to obtain converged statistics using PIV, a significant
number of wake oscillations must be averaged over such that the variations in the averaged wake quantities
due to the random orientation of the plane tend toward a constant value. As shown in figure A.2, in areas of
low turbulence, such as the outer flow and right behind the sphere, convergence is obtained rapidly, whereas
in areas of high turbulence there are still significant fluctuations even though averages were taken over ap-
proximately 50 wake oscillations. Though it is difficult to determine using just a planar cut, it appears that

there is a movement of the wake with a frequency lower than that of the wake instability. This was confirmed



Figure A.4: Consecutive averages over f = 50 showing large scale movement of the wake for y = 0.09,
with color indicating nondimensional velocity magnitude, (a) 100 < 7 < 150, (b) 150 < 7 < 200, and (c)
200 < 7 < 250.

by examining the temporal data for ¥ = 0.09, which revealed that the orientation of the entire wake seems
to move slowly. Figure A.4 shows three consecutive averages over a dimensionless time of 7 = 50 (~ 10
wake oscillations), in which the mean wake is seen to move from being oriented slightly below the sting to
significantly above it. It would not have been obvious that the entire wake was moving if only half of the
plane had been imaged. This movement was seen to varying degrees for the different y, likely because we are
only examining a planar cut, and motion normal to the field of view would not be easily detected. The rela-
tion of the large-scale wake motion and the wake instability warrants further investigation. A low frequency
motion was also found in the computational study of Yun et al. (2006) in the analysis of drag and lift. For
Re = 3700, they found the frequency of the large scale lift motion to be St &~ 0.025 (A = 40). This makes it
difficult to obtain converged data, especially if attempting to simultaneously resolve the high frequency shear
roll-up. Not shown here, we found that at Re = 12,000 convergence took even longer, as indicated by Yun
et al. (2006) for Re = 10,000.

Figure A.3 shows the convergence of the maximum Reynolds shear stress (average of maximum from the
top and bottom wake), 'V ax / U2, for a representative sample of different y. A similar trend is seen for v/v/,
but convergence is worse for u/u’ due to the large-scale motion of the wake in the radial direction, and the

steep gradient of the streamwise velocity in the shear layer.



89

Figure A.5: Mean velocity field overlaid with the mean Reynolds shear stresses W/ U2 (a),(b) x = 0.25: left
has higher free stream turbulence (c),(d) x = 0.50: right sphere has low amplitude vibrations.

A.4.2 Mean Wake

As observed by previous researchers (Baki¢, 2004; Kim & Durbin, 1988), we have also found that the length
of the mean recirculation region reduces due to both higher free stream turbulence and disturbances near the
natural frequency of the shear layer instability. Figure A.5 shows the average velocity field overlaid with
the dimensionless Reynolds shear stress. In figures A.5a and A.5b the same ) is shown, but the free stream
turbulence is higher in the former case, which causes a more rapid growth of the shear layer instability,
leading to a shorter wake length, which is here defined as the location along the sting at which the streamwise
velocity changes directions (which could be considered a mean stagnation point). In figures A.5c and A.5d a
larger x is shown, with the difference between the two being that the latter has disturbances in the boundary
conditions which have a frequency peak that lies within the St range measured by others for the shear layer
instability, as will be detailed in subsection A.4.3.

Even with these differences in wake length, it is still possible to examine the effect of y by comparing
the  for each sphere size. To examine the shape of the average velocity magnitude, a cubic spline curve was
fit to each column of data to find the position of the maximum and minimum velocity to subpixel accuracy.
The velocity contour u = U../2, was also determined as it is useful for comparing the mean wake shape for
the different sphere sizes. Here we will focus on the smallest sphere (largest y), as no differences were found

for the smaller ), within the scatter of the data. Figure A.6a shows representative paths of the mean wake
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for the three different } of the smallest sphere. Within the scatter of the data, the mean path of the wake
does not change with y, except for perhaps between a } of 0.6 and 0.8. This indicates that the mean path
of the wake is largely determined by the energetic outer flow. Along these minimum and maximum paths,
the velocity magnitude is similar for the different y, up to approximately y = 0.50 (not shown). For larger
x (figure A.6b) there are deviations in the downstream maximum, and significant changes in the shape of the
minimum, indicating a change in how fluid is transferred to and from the mean recirculation region. However,
more data is necessary to determine how the wake length and ) interact, as it is possible that y < 0.50 also

produce deviations in the mean velocity magnitude for the case of the short wake.
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Figure A.6: Shape of the mean wake for D = 0.016m: (a) paths of maximum (top), minimum (bottom), and
constant Us /2 (center) velocity magnitude. (b) Velocity magnitude along the maximum and minimum paths.

To compare the effect of free stream turbulence and vibrations, the U../2 contour is shown in figure A.7
for all . This demonstrates that the importance of ) on the path of the mean wake is almost insignificant
compared with these other effects. This trend would need to be examined for different flow regimes, such
as higher Reynolds numbers where the shear layer transitions further upstream (Yun et al., 2006) and the
Strouhal number of the shear layer becomes much larger than that of the wake instability (Sakamoto &
Haniu, 1990).

An example of the mean Reynolds stress fields are shown in figures A.8 and A.5d, for the small sphere
with ¥ = 0.50. The average of the top and bottom maximum of the Reynolds stresses are shown in figure
A.9, along with those obtained in the computational study of Yun et al. (2006) (for a Reynolds number of
3700). The data is noisy for smaller ) due to convergence issues, but a general trend of decreasing stresses
with increasing J is observed. The error bars are meant to give a sense of the convergence, and indicate the
maximum and minimum values from the convergence plots (see, e.g., figure A.3) for 7 > 125. Particularly
noteworthy is the rapid drop in v/ between y = 0.60 and 0.80, because the sting is growing in the y-direction.

Here the area blockage ratio, x2, jumps from 0.36 to 0.64. It would be useful to fill in x around 0.80 to verify
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Figure A.7: Paths of constant U /2 for each sphere size, showing influence of free stream turbulence and
vibrations.

and better understand this trend. It should also be noted that, within the scatter of the data, the higher free
stream turbulence and the vibrations simply caused an earlier growth of the shear instability and did not

significantly affect the maximum Reynolds stresses.

Figure A.8: Mean Reynolds stresses for y = 0.50, D =0.016m (a) uu, (b)) VIV,

A.4.3 Periodic Behavior

Strong frequency peaks corresponding to the wake instability were not detected in this study, possibly because
the magnitude of the oscillations are small in the near wake, and also the Reynolds number of the current
experiments lies in the range in which Sakamoto & Haniu (1990) labeled a transitional region because no
distinct frequency peaks were detected. In addition, no frequency peaks corresponding to the shear layer
instability were found for the two sphere sizes which had longer wakes, likely due to the slow roll-up of the
shear layer. However, for the short wake the shear instability was detected easily by taking a fast Fourier
transform of the time-resolved PIV vector fields.

Figure A.10 shows a map of the wake with color indicating the strength of the shear layer peak, normal-
ized by the maximum value in each image. The left side shows the streamwise () component, while the right

shows the radial (v) component. These patterns are to be expected for vortices rolling up along a shear layer.
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Figure A.9: Maximum of mean Reynolds stresses as a function of y, with error bars based on convergence.
Computational results from Yun ez al. (2006) shown for comparison

Comparing the top (¥ = 0.50) and bottom () = 0.80) parts of figure A.10, it is seen that the larger sting
significantly encroaches on the vortex paths of the smaller sting case. Also, the maximum peak for the larger
sting is 65% as strong as that of the smaller sting for the u-component and 58% for the v-component (whereas
the strength of the maximum peaks for } = 0.60 is diminished by less than 10%). Thus the roll-up of the
shear layer is damped, which matches well with the Reynolds stresses decreasing with increasing .

As shown in figure A.11, the peaks of the shear layer frequency in the wake agree well with the low
amplitude frequency of the sphere vibrations. It appears that the facility noise, in the form of acoustic ex-
citation and/or sphere vibrations, enhanced the instability of the shear layer. For comparison, Sakamoto &
Haniu (1990) found the frequency of shear layer roll-up to range from 1.0 < St < 1.3 for Re near 3800. For
x = 0.80 both the vibration peak and the wake peak are slightly broader.

A.5 Conclusion

Investigations have been performed examining the effect of the sting size on flow over a sphere using high
speed PIV. Due to the low frequency wake oscillations, and an apparent lower frequency wake motion, data
needs to be taken over many wake oscillations to achieve convergence. Here integration was performed over a
nondimensional time of 250, which was sufficient to draw general conclusions. However, acquiring data over

a longer time would be preferred. It was also noted that it appears to be more difficult to obtain converged



Figure A.10: Magnitude of frequency spectrum peak (streamwise on the left and radial on the right) as a
function of position, normalized by the maximum value for each image, where the maximum peak in (c) is

65% as strong as in (a), and the maximum peak in (d) is 58% as strong as in (b). (a),(b) x = 0.50, St = 1.085
(¢),(d) x =0.80, St =1.081.

Figure A.11: (a),(c) Representative frequency spectrum of u-velocity and (b),(d) vibration frequency of
spheres, for ¥ = 0.50 on the top and ¥ = 0.80 on the bottom.
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statistics at higher subcritical Reynolds numbers.

As expected, the effect of a a sting behind a sphere is a weak analogy to the splitter plate behind a cylinder,
due to the three-dimensional nature of the sting.

The mean wake was shown to not change significantly for y < 0.50, and the Reynolds stresses decrease
with increasing . It was also shown that both increased free stream turbulence and excitation at a naturally
unstable frequency have a larger impact on the shape of the mean wake than J, at least for y < 0.80.

Disturbing the flow at a frequency within the range of naturally unstable shear layer frequencies was
shown to produce early transition of the shear layer, causing the vortices to roll-up at the same frequency as
the acoustic noise and/or sphere vibrations. The energy associated with this frequency drops dramatically
when Y is increased from 0.60 to 0.80.

Thus, taking into account the shape of the mean wake, the maximum mean Reynolds stresses, and the
shear layer instability, it appears that even with ¥ = 0.50 the properties of the mean wake are only slightly
changed from that of a sphere with a negligible diameter support. Of course, it would be best to use the
smallest sting possible, however, using a y up to ~ 0.25 seems appropriate if needed. This would need to be
verified for other Reynolds numbers, and the effect on the wake instability should also be investigated. These

conclusions may change if the interest lies in examining unsteady forces or instantaneous fields.
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