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ABSTRACT 
  
 The sonochemical degradation kinetics of the aqueous perfluorochemicals (PFCs) 

perfluorobutanoate (PFBA), perfluorobutanesulfonate (PFBS), perfluorohexanoate 

(PFHA) and perfluorohexanesulfonate (PFHS) have been investigated.  Surface tension 

measurements were used to evaluate chain-length effects on equilibrium air-water 

interface partitioning.  The PFC air-water interface partitioning coefficients, K , and 

maximum surface concentrations, Γ , were determined from the surface pressure 

equation of state for PFBA, PFBS, PFHA and PFHS.  Relative K  values were 

dependent upon chain length K , whereas relative 

 values had minimal chain length dependence . The 

rates of sonolytic degradation were determined over a range of frequencies from 202 to 

1060 kHz at dilute (< 1 μM) initial PFC concentrations. Under all conditions, the time-

dependent PFC sonolytic degradation was observed to follow pseudo-first order kinetics 

suggesting bubble-water interface populations were below saturation. The PFHX (where 

X = A or S) sonolysis rate constant was observed to peak at an ultrasonic frequency of 

358 kHz, similar to PFOX.   In contrast, the PFBX degradation rate constants had an 

apparent maximum at 610 kHz.  Degradation rates observed for PFHX are similar to 

previously determined PFOX rates, k . PFOX is sonolytically pyrolyzed at 

the transiently cavitating bubble-water interface suggesting that rates should be 

proportional to equilibrium interfacial partitioning.  However, relative equilibrium air-

water interfacial partitioning predicts that .   This suggests that at dilute 

PFC concentrations, adsorption to the bubble-water interface is sonochemically mediated. 

eq
PF

Γmax
PFBA

max
PF

S ≅ 2.1

app,3
PFOX

eq
PF

BS ≅

eq
PFH Keq

PFHA ≅ 3.9Keq
PFBS ≅ 5.0Keq

PFBA

Γmax
PFHS ≅ Γmax

PFHA ≅ Γmax
PF

58 ≅ kapp,358
PFHX

Keq
PFOX ≅ 5Keq

PFHX
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PFC sonochemical kinetics are slower for PFBS and further diminished for PFBA as 

compared to longer analogs suggesting that PFBX surface films are of lower stability due 

to their greater water solubility. Furthermore, application of a Langmuir type kinetic 

model on the basis of a heterogenous solution system is applied in evaluating the 

sonochemical effects on surface activity and the absolute rates over four orders of 

magnitude of initial PFYX (Y = H or B, X = A or S). Investigations on the effects of 

ultrasound power densities at 83.3, 167, 250, and 333 W L-1 have been carried out. Rate 

constants exhibit a linear increase with increasing power density for all species, thus rates 

can be increased by simply increasing the power density. Degradation rates are compared 

at single frequency exposures of 202, 358, and 610 kHz and compared to dual frequency 

exposures at 20 + 202 and 20 + 610 kHz under the same power conditions (250 W L-1). A 

synergistic enhancements in degradation rates for PFOS (~12%) and PFOA (~23%) were 

observed for 20 + 202 kHz simultaneous exposure.  Frequency and power are parameters 

that can affect the sonochemical efficiency by modifying peak collapse temperature and 

by controlling the size and population of transiently cavitating bubbles. 
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Introduction 

Fluorinated surfactants, a subset of fluorochemicals (FCs), are composed of a 

hydrophobic, per- or poly- fluorinated organic tail and highly water-soluble head group. 

Perfluorination, the replacement of all hydrogens with fluorines, imparts these 

compounds with unique physical properties such as great chemical inertness, minimal 

coefficients of friction, and low polarizabilities (i.e. hydro- and oleo-phobicity or 

fluorophilicity), making them desirable for a wide variety of commercial applications.1  

FCs are commonly employed to waterproof textiles and paper products, to protectively 

coat metals, as high-temperature lubricants,2 in fire retardants, such as aqueous film-

forming foams (AFFF)3, and in semi-conductor processing. 

Development of aqueous FC remediation technologies is of interest because of the 

environmental persistence of many PFCs (perfluorchemicals), which has led to their 

global distribution in the environment and the presence of some FCs in human4 and 

wildlife5, 6 plasma. Recent studies have detected low levels of perfluorobutane sulfonate 

(PFBS) in marine wildlife of Western Europe,7 but at significantly lower levels than 

perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA).  Similar to PFOX 

(where X = (S)ulfonate or c(A)rboxylate and O = (O)ctane), PFHX (H = (H)exane) and 

PFBX (B = (B)utane) are recalcitrant towards most conventional wastewater remediation 

strategies.10, 11 Shortening of the hydrophobic tail increases water solubility. Accordingly, 

PFBS and PFBA exhibit a lower activity towards adsorption based removal techniques 

such as granular activated carbon (GAC),12 which is currently used to remove PFOS and 

PFOA from pre-treated wastewater streams.13 
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Sonochemistry has been reported to be effective for the destruction of PFOS and 

PFOA over a range of initial concentrations. High C-F bond dissociation energies (450-

530 kJ mol-1), C-C bond strengthening due to fluorination(~14-17 kJ mol-1 per fluorine 

atom) and the great one-electron reduction potential of fluorine (E0 = 3.6 V) highlights 

the importance of high cavitation temperatures towards the degradation of 

fluorochemicals.14, 15  Interfacial temperatures produced by a transient bubble collapse 

provides sufficient energy for the thermolytic decomposition of FCs.16  Initially, the C-C 

or C-S bond between the fluorocarbon tail and carboxylate or sulfonate head group is 

cleaved yielding a fluorochemical intermediate of high Henry’s constant that migrates to 

the bubble core for further thermal and radical decomposition.17-19 Consequently, aqueous 

solutions of PFOS and PFOA are readily mineralized during ultrasonic irradiation to their 

inorganic constituents: F-, , CO and CO2 .16, 17 2
4SO −

Acoustic cavitation events are responsible for the chemistry observed during 

ultrasonic irradiation of aqueous solutions. Cavitation occurs due to the acoustically 

driven growth (low P) and subsequent collapse (high P) of preexisting aqueous bubbles at 

ambient temperatures and pressures.16 The transient collapse of cavitation bubbles is 

quasi-adiabatic, heating the vapor phase inside the cavity to temperatures of 4000 K to 

5000 K, and yielding pressures on the order of 1000 bar.20-24 Bubble-water interfacial 

temperatures have been estimated to be 500 to 1000K.21, 25 As a direct consequence of 

these transient, localized, high temperatures and pressures, solutes that have partitioned 

into the vapor phase, or to the bubble-water interface will be pyrolytically decomposed to 

various extents. Water vapor within the collapsing cavity is homolytically-cleaved 

generating hydroxyl radicals, O-atoms and hydrogen atoms.23, 26  The radicals can also 
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degrade organics in the bubble vapor, at the bubble-water interface, and even in bulk 

aqueous solution. 



Sonochemical degradation kinetics are a rough function of the physicochemical 

properties of an organic compound. The physiochemical properties of a compound can be 

used to evaluate relative partitioning to the 1) bubble vapor, 2) bubble-water interface and 

3) bulk aqueous phase in an ultrasonically irradiated solution, which are of decreasing 

sonochemical intensity.  Listed in Table 1 are the physicochemical properties of 

perfluorinated surfactants of various chain lengths and headgroups; PFOS, PFOA, PFHS, 

PFHA, PFBS, and PFBA.  

The perfluorinated surfactants will preferentially adsorb to the air-water interface, 

since they consist of a hydrophobic tail and a hydrophilic ionic headgroup.  PFOS and 

PFOA have been shown to sonochemically decompose via pyrolytic reactions at the 

bubble-water interface.  Thus, the sonolytic degradation rate will be proportional to the 

fraction of total surfactant molecules that adsorb to the interface of the transiently 

cavitating bubbles.27, 28   However, estimation of the fraction of total surfactant molecules 

adsorbed to transiently cavitating bubbles is difficult, due to high-velocity bubble radial 

oscillations (>5 m s-1) and short bubble lifetimes (<100 μs), which preclude utilization of 

equilibrium partitioning values. 
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Table 1.  Physicochemical properties of perfluorinated surfactants. N/A means data not available. 
  
Abbreviation Name Chemical 

Formula 
Chemical Structure of  
the anionic form 

M.W.  
(g mol-1)

Tail  
Carbons 

pKa Water 
Solubility 
(g L-1) 

Pvapor 
(Pa @ 
20 °C) 

PFOA-A ammonium 
perfluorooctanoate 

C8F15O2NH4 

 

414 7 -0.1 9.5(56) 9.3 x 
10-3(57) 

PFOS-K potassium 
perfluorooctane 
sulfonate 

C8F17SO3K 

 

538 8 -3.27 0.5(58) 3.3 x 
10-4(57) 

PFHA-A ammonium 
perfluorohexanoate 

C6F11O2NH4 

 

314 5 N/A N/A N/A 

PFHS-K potassium 
perfluorohexane 
sulfonate 

C6F13SO3K 

 

438 6 N/A N/A N/A 

PFBA-A ammonium 
perfluorobutanoate 

C4F7O2NH4 

 

214 3 0.4(56) N/A <1.2 x 
10-5(10) 

PFBS-K potassium 
perfluorobutane 
sulfonate 

C4F9SO3K 

 

338 4 N/A 46.2 N/A 
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A number of previous studies have evaluated surfactant adsorption to acoustic 

cavitation bubbles.  Fyrillas and Szeri used numerical simulations to show that high-

velocity bubble oscillations drive an increased number of surfactant molecules to lightly-

populated interfaces, while radial and, thus, surface area minimums limit the maximum 

interfacial surfactant concentration.29 Sostaric and Reisz determined that radical 

scavenging efficiency increases at high (>1 mM) surfactant concentrations with 

decreasing n-alkyl chain length in order of  SPSo (sodium 1-pentanesulfonic acid) > SOS 

(sodium n-octyl sulfate) ~ SOSo (sodium 1-octanesulfonic acid) > SDS (sodium dodecyl 

sulfate) or that the sonolytic rate maximums of nonvolatile alkyl surfactants does not 

correlate with the Gibbs surface excess.30 Acoustic emission spectra studies by Greiser 

and Ashokkumar reveal the reduction of bubble coalescence and bubble clustering upon 

increasing SDS concentrations to 0.5 to 2 mM.31  Vecitis et al. observed an enhancement 

of PFOS and PFOA bubble surface activity at low (<10 μM) concentrations.32  Cheng et 

al. showed  that addition of relatively high (>10 mM) concentrations of semi-volatile 

organics did not affect PFOS and PFOA (<1 μM) sonochemical rates.33 

Here, we investigate the ultrasonic degradation kinetics of dilute aqueous (<1 μM) 

solutions of the perfluorochemicals PFHS, PFHA, PFBA and PFBS.  The FC 

sonochemical degradation rate, chain-length dependence is compared to their equilibrium 

air-water interface partitioning chain-length dependence, as determined by surface 

tension measurements. The physical processes that govern sonochemical kinetics for 

dilute FCs, and how these processes are affected by acoustic frequency are discussed.  

 

 

 - 7 -  



Experimental Methods  

Perfluorobutyric acid (PFBA) and perfluorohexanoic acid (PFHA) were purchased 

from Sigma Aldrich. Potassium perfluorobutane-1-sulfonate (PFBS) and potassium 

perfluorohexane-1-sulfonate (PFHS) were provided by 3M.  Ammonium acetate (> 99%) 

and methanol (HR-GC > 99.99%) were obtained from EMD Chemicals Inc.  Aqueous 

solutions were prepared with purified water using a Milli-Q system (18.2 MΩ cm 

resistivity). Acid solutions were brought to a pH of 7 ±  0.5 by addition of ammonium 

hydroxide.   

Ultrasonic frequencies of 202, 358, 610, and 1060 kHz were generated using Allied 

Signal – Elac Nautik ultrasonic transducers with the reaction solution held in a 600 mL 

jacketed glass reactor.  The applied power density was 250 W-L-1.  The calorimetric 

power density was determined to be 75 ± 10% of the applied power density.  The 

temperature was controlled at 10 oC with a Haake A80 refrigerated bath.  All reactions 

were sparged with argon for at least 30 minutes prior to and during the reaction. PFBS 

and PFBA were sonicated simultaneously at initial concentrations of 0.30 μM for PFBS 

and 0.47 μM for PFBA. PFHS and PFHA were sonicated simultaneously at an initial 

concentrations of 0.23 μM for PFHS and 0.32 μM for PFHA.  Dilute concentrations (<1 

μM) were chosen to maintain lightly populated bubble-water interfaces.  The specific 

concentrations were chosen because they were just below the highest concentration in the 

HPLC-MS calibration curve, thus yielding the widest analytical range possible.  The 

variation in initial concentrations will not affect the results, since they will be discussed 

in terms of pseudo first-order rate constants, which are normalized to the initial 

concentration. 

 - 8 -  



PFC concentrations were analyzed by HPLC-ES-MS.  The samples were placed into 

750 μL polypropylene auto-sampler vials and sealed with a PTFE septum crimp cap.  20 

μL of collected or diluted sample was injected onto an Agilent 1100 LC for separation on 

a Betasil C18 column (Thermo-Electron) of dimensions 2.1 mm ID, 100 mm length and 5 

μm particle size.  A 2 mM aqueous ammonium acetate/methanol mobile phase at a flow 

rate of 0.3 mL min-1 was used with an initial 5:95 aqueous/methanol composition.  The 

eluent composition was increased to 90:10 over 12 minutes to separate the PFCs.  HPLC 

effluents were analyzed with an Agilent Ion Trap MS in the negative ion mode for the 

perfluorohexanesulfonate molecular ion (m/z = 399), the perfluorobutanesulfonate 

molecular ion (m/z = 299), the decarboxylated perfluorohexanoate ion (m/z = 269) and 

the decarboxylated perfluorobutanoate ion (m/z = 169).  The nebulizer gas pressure was 

40 PSI and the drying gas flow rate and temperature were 9 L min-1 and 325 °C, 

respectively.  The capillary voltage was set at + 3500 V and the skimmer voltage was  -15 

V.  Quantification was completed by first producing a calibration curve using 8 

concentrations between 1 ppb and 200 ppb fitted to a quadratic with X-1 weighting. 

Surface tension measurements were made with a De Nouy tensiometer utilizing the 

ring method.  The tensiometer was calibrated with a weight of known mass.  Each sample 

was measured three times.  The PFHS and PFBS surface tension measurements were on 

concentrations up to 10 mM and 100 mM, respectively, where the compounds became 

insoluble.  The curve was fitted to the surface pressure equation of state using MatlabTM 

to determine the equilibrium air-water partitioning coefficient and the maximum surface 

concentration. 
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Results and Discussion 

PFHX and PFBX Equilibrium Air-Water Interface Partitioning 

PFHX and PFBX equilibrium air-water partitioning coefficients were calculated for 

PFHS, PFHA, PFBS, and PFBA using PFC concentration dependent surface tension 

measurements. From these surface tension measurements, Γ  and , can be 

determined by fitting of the data to the surface equation of state: 

max
PFYX Keq

PFYX

 Π = γ0 - γ = nRT Γmax ln(1 + K  [PFYX]) (2) eq
PFYX

where Π is the surface pressure in N m-1, γ0 = 0.072 N m-1 is the surface tension of pure 

water and γ is the surface tension at the bulk aqueous PF concentration, [PFYX]. Keq (L 

mol-1) represents the bulk water to air-water interfacial partitioning coefficient and Γmax is 

the maximum surface concentration in mol m-2. According to the surface tension results 

in Figure 1, the overall order of surface activity is PFHS(C6) > PFHA(C5) > PFBS(C4) > 

PFBA(C3).   Cn represents the number of carbons in the hydrophobic chain.   

Of note in Figure 1, is the fact that the sulfonates, including PFOS, all become 

insoluble prior to reaching their critical micelle concentration (i.e., when the fractional 

coverage of the air-water interface is in unity).  The perfluoro-sulfonate insolubility 

occurs at a surface tension of 40 ± 5 mN m-1, suggesting there is a critical surface 

pressure at which perfluoro-alkylsulfonates undergo a phase transition. 
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Figure 1.  Plot of surface tension vs. aqueous PFBS (▲), PFBA (♦), PFHS (■) and PFHA 
(●) (mM). 
 

Listed in Table 2 are the maximum surface concentrations, Γ , and equilibrium 

partitioning constants, K , for PFBX, PFHX, and PFOX.32 With the exception of 

PFBA, Γmax is similar for all the compounds.  

max
PFYX

eq
PFYX

Table 2.  Equilibrium air-water interface partitioning constants, KL and Γmax for PFOS, 
PFHS, PFBS, PFOA, PFHA, and PFBA. 
 
PFC KL (L mol-1) Γmax (mol m-2) R2 

PFOS 1871 ± 852 (32) (5.0 ± 2.2) x 10-6 (32) 0.99 

PFHS 158 ± 32.8 (5.7 ± 0.8) x 10-6 0.999 

PFBS 40.4 ± 8.60 (4.4 ± 0.5)  x 10-6 0.998 

    

PFOA 361 ± 25.3 (32) (4.4 ± 0.2) x 10-6 (32)  

PFHA 75.6 ± 11.4 (4.8 ± 0.4) x 10-6 0.998 

PFBA 31.7 ± 4.8 (1.95 ± 0.12) x 10-6 0.998 
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In Figure 2, K  is plotted as a semi-log function of Cn-tail. Overall, there is a wide 

range of KL that spans two orders of magnitude for the perfluoro-carboxylates and 

sulfonates.  Note that the perfluoro-carboxylates have one less fluorine-containing carbon 

than the perfluoro-sulfonates.  The semi-log perfluoro-carboxylate and -sulfonate 

empirically fit to the equations: ysulfonates = 0.78e0.18; ycarboxylates = 0.99e0.13. The perfluoro-

carboxylate and -sulfonate curves in Fig. 2 do not overlap, indicating the headgroup 

speciation affects the air-water interface partitioning, with the perfluoro-carboxylate 

being less surface active than the perfluoro-sulfonate.  This result is in qualitative 

agreement with previously reported acetic acid34 and methanesulfonate35  hydration 

energies.  The greater hydration free energy of acetic acid as compared to 

methanesulfonate indicates that it will associate itself to a greater extent with bulk water 

implying a lower interfacial activity. 

eq
PFYX

 

 
 
Figure 2.  Plot of chain length effects on the interfacial partitioning coefficients for the 

sulfonates (●) and carboxylates (■). 
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The calculated Γ values all fall into the range 5.3 ± 0.7 x 10-6 mol m-2 except 

PFBA, which has a maximum surface concentration, Γ = 2.1 ± 0.1 x 10-6 mol m-2.  

The maximum surface concentration is a balance between attractive forces of the 

hydrophobic tail to the air-water interface and steric/coulombic repulsion of neighboring 

hydrophilic headgroups.36 Neutron reflectivity studies have estimated that the first 2-3 

PFOA carbons are below the air-water  interface.37  Assuming a similar structure for 

PFBA, > 50% of its carbons would be beneath the air-water interface.  The reduction in 

hydrophobic tail interactions for PFBA can be semi-quantitatively evaluated by 

conversion of maximum surface concentrations to area per molecule which would be 0.6 

nm2/PFYX and 1.5 nm2/PFBA, which converts to a circle of radius r= 0.16 nm and r = 

0.26 nm, respectively.  0.16 nm is on the order of the C-F bond length (0.13 nm) in CHF3, 

suggesting relatively intimate contact between hydrophobic chains.  Whereas, the 0.26 

nm in PFBA is more representative of an ionic hydration sphere (0.3-0.4 nm), suggesting 

that the hydrophobicity of PFBA’s short tail (C3) cannot compensate for the coulombic 

repulsion between neighboring carboxylate groups. 

max
PFYX

max
PFBA

PFHX and PFBX Frequency Dependent Sonochemical Kinetics 

The semi-log, time-dependent sonochemical degradation profiles of aqueous PFHS, 

PFHA, PFBS and PFBA at acoustic frequencies of 202, 358, 610 and 1060 kHz (PD = 

250 W L-1, T = 10 ºC, Ar) are depicted in Figures 3a through 3d. Each data point 

represents the average of three experiments (error bars were not added, due to space 

issues).  Ultrasonic irradiation was performed at initial PFC concentrations of [PFBA]i = 

0.47 μM, [PFBS]i = 0.30 μM, [PFHA]i =0.32 μM and [PFHS]i =0.23 μM with the initial 

pH between 7-8. The initial PFC concentrations were degraded by at least PFBA (57%), 
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PFBS (66%), PFHS (86%) and PFHA (90%) after 120 minutes of exposure to ultrasound 

at all frequencies. In comparison, PFOS and PFOA were degraded to 87% and 99% of 

their initial concentrations after 120 minutes of ultrasonic irradiation.  

 

 

 

 

 

 

Figure 3.  Pseudo first-order rate of degradation of  PFYX at 250 W L-1 in Ar(g) 
saturated solutions at pH 7 and 10 °C.  PFHA (▲) and PFHS (●) PFBA (■) and PFBS 
(♦).  (3a) 202 kHz, PFBS

appk −  = 0.013 min-1; PFBA
appk −  =   0.007 min-1; PFHS

appk −
 = 0.012 min-1; 

PFHA
appk −  = 0.019 min-1, (3b) 358 kHz, PFBS

appk −  =  0.018 min -1; PFBA
appk −  = 0.012; PFHS

appk − = 

0.030;  = 0.039, (3c) 610 kHz,  = 0.023;  =  0.017;  = 0.022; PFHA
appk − PFBS

appk − PFBA
appk − PFHS

app
−k

PFHA
appk −  = 0.036, (3d) 1060 kHz, PFBS

appk −  = 0.009; PFBA
app
−k  = 0.008; PFHS

app
−k  = 0.012; PFHA

appk − = 
0.022. 
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The plots of ln ([PFYX]t/[PFYX]i, where Y signifies the chain length B (butane), H 

(hexane), O (octane) and X signifies the headgroup A (carboxylate) or S (sulfonate) vs. 

time plots are linear indicating pseudo-first kinetics, Fig. 3a-d.  Consistent with an 

interfacial pyrolysis decomposition mechanism where concentrations are well below 

surface  

 d[PFYX]/dt =  -  [PFYX] (1) kapp
PFYX

in which k
 
is the apparent first-order rate constant.  However, the kinetic order 

changes below -3 where PFYX is < 10 nM causing change to the kinetic order.  Rate 

constants determined from linear regression of data in Fig. 3 at 358 kHz follows the order 

.  The pseudo first-order rate constants and 

half-lives for the degradation of the six perfluoro-compounds at 250 W L-1 and 358 kHz 

are listed in Table 3.  PFHX relative rates are similar to relative rates observed for the 

PFOX where, 

app
PFYX

app
PFHA >

k
k

kapp
PFOA ≅ k kapp

PFOS ≅ kapp
PFHS > kapp

PFBS > kapp
PFBA

app
PFOA

app
PFOS = 1.7 and 

kapp
PFHA

kapp
PFHS = 1.8, reflecting that the carboxylates degrade faster 

than the sulfonates.  In contrast, the degradation rate constant for the C4 sulfonate is 1.5 

times that of the carboxylate, 
kapp

PFBA

kapp
PFBS  = 0.66. 

 

 

 

 

 

 



Table 3.  Apparent first-order rate constants and half-life for the degradation of PFXY, 
where X = B, H, or O and Y = A or S at 358 kHz, 250 W L-1, 10 °C, Ar. 

 
PFC kapp (min-1) τ1/2 (min)

PFBA 0.012 ± 0.001 57.2 

PFBS 0.018 ± 0.0023 42.3 

PFHA 0.053 ± 0.001 16.8 

PFHS 0.030 ± 0.003 23.2 

PFOA17 0.048 ± 0.001 16.9 

PFOS17 0.028 ± 0.005 25.7 

 

The PFBX and PFHX sonochemical degradation rate constants, k , were 

determined in this work at acoustic frequencies ranging from 202 kHz to 1060 kHz at an 

applied acoustic power density of 250 W L-1, at 10 °C in argon.  The PFOX rates were 

taken from Vecitis et al.17 The pseudo-first order sonolytic rate constants, k , versus 

frequency for PFBA, PFBS, PFHA, PFHS, PFOA, and PFOS are plotted in Fig. 4a and b, 

for the sulfonates and carboxylates respectively.  The degradation rate constants for the 

PFHX and PFOX have apparent maxima at 358 kHz. The PFBX sonochemical 

degradation rate constants have apparent maxima at 610 kHz.  The observed PFOX and 

PFHX rate constant vs. frequency trends are comparable with previous reports38 on the 

sonochemical degradation of chlorocarbons.  Rate maximums at 358 kHz are due to 

maximum number of bubble events per unit time.  The observed PFBX kinetically-

optimal frequency of 610 kHz is similar to reports on chlorocarbon sonolysis.24, 39 A 

sonolytic rate maximum at 610 kHz is due to enhanced bulk aqueous to cavitating bubble 

mass transfer effects .24 

app
PFYX

app
PFYX
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                                   (a)                                                                       (b) 

Figure 4.  Rate constant and frequency dependence at 202, 358, 610 and 1060 kHz at 250 
W L-1, 10 °C, Ar for (4a) PFBS (●), PFHS (▼) and PFOS (■) and (4b) PFBA (●), PFHA 
(▼), and PFOA (■). 
 

Sonochemical Kinetics Frequency Dependence 

Acoustic frequency is one of many sonochemical parameters that modulates the 

cavitation dynamics of the bubble cloud present in solution.  Sonochemical parameters 

such as power density, 25, 40, 41 reactor design,25 area of the emitting surface,41 dissolved 

gas,40 and nature of the solvent40 also affect cavitation dynamics. Variations on the 

applied frequency can affect 1) the temperature and pressure inside the bubble, 19, 27, 40, 42 

2) the number and distribution of bubbles, 40 3) bubble size and lifetime, 18, 26, 40, 43, 44 4) 

the dynamics and symmetry of collapse, 26, 40, 43, 44 and 5) radical dispersion into 

solution.40, 41, 45  All the previously stated factors are interdependent in controlling 

sonochemical events. 

The effect of acoustic frequency on sonochemical kinetics has been previously 

reported for a number of chemicals.18, 19, 39-46 The rate of sonochemical potassium iodide 

oxidation was increased 8-fold at 300 kHz compared to 20 kHz at 2 watts of applied 

power.41  The first-order rate constant for the degradation of aqueous phenyl 
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trifluoromethylketone was 14 times higher at 515 kHz, as compared to 30 kHz 

frequency.19  The maximum 1,4-dioxane sonochemical reaction rates was observed at 

358 kHz over the frequency range of 205 to 1071 kHz.44  Over the range of 20 to 1000 

kHz, the highest rate of H2O2 and hydroxyl radical production was observed at 500 kHz 

during sonolysis and the lowest production rates occurred at 20 kHz, the relative rates 

were not affected by the sparging gas.26  Finally, the first-order degradation rate constants 

for chlorinated methanes, ethanes, and ethenes sonicated between frequency range of 205 

- 1078 kHz showed an apparent maximum at 618 kHz.39  

At higher frequencies, >100 kHz, the total number of transient cavitation bubble 

events per unit-time is larger and the active bubble populations account for a larger 

fraction of the total reactor volume.19, 47 Average bubble vapor temperatures have little 

frequency dependence, 42 suggesting that the total number of bubble events per unit-time 

is a primary factor in determining sonochemical kinetics.  Enhanced mass transfer 

brought on by high-velocity bubble oscillations will also increase the PFC diffusion rate 

from bulk water to the bubble surface.29, 32, 39, 48 As acoustic frequency increases, a stable 

cavitation bubble will oscillate more frequently per unit-time leading to a more rapid 

rectified diffusion.  The approximate resonance radius of a bubble is given by the 

equation Rr
2 = 3κP0/ρωr

2, where Rr represents the resonance radius, ωr the resonance 

frequency, ρ the density of the solution, κ, the polytropic index, and  P0, the hydrostatic 

pressure. 24, 26  For example: in Table 4, the resonance radius of bubbles produced at 

frequencies of 202.6, 358, 610 and 1060 kHz are listed, reflecting the changes between 

the relative interfacial properties verses the gas phase properties.   
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Table 4.  Resonance radius values (μm) and collapse times (μs) as a function of 
frequency (kHz). 
 

Frequency 
(kHz) 

Resonant 
Radius (μm) 

Surface Area  
A (μm2) 

Volume V 
(nL) 

A/V (μm-1) 

202 17.8 3.97 x 103 0.023 0.17 
358 10.0 1.26 x 103 0.0042 0.30 
610 5.88 4.34 x 102 0.00085 0.51 
1060 3.38 1.43 x 102 0.00016 0.88 

 

Comparisons between bubble-surface sites to gas-phase sites as a function of 

frequency reveals that smaller cavitation bubbles with larger surface-to-volume ratios 

become prominent at higher frequencies.24 Thus, increasing frequency results in more 

bubble events per unit-time and more extensive mass transfer of the solute from the bulk 

to the bubble interface24 due to an increase in surface-active sites for enhanced adsorption.  

As a result, at higher frequencies there is mass transport of weakly partitioning PFCs 

from the bulk to cavitation bubbles where they can be decomposed by interfacial 

pyrolysis.  

The total number of active bubble events per unit-time and the mass transfer of the 

perfluorinated species to the bubble surface 44 are two frequency dependent factors that 

act concomitantly on PFC degradation kinetics.  The apparent frequency maximum for 

PFHX is 358 kHz and for PFBX is 610 kHz (Figure 4a and 4b).  
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                                   (a)                                                                       (b) 

Figure 4.  Rate constant and frequency dependence at 202, 358, 610 and 1060 kHz at 250 
W L-1, 10 °C, Ar for (4a) PFBS (●), PFHS (▼) and PFOS (■) and (4b) PFBA (●), PFHA 
(▼), and PFOA (■). 
 
Since 358 kHz is the optimal frequency for PFHX, sonochemical kinetics suggests that 

the number of cavitation events per unit-time and, thus, the intrinsic maximum chemical 

reaction rate, mediates PFHX degradation kinetics.  As 610 kHz is the optimal frequency 

for PFBX sonolysis, it suggests that mass transfer to the bubble-water interface and, thus, 

extent of adsorption is rate-limiting. Consistent with surface tension results, Figure 1 and 

Table 2, which indicate that PFBX is less surface-active than PFHX. 28, 30, 49  

For PFHX and PFBX, as the frequency increases beyond their optimal values, 358 

kHz and 618 kHz, respectively, decomposition rates decrease approximately linearly with 

increasing frequency.  At the highest frequency tested, 1060 kHz, the half-period for 

rarefaction of the acoustic wave is only 0.47 μs, which is insufficient time for the bubble 

to undergo the rapid growth required for transient cavitation limiting the number of 

transient cavitation events.  The 0.47 μs compression half-period is approaching the 

characteristic time for transient bubble collapse and may interrupt these high-temperature 

events prior to completion. The majority of the bubbles at high frequencies is undergoing 

  20



stable cavitation, growing over many acoustic cycles, via rectified diffusion, but never 

transiently collapsing.30  The gas and interface temperatures of these stable cavitation 

bubbles are greater than ambient, but do not approach the extremes of transiently 

cavitating bubbles.21  The lower number of transient bubble events per unit-time with 

increasing frequency results in a decrease in PFC sonochemical rates (Figures 4a and 4b).   

PFHX and PFBX Sonochemical Kinetics Adsorption Dependence 
 
Ultrasonic irradiation of aqueous solutions creates three distinct reaction zones of 

varied intensity: the core of the hot spot, the hot shell surrounding the hot spot, and the 

bulk solution at ambient temperature.30 The physicochemical properties of a compound 

will determine its relative partitioning into each of the three acoustic cavitation zones, 

which, in turn, will be proportional to that compounds sonochemical kinetics. For 

example, the relatively high Henry’s Law constants for carbon tetrachloride and 

chloroform  (KH = 2454 Pa m3 mol-1 for CCl4 and 537 Pa m3 mol-1 for CHCl3), 39,50 

correspond to their preferred localization at the high temperature bubble interior (205 

kHz, 0.15 mM, k = 7.3 x 10 s-1 for CCl4 and 4.7 x 10 s-1 for CHCl3).39  The sonolysis 

products of aqueous solutions containing surfactants OGP (n-octyl-β-D-glucopyranoside) 

and DGP (n-decyl-β-D-glucopyranoside) indicated surfactant localization at the bubble-

water interface (0.1 to 6 mM, 614 kHz or 1.057 MHz, 0.1 to 6 mM). 51  In this case, the 

surfactants reacted with OH radicals that had diffused from the bubble core to the surface, 

which lead to an apparent, strong inhibition of H2O2 production.  

Concentration-dependent sonochemical kinetics of PFOA and PFOS were well fitted 

to the Langmuir-Hinshelwood model,32 where kinetic saturation is a result of a finite 

number of adsorption sites.  The experiments performed here were at dilute surfactant (>1 
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μM), orders of magnitude below surface saturation. The sonochemical kinetics observed 

here can be modeled as the low-concentration limit of Langmuir-Hinshelwood kinetics.52 

The observed rate is proportional to θPFYX, the fraction of total PFYX molecules adsorbed 

to the bubble-water interface, eq. 332 and the absolute degradation rate can be modeled by 

eq. 4. 

 θPFYX  = 
Keq

PFYX[PFYX]
1+ Keq

PFYX[PFYX]
 (3) 

 
d[PFYX]

dt
 = - [PFYX] = - θPFXY

  (4) kapp
− PFYX kΔ

− PFYX

where  is the pseudo first-order rate constant in s-1 and kΔ is the maximum intrinsic 

chemical reaction rate in M s-1, attained when all the transiently cavitating bubble surface 

sites are occupied. At low concentrations when the surface is under-saturated: 

kapp
− PFYX

  [PFYX] << 1 (5) Keq
PFYX

 θPFYX =  [PFYX] (6) Keq
PFYX

 
d[PFYX]

dt
 = -  K  [PFYX] (7) kΔ

− PFYX
eq
PFYX

  (8) kapp
-PFYX  = kΔ

-PFYXKeq
PFYX

In the Langmuir-Hinshelwood model at low concentrations of surfactants, the kinetics are 

controlled by the fraction of the total PF molecules adsorbed to the bubble-water 

interface leading to apparent pseudo first-order decomposition.32  

According to the equilibrium-partitioning coefficients listed in Table 2 and Figure 2, 

where the K’s are plotted as a function of the tail carbon number, the sulfonates adsorb to 

the air-water interface more effectively than acids.32 However, the rate of degradation of 
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the carboxylate is greater for the C6 and C8 compounds, suggesting a larger thermal 

activation energy for the sulfonate.17,53  In contrast, the C4 sulfonates degrade faster than 

the carboxylates, suggesting that the shorter chain length affects either dynamic 

adsorption under ultrasonic irradiation or thermal activation energy.  The former is more 

plausible than the latter since hydrophobic tail-length has significant effects on air-water 

interface partitioning. Also, the PFBX degradation rates are slower than their PFOX and 

PFHX analogs, with the relative difference being greater for PFBA, 

, than PFBS, k , suggesting that once the 

perfluorinated tail-length is less than 5 carbons (C4-PFBS, C3-PFBA), the dynamic 

adsorption to the interface during sonolysis occurs to a lesser extent.  As the tail-length 

decreases, the hydrophobic interfacial attraction can not compensate for the coulombic 

repulsion between the ionic headgroups.36 Thus, PFBA’s low relative rate where 

 vs. is that PFBA is more water soluble, as a 

result of its shorter chain length, consistent with PFBA’s smaller maximum surface 

excess concentration. 

kapp
-PFHA/PFOA / kapp

-PFBA = 4.4

kapp
-PFBS = 1.5kapp

-PFBA kapp
-PF

app
-PFHS/PFOS / kapp

-PFBS = 1.6

kapp
-PFHS/PFOSHA/PFOA = 1.7-1.8

Figure 5 shows the ratio of PFBX, PFHX, and PFOX rate constants as a function of 

frequency. For PFHX and PFOX, frequency has little effect on the ratio of rate constants. 

For PFBX, the ratio is observed to decrease with increasing frequency. PFBS is the 

stronger surfactant, yet PFBA rates increased to a greater extent with increasing 

frequency. 
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.  
 
Figure 5.  Frequency effects on the competitive adsorption of PFBX (♦), PFHX (●), and 
PFOX (▲), where X = A or S, on the bubble water interface. 

 

The time-scale of bubble growth is short (μs) compared to the time required for the 

surfactants to equilibrate with the gas solution interface of the bubble (ms).30  For 

example, at 47 kHz, a 2 mM aqueous sodium dodecyl sulfate (SDS), an anionic 

hydrocarbon surfactant, solution reached equilibrium with the air-water interface after >3 

ms.30,54 However, at f  > 10 kHz, bubble radial oscillation velocities are much faster than 

chemical diffusion rates, �ν bub,rad >> �ν diffusion.48  And once adsorbed to the air-water 

interface, strong surfactants such as SDS, have negligible diffusion rates away from the 

interface, kdesorb = 500 s-1 or �τ1/2 > 1 ms,55 which is much longer than estimated bubble 

lifetimes 10-100 μs.  Thus, once adsorbed to a cavitating bubble, strong surfactants such 

as SDS (PFOA has similar surfactant properties) are not expected to desorb over the 

bubble lifetime.  Due to the large volume covered by the radial bubble oscillations, 

irreversible interfacial adsorption gives little room mass for transfer enhancements.   

However, if a species was able to diffuse away from the bubble-water interface over a 

relevant time-scale, (ln 2)/kdesorb < 100 μs, and mass transfer were sonochemically 
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mediated, kadsorb = kbub,osc, mass transfer enhancements with increasing frequency can be 

rationalized.   If the perfluoro-chemical were able to desorb during a non-transient, 

bubble compression phase, they could be re-adsorbed during the subsequent rarefaction 

phase. Keq = kadsorb/kdesorb, and if kadsorb but not kdesorb is sonochemically enhanced, then an 

increase in Keq would be expected.  kadsorb will increase with mounting frequency due to 

increased SA/V ratios and increased frequency of bubble oscillations per unit time. 

Sonochemical frequency dependences, Fig. 5, suggest this is active for the perfluorinated 

species with Cn-tail < 5 or Keq < 50 M-1,  consistent with previous arguments (see 

Adsorption section) that PFBA is not hydrophobic enough to counteract coulombic 

repulsions of the headgroups and thus has a lower maximum surface concentration. 

The apparent rate constants normalized to the PFOX rate constant, or 

vs. the equilibrium partitioning values, , for all 4 frequencies is 

plotted in Fig. 6.  There is no correlation between the equilibrium partitioning constant 

until Cn-tail < 5 or K < 50 M-1.  The equivalent normalized rate constants for Cn-tail 

> 5 suggest that under lightly populated bubble-water interface conditions, adsorption 

kinetics are sonochemically mediated.  There is an apparent hydrophobic tail-length 

threshold for the sonochemical mediation of adsorption and, thus, degradation kinetics,  a 

result of the inability of the shorter chains to form a stable surface film, due to their 

greater water solubility.   

-PFYS -PFOS/ app appk k

-PFYA -PFOA/ app appk k Keq
-PFYX

eq
-PFYX
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Figure 6.  Apparent rate constants normalized to the PFOX rate constant vs. equilibrium 
partitioning values, . Keq

-PFYX

 

Conclusions 

The sonochemical efficiency of degradation is influenced by frequency effects and 

the adsorption behavior of the compounds based on their physical and chemical 

properties.  Equilibrium bubble-surface partitioning was shown to have no effect on the 

C6 and C8 PFC sonolysis kinetics, with minor effect on PFBS, and large effects on PFBA.  

Furthermore, PFBA and PFBS experienced sono-enhanced sorption with increasing 

frequency.  If surfactants do not reach equilibrium concentrations at the interface, then 

the rate of the reactions would depend on the fraction of compounds adsorbed at 

nucleation and the number of transiently cavitating bubbles in solution.  In terms of 

frequency effects, PFHX and PFOX exhibit rate maximums at 358 kHz, and PFBX rate 

maximums were at 610 kHz.  These results show that optimizing the degradation rates of 

perfluoro-chemicals of different chain lengths is dependent on the physical parameters 

controlling acoustic cavitation. 
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Introduction 

The fate of perfluorinated organic compounds in the aquatic environment is of 

great concern because of their persistence, bioaccumulation,1 and toxicity.2, 3 

Perfluorination yields unique physical properties, such as chemical inertness, minimal 

coefficients of friction, and low polarizabilities, which makes them desirable for a wide 

variety of commercial applications.4 Fluorochemicals (FCs), which include 

perfluoroalkylsulfonates and perfluorocarboxylates, are utilized in products such as 

Teflon and Scotchguard, and have been detected globally in the atmosphere, hydrosphere 

and biosphere. Their stability arises from their high bond strength (450-530 kJ mol-1) and 

low polarizabilities.5 Current remediation strategies are slow (or ineffective) toward 

perfluorinated contaminants due to their oxidative stability. Therefore, it is of importance 

to develop effective remediation processes to address the environmental issue of 

widespread perfluorochemical contamination and persistence.   

The efficient decomposition of organic compounds using ultrasound irradiation is 

a viable technology in the remediation of environmentally persistent and recalcitrant 

compounds such as perfluorinated chemicals (PFCs). Ultrasound irradiation produces 

high-energy chemistry in a very short timescale (~nanoseconds). During irradiation, a 

population of newly formed gas bubbles are excited to a resonant radius via rectified 

diffusion. This is followed by the absorption of energy during the rarefaction cycle of the 

ultrasonic waves causing their growth to a maximum size followed by an adiabatic 

collapse.  The intense collapse generates average vapor temperatures near 5000 K 6, 7 and 

pressures on the order of several hundred atmospheres.8 These high temperature and 

pressure conditions are sufficient enough to pyrolyze perfluorinated surfactants, which 
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are localized at the interfacial region of the cavitation bubble, to their inorganic 

substituents.9 

In the present paper, power density, single- and dual-frequency effects are used to 

evaluate rates of degradation and the energy efficiency in the remediation of 

perfluorochemicals.  An increase in power density leads to a linear increase in the 

sonochemical degradation kinetics of perfluorinated surfactants.  However, the intensity 

and energy efficiency in the acoustic field is dependent on the frequency value and on the 

presence of either dual- or single- frequency exposure. The effect that these parameters 

have on cavitation bubble dynamics under ultrasonic irradiation will be discussed. 

Materials and Methods  

Perfluorobutyric acid (PFBA), perfluorohexanoic acid (PFHA), and 

perfluorooctanoate (PFOA) were purchased from Sigma Aldrich. Potassium 

perfluorobutane-1-sulfonate (PFBS), potassium perfluorohexane-1-sulfonate (PFHS), and 

potassium perfluorooctane-1-sulfonate (PFOS) were provided by 3M.  Ammonium 

acetate (> 99%) and methanol (HR-GC > 99.99%) were obtained from EMD Chemicals 

Inc.  Aqueous solutions were prepared with purified water using a Milli-Q system (18.2 

mΩ cm resistivity). Acid solutions were brought to a pH of 7 by addition of ammonium 

hydroxide. 

Sonication at single frequency exposures of 202, 358, and 610 kHz were 

performed for power densities at 83, 167, 250, and 333 W L-1 using an Allied Signal – 

Elac Nautik ultrasonic transducer with the solution contained in a 600 mL jacketed glass 

reactor.  Dual frequency exposures at 20 + 202 and 20 + 610 kHz  under an applied 

power density of 250 W L-1 were carried out using a 20 kHz horned transducer placed 
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perpendicular to an Allied Signal – Elac Nautik ultrasonic tranducer with the solution 

contained in a 600 mL jacketed glass reactor.  The temperature was modulated with  a 

Haake A80 refrigerated bath maintained at 10 °C.  All reactions were sparged with argon 

for at least 30 minutes prior and during the reaction, unless otherwise noted. PFBS and 

PFBA were sonicated simultaneously at total initial concentrations of 300 and 470 nM, 

respectively.  PFHS and PFHA were sonicated simultaneously at initial concentrations of 

230 and 320 nM, respectively.  Under varying power densities and single frequency 

exposures of either 358 or 610 kHz, PFOS and PFOA were sonicated simultaneously at 

initial concentrations of 200 and 240 nM, respectivly.  PFOS and PFOA concentrations 

were 200 and 240 nM, respectively, under dual frequency conditions. 

PFBS, PFBA, PFHS, PFHA, PFOS and PFOA were analyzed using HPLC-MS.  

The samples were placed into 750 μL polypropylene autosampler vials and sealed with a 

PTFE septum crimp cap.  20 μL of collected or diluted sample was injected onto an 

Agilent 1100 LC for separation on a Betasil C18 column (Thermo-Electron) of 

dimensions 2.1 mm ID, 100 mm length and 5 μm particle size.  A 2 mM aqueous 

ammonium acetate/methanol mobile phase at a flow rate of 0.75 mL min-1 was used with 

an initial 70:30 water/methanol composition.  HPLC effluents were analyzed with an 

Agilent Ion Trap MS in the negative ion mode for the perfluorooctanesulfonate molecular 

ion (m/z = 499), the perfluorohexanesulfonate molecular ion (m/z = 399), the 

perfluorobutanesulfonate molecular ion (m/z = 299), the decarboxylated 

perfluorooctanoate molecular ion (m/z = 369), the decarboxylated perfluorohexanoate 

molecular ion (m/z = 269) and the decarboxylated perfluorobutanoate molecular ion (m/z 

= 169).  The nebulizer gas pressure was 40 PSI, while the drying gas flow rate and 
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temperature were 9 L min-1 and 325 °C, respectively.  The capillary voltage was set at  

+3500 V and the skimmer voltage was – 15 V.  Quantification was completed by first 

producing a calibration curve using 8 concentrations between 1 ug L-1 and 200 ug L-1 

fitted to a quadratic with X-1 weighting. 

Results 

The rate of degradation of PFHX (where X = c(A)rboxylates or (S)ulfonates) and 

PFBX at 202 and 610 kHz were evaluated at power densities from 83 W L-1 to 330 W L-1. 

PFOX rates were evaluated at the same power densities, but at frequencies of 358 and 

610 kHz.  Plots of the pseudo first-order rate constants, k, versus the input power density 

are shown in Figures 1a-c for PFHX, PFBX, and PFOX, respectively. A gain in power 

density will amplify sonochemical effects.  This is reflected in the measured rate 

constants which show linear increases with increasing power density.  However, at 202 

kHz, PFBA deviates from the trend in which the maximum rate constant is 0.035 min-1 at 

250 W L-1 and subsequently decreases to ~0.032 min-1 at 330 W L-1 (Figure 1a).  
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Figure 1.  Rate constant dependence on power densities 83, 166, 250, and 333 W L-1 at 
202 and 610 kHz, 10 °C, Ar for (1a) PFHX, (1b) PFBX and (1c) PFOX. 
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The effects of frequency and applied power density on the degradation rate of 

perfluorinated surfactants (Cn > 5) were explored in order to obtain optimal physical 

parameter conditions.  The pseudo first-order rate constant, k, versus power density and 

frequency is shown in Figure 2a and 2b.  For each frequency, power was varied from 83 

to 333 W L-1.  From the 3-D plot, the power density value of 333 W L-1 and ultrasonic 

frequencies of 358 kHz and 618 kHz for PFYA (where Y = (O)ctane or (H)exane) and 

PFYS, respectively, are the most effective for Cn > 5 rates of degradation. 
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Figure 2.  Effects of power density and frequency on the pseudo-first order rate constants 
for Cn > C4 degradation for (2a) PFYS and (2b) PFYA.  
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Figure 3 shows single- and dual- frequency degradation effects for PFOA and 

PFOS.  While there was no relative enhancement in degradation under 20 + 610 kHz dual 

frequency exposure compared to single frequency exposure at 610 kHz, there were 12 % 

PFOS and 23 % PFOA enhancements in degradation rates when a 20 kHz horned 

transducer was placed perpendicular to a 202 kHz sonochemical reactor compared to 

single frequency exposure at 202 kHz.  The increase in degradation may be attributed to 

better overlap of acoustic waves, leading to an enhancement of cavitational effects and 

induction of sonochemical reactions.  The overlapping waves may produce a  non-sine 

ultrasonic wave form that enhances bubble expansion and shortens collapse time.  
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Figure 3.  Single- and dual-frequency degradation effects for a) PFOA and b) PFOS.  
The 20 kHz columns represents single frequency exposure at 20 kHz and at either 205 or 
618 kHz separately.  The 20 + 205 kHz columns and the 20 + 618 kHz columns represent 
dual frequency or simultaneous exposure. 
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Discussion 

Effects of Ultrasonic Power Density 

Correlations between increases in power density and sonochemical reaction rates 

have been observed in a number of studies.  Kang et al. observed an increase in methyl 

tert-butyl ether degradation with increasing power density up to 250 W L-1.10  Hua et al. 

showed a proportional increase in the degradation of p-nitrophenol with increasing 

power-to-volume ratio over the range of 0.98-7.27 W cm-3 in a parallel-plate, near-field 

reactor.11  Suri et al. revealed increases in estrogen degradation rates with an increase in 

power intensity, finding that the 4 kW ultrasound reactor was more energy efficient than 

0.6 and 2 kW sonicators.12  Finally, Chen et al. found that reducing the reaction volume, 

or increasing the average ultrasonic power density, would lead to an enhancement in 

reaction rate of phenol and chlorophenol degradation, especially when used in 

conjunction with a photocatalysis in the presence of Hombikat TiO2 suspensions.13 

With the exception of PFBX at 202 kHz and 333 W L-1, enhancements in PFYX 

degradation occurs with increasing sonication power density (Figures 1a-1c). Two 

reasons for the predominant linear correlations between sonochemical reactions and 

applied power is that increases in power density can increase the number of active 

cavitation bubbles and also the size (Rmax) of the individual bubbles.14, 15 Increases in 

Rmax results in greater maximum collapse temperatures and sonochemical activity due to 

the conversion of the higher potential energy available into chemical reactions, heat, light 

and sound emissions during collapse.15 Furthermore, rectified diffusion is know to 

increase with acoustic power, shifting the bubble size distribution.16 Sonochemical 
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activity is enhanced if the previous bubble population was primarily composed of 

exceedingly small bubbles that resisted expansion due to strong surface tension (but 

under heavily-applied acoustic power), grow via rectifed diffusion to a size that responds 

rapidly to the rarefaction wave, and subsequently experience runaway expansion in just 

one cycle.  The new bubble population could also be composed of bubbles that are less 

than the dynamic limit, but reach Rmax faster due to enhanced rates of rectified diffusion.  

However, a drawback could be the growth of bubbles so large that there is insufficient 

time for collapse before the end of the pressure cycle.  Out of such populations, there are 

those in which collapse occurs at another cycle, or if PA = PH, then the bubble may never 

undergo transient collapse.17  However, shifts in bubble size distribution at a certain 

applied power is affected by frequency.  While higher frequencies can shift the system to 

a more active bubble population, it requires higher power levels to produce transient 

bubbles with Tmax values, comparable to values at lower frequencies due to decreased 

growth and collapse times.  Further, frequency effects will be discussed later in the 

frequency section of this paper. 

Another reason for the linear correlation between rate and power density is that 

increased power results in an enhancement of chemical effects brought on by increased 

mixing intensity, due to the turbulence produced from cavitational effects. In the 

degradation kinetics of heterogeneous reactions there are three steps:  1) mass transfer of 

the reactant to the bubble-water interface, 2) adsorption onto the bubble surface, and 3) 

chemical reaction at the surface.18 The rate-limiting step influences the kobs value.  In 

evaluating reaction rate trends according to energy input into the system, the power 

density data distinguishes between mass transport and reaction-limited kinetics.18 
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According to the data in Figures 1a-1c, the linear increase in PFYX rates may reflect 

mass transport limited kinetics, while the non-linear behavior of PFBX at 202 kHz may 

reflect both mass transport and reaction-limited kinetics (Figure 1a). 

Non-linear decreases in reaction rates at higher power densities have been 

attributed to a decrease in the efficiency of energy transfer to solution with input energy 

lost as heat,18, 19 the scattering of ultrasound waves by bubble clouds,20-24 or Bjerknes 

forces decreasing the distance between bubble clusters and the promotion of bubble-

bubble coalescence leading to a smaller number of transient bubbles (Figure 1b).25, 26  

Secondary Bjerknes forces are proportional to the square of the sound pressure,25 with 

bubbles smaller than resonance size collecting at the pressure antinodes and those larger 

than resonance aggregating at the pressure nodes.26  

Because the majority of the PFYX rates show continued increases with power 

density under the same conditions, inefficient energy transfer, wave scattering, or 

Bjerknes forces are not the primary reason for the decrease in degradation rates for PFBX 

at 202 kHz, 333 W L-1. Alternatively, reaction-limited kinetics in conjunction with low 

surface activity 27 may explain the decrease, revealing the constraints that physical 

parameters such as power and frequency have on the bubble dynamics.  To understand 

this effect, we must discuss the relationship between power intensity and frequency in 

influencing the catalytic environment in terms of bubble size and bubble population 

(transient vs. stable) present in solution that can catalyze the physico-chemical 

decomposition of perfluorinated surfactants. 

Power intensity controls the cavitation bubble size, bubble collapse time, the 

transient temperature, and the internal pressure in the cavitation bubble during collapse.  
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The power intensity is proportional to the power density and is related to the acoustic 

amplitude PA (eq.1): 

I = PA
2/2ρc     (1) 

Where I is the sound intensity (amount of energy flowing per unit area, per unit time), ρ 

is the density of the medium, and c is the velocity of sound in the medium.  At high 

intensities, a small vapor bubble may grow through inertial effects.  Lower intensities 

induce growth via rectified diffusion in which the bubble will grow over many acoustic 

cycles.  Diffusion of gas or vapor in or out of the bubble depends on the slightly larger 

surface area during expansion compared to bubble compression making bubble growth 

larger during expansion.  When the bubble has reached its critical size, R0, also known as 

resonance size, it is able to absorb ultrasound energy and grow rapidly to a size Rmax 

during a single cycle of sound.  At Rmax, the bubble can no longer efficiently absorb 

energy.  Unable to sustain itself, the bubble collapses, generating a high temperature and 

pressure environment that promotes physico-chemical reactivity. 

Rmax is the maximum radius a bubble can attain prior to cavitational collapse, and 

is dependent on the density of the liquid, the applied frequency, the hydrostatic pressure, 

and the acoustic pressure according to the following equation 17 (eq. 2): 

Rmax =  4
3ωa

(PA -  PH)( 2
ρPA

)1/2[1+
2

3PH
(PA − PH)]1/3     (2) 

where ωa is the applied acoustic frequency and PH is the external (hydrostatic) pressure (= 

1 atm).  Furthermore, the bubble collapse time, τ, is proportional to the maximum bubble 

size Rmax by 17: 

τ = 0.915Rmax (ρ /(PH +Pa )1/ 2(1+ Pvg /Pm )      (3) 
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where PH + Pa is the pressure in the liquid and Pvg is the vapor pressure in the bubble.  

Bubble sizes are constrained by a dynamic radial limit for acoustic cavitation,26 in 

which bubbles undergoing cavitational growth must have initial sizes ≤  Rmax/2.5 (Table 

1). The bubble population present able to grow at 202 kHz is approximately 3 times 

larger than the bubbles at 610 kHz (Rmax is inversely proportional to frequency).  At  high 

acoustic intensities with large values in PA, the cavitation bubbles grow during the 

rarefaction cycle to very large Rmax values, but are unable to undergo complete collapse 

during the compression phase due to insufficient collapse times. Therefore, these bubbles 

are not transient, and continue to either oscillate under stable cavitation conditions, or 

grow large enough to escape from the liquid through buoyancy and mass convection. The 

results  for PFBX (202 kHz and 333 W L-1) in Figure 1a reflect the predictions by the 

equations above, showing that there is an optimum power density that works in synergy 

with frequency to attain maximum rates of sonochemical degradation.  For the other data, 

as discussed in Campbell et al., enhanced mass transfer effects at higher frequencies for 

C4, and greater surface activity for longer chain surfactants (Cn > 5) are factors that help 

to overcome a less active bubble population in solution.27 
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Table 1.  Dynamic Limit to Caviation Values  Rmax/2.5 (μM). 

PA (atm) Frequency (kHz) Rmax (μM) Rmax/2.5 (μM) 
2.5 202 17.9 7.16 
2.5 358 10.1 4.00 
2.5 610 5.96 2.38 
3.5 202 27.5 11.0 
3.5 358 15.7 6.26 
3.5 610 9.14 3.66 
4.4 202 35.5 14.2 
4.4 358 20.3 8.1 
4.4 610 11.8 4.72 
5.1 202 41.7 16.7 
5.1 358 24.0 9.59 
5.1 610 13.9 5.56 

 

Effects of Ultrasonic Single Frequencies  

Several studies evaluating the single frequency degradation of perfluorinated 

surfactants under a diverse set of conditions have been reported recently.  Moriwaki et al. 

investigated the rates, products and possible mechanisms involved in the sonochemical 

decomposition of PFOS and PFOA in aqueous solutions.28 Their studies were followed 

by Vecitis et al., who provided a detailed study of the high-temperature, gas-phase 

kinetics and mechanisms of PFOS and PFOA mineralization at optimal frequency and 

power density values over a wide range of concentrations (10 nM to 10 μM).9  Vecitis et 

al. further investigated the concentration-dependent effects of PFOA and PFOS over 

concentrations of 20 nM to 200 μM, developing a Langmuir-Hinshelwood formalism to 

describe sonochemical adsorption mechanisms of PFOA and PFOS to the bubble-water 

interface.29  Three subsequent matrix studies on PFOS and PFOA were performed.  First, 

Cheng et al. revealed a reduction in sonochemical degradation of PFOS and PFOA in 

landfill groundwater due to competitive adsorption by organic components in 
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environmental matrices.30  However, combination of ozonation with sonolysis led to a 

recovery in the rate loss.  Second, Vecitis et al. reported that the sonochemical 

degradation of aqueous dilutions of FC-600, aqueous fire fighting foam (AFFF), was 

minorly effected by the components present in the AFFF matrix.31  Third, Cheng et al. 

evaluated the effects of various inorganic species on PFOS and PFOA sonochemical 

kinetics, showing ion-concentration dependent Hofmeister and pH effects on degradation 

rates.32  Finally, to examine the effects of chain length on sonochemical degradation, 

Campbell et al. compared the kinetics and adsorption behavior of PFHA, PFHS, PFBA, 

PFBS, PFOA, and PFOS at varied frequencies, showing that C6 and C8 rates were 

controlled by the number of cavitation events per unit time and that C4 kinetics were 

influenced by mass transfer to the bubble-water interface.27 

In studying how frequency influences bubble dynamics, we must first discuss how 

mass, momentrum and energy conservation govern the bubble motion dynamics in a 

liquid medium. Bubble motion dynamics is described by the following Rayleigh-Plesset 

non-linear ordinary differential equation (eq 4):  

R ′ ′ R +
3
2

′ R 2 =
1
ρ

[(P0 +
2σ
R0

− Pv )( R0

R
)3κ + Pv −

2σ
R

− P0 − Pa (t)] (4) 

where R (R0) is the initial bubble radius, ′ R  and ′ ′ R  are its first and second derivatives, 

respectively.  P0 is the hydrostatic pressure, Pa(t) is the acoustic forcing pressure, κ is the 

polytropic index of the vapors or gases, Pv is the water vapor pressure, ρ and σ are the 

density and surface tension, respectively.  The Rayleigh-Plesset Equation describes the 

bubble’s response to a time-varying pressure field, P(t), in which the superimposition of 

P(t) onto the hydrostatic constant pressure, P0, changes the bubble radius, R0, to a new 

value R(t), generating kinetic energy in the liquid.  Despite bubble expansion, the surface 
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tension effect, 2σ/R0, confines the bubble size, such that it oscillates at each new 

equilibrium size.  The equilibrium state is stabilized by the surface tension effect 

opposing the positive pressure of the liquid confining the gas present in the bubble.  

However, negative pressures counteract the confining pressures of the surface tension 

pressure.  For very small bubbles operating on their own timescales at high resonance 

frequencies,  pressure changes over low frequency timescales (much less than the bubble 

resonance) are felt by the bubble to be quasi-static.26 

 However, under an optimal driving frequency, bubble expansion is sustained 

through an extended and amplified rarefaction cycle, followed by a short collapse via a 

shortened compression stage.  According to the following derivation, this process occurs 

when the bubble’s natural resonance is equal to the applied ultrasonic frequency.17  Pa(t) 

is a sinusoidal wave of amplitude PA and angular frequency ω according to the equation 

(eq. 5): 

Pa (t) = −PA sinωt                                               (5) 

Neglecting vapor pressure and viscosity and under small amplitude oscillations, eq. 4 

reduces to (eq. 6): 

Rε "+ω0
2Rε =

PA

ρR0

sinωt                                  (6) 

  where ω0 is the resonance angular frequency given by (eq. 7): 

ωo
2 =

1
ρRo

2 [3κ(Po +
2σ
Ro

) −
2σ
Ro

]                                  (7) 

since the resonance frequency f0 = ω0/2π, then by neglecting surface tension terms, it is 

inversely proportional to R0 and equation 6 becomes: 

  48



Rε (t) =
PA

ρRo(ω 2 −ω0
2)

[sinωt −
ω
ω0

sinω0t]           (8) 

When ω ≈ ω0 and the initial bubble radii is smaller than a certain critical value, R0, crit, 

then optimal forcing (rarefaction wave) leads to runaway expansions of the responding 

bubble beyond the constraints of the linearized formula of Equation 4 in just one cycle.  

Bubbles with R0 > R0, crit will oscillate a few times before collapsing. Thus, the range of 

bubble sizes susceptible to transient cavitation are dependent on frequency as a parameter.  

In previous studies, perfluoroalkylsulfonates were determined to be stronger 

surfactants compared to perfluoroalkylcarboxlyates but with slower rates of degradation 

due to the energy of activation required in breaking the bond between the carbon-

carboxylate vs carbon-sulfonate moieties.9 In Figure 2, PFYX exhibit a minimum of 

19 % enhancements in degradation rates with increasing power density at each frequency, 

with the exception of PFYS at 358 kHz. Although the sonolytic rate maxima is mediated 

by the number of cavitation events per unit time at 358 kHz, increasing the power density 

from 250 W L-1 to 333 W L-1 increases the reaction rate only 3 %. According to Hung et 

al., this can be attributed to a decrease in the efficiency of energy transfer to solution at 

higher power densities due to a greater loss of input energy as heat.19 Interestingly, PFYS 

show identical rates of degradation at 358 kHz and 618 kHz  under an applied power 

density of 333 W L-1 which indicates that despite the possible loss of input energy at 

higher power, there is a 30 % enhancement in degradation at 618 kHz from 250 to 333 W 

L-1. The increase in relative enhancement can be attributed to increased mass transfer 

effects brought on my the higher power intensity and higher frequency effects. Although, 

358 kHz and 250 W L-1 is optimal conditions for longer chain surfactants (Cn > 5), 9, 29 the 

combination of increased mixing intensity at higher power densities18, 19 and larger 

  49



surface-to-volume ratios at 610 kHz18-20 enhances surfactant binding to the interfacial 

region. At higher frequencies, rectified diffusion is able to occur more rapidly because 

there are more acoustic cycles per unit time such that there is a greater distribution of 

bubbles that can reach resonance size more quickly leading to an enhancement in 

sonolysis.  Furthermore, surface tension which is inversely correlated with bubble radius, 

provides a collapsing force on the bubble.33  For example, a 13.9 μm (610 kHz) bubble 

will experience a surface tension that is almost twice as large as a 24 μm (358 kHz) 

bubble at an acoustic pressure of 5.1 atm leading to a more complete collapse with higher 

temperatures.  

Effects of Ultrasonic Dual Frequency 

The theoretical goal of exploring a dual frequency system is to attain optimal 

driving conditions to produce large responses from the oscillating bubble that are 

multiples of the natural frequency, ω0. Single sinewaves apply the same driving effort in 

rarefaction and compression even though the bubble collapse time is much shorter than 

the expansion.  Under optimized dual frequency exposure, an optimal waveform will 

spend most of its efforts in rarefaction so that the bubbles can expand to their maximize 

size followed by a swift compression.  Enhancements in the intensity of the collapse and 

differences in rates of rectified diffusion can lead to a greater number of cavitating 

bubbles.   

Dual frequency reactors have been empirically shown to dramatically enhance the 

physical and chemical effects of ultrasound.34, 35 The non-linear process of cavitation 

produces cavitating bubbles that emit sub- and higher-order harmonics.  Taking 

advantage of this phenomenon, Umemura et al. developed an instrument that produced 
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second-harmonic superimpositions (SHS) of 0.75 MHz and 1.5 MHz that led to a ten fold 

increase in iodide oxidation rates.34 Yasuda et al. observed an increase in fluorescence 

intensity of terephthalate ion for dual frequency in comparison to single frequency.36  

They also performed sonochemical luminescence experiments using luminol to show that 

the sonochemical reaction fields became more extensive in the reactor and more intensive 

around the center of the reactor.36  Swamy et al. found that the simultaeneous application 

of frequencies at 20 and 40 kHz enhanced extraction rates of  copper from oxide ores 

along with an increase in yields.37  Brotchie et al. demonstrated a synergistic effect of 

enhanced sonoluminescence  for 20 kHz and 355 kHz and 20 kHz and 1056 kHz when 

low power was applied to the higher frequency.38 

Under the application of identical power, Figure 3 provides a comparison in 

decomposition rates for PFYX at 20 + 202 and 20 + 610 kHz vs single frequency 

exposure at either 202 or 610 kHz, respectively. 12 % PFOS and 23 % PFOA 

enhancements in degradation rates were observed when a 20 kHz horned transducer was 

placed perpendicular to a 202 kHz sonochemical reactor. As mentioned previously, the 

synergism in dual frequency application is believed to induce the cavitation efficiency via 

deformation of a sinusoidal waveform.34, 35 The modification of the rarefaction and 

compression mechanisms leads to a more effective bubble growth, resulting in a more 

intense collapse.34, 35  Kawabata et al. suggested that the amplitude of the acoustic field is 

a function of the fundamental and second-harmonic (eq. 9): 

Pa (r,t) = Pa (1)(r)sin(ωt + φ1(r)) + Pa (2)(r)[sin(2(ωt + φ1(r))) + Δφ(r)] 34, 35 (9) 

where Pa (r,t) is the acoustic pressure at point r at time t and Pa (1)(r) and Pa (2)(r) 

are the amplitudes of the fundamental and second harmonic at point r, respectively. ω is 
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the angular frequency of the fundamental, φ1(r) the phase of the fundamental at point r 

and Δφ(r), the phase of the second harmonic relative to the fundamental.  Furthermore, 

second harmonic superimposition is sensitive to the relative phase Δφ, showing that the 

enhancement of cavitation and induction of sonochemical reactions is not a sum of 

independent effects but a synergistic result between the acoustic waveforms.34, 35   Thus, 

the ultrasound frequencies closer in value at 20 + 202 kHz provides better overlap of 

wave forms than 20 + 610 kHz exposure, leading to enhanced sonochemical activity.  

Modification of the acoustic field increases the wave amplitude, producing higher 

temperature and pressures upon collapse.  Furthermore, accelerated mass transfer effects, 

enhanced hydrodynamic forces and increases in the bubble population present in solution 

may also occur under a dual frequency environment.   

Energy Efficiency 

The energy efficiency of the various ultrasound conditions used in this study was 

evaluated to determine the practical potential for applying the aforementioned conditions 

toward the remediation of perfluorinated surfactants.  Hua et al. evaluated the energy 

efficiency of a sonochemical system by calculating the G value, the number of molecules 

degraded per unit of energy input into the system.11 

G value = ΔCNoV/ΔTW [molecules k-1]11, 39 (10) 

Where ΔC is the change in the solute concentration over a given time interval ΔT; No = 

6.023 x 1023 molecules/mol; V is the volume of the solution; W is the voltage.  The G 

values represents a lower limit of energy efficiency in the reactor since the energy 

transduction process is not 100 % efficient.11  The energy efficiencies in terms of the 
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energy required to degrade PFOS and PFOA under varying power densities at single and 

dual frequencies are listed in Tables 2-5.  

Table 2.  Comparison of Energy Efficiencies between single and dual frequency systems 
(202 and 610 kHz) for the degradation of PFC’s. 

 Power (W) 
Volume (L) k (min-1) Concentration 

(nM) 
G value x 1013 
(molecule kJ-1) 

f202 kHz,PFOA 

150 
600 

0.020 min-1 

t1/2 = 35 min 
 

240 14 
 

f202+20 

kHz,PFOA 

150 
600 

0.027 min-1 

t1/2 = 26 min 
 

240 19 

f610 kHz,PFOA 
150 
600 

0.034 min-1 

t1/2 = 20 min 
 

240 24 

f610+20 

kHz,PFOA 

150 
600 

0.037 min-1 
t1/2

 = 19 min 
 

240 25 

f202 kHz,PFOS 

150 
600 

0.01 min-1 
t1/2 = 69 min 
 

200 6 

f202+20 

kHz,PFOS 

150 
600 

0.013 min-1 
t1/2 = 53 min 
 

200 8 

f610 kHz,PFOS 
150 
600 

0.02 min-1 
t1/2 = 35 min 
 

200 11 

f610+20 

kHz,PFOS 
150 
600 

0.021 min-1 
t1/2 = 33 min 

200 12 
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Table 3.  Comparison of Energy Efficiencies of PFBX degradation at varying power 
input (50 W, 100 W, 150 W, 200 W) and frequencies (205 and 610 kHz). 
 Power (W) 

Volume (L) k (min-1) Concentration 
(nM) 

G value x 1013 
(molecule kJ-1) 

f202 kHz, PFBA 50 
600 

0.0044 
t1/2 = 158 min 

470 6 

f202 kHz, PFBA 100 
600 

0.0064 
t1/2 = 108 min 

470 9 

f202 kHz, PFBA 150 
600 

0.0072 
t1/2 = 96 min 

470 7 

f202 kHz, PFBA 200 
600 

0.0065 
t1/2 = 107 min 

470 9 

f610 kHz, PFBA 50 
600 

0.0037 
t1/2 = 187 min 

470 5 

f610 kHz, PFBA 100 
600 

0.0061 
t1/2 = 114 min 

470 8 

f610 kHz, PFBA 150 
600 

0.017 
t1/2 = 41 min 

470 23 

f610 kHz, PFBA 200 
600 

0.021 
t1/2 = 33 min 

470 29 

f202 kHz, PFBS 50 
600 

0.0048 
t1/2 = 144 min 

300 4 

f202 kHz, PFBS 100 
600 

0.009 
t1/2 = 77 min 

300 8 

f202 kHz, PFBS 150 
600 

0.013 
t1/2 = 53 min 

300 11 

f202 kHz, PFBS 200 
600 

0.013 
t1/2 = 53 min 

300 11 

f610 kHz, PFBS 50 
600 

0.004 
t1/2 = 173 min 

300 3 

f610 kHz, PFBS 100 
600 

0.006 
t1/2 = 116 min 

300 5 

f610 kHz, PFBS 150 
600 

0.017 
t1/2 = 41 min 

300 15 

f610 kHz, PFBS 200 
600 

0.021 
t1/2 = 33 min 

300 18 
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Table 4.  Comparison of Energy Efficiencies of PFHX degradation at varying power 
input (50 W, 100 W, 150 W, 200 W) and frequencies (205 and 610 kHz).   
 Power (W) 

Volume (L) k (min-1) Concentration 
(nM) 

G value x 1013 
(molecule kJ-1) 

f202 kHz, PFHA 50 
600 

0.007 
t1/2 = 99 min 

320 7 

f202 kHz, PFHA 100 
600 

0.016 
t1/2 = 43 min 

320 15 

f202 kHz, PFHA 150 
600 

0.019 
t1/2 = 36 min 

320 18 

f202 kHz, PFHA 200 
600 

0.025 
t1/2 = 28 min 

320 23 

f610 kHz, PFHA 50 
600 

0.010 
t1/2 = 69 min 

320 9 

f610 kHz, PFHA 100 
600 

0.021 
t1/2 = 33 min 

320 20 

f610 kHz, PFHA 150 
600 

0.036 
t1/2 = 19 min 

320 34 

f610 kHz, PFHA 200 
600 

0.034 
t1/2 = 20 min 

320 32 

f202 kHz, PFHS 50 
600 

0.005 
t1/2 = 139 min 

230 3 

f202 kHz, PFHS 100 
600 

0.012 
t1/2 = 58 min 

230 8 

f202 kHz, PFHS 150 
600 

0.012 
t1/2 = 58 min 

230 8 

f202 kHz, PFHS 200 
600 

0.016 
t1/2 = 43 min 

230 11 

f610 kHz, PFHS 50 
600 

0.007 
t1/2 = 99 min 

230 5 

f610 kHz, PFHS 100 
600 

0.014 
t1/2 = 50 min 

230 9 

f610 kHz, PFHS 150 
600 

0.022 
t1/2 = 32 min 

230 14 

f610 kHz, PFHS 200 
600 

0.027 
t1/2 = 26 min 

230 18 
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Table 5.  Comparison of Energy Efficiencies of PFOX degradation at varying power 
input (50 W, 100 W, 150 W, 200 W) and frequencies (358 and 610 kHz). 
 Power (W) 

Volume (L) k (min-1) Concentration 
(nM) 

G value x 1013 
(molecule kJ-1) 

f358 kHz, PFOA 50 
600 

0.0063 
t1/2 = 110 min 

240 7 

f358 kHz, PFOA 100 
600 

0.022 
t1/2 = 32 min 

240 23 

f358 kHz, PFOA 150 
600 

0.048 
t1/2 = 14 min 

240 35 

f358 kHz, PFOA 200 
600 

0.057 
t1/2 = 12 min 

240 30 

f610 kHz, PFOA 50 
600 

0.008 
t1/2 = 87 min 

240 17 

f610 kHz, PFOA 100 
600 

0.023 
t1/2 = 30 min 

240 24 

f610 kHz, PFOA 150 
600 

0.034 
t1/2 = 20 min 

240 24 

f610 kHz, PFOA 200 
600 

0.043 
t1/2 = 16 min 

240 23 

f358 kHz, PFOS 50 
600 

0.007 
t1/2 = 99 min 

200 12 

f358 kHz, PFOS 100 
600 

0.017 
t1/2 = 41 min 

200 15 

f358 kHz, PFOS 150 
600 

0.028 
t1/2 = 25 min 

200 16 

f358 kHz, PFOS 200 
600 

0.04 
t1/2 = 17 min 

200 18 

f610 kHz, PFOS 50 
600 

0.005 
t1/2 = 139 min 

200 9 

f610 kHz, PFOS 100 
600 

0.018 
t1/2 = 39 min 

200 16 

f610 kHz, PFOS 150 
600 

0.022 
t1/2 = 32 min 

200 13 

f610 kHz, PFOS 200 
600 

0.029 
t1/2 = 24 min 

200 13 
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Generally, there is a linear increase in energy efficiency with increasing power density up 

to a certain value.  Energy efficiency is also chain length dependent, with enhancements 

under dual frequency exposure.  Comparison of G values in Tables 2 and 5 ([PFOA] = 

240 nM, [PFOS] = 200 nM) show that increasing the acoustic power from 150 W to 200 

W (Table 5) at a single frequency of 610 kHz does not improve the energy efficiency 

towards PFOX degradation.  However, under simultaneous frequency of 20 + 610 kHz, 

there is a 4 - 9 % relative enhancement in energy efficiency.  At acoustic powers of 150 

and 200 W (f = 610 kHz), energy efficiency is on the order of PFBS ≥ PFHS > PFOS.  

For the carboxylates, PFHA is greater than PFOA, while PFBA is less than PFHA.  

Overall, increasing frequency and acoustic power improves energy efficiency for the less 

surface active chains.  However, with the exception of PFOS (f = 358 kHz), increasing 

the acoustic power for the most surface active surfactants, PFOS and PFOA, does not 

lead to an enhancement in energy efficiency, with values maximizing at 150 W. 

Interestingly, improvement in energy efficiencies can occur through changing surfactant 

concentrations, with higher surfactant concentrations lead to better energy efficiency.  

According to values by Vecitis et al, G values for PFOA and PFOS are 1972 x 1013 and 

154 x 1013 molecules kJ-1 ([PFOA] = 13,100 nM, [PFOS] = 14,000 nM, 250 W L-1, 358 

kHz).29 Thus, effectively harnesses the ultrasound power towards sonolytic degradation 

of perfluorinated surfactants, means increasing the PFYX concentration until the 

cavitation sites approach saturation with increasing bulk solute concentration.29  

According to Sunartio et al, addition of charged surfactants to solution enhances 

sonochemical activity by affecting the structure of bubble clusters and gas solubility in 

solution.25, 40  Although informative, the experiments were not conclusive as to the energy 
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efficiency at the level of the bubble population or bubble water interface but gave an 

overall measure of the efficency in the reactor design.  Furthermore, while there are 

limitations to optimizing energy efficiency via frequency and power, other options 

include increasing surfactant concentration and the application of dual frequency sound 

waves. 

Finally, the fast and nearly adiabatic collapse of a bubble converts the elastic 

potential energy into the internal energy of the bubble plus the kinetic energy of the 

liquid shell. The maximum temperature (Tmax) and pressure (Pmax) inside the bubble is (eq. 

11 and 12): 

Tmax = T0{
Pm (κ −1)

P
} (11)   Pmax = P{Pm (κ −1)

P
)}κ /(κ −1) (12) 

where T0 is the ambient temperature, P is the pressure in the bubble at its maximum size, 

Pm = P0 + Pa is the constant external presure during the fast collapse (P0 is the hydrostatic 

pressure and Pa is the acoustic pressure).  However, the actual maximum temperature and 

pressures are constrained by the kinetic energy of the bubble liquid shell available and the 

work necessary to heat the vapor in the adiabatic stage.  Depending on the power density 

and frequency, bubbles can undergo hundreds to thousands of oscillations.  Decreases in 

pressure increases the water vapour that upon initial collapse condenses at the interface 

due to higher pressures but does not fully condense due to the enhanced speed at the final 

stage of compression. The amount of vapor trapped at the end of collapse may play a 

major role in Tmax values and degradation rates. Colussi et al has shown that the 

endothermic atomization of water molecules represents a major contribution to the 

energy balance of the bubble, controlling the past phase of collapse.41  Molecules 
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decompose thermally due to the extreme conditions created at the end of the bubble 

collapse.  Water dissociates within a few μs above 3500 K42: 

H2O (g)  H (g) + •OH (g) 

The endothermic dissociation of water vapor (ΔH ~ 5 x 105 J/mol) has a net oxidizer 

production of 8.7 x 10-9 OH mol J-1 33 at 513 kHz, 0.065 W cm-3 under an argon 

atmosphere (rates represent a lower limit of the true rate of OH production via 

thermolysis in the gas phase of the bubble).  The experimental rate implies that only 

0.45 % = 100 x (8.7 x 10-9 OH mol J-1 x 5.0 x 105 J mol-1) of the applied ultrasound 

power is converted to sonochemical action.  Furthermore, the thermal decomposition of 

ammonium perfluorooctanoate in water has an enthalpy of  ΔH = 167 kJ mol-1.43  If given 

a G value of 1972 molecules k J-1 (2.3 x 10-8 mol kJ-1)29, then < 10-4 % = 100 x (2.3 x 10-8 

mol kJ-1 x 167 kJ mol-1) of the power density is used for the degradation of 

perfluorochemicals.   

Thus, while optimal power density, frequency, and concentration values have 

been found for the ultrasound irradiation of perfluorinated surfactants,9, 27, 29  further 

research endeavors should be directed toward optimization of dual frequency to 

dramatically intensify the physical and chemical effects of ultrasound. This would 

hopefully lead to greater energy efficiency of the ultrasonic process, making it more 

economically attractive for commercial applications.  With the average price of electricity 

at 8.14 cents per kilowatt per hour, the cost of degrading 1 L of solution containing 

perfluorinated surfactants (358 kHz, 250 W L-1, 10 °C, argon, ~200 nM PFOX ) under 

single frequency exposure is approximately $10 m-3 which is much greater than the 

$0.25m-3  for conventional water treatment and $2 m-3 for reverse osmosis.  However, 
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implementing a dual frequency system that relies on the propagation of two waves of 

different frequencies, enhances sonochemical effects thereby decreasing the cost of 

sonochemistry by 23% making the price ~ $7.5 m-3.  Although the enhancements prove 

less cost-effective than reverse osmosis, the results are preliminary and are not optimized 

in terms of perfluorinated surfactant concentration or for a system where the waveforms 

generated during dual frequency can undergo a maximum level of constructive 

interference to afford the greatest enhancements in sonochemical activity. 

Conclusions 

The evolution and fate of vapour – filled microbubbles in solution is a dynamic 

and complex process. Serving as catalytic reaction vessels, measureable chemical effects 

occur in bubbles undergoing large-amplitude asymmetric oscillations beyond the linear 

response, leading to intense temperatures and conditions that can pyrolyze perfluorinated 

surfactants. In this paper, reaction rates increase linearly with power density but 

eventually level off for less surface active surfactants such as PFBX at 202 kHz.  Dual 

frequency exposure can enhance sonochemical activity by either halving the intensity 

threshold to decrease the power input necessary to produce the same bubble population or 

producing higher maximum radius values (Rmax), followed by shorter collapse times that 

can generate higher temperatures and pressures compared to single frequency exposure.  

Overall, variable parameters such as power density, single or dual frequency, and type of 

sonic field influences bubble dynamics and thermodynamics through the modification of 

bubble radii and population density which in turn can influence sonochemical rates of 

degradation and energy efficiency. 
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Introduction 
 

Sonochemistry involves the use of sounds waves as an energy source to increase 

chemical reactivity in solution. Modern ultrasonic devices rely on piezoelectric 

transducers to generate sounds waves that move longitudinally through a liquid medium 

enhancing molecular motion, leading to a wide variety of physical and chemical 

processes such as hydrodynamic shearing,1, 2 the degradation 3-5 or synthesis6, 7  of 

chemical species, or nanoparticle dispersion8. These processes are dependent on the 

phenomenon termed acoustic cavitation, the formation, growth, and collapse of vapour 

bubbles which generates average vapor temperatures near 5000 K10, 11 and pressures on 

the order of several hundred atmospheres.12  The degradation of dissolved organic 

compounds occur either through direct pyrolysis or through oxidation reactions with 

transiently produced high temperature species such as O-atoms, hydroxyl radicals and H-

atoms generated from the pyrolysis of water.13 

The efficient decomposition of organic compounds using ultrasound irradiation 

makes it a viable technology in the remediation of environmentally persistent and 

recalcitrant compounds such as perfluorinated chemicals (PFCs). Due to their high bond 

strength (450-530 kJ mol-1) and low polarizability, PFCs are resistant to current 

advanced oxidative technologies. Reduction using elemental iron under near 

supercriticial water conditions is effective in decomposing PFC’s to their primary 

constituents; however, the scale-up of a high pressure and a high temperature system has 

proven difficult.14, 15  Photodegradation of PFOS by UV irradiation in water  is possible 

but with slow rates of degradation.16 Recently, acoustic cavitation as induced by high 

frequency ultrasound was shown to successfully degrade perfluorinated surfactants, 
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perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) to their inorganic 

constituents.14, 17  Therefore, while most organic compounds can be degraded through 

more economically viable alternative remediation techniques, sonochemistry is a 

plausible option for persistent pollutants such as fluorochemicals. 

A number of reports concerning the sonochemical degradation of various types of 

organic compounds under heterogenous and homogenous conditons have revealed a 

Langmuir type kinetic model.  Nanzai et al reported reported a Langmuir type mechanism 

for the degradation of alkylbenzene sulfonates of varying chain length at concentrations 

between 15-40 mM.4  Okitsu et al showed the sonochemical degradation of azo dyes, 

butyric acid, and benzoic acid following Langmuir-Hinshelwood kinetics.18  Finally, 

Vecitis et al measured the concentration-dependent rates of perfluorooctanesulfonate 

(PFOS) and perfluorooctanoate (PFOA) below 100 mM and modeled the results with a 

Langmuir type mechanism.19 Due to their surface active properties, all aforementioned 

organic compounds accumulate at the interfacial region of the cavitation bubble where 

they undergo adsorption prior to interfacial sonochemistry. 

The physical process of adsorption of perfluorinated surfactants, PFOS and PFOA,  

to the bubble-water interface dictates the rates of their sonochemical degradation19 with 

the initial rate-determining step being the ionic headgroup cleavage at the interface 

followed by a relatively quick mineralization of the fluorcarbon tail.14  However, a 

detailed study on how chain length effects the adsorption to the bubble-water interface 

has yet to be investigated. Studies by Campbell et al reveal that equilibrium bubble 

surface partitioning was shown to have no correlation to perfluorinated surfactants (Cn > 

4) sonochemical kinetics and that adsorption was ultrasonically mediated under lightly 
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populated conditions.20  However, initial results also suggested a possible correlation 

between equilibrium partitioning and sonochemical kinetics for the shorter chain and less 

surface active species, perfluorobutane sulfonate (PFBS) and perfluorobutanoate (PFBA). 

Although reports on the reaction kinetic model of the longer chain PFOS and 

PFOA have been made, information about the concentration dependent reaction kinetics 

of shorter chain PFHA, PFHS, PFBA and PFBS are investigated for the first time.  

Application of a Langmuir type kinetic model on the basis of a heterogeneous solution 

system is applied in evaluating the sonochemical effects on surface activity and the 

absolute rates over four orders of magnitude of initial PFYX (Y = H or B, X = A or S) are 

determined. Furthermore, changes in the physico-chemical properties of bubbles caused 

by the accumulation of the surfactants will also be considered. 

Experimental Methods 

Perfluorobutyric acid (PFBA) and perfluorohexanoic acid (PFHA) were 

purchased from Sigma Aldrich.  Potassium perfluorobutane-1-sulfonate (PFBS) and 

potassium perfluorohexane-1-sulfonate (PFHS) were provided by 3M.  Ammonium 

acetate (>99%) and methanol (HR-GC > 99.99%) were obtained from EMD Chemicals 

Inc.  Aqueous solutions were prepared with purified water using a Milli-Q system (18.2 

MW cm resistivity).  Acid solutions were brought to a pH of 7.0 by addition of 

ammonium hydroxide. 

An ultrasonic frequency of 618 kHz was generated using an Allied Signal-ELAC 

Nautik ultrasonic transducer with the reaction solution held in a 600 mL jacketed glass 

reactor.  The applied power density was 250 W L-1.  The temperature was controlled with 

a Haake A80 refrigerated bath maintained at 10 °C.  All reactions were sparged with 
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argon for at least 30 minutes prior to and during the reactions.  PFHS and PFHA were 

sonicated simultaneously over an initial concentration range of 467 nM to 110 mM for 

PFHA and 122 nM to 135 mM for PFHS.  PFBS and PFBA were sonicated 

simultaneously over an initial concentration range of  277 nM to 158 mM for PFBA and 

217 nM to 122 mM for PFBS.  Higher concentrations of the four compounds were not 

tested, as sonication caused the compounds to precipitate.  Concentration versus time 

profiles were fitted either to a single exponential decay for first-order kinetics, or linearly 

for zero-order kinetics. 

Analysis of PFBA and PFBS was completed by high-performance liquid 

chromatography mass spectrometry (HPLC-MS).  The samples were placed into 750 mL 

polypropylene autosampler vials and sealed with a poly(tetrafluoroethylene) (PTFE) 

septum crimp cap.  For reactions with initial concentrations greater than 250 ppb, serial 

dilutions to achieve a concentration of 100 ppb were completed prior to analysis.  

Aliquots (20 μL) were injected into an Agilent 1100 LC for separation on a Betasil C18 

column (Thermo-Electron) of dimensions 2.1 mm i.d., 100 mm length, and 5 µm particle 

size.  A 2 mM aqueous ammonium acetate/methanol mobile phase at a flow rate of 0.3 

mL min-1 was used with an initial 5:95 aqueous/methanol composition.  The eluent 

composition was increased to 90:10 over 12 min to separate the PFCs.  HPLC effluents 

were analyzed with an Agilent ion trap mass spectrometer in the negative ion mode for 

the perfluorohexanesulfonate molecular ion (m/z = 399), the perfluorobutanesulfonate 

molecular ion (m/z = 299), the decarboxylated perfluorohexanoate ion (m/z = 269) and 

the decarboxylated perfluorobutanoate ion (m/z = 169).  The nebulizer gas pressure was 

40 PSI and the drying gas flow rate and temperature were 9 L min-1 and 325 °C, 
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respectively.  The capillary voltage was set at +3500 V and the skimmer voltage was -

15V.  Quantification was completed by first producing a calibration curve using 8 

concentrations between 1 and 200 ppb fitted to a quadratic with X-1 weighting.  

Surface tension measurements were made with a De Nouy tensiometer utilizing 

the ring method.  The tensiometer was calibrated with a weight of known mass.  Each 

sample was measured three times.  The PFBS surface tension measurements were on 

concentrations up to 10 and 100 mM, respectively, where the compounds became 

insoluble.  The curve was fitted to the surface pressure equation of state using Matlab to 

determine the equilibrium air-water partitioning coefficient and the maximum surface 

concentration. 

Results  

PFBX Concentration-Dependent Sonochemical Kinetics.   

Sonolysis of aqueous solution of perfluorinated surfactants using different initial 

concentrations were carried out at 618 kHz, 250 W L-1, 10 °C under an argon atmosphere.  

The initial concentration ranges for PFBA were 277 nM – 158 μM and for PFBS were 

217 nM – 123 μM. The degradation of PFBX (X = c(A)rboxylate or (S)ulfonate)  by 

sonication is reflected by a decrease in concentration of each of the PFCs over time 

(depicted in Figures 1a-b).  At PFBA concentrations over the range of 277 nM to 29.6 

μM, the observed kinetics are pseudo-first order and are fitted to a single exponential 

decay.  Similarly, at concentrations over the range of  217 nM to 19.2 μM, PFBS kinetics 

are pseudo-first order and are also fitted to a single exponential decay.  Previously 

reported results on PFBA and PFBS sonochemical decomposition completed at [PFBA]i≤ 

0.47 μM and [PFBS]i ≤ 0.30 μM displayed similar kinetic orders (Campbell, J.  Phys 
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Chem C).  At PFBA concentrations of  53.3 μM to 158 μM, the reaction kinetics are 

zero-order over the entire time-course.  Similar, zero-order reaction kinetics are observed 

for PFBS concentrations of  40.5 μM to 123 μM. 
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Figure 1a-b.  Time dependent plots of PFBX sonolytic degradation over a range of initial 
concentrations under ultrasonic conditions:  618 kHz, 250 W L-1, 10 °C, and argon.  (a) 
[PFBA]t/[PFBA]i vs time in minutes.  (b) [PFBS]t/[PFBS]i vs time in minutes.  

 

The transition of PFBX from pseudo-first-order kinetics at low concentrations to 

zero-order kinetics at high concentrations is consistent with saturation kinetics in which 

high [PFBX]I saturate the adsorption sites at the transiently cavitating bubble-water 

interface where sonochemical decomposition of PFBX occurs pyrolytically.  The 

observed kinetic parameters are given in Table 1.   
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TABLE 1:  Concentration Dependent Sonochemical Kinetics of PFBX 

[PFBA] 
(nM) 

first-
order 
(min-1) 

zero-order 
(nM min-1) 

-d[PFBA]/dt 
(nM min-1) [PFBS] (nM) 

first-order (min-

1) 
zero-order 
(nM min-1) 

-
d[PFBS]/dt 
(nM min-1) 

277 0.014  3.85 217 0.022  4.71 
3099 0.017  52.3 2297 0.029  65.9 
15137 0.006  96.9 9521 0.009  82.8 
29621 0.004  118 19160 0.005  93.9 
53261  79.9 79.9 40509  166 166 
92973  205 205 69781  286 286 
125210  238 238 91661  275 275 
158849  238 238 109107  185 185 
158382  317 317 122708  417 417 

 

For low initial concentrations, [PFBA]i  ≤  29.6 μM and [PFBS]i  ≤  19.1 μM the 

time-dependent plot was fitted to an exponential curve to determine the first-order rate 

constant, k  (min-1), and eq 1 was used to determine the absolute rate. app
−PFBX

d[PFBX]
dt

 = −kapp
−PFBX [PFBX]          (1) 

For high initial concentrations, [PFBA]i  > 50 μM and [PFBS]I > 30 μM, the time-

dependent plot was fitted to a linear curve with the slope kapp
−PFBX ' , taken to be the absolute 

degradation rate, eq 2. 

 

d[PFBX]
dt

 = −kapp
−PFBX '                       (2) 

For concentrations less than 53.4  μM, the degradation rates were in the order 

 > k .  These results are the same as previous reports on the sonolysis of PFBX.20 kapp
PFBS

app
PFBA

Equilibrium Partitioning to the Air-Water Interface. 

 In previous reports, a kinetic model based on a Langmuir type mechanism was 

described for the sonolysis of PFOS and PFOA.19  This model was used to explain the 

localization of the reaction zone to be at the interfacial region of the transiently cavitation 

bubble, where pyrolysis occurred due to high temperatures.  The interfacial adsorption of 
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PFBA and PFBS are also described by the Langmuir type mechanism.  In the Langmuir 

model, the surface excess, Γex, is a function of the equilibrium interface partitioning 

constant, Keq in liters per mole, and the maximum surface concentration Γmax in moles per 

square meter.  The equibrium adsorption of PFBX to the bubble-water interface is shown 

in eq 3. 

 

, ,

[ ]
                                            (3)

1 [ ]

PFBX
eqPFBX PFBX

ex eq Max eq PFBX
eq

K PFBX
K PFBX

Γ = Γ
+  

The Γex and Keq values are determined from the dependence of surface tension on 

surfactant concentration (Figure 2) by least-squares fitting of the surface pressure to the 

Szyszkowski equation, eq 4. 

Π = γ 0 − γ[PFBX ] = nRTΓMax,eq
PFBX ln(1+ Keq

PFBX [PFBX])          (4)  

where Π is the surface pressure in newtons per meter, γ0 = 0.072 N m-1 is the surface 

tension of pure water, and γ[PFBX] is the surface tension at varying PFBX concentration.  

Maximum air-water interface concentrations are previously reported as Γ = 1.95  x 

10-6 mol m-2 and ΓPFBS=4.4 x 10-6 mol m-2 and equilibrium partitioning coefficients as 

KPFBA = 31.7 L mol-1 and KPFBS = 40.4 L mol-1. 

max
PFBA
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Figure 2. (a) Surface tension of PFBX as a function of concentration. (b) Plot of surface 
excess vs aqueous PFBS or PFBA concentration: (red solid line) PFBS noncompetitive, 
(blue solid line) PFBA noncompetitive, (red dashed line) PFBS competitive, (blue dashed 
line) PFBA competitive. 
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According to the surface tension data, PFBS shows to be the stronger surfactant.  

Furthermore surface excess values versus PFBX concenrations were plotted in Figure 2b 

where solid lines represented individual PFBX curves and dashed lines are for individual 

components of the [PFBS] + [PFBA] curve modeled according to a competitive 

adsorption isotherm eq 5. 

Γex,eq
PFBS = ΓMax,eq

PFBS Keq
PFBS[PFBS]

1+ Keq
PFBS[PFBS]+ Keq

PFBA[PFBA]
          (5)  

Contrary to results by Vecitis et al in which PFOS outcompetes PFOA for air-water 

interface sites thus decreasing its surface excess by 7.2 under saturation condtions,19 there 

is little competition between the surface excess of PFBS and PFBA due to the high water 

solubility of PFBA. 

Discussion 

d[PFBX]/dt vs [PFBX]I Sonochemical Kinetic Modeling. 

There are three different regions in which sonochemistry can occur:  (1) the inside 

of the cavitating bubble with high pressures and temperatures, (2) the interfacial region of 

the bubble, (3) the bulk solution.  Although radical reactions occur in all the regions, 

perfluorinated surfactants are inert to OH radicals. Assuming that the majority of the 

surfactants exist in their anionic form, accumulation would occur at the bubble-water 

interface.  The rate is dependent on the number of effective reaction sites to which the 

surfactants can bind.  Binding in turn is dependent on the equilibrium constant, K=k1/k-1,  

which is defined as the concentration moving away or towards the reaction site prior to 

bubble collapse.   At the moment of bubble collapse, molecules adsorbed at the reaction 

site are pyrolyzed with the pseudo-first order rate constant k.   
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The transition from first-order to zero-order kinetics upon increasing initial 

concentration is consistent with Langmuir kinetic mechanism In this mechanism, the rate 

of PFBX degradation is proportional to θSono
PFBX , the fraction of total molecules adsorbed to 

the transiently cavitating bubble-water interface (eqs 6 and 7). 

 

θSono
PFBX  = KSono

PFBX [PFBX]
1+ KSono

PFBX [PFBX]
                                                 (6) 

 

d[PFBX]
dt

 = Vmax
−PFBX θSono

PFBX   = Vmax
−PFBX  KSono

PFBX [PFBX]
1+ KSono

PFBX [PFBX]
          (7) 

d[PFBX]
dt

 = Vmax
−PFBX KSono

PFBX [PFBX]
1+ KSono

PFBX [PFBX]
                                     (8) 

where V  (M s-1) is the maximum rate of reaction when all the available adsorption 

sites are occupied and the interfacial adsorption equilibrium constant  = k1/k-1 

represents PFBX concentration at the interfacial region or in the bulk solution.  This is 

based on a pseudo-steady state assumption for the adsorption and desorption of PFBX 

under the conditions in which the approach to equilibrium and the determination of 

bubble lifetime is uncertain due to high frequency bubble oscillations.  

max
−PFYX

KSono
PFBX

 The transition in kinetic regimes is consistent with a Langmuir model.  At low 

PFBX concentrations, the surface is undersaturated, reflecting first-order kinetics (eqs 8 –

11). 

Sono

[ ] 1                                                            (8)

[ ]                                                       (9)
[ ] [ ]

PFBX
Sono

PFBX PFBX
Sono

PFBX PFB
app Max

K PFBX

K PFBX
d PFBX k PFBX V

dt

θ

−

<<

=

= = − [ ]          (10)

                                                       (11)

X PFBX
Sono

PFBX PFBX PFBX
app Max Sono

K PFBX

k V K− = −
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Although no intermediate concentrations were observed, theoretically adsorption starts to 

slow down as the bubble surface becomes increasingly populated (eq 12): 

[ ][ ]                              (12)
1 [ ]

PFBX
PFBX Sono

Max PFBX
Sono

K PFBXd PFBX V
dt K PFBX

= −
+

 

At high concentrations,  all the surface sites are occupied and the maximum absolute 

rates is modeled by (eq 13 and 14). 

KSono
PFBX [PFBX] >>1          (13)

d[PFBX]
dt

= −VMax
PFBX          (14)

 

These results correlate with a transition in kinetic regimes based on low and high 

concentration as consistent with Langmuir type kinetics. At low and intermediate 

concentrations, the kinetics is proportional to the concentration of PFBX adsorbed to the 

bubble water interface, while high concentrations suggest the rate limiting step to be 

PFBX pyrolysis due to complete occupation of all surface sites.19  

          Figure 3 a and 3b show the absolute degradation rate vs PFBX concentration in 

linear-linear and log-log format, respectively (values obtained from Table 1).  Over the 

initial concentration ranges from 200 nM to 3000 nM, PFBX
appk −

S

 (eq 1) are constant with 

 = 0.026 min-1 and  = 0.016 min-1 and = 1.65 .  At these values, 

the surface sites are undersaturated and the increase in the absolute rates correlate with an 

increase in 

PFBS
appk − PFBA

appk − PFB
appk − PFBA

appk −

PFBX
Sonoθ .  Due to the greater maximum interfacial concentrations of PFBS, 
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2.3PFBS PFBA
Max MaxΓ = Γ , and larger partitioning coefficient, 1.3PFBS PFBA

eq eqK==K , PFBS is expected 

to have greater equilibrium activity at the bubble-water interface. 

, PFBS is expected 

to have greater equilibrium activity at the bubble-water interface. 
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Figure 3.  Absolute PFBX sonolysis rate plotted as a function of initial PFBX 
concentration and fitted by the competitive LH model: (a) Linear-linear plot (b) Log-log 
plot. 

Figure 3.  Absolute PFBX sonolysis rate plotted as a function of initial PFBX 
concentration and fitted by the competitive LH model: (a) Linear-linear plot (b) Log-log 
plot. 
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 To find a linear relationship between concentration dependence and degradation 

rate, both sides of eq 12 were inverted: 

1
d[PFYX]/dt

 = 
Vmax

−PFYXK
1

Sono
PFYX

1
[PFYX]

 + 1
Vmax

−PFYX           (15) 

and a reciprocal plot of   versus 1
[PFYX]

1
d[PFYX]/dt

 based on the LH approach was 

while data for [PFBX] < 30 μM (Figure 4b) was not able to be fitted in a straight line.  

 

igure 4. M).  (b) 
eciprocal l M). 

 

over 277 nM - 159 μM for [PFBA] and 217 nM – 109 μM for [PFBS], the absolute rates 

are observed to saturate at 

shown in Figure 4a and 4b.  [PFBX] > 40 μM (Figure 4a), showed a linear relationship, 
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As previously mentioned, according to Figure 3, at  initial concentration ranges 

,
PFBA

Max App  ,V − = 252 nM min-1 and PFBS
Max App

convergence of maximum rates of degradation when the bubble surface sites are saturated.  

V −  = 281 nM min-1, showing 

These correspond to Ksono values of 63, 942 M-1 for PFBA and 92, 527 M-1 for PFBS with 
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KPFBS ≈ 1.4 KPFBA. However, reciprocal plots of the initial concentration vs the the rate 

over the initial concentrations ranges of 29.9 – 170 μM = PFBA and 19.2 – 123 μM = 

PFBS shows that ,
PFBA

Max AppV − = 556 nM min-1  and ,
PFBS

Max AppV − = 769 nM min-1 (Figure 4 and 

Table 2).  

Table 2:  Sonoche vs Equilibrium Surface Activity.  Italicized values of VSono mical 
eciprocal Plots 

applied 

 
are From R

 

(kHz) 

(W (mol m
2) 

Keq 

(M-1) 

Ksono 

(M-1) Ksono/Keq ref. 

frequency 

power 

density 

Γeq, max 
-

Vsono, 

max(nM 

min-1) L-1) 

FBA  ) 6397 369 
this 

work 
618 250 1.95e-6 31.7 252 (556P

PFBS 618 4.4e-6 40.4  7355 182 
 

PFOA 354 4.5e-6 360 28500 79  

0 is 

 

 order Sono va KPFBS A . ng eq 6, 

250 

250 

 o  K

282 (769)

1660 

 1

this 

work

vecitis

PFOS 354 250 5.1e-6 1970 230 12100 61 vecit

The relative f the lues is  ≈ .1 KPFB Accordi  to KSono is 

proportional to θSono
PFYX , the fraction of total mo sorbed to the transiently cavitating lecules ad

bubble-water interface.  The longer tailed species partitions more effectively.  However, 

the relative values of the sonolytic enhancement Ksono/Keq  are PFBA ≈ 2 PFBS 

suggesting a greater ultrasonic effect on the dynamic adsorption the the bubble interface 

by the shorter chain PFBA. Although small, the difference in the magnitude of sonolytic 

enhancement can be delineated from the ability of the surfactants to partition into the 

bubble-water interface, which is dependent on the n-alkyl chain length.  The higher Vmax 

from the reciprocal plots reflects variations from the LH kinetic model at [PFBA] > 159 

μM and [PFBS] > 91.7 μM.  At high concentrations, surfactant accumulation at the 
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bubble-water interface induces changes in the physico-chemical properties of the 

cavitating bubble.4, 21, 22  Changes in the reaction pathway, in the physico-chemical 

properties of the bubble, and enhanced electrostatic repulsion between molecules and 

bubbles are all factors that may contribute to substantially enhanced rates. 

According to Burns et al, in aqueous solution, there exists an equilibrium between 

two electronically and structurally unique species (i.e. PFBA and PFBA-H) which exhibit 

different partitioning capabilities dictated by their physicochemical properties.23   The pH 

of the solution decreases over the irradiation time, such that the degradation of the 

chemicals is controlled by the relative proportions of the acidic (neutral species) and 

anionic species as well as the magnitude of their partition coefficents.  When the anionic 

form of PFBA or PFBS is protonated, the neutral species will readily partition to the gas 

phase, lowering the collapse temperature 24 which can decrease the rate of the reaction as 

shown for PFBX in Figure 3a.   However, fluorination which inductively withdraws 

electron density away from the carboxlate anion, stabilizing the conjugate base, has less 

effect with increasing chain length such that the shorter chain perfluorinated species, 

PFBA, has a lower pKa than PFBS.  Furthermore, the dimensions of PFBA (0.26 nm) is 

more similar to an ionic hydration sphere (0.3 –0.4 nm) which reduces hydrophobic tail 

interactions such that it cannot compensate for the coulumbic repulsion between 

headgroups.  Together, the rate of PFBA degradation is dependent on the number of 

surface sites available for it to bind.  When all surface sites are covered, then the rates 

have reached maximum and can no longer increase with increasing concentration of 

PFBA (Figure 3).  At 92 uM, PFBS reaches a Vmax value similar to PFBA, followed by 

a short decrease, then an increase in the absolute rates of degradation.  The increase can 
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be attributed to the increasing pH of the solution which can shift the equilibrium towards 

a slightly more protonated concentration of PFBS which can partiition to the gas phase.  

However, upon higher concentration, aggregation of the anionic form of PFBS can 

occur23 which suppresses the pH and in turn increases the amount of anionic surfactant in 

solution.  Adsorption would increase the number of bubbles in solution therefore 

increasing the number of surface adsorption sites. 

Conclusions 
 The concentration-dependent sonochemical kinetics have been studied over the 

μM and are fitted to a Langmuir model 

ums at 252 and 282 nM min-1 for PFBA and PFBS, respectively.  The 

initial concentration ranges of 200 nM to 170 

with rate maxim

sonochemical mediated surface activities are PFBA
SonoK = 6400 M-1 and PFBS

SonoK = 7400 M-1 , 

implicating that the sonochemical surface activities, PFBX
SonoK , are 80 to 100 times greater 

than the equilibrium surface activities, PFB
eqK his study shows ncements in 

absolute rates of degradation revealing how variations in concentration can be an 

optimization method in the application of
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Abstract 

Fucose α(1-2) galactose carbohydrates have been implicated in modulating the 

recogni

rates are key modulators of molecular and cellular recognition and 

encode

tion and communication between nerve cells that underlies long-term memory 

storage.  Currently, our lab has established that the Fucα(1-2)Gal moiety stimulates 

neuronal outgrowth and changes in neuronal morphology.2,3  Furthermore, increase in 

neurite outgrowth activity has been implicated through the use of polyvalent 

glycopolymers.2 My project seeks to understand this mechanism by developing novel 

multivalent polyacrylamide probes that will help in the capture and identification of 

fucosyl lectins in developing neurons. Initially, we will optimize the synthesis and yields 

of the Fucα(1-2)Gal disaccharide followed by the polymerization of the disaccharide 

with a photoactivable crosslinker and biotin to yield a multifunctional glycopolymer.  

The capture of Fucα(1-2)Gal binding proteins will provide insight into the molecular 

mechanisms of fucosyl saccharides and enable us to gain a better understanding of their 

roles in the nervous system. 

Introduction 

Carbohyd

 information critical for mediating events such as blood-antigen recognition, 

inflammation, bacterial and viral pathogenesis.10, 11 The ability of small oligosaccharide 

units to mimic the unique biological activities of the natural polysaccharide has provided 
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chemical biologists with the opportunity to create synthetic analogues with predetermined 

properties. 1 These defined structural properties can help elucidate the exact molecular 

mechanisms in which cellular signaling events take place, beginning at the cell surface 

and leading to downstream regulatory pathways. 

Carbohydrates play an important role in many processes in the brain ranging from 

neuron

g neuronal 

al growth and differentiation to cell adhesion and synaptic plasticity. 21-26 Fucα(1-

2)Gal, a terminal carbohydrate modification to N- and O-linked glycoproteins has been 

implicated in cognitive processes such as learning and memory.2, 27, 28  For example, the 

inhibition of protein fucosylation using 2-deoxy-galactose, an inhibitor of the Fucα(1-

2)Gal linkage, caused reversible amnesia in rats.3,4, 29 Moreover, an increase in fucose 

incorporation into glycoproteins occurred upon passive avoidance training in animals and 

long-term potentiation (LTP), a cellular model for learning and memory.3,5, 32,33   Finally, 

administration of L-fucose in rats enhanced memory formation and LTP. 3,6,34 

      While the importance of fucoseα(1-2)galactose saccharides in modulatin

connections important for long-term memory storage have been established, their precise 

structure or function has yet to be elucidated in the brain. Recent studies in our lab have 

identified the presence of these carbohydrates on glycoproteins synapsin Ia and Ib, 

proteins involved in neurotransmitter release.3  2-Deoxy-galactose showed inhibition of 

the cellular fucosylation of synapsin and dramatic reduction in the expression of synapsin 

in 7 DIV (days in vitro) cultured neurons.  Furthermore, 2-dGal added to hippocampal 

neurons that were cultured 7 (DIV) caused dramatic retraction of neurites and collapse of 

synapses, whereas 6-dGal produced no change in neuronal morphology.3  Together, these 

results have suggested that Fucα(1-2)Gal and its associated proteins may regulate 
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morphological changes that underlie learning and memory.   

Lectins possess the ability to behave as recognition molecules both inside and on 

the cell surface.  While the existence of glycoproteins bearing the Fucα(1-2)Gal epitope 

have been established in the brain, potential lectins, proteins which interact with 

carbohydrate motifs, have yet to be identified. The recent discovery of Fucα(1-2) Gal 

glycoproteins in mature neuronal cultures implies that Fucα(1-2)Gal lectins also exist in 

the brain.3,13  In an effort to capture these lectins, our lab synthesized the chemical probe 

in Figure 1 containing the carbohydrate recognition element, biotin, and a 

trifluoromethylphenydiazirine moiety, which enabled the capture of lectins via  

photoactivated crosslinking.  However, monovalent interactions were not strong enough 

to isolate lectins for identification purposes.  Overall, our efforts to identify these lectins 

have been hampered by the lack of an efficient biological probe that can bind to them 

strongly enough for isolation and purification. 
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Figure 1.  First Generation Chemical Probe for Identifying Fucα(1-2)Ga s. 

binding 

ini

l lectin

 The difficulty in capturing lectins lies in their weak carbohydrate-

aff ties.7  Interestingly, polyacrylamide polymers bearing multiple Fucα(1-2)gal 

  87



epitopes (FucGal - PAA; MW ≈ 30kDa, 20% disaccharide density) were found to 

significantly enhance the interaction between carbohydrates and lectin receptors.2  An 

interesting implication for this is that specific small molecules when supplied at high 

concentrations, is sufficient to stimulate a signal transduction cascade by coupling the 

functions of multiple cell surface receptors.  Many receptors involved in cell surface 

signaling events function as dimers and oligomers which can increase ligand-receptor 

binding interactions thus stimulating downstream signaling events. 39 This clustering 

mechanism can either optimize alignment of an enzyme active site through the 

interactions of several receptors, cause subcellular localization of receptors to sites where 

intracellular signaling proteins are present, or enhance the intensity of a signal by 

increasing the number of receptors in one location. 38  

 The ability of polyvalent interaction to amplify a biological effect has led my 

sear

antage of the enhanced binding affinity of lectins to polyvalent 

carbohy

re ch to focus on the design and synthesis of a multivalent polyacrylamide-based 

capture probe to identify hard to isolate lectins and map out their roles as recognition 

molecules that mediate events involved in neuronal communication 

 Project Goals 

Taking adv

drate ligands, my project seeks to develop a new generation of multivalent probes 

to capture and identify lectins from the embryonic hippocampus of rats. The 

glycopolymer is highly functionalized to contain several Fucα(1-2)Gal recognition 

elements,  phenylazide photo affinity labels to photochemically attach the polymer to 

recognition sites on the lectin receptor, and a biotin unit located at the end of the polymer 

to prevent interference with ligand/lectin receptor interactions and to optimize 
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purification approaches using avidin (streptavidin) based affinity chromatography.8  The 

flexible design allows control over carbohydrate density and spacing between the 

polyacrylamide backbone and the carbohydrate ligand. 

Capture of Fucα(1-2)Gal binding proteins will be followed by their identification 

by mas

gn 

neration of capture probes will consist of an end-labeled biotin with 

a space

ontrolled design and synthesis.  The 

majorit

s spectrometry.  Our findings will establish that lectins in the brain are specific for 

the Fucα(1-2)Gal relative to other disaccharides and will provide a deeper understanding 

of the stereochemical and structural characteristics that give rise to carbohydrate 

specificity and binding interactions.  We will be able to investigate whether Fucα(1-

2)Gal saccharides function as an extracellular “recognition element”  in their interactions 

with lectins.  Together, our discoveries will help to correlate the chemical and structural 

changes occurring at the synapse to the downstream processes involved in nerve cell 

communication. 

Synthetic Desi

Our second ge

r arm connected to a polyacrylamide backbone containing several Fucα(1-2)Gal 

and phenylazide units (Figure 2).  The synthetic strategy of this multivalent polymer 

relies on a cyanoxyl-mediated free radical polymerization developed by Chaikof et al8  in 

which the biotin derivatized arylamine acts as the initiator in the cyanoxyl-mediated 

pathway providing the desired end-labeled biotin.   

The advantages of this pathway lie in its c

y of multifunctional glycopolymers available contain several anchoring groups 

within the polymer, which can inhibit or reduce the overall bioactivity of the polymer by 

interfering with carbohydrate-binding site interactions.35,36  Furthermore, the 
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polyacrylamide scaffold minus the biotin and phenylazide linker has been proven to 

stimulate neurite outgrown in our assays 2.  Finally, through its polyacrylamide-based 

backbone, the glycopolymer is flexible and behaves in a random coil fashion 1, 

optimizing the ability of the carbohydrates to rearrange and interact with lectins. 
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Figure 2.  Design of a multivalent capture probe to identify Fucα(1-2)Gal binding 

and Discussion 

on, our goal was to develop a new route to optimize the 

synthes

proteins. 

Results 

Prior to polymerizati

is of our disaccharide. This entailed choosing ideal protecting groups that 

improved yields and shortened steps.  Overall, we were able to successfully develop a 
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route to our disaccharide in ten steps.  However, prior to the optimized route, we 

attempted a one-pot protection-glycosylation procedure developed by Wang et al17 in 

which α1-2 disaccharides were generated through a highly regioselective protection of 

hexopyranosides to provide a free hydroxyl at the C-2 position (Figure 3).  

In Wang’s one-pot strategy, isopropylidenation was followed by a highly 

selective benzylation of hexopyranosides, generating  a fully protected 2-hydroxy 

monosaccharide.  This reaction occurs under a very mild, acid-catalyzed reductive 

etherification of the O-trimethylsilyl intermediate with benzaldehyde.18  The resulting 2-

hydroxy compound can then be coupled to an activated imidate via an α1-2 linkage.  The 

regioselectivity at the hydroxyl of C-6 was attributed to steric interference from the 

anomeric linker group and an inductive effect from the anomeric oxygen which decreased 

the nucleophilicity at the C-2 hydroxyl position.17 
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Figure 3.  Wang’s Regioselective One Pot Synthesis. 

ng’s one pot procedure to the protection of our 

galactopyranoside which had a propanolamine linker β to the anomeric position (Figure 

4).  

Synthesis of Monomers 

We decided to apply Wa
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Figure 4.  Carbobenzoxy 3-amino-1-propyl β-D-galactopyranoside 

We chose peracetylated galactose as our starting material.  Sugar peracetates are 

very convenient glycosyl donors and can form 1,2 trans-stereoselective products.19  This 

n intermediate which 

can th

an activator 

for acid

occurs through an acid-catalyzed formation of a 1,2-acyloxonium io

en react with nucleophiles to produce the 1,2-trans product.19  Therefore, 

peracetylated D-galactose was reacted in a BF3•OEt2  catalyzed coupling to 

carbobenzoxy protected 3-aminopropanol12 , followed by deacetylation in methanol and 

sodium methoxide to yield the unprotected galactose monomer 2 (Figure 4).  

The next step in the synthesis of our galactose monomer was isopropylidenation 

at the C-3 and C-4 hydroxyl, followed by silylation with tetramethylsilyl chloride at the 

C-2 and C-6 position (Figure 5).  The silyl ether at the C-6 position served as 

 catalyzed reductive etherification of benzaldeyde with triethylsilane.  
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Figure 5. Proposed Route towards Fucα(1-2)Gal via One-Pot Protection and 
Glycosylation. 
 

Although the Wang strategy seemed promising, attempts to synthesize our 

disaccharide through the one-pot method were unsuccessful. We had difficulty in 

isopropylidene and in maintaining the silyl ether intermediate which 

proved

generating the 

 labile upon addition of TMSOTf.  While our linker group was in the β orientation 

in our galactose monomer, in Wang’s procedure, most of the groups at the anomeric 

position were in the α orientation, except for S-ethylthiol.  We considered using S-ethyl 

β-galactopyranoside and allyl α-galactopyranoside as possible starting materials that 

could later undergo either substitution or deprotection/activation at the anomeric position 
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by our linker group.  However, the number of steps were increased such that the overall 

synthetic plan did not seem optimal to affording the disaccharide in good yield. 

Our next step, was to improve our synthetic plan by choosing the route depicted 

in Figure 6.  We initially had to examine the isopropylidene reaction in detail since it 

gave us the most problems in terms of starting material reactivity and product yield. 

Reacting our galactose monomer under 10-CSA in acetonitrile gave us both 3,4- and 4,6-

O-isopropylidenes, with greater formation of the 4,6 O-isopropylidene.  Due to the excess 

formation of the kinetically favored 4,6 O-isopropylidene, approaches using different 

acid catalysts over a 24 h period were implemented to optimize the synthesis of the 

thermodynamically stable 3,4 O-isopropylidene derivative and consumption of starting 

material.  Allowing the reaction to go to 48 h resulted in full consumption of starting 

material but with excess formation of a methyl methoxyethyl ether at the C-6 hydroxyl.  

However, this was readily removed under refluxing conditions at 50°C in 10:1 

MeOH/H2O and catalytic amounts of acetic acid. 
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Figure 6.  Synthesis of the disaccharide monomer 12. 

We then chose to protect the hydroxyl group at the C-6 position with the tert – 

butyldimethylsilyl moiety since it was more stable than the TMS ether yet readily cleaved 

under mild acidic conditions and in parallel with the isopropylidene group.  

The fucose monomer was synthesized according to Wegmann et al16, beginning 

with the conversion of L-fucose to the methyl glycoside by refluxing in methanol under 

acidic conditions (Figure 7). This was followed by benzylation and hydrolysis of the 

methyl glycoside.  The resulting fucose intermediate was treated with potassium 

carbonate, sodium hydride and trichloroacetonitrile in dichloromethane to form fucosyl 

trichloroacetimidate 8. 18 Due to its instability the fucosyl imidate could not be isolated 

and therefore was immediately coupled to the protected galactose monomer. 
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Coupling the galactose acceptor 4 with trichloroacetimidate 8 in trimethylsilyl 

trifluoromethanesulfonate and diethyl ether produced fully protected disaccharide 9 with 

the desired Fucα(1-2) Gal linkage. Treatment of the disaccharide in acetic acid (pH~1.5) 

removed both the isopropylidene and TBDMS group in a single step 10.  Finally, 

hydrogenolysis on Pd-C in methanol removed the benzyl and N- carbobenzoxy groups 11.  

The free amine was then ready for reaction with N-acryloxysuccinimide in TEA and 

MeOH to form 12.  

O

OH

OH
OH

OH

O

OCH3

OBn
OBn

OBn

O

O

OBn
OBn

OBn

CCl3

NH
1.Dowex 50X-8

MeOH
2. BnBr, NaH

DMF

1. 1N HCL,
80% AcOH

2. CCl3CN,
K2CO3, NaH
CH2Cl2 86  

Figure 7.  Synthesis of the fucosyl monomer 8. 

The phenylazide monomer was chosen because of the commercial availability of 

the starting material, N-succinimidyl 4-azidobenzoate, and its facile coupling with 1,3 

diaminopropane under basic conditions.  It is also compatible with other bioreagents 

under physiological conditions.  The phenylazide activation at 360 nm is optimal since it 

avoids damaging the proteins and generates a highly reactive nitrene intermediate that is 

able to undergo C-H insertion efficiently.9  The phenyl azide  was prepared by reacting N-

5-azido 2-nitrobenzyloxysuccinimide with diaminopropane to yield 13 (Figure 7).  The 

product of this reaction will be coupled to N-acryloxysuccinimide in TEA and 1:1 

THF/DMF to form 14. 
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Figure 8.  Preparation of phenylazide monomer. 

Finally, a small sample of the galactose monomer 2 was deprotected via 

hydrogenolysis of the carbobenzoxy group followed by coupling to N-

acryloxysuccinimide to yield 19 (Figure 9).  This monomer was used as a model 

compound to test the efficacy of the Chaikof polymerization method prior to subjecting 

our disaccharide and phenylazide monomers to the polymerization reaction. 

O
O

OH
HO

OH OH

NHCBZ

2

O
O

OH
HO

OH OH

H
N

19

1.  H2, Pd-C
     MeOH
2.  N-acryloxysuccinimide
     TEA, MeOH

O  

Figure 9.  Synthesis of galactose monomer as a model compound for 

polymerization. 

Polymerization 

The biotinarylamine initiator was prepared by reacting p-nitrobenzylamine with 

N-hydroxysuccinimidyl biotin in TEA and DMF to afford p-nitrobenzyl biotinamide 15, 

followed by hydrogenation under Pd/C in MeOH to yield 4-aminobenzyl biotinamide 16 

(Figure 8).  In a one pot reaction the arylamine was treated with sodium nitrite and 

tetrafluoroboronic acid in water and THF to give the arenediazonium cation, which upon 

addition of sodium cyanate provided the arylamine initiator and cyanoxyl free radical.  

This was followed by subsequent addition of acrylamide and the glycomonomer. 
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Figure 10.  Biotin Chain-Terminated Multivalent Polyacrylamide Probe 

     While the biotin and acrylamide monomers underwent polymerization, the galactose 

monomer did not successfully incorporate into the polymer chain.  To address this 

problem, the reaction was performed under deoxygenated conditions using THF that 

lacked stabilizer, which we believed contributed to radical quenching.  However, stability 

of the intermediates also posed a challenge in the polymer synthesis. Currently, while 

optimizing the conditions in which the reactions take place, We are ensuring the purity 

and stability of the products by either performing our experiments in situ or using our 

intermediates immediately upon preparation. 
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NMR spectroscopy will help to characterize the glycopolymer through 

comparison of integration signals of the phenyl protons, anomeric protons of fucose, as 

well as the methine on the polymer backbone. Size-exclusion chromatography(SEC) 

coupled with refractive index and laser-light scattering (LLS) detectors will define the 

actual molar mass (Mn) and polydispersity index (Mw/Mn).  

Conclusions 

Completion of the multivalent capture probe in a flexible design allows for control over 

carbohydrate density and number of photocrosslinking groups is manifested in a 

cyanoxyl-mediated free-radical polymerization pathway.  Furthermore, the end-labeled 

biotin facilitates purification without disrupting lectin-carbohydrate interactions.  To 

complete our polymer synthesis, we will need to optimize the reaction conditions in 

which the polymerization can efficiently take place.  After our model compound 19 has 

been successfully polymerized, we will polymerize it in the presence of the phenylazide 

monomer.  Finally, we will polymerize our disaccharide monomer 12 with the 

phenylazide monomer 14 to produce our biotin-end labeled multivalent probe. 

With the successful synthesis of our multivalent polymer, we will begin initial 

experiments on the capture of Fucα(1-2)Gal binding lectins located in hippocampal 

neurons. Once we have captured these lectins, we will be able to identify and characterize 

them via mass spectrometry.  Following the characterization of these lectins, we will be 

able to perform key experiments in which lectin overexpression or site-directed 

mutagenesis experiments will help to elucidate the physiological roles of the lectins and 

their interactions with specific Fucα(1-2)Gal glycoproteins.  Our discoveries should 
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provide a better understanding of how fucosyl saccharides modulate the molecular and 

cellular basis of neuronal communication. 

Experimental Details 

Carbobenzoxy 3-amino-1-propyl peracetylated-β-D-galactopyranoside (1).  

Peracetylated-β-D-galactopyranoside (18.6 g, 49.2 mmol) was dissolved in 

toluene/CH2Cl2 (1:1) (380mL).  To this was added a solution of 3-amino-1-propanol O-

benzylchoroformate (1.2 M in CH2Cl2, 50.0 mL, 59.1 mmol), followed by BF3•OEt2  

(9.27 mL, 73.9 mmol).  The reaction was stirred for 24 h at 0 °C.  After completion, 

K2CO3 (3.84 g, 24.6 mmol) was added and the reaction stirred for an additional 30 min.  

The mixture was filtered, washed in water, and extracted three times with CH2Cl2.  The 

organic phases were combined and dried over MgSO4 then concentrated to afford a 

yellow syrup.  The crude was purified by flash chromatography (1:1 EtOAc:hexanes) to 

afford 1 (10.5g, 40%).  1H NMR (300 MHz, CDCl3): δ = 7.36 – 7.22 (m, 5H), 5.04 (s, 

2H), 4.98 (dd, J = 3.6 Hz, J = 1.8 Hz, 1H) 4.43 (d, J = 8.1 Hz, 1H, H-1), 4.19 – 4.05 (m, 

2H), 3.97 – 3.84  (m, 2H), 3.60 – 3.52 (m, 3H), 3.38 – 3.10 (m, 2H), 2.17 – 1.95 (m, 12H), 

1.8 (m, 2H), 1.6 (s, 1H). 

Carbobenzoxy 3-amino-1-propyl 3,4-O-isopropylidene-β-D-galactopyranoside (3). 1 

(10.5 g, 19.5 mmol) was dissolved in MeOH (0.80 M, 263 mL) and NaOMe (8.00 M, 

26.3 mL) and was monitored for completion using thin layer chromatography.  The 

reaction was neutralized with Dowex 50X-8-200 resin (prewashed with MeOH).  The 

resin was filtered and the filtrate concentrated in vacuo to afford a yellow solid that was 

subjected to flash chromatography (5:1:1 EtoAc, MeOH, H2O) to afford 2 (6.44g, 89% 

yield) as a white solid.  2 (0.58g, 1.56 mmol) was dissolved in acetonitrile (0.20 M, 8.00 
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mL) followed by addition of 2,2 dimethoxypropane (0.23 mL, 1.87 mmol). 10-CSA 

(0.018 g, 0.078 mmol) was then added and the reaction was stirred at room temperature 

for 3 h.  2,2 dimethoxypropane (1.00 mL) was then added and the reaction allowed to stir 

for an additional 16 h. The crude was purified using flash chromatography (100% 

EtOAc) to afford 3 as a yellow oil (0.33 g, 52%).  1H NMR (300 MHz, CDCl3): δ = 7.32 

– 7.20 (m, 5H), 5.15 (t, J<1, 1H), 5.00 (s, 2H), 4.07 (d, J = 8.30, 1H, H-6), 4.05 – 3.97 (m, 

2H), 3.92 – 3.82 (m, 2H), 3.79 – 3.70 (m, 2 H), 3.60 – 3.52 (m, 1H), 3.45 (t, J = 7.40, 2H), 

3.24 – 3.15 (m, 1H), 1.81 – 1.66 (m, 2H), 1.41 (s, 3H), 1.22 (s, 3H). ESI/MS (M + Na) 

calcd for C20H29NO8: 434.2, found 434.0. 

Carbobenzoxy 3-amino-1-propyl 6-O-tert-butyldimethylsilyl-3,4-O-isopropylidene-

β-D-galactopyranoside (4).  3 (0.27 g, 0.65 mmol) was dissolved in CH2Cl2 and cooled 

to –25 °C.  t-Butyl dimethylsilylchloride (0.17 mL, 0.97 mmol) followed by imidazole 

(0.18g, 2.58 mmol) was added and the reaction stirred for 10 h at room temperature.  The 

reaction was quenched with MeOH (0.65 mL), diluted with CH2Cl2, and washed with 1N 

HCl, NaHCO3, brine, then dried over MgSO4.  The crude was purified by flash 

chromatography (2:1 hexanes, EtOAc) to afford 4 as a colorless syrup (0.22g, 64%). 1H 

NMR (300MHz, CDCl3): δ = 7.38 - 7.21(m, 5H), 5.05 (s, 2H), 4.22 (d, J = 7.8 Hz, 1H, 

H-1), 4.18 (dd, J = 1.8 Hz, 4Hz, 1H, H-6), 4.12 (d, J = 8.4, 1H, H-6’ ), 4.06 – 3.98 (m, 

2H),   3.94 – 3.85 (m, 2H), 3.81 – 3.72(m, 1H), 3.62 – 3.50 (m, 2H), 3.46 – 3.37 (m, 1H), 

3.35 – 3.20 (m, 2H) 1.86 – 1.70 (m, 2H), 1.50 (s, 3H), 1.32 (s, 3H), 0.89 (d, 4.2 Hz, 9H), 

0.09 (d, J = 13.8 Hz), 6H). ESI/MS (M + Na) calcd for C24H43NO8Si: 548.3, found 548.0. 
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Methyl α-L-fucopyranoside (5). L-Fucose (25.0 g, 152 mmol), Dowex 50W-X8 resin 

(scoopful), and MeOH (250 mL, 0.60 M) was combined in a 500 mL flask and refluxed 

for 48 h.  The reaction was cooled, filtered and concentrated in vacuo to afford a white 

solid.  This was recrystallized from 100% EtOAc (8.1 g, 30%). 1H NMR (300 MHz, 

CDCl3):  δ = 4.76 (d, J = 3.3 Hz, 1H, H-1), 4.04 (m, 1H, H-5), 3.77-3.90 (m, 3H, H-2, H-

3, H-4), 3.38 (s, 3H), 1.21 (d, J = 6.6 Hz, 3H).  ESI/MS (M + Na) calcd for C7H14O5 

201.04, found 201.0. 

Methyl 2,3,4-tri-O-benzyl-L-fucopyranose (6).  5 (8.10 g, 45.5 mmol) was dissolved in 

DMF (16.2 mL, 0.30 M).  NaH, 60% dispersion (6.60 g, 273 mmol) was added 

portionwise and the reaction stirred for 2 h.  The reaction was then cooled to 0°C and 

benzyl bromide (16.2 mL, 137 mmol) was added dropwise.  The reaction was stirred at 

room temperature overnight.  MeOH was then added to quench the reaction and the 

mixture poured over cold EtOAc and water.  The aqueous was extracted with EtOAc 

three times, the organic layers were combined, dried over MgSO4and concentrated in 

vacuo to afford a yellow syrup.  The crude was purified by flash chromatography (5:1 

hexanes/EtOAc) to afford a white crystalline solid 6 (9.1g, 45%). 1H NMR (300 MHz, 

CDCl3): δ = 7.34-7.24 (m, 15H), 4.65 (d, J = 3.3 Hz, H-1), 4.63 –5.04 (m, 6H), 4.03 (dd, 

J = 9.90 Hz, 3.90 Hz, 1H, H-2), 3.95 (dd, J = 10.2 Hz, J = 3.30 Hz, 1H, H-3), 3.83 (m, J 

= 6.50 Hz, 1H, H-5), 3.65 (dd, 1H, H-4), 3.37 (s, 3H), 1.12 (d, J = 6.60 Hz, 3H).  ESI/MS 

(M + Na) calcd for C28H32O5 471.2, calcd 471.2. 

2,3,4-Tri-O-benzyl-L-fucopyranose (7).  6 (9.10 g, 20.3 mmol) was dissolved in a 

solution of 80% acetic acid (144 mL) and 1N HCl (80.0 mL).  The reaction was heated 

between 95 –100 °C.  After cooling, the reaction was extracted three times with CH2Cl2.  
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The CH2Cl2 solution was washed with cold NaHCO3 (sat), followed by a wash with 

water.  The organic phases were combined and dried over MgSO4, filtered, and 

concentrated in vacuo.  The crude was then purified by silica chromatography (5:1 

hexanes/EtOAc) to afford 7 (5.0 g, 57%). 1H NMR (300 MHz, CDCl3): δ = 7.25 – 7.37 

(m, 15 H), 5.30 (s, 1H, H-1), 4.98 – 4.66 (m, 6H), 4.10 (q, J = 6.6 Hz), 4.05 (dd, J = 3.90 

Hz, 9.90 Hz, 1H, H-2), 3.89 (dd, J = 2.70 Hz, 9.90 Hz, 1H, H-3), 1.14 (d, J = 6.60 Hz, 

3H). ESI/MS (M + Na) calcd for C27H30O5: 457.2, found 457.2. 

Carbobenzoxy 3-amino-1-propyl 6-O-tert-butyldimethylsilyl-3,4-O-isopropylidene-

2-O-(2,3,4-tri-O-benzyl-α -L-fucopyranosyl)-β-D-galactopyranoside (9).  7 (0.25 g, 

0.58 mmol) and K2CO3 was dissolved in CH2Cl2 (4.10 mL, 0.14M), followed by the 

addition of Cl3CCN (0.31 mL, 3.1 mmol).  The reaction was stirred at room temperature 

for 15 min. followed by the portionwise addition of NaH (0.015 g, 0.63 mmol).  The 

reaction was stirred overnight.  The crude mixture was passed through celite and washed 

three times with anhydrous CH2Cl2.  The crude reaction was then concentrated in vacuo 

to afford a yellow syrup (0.36 g) and immediately used for the next reaction.  4 (0.11 g, 

0.21 mmol) and 8 (0.36 g, 0.63 mmol) were combined in a round bottom flask, 

azeotroped three times with toluene, and dried under high vacuum for 6 h.  Dry ether was 

then added and the reaction stirred for 15 min.  TMSOTf (16.0 uL, 0.09 mmol) was 

diluted in ether (0.10 M, 0.90 mL), cooled to 0 °C and added to the mixture containing 4 

and 8.  The reaction was warmed to room temperature and stirred for 16 h.   The reaction 

was slowly quenched with NaHCO3 (1.90 g) and stirred for 30 min.  It was then diluted 

with water and EtOAc.  The aqueous and organic layers were extracted, and the aqueous 

extracted three times with EtOAc.  The organic layers were combined, washed with brine, 
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dried over MgSO4, filtered and concentrated to afford a yellow syrup.  The product was 

purified by flash chromatography (6:1 hexanes/EtOAc) to afford a white crystalline solid 

9 (0.08 g, 42%). 1H NMR (300 MHz, CDCl3): δ = 7.38 - 7.11 (m, 20H), 5.46 (d, J = 4.0 

Hz, 1H), 5.03 - 4.53 (m, 8H), 4.25 – 4.14 (m, 2H), 4.13 – 3.98 (m, 4H), 3.86 – 3.79 (m, 

4H), 3.77-3.65 (m, 2H), 3.52 – 3.35 (m, 3H), 3.16 (q, J = 6.3 Hz, 2H), 1.76 – 1.50 (m, 

2H), 1.40 (s, 3H), 1.21 (s, 3H), 1.22(d, J = 6.6 Hz, 3H), 0.8 (s, 9H), 0 (s, 6H).  ESI/MS 

(M + Na) calcd for C45H63O10Si: 964.5, found 965.0.   

Carbobenzoxy 3-amino-1-propyl 2-O-(2,3,4-tri-O-benzyl-α -L-fucopyranosyl)-β-D-

galactopyranoside (10).  9 (0.018 g, 0.021 mmol) was dissolved in 2:1 acetic acid/THF 

(0.10 M, 0.21 mL), pH~1.5, and stirred at 34 °C for 48 h.  The reaction was then diluted 

with water and EtOAc and the aqueous extracted three times with EtOAc.  The organic 

layers were combined, dried over MgSO4, filtered, and concentrated in vacuo to afford a 

white crystalline solid 10 (0.01 g, 66%).  10 (0.012 g, 0.021 mmol) was dissolved in 

MeOH (0.42 mL, 0.20 M).  10% Pd-C (0.002 g) was added and the flask purged once 

with argon and twice with hydrogen.  The reaction was stirred under hydrogen gas for 5 h 

at room temperature.  The reaction was filtered through celite and concentrated in vacuo 

to yield a white solid (4.80 g, 87%). 1H NMR (300 MHz, D2O) δ = 5.21 (d, J = 2.20 Hz, 

1H, H-1’), 4.40 (d, J = 7.80 Hz, H-1), 4.11 – 3.44 (m, 12H, H-2, H-3, H-4, H-5, H-6a, H-

6b’, H-2’, H-3’, H-4’, H-5’, CH2),  3.21 (m, 2H), 1.84 – 1.68 (m, 2H), 1.04 (d, J = 6.60 

Hz, 3H).  ESI/MS (M + Na) calcd for C15H29NO10: 406.2, found 406.0. 

1,3 Diaminopropyl N-succinimdyl-4-azidobenzoate (13).  Triethylamine (0.02 mL, 

0.14 mmol) was added to a solution of N-succinimidyl 4-azidobenzoate (0.05 g, 0.02 
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mmol) and 1,3-diaminopropane THF/DMF (1:1).  The reaction was purified by flash 

chromatography (5:1:1 EtOAc/MeOH/H2O). 

4-Nitrobenzyl-biotinamide (15).  To a solution of p-nitrobenzylamine (0.08 g, 0.41 

mmol) in DMF (1.60 mL) was added triethylamine (0.50 mL, 0.56 M).  After the solution 

was stirred for 30 min., a solution of N-hydroxysuccinimide-biotin (0.10 g, 0.29 mmol) 

was added.  The reaction mixture was stirred for 24 h at room temperature, then 

concentrated in vacuo to give a dark yellow residue which was purified by gradient flash 

chromatography (100% chloroform to 9:1 chloroform/MeOH) to afford a yellow solid 

(0.08 g, 53%).  1H NMR (300 MHz, DMSO-d6):  δ = 8.50 (t, J = 7.60 Hz, 1H), 8.19 (d, J 

= 9.9 Hz, 2H), 7.52 (d, J = 9.90 Hz, 2H), 6.42 (s, 1H), 6.38 (s, 1H), 4.39 (m, 2H), 4.30 

(dd, J = 4.50, 8.30 Hz, 1H), 4.10 (m, 4H), 3.19 (d, J = 4.2 Hz, 1H), 2.82 (dd, 1H, J = 12.4, 

4.5 Hz), 2.60 (s, 2H), 2.18 (t, J = 7.90 Hz, 2H), 1.59 (m, 4H), 1.33 (m, 2H).  ESI/MS (M 

+ Na) calcd for C17H22N4O4S: 379.14, found 378.0. 

4-Aminobenzyl-biotinamide (16).  In the presence of Pd-C (0.019 g), 15 (48.2 g, 0.13 

mmol) in anhydrous DMF (2.50 mL, 0.05M) was charged with hydrogen balloon for 4 h 

at room temperature.  The reaction mixture was filtered through celite, and the filtrate 

evaporated to provide a yellow residue that was purified by flash chromatography (5:1 

chloroform/MeOH) to afford a light yellow solid 16 ( 0.02g, 50%).  1H NMR (300 MHz, 

CD3OD):  δ = 6.95 (d, J = 8.10 Hz, 2H), 6.05 (d, J = 8.10 Hz, 2H), 4.38-4.40 (m, 1H), 

4.11 (s, 1H), 3.22 (m, 1H), 3.12 (dd, J = 4.90, 12.6 Hz, 1H), 2.59 (d, J = 12.7 Hz, 1H), 

2.13 (t, J = 9.80 Hz, 2H), 1.70-1.42 (m, 4H), 1.38-1.22 (m, 2H).  ESI/ MS (M + Na) calcd 

for C17H24N4O2S: 348.16, found 349.0. 
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Copolymerization of 3-acrylamino-1-propyl O-galactopyranoside (17 

) and acrylamide by biotin arylamine initiator and NaOCN. 

16 (0.003g, 0.009 mmol) was reacted with HBF4 48% wt (2.50 uL, 0.039 mmol) at 0 °C 

in 1:1 H2O/THF (0.1 mL) under argon.  The diazonium salt was generated by adding 

sodium nitrite (0.076 g, 0.011 mmol) to the reaction medium.  After 30 min., a degassed 

mixture of 19 (0.0065 g, 0.022 mmol), acrylamide (0.011 g, 0.16 mmol), and sodium 

cyanate (0.029 g, 0.045 mmol) dissolved in 1:1 H2O/THF (0.1 mL) were introduced into 

the flask containing the diazonium salt.  The polymerization medium was then heated to 

50 °C for 16 h.  The cooled reaction was dialyzed exhaustively against deionized water 

for 18 h followed by lyophilization. 

3-acrylamino-1-propyl-O-galactopyranoside (18).  2 (1.31 g, 3.5 mmol) was dissolved 

in MeOH (39 mL, 0.09M).  10% Pd-C (0.14 g) was added and the reaction purged once 

with argon and twice with hydrogen gas.  The reaction was stirred for 8 h under hydrogen 

gas at room temperature, followed by filtration through celite.  The filtrate was 

concentrated in vacuo to afford 18 (0.72, 87%) which was used in situ for the next 

reaction. 18 (0.20 g, 0.84 mmol) was dissolved in a solution of MeOH (2.10 mL, 0.4 M) 

and triethylamine (1 mL) and was cooled to 0°C.  N-acryloxysuccinimide (0.36g, 2,1 

mmol) was added.  After 5 h, a fresh portion of N-acryloxysuccinimide  was added and 

the temperature allowed to reach 25°C.  The reaction was stirred overnight, followed by 

purification via flash chromatography (5:1:1 EtOAc/MeOH, H2O to yield 19 (0.067 g, 

27%). 1H NMR (300 Mhz, D2O): δ =  6.18 (d, J = 1.80 Hz, 2H), 5.73 (dd, J = 7.80 Hz, 

1.8 Hz, 1H), 4.37 (d, 7.8 Hz, 1H, H-1), 3.98 - 3.90 (m, 3H), 3.82 – 3.61 (m, 6H), 3.53 – 
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3.47 (m, 2H), 3.34 (t, J = 5.1 Hz, 2H). ESI/MS (M + Na) calcd for C12H21NO7: 313.1, 

found 313.0. 

Carbobenzoxy 3-amino-1-propanol (20).  3-amino-1-propanol (44 g, 586 mmol) was 

dissolved in THF (100 mL, 2.9 M) and the temperature lowered to 0°C. 

Benzylchloroformate (50.0 g, 293 mmol) was added dropwise and the reaction stirred for 

30 min.  The reaction was concentrated in vacuo as a colorless oil.  The mixture was 

extracted in 10% HCl and CH2Cl2 three times and the organic layers combined and dried 

over MgSO4.  The organic phases were then concentrated in vacuo to afford a white solid 

(53.9 g, 88%). 1H NMR (300 MHz, CDCl3): δ = 7.38 – 7.25 (m, 5H), 5.11 (s, 2H), 3.68 (t, 

J = 5.4 Hz, 2H), 3.38 – 3.34(t, J = 6.3 Hz, 2H), 2.08 (s, 1H), m (1.74 – 1.66). ESI/MS (M 

+ Na) calcd for C11H15NO3: 232.1, found 232.0. 
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