
Investigating Molecular Size Variations In Thin Film
Chemical Vapor Sensors

Thesis by

Anna Barr Folinsky

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended May 12, 2010)



ii

c© 2010

Anna Barr Folinsky

All Rights Reserved



iii

To my mother, who said “Oh, they’ll pay you? You should totally do it!”



iv

Acknowledgments

These last couple of months have been tumultuous. My family, and indeed, my entire

social network have been there, in strength, and I can never repay that collective debt.

Before getting to particular people, I must thank and send all my love to my family. I also

must extend thanks to my thesis committee, and finally, to the USFS and NPS for helping

me retain my sanity through my graduate career.

Human interaction is fabulously complex. Give and take is rich and varied, and much

of the time actual meanings of actions are left unstated, and must be inferred. That said,

many people have helped me in a great variety of ways, and I would like to render my

heartfelt thanks to the following people, in reverse alphabetical order:

Dr. Ting Gao, Stuart Folinsky, Steven Baldwin, Dr. Sara Klamo, Sandra Mermel-

stein, Robin Ivester, Robert Folinsky, Richard Tibbetts, Rachel Dillon, Professor Nathan

Lewis, Dr. Nathan Eddingsaas, Dr. Michael Walter, Dr. Melanie Yen, Professor Maximi-

lien Riesenhuber, Dr. Matthew Bierman, Marion Sheppard, Dr. Marc Woodka, Madeleine

Thompson, Dr. Liana Faye Lareau, Dr. Kimberly Papadantonakis, Kalisa Falzone, 1st Lt.

Joseph Sadighi, PhD, Joseph Olivier, Dr. Jennifer Stockdill, Dr. Jennifer Roizen, Jennifer

J. Hu, Dr. Jan Streuff, Dr. James Maiolo, Heather McCaig, Professor Harry Gray, Grace

Kenney, Gloria Sheppard, Dr. Erin Koos, Erica Folinsky, Dr. Elisa Calimano, Edgardo

Garcı́a-Berrı́os, Don Walker, Dennis Perepelitsa, Dean Schenker, David Glasser, Dana Joy

Gant, Dr. Crystal Shih, Professor Christopher Cummins, Celia Folinsky, Dr. Bruce Brun-

schwig, Dr. Brian Sisk, Beverly Glassford, Professor Barbara Imperiali, Amittai Axelrod,

and Aletta Tibbetts.



v

Abstract

Vapor sensing arrays composed of broadly responsive, chemically sensitive detectors have

been explored for many years. They have been used in fields ranging from good quality

control, to environmental monitoring and explosives detection, to disease diagnostics. All

of these tasks require high sensitivity and fine discrimination ability. As new challenges

arise, the ability to understand the performance and improve the availability of array com-

ponents becomes paramount.

This work details progress in gaining greater understanding of certain chemical sub-

strates used in sensor arrays. Specifically, arrays using insulator/carbon black composite

sensors have been prepared using either polymer or non-volatile small organic molecules as

the insulating, chemically sensitive component. The crystallinity of the small molecules as

compared to the polymers was determined to cause the differing formulation requirements

between the polymers and the small molecules.

Additionally, arrays of sensors composed of varying molecular weights of a given poly-

mer were examined. Very low molecular weights of polystyrene, a high glass transition

temperature polymer, exhibited improved behavior and response times compared to higher

molecular weights. Finally, arrays composed of varied length carboxylic and dicarboxylic

acids were studied. Of these two homologous series, the arrays composed of carboxylic

acids provided better discrimination than did those composed of dicarboxylic acids, sug-

gesting the utility of sensor materials containing multiple accessible functional groups.

These studies, taken together, suggest several new ways to increase the number of com-

pounds and chemical functionalities available to use in chemical vapor sensors. Increased

sensor choice allows construction of more broadly responsive and finely discriminating

sensor arrays, thereby increasing the general utility of composite vapor sensor arrays.
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Chapter 1

Introduction

sensor, n. — A device giving a signal for the
detection or measurement of a physical property to
which it responds.

Oxford English Dictionary1

1.1 Sensors

Throughout human history, people have relied on sensors. Chief among these, never out of

vogue, are those comprising our sensory system. Eyes function as light detectors, transduc-

ing photons into electrical signals. Our ears do the same for sound waves, and our skin for

such things as temperature or mechanical pressure. The brain receives all these electrical

signals, and processes the raw data.

As understanding of the physical world grew, so too did our use of sensors in tools.

Liquid thermometers detect temperature and transduce it via calibrated thermal expan-

sion. Compasses rely on the magnetic properties of metals to sense the directionality of

the planet’s magnetic field. Barometers sense changes in air pressure, transduced through

changing height of a column of liquid. Sensors are how we know the things we know.
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We are surrounded by sensors in our everyday lives, rarely cognizant of their ubiquity.

Every system with a remote control contains an infrared sensor. Car and refrigerator doors

contain simple mechanical-electrical sensors to determine if a door is open or closed —

transduced into a circuit closing, and a light turning on. Elevators sense your presence on

their threshold, airplane systems sense the cabin pressure, and gas pumps sense when your

tank is full. Sensors are increasingly how our systems know what they know, as well.

1.2 Cross Reactive Sensor Arrays

One particular sensor system, studied since the early 1980s, is a vapor-detecting sensor

array. Modelled in some ways after the mammalian olfactory system, and because it can

be used to “smell” the environment around it, such systems have been colloquially labelled

as “electronic noses.” In such arrays, each sensor produces a distinct but not deterministic

response to an input — exposure to a vapor, such that a given analyte activates multiple

sensors, and a given sensor responds to multiple analytes.2 This is similar to the mam-

malian olfactory system, in which the olfactory epithelium is studded with odorant recep-

tors (ORs). Each OR is active towards a variety of odorants, and a given odorant likewise

activates multiple ORs.3 However, a mammalian system has hundreds of distinct receptor

types (mice have over one thousand different expressed ORs,4 while humans have around

3505), with thousands of copies each. In comparison, array sizes of 10–20 distinct detec-

tors are common in laboratory use, with each additional sensor slightly improving overall

discrimination ability, but also adding further noise (Figure 1.1).6

In both systems, however, the pattern response from the complete system is passed
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Figure 1.1: Classification performance — g(k) — vs. array size k for a polymer/CB com-
posite sensor array. For each value of k in the range 1≤k≤20, an exhaustive search of all
possible k-detector combinations from a 20-detector array was performed to identify the
array having k detectors that had the best classification performance for each of 21 tasks.
For each task, the classification performance for any k-detector array was then compared
to that of the full 20-detector array. No combination of k detectors does strictly better than
g(k) relative to the full 20-detector array on all 21 tasks.6

along to the controlling system (brain or computer) for further processing; analyte deter-

mination, discrimination, quantification, or any other tasks. Cross reactive sensor arrays of

this type have found use in such fields as food quality control,7–10 environmental monitor-

ing,11,12 explosives detection,13,14 and disease diagnostics.15–17

1.3 Sensor Types

A variety of sensor modalities have been used in vapor-detecting sensor arrays, some of

the most notable being surface acoustic wave9,13,18 and bulk acoustic wave detectors,19,20

semiconducting metal oxide sensors,10,21 microcantilevers,22–24 conducting polymers,7,25–28
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Figure 1.2: Resistance change of a poly(ethylene oxide)/carbon black composite sensor to
a 200 second exposure to 2 ppth of chloroform vapor, at an overall flow rate of 2.5 L min−1.
Rb is the baseline resistance of the sensor, Rmax the maximum resistance reached during
exposure, and ∆R is the difference between the two. Raw data are shown; the absolute
change in resistance displayed is around 60 ohms.

and various colorimetric indicators (such as metalloporphyrins).13,29,30

One specific approach, and that explored in this thesis, uses sensors comprised of inter-

mixed regions of a conducting material mixed with an insulating organic material. Expo-

sure to an analyte produces detectable changes in the resistance of sensor films cast from

these mixtures (Figure 1.2). Conducting materials are often carbon black,15,31,32 but have

also included carbon nanotubes33 or metal nanoparticles.34,35 Insulating phases have in-

cluded polymers,15,31,32 dendrimers,36 ligands on metal nanoparticles,34,35 and non-volatile

small organic molecules (SM).37 All experiments described in this thesis rely on polymer-

or SM/carbon black composite films.
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Figure 1.3: Average relative differential resistance responses of a poly(butadiene)/CB com-
posite sensor upon exposure to various analytes, at analyte concentrations ranging from
P/P 0 = 0.005–0.03, in air, demonstrating linearity of response with respect to analyte
concentration.38

Polymer/CB composite sensors have been extensively characterized.6,26,31,32,36–39 Upon

exposure to an analyte vapor, some fraction of the vapor sorbs into the film, controlled by

the activity coefficient of each particular vapor/solid combination. As the analyte diffuses

through the film and comes into equilibrium with the sensor, the volume of the sensor

film increases. This swelling increases the average interparticle distance of the carbon

black, thereby increasing the overall resistance of the film.39 Removal of the analyte vapor

from the exposure stream allows the sensor to return to its baseline size and resistance.

The resistive sensor responses have been shown to be linear with analyte concentration

and additive with response to multiple analytes (Figures 1.3 and 1.4).38 Response times

of the films have also been characterized,40 as have effects of temperature41 and spatial

orientation.42,43
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Figure 1.4: Differential resistance response for a poly(ethylene-co-vinyl acetate)/CB com-
posite sensor. A) Exposure to benzene at P/P 0 = 0.02, followed by exposure to both ben-
zene and chloroform, each at P/P 0 = 0.02. B) Exposure to chloroform at P/P 0 = 0.02,
followed by exposure to both benzene and chloroform, each at P/P 0 = 0.02. C) Simulta-
neous exposure to benzene and chloroform each at P/P 0 = 0.02.38

1.4 Sensor Goals

All of this body of work has been aimed towards making better sensor arrays — that is,

ones both more broadly responsive, sensitive, and finely discriminating. It has been seen

that a given broad polymer/CB sensor array has better discriminatory ability towards gross

chemical classes (alcohols, aromatics, etc.) than it has towards physical differences such

as molar volume or dipole moment.44 Similarly, it has been seen that similarities in po-

larity and functional groups between polymers and analytes creates clear responses.6,45,46

However, specifically chosen sets of sensors have been shown to perform such difficult dis-

crimination tasks as separating H2O from D2O,6 or distinguishing between an enantiomeric
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Analyte MW P 0 mp bp ρ µ ε
(g/mol) (kPa, 25 ◦C) (◦C) (◦C) (g/ml, 20 ◦C) (D) (20 ◦C)

hexane 86.18 20.2 -95.4 68.7 0.6548a 0 1.89
heptane 100.20 6.09 -90.6 98.4 0.6837 0 1.92
toluene 92.14 3.79 -94.9 110.6 0.8669 0.38 2.38b

chloroform 119.38 26.2 -63.6 61.1 1.4832 1.04 4.81
ethanol 46.07 7.87 -114.1 78.2 0.7893 1.69 25.30
isopropanol 60.10 6.02 -89.6 82.3 0.7855 1.58 20.18
ethyl acetate 88.11 12.6 -83.6 77.1 0.9003 1.78 6.08

a Density at 25 ◦C
b Permittivity at 23 ◦C

Table 1.1: Listing and physical characteristics of all analytes used in these studies. Val-
ues are: molecular weight, melting point, boiling point, density, dipole moment, and the
permittivity (dielectric constant).48

pair of vapors.47 As time passes, new challenges in detection continue to arise, notably in

cases such as landmine detection, involving very low vapor pressure compounds.

Sensors can often be selected for a particular task, and iterative optimization of a given

array can often improve performance. Work has also been done on computationally as-

sisted array selection.46 Towards all these ends — specific selection of sensors, and the

construction of the broadest, most sensitive array possible — we must expand both our

set of available sensors and our understanding of how they work. This will yield wider

selection, and better comprehension of when and how to select amongst them.

1.5 Outline of This Thesis

This work seeks to address these issues by exploring certain size-related properties of the

insulating organic materials used in composite vapor sensors. All the studies presented use

one set of analyte vapors; these molecules and some of their physical quantities are pre-
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sented in Table 1.1. Previous work has demonstrated the use of small organic molecules

in CB composite sensors, and determined them to have notably different formulation re-

quirements than polymer/CB composites. This work compares libraries of polymer/CB

and small molecule/CB sensors and determines that the formulation differences stem from

the crystallinity of the small molecule materials (Chapter 2). Additionally, varied weight

polymers are studied to determine the effects of size and viscosity differences in sensor

performance. It is determined that in the case of a high glass transition polymer, sensor re-

sponse times are greatly improved when using very low weights of that polymer (Chapter

3). Finally, two related homologous series of small molecules, over a range of lengths, are

used as sensors. Greater discrimination ability is seen using materials that have increased

access to multiple functional groups (Chapter 4). Increased utility of small molecules as

sensor substrates, and improved access to many high glass transition temperature polymers,

should improve the quality of composite vapor sensor arrays.
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