

PROGRESS TOWARD THE ASYMMETRIC TOTAL SYNTHESIS OF VARIECOLIN
AND
GAS-PHASE STUDIES OF THE TWISTED AMIDE 2-QUINUCLIDONE

Thesis by

Michael Raymond Krout

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2010

(Defended September 4, 2009)

© 2010

Michael Raymond Krout

All Rights Reserved

To my mother

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude toward my advisor and mentor, Professor Brian Stoltz. The enthusiasm that Brian brings to chemistry is as contagious as his laugh. Brian fosters a group of highly skilled and creative co-workers that strive to address significant problems in our field, and the ceaseless progression of science is exciting to be a part of. Brian expected nothing but the best from everyone, and his high standards (and the accomplishments of those before me) were a continual source of motivation. His support, friendship, and advice throughout my experience in graduate school have been invaluable. I also share a personal connection with Brian in that we are both alumni from IUP. During my time at IUP I had never envisioned the possibility of attaining such a distinguished accolade, and for that reason, I sincerely have to thank Brian for this opportunity.

I would also like to extend my appreciation to the members of my thesis committee: Professors John Bercaw, Bob Grubbs, and Sarah Reisman. They have been highly supportive of my research, and their insightful questioning and advice during the various meetings throughout my time at Caltech have forced me to think of my research and proposals from new perspectives, greatly improving their quality and depth. I would also like to thank Professors Dave MacMillan and Bill Goddard for their tenure on my committee.

I owe my primary interest in science to Mr. Daryl Dreese and his challenging class in 7th grade physical science. Mr. Dreese had a remarkable ability to relate science beyond common facts published in a textbook. I enjoyed his unconventional teaching style and

was intrigued by his labs that were a constant exercise in creativity, critical thinking, and fun.

A significant shift in my scientific interests occurred when I audited an organic chemistry course by John T. Wood at IUP. I was a major in biochemistry at the time and had only a minor interest in organic chemistry. Despite this, a personal invitation from Dr. Wood's was impossible to pass up. He was an extraordinary teacher that persistently encouraged students to achieve more and provided me with the knowledge and confidence that I could accomplish anything as long as I'm willing to work hard enough. His efforts were not without the help of fellow student Chrysa Malosh, who was a regular in all of Dr. Wood's courses. I value her friendship and admire her tenacious approach to organic chemistry.

I was extremely fortunate to obtain several summer internships to augment my coursework at IUP. My first adventure into the lab (outside of general organic lab) was as a summer student in Professor William Bailey's lab at the University of Connecticut. This summer was mostly about the fundamentals, and thanks to Dr. Matt Luderer, I was able to conduct several experiments with *t*-BuLi! I then spent a summer and eight months in the Medicinal Chemistry Department at Merck in West Point, PA, and am grateful for my time working with Mr. Robert Gomez and Dr. Yuntae Kim. Bob and Yuntae were constructive mentors that exposed me to the chemical and biological aspects of medicinal chemistry, and both took an active role in my preparation for graduate school. I thank for their time and help at such an influential point of my career.

I have developed various friendships throughout my years in the Stoltz lab that have enhanced my Caltech experience. Professor Neil Garg has been a great friend, always

offering advice and encouragement. His creativity, hard work, and success have raised the bar of expectations for the Stoltz lab, and are characteristics that I strove to emulate during my time at Caltech. I have always looked up to Neil and thank him for all of his guidance. Professor Uttam Tambar was a very friendly, easygoing, and optimistic co-worker. I admire Uttam for his quiet confidence and tenacious enthusiasm for chemistry despite the many challenges we are often faced with in graduate school. Dr. Dan Caspi has been a like a brother, providing invaluable advice during my last year here. I have always enjoyed our discussions and his interesting outlook on life. There is always a good time to be had when hanging out with Dan, and also very little sleep. Dr. JT Mohr has been my best friend at Caltech, and one of the most intelligent people that I have ever met. His knowledge of random facts is uncanny, and our shared interest in sports and the outdoors was a great outlet from chemistry. Still waters run deep. I have also developed a close friendship with JT's wonderful wife, Sarah, and was lucky to be around during the birth of their daughter, Marie Elise. It was fun watching them grow into a family, and I look forward to our lifelong friendship. I also owe a lot of gratitude to Dr. John Phillips, Dr. Dave White, and Dr. Nolan McDougal for their friendship, advice, and numerous good times outside of the lab.

I feel extremely fortunate to have worked with Samantha Levine during her SURF and Dalton Fund fellowships. Sam's ability to assimilate reactions and techniques, coupled with her diligent work ethic, enabled her to become a successful chemist and one of the first undergraduates in the Stoltz lab to achieve a publication. I thoroughly enjoyed my time as Sam's mentor and will remember it as one of my most rewarding experiences at Caltech. I wish her the best in graduate school at Colorado State and beyond.

As I approached the conclusion of my graduate studies, I was joined on the variecolin project by two exceptional and talented chemists, Thomas Jensen and Dr. Chris Henry. The fresh ideas and meticulous work that Thomas and Chris have contributed to the project have enabled the development of a fascinating story that is nearing completion. I cannot express enough gratitude for their efforts and friendship, and I wish them the best of luck in attaining finality with the project and with their careers. I also owe thanks to Allen Hong and Nathan Bennett for their ongoing efforts on the ring contraction project.

There were various opportunities in the Stoltz lab to collaborate with labs outside of organic chemistry, and I'm grateful to have participated in the mass spectrometry studies of 2-quinuclidone with Professor Ryan Julian of UC Riverside. My interactions with his students Don Pham and Tony Ly were constructive, and together we uncovered some interesting chemistry with this quintessential twisted amide.

The entire Stoltz lab has been very supportive and a wonderful environment to explore ideas. Many people have passed through the lab over my time, including many graduate students, postdocs, visiting scholars, and undergraduates, and each person has influenced me professionally and personally. I want to thank the rest of classmates Mike Meyer, JT Mohr, Jennifer Roizen, and Jenn Stockdill for their friendship, collaboration, and advice with everyday things. The various Friday club meetings were instrumental in my maturation as a chemist, and I would like to thank anyone who has ever participated in them. They were rewarding to both the audience and the presenter, and I found them to be well worth the extra effort. I also would like to sincerely thank Dr. Chris Douglas and Dr. Tom Driver for their informative discussions and challenging questions.

Several people have been essential to my sanity outside of the chemistry lab. Habib Ahmad and I first met during recruiting weekend in early 2003, and his friendship over this time has been indispensable. I valued our times outside of the lab, whether it involved going to the beach, grabbing lunch, or going go-karting, and am grateful for his availability to discuss ideas and suggestions. I had a great time rooming with Chiraj Dalal in the Cats apartments for two years. Chiraj is an incredibly kind and intelligent person, easy going, and an extremely talented at almost any sport. I am fortunate to have met a fellow adrenaline junkie, Lenny Lucas, at an early time during graduate school. We've gone on many epic mountain bike rides in the San Gabriel's and faced some extremely sketchy trails (and crashes), but they were some of my best times. Ryan Zeidan and I share a passion for sports, and he has been a great friend to discuss football and anything else other than chemistry. I am appreciative of Jean Li for her friendship and our many late night discussions as I was finishing my Ph.D. Most of the time we would complain about unimportant things, but I found it to be therapeutic during the stressful times writing this thesis. Thanks Jean! I would also like to thank the playmakers (championship!) flag football team, anyone who has ever played (and lost to) me in racquetball, the stereoablators softball team, weekly pick-up basketball games, and everyone else that used sports to divert me from the bench.

I would like to express my appreciation for my long-term baymates Dr. Haiming Zhang, Dr. Eric Ferreira, Dr. Charles Liu, Dr. Christian Defieber, and Alex "rookie" Goldberg. Their work ethic and enthusiasm for chemistry has been a constant source of inspiration. I have gained a lot from the diverse skills of each individual, and the daily interactions with these guys have contributed to my enjoyable graduate experience. I also

owe an enormous thanks to Kevin Allan, Chris Gilmore, Alex Goldberg, Dr. Chris Henry, Allen Hong, Thomas Jensen, Dr. Amanda Jones, Sandy Ma, Dr. Andrew McClory, Dr. Nolan McDougal, Narae Park, Jennifer Roizen, and Pamela Tadross for proofreading portions of this document. Their thorough efforts have greatly improved its quality.

The contents of this thesis would not have been possible without the support of the entire staff at Caltech. I would specifically like to acknowledge the NMR facilities (Dr. Scott Ross, Dr. Dave VanderVelde), mass spec facilities (Dr. Mona Shahgholi, Naseem Torian), X-ray facilities (Larry Henling, Dr. Mike Day), Rick Gerhart (and all of his glass blowing marvels), Tom Dunn, Anne Penney, Lynne Martinez, and Joe Drew. In addition to heading the Catalysis Center, Dr. Scott Virgil is a regular presence in our group, and his insight and creative suggestions have added a new dimension to our lab.

To my extended family—the Longacres and Daxes—your love and support has been invaluable. I am grateful that my brothers Jan and Eric were able to visit and experience CA while I was here. It was difficult living on the opposite coast from my family, and their conversations and encouragement made it manageable. I would also like to acknowledge my niece and nephews—Lorin, Tobin, and Collin—for their love and eagerness for phone calls. Eric’s fiancée, Jill, has been a great friend, and I wish them the best in their marriage and life together. To my wife Kristy, your unwavering love and support has meant the world to me. I have always enjoyed your sense of humor and appreciate your willingness to enhance my mood, as difficult as it was at times. You are my rock, my love, my best friend, and a huge component to me crossing the finish line. I sincerely thank you for all that you have done. And last, but certainly not least, I owe an

enormous amount of appreciation to my mother. She is the epitome of a role model, always leading by example, refusing to allow the challenges she faces to deter her from succeeding. She has sacrificed a great deal to ensure that I could pursue my dreams, and I cannot thank her enough for this support. I have a great deal of respect for my mother and I share this accomplishment with her. Thanks!

ABSTRACT

Biologically active natural products and pharmaceuticals often present intriguing structural features that can challenge the state of the art in catalysis and synthetic methodology for their preparation. The identification of unique targets thus stimulates the development of new strategies and methods for chemical synthesis. The complex architecture representative of the variecolin family of sesquiterpenes has inspired our pursuit of new tactics that has enabled the expansion of methods from our laboratory.

First, progress toward the asymmetric total synthesis of variecolin is discussed. Our convergent synthetic approach bisects the target into two complex fragments to address the main structural challenges. A microwave-promoted tandem Wolff/Cope rearrangement of vinyl cyclobutyl diazocarbonyls has been developed that provides access to functionalized, fused eight-membered rings and is used to construct the central B ring of variecolin. In addition, the utility of our Pd-catalyzed enantioselective alkylation method is extended to a new vinylogous ester substrate class to produce a quaternary ketone in excellent yield with high selectivity that is an exceptional substrate for an efficient ring contraction to the cyclopentene D ring system. The successful asymmetric preparation of our two devised fragments has facilitated initial studies toward their coupling and completion of variecolin.

Second, a preliminary examination of the substrate scope for the asymmetric alkylation of the vinylogous β -ketoester substrate class is described. Derivatives that perturb substrate electronics display enhanced reactivity and selectivity, generating products with excellent selectivities and expanding the potential of this versatile class of substrates. Furthermore, their utility is underscored as the key enantioselective transformation en route to the synthesis of the sesquiterpenoid (+)-carissone.

Finally, gas-phase studies of the twisted amide 2-quinuclidone are described. Proton affinity experiments have quantified its high basicity, which is comparable to a tertiary amine. A gas-phase synthesis of 2-quinuclidone via elimination of water and subsequent fragmentation further highlight the unusual characteristics of extremely twisted amides.

TABLE OF CONTENTS

Acknowledgements	iv
Abstract.....	xi
Table of Contents	xii
List of Figures.....	xviii
List of Schemes	xxix
List of Tables.....	xxxiii
List of Abbreviations.....	xxxvi

CHAPTER 1 1 *Natural Products and Pharmaceuticals as Inspiration for the Development of Enantioselective Catalysis*

1.1 Introcution.....	1
1.2 Historical Overview of Enantioselective Methods.....	2
1.3 Recent Developments in Enantioselective Catalysis.....	7
1.3.1 β -Enamino Amide Hydrogenations — Januvia.....	8
1.3.2 C(sp ³)—C(sp ³) Cross-Couplings — Fluvirucinine A ₁	12
1.3.3 Intramolecular Heck Cyclizations — Minfiensine	15
1.3.4 Indole Friedel–Crafts Alkylation — Flustramine B	17
1.3.5 Pictet–Spengler Cyclizations — Harmicine	19
1.3.6 Phase Transfer Alkylation — Indocrinone.....	21
1.3.7 Pd-Catalyzed Enolate Alkylation — Cyanthiwigin F	23
1.3.8 Trimethylenemethane Cyclizations — Marcfortine B	26
1.4 Outlook	28
1.5 Notes and References	30

CHAPTER 2 38 *The Variecolin Family of Sesterterpenoids*

2.1 Introduction and Background.....	38
2.1.1 Isolation and Structural Elucidation	38
2.1.2 Biosynthetic Proposal.....	41

2.2	Biological Activity.....	43
2.2.1	Antihypertensive Properties	43
2.2.2	Immunomodulatory Properties	44
2.2.3	CCR5 Antagonist	45
2.2.4	Antibiotic and Antifungal Properties.....	45
2.3	Synthetic Studies toward Variecolin.....	45
2.3.1	Piers' Approach to the CD Ring System	46
2.3.2	Molander's Approach to the B Ring.....	51
2.3.3	Molander's Second-Generation Approach	54
2.4	Conclusion.....	59
2.5	Notes and References	60

CHAPTER 3 **64**
Progress toward the Asymmetric Total Synthesis of Variecolin

3.1	Introduction and Synthetic Strategy	64
3.1.1	Introduction	64
3.1.2	Retrosynthetic Analysis	66
3.2	A Wolff/Cope Approach to the AB Ring System	67
3.2.1	Model Studies of the Wolff/Cope Rearrangement toward Construction of the Eight-Membered AB Ring	68
3.2.1.1	Model Wolff/Cope Substrate Synthesis.....	68
3.2.1.2	Model Wolff/Cope Rearrangement Investigations.....	74
3.2.2	Asymmetric Synthesis of the AB Ring Fragment of Variecolin Employing the Wolff/Cope Rearrangement.....	77
3.2.2.1	Asymmetric Synthesis of Wolff/Cope Substrate toward Variecolin.....	77
3.2.2.2	α -Diazoketone Synthesis and Wolff/Cope Studies	80
3.3	Catalytic Asymmetric Synthesis of a D-Ring Fragment.....	83
3.3.1	Optimization of the Pd-Catalyzed Asymmetric Alkylation of Cyclic Seven-Membered Vinylogous β -Ketoesters	84
3.3.2	Ring Contraction Investigations and Determination of the Absolute Stereochemistry	86
3.3.3	Completion of the D-Ring Fragment.....	91
3.4	Studies toward the Fragment Coupling of the AB and D-Ring Fragments toward Variecolin	92
3.4.1	Model Studies for Fragment Coupling and C-Ring Annulation.....	93
3.4.1.1	Model Reductive Enone Alkylation and Hydrosilylation/Alkylation	93

3.4.1.2	Model C-Ring Radical Cyclization	94
3.4.2	Coupling Studies regarding the Asymmetric AB Ring Fragment of Variecolin	95
3.4.2.1	Enone Reductive Alkylation of the Asymmetric AB Ring Fragment.....	95
3.4.2.2	Enone Hydrosilylation of the Asymmetric AB Ring Fragment	98
3.5	Proposed Completion of Variecolin	99
3.6	Conclusion	100
3.7	Experimental Section	102
3.7.1	Materials and Methods.....	102
3.7.2	Preparative Procedures.....	105
3.7.2.1	Tricarbonyliron-Cyclobutadiene Fragments	105
3.7.2.2	AB Ring Model System Fragments	108
3.7.2.3	AB Ring Asymmetric Fragments.....	125
3.7.2.4	D-Ring Fragments.....	143
3.7.2.5	Model Fragment Coupling and C-Ring Annulation.....	162
3.7.2.6	Asymmetric AB Ring and D-Ring Fragment Coupling	172
3.8	Notes and References	176

APPENDIX 1 **188**
Synthetic Summary toward the Asymmetric Total Synthesis of Variecolin

APPENDIX 2 **192**
Spectra Relevant to Chapter 3: Progress toward the Asymmetric Total Synthesis of Variecolin

APPENDIX 3 **299**
X-Ray Crystallography Reports Relevant to Chapter 3: Progress toward the Asymmetric Total Synthesis of Variecolin

A3.1	Crystal Structure Analysis of 215	299
A3.2	Crystal Structure Analysis of 233	307

CHAPTER 4 **317**
Enantioselective Allylic Alkylations of Vinylogous β -Ketoester Derivatives: Total Synthesis of (+)-Carisstone

4.1	Introduction.....	317
-----	-------------------	-----

4.2	Enantioselective Decarboxylative Alkylation of Vinylogous β -Ketoester Derivatives	318
4.2.1	Effect of Solvent.....	319
4.2.2	Effect of Substrate Substitution	320
4.2.3	Extensions to Six-Membered Rings	322
4.2.4	Future Studies of Vinylogous β -Ketoester Substrates	324
4.3	Catalytic Enantioselective Approach to the Eudesmane Sesquiterpenoids	325
4.3.1	Background of the Eudesmane Sesquiterpenoids.....	325
4.3.2	Retrosynthetic Analysis of the Eudesmane Carbocyclic Core	327
4.3.3	Total Synthesis of (+)-Carissone	328
4.3.3.1	Pd-Catalyzed Enantioselective Alkylation of Vinylogous Ester Derivatives....	328
4.3.3.2	Preparation of the Bicyclic Core	329
4.3.3.3	Completion of (+)-Carissone and a Formal Synthesis of (−)- α -Eudesmol.....	331
4.4	Conclusion	332
4.5	Experimental Section	334
4.5.1	Materials and Methods.....	334
4.5.2	Preparative Procedures.....	336
4.5.2.1	Asymmetric Alkylation of Vinylogous β -Ketoester Derivatives.....	336
4.5.2.2	Enantioselective Total Synthesis of (+)-Carissone.....	349
4.6	Notes and References	371

APPENDIX 4 378
Spectra Relevant to Chapter 4: Enantioselective Allylic Alkylation of Vinylogous β -Ketoester Derivatives: Total Synthesis of (+)-Carissone

CHAPTER 5 409
Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

5.1	Introduction and Background.....	409
5.1.1	The Amide Linkage	409
5.1.2	2-Quinuclidone	410
5.2	The Synthesis and Characterization of 2-Quinuclidonium Tetrafluoroborate	412
5.2.1	Synthesis of 2-Quinuclidonium via an Intramolecular Schmidt–Aubé Cyclization ..	413
5.2.2	Characterization, Properties, and Reactivity	415
5.3	Gas-Phase Studies	417
5.3.1	Proton Affinity via the Extended Kinetic Method	417

5.3.2	Collision-Induced Dissociation Pathway	419
5.3.3	Gas-Phase Synthesis of 2-Quinuclidonium by Eliminating Water	423
5.3.4	Comparison to 6,6,7,7-Tetramethyl-2-quinuclidone	424
5.4	Future Studies.....	426
5.4.1	1-Azabicyclo[2.2.1]heptan-2-one	427
5.4.2	1-Azabicyclo[3.3.3]undecan-2-one.....	428
5.5	Conclusion	430
5.6	Experimental Section	431
5.6.1	Materials and Methods.....	431
5.6.1.1	Chemical Synthesis	431
5.6.1.2	Extended Kinetic Methods, Gas-Phase Synthesis, and Calculations	432
5.6.2	Preparative Procedures.....	434
5.6.3	Computationally Optimized Structures	449
5.6.4	Extended Kinetic Methods Plots.....	452
5.6.5	MS ² Spectra of Isotopically Labeled Derivatives and their Hydrolysis Products	453
5.7	Notes and References	456

APPENDIX 5 **462**
Spectra Relevant to Chapter 5: Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

APPENDIX 6 **501**
An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

A6.1	Introduction and Background.....	501
A6.2	Reaction Optimization	502
A6.3	Crystallization and Improved Purification.....	504
A6.4	Conclusion	505
A6.5	Experimental Section	507
A6.5.1	Materials and Methods	507
A6.5.2	Preparative Procedures	509
A6.6	Notes and References	511

APPENDIX 7	514
<i>Spectra Relevant to Appendix 6: An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX</i>	

APPENDIX 8	517
<i>X-Ray Crystallography Reports Relevant to Appendix 6: An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX</i>	

A8.1 Crystal Structure Analysis of (S)-55.....	517
--	-----

APPENDIX 9	524
<i>Notebook Cross-Reference</i>	

Comprehensive Bibliography.....	529
Index	565
About the Author.....	569

LIST OF FIGURES

CHAPTER 2

The Variecolin Family of Sesterterpenoids

Figure 2.1.1. Proposed structure of variecolin.....	39
Figure 2.1.2. Variecolin family of sesterterpenoids.....	41

CHAPTER 3

Progress toward the Asymmetric Total Synthesis of Variecolin

Figure 3.1.1. Variecolin family of sesterterpenes.....	65
Figure 3.2.1 Comparison of the strain-releasing Cope rearrangements of 204 and 206	76
Figure 3.2.2. X-ray crystal structure of acetal 215 . The molecular structure is shown with 50% probability ellipsoids. a) Side view. b) Top view.....	79
Figure 3.3.1. X-ray crystal structure of semicarbazone 233 . The molecular structure is shown with 50% probability ellipsoids.....	91

APPENDIX 2

Spectra Relevant to Chapter 3: Progress toward the Asymmetric Total Synthesis of Variecolin

Figure A2.1. ^1H NMR spectrum (500 MHz, CDCl_3) of 178	193
Figure A2.2. Infrared spectrum (neat film/NaCl) of 178	194
Figure A2.3. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 178	194
Figure A2.4. ^1H NMR spectrum (500 MHz, CDCl_3) of 180	195
Figure A2.5. Infrared spectrum (neat film/NaCl) of 180	196
Figure A2.6. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 180	196
Figure A2.7. ^1H NMR spectrum (500 MHz, CDCl_3) of 181	197
Figure A2.8. Infrared spectrum (neat film/NaCl) of 181	198
Figure A2.9. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 181	198
Figure A2.10. ^1H NMR spectrum (300 MHz, C_6D_6) of 183	199
Figure A2.11. ^1H NMR spectrum (300 MHz, C_6D_6) of 184	200
Figure A2.12. Infrared spectrum (neat film/NaCl) of 184	201
Figure A2.13. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 184	201

Figure A2.14. ^1H NMR spectrum (500 MHz, C_6D_6) of 185	202
Figure A2.15. Infrared spectrum (neat film/NaCl) of 185	203
Figure A2.16. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 185	203
Figure A2.17. ^1H NMR spectrum (300 MHz, CDCl_3) of 186	204
Figure A2.18. ^1H NMR spectrum (500 MHz, CDCl_3) of 187	205
Figure A2.19. ^1H NMR spectrum (300 MHz, C_6D_6) of 188	206
Figure A2.20. Infrared spectrum (neat film/NaCl) of 188	207
Figure A2.21. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 188	207
Figure A2.22. ^1H NMR spectrum (500 MHz, CDCl_3) of 189	208
Figure A2.23. Infrared spectrum (neat film/NaCl) of 189	209
Figure A2.24. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 189	209
Figure A2.25. ^1H NMR spectrum (500 MHz, CDCl_3) of 190	210
Figure A2.26. Infrared spectrum (neat film/NaCl) of 190	211
Figure A2.27. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 190	211
Figure A2.28. ^1H NMR spectrum (500 MHz, CDCl_3) of 191	212
Figure A2.29. Infrared spectrum (neat film/NaCl) of 191	213
Figure A2.30. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 191	213
Figure A2.31. ^1H NMR spectrum (300 MHz, CDCl_3) of 192	214
Figure A2.32. ^1H NMR spectrum (500 MHz, CDCl_3) of 193	215
Figure A2.33. Infrared spectrum (neat film/NaCl) of 193	216
Figure A2.34. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 193	216
Figure A2.35. ^1H NMR spectrum (500 MHz, CDCl_3) of 197	217
Figure A2.36. Infrared spectrum (neat film/NaCl) of 197	218
Figure A2.37. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 197	218
Figure A2.38. ^1H NMR spectrum (500 MHz, CDCl_3) of 198	219
Figure A2.39. Infrared spectrum (neat film/NaCl) of 198	220
Figure A2.40. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 198	220
Figure A2.41. ^1H NMR spectrum (500 MHz, CDCl_3) of 200	221
Figure A2.42. Infrared spectrum (neat film/NaCl) of 200	222
Figure A2.43. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 200	222
Figure A2.44. ^1H NMR spectrum (500 MHz, C_6D_6) of 201	223
Figure A2.45. ^1H NMR spectrum (500 MHz, CDCl_3) of 201	224
Figure A2.46. Infrared spectrum (neat film/NaCl) of 201	225
Figure A2.47. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 201	225
Figure A2.48. ^1H NMR spectrum (500 MHz, CDCl_3) of 203	226

Figure A2.49. Infrared spectrum (neat film/NaCl) of 203	227
Figure A2.50. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 203	227
Figure A2.51. ^1H NMR spectrum (300 MHz, CDCl_3) of 208	228
Figure A2.52. ^1H NMR spectrum (500 MHz, CDCl_3) of 209	229
Figure A2.53. Infrared spectrum (neat film/NaCl) of 209	230
Figure A2.54. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 209	230
Figure A2.55. ^1H NMR spectrum (500 MHz, CDCl_3) of 211	231
Figure A2.56. Infrared spectrum (neat film/NaCl) of 211	232
Figure A2.57. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 211	232
Figure A2.58. ^1H NMR spectrum (500 MHz, C_6D_6) of 212	233
Figure A2.59. Infrared spectrum (neat film/NaCl) of 212	234
Figure A2.60. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 212	234
Figure A2.61. ^1H NMR spectrum (500 MHz, CDCl_3) of 213	235
Figure A2.62. Infrared spectrum (neat film/NaCl) of 213	236
Figure A2.63. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 213	236
Figure A2.64. ^1H NMR spectrum (500 MHz, CDCl_3) of 214	237
Figure A2.65. Infrared spectrum (neat film/NaCl) of 214	238
Figure A2.66. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 214	238
Figure A2.67. ^1H NMR spectrum (600 MHz, CDCl_3) of 215	239
Figure A2.68. Infrared spectrum (neat film/NaCl) of 215	240
Figure A2.69. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 215	240
Figure A2.70. ^1H NMR spectrum (500 MHz, CDCl_3) of 216	241
Figure A2.71. Infrared spectrum (neat film/NaCl) of 216	242
Figure A2.72. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 216	242
Figure A2.73. ^1H NMR spectrum (500 MHz, CDCl_3) of 217	243
Figure A2.74. Infrared spectrum (neat film/NaCl) of 217	244
Figure A2.75. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 217	244
Figure A2.76. ^1H NMR spectrum (600 MHz, CDCl_3) of 218	245
Figure A2.77. Infrared spectrum (neat film/NaCl) of 218	246
Figure A2.78. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 218	246
Figure A2.79. ^1H NMR spectrum (500 MHz, CDCl_3) of 220	247
Figure A2.80. Infrared spectrum (neat film/NaCl) of 220	248
Figure A2.81. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 220	248
Figure A2.82. ^1H NMR spectrum (500 MHz, CDCl_3) of 221	249
Figure A2.83. Infrared spectrum (neat film/NaCl) of 221	250

Figure A2.84. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 221	250
Figure A2.85. ^1H NMR spectrum (500 MHz, CDCl_3) of 222	251
Figure A2.86. Infrared spectrum (neat film/NaCl) of 222	252
Figure A2.87. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 222	252
Figure A2.88. ^1H NMR spectrum (600 MHz, CDCl_3) of 223	253
Figure A2.89. Infrared spectrum (neat film/NaCl) of 223	254
Figure A2.90. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 223	254
Figure A2.91. ^1H NMR spectrum (500 MHz, CDCl_3) of 224	255
Figure A2.92. Infrared spectrum (neat film/NaCl) of 224	256
Figure A2.93. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 224	256
Figure A2.94. ^1H NMR spectrum (500 MHz, CDCl_3) of 225	257
Figure A2.95. Infrared spectrum (neat film/NaCl) of 225	258
Figure A2.96. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 225	258
Figure A2.97. ^1H NMR spectrum (300 MHz, CDCl_3) of 227	259
Figure A2.98. ^1H NMR spectrum (500 MHz, CDCl_3) of 228	260
Figure A2.99. Infrared spectrum (neat film/NaCl) of 228	261
Figure A2.100. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 228	261
Figure A2.101. ^1H NMR spectrum (500 MHz, CDCl_3) of 229	262
Figure A2.102. Infrared spectrum (neat film/NaCl) of 229	263
Figure A2.103. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 229	263
Figure A2.104. ^1H NMR spectrum (500 MHz, CDCl_3) of 231	264
Figure A2.105. Infrared spectrum (neat film/NaCl) of 231	265
Figure A2.106. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 231	265
Figure A2.107. ^1H NMR spectrum (300 MHz, CDCl_3) of 232	266
Figure A2.108. Infrared spectrum (neat film/NaCl) of 232	267
Figure A2.109. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 232	267
Figure A2.110. ^1H NMR spectrum (500 MHz, CDCl_3) of 233	268
Figure A2.111. Infrared spectrum (neat film/NaCl) of 233	269
Figure A2.112. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 233	269
Figure A2.113. ^1H NMR spectrum (300 MHz, CDCl_3) of 235	270
Figure A2.114. Infrared spectrum (neat film/NaCl) of 235	271
Figure A2.115. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 235	271
Figure A2.116. ^1H NMR spectrum (500 MHz, CDCl_3) of 236	272
Figure A2.117. Infrared spectrum (neat film/NaCl) of 236	273
Figure A2.118. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 236	273

Figure A2.119. ^1H NMR spectrum (500 MHz, CDCl_3) of 237	274
Figure A2.120. Infrared spectrum (neat film/NaCl) of 237	275
Figure A2.121. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 237	275
Figure A2.122. ^1H NMR spectrum (300 MHz, CDCl_3) of 238	276
Figure A2.123. Infrared spectrum (neat film/NaCl) of 238	277
Figure A2.124. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 238	277
Figure A2.125. ^1H NMR spectrum (500 MHz, C_6D_6) of 239	278
Figure A2.126. Infrared spectrum (neat film/NaCl) of 239	279
Figure A2.127. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 239	279
Figure A2.128. ^1H NMR spectrum (300 MHz, CDCl_3) of 240	280
Figure A2.129. Infrared spectrum (neat film/NaCl) of 240	281
Figure A2.130. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 240	281
Figure A2.131. ^1H NMR spectrum (500 MHz, CDCl_3) of 241	282
Figure A2.132. Infrared spectrum (neat film/NaCl) of 241	283
Figure A2.133. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 241	283
Figure A2.134. ^1H NMR spectrum (500 MHz, CDCl_3) of 242	284
Figure A2.135. Infrared spectrum (neat film/NaCl) of 242	285
Figure A2.136. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 242	285
Figure A2.137. ^1H NMR spectrum (500 MHz, CDCl_3) of the major diastereomer of 243	286
Figure A2.138. Infrared spectrum (neat film/NaCl) of the major diastereomer of 243	287
Figure A2.139. ^{13}C NMR spectrum (126 MHz, CDCl_3) of the major diastereomer of 243	287
Figure A2.140. ^1H NMR spectrum (500 MHz, CDCl_3) of the minor diastereomer of 243	288
Figure A2.141. Infrared spectrum (neat film/NaCl) of the minor diastereomer of 243	289
Figure A2.142. ^{13}C NMR spectrum (neat film/NaCl) of the minor diastereomer of 243	289
Figure A2.143. ^1H NMR spectrum (500 MHz, CDCl_3) of 245	290
Figure A2.144. Infrared spectrum (neat film/NaCl) of 245	291
Figure A2.145. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 245	291
Figure A2.146. ^1H NMR spectrum (300 MHz, CDCl_3) of 253	292
Figure A2.147. Infrared spectrum (neat film/NaCl) of 253	293
Figure A2.148. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 253	293
Figure A2.149. ^1H NMR spectrum (600 MHz, CDCl_3) of 254	294
Figure A2.150. Infrared spectrum (neat film/NaCl) of 254	295
Figure A2.151. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 254	295
Figure A2.152. ^1H NMR spectrum (300 MHz, CDCl_3) of 255	296
Figure A2.153. ^1H NMR spectrum (300 MHz, CDCl_3) of 256	297

Figure A2.154. Infrared spectrum (neat film/NaCl) of 256	298
Figure A2.155. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 256	298

APPENDIX 3

X-Ray Crystallography Reports Relevant to Chapter 3: Progress toward the Asymmetric Total Synthesis of Variecolin

Figure A3.1.1. Acetal 215 is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 718289.....	299
Figure A3.1.2. Acetal 215	302
Figure A3.2.1. Semicarbazone 233 is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 686849.....	307
Figure A3.2.2. Semicarbazone 233	311

CHAPTER 4

Enantioselective Allylic Alkylation of Vinylogous β -Ketoester Derivatives: Total Synthesis of (+)-Carissone

Figure 4.1.1. Representative transformations of vinylogous esters.....	318
Figure 4.3.1. Representative eudesmane sesquiterpenoids.....	326

APPENDIX 4

Spectra Relevant to Chapter 4: Enantioselective Allylic Alkylation of Vinylogous β -Ketoester Derivatives: Total Synthesis of (+)-Carissone

Figure A4.1. ^1H NMR spectrum (500 MHz, CDCl_3) of 275	379
Figure A4.2. Infrared spectrum (neat film/NaCl) of 275	380
Figure A4.3. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 275	380
Figure A4.4. ^1H NMR spectrum (500 MHz, CDCl_3) of 276	381
Figure A4.5. Infrared spectrum (neat film/NaCl) of 276	382
Figure A4.6. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 276	382
Figure A4.7. ^1H NMR spectrum (300 MHz, CDCl_3) of 277	383
Figure A4.8. Infrared spectrum (neat film/NaCl) of 277	384

Figure A4.9. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 277	384
Figure A4.10. ^1H NMR spectrum (300 MHz, CDCl_3) of 278	385
Figure A4.11. Infrared spectrum (neat film/NaCl) of 278	386
Figure A4.12. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 278	386
Figure A4.13. ^1H NMR spectrum (500 MHz, CDCl_3) of (+)-carissoine (279)	387
Figure A4.14. Infrared spectrum (neat film/NaCl) of (+)-carissoine (279)	388
Figure A4.15. ^{13}C NMR spectrum (126 MHz, CDCl_3) of (+)-carissoine (279)	388
Figure A4.16. ^1H NMR spectrum (500 MHz, CDCl_3) of 287	389
Figure A4.17. ^1H NMR spectrum (500 MHz, CDCl_3) of 288	390
Figure A4.18. Infrared spectrum (neat film/NaCl) of 288	391
Figure A4.19. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 288	391
Figure A4.20. ^1H NMR spectrum (300 MHz, CDCl_3) of 289	392
Figure A4.21. ^1H NMR spectrum (500 MHz, C_6D_6) of 290	393
Figure A4.22. Infrared spectrum (neat film/NaCl) of 290	394
Figure A4.23. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 290	394
Figure A4.24. ^1H NMR spectrum (500 MHz, C_6D_6) of 292	395
Figure A4.25. Infrared spectrum (neat film/NaCl) of 292	396
Figure A4.26. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 292	396
Figure A4.27. ^1H NMR spectrum (500 MHz, C_6D_6) of 293	397
Figure A4.28. Infrared spectrum (neat film/NaCl) of 293	398
Figure A4.29. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 293	398
Figure A4.30. ^1H NMR spectrum (500 MHz, C_6D_6) of 294	399
Figure A4.31. Infrared spectrum (neat film/NaCl) of 294	400
Figure A4.32. ^{13}C NMR spectrum (126 MHz, C_6D_6) of 294	400
Figure A4.33. ^1H NMR spectrum (500 MHz, CDCl_3) of 295	401
Figure A4.34. Infrared spectrum (neat film/NaCl) of 295	402
Figure A4.35. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 295	402
Figure A4.36. ^1H NMR spectrum (500 MHz, CDCl_3) of 304	403
Figure A4.37. Infrared spectrum (neat film/NaCl) of 304	404
Figure A4.38. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 304	404
Figure A4.39. ^1H NMR spectrum (300 MHz, CDCl_3) of 307	405
Figure A4.40. ^1H NMR spectrum (300 MHz, CDCl_3) of 308	406
Figure A4.41. ^1H NMR spectrum (500 MHz, C_6D_6) of the major diastereomer of 309	407
Figure A4.42. Infrared spectrum (neat film/NaCl) of the major diastereomer of 309	408
Figure A4.43. ^{13}C NMR spectrum (126 MHz, C_6D_6) of the major diastereomer of 309	408

CHAPTER 5

Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

Figure 5.1.1. Resonance stabilization of a typical amide.	410
Figure 5.1.2. a) Woodward's failed synthesis of 311 from amino acid 310 . b) Facile amide bond formation to afford constitutional isomer 313	411
Figure 5.2.1. ORTEP drawing of 311 •HBF ₄	415
Figure 5.3.1. Data from kinetic method experiments showing the relative PA versus natural log of the ratio of ion intensities minus protonation entropies. Three representative collision energies are shown for each reference base. The collinearity of all three lines indicates few entropic effects. The PA of 311 is determined to be 230.4 kcal/mol by the extended kinetic method.	419
Figure 5.3.2. Representative amide and amine experimentally determined PAs (kcal/mol).....	419
Figure 5.3.3. i) CID spectrum of 311 •H ⁺ (m/z = 126) with a single fragment being detected. ii) CID spectrum of 310 •H ⁺ (m/z = 144). The loss of water generates 311 •H ⁺ , which simultaneously fragments. iii) MS ³ CID spectrum of the reisolated peak at m/z 126 from spectrum ii confirming that 311 •H ⁺ is generated by the loss of water.	420
Figure 5.3.4. i) CID spectrum of 318 •H ⁺ (m/z = 182). ii) CID spectrum of 346 •H ⁺ (m/z = 200). In this case, the synthesis proceeds cleanly without spontaneous fragmentation. iii) MS ³ CID spectrum showing that all fragment peaks are reproduced when the gas-phase product is compared to the bona-fide sample in spectrum i.	426
Figure 5.4.1. a) Comparison of strain energies of related bicyclic systems (kcal/mol). ³⁷ b) Comparison of proton affinity values for select bicyclic twisted amides (kcal/mol).	427
Figure 5.4.2. Bicyclo[3.3.3] bridgehead amide 355 and amine 356	429
Figure 5.6.1. Optimized structure of 2-quinuclidone (311).	449
Figure 5.6.2. Optimized structure of N-protonated 2-quinuclidone (311 •H ⁺).	450
Figure 5.6.3. Optimized structure of 6,6,7,7-tetramethyl-2-quinuclidone (318).	450
Figure 5.6.4. Optimized structure of N-protonated 6,6,7,7-tetramethyl-2-quinuclidone (318 •H ⁺).	451
Figure 5.6.5. Plot of the extended kinetic method of 311 with direct entropy correction.	452
Figure 5.6.6. Entropy corrected kinetic plot using bulky bases.	453
Figure 5.6.7. MS ² spectrum of 332 (¹⁵ N).	454
Figure 5.6.8. MS ² spectrum of 333 (¹³ C ₂).	454
Figure 5.6.9. MS ² spectrum of 334 (D).	455
Figure 5.6.10. MS ² spectrum of 335 (D ₂).	455

APPENDIX 5

Spectra Relevant to Chapter 5: Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

Figure A5.1. ^1H NMR spectrum (300 MHz, CD_3CN) of 333 $\bullet\text{HBF}_4$	463
Figure A5.2. ^{13}C NMR spectrum (75 MHz, CD_3CN) of 333 $\bullet\text{HBF}_4$	464
Figure A5.3. ^1H NMR spectrum (300 MHz, CD_3CN) of 334 $\bullet\text{HBF}_4$	465
Figure A5.4. ^2H NMR spectrum (76 MHz, CH_3CN) of 334 $\bullet\text{HBF}_4$	466
Figure A5.5. ^1H NMR spectrum (300 MHz, CD_3CN) of 335 $\bullet\text{HBF}_4$	467
Figure A5.6. ^2H NMR spectrum (75 MHz, CH_3CN) of 335 $\bullet\text{HBF}_4$	468
Figure A5.7. ^1H NMR spectrum (300 MHz, CDCl_3) of 339	469
Figure A5.8. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 339	470
Figure A5.9. ^1H NMR spectrum (300 MHz, CDCl_3) of 340	471
Figure A5.10. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 340	472
Figure A5.11. ^1H NMR spectrum (300 MHz, CDCl_3) of 341	473
Figure A5.12. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 341	474
Figure A5.13. ^1H NMR spectrum (300 MHz, CDCl_3) of 344	475
Figure A5.14. ^2H NMR spectrum (76 MHz, CHCl_3) of 344	476
Figure A5.15. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 344	476
Figure A5.16. ^1H NMR spectrum (300 MHz, CDCl_3) of 345	477
Figure A5.17. ^2H NMR spectrum (76 MHz, CHCl_3) of 345	478
Figure A5.18. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 345	478
Figure A5.19. ^1H NMR spectrum (300 MHz, CDCl_3) of 363	479
Figure A5.20. Infrared spectrum (neat film/NaCl) of 363	480
Figure A5.21. ^{13}C NMR spectrum (125 MHz, CDCl_3) of 363	480
Figure A5.22. ^1H NMR spectrum (300 MHz, CDCl_3) of 364	481
Figure A5.23. Infrared spectrum (neat film/NaCl) of 364	482
Figure A5.24. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 364	482
Figure A5.25. ^1H NMR spectrum (500 MHz, CD_3OD) of 365	483
Figure A5.26. Infrared spectrum (neat film/NaCl) of 365	484
Figure A5.27. ^{13}C NMR spectrum (125 MHz, CD_3OD) of 365	484
Figure A5.28. ^1H NMR spectrum (300 MHz, CDCl_3) of 366	485
Figure A5.29. Infrared spectrum (neat film/NaCl) of 366	486
Figure A5.30. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 366	486
Figure A5.31. ^1H NMR spectrum (300 MHz, CD_3OD) of 368	487
Figure A5.32. ^{13}C NMR spectrum (75 MHz, CD_3OD) of 368	488

Figure A5.33. ^1H NMR spectrum (300 MHz, CDCl_3) of 369	489
Figure A5.34. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 369	490
Figure A5.35. ^1H NMR spectrum (300 MHz, CD_3OD) of 370	491
Figure A5.36. ^2H NMR spectrum (76 MHz, CH_3OH) of 370	492
Figure A5.37. ^{13}C NMR spectrum (75 MHz, CD_3OD) of 370	492
Figure A5.38. ^1H NMR spectrum (300 MHz, CDCl_3) of 371	493
Figure A5.39. ^2H NMR spectrum (76 MHz, CHCl_3) of 371	494
Figure A5.40. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 371	494
Figure A5.41. ^1H NMR spectrum (300 MHz, CDCl_3) of 372	495
Figure A5.42. ^2H NMR spectrum (76 MHz, CHCl_3) of 372	496
Figure A5.43. ^{13}C NMR spectrum (125 MHz, CDCl_3) of 372	496
Figure A5.44. ^1H NMR spectrum (300 MHz, CD_3OD) of 373	497
Figure A5.45. ^2H NMR spectrum (76 MHz, CH_3OH) of 373	498
Figure A5.46. ^{13}C NMR spectrum (75 MHz, CD_3OD) of 373	498
Figure A5.47. ^1H NMR spectrum (300 MHz, CDCl_3) of 374	499
Figure A5.48. ^2H NMR spectrum (76 MHz, CHCl_3) of 374	500
Figure A5.49. ^{13}C NMR spectrum (75 MHz, CDCl_3) of 374	500

APPENDIX 6

An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

Figure A6.3.1. X-ray crystal analysis of (S)-t-Bu-PHOX ((S)- 55). The molecular structure is drawn with 50% probability ellipsoids.....	505
---	-----

APPENDIX 7

Spectra Relevant to Appendix 6: An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

Figure A7.1. ^1H NMR spectrum (300 MHz, CDCl_3) of 55	515
Figure A7.2. ^{31}P NMR spectrum (121 MHz, CDCl_3) of 55	516
Figure A7.3. ^{13}C NMR spectrum (126 MHz, CDCl_3) of 55	516

APPENDIX 8

X-Ray Crystallography Reports Relevant to Appendix 6: An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

<i>Figure A8.1.1. (S)-t-Bu-PHOX ((S)-55) is shown with 50% probability ellipsoids. Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 646767.....</i>	517
<i>Figure A8.1.2. (S)-t-Bu-PHOX ((S)-55).</i>	520

LIST OF SCHEMES

CHAPTER 1

Natural Products and Pharmaceuticals as Inspiration for the Development of Enantioselective Catalysis

Scheme 1.2.1. Enantioselective Diels–Alder cycloaddition and enantioselective ketone reduction en route to prostaglandins	3
Scheme 1.2.2. a) Enantioselective enamide hydrogenation toward α -amino acids. b) Enantioselective alkene epoxidation toward Crixivan. c) Enantioselective isomerization of an allyl amine toward menthol	5
Scheme 1.2.3. Enantioselective intramolecular aldol condensation toward steroids	6
Scheme 1.2.4. Convergent application of various enantioselective methods toward the synthesis of phorboxazole B	7
Scheme 1.3.1. Enantioselective hydrogenation of a β -enamino amide toward the synthesis of Januvia10	10
Scheme 1.3.2 Enantioselective $C(sp^3)$ – $C(sp^3)$ cross-couplings toward fluvirucinine A ₁	14
Scheme 1.3.3. Enantioselective intramolecular Heck reaction toward minfiensine.....	16
Scheme 1.3.4. Enantioselective Friedel–Crafts alkylation toward flustramine B.....	18
Scheme 1.3.5. Enantioselective Pictet–Spengler cyclization toward harmicine	20
Scheme 1.3.6. Phase-transfer alkylation toward indocrinone.....	22
Scheme 1.3.7. Pd-catalyzed enolate alkylations toward cyanthiwigin F	24
Scheme 1.3.8. a) Pd-catalyzed TMM-[3 + 2]-cycloaddition toward marcfortine B. b) Enantioselective TMM-cyclization.....	27

CHAPTER 2

The Variecolin Family of Sesterterpenoids

Scheme 2.1.1. Assignment of the absolute configuration of variecolin.....	40
Scheme 2.1.2. Hensens' biosynthetic proposal for variecolin.....	42
Scheme 2.3.1. Piers' stereoselective CD ring preparation.....	47
Scheme 2.3.2. Piers' annulation of the B ring	48
Scheme 2.3.3. Completion of the ABCD tetracycle via A-ring annulation.....	49
Scheme 2.3.4. Piers' end game progress toward completion of variecolin.....	50
Scheme 2.3.5. Samarium(II) iodide-promoted medium ring synthesis	51
Scheme 2.3.6. Molander's first-generation synthesis of A-ring fragment.....	52

Scheme 2.3.7. Molander's first-generation synthesis of a CD ring fragment	54
Scheme 2.3.8. Molander's revised A-ring synthesis	55
Scheme 2.3.9. Molander's revised CD ring synthesis.....	56
Scheme 2.3.10. Molander's Sm(II)-promoted fragment coupling studies.....	57
Scheme 2.3.11. Alternate Sm(II)-promoted fragment coupling studies	58
Scheme 2.3.12. Molander's attempted installation of the C(11) quaternary stereocenter.....	59

CHAPTER 3

Progress toward the Asymmetric Total Synthesis of Variecolin

Scheme 3.1.1. Retrosynthetic analysis of variecolin.....	67
Scheme 3.2.1. Preparation of trichloroacetimidate 185	69
Scheme 3.2.2. Tethered cycloaddition of alcohol (\pm)- 187	70
Scheme 3.2.3. Termini-differentiating ozonolysis of cyclobutene 189	70
Scheme 3.2.4. Proposed ozonolytic cleavage of cyclobutene 189	72
Scheme 3.2.5. Optimized synthesis of α -diazoketone 200	74
Scheme 3.2.6. Initial Wolff/Cope studies on α -diazoketone 200	75
Scheme 3.2.7. Successful Wolff/Cope rearrangement of α -diazoketone 200	76
Scheme 3.2.8. Asymmetric synthesis of intramolecular cycloaddition substrate 212	78
Scheme 3.2.9. Cycloaddition, ozonolysis, and olefination toward an asymmetric Wolff/Cope substrate	79
Scheme 3.2.10. α -Diazoketone synthesis and Wolff/Cope rearrangement.....	80
Scheme 3.2.11. Optimized rearrangement of α -diazoketone 221 to α -methyl cyclooctadienone 223	83
Scheme 3.3.1. Proposed ring contraction approach to acylcyclopentene 225	83
Scheme 3.3.2. Vinylogous β -ketoester substrate synthesis and Pd-catalyzed asymmetric alkylation... 85	85
Scheme 3.3.3. Large-scale enantioselective alkylation of β -ketoester (\pm)- 181	86
Scheme 3.3.4. Reduction of ketone 229 and preliminary ring contraction.....	87
Scheme 3.3.5. Scale-up, derivatization, and enantioenrichment of acylcyclopentene 225	90
Scheme 3.3.6. Completion of D-ring fragment 237	92
Scheme 3.4.1. Model studies for B-D ring coupling.....	94
Scheme 3.4.2. Model radical cyclization for annulation of the C ring	95
Scheme 3.4.3. Efforts toward the direct reductive alkylation of enones 222 and 223 with iodide 237	96
Scheme 3.4.4. Diastereoselective reductive alkylation of 222 with methyl iodide or allyl bromide	97
Scheme 3.4.5. Soft enolization of ketones 244 and 248	97
Scheme 3.4.6. Hydrosilylation investigations of enones 222 and 223	98

Scheme 3.5.1. Proposed end game strategy for completion of variecolin	100
---	-----

APPENDIX 1

Synthetic Summary toward the Asymmetric Total Synthesis of Variecolin

Scheme A1.1. Retrosynthetic analysis of variecolin	188
Scheme A1.2. Intramolecular cycloaddition and unsymmetrical ozonolysis toward the AB ring	189
Scheme A1.3. α -Diazoketone synthesis and Wolff/Cope rearrangement to AB ring fragments.....	189
Scheme A1.4. Asymmetric alkylation and ring contraction to the D-ring fragment.....	190
Scheme A1.5. Enrichment of acylcyclopentene 225 for the D-ring fragment.....	190
Scheme A1.6. AB ring reductive alkylation and soft enolization poised for fragment coupling.....	191
Scheme A1.7. Proposed completion of variecolin	191

CHAPTER 4

Enantioselective Allylic Alkylation of Vinylogous β -Ketoester Derivatives: Total Synthesis of (+)-Carissone

Scheme 4.3.1. Retrosynthetic analysis of the eudesmanes.....	327
Scheme 4.3.2. Enantioselective synthesis of the eudesmane bicyclic core.....	331
Scheme 4.3.3. End game for (+)-carissone (279) and the formal synthesis of (−)- α -eudesmol (281)	332

CHAPTER 5

Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

Scheme 5.1.1. Synthesis of methyl-substituted 2-quinuclidone derivatives	412
Scheme 5.2.1. Retrosynthetic analysis of 2-quinuclidone using the Schmidt–Aubé reaction	413
Scheme 5.2.2. Preparation of ketoazide 320	414
Scheme 5.2.3. Synthesis of 2-quinuclidonium tetrafluoroborate (311 •HBF ₄)	414
Scheme 5.3.1. a) Proposed CID fragmentation mechanism of 311 •H ⁺ . b) Isotopically labeled mechanistic probes.....	421
Scheme 5.3.2. Synthetic route for the preparation of isotopically labeled mechanistic probes. a) ¹⁵ N-labeled 332 •HBF ₄ ; b) ¹³ C ₂ -labeled 333 •HBF ₄ ; c) D-labeled 334 •HBF ₄ ; d) D ₂ -labeled 335 •HBF ₄	422
Scheme 5.3.3. Gas-phase elimination of water to construct 311 •H ⁺ and 318 •H ⁺	424
Scheme 5.4.1. Proposed synthesis of 349 •H ⁺ employing the Schmidt–Aubé cyclization	428

*Scheme 5.4.2. Proposed synthesis of **355** using the Schmidt–Aubé cyclization..... 430*

APPENDIX 6

An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

Scheme A6.1.1. Original Cul-catalyzed coupling for the preparation of (S)-t-Bu-PHOX..... 502

LIST OF TABLES

CHAPTER 2

The Variecolin Family of Sesterterpenoids

<i>Table 2.2.1. Immunosuppressant activity of the variecolin sesterterpenes.....</i>	<i>44</i>
--	-----------

CHAPTER 3

Progress toward the Asymmetric Total Synthesis of Variecolin

<i>Table 3.2.1. Equilibration of acetal 191</i>	<i>73</i>
<i>Table 3.2.2. Wolff/Cope solvent studies of α-diazoketone 221</i>	<i>82</i>
<i>Table 3.3.1. Asymmetric alkylation screen of vinylogous β-ketoester (\pm)-181.....</i>	<i>86</i>
<i>Table 3.3.2. Ring contraction investigations of 231</i>	<i>89</i>

APPENDIX 3

X-Ray Crystallography Reports Relevant to Chapter 3: Progress toward the Asymmetric Total Synthesis of Variecolin

<i>Table A3.1.1. Crystal data and structure refinement for 215 (CCDC 718289).....</i>	<i>300</i>
<i>Table A3.1.2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for acetal 215 (CCDC 718289). $U(\text{eq})$ is defined as the trace of the orthogonalized U^{ij} tensor.....</i>	<i>303</i>
<i>Table A3.1.3. Bond lengths [\AA] and angles [$^\circ$] for acetal 215 (CCDC 718289)</i>	<i>304</i>
<i>Table A3.1.4. Anisotropic displacement parameters ($\text{\AA}^2 \times 10^4$) for acetal 215 (CCDC 718289). The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2 h k a^* b^* U^{12}]$.....</i>	<i>305</i>
<i>Table A3.1.5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for acetal 215 (CCDC 718289)</i>	<i>306</i>
<i>Table A3.2.1. Crystal data and structure refinement for 233 (CCDC 686849).....</i>	<i>307</i>
<i>Table A3.2.2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \times 10^3$) for semicarbazone 233 (CCDC 686849). $U(\text{eq})$ is defined as the trace of the orthogonalized U^{ij} tensor.....</i>	<i>311</i>
<i>Table A3.2.3. Bond lengths [\AA] and angles [$^\circ$] for semicarbazone 233 (CCDC 686849)</i>	<i>313</i>

<i>Table A3.2.4. Anisotropic displacement parameters (Å² x 10⁴) for semicarbazone 233 (CCDC 686849). The anisotropic displacement factor exponent takes the form: -2π²[h²a*²U¹¹ + ... + 2 h k a* b* U¹²].....</i>	315
<i>Table A3.2.5. Hydrogen bonds for semicarbazone 233 (CCDC 686849) [Å and °]</i>	316

CHAPTER 4

Enantioselective Allylic Alkylation of Vinylogous β-Ketoester Derivatives: Total Synthesis of (+)-Carissone

<i>Table 4.2.1. Solvent screen for the Pd-catalyzed alkylation of vinylogous β-ketoester (±)-181.....</i>	320
<i>Table 4.2.2. Variation of the vinylogous functional group for improved stereoselectivity.....</i>	322
<i>Table 4.2.3. Six-membered vinylogous β-ketoester substrates.....</i>	323
<i>Table 4.3.1. Asymmetric allylation of vinylogous ester derivatives</i>	329

CHAPTER 5

Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium Tetrafluoroborate

<i>Table 5.2.1. Comparison of structural parameters for 311•HBF₄ and formamide</i>	416
--	-----

APPENDIX 6

An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

<i>Table A6.2.1. Optimization of the coupling conditions.....</i>	503
<i>Table A6.2.2. Inorganic base screen</i>	504

APPENDIX 8

X-Ray Crystallography Reports Relevant to Appendix 6: An Improved and Highly Efficient Copper(I)-Catalyzed Preparation of (S)-t-Bu-PHOX

<i>Table A8.1.1. Crystal data and structure refinement for (S)-55 (CCDC 664767).....</i>	518
<i>Table A8.1.2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å² x 10³) for (S)-55 (CCDC 664767). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor</i>	521
<i>Table A8.1.3. Bond lengths [Å] and angles [°] for (S)-55 (CCDC 664767).....</i>	522

<i>Table A8.1.4. Anisotropic displacement parameters (Å² x 10⁴) for (S)-55 (CCDC 664767). The anisotropic displacement factor exponent takes the form: -2π² [h² a*²U¹¹ + ... + 2 h k a* b* U¹²].....</i>	523
---	-----

APPENDIX 9

Notebook Cross-Reference

<i>Table A9.1. Notebook cross-reference for compounds of Chapter 3 and Appendix 2</i>	525
<i>Table A9.2. Notebook cross-reference for compounds of Chapter 4 and Appendix 4</i>	526
<i>Table A9.3. Notebook cross-reference for compounds of Chapter 5 and Appendix 5</i>	527
<i>Table A9.4. Notebook cross-reference for compounds of Appendix 6 and Appendix 7</i>	528

LIST OF ABBREVIATIONS

Å	Ångstrom
$[\alpha]_D$	specific rotation at wavelength of sodium D line
Ac	acetyl
Anal.	combustion elemental analysis
APCI	atmospheric pressure chemical ionization
app	apparent
aq	aqueous
AIBN	2,2'-azobisisobutyronitrile
Ar	aryl
atm	atmosphere
BBN	borabicyclononane
Bn	benzyl
Boc	<i>tert</i> -butyloxycarbonyl
bp	boiling point
br	broad
Bu	butyl
<i>i</i> -Bu	<i>iso</i> -butyl
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -Butyl
Bz	benzoyl
<i>c</i>	concentration for specific rotation measurements
°C	degrees Celsius
ca.	about (Latin circa)
calc'd	calculated

CAN	ceric ammonium nitrate
cat	catalytic
Cbz	carbobenzyloxy
CCDC	Cambridge Crystallographic Data Centre
CDI	1,1'-carbonyldiimidazole
cf.	compare (Latin confer)
CI	chemical ionization
CID	collision-induced dissociation
cm ⁻¹	wavenumber(s)
comp	complex
Cy	cyclohexyl
d	doublet
D	deuterium
dba	dibenzylideneacetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCE	dichloroethane
dec	decomposition
DIAD	diisopropyl azodicarboxylate
DMA	<i>N,N</i> -dimethylacetamide
DMAP	4-dimethylaminopyridine
dmdba	bis(3,5-dimethoxybenzylidene)acetone
DMF	<i>N,N</i> -dimethylformamide
DMSO	dimethyl sulfoxide
DNA	(deoxy)ribonucleic acid
dppb	1,4-bis(diphenylphosphino)butane
dppf	1,1'-bis(diphenylphosphino)ferrocene
dr	diastereomeric ratio

E_A	activation energy
EC_{50}	median effective concentration (50%)
EDC	<i>N</i> -(3-dimethylaminopropyl)- <i>N'</i> -ethylcarbodiimide
ee	enantiomeric excess
EI	electron impact
e.g.	for example (Latin exempli gratia)
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
FAB	fast atom bombardment
FID	flame ionization detector
g	gram(s)
GC	gas chromatography
gCOSY	gradient-selected correlation spectroscopy
h	hour(s)
HIV	human immunodeficiency virus
HMDS	1,1,1,3,3,3-hexamethyldisilazane
HMPA	hexamethylphosphoramide
HOEt	1-hydroxybenzotriazole
HPLC	high-performance liquid chromatography
HRMS	high-resolution mass spectroscopy
HSV	herpes simplex virus
$h\nu$	light
Hz	hertz
IC_{50}	median inhibition concentration (50%)
i.e.	that is (Latin id est)
IR	infrared (spectroscopy)

<i>J</i>	coupling constant
kcal	kilocalorie
KDA	potassium diisopropylamide
KHMDS	potassium hexamethyldisilazide
λ	wavelength
L	liter
LDA	lithium diisopropylamide
lit.	literature value
LTQ	linear trap quadrupole
m	multiplet; milli
<i>m</i>	meta
<i>m/z</i>	mass to charge ratio
M	metal; molar; molecular ion
Me	methyl
MHz	megahertz
μ	micro
μ waves	microwave irradiation
min	minute(s)
MM	mixed method
mol	mole(s)
MOM	methoxymethyl
mp	melting point
Ms	methanesulfonyl (mesyl)
MS	molecular sieves
n	nano
N	normal
nbd	norbornadiene

NBS	<i>N</i> -bromosuccinimide
NIST	National Institute of Standards and Technology
NMO	<i>N</i> -methylmorpholine <i>N</i> -oxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser enhancement spectroscopy
Nu	nucleophile
[O]	oxidation
<i>o</i>	ortho
<i>p</i>	para
PA	proton affinity
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
pH	hydrogen ion concentration in aqueous solution
PhH	benzene
PhMe	toluene
PHOX	phosphinooxazoline
Piv	pivaloyl
<i>pKa</i>	<i>pK</i> for association of an acid
PMB	<i>p</i> -methoxybenzyl
pmdba	bis(4-methoxybenzylidene)acetone
PPL	porcine pancreas lipase
ppm	parts per million
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pr	propyl
<i>i</i> -Pr	isopropyl

Py	pyridine
q	quartet
ref	reference
R	generic for any atom or functional group
R_f	retention factor
rt	room temperature
s	singlet or strong or selectivity factor
sat.	saturated
SET	single electron transfer
S_N2	second-order nucleophilic substitution
sp.	species
t	triplet
TBAF	tetrabutylammonium fluoride
TBHP	<i>tert</i> -butyl hydroperoxide
TBS	<i>tert</i> -butyldimethylsilyl
TCDI	1,1'-thiocarbonyldiimidazole
TCNE	tetracyanoethylene
Tf	trifluoromethanesulfonyl (trifyl)
TFA	trifluoroacetic acid
TFE	2,2,2-trifluoroethanol
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMEDA	<i>N,N,N',N'</i> -tetramethylethylenediamine
TMS	trimethylsilyl
TOF	time-of-flight
Tol	tolyl

TON	turnover number
t_R	retention time
Ts	<i>p</i> -toluenesulfonyl (tosyl)
UV	ultraviolet
<i>v/v</i>	volume to volume
w	weak
<i>w/v</i>	weight to volume
X	anionic ligand or halide