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ABSTRACT 

 

Biologically active natural products and pharmaceuticals often present intriguing 

structural features that can challenge the state of the art in catalysis and synthetic 

methodology for their preparation.  The identification of unique targets thus stimulates 

the development of new strategies and methods for chemical synthesis.  The complex 

architecture representative of the variecolin family of sesterterpenes has inspired our 

pursuit of new tactics that has enabled the expansion of methods from our laboratory. 

First, progress toward the asymmetric total synthesis of variecolin is discussed.  Our 

convergent synthetic approach bisects the target into two complex fragments to address 

the main structural challenges.  A microwave-promoted tandem Wolff/Cope 

rearrangement of vinyl cyclobutyl diazocarbonyls has been developed that provides 

access to functionalized, fused eight-membered rings and is used to construct the central 

B ring of variecolin.  In addition, the utility of our Pd-catalyzed enantioselective 

alkylation method is extended to a new vinylogous ester substrate class to produce a 

quaternary ketone in excellent yield with high selectivity that is an exceptional substrate 

for an efficient ring contraction to the cyclopentene D ring system.  The successful 

asymmetric preparation of our two devised fragments has facilitated initial studies toward 

their coupling and completion of variecolin. 

Second, a preliminary examination of the substrate scope for the asymmetric 

alkylation of the vinylogous β-ketoester substrate class is described.  Derivatives that 

perturb substrate electronics display enhanced reactivity and selectivity, generating 

products with excellent selectivities and expanding the potential of this versatile class of 

substrates.  Furthermore, their utility is underscored as the key enantioselective 

transformation en route to the synthesis of the sesquiterpenoid (+)-carissone. 

Finally, gas-phase studies of the twisted amide 2-quinuclidone are described.  Proton 

affinity experiments have quantified its high basicity, which is comparable to a tertiary 

amine.  A gas-phase synthesis of 2-quinuclidione via elimination of water and subsequent 

fragmentation further highlight the unusual characteristics of extremely twisted amides. 
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