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ABSTRACT

Biologically active natural products and pharmaceuticals often present intriguing
structural features that can challenge the state of the art in catalysis and synthetic
methodology for their preparation. The identification of unique targets thus stimulates
the development of new strategies and methods for chemical synthesis. The complex
architecture representative of the variecolin family of sesterterpenes has inspired our
pursuit of new tactics that has enabled the expansion of methods from our laboratory.

First, progress toward the asymmetric total synthesis of variecolin is discussed. Our
convergent synthetic approach bisects the target into two complex fragments to address
the main structural challenges. A microwave-promoted tandem Wolff/Cope
rearrangement of vinyl cyclobutyl diazocarbonyls has been developed that provides
access to functionalized, fused eight-membered rings and is used to construct the central
B ring of variecolin. In addition, the utility of our Pd-catalyzed enantioselective
alkylation method is extended to a new vinylogous ester substrate class to produce a
quaternary ketone in excellent yield with high selectivity that is an exceptional substrate
for an efficient ring contraction to the cyclopentene D ring system. The successful
asymmetric preparation of our two devised fragments has facilitated initial studies toward
their coupling and completion of variecolin.

Second, a preliminary examination of the substrate scope for the asymmetric
alkylation of the vinylogous -ketoester substrate class is described. Derivatives that
perturb substrate electronics display enhanced reactivity and selectivity, generating
products with excellent selectivities and expanding the potential of this versatile class of
substrates.  Furthermore, their utility is underscored as the key enantioselective
transformation en route to the synthesis of the sesquiterpenoid (+)-carissone.

Finally, gas-phase studies of the twisted amide 2-quinuclidone are described. Proton
affinity experiments have quantified its high basicity, which is comparable to a tertiary
amine. A gas-phase synthesis of 2-quinuclidione via elimination of water and subsequent

fragmentation further highlight the unusual characteristics of extremely twisted amides.
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CHAPTER 1

Natural Products and Pharmaceuticals as Inspiration

for the Development of Enantioselective Catalysis’

1.1 INTRODUCTION

Biologically active natural products and pharmaceuticals often contain particularly
challenging structural features and functionalities in terms of synthesis. Perhaps the
greatest difficulties are those caused by issues of stereochemistry. A useful strategy for
synthesizing such molecules is to devise methods of bond formation that provide
opportunities for using enantioselective catalysis. In using this tactic, the desire for a
particular target structure ultimately drives the development of catalytic methods. New
enantioselective catalytic methods contribute to a greater fundamental understanding of
how bonds can be constructed and lead to valuable synthetic technologies that are useful
for a variety of applications. The lack of methods available for installing functionalities

or structural motifs during chemical synthesis can at first be frustrating. However,

" This review was written in collaboration with Justin T. Mohr and a similar version has been published.
See: Mohr, J. T.; Krout, M. R.; Stoltz, B. M. Nature 2008, 455,323-332.
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retrosynthetic analysis,' a way of viewing the target molecule as a series of structurally
simpler precursors, can greatly aid in planning how to generate a valuable chemical
substance. Despite this, difficulties in preparing materials enriched in a particular
enantiomer persist because of the limited number of -catalytic enantioselective
transformations available.” One fruitful strategy is to design a synthesis that depends on a
bond-forming reaction for which there is no known enantioselective variant. This
approach thus provides the impetus for developing novel transformations and leads to a
greater understanding of methods of bond construction and catalysis. Herein, several
recent examples of novel catalytic enantioselective transformations are described in order
to illustrate the effectiveness of this strategy for preparing important structural motifs
found in biologically active molecules. Each of these transformations has contributed not
only an effective means of generating a particular target structure but also a useful new

tool for a variety of applications in synthetic chemistry.

1.2 HISTORICAL OVERVIEW OF ENANTIOSELECTIVE METHODS

To provide an overview of established catalytic enantioselective methods that have
been developed for total synthesis, several notable examples of enantioselective reactions
in total synthesis are highlighted in Scheme 1.2.1 through Scheme 1.2.4. In each of these
cases, the target molecules posed particular challenges that had yet to be solved by
enantioselective catalysis. Although, in some instances (e.g., the Diels—Alder reaction,
Scheme 1.2.1), the methods were developed before their first application in total
synthesis, the demonstrated value of the transformation highlighted the need for

enantioselective variants. Following the development of the [4 + 2] cycloaddition
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reaction in the 1920s,’ studies of this transformation elucidated several key facets of the
stereochemical outcome of the reaction (e.g., the “endo rule,” regioselectivity, and
diastereoselectivity). These intrinsic stereochemical control elements proved useful when
the Diels—Alder reaction was first featured in a total synthesis with Stork’s
stereocontrolled synthesis of cantharidin® in 1951. Subsequently, the thermal Diels—
Alder reaction was used for several total syntheses, perhaps most famously in
Woodward’s landmark synthesis of reserpine.’” Enantioselectivity in this transformation

remained elusive, however, and perhaps was considered unattainable at the time.

Scheme 1.2.1. Enantioselective Diels—Alder cycloaddition and enantioselective ketone reduction en

route to prostaglandins
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One key practical improvement in the Diels—Alder reaction was the discovery that
Lewis acids markedly increased the reaction rate.® Many laboratories sought to exploit
this and to develop asymmetric versions of the Diels—Alder reaction catalyzed by chiral

Lewis acids, culminating in a report of the first highly enantioselective catalytic Diels—
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Alder reaction in 1979. The interface between reaction development, study of the
mechanism, and synthesis is readily apparent from the multitude of chiral Diels—Alder
catalysts and accompanying enantioselective total syntheses that have been reported.®
These successes validate the extensive efforts directed at realizing this important goal.

Other methods were developed to address more general problems in synthesis (e.g.,
synthesis of chiral alcohols by means of enantioselective ketone reduction, Scheme
1.2.1); however, the key structures are embedded in a variety of important natural
products and pharmaceutical compounds. In the case of Corey’s approach to the
synthesis of prostaglandins’ first reported in the 1960s, control of the configuration of the
sidechain allylic alcohol at C(15) required stoichiometric chiral reducing agents until a
solution to this long-standing problem was found in the 1980s."” Interestingly, the
oxazaborolidine catalyst discovered in these explorations has had other varied
applications in synthesis and catalysis,*™'' demonstrating the versatility of privileged
molecular frameworks'? for enantioselective catalysis.

The practical application of enantioselective catalysis is apparent in myriad industrial
applications (e.g., Scheme 1.2.2), for which the limits of catalysis must be examined to
minimize costs. Important industrial applications include the synthesis of chiral building
blocks (e.g., amino acids"” (10)), novel biologically active pharmaceuticals (e.g.,
Crixivan'* (indinavir sulfate, 13)), and commodity chemicals (cheap chemicals sold in
bulk) with various important uses (e.g., menthol”” (17)). Only the most efficient methods
are feasible for large-scale industrial synthesis, and in many ways these protocols
represent the pinnacle of modern enantioselective catalysis.'® A viable commercial

operation must account for more than simply effective asymmetric induction; factors
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including turnover frequency, catalyst availability, catalyst recovery, catalyst toxicity,
and feasible large-scale handling procedures must all be considered for industrial
applications. These daunting challenges underscore the demand for increasingly efficient

catalyst systems.

Scheme 1.2.2. a) Enantioselective enamide hydrogenation toward a-amino acids. b)
Enantioselective alkene epoxidation toward Crixivan. c) Enantioselective isomerization of an allyl

amine toward menthol

a
) catalytic
NHAc enantioselective NHAc NH,
R. hydrogenation R \/k
_——
COH CoOH — > CO,H
8 9 a-Amino Acids (10)
b) Ph
catalytic o., N N OH
enantioselective = | _ k/ N
‘ epoxidation — N y
é\ *H,S!
O tBuHN Yo  'H2SOs
Crixivan® (13)
11 12 HIV Protease inhibitor
c)
catalytic

NEt enantioselective
2 jsomerization
—_— \ — —
| then hydrolysis

14 Citronellal (15) Isopulegol (16) Menthol (17)

To maximize the usefulness of the stereochemistry attained by these key asymmetric
transformations, subsequent diastereoselective reactions may be used to control the
formation of many stereocenters based on a single enantioselective transformation (e.g.,
Scheme 1.2.3). The Hajos—Parrish ketone (19), first prepared in the context of steroid

synthesis, has been used extensively in other synthetic efforts and has proved to be a
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versatile chiral-pool starting material.”” The amino acid catalyst system developed for
this intramolecular aldol condensation provided a sound basis for the recent use of
organic molecules as catalysts for a variety of enantioselective transformations (see

subsection 1.3.4).

Scheme 1.2.3. Enantioselective intramolecular aldol condensation toward steroids
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The use of several different enantioselective reactions to prepare enantioenriched
fragments of complex molecules improves efficiency through convergency. The
importance of this strategy is shown by the variety of extraordinarily complex polyketide
natural products that have been prepared through asymmetric intermolecular aldol
reactions (e.g., phorboxazole B'® (27), Scheme 1.2.4). The challenging structure of these
molecules has required the development of several related protocols to address the subtle
differences in substitution patterns and functionality present in substrates, and, despite

many successes, studies are ongoing."’
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Scheme 1.2.4. Convergent application of various enantioselective methods toward the synthesis of

phorboxazole B
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1.3 RECENT DEVELOPMENTS IN ENANTIOSELECTIVE CATALYSIS

In this section, recent representative developments made by using this approach— that
is, by using target structures to inspire the development of enantioselective catalysts—for
the construction of biologically important target molecules are described. Most of these
methods involve the formation of a carbon—carbon bond, the fundamental structure of
organic molecules. These cases were selected to illustrate some of the latest

developments in enantioselective catalysis for complex molecule synthesis. Special
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attention has been given to reactions that address some of the most important challenges
in synthetic chemistry today: increasing functional group tolerance, generating new
carbocyclic and heterocyclic rings, and forming all-carbon quaternary stereocenters. The
examples are also intended to show the important symbiosis between total synthesis and
method development, and to show that improvements in one branch of synthetic

chemistry have an impact on the others.

1.3.1 B-ENAMINO AMIDE HYDROGENATIONS — JANUVIA

Catalytic enantioselective hydrogenation has become one of the most effective and
powerful methods for the synthesis of chiral a-amino acids for numerous applications."
Over the past decade, the usefulness of the homologous building blocks, f-amino acids,
in pharmaceutical, agrochemical, (3-peptide, and natural substances has become evident,
highlighting the need for a general and effective means for their preparation.”
Undoubtedly, the implementation of a catalytic asymmetric hydrogenation of N-acyl-f3-
enamino esters seemed to be the most efficient pathway toward their synthesis, although

1

initial investigations achieved poor selectivities.”’ Additional syntheses using the chiral

pool, auxiliaries, and more recently the catalytic asymmetric generation of C—C and C-N
bonds have been successful in satisfying the increased demand for B-amino acids.””
These valuable methods allow flexible strategies for the synthesis of a variety of analogs;
however, most examples are limited by the requirement for further chemical

manipulation that is often necessary to produce the functionality of the desired f-amino

acids.
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Despite initial difficulties, the asymmetric hydrogenation of N-acyl-f3-enamino esters
has been developed into a useful method over the past 15 years.” This fruitful endeavor
has demonstrated that several transition metal and ligand combinations are competent for
preparing N-acyl-B-amino acids with good-to-excellent enantioselectivities. A notable
drawback to this strategy, however, is the requirement for the seemingly indispensable
N-acyl group on the B-enamino esters; this group is needed for metal chelation, which
improves reactivity and selectivity. The introduction of this moiety often produces
enamine alkene isomers that can be difficult to separate, and, importantly, the individual
isomers are typically hydrogenated with differing rates and selectivities. Moreover, these
difficulties are magnified by the necessary removal of this group, a seemingly
cumbersome artifact of an otherwise powerful strategy. Nonetheless, this advance has
allowed a variety of B-amino acids to be prepared.””

An innovative solution to this problem was demonstrated by a group at Merck en
route to synthesizing Januvia (sitagliptin phosphate; 40, Scheme 1.3.1), which has
recently been approved by the U. S. Food and Drug Administration for the treatment of
type 2 diabetes.” The optimal target contains an unfunctionalized B-amino amide. A
strategy was sought to install this moiety directly by asymmetric hydrogenation of
unsubstituted B-enamino ester and amide derivatives®™ (e.g., 36). A traditional
hydrogenation route for the production of amino acids is a proven, cost-effective method
for the synthesis of chiral building blocks. The industrial infrastructure is already in
place to realize this goal; however, in this case, the reduction of unprotected 3-enamino
acids was not effective with existing chiral catalysts. A crucial component in addressing

such limitations was Merck’s high-throughput screening facility, which allowed rapid
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screening of catalyst structures and reaction conditions (an essential component for the
success of any asymmetric catalytic process).””> One potential complication for this
hydrogenation strategy was avoided when it was observed that the preparation of the
B-enamino ester and amide substrates (e.g., 35 — 36) proceeded with complete

selectivity for the Z-isomer, presumably owing to hydrogen bonding in the products.

Scheme 1.3.1. Enantioselective hydrogenation of a f-enamino amide toward the synthesis of

Januvia
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During the screening, a survey of transition metals and ligands revealed that rhodium
complexes of the Josiphos (e.g., 37, Scheme 1.3.1) family of ligands efficiently catalyze
the hydrogenation of a variety of substrates to give high yields with excellent

enantioselectivities. The remarkable functional-group tolerance of this catalyst allowed
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the strategic implementation of this asymmetric transformation as the penultimate step of
the synthesis, thereby maximizing the usefulness of the process and materials. Thus,
phenylacetic acid derivative 32 was converted into (-ketoamide 35 in a one-pot
procedure via acylation of Meldrum’s acid (33), followed by treatment with triazole salt
34.°° Exposure to ammonium acetate converted this into f-enamino amide 36 as a single
enamine isomer. Hydrogenation of amide 36 in the presence of 0.30 mol % of
rhodium(I) and ligand 37 provided B-amino amide 39 in >95% conversion and 95%
enantiomeric excess. Subsequent recrystallization and salt formation with phosphoric
acid gave Januvia (40). Efforts to optimize efficiency and examine the mechanism of the
asymmetric process revealed that reactivity and selectivity were dependent on the pH of
the reaction solution.”” It was found that ~1 mol % of a mild acid (i.e., ammonium
chloride) was essential for the reaction to proceed reproducibly on a large scale. In
addition, it was observed that hydrogenation of a related substrate under identical
conditions with a deuterium gas atmosphere resulted in deuterium incorporation at the
B-position only, suggesting that an imine is an intermediate (38) and that an enamine—
imine tautomerization process plays an important part in the mechanism.** Interestingly,
intermediates such as 38 have a striking similarity to asymmetric p-carbonyl
hydrogenations pioneered by Noyori and co-workers.*®

This example demonstrates the development of asymmetric catalysis into a state-of-
the-art science through maximizing the efficiency by minimizing unnecessary
functionality, by using atom economy, and by using extremely active catalysts.
Moreover, the development of the catalyst system for the synthesis of Januvia

exemplifies the continued need for subtly different catalysts to meet new synthetic
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demands. Building on the experience obtained during the development of a highly
efficient enamide reduction toward o.-amino acids, such large-scale industrial synthesis of

important 3-amino acids has been a relatively rapid process.

1.3.2 C(sp’)-C(sp®) CROSS-COUPLINGS — FLUVIRUCININE A,

Transition metal-catalyzed cross-coupling reactions have been used extensively for
constructing C—C bonds and, consequently, have had a substantial effect on the field of
complex molecule synthesis.” The predominance of palladium and nickel catalysts in
cross-coupling technologies and their extraordinary functional-group tolerance increases
the efficiency of this process by allowing a large degree of functionalization before
coupling. Moreover, the efficacy of this cross-coupling strategy for streamlining
synthesis has allowed retrosynthetic analyses that had been thought impossible with
standard, nonmetal reactions. Until recently, however, most cross-coupling methods
involved C(sp*)-C(sp?) or C(sp*)—C(sp) centers, limiting the application potential. Two
crucial issues associated with expanding the substrate scope to include C(sp’)-C(sp’)
couplings are the relatively low reactivity of alkyl halides toward oxidative addition and
the propensity of o-alkyl organometallic complexes to undergo rapid (-hydrogen
elimination reactions.” Practical solutions to this problem were first presented by Suzuki

and Knochel, followed more recently by Fu. ™!

In general, the reaction scope now
encompasses a variety of primary and secondary halides and pseudohalides as the
electrophilic component, with organoboranes, boronic acids, alkylmagnesium halides and

alkylzinc halides as the nucleophilic component.™ Although perhaps not developed in

the context of a particular target molecule, progress in these cross-coupling methods has
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allowed retrosynthetic disconnections that were not practical previously. Asymmetric
cross-coupling protocols could, in turn, allow the direct formation of remote stereocenters
in relatively unfunctionalized molecules.

Early examples of catalytic asymmetric cross-coupling reactions involving C(sp’)—
C(sp®) centers were explored by Kumada and co-workers in the late 1970s and produced
moderate enantioselectivities.” Despite these initial reports and the subsequent evolution
of cross-coupling methods and asymmetric catalysis, a deficiency in the development of
catalytic asymmetric methods for C(sp’)—C(sp’) couplings existed until Fu and co-
workers” reported an asymmetric Negishi coupling in 2005. Before this report,
researchers in the Fu laboratory observed the proficiency of tridentate pybox ligands
(e.g., 48, Scheme 1.3.2) at enabling the room temperature nickel-catalyzed Negishi
coupling of symmetric secondary alkyl bromides and iodides. It was postulated that the
tridentate nature of pybox ligands prevented the undesired B-hydrogen-elimination
pathway, which would require a vacant coordination site. Reaction optimization
facilitated the development of several asymmetric variations that generate challenging
stereocenters applicable to complex molecule synthesis, as demonstrated in Fu’s formal
total synthesis of fluvirucinine A, (49), the aglycon of the macrolactam antibiotic
fluvirucin A, (50).” A key nickel(Il)-catalyzed asymmetric cross-coupling of racemic
allylic chloride 41 and alkylzinc reagent 42 in the presence of (S5,5)-48 generated
y-disubstituted enone 43 in an excellent yield and 96% enantiomeric excess. Elaboration
over two steps to a bromide (44), followed by conversion to the alkylzinc form and a
second nickel(Il)-catalyzed asymmetric Negishi cross-coupling with racemic allylic

chloride 45, provided the ester 46 in a good yield and with >98% enantiomeric excess
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and a 15:1 ratio of diastereomers. A subsequent two-step conversion to the aldehyde 47
intersected Suh’s synthesis of fluvirucinine A, (49).’° This method exemplifies the
efficiency of the C(sp’)—C(sp’) cross-coupling and presents a creative solution to the

particularly difficult challenge of remote stereochemical control.

Scheme 1.3.2 Enantioselective C(sp’)—C(sp’) cross-couplings toward fluvirucinine A,
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At present, most examples of this technology require a stabilizing group adjacent to
the site of the putative carbon-centered radical. Eliminating this condition would further
improve the utility of this asymmetric cross-coupling method. In addition, stereogenic
organometallic coupling partners (e.g., secondary alkylzinc reagents) have not yet been
reported in this asymmetric transformation. A potential goal for this synthetic method

would be the combination of a racemic secondary alkyl halide and a racemic secondary
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alkylmetal reagent to form vicinal stereocenters along an alkyl chain with high levels of

enantioselectivity and diastereoselectivity.

1.3.3 INTRAMOLECULAR HECK CYCLIZATIONS — MINFIENSINE

The enantioselective generation of all-carbon quaternary stereocenters is a
considerable challenge for synthetic chemists.”’” As quaternary stereocenters are found in
many natural product structures, convenient enantioselective methods for their formation

would be useful. One such method is the Heck reaction,®

in which a palladium(0)
catalyst promotes the vinylation of an aryl halide, vinyl halide, or trifluoromethane
sulfonate. The large body of literature on palladium catalysis and mechanisms,” as well
as an ever-growing collection of chiral ligands for transition-metal catalysis, greatly
increased the potential of using this method to carry out asymmetric catalysis. In
addition, many synthetic endeavors using diastereoselective or nonstereoselective
intramolecular Heck reactions have been reported,” increasing the significance of an
enantioselective process. In 1989, the laboratories of Shibasaki* and Overman®
independently reported the first variants of an intramolecular catalytic asymmetric Heck
reaction. Initial levels of enantioselectivity were moderate; however, subsequent
optimizations realized good-to-excellent selectivities in the generation of tertiary and all-
carbon quaternary stereocenters.*”

Indole alkaloids encompass a large number of natural and pharmaceutical substances
with a wide range of biological activities.” The plant alkaloid minfiensine (54, Scheme

1.3.3) is a compelling example of the all-carbon quaternary stereocenter motif in

biologically active natural products. Minfiensine and related alkaloids have been used in
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traditional medicines and have promising anticancer activity.” The intriguing polycyclic
structure and biological relevance of minfiensine prompted the Overman laboratory™® to
explore a catalytic enantioselective Heck reaction to generate the sole quaternary
stereocenter at C(9a). It was discovered that the palladium-catalyzed intramolecular
Heck reaction of dienyl aryl trifluoromethane sulfonate 51 in the presence of the
phosphinooxazoline ligand (§)-55 under microwave conditions produced indoline 52 in
good yield and with 99% enantiomeric excess. Subsequent acid-promoted carbamate
cyclization produced the tricyclic core of minfiensine (53), which was then converted to
the natural product. The efficiency and selectivity of the catalytic asymmetric Heck
reaction facilitated completion of the target, where the remaining stereocenters are

derived from this initial transformation.

Scheme 1.3.3. Enantioselective intramolecular Heck reaction toward minfiensine
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Despite numerous examples of the asymmetric Heck reaction in total synthesis,"
there are several features that could be improved. Reactions typically require high

temperatures and relatively high catalyst loadings, and the development of chiral ligands
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that greatly increase the reactivity of the transition metal while maintaining an adequate
asymmetric environment would be greatly beneficial.

As most enantioselective Heck reactions use an sp>-hybridized organohalide
component, another frontier lies in the application of unactivated alkyl carbon
electrophiles that have B-hydrogens in both intramolecular and intermolecular cases, an

area currently in its infancy *°

1.3.4 INDOLE FRIEDEL-CRAFTS ALKYLATIONS — FLUSTRAMINE B

Numerous methods have been developed for the generation of substituted indoles;"’
however, enantioselective indole functionalization has been far less explored. To address
the deficiencies in the indole functionalization literature, ngirgensen48 and MacMillan®
independently developed strategies for asymmetric Friedel-Crafts alkylation of conjugate
acceptors with electron-rich heteroaromatics. MacMillan’s method uses a secondary
amine catalyst (61, Scheme 1.3.4) that facilitates the LUMO-lowering activation of
a.,B-unsaturated aldehydes for a variety of transformations.™ Although imidazolidinone
61 was a sufficient catalyst for the Friedel-Crafts alkylation of pyrroles, generating good
yields and excellent enantioselectivities,* application of less-activated indole substrates
resulted in sluggish reactivity with considerably diminished selectivities.”! Kinetic
investigations of iminium-catalyzed reactions revealed that the overall reaction rate was
influenced by the efficiency of formation for both the iminium ion and the C—C bond,
prompting the development of a modified imidazolidinone catalyst (62). This refinement
minimized the steric bulk around one face of the catalyst, thereby exposing the lone pair

of electrons on the secondary amine nitrogen. This structural change translated into
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increased reactivity that enabled the asymmetric Friedel-Crafts alkylation of a variety of

indoles with good-to-excellent yields and very high enantioselectivities.”'

Scheme 1.3.4. Enantioselective Friedel-Crafts alkylation toward flustramine B
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Pyrroloindoline alkaloids are a family of polyindole alkaloids of diverse structural
complexity and biological relevance.” Diastereoselective syntheses of the core of these
compounds have focused on the control of the C(3a) all-carbon quaternary stereocenter as
a key design element.” With a powerful and mild indole alkylation method in hand,
MacMillan and co-workers™ devised a cascade strategy for the catalytic asymmetric
preparation of the C(3a) stereocenter and the pyrroloindoline core of the potassium-
channel blocker (-)-flustramine B (60, Scheme 1.3.4) in one step. In this key
transformation, tryptamine derivative 56 and 2-propenal (acrolein, 57), in the presence of
catalyst 62, underwent the asymmetric Friedel-Crafts alkylation to provide iminium
intermediate 58. Subsequent carbamate cyclization and hydrolysis to regenerate the

catalyst provided the core (59) with a good yield and 90% enantiomeric excess.
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Importantly, this allowed completion of (—)-flustramine B (60) in just six steps and with
good overall yield, highlighting the efficiency of this cascade approach. It is noteworthy
that this strategy also has the potential to be applied to the synthesis of various polycyclic
indolines such as the diazonamide family of cytotoxic alkaloids.> It is also interesting to
note that both the intramolecular Heck reaction (see subsection 1.3.3) and the indole
Friedel-Crafts alkylation can generate similar indoline structural motifs despite the
markedly different bond-connecting strategies of these reactions. The success of these
dissimilar strategies allows a great deal of flexibility in the planning of syntheses.
Iminium-activation methods with chiral amine catalysts have been successful for
numerous transformations, but catalyst loading, turnover frequency, and excesses of
certain reagents limit the large-scale industrial application of these methods. In addition,
in some cases, the organic catalyst may be more difficult to remove from the reaction
products than a metal catalyst. However, the typically air- and moisture-stable reaction
conditions, low cost of some catalysts, and often metal-free conditions are attractive. The
variety of asymmetric transformations (some proceeding through substantially different
reaction pathways) that have been realized with chiral amine catalysts so far indicates a

burgeoning field in which there are many useful enantioselective catalysts.

1.3.5 PICTET-SPENGLER CYCLIZATIONS — HARMICINE

Since Pictet and Spengler reported the intramolecular cyclization of an aromatic ring
onto an iminium species in 1911, this transformation has been of great use in the
synthesis of many important alkaloid natural products.”® Indeed, the need for asymmetric

variants of this reaction was recognized, and several diastereoselective protocols have
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been devised.® A common approach to diastereoselective Pictet—Spengler cyclization
has been to use tryptophan derivatives to control the stereochemistry of the cyclization.
However, using this type of technique for the synthesis of a natural product such as
harmicine (68, Scheme 1.3.5), which is active against the disease leishmaniasis,
necessitates the removal of the stereocontrol element at C(5), following the
diastereoselective cyclization. Nonetheless, Allin and co-workers’’ proved this to be a
viable method in 2007. This particular structure, however, highlighted a challenge for

enantioselective catalysis and an opportunity to improve synthetic efficiency.

Scheme 1.3.5. Enantioselective Pictet-Spengler cyclization toward harmicine
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When considering prospects for asymmetric induction, Jacobsen and Taylor
considered activated N-acyl-iminium ions as a template and reasoned that a chiral
thiourea derivative might be effective in promoting cyclization.”™ In practice, these
Brgnsted acids,”™ as well as other Brgnsted acids investigated later by other groups,”

proved to be excellent catalysts for enantioselective indole annulations with in situ-
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generated N-acyl-iminium species (e.g., 66, Scheme 1.3.5). In later studies by Jacobsen
and co-workers, it was found that hydroxylactams (e.g., 64) are convenient precursors to
N-acyl-iminium ions, which in turn enable access to various polycyclic structures.”
Given this effective protocol, an efficient catalytic asymmetric synthesis of harmicine
(68) was realized in four steps from tryptamine (63). Several mechanistic experiments
have suggested that asymmetric induction is controlled by a complex of the Brgnsted acid
catalyst (65) and a chloride counterion closely associated with the iminium ion (e.g., 66)
that effectively blocks approach to one face of the electrophile, providing annulated
products (e.g., 67) with excellent enantiomeric excesses. This insight into the remarkable
mechanism of this transformation has led to a related C—C bond-forming process using
oxocarbenium ions.””  Further exploitation of this unusual proposed catalyst-anion
interaction could lead to a variety of other asymmetric addition reactions, such as
intermolecular alkylation of N-acyl-iminium ions. In common with the history of the
Diels—Alder reaction (see section 1.2), the exploration of the Pictet—Spengler cyclization
has provided a useful method to access many heterocyclic structures embedded in
alkaloid natural products using a classical reaction with well-established synthetic

applications.

1.3.6 PHASE TRANSFER ALKYLATIONS — INDACRINONE

Enolate alkylations exemplify the fundamental usefulness of the carbonyl group for
C—-C bond formation. Strategies to induce asymmetry in these reactions have included
chiral auxiliaries and chiral ligands, although few examples are catalytic. A particularly

challenging class of product targets is all-carbon quaternary stereocenters adjacent to
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carbonyl groups. One example of an important target bearing this motif is the diuretic
drug candidate indacrinone (73, Scheme 1.3.6).> Given the lack of efficient methods for
synthesizing this structure, researchers at Merck envisaged an enantioselective phase-
transfer alkylation method based on a quaternary ammonium salt derived from a naturally
occurring cinchona alkaloid (e.g., 70). In the event, readily prepared indanone 69 was
methylated, producing ketone 72 with 95% yield and 92% enantiomeric excess, and 72

was then converted to indacrinone (73) in three additional steps.

Scheme 1.3.6. Phase-transfer alkylation toward indacrinone
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Although successful in achieving enantioselective enolate alkylation, the mechanism
for this process seems to be complex;” however, enantiofacial selectivity in the
alkylation event may be rationalized through the hypothetical transition state 71 (Scheme
1.3.6). Three key interactions are thought to control selectivity: a hydrogen bond
between the enolate oxygen and the catalyst hydroxyl group, and two sm-system stacking

interactions between the four aromatic rings. Perhaps as a consequence of the complex
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mechanism, the range of substrates for enolate alkylation is limited, and other solutions to
this problem are still needed. However, these initial results have led to several related
catalytic enantioselective reactions using cinchoninium salts or related organic
ammonium complexes as catalysts.”* The discovery of these useful catalysts has
provided not only an alternative to related transformations using metal catalysts but also a
means of accessing chiral environments that are simply not possible with metal-based
catalysts. Moreover, eliminating metal waste materials is attractive from an industrial
and environmental standpoint. Ultimately, the studies directed toward an
enantioselective synthesis of indacrinone demonstrate the versatility of privileged

catalysts developed for the synthesis of target molecules for a range of other applications.

1.3.7 Pd-CATALYZED ENOLATE ALKYLATION — CYANTHIWIGIN F

A recent case of enantioselective enolate alkylation is the synthesis of cyanthiwigin F
(83, Scheme 1.3.7), a cytotoxic natural product from a sea sponge. The cyanthiwigin
family is composed of more than 30 diterpenoids, most of which bear two quaternary
stereocenters, at C(6) and C(9), and a syn relationship of the methyl groups in the central
ring. These core stereochemical elements are a complicating factor for a convergent
strategy that might seek to couple the five- and seven-membered ring portions and
subsequently form the six-membered ring. To avoid this difficulty, Enquist and Stoltz
chose instead to address these two central stereocenters at an early stage and append the
five- and seven-membered rings to the assembled cyclohexane.”” Accordingly, a
synthetic strategy was devised that involved a one-pot double-enantioselective enolate

alkylation reaction to form both quaternary stereocenters simultaneously. Although such
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enantioselective alkylations have proved difficult,

recent studies have identified

palladium catalysts that might provide a solution to this problem and enable the synthesis

of a variety of targets containing quaternary carbon stereocenters,

cyanthiwigins.®

including the

Scheme 1.3.7. Pd-catalyzed enolate alkylations toward cyanthiwigin F
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The implementation of this retrosynthetic strategy began with a Claisen—Dieckmann

sequence that converted diallyl succinate (74, Scheme 1.3.7) to bis(B-ketoester) 75 as a

1:1 mixture of racemic and meso diastereomers.

On exposure to the catalyst derived

from Pd(dmdba), and phosphinooxazoline ligand (S)-55,° each stereoisomer of 75 was
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transformed to bis(allylated) ketone 76 with 75% yield and 99% enantiomeric excess as a
4 .4:1 mixture of diastereomers. With both quaternary centers in place, elaboration of this
stereochemically rich core structure to the natural product was achieved in six further
steps. Enol triflate formation and Negishi coupling (76 + 77 — 78) preceded a tandem
ring-closing metathesis—cross-metathesis sequence with Grubbs’ ruthenium catalyst 79.”
Aldehyde—alkene radical cyclization generated the final ring of the cyanthiwigin core
(81 — 82), and enol triflate formation and palladium-catalyzed cross-coupling formed
(-)-cyanthiwigin F (83), together with reduction product 84. Choosing to confront the
difficult stereochemical elements of the cyanthiwigin structure at an early stage led to a
direct synthetic route proceeding in nine steps from diallyl succinate. This strategy was
made possible by the intriguing reaction mechanism of the enantioselective
decarboxylative allylation, in which all three stereoisomers of bis(f3-ketoester) 75 were
converted to a specific stereoisomer of product (76) with high selectivity, through a
stereoablative process.”® In addition, of the nine steps required for the synthesis, seven
form C-C bonds, and four form multiple C—C bonds. Directly addressing the carbon
framework of the target molecule and the stereochemical challenges embedded within
ultimately led to an efficient synthetic sequence for this important molecule.

Recently, the proposed chiral palladium enolate was shown to be intercepted by allyl

or proton electrophiles.®®*

Although the synthesis of cyanthiwigin F demonstrates the
versatility of allyl moieties for further derivatization, the direct use of alternative

electrophiles would provide a more general and direct method for transition metal-

mediated enolate functionalization.”
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1.3.8 TRIMETHYLENEMETHANE CYCLIZATIONS — MARCFORTINE B

Of the many fundamental approaches to the formation of five-membered rings from
acyclic precursors, the [3 + 2] cycloaddition is among the most convergent strategies. A
useful method of achieving such a cyclization is via a trimethylenemethane (TMM)
intermediate.”! This interesting non-Kekulé molecule was first prepared and studied
through photolytic decomposition of a cyclic diazene precursor. However, the free diyl is
prone to several undesired reaction pathways and does not lend itself to asymmetric
catalysis. Despite this, intramolecular diyl-trapping reactions are valuable methods of
cyclopentane formation.”' Recognizing the synthetic utility of TMM, Trost and co-
workers developed an array of 2-(trimethylsilyl)-2-propenyl acetate reagents that
generate a metal*'TMM complex when exposed to a palladium catalyst.”” A recent
application of this transformation in total synthesis is the approach to marcfortine B (90,
Scheme 1.3.8a), a member of a family of antiparasitic agents.”” The strategy used sought
to forge the [2.2.2]bicycle via an intramolecular radical cyclization and install the spiro
all-carbon quaternary stereocenter by the cycloaddition of oxindole 85 with TMM
precursor 86. In the event, an excellent yield was observed for the annulation reaction
yielding spirooxindole 87 as a 1:1 mixture of diastereomers. Over the course of nine
additional steps, spirocycle 87 was transformed into amide 88. Preparation of the
xanthate derivative of alcohol 88 allowed radical cyclization, generating the challenging

[2.2.2]bicycle 89. Seven further steps produced (+)-marcfortine B (90).
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Scheme 1.3.8. a) Pd-catalyzed TMM-[3 + 2]-cycloaddition toward marcfortine B.
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Although this strategy demonstrated several intriguing ring-forming reactions, an
asymmetric synthesis of 90 would require an enantioselective variant of the key
TMM-[3 + 2] cycloaddition, a goal that has remained elusive.”* The first asymmetric
palladium-catalyzed [3 + 2] cycloaddition with various bis(phosphine) ligands was
reported by Ito and co-workers,” but with only moderate enantiomeric excess (up to
78%) and diastereomeric ratio (up to 4:1 trans:cis). Thereafter, Trost and co-workers
explored bulky monodentate phosphoramidite ligands (e.g., (R,R,R)-94, Scheme 1.3.8b)
for the transformation and observed very high enantioselectivity for the first time.”” Of

particular interest is the enantioselective addition of substituted TMM reagents to
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functionalized oxindole derivatives.”” The use of oxindole 91 and TMM-precursor 92 in
the palladium-catalyzed cyclization with ligand (R,R,R)-94 yielded spirooxindole 93 with
14:1 diastereomeric ratio and 96% enantiomeric excess for the major diastereomer.
Although a completed asymmetric synthesis of marcfortine B (90) from intermediate 93
has not been reported, many of the key functional groups are in place and the challenging
spiroquaternary stereocenter has been installed (cf. 87 and 93). The development of this
valuable asymmetric transformation highlights the ongoing efforts to devise new and

useful techniques for the construction of important molecules.

1.4 OUTLOOK

The representative synthetic efforts presented here demonstrate the crucial interplay
between target-directed synthesis and the development of novel reaction methods.
Although many useful asymmetric technologies are currently available, the specific
challenges posed by important natural products and pharmaceutical compounds highlight
deficiencies in the current technology. Envisaging strategies to construct these relevant
molecules through means beyond the current arsenal of enantioselective transformations
will aid the evolution of both synthetic planning and reaction development. The
symbiotic relationship between total synthesis and method development can continue to
expand the understanding of synthetic strategy and catalysis on both fundamental and
practical levels.

Despite the substantial advances that have been made so far, significant challenges
remain for both multistep synthesis and catalysis. In addition to improvements to

efficiency and selectivity, better reactivity and handling stability are constantly required
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to implement and improve industrial processes for existing methods. Exceptionally
reliable methods will aid in the discovery of new biologically active compounds by using
high-throughput combinatorial screening techniques that are well established in the
pharmaceutical industry, although these techniques are limited by the number of readily
accessible chiral building blocks. Existing methods may be improved by identifying
systems with better functional-group tolerances that might obviate the need for protecting
and masking groups. Similarly, known privileged chiral frameworks may be modified to
control chiral space more effectively for especially challenging transformations, a
technique conspicuously successful for Trost’s TMM cyclizations (see subsection 1.3.8).
Overall, creative solutions are required to address specific organic transformations
that remain significant impediments to efficient syntheses, namely forming multiple
stereocenters and rings, forming multiple C—C bonds, generating vicinal quaternary
stereocenters, and achieving C—H and C-C functionalization reactions. Cyclic structures
often present particular challenges owing to the unique strain and steric elements
imparted by their connectivity. As a result, many highly strained or complex polycyclic
structures are daunting targets for synthesis. Finally, the discovery of new natural
products will undoubtedly result in new challenges for synthetic chemistry and catalysis.
In this thesis, examples of the development of useful enantioselective transformations for
the synthesis of natural products will be presented. These reactions were initially
conceived as solutions to synthetic problems in the context of total synthesis efforts and

have led to various derivative applications and methodologies with broad utility.
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CHAPTER 2

The Variecolin Family of Sesterterpenoids

2.1 INTRODUCTION AND BACKGROUND

The variecolin family of sesterterpenoids has emerged as an intriguing class of
biologically relevant natural products. Members of this family possess an array of
biological activities including anti-HIV, antihypertensive, and immunosuppressant
properties. Structurally, the variecolin-type sesterterpenoids are defined by their complex
molecular architecture including a central eight-membered ring, a high degree of
stereocomplexity, and a low degree of oxidation. Thus, this important class of natural

products constitutes a formidable challenge for chemical synthesis.

2.1.1 ISOLATION AND STRUCTURAL ELUCIDATION

Hensens and co-workers at Merck first isolated variecolin (95) in 1991 as a bioactive
component of the fungi imperfecti Aspergillus variecolor. Extensive structural
elucidation via 2D NMR spectroscopy and '"H-"H coupling constant analysis revealed a

sesterterpenoid with a novel tetracyclic ring skeleton possessing the relative
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stereochemistry as shown in Figure 2.1.1. The absolute stereochemistry was proposed as
ent-95 due to biosynthetic considerations and structural similarity to the ceriferene class

of sesterterpenoids (e.g., Flocerol (96)), which contains an analogous CD ring system

Figure 2.1.1. Proposed structure of variecolin.”

Variecolin (ent-95) Asperigillus variecolor Flocerol (96)
initially proposed Ceriferene Sesterterpenoid

Variecolin (95) was later identified from the fungus Emericella aurantiobrunnea nine
years after its first isolation.* Although direct confirmation of the absolute configuration
was not feasible, Fujimoto and co-workers obtained structural verification through
derivatization. Functionalization of 95 with (2R ,3R)-(-)-butane-2,3-diol (97) generated
chiral polycyclic acetal 98, which, upon structural analysis, revealed four possible
conformations—two derived from each enantiomer of 95 —that could be distinguished by
NOESY correlation (Scheme 2.1.1). In a key NOE experiment a sole interaction of
6—9% was observed between H6 and H3’, indicating that variecolin possesses a C(6)
R-configuration, opposite to that of the biosynthetic proposal by Hensens. Butler
provided further validation of the relative stereochemistry by X-ray crystal analysis of 95,

although the absolute configuration could not be determined.’

i http://www .ibioo.com/picture/microorganism/2009/6888 .html
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Scheme 2.1.1. Assignment of the absolute configuration of variecolin

OH
/k( NOE
97 OH 3 . H/-H} /'
—» 6
p-TsOH-H,0 - .0 -
PhH, 25 °C 00— Y
H OH

(24% vyield)

Variecolin (95)

In subsequent reports, variecolin (95) has been isolated from the related fungi
Emericella purpurea® and Phoma sp.” Several variecolin congeners (99-107, Figure
2.1.2) have also been identified from the aforementioned fungi extracts’>™® and share a
common ABCD ring system with identical CD rings and subtle oxidation state variations
in the A and B rings. In addition to the structural data of 95, the absolute stereochemistry
of variecolol (99) has been confirmed by semisynthesis’® and the relative
stereochemistry of variecolactone (100) has been verified by X-ray crystal analysis.®
The structural information and origin of isolation for the members of this family suggests
the absolute stereochemistry of all related members is that depicted in Figure 2.1.2, and

thus based on the revised assignment of variecolin.
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Figure 2.1.2. Variecolin family of sesterterpenoids.

Variecolin (95)

AB5362-A (101)

Emericolin A (104) Emericolin B (105) Emericolin C (106) Emericolin D (107)

2.1.2 BIOSYNTHETIC PROPOSAL

A detailed study of the variecolin family sesterterpenoid” biosynthesis has not been
reported. The authors from the original isolation work surmised that a potential
biogenetic link existed between the ophiobolin and ceriferene class of sesterterpenoids, of
which variecolin is thought to be descended.! Utilizing the reported biosynthetic studies
of the ophiobolins® and triterpenoids’ as a premise, Hensens proposed that the variecolin
sesterterpenoids arise from geranylfarnesyl diphosphate (108) of the mevalonate
biosynthetic pathway. An initial cyclization cascade with displacement of pyrophosphate

generates intermediate 109, which is perceived as a divergent intermediate (Scheme
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2.1.2). One potential fate of this intermediate is cyclization concomitant with a hydride
shift (path a) and oxidation to generate the ring system of the ophiobolanes ceroplasteric
acid (110) or ophiobolin C (111). Alternatively, a ring-expanding C—C migration (path
b) affords ceriferene intermediate 112 that can undergo a cyclization (path c) to afford the
flocerol (96), or cyclization followed by a H-shift cyclization (paths ¢ and d) to give
variecolin (95). This unified scheme effectively links all three classes to this divergent

intermediate (109)."

Scheme 2.1.2. Hensens’ biosynthetic proposal for variecolin

/ 7
HH
{\ 4/ H6 H
PPO
108 Flocerol (96)

c
then [O] T

a

then [O]

Ophiobolin C (111)

Ceroplasteric Acid (110) Variecolin (95)
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2.2 BIOLOGICAL ACTIVITY

Variecolin and related sesterterpenes exhibit diverse biological activities. Numerous
studies describe the general activity of this family toward a distinct biological target;

however, details regarding specificity and mode of action are nonexistent at this time.

2.2.1 ANTIHYPERTENSIVE PROPERTIES

The initial isolation by Hensens indicated variecolin (95) as an angiotensin II
antagonist that was shown to inhibit '*I-labeled angiotensin II binding in rabbit aortic or
bovine adrenal cortical membranes (ICy, = 3.6 +1 uM)." Angiotensin II is a blood
hormone that acts as a vasoconstrictor that contributes to the pathogenesis of
hypertension, cardiovascular disease, and affects water and ion homeostasis in the
kidneys."" Angiotensin II antagonists have been shown to be effective toward treating
hypertension as well as for the prevention of congestive heart failure. Although
variecolin has shown modest antagonist activity, inhibition of carbachol-induced inositol
phosphate accumulation indicates a possible nonspecific inhibition of the angiotensin
response.'

Several years later, a Japanese patent claimed variecolactone (100) to be an effective
endothelin antagonist that inhibits binding to endothelin A (ET,, IC,, = 0.765 uM) and
endothelin B (ETy, IC,, = 0.683 uM) receptors.® Endothelin is a potent vasoconstrictor
peptide that has similar physiological effects as the angiotensin II peptide."> This finding
suggests 100 as a potential therapy for hypertension, cardiovascular diseases,

cerebrovascular diseases, renal disease, asthma, and pulmonary hypertension.
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2.2.2 IMMUNOMODULATORY PROPERTIES

Variecolin and related sesterterpenes have been shown to possess immunosuppressive
properties against both humoral (B-cell, LPS-induced) and cell-mediated (T-cell, Con
A-induced) proliferations of splenic lymphocytes (Table 2.2.1).> Of those examined,
variecolin was the most active at suppressing the immune responses, suggesting an
important role of the ketone and aldehyde functionalities. The activity compared to other

classic immunosuppressants shows comparable data up to the strong binder FK506 (115).

Table 2.2.1. Immunosuppressant activity of the variecolin sesterterpenes

compound Con A-induced LPS-induced
P ICs0 (ng/mL) ICs0 (ng/mL)
Variecolin (95) 0.4 0.1
Variecolactone (700) 8.0 2.5
Variecoacetal A (102) 45 1.5
Variecoacetal B (103) 6.5 2.2
Variecolol (99) 1.7 0.6
Azathioprine (114) 2.7 2.7
Cyclosporin A (113) 0.04 0.07
FK506 (115) 1.5x107° 1.6x1072
HO,,
MeO
HO,,,
Me o . H 2
N\)]\ N\)l\ NO,
MeN Y N Y NMe N
o i M o ¢ o ¢
P ~N /N

|
S
)IH
N
LA

Cyclosporin A (113) Azathioprine (114) FK506 (115)
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2.2.3 CCR5 ANTAGONIST

Butler and co-workers showed in 2004 that variecolin (95) and variecolol (99) both
compete with macrophage inflammatory protein (MIP)-1a for binding to human CCRS5
receptor (ICy, = 9 and 32 uM, respectively).” Chemokine receptor CCRS5 is a key co-
receptor involved in the uptake of HIV-1 into target cells.” As a result, CCR5 plays a
major role in the early transmission of HIV-1, the major cause of AIDS. Observation that
the inhibition of CCRS5 retards viral uptake while maintaining immune competence
suggests this receptor as an emerging target for anti-HIV therapeutics. It should be noted
that emericolins A—D (104-107) showed no activity toward CCRS, further indicating an

important role for the ketone and aldehyde functionalities present in 95.

2.2.4 ANTIBIOTIC AND ANTIFUNGAL PROPERTIES

A 1998 Japanese patent disclosed the potential antibacterial and antifungal properties
of variecolin (95), variecolactone (100), and AB5362-A (101).” It was observed that 100
displays 100% antifungal activity at 10 ppm against Pseudoperonospora cubensis

without damaging a cucumber, highlighting its potential as a herbicide.

2.3 SYNTHETIC STUDIES TOWARD VARIECOLIN

The variecolin family of sesterterpenes has received only modest attention from the
synthetic community in the 18 years since the first discovery of variecolin despite their
intriguing structure and biological relevance. At the onset of our studies toward

variecolin (95), two laboratories have disclosed synthetic efforts en route to this
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sesterterpenoid. Despite significant progress is this area, these distinct approaches have
not yet culminated in the completion of variecolin or any member of this class (Figure

2.1.2).

2.3.1 PIERS” APPROACH TO THE CD RING SYSTEM

In the first report of a synthetic approach toward variecolin, Piers and Boulet
demonstrated their key method for the stereoselective generation of the CD ring system."
Starting racemic enone 118 was prepared in two steps from 3-methylcyclohexenone
(116), followed by a diastereoselective conjugate addition of a higher-order 2-propenyl
cuprate to afford a mixture of C(15)" epimers 120 and 121 (11:1) in 86% yield (Scheme
2.3.1). An important feature of this transformation is the generation of the relative anti
stereochemistry of the all-carbon quaternary stereocenter and the newly installed 2-
propenyl group. However, the cis stereochemistry of the ring juncture is opposite to that
required for variecolin. Thus, a thermodynamic equilibration with NaOMe in methanol
facilitated a C(15) epimerization to favor the desired trans-fused isomer, 121 (14:1 of
121:120), the bicyclic CD system of which maps on to 95 as well as several other

diterpenoids."
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Scheme 2.3.1. Piers’ stereoselective CD ring preparation
o 1. CuBr-SMe,, TMSCI
o/j HMPA, THF, —78 °C
+ >
Bng/\)\O 2. TFA, THF, 70 °C
(79% yield, two steps)
116 117 118

()\) 119
2Cu(CN)Liz

L

TMSCI, THF, -78 °C

conditions  120:121

- 1111

NaOMe, MeOH  1:14
(87% yield) : 2 B0 C

With an effective preparation of this key bicyclic intermediate (121), graduate student
Shawn Walker explored its utility toward the total synthesis of variecolin.'® Their
devised synthetic strategy employing this intermediate involved the linear, stepwise
annulation of the B and A rings on to this key CD ring fragment. Accordingly, sequential
alkylation of intermediate (+)-121 provided ketone 123 as a single diastereomer,
possessing the correct relative quaternary stereochemistry at C(11) (Scheme 2.3.2).
Functional group interconversion to a vinyl iodide, followed by lithium—halogen
exchange with carbonyl addition, then a PCC-mediated allylic alcohol transposition with
oxidation afforded the annulated tricycle 124. The stereochemistry at C(10) was
achieved via Birch reduction of this cycloheptenone (124) using potassium in ammonia,
moderately favoring the desired C(10) epimer 125 as a 2.2:1 mixture of inseparable
isomers (125:126). Further transformation via a-functionalization of the carbonyl with
diphenyldisulfide afforded separable compounds at the C(10) stereocenter to provide 127

in modest yield.
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Scheme 2.3.2. Piers” annulation of the B ring

1. KDA, THF, HVMPA, -78 °C

' X

122 SnBU3

2.LDA, THF,-78 - 0 °C
Mel, =78 — 25 °C

48

1. 15, CH,Cl,
2. n-Buli, THF, 0 °C

Y

3.PCC,3AMS
CH,ClI,, reflux

(64% yield, two steps) = (55% yield, three steps)

(x)-121 123
prepared in one diastereomer
four steps

1. K (s), NHs, THF, -BuOH
—78 °C; then NH,CI

LDA, THF, 0 °C
then PhSSPh
(57% yield of desired
C(10) epimer)

2. PCC/AI,0,, CH,Cl,

(89% yield, two steps)

Carbonyl transposition of 127 over four steps provided ketone 128 which was then
utilized for a one-carbon ring expansion via a cyclopropanation—cleavage sequence
(Scheme 2.3.3). Ketone enolization and cyclopropanation afforded 129, which upon
FeCl;-mediated radical cleavage followed by B-chloro elimination completed the B-ring
expansion to generate cyclooctenone 130 in 64% yield over four steps. With the BCD
carbocyclic skeleton in place, annulation of the final A ring was accomplished utilizing a
bifunctional cuprate reagent (131), first to achieve the conjugate 1,4-addition, succeeded
by an alkylation event (i.e., 130 — 132). The C(6) stereocenter readily epimerized
during the final alkylation event and, consequently, modest conversions employing
LiO#-Bu were necessary to overcome this difficulty. Importantly, the preparation of

tetracycle 132 comprised the complete ABCD ring structure of variecolin.
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Scheme 2.3.3. Completion of the ABCD tetracycle via A-ring annulation

1. NaBH,, MeOH/CH,Cl, O OTMS

2. MsCl, Et;N, CH,Cls

3. KOt-Bu, DMSO/THF
0->25°C

1. KHMDS, THF, -78 °C
then TMSCI

\j

\j

4. HgCl,, MeCN/H,0

2. EtyZn, CICH,l, O,
reflux

cyclohexane, 0 — 25 °C

(78% yield, four steps)

128

1. 131
(CI 2CuLi

1. FeClj, pyridine

DMF/THF BF;°Et,0, THF, -78 °C
2. NaOAc, MeOH 2. Nal, acetone
reflux 3. LiO#-Bu, PhH, reflux
(64% yield, four steps) (44-53% yield, three steps)

130

The remaining transformations toward completion of variecolin involved the
functionalization of the A and B rings. Accordingly, conversion of ketone 132 to an enol
triflate and palladium-catalyzed carbonylation generated ester 133 (Scheme 2.3.4). This
trisolefin intermediate was then chemo- and stereoselectively hydrogenated at C(3),
followed by ester reduction to form (+)-5-deoxyemericolin B (134). Allylic oxidation
using MnO, provided (+)-deoxyemericolin A (135), whereas oxidation using Pb(OAc),
afforded (z)-5-deoxyvariecolol (136). Further oxidation using Collins reagent gave

(£)-5-deoxyvariecolactone (137).
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Scheme 2.3.4. Piers’ end game progress toward completion of variecolin

1. KHMDS, THF, —78 — 0 °C;
PhNTf,

1. PYAILL,O5 (10 mol %)
H,, MeOH

- L

2. Pd(Ph3P), (10 mol %), CO 2. i-BuyAlH, Et,0, 0 °C

i-Pr,NEt, MeOH/DMF

(93% yield, two steps)

(68% yield, two steps)
132 133

1. Pb(OAc);, CaCO;
cyclohexane

reflux Cros2py
2. NaBH,, l CHCle
MeOH/CH,Cl, (95% yield)

(39% yield, two steps)

MnO,, Et,0

(75% yield)

Variecolin (95)

The preparation of highly advanced deoxy analogues of variecolin and related
sesterterpenes set the stage for further C(5) oxidation and completion of the targets,
although “material constraints” have hindered this progress. Indeed, this synthetic
sequence is highly linear, requiring 28 steps for the longest linear sequence. The
incorporation of the central eight-membered B ring is tedious, requiring 12 steps to
achieve a one-carbon ring expansion. An issue yet to be addressed is the incorporation of
asymmetry, which would have to occur at the beginning of the synthesis due to
linearity.”” Nonetheless, Piers’ impressive synthetic effort has highlighted various
reactivity and selectivity features of this system and enabled the preparation of highly

advanced intermediates.
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2.3.2 MOLANDER’S APPROACH TO THE B RING

The Molander laboratory disclosed a samarium(Il) iodide-promoted annulative
approach toward variecolin in 2001." This strategy was derived from previous work in
their laboratory delineating Sml,-promoted sequential reactions for the rapid and
stereoselective construction of medium-sized carbocycles."” A model system was devised
to rapidly explore a carbonyl addition—nucleophilic acyl substitution reaction en route to
the carbocyclic core of variecolin. The samarium(II) iodide-promoted intermolecular
Barbier reaction of ketochloride 139 and alkyl iodide 138 furnished chloroalcohol 140
(Scheme 2.3.5). Oxidation of the methyl ether moiety with concomitant lactonization
gave spirocyclic lactone 141, a substrate for the intramolecular nucleophilic acyl
substitution reaction studies. The samarium(II) iodide-promoted reductive cyclization
occurred under photochemical conditions to generate 142, which possesses the ABC

carbocyclic core of variecolin.

Scheme 2.3.5. Samarium(ll) iodide-promoted medium ring synthesis

OMe
o cl
OMe Sml,, Nil, (cat) cl
+ —_— OH
| THF
(72% yield)
138 139 140, 1:1 dr
RuCls, NalO, Cl sml,, Nil,
—_—
MeCN/CCly/H,0 hv, THF
(65% yield) (63% yield)

141 142
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With a viable strategy in hand, Molander and co-workers pursued enantioselective
syntheses of suitable A- and CD ring fragments to explore their key sequential samarium-
promoted coupling toward ent-95°°  Accordingly, the A-ring fragment was
asymmetrically synthesized from meso-diol 146, which was prepared in eight steps from
tetrahydrophthalic anhydride (143, Scheme 2.3.6). Acidic methanolysis of 143, oxidative
olefin cleavage and intramolecular Dieckmann cyclization with decarboxylation
generated meso-cyclopentanone 144. Ketone protection, ester reduction and exposure to
Ac,0O afforded protected meso-bisacetate 145, upon which all protecting groups were
cleaved to form meso-diol 146 (50% yield over eight steps). Enzymatic
desymmetrization via acylation produced monoacetate 148 in 47% yield and 96% ee,
which was elaborated to B-ketolactone 149 over five steps. Advancement of this material
toward an intermediate analogous to 150, what would be suitable for the key samarium

coupling, was not described.

Scheme 2.3.6. Molander’s first-generation synthesis of A-ring fragment

1. 1,3-propanediol
1. MeOH, p-TsOH o p-TSOH, PhH, reflux (\\
reflux 2. LiAlH,, THF b/’ 1. PPTS, acetone
2. KMnO,, H,0, 0 °C b 0—-25°C zj reflux
> > —_—
3. :Emc, Ac,0 Y “come 3PV Ac,0, 0 — 25 °C “, ~OAC 2, MeOH, K,CO4
CO,Me i R % Vi
(79 % yield, three steps) 2 (79% yield, three steps) \OAc (80% yield, two steps)
143 144 145

e

. DBN, CS,, DMF; Mel
o o 2. Et3SiH, (+-BuO),, #-C1,H,5SH

octane, reflux o 4 0 RO ?
immobilized PPL 3. MeOH, K,CO3 ‘\\‘I\
—_— > I “" “OH
) OH OAc > o]

o PN s . Py, CICO,Et, DMAP, THF o,
{ 7 “OAc 147 . KO#-Bu, THF, —60 °C; - i
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The targeted CD ring fragment was prepared from Hajos—Parrish ketone (R)-19,

which is readily available in >99% ee (Scheme 2.3.7). Stereoselective ketone reduction
and protection as a pivalate ester generated 151. o-Alkylation of this intermediate with
iodide 152 was achieved from the thermodynamic enolate of enone 151 using sodium
dimsylate, and subsequent stereoselective 1,4-reduction and benzyl cleavage steps
provided acetal 153. This material was advanced to enone 155 in four steps to set the
stage for a diastereoselective 2-propenyl cuprate (119) addition followed a Wolff-
Kishner reduction to afford acetal (+)-155, albeit in modest yield with the undesired
C(16) stereochemistry.” This was rectified with a three-step ozonolysis, epimerization,
and Wittig olefination sequence to provide thermodynamic product (+)-156. Acetal
cleavage and conversion to an alkyl chloride gave desired intermediate 157. These
efforts have demonstrated enantioselective approaches to A-ring fragment 149 and CD
ring fragment 157, although details of the potential samarium-promoted coupling and

further functionalization toward variecolin were not described.
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Scheme 2.3.7. Molander’s first-generation synthesis of a CD ring fragment

1. NaCH,S(0)CH, S
o 1. NaBH,, MeOH o) DMSO/THF | 0/ P H
‘» —78 > 5°C Bno—/ 152 “ :
> » MeO
2. PivCl, Py, CH,Cl, 2. NaBHy,, NiCl,, MeOH
o 0—-25°C OPiv 3. Pd/C, H,, MeOH } ol
(R)-19, >99‘%5, ee (1% yield, two steps) 151 (32% yield, three steps) 153
prepared in
three steps
3 1. :
1. LiAlH,, THF, 0 °C g i H ( Cu(CN)Li, 119
2. Dess—-Martin, CH,Cl, 3 2 THF,-78°C
» MeO >
3. LDA, THF, -78 °C; 2. H,NNH,+H,0, K,CO;4
Et3;N, TMSCI diethylene glycol, 200 °C
4. Pd(OACc),, MeCN/CH,CI, o
35-40 °C 154 (43% yield, two steps)

(44% yield, four steps)

I H\=¢ 1. PdCI,(MeCN), ™Y \—=

1. 0, Py, CH,Cl,, ~78 °C o, it MeCN/H,0 o. i 97¢
> MeO g . > [
. " R
(86% yield, three steps) (61% yield, two steps)
(+)-156 157
2.3.3 MOLANDER’S SECOND-GENERATION APPROACH

Graduate student Kelly George of the Molander laboratory disclosed a second-
generation approach to variecolin in 2005.>' The overall synthetic strategy incorporating
the key sequential samarium coupling remained the same. However, the synthetic
sequences to the A- and CD ring fragments were improved and coupling studies were
explored.

The revised stereoselective synthesis of a viable A-ring fragment began with the
asymmetric desymmetrization of meso-anhydride 143 with quinidine to produce
monoacid 158 in 99% yield (Scheme 2.3.8). Chemoselective ester reduction and
cyclization provided y-lactone 159 in 98% ee and 87% yield over two steps. Lactone

functionalization and olefin oxidative cleavage over four steps afforded acyclic diacid
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160 which was transformed into iodides 161 and 162 in good overall yield (four steps).

This reaction sequence provided the A-ring intermediates in 11 steps, a marked

improvement over the previous generation synthesis (>14 steps).”

Scheme 2.3.8. Molander’s revised A-ring synthesis

1. TMSCI, Nal
o ZnCl,, CH,Cl,

H 2. TMSCHN,
1. LiEt;BH, THF : MeOH/PhH
> o} >
2. p-TsOH-H,0, PhH T 3.2Zn, AcOH
a 4. RuCly-H,0, NalO,

(87% yield, two steps) CCl/MeCN/H,0
159, 98% ee  (39% yield, four steps)

H Q@  Quinidine, MeOH
: CcCl,/PhMe

4-6 days, -55 °C

(99% yield)

1. NaOAc, Ac,0, reflux l/\
CO.M 2. glycol, p-TsOH, PhH o] o
HO,C 2ile reflux, Dean—Stark _ o 0
HO,C 3. LiAlH,, Et,0 |
4. PhyP, |, imidazole 1
CH,Cl,

160, 5:1 dr 161 162
53-73% yield 77% yield

Molander’s revised approach to the CD ring proceeded from the correct enantiomer
of the Hajos—Parrish ketone ((S)-19) (Scheme 2.3.9). Enone reduction with copper
hydride and diastereoselective allylation of the resulting enolate furnished allyl ketone
163. Oxidative cleavage of the allyl group, aldehyde reduction and acetylization gave
acetal 164. Typical D-ring functionalization installed the C(16) 2-propenyl moiety in the
wrong configuration ((—)-155). This was advanced to acetal (—)-156 by a similar three-
step sequence as above (cf. Scheme 2.3.7) to achieve the correct C(16) stereochemistry,
and acetal cleavage with alcohol protection provided a suitable coupling partner (165).
The revised CD ring fragment synthesis was accomplished in 14 steps, a modest

improvement over the previous 16-step sequence.
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Scheme 2.3.9. Molander’s revised CD ring synthesis

=z 1. LDA, THF, -78 °C;
t-BuCu, HMPA 1.03,-78 °C d Et,N, TMSCI
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th Cul . .
aIIerbr:‘onl":me i 3. HCIO,, MeOH : 3'( Cu(CN)Li; 119
% (76% yield, three steps) o) 2 THE. —78 °C
(52% yield) 4. HoNNH,H,0, K,CO
(S)-19, >99% ee 163 164 - Hap >*H20, KoCO3

triethylene glycol, 200 °C
(71% yield, four steps)

OTBDPS
1. PdCl,(MeCN),
three steps MeCN/H,0O
92% yield 2. TBDPSCI, DMAP
: : imidazole, CH,ClI, A
2% yield, t t -
(=)-155 (~)-156 (82% yield, two steps) 165

The development of scalable asymmetric syntheses of both the A- and CD ring
fragments enabled the exploration of the samarium-promoted coupling strategy. In the
event, the intermolecular samarium-promoted Barbier coupling of iodide 161 and
chloroketone 165 generated intermediate 166 in variable yields (Scheme 2.3.10). This
material was advanced to (3-ketolactone 167 over three steps. Silyl cleavage and alcohol
conversion to an alkyl iodide afforded 168; however, the p-ketoester moiety existed in
the enolized form removing the C(6) stereochemistry. Ketone reduction and protection
as a pivalate under various conditions provided iodolactone 169 in low yields. In the key
reaction, it was found that the samarium-promoted intramolecular nucleophilic acyl
substitution of this iodolactone proceeded efficiently, constructing 170 in 82% yield.
While this method successfully generated the ABCD carbocyclic core of variecolin, low

and variable yields as well as C(5) stereochemical issues hampered further progress.
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Scheme 2.3.10. Molander’s Sm(ll)-promoted fragment coupling studies

OTBDPS r\o OTBDPS 1. LIHMDS, THF
™% 78 °C; CICO,Me
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cat +-BuOH

(35-68% yield)

(60% yield, three steps)

161 165 166
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2. MsCl, Et3N, CH,Cl, 1. NaBH4, MeOH
reflux -78 °C
> —_—
3. Nal, acetone 2. PivCl, basic
conditions
(86% yield, three steps)
H = "low yields"

167 168

sm|2
Nil, (cat)

THF, 30 min

(82% yield)

169

To overcome these difficulties, Molander and co-workers investigated a revised
reaction sequence altering the order of operations. The new route involved the
samarium-promoted coupling of iodide 162 and ketone 165 over four steps to produce
B-ketoester 167 in 48% yield (Scheme 2.3.11). Importantly, the revised A-ring ketone
protecting group and modified reaction conditions improved yields and minimized the
troublesome C(6) enolization. Diastereoselective ketone reduction with super hydride
produced B-hydroxyketone 171 and subsequent fluoride-mediated silyl cleavage resulted
in B-hydroxy elimination to form o,(-unsaturated lactone 172, removing the C(5) and

C(6) stereocenters. Efforts to circumvent this problem have not been described.
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Scheme 2.3.11. Alternate Sm(Il)-promoted fragment coupling studies

OTBDPS OTBDPS
b LiEt;BH

o four steps THF
—_——
+ 48% yield -78 > 0°C
1
(75% yield)
162 165
OTBDPS
TBAF
THF, 0 °C
—»
(49% yield)
171 172

The progress of Molander and co-workers toward variecolin appears to have stalled at
this intermediate (172). The apparent difficulties observed with this sequential
samarium-promoted coupling strategy seem to be involved with the order of chemical
operations on sensitive intermediates as well as lengthy preparations of these
intermediates. In addition to these issues, the strategy necessitates the late installation of
the C(11) all-carbon quaternary stereocenter after the final intramolecular nucleophilic
acyl substitution reaction. However, model system studies to forge this bond by reported
methods™ resulted with intractable mixtures and no quaternary stereocenter formation
(Scheme 2.3.12). Thus, the strategy must be further revised to incorporate this
stereocenter at an earlier intermediate via a separate method, which would obviate the

designed sequential samarium couplings.
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Scheme 2.3.12. Molander’s attempted installation of the C(11) quaternary stereocenter

1. B-Br-9-BBN

H
Y CH,Cl,

H

LL o
/77 PivO

Pivo 2. ZnMey, ZnCl,

173 174

24 CONCLUSION

The variecolin sesterterpenes are a structurally complex and biologically active class
of natural products isolated from various fungal sources. Biological investigations of this
family have indicated anti-HIV, antihypertension, immunomodulatory, and antibacterial
properties. The extraordinary tetracyclic core defined by a central eight-membered ring
with a high degree of stereocomplexity has inspired valiant synthetic efforts from the
Piers and Molander laboratories. These unique approaches to variecolin highlight various
stereochemical and functional group attributes for this unusual system. Despite
significant progress in this area, completion of variecolin or any of its congeners has yet

to be reported.
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CHAPTER 3

Progress toward the Asymmetric

Total Synthesis of Variecolin’

3.1 INTRODUCTION AND SYNTHETIC STRATEGY

3.1.1 INTRODUCTION

Variecolin (95) is a complex sesterterpenoid isolated from extracts of the fungi
Asperigillus sp. and Emericella sp." It belongs to a growing class of sesterterpene natural
products defined by a tetracyclic core possessing a central eight-membered ring,
comprising variecolol (99), variecolactone (100),” AB5362-A (101), and emericolins A—
D (104-107) (Figure 3.1.1). This family exhibits an array of biological activities,
including antihypertensive,™ anti-HIV," immunosuppressive, and antifungal'
properties. Our interest in the pursuit of an effective and general synthetic strategy
toward these bioactive natural products focused on variecolin, as it represents the most

widely studied and biologically relevant member. The inherent synthetic challenges

" This work was performed in collaboration with Thomas Jensen, a visiting scholar from the Technical
University of Denmark, and Dr. Chris Henry, a postdoctoral scholar in the Stoltz group.
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posed by the complex tetracyclic core representative of this sesterterpene family
provide inspiration to utilize and expand the state of the art in catalysis and synthetic

methodology.

Figure 3.1.1. Variecolin family of sesterterpenes.

Emericolin A (104) Emericolin B (105) Emericolin C (106) Emericolin D (107)

The 25-carbon tetracyclic core of variecolin (95) consists of a central eight-membered
ring and possesses eight stereocenters, including two all-carbon quaternary stereocenters
at C(11) and C(14)’ of the B—C and C-D ring fusions, respectively."*' Synthetic control
of the relative and absolute stereochemistry of these trans-fused rings poses a significant
challenge for the design of critical bond-forming reactions. Herein we present a
convergent approach to variecolin that harnesses methods developed in our laboratories
to construct these key structural features and provides opportunities to explore new

reactivity. At the outset of our investigations, two laboratories had published efforts
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toward variecolin, although all members of this family have thus far continued to elude

chemical synthesis.*

3.1.2 RETROSYNTHETIC ANALYSIS

Our retrosynthetic approach toward variecolin (95) focused on the construction of the
central eight-membered ring and two all-carbon quaternary stereocenters,” with the
intention of improving synthetic efficiency through the coupling of two highly substituted
fragments. We envisioned a critical C-ring disconnection, through bisketone 175, to AB
ring fragment 176 and D-ring fragment 179 (Scheme 3.1.1). Our laboratory recently
developed a powerful tandem Wolff/Cope rearrangement for the facile generation of
functionalized fused bicyclic cycloheptadienones from vinyl cyclopropyl diazo ketones.’
Using this technology, we anticipated that AB ring synthon 176 could be accessed
through a Wolff/Cope rearrangement of highly functionalized cyclobutane 177, which
may in turn be assembled via a tethered cycloaddition of alcohol 178. We surmised that
the crucial all-carbon quaternary stereocenter of D-ring synthon 179 could be installed
through an enantioselective Pd-catalyzed alkylation of in situ-generated cyclic enolates
recently developed in our laboratories.” Accordingly, 179 could originate from a ring
contraction of cycloheptenone 180, which itself would arise from the asymmetric

palladium-catalyzed alkylation of racemic vinylogous (3-ketoester (+)-181.
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Scheme 3.1.1. Retrosynthetic analysis of variecolin

Variecolin (95) 179 180
asymmetricu
alkylation
OH Wolft/ o o
Cope
0 = RGN
OR!
(o]
178 177 (2)-181
3.2 A WOLFF/COPE APPROACH TO THE AB RING SYSTEM

Eight-membered rings are common structural motifs that occur in widely diverse
terrestrial plants, insects, marine organisms, and fungi. The theoretical and synthetic
intrigue of these medium-sized carbocyclic structures has stimulated the development of
various strategies for their preparation, many of which have been applied toward the
synthesis of complex molecular targets.® Inasmuch as we are restricted by the limitations
of reaction scope in the state of the art, the selective preparation of eight-membered rings
remains a noteworthy and continuing challenge to modern chemical methods.’

The design of tandem reaction sequences for the rapid generation of molecular
complexity is an area of constant investigation in our laboratory.”” We have recently
developed a tandem Wolff/Cope rearrangement for the facile construction of
functionalized seven-membered rings.® A critical component to the success of this

method was the identification of photochemical or silver-catalyzed sonochemical
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conditions to allow direct access to a variety of [n—7] fused bicyclic systems in

excellent yields. In drawing inspiration from this efficient process, a primary objective of
the devised synthetic plan toward variecolin (95) is the development of a tandem
Wolff/Cope rearrangement to forge fused carbocyclic eight-membered ring systems.
Application of this key transformation for the construction of the central B ring of 95
would expand the reaction scope, and furthermore, could provide new tools and strategies
for the general preparation of natural and nonnatural substances containing this eight-

membered ring motif.

3.2.1 MODEL STUDIES OF THE WOLFF/COPE REARRANGEMENT

TOWARD CONSTRUCTION OF THE EIGHT-MEMBERED AB RING

In order to investigate the tandem Wolff/Cope rearrangement toward eight-membered
AB ring fragment (176), we sought an expedient, stereoselective synthesis of a highly
substituted cyclobutane substrate (e.g., 177). During the course of our efforts, we elected
to use an exceedingly effective cyclobutadiene—olefin cycloaddition for the rapid
construction of this cyclobutane moiety.!" Model studies pursued toward this goal
provided insight into the physical properties and identification of reaction intermediates

using a readily available cyclopentenol analogue.

3.2.1.1 MODEL WOLFF/COPE SUBSTRATE SYNTHESIS

We initiated investigations toward an AB ring model system by preparing a suitable

tricarbonyliron-cyclobutadiene derivative with sufficient electrophilicity to enable
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alcohol alkylations under mild conditions.””  Conversion of pyrone 182 into
tricarbonyliron-cyclobutadiene complex 183, followed by ester reduction produced
alcohol 184 (Scheme 3.2.1). Alkoxide generation using KH and exposure to

trichloroacetonitrile effectively formed trichloroacetimidate 185 in quantitative yield.

Scheme 3.2.1. Preparation of trichloroacetimidate 185

o) hv, PhH " NH

com 25-35 °C COMe  ;py,AIH OH  KH, CI,CCN I
o) e ol —_— D/\o CCly

_78° E 23°
~ | then5|;e3c(:CO)9 Fa(CON, PhMe, -78° C Fe(CO)s t,0, 0 — 23 °C (P
(100% yield) (100% yield) Fe(CO)s
-
182 (52% yield) 183 184 185

The stereoselective synthesis of a chiral cyclopentenol was achieved utilizing
precedented cuprate chemistry.' Readily available anti-cyclopentenol (+)-187'* was
prepared from monoacetate (+)-186" by a copper(I) cyanide-catalyzed Sy2 displacement
using p-tolylmagnesium bromide (Scheme 3.2.2). Zinc(II)-catalyzed alkylation'® of anti-
cyclopentenol 187 with trichloroacetimidate 185 afforded the requisite intramolecular
cycloaddition substrate 188 in 76% yield.”> Oxidative liberation of cyclobutadiene
promoted by ceric ammonium nitrate (CAN), with subsequent olefin cycloaddition
rapidly assembled the desired cyclobutene 189 in 76% yield, establishing the
stereoselective preparation of a model for our highly substituted cyclobutane

intermediate.
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Scheme 3.2.2. Tethered cycloaddition of alcohol (+)-187

OH " cucN (30 mol %) H  znom, O/h L
p-TolMgBr, LiCl (5 mol %) (P CAN :
W d W @ Fe(CO); m’ > J
AcO (90% yield) pTol’ 0~23°C pTol’ (76% yieldy ~ pTol  H H
(2)-186 (x)-187  (76% yield) (z)-188 (%)-189

We next considered regioselective functionalization of the cyclobutene moiety via
construction of cycloadduct 189 en route to a Wolff/Cope substrate. To this end, we
explored a method for the ozonolytic cleavage of olefins to terminally differentiated
products in CH,Cl, and methanol popularized by Schreiber."'"* Exposure of cycloadduct
189 to typical reaction conditions provided a mixture of compounds including undesired
acetal 190 in 13% yield and an inseparable 9:1 mixture of acetal 191 and desired
aldehyde 192 in 68% yield (Scheme 3.2.3). Direct Wittig methylenation of the mixture

afforded pure acetal 191 in addition to minor quantities of desired olefin 193.

Scheme 3.2.3. Termini-differentiating ozonolysis of cyclobutene 189
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The production of acetals 190 and 191 from this unsymmetrical ozonolysis
indicates diverging reaction pathways (Scheme 3.2.4). Cycloaddition of ozone to
cyclobutene 189 generates primary ozonide 194, which fragments in one of two ways.
Cleavage of the primary ozonide to 195 (path a) positions the carbonyl oxide on the fully
substituted carbon. Subsequent addition of methanol to this intermediate and dehydration
with Ac,O/Et;N generates acetal 190. Conversely, primary ozonide cleavage in the
opposite manner produces 196 (path b) with the carbonyl oxide positioned on the less-
substituted carbon. This intermediate further reacts by another of two possible pathways:
(1) addition of methanol from the reaction medium (path ¢) and dehydration to generate
acetal 191, or (2) methanol addition to the carbonyl oxide (path d) and dehydration to
furnish aldehyde 192. Although desired aldehyde 192 is a minor component of this
reaction, the selectivity for the cleavage of primary ozonide 194 via the desired path b is
favored in an approximate 3:1 ratio, and is presumably the result of steric influences of

the cyclobutene moiety."
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Scheme 3.2.4. Proposed ozonolytic cleavage of cyclobutene 189

(%)-189
03, -78 °C N
CH,Cl,/MeOH \=0,
o

(£)-196 ~MeOH

The isolation of aldehyde 192 as a minor product from the unsymmetrical ozonolysis
of cyclobutene 189 hindered progress toward a model Wolff/Cope substrate.
Fortuitously, we recognized that acetal 191 and aldehyde 192 arise from the same
fragmentation pathway (path b, Scheme 3.2.4) and thus possess the same aldehyde
oxidation state at C(8)’ (cf. Scheme 3.2.3). To exploit this result, we explored potential
equilibration conditions to determine the propensity for formation of aldehyde 192 from
the isomeric aldehyde/acetal mixture (Table 3.2.1). Our primary investigations revealed
that solvation of pure acetal 191 in methanol effected the equilibration to favor aldehyde
192 and produced minor quantities of acetal diastereomer 197 (entries 1 and 2). A
survey of various Lewis acids identified the proficiency of divalent triflate salts in
shifting the equilibrium to further favor 192 (entries 3—6).° Similarly, molecular sieves
and combinations thereof with Lewis acids proved to be efficient for the conversion to

192 (entries 7-10). As a result of this screen of conditions, we elected to proceed in the
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synthesis using 4 A MS in our optimal conditions because they provide a nearly 3:1

ratio of 192:191 + 197 and enhanced operational efficiency.”'

Table 3.2.1. Equilibration of acetal 191

o)
MeOH H
additive I \..CHO
—
—_— { | |
23°C :

: i ""co,Me
HH o p-Tof
(2)-197 (2)-192
entry? additive? 191 + 197 : 192°
1 — 66 : 34
2 —d 39 : 61
3 CuCl, 75:25
4 ZnCl, 41:59
5 Cu(OTH), 36 : 64
6 Zn(OTH), 30:70
7 3AwmMs 32:68
8 4Awms 29:71
9 4 A MS/zn(OTH), 27:73
10 4 A MS/Cu(OTH), 28:72

a Each entry started from pure acetal 197. ? Lewis acids
were used in 20 mol %; molecular sieves were used in
0.5 g/mmol. ¢ Ratio determined by '"H NMR analysis of
crude reaction filtrate after 20-24 h. ¢ At 50 °C.

The equilibration of acetal 191 to desired aldehyde 192 considerably improved the
overall reaction sequence for the preparation of a Wolff/Cope a-diazoketone substrate
(e.g., 177). In the event, the unsymmetrical ozonolysis of cyclobutene 189 followed by
equilibration with 4 A MS in methanol afforded a ~1:3 ratio of acetals 191 + 197 and
aldehyde 192 (Scheme 3.2.5). Wittig methylenation of this mixture produced the desired
olefin 193 in 40% yield over three steps, while the recovery of acetals 191 and 197 in

14% yield enabled recycling of material.”> Hydrolysis of ester 193 with KOTMS and
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conversion to a-diazoketone 200 by way of an acid chloride and diazomethane (199)

proceeded in excellent yield.

Scheme 3.2.5. Optimized synthesis of a-diazoketone 200

1. 03, CH,Cl,/MeOH (5:1)

o NaHCO;, 78 °C; 0 OMe o
: :| Ac;,0, Et;N, CH,Cl,, 0 °C : T \.«CHO Ph3PCH,Br, KOt-Bu
| - - 0O +
i 2.4 AMS, MeOH, 23 °C . THF, 0 — 23 °C

H i ."'C02Me

pToi H H pToi HH B pToi H (40% yield of 193,
14% yield of 197 + 197,
(2)-189 ()-191  (~1:3) (#)-192 three steps)

()-197

On oh (COCl),, DMF on
HAEN KOTMS HA RSN CHClp 0°C HA SN
i THF,0—>23°C 1t then CH,N, (199) —.

p-Toi H cogMe (96% yield) pTof 5 “"CO,H CH,Cl,/Et,0, 0 °C oo i h ’f N,
(£)-193 ()-198 (83% yield) (£)-200
3.2.1.2 MODEL WOLFF/COPE REARRANGEMENT INVESTIGATIONS

The synthesis of a-diazoketone 200 enabled the examination of our key Wolff/Cope
rearrangement toward the eight-membered B ring of variecolin. Thorough investigations
of this transformation utilizing various photochemical or silver(I)-catalyzed sonochemical
conditions afforded only intractable mixtures (Scheme 3.2.6). The lack of useful
information acquired from these initial experiments required us to examine the tandem
process in a stepwise manner. Accordingly, irradiation of a-diazoketone 200 in methanol
with a 350 nm light induced the photochemical Wolff rearrangement to form
homologated™ ester 203 as the sole product, confirming the intermediacy of ketene 202.
We were thus able to conclude that the ketene vinyl cyclobutane rearrangement does not

readily occur under the conditions surveyed.
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Scheme 3.2.6. Initial Wolff/Cope studies on a-diazoketone 200

AgOBz (0.1 equiv)

(o]
HY Et;N (1.0 equiv)
I RN THF, sonication, 40 °C ,,
o OR 77

TN,
(o]

p-Tol hv, THF, 24 °C
(+)-200

OH

hv (350 nm) &\\\ o

o R~

MeOH, 24 °C \— i
p-Tof H

(2)-202 (2)-203

74% yield

To rationalize the difficulty of the cis-ketene vinyl cyclobutane rearrangement of 202,
we considered the analogous cis-divinyl cyclobutane rearrangement.” A comparison of
the experimental activation energy (E,) for a strain-releasing Cope rearrangement of cis-
divinyl cyclopropane (204) to that of cis-divinyl cyclobutane (206) reveals a higher
activation barrier of the latter by roughly 4-5 kcal/mol (Figure 3.2.1).” The related
decrease in reaction rate constant is consistent with the slightly elevated reaction
temperatures known to be required for cis-divinyl cyclobutane rearrangements. This
difference, when coupled with our observations that the ketene vinyl cyclopropane
rearrangement to afford substituted cycloheptadienones occurs under mild conditions,’
suggested that thermolysis of the intermediate ketene should facilitate the rearrangement.
In the event, a photochemical Wolff rearrangement with subsequent thermolysis at 80 °C
provided cyclooctenone 201 in 59% yield (Scheme 3.2.7).

With the success of this tandem reaction, we recognized that the high reactivity of a

ketene intermediate and the time between photolysis/thermolysis could account for the
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moderate yield of 201 and furthermore might hinder material throughput. In our

search for alternative conditions, we investigated reports harnessing microwave
irradiation to promote Wolff rearrangements, where we anticipated that the surplus
energy could facilitate the Cope rearrangement.”® Indeed, microwave irradiation for 20
minutes at 140 °C in toluene afforded cyclooctadienone 201 in 95% yield. These model
system results thereby confirm the Wolff/Cope strategy for the synthesis of the AB
fragment of variecolin (95), and provide new tools for the construction of substituted

eight-membered rings

Figure 3.2.1 Comparison of the strain-releasing Cope rearrangements of 204 and 206.

X Ea=19-20 kcal/mol
_ >

204 205
N Ep = 24 kcal/mol
_ >

206 207

Scheme 3.2.7. Successful Wolff/Cope rearrangement of a-diazoketone 200

H

N
: = N
SR 2 P
p-Tol P-Tol
(£)-200 - (2)-201
Photochemical/Thermal: Thermal (Microwave):
hv (310 nm), PhH, 23 °C; uwaves, PhMe, 140 °C
then 80 °C 20 min

59% yield 95% yield
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3.2.2 ASYMMETRIC SYNTHESIS OF THE AB RING FRAGMENT OF

VARIECOLIN EMPLOYING THE WOLFF/COPE REARRANGEMENT

Having established a viable route toward the AB ring system of variecolin through

model system studies, we then pursued an asymmetric synthesis of this fragment.

3.2.2.1 ASYMMETRIC SYNTHESIS OF WOLFF/COPE SUBSTRATE

TOWARD VARIECOLIN

The application of our proven intramolecular cycloaddition strategy for an
asymmetric synthesis of the AB ring fragment (i.e., 176, Scheme 3.1.1) originated from a
chiral cyclopentenol possessing syn stereochemistry. An enzymatic desymmetrization of
meso-bisacetate 208 provided monoacetate (+)-186 in excellent yield and 99% ee
(Scheme 3.2.8).” Copper(I) cyanide-catalyzed Sy2 displacement using
methylmagnesium chloride with monoacetate 186 afforded a 95:5 mixture of alcohols
209 and 210 in 91% yield."™ Mitsunobu inversion of this alcohol mixture using benzoic
acid produced allylic benzoate 211, possessing the desired syn stereochemistry between
C(3) and C(5).’* Benzoate methanolysis and zinc(I)-catalyzed coupling'® with
tricarbonyliron-cyclobutadiene trichloroacetimidate 185 gave the requisite intramolecular

cycloaddition substrate (212).
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Scheme 3.2.8. Asymmetric synthesis of intramolecular cycloaddition substrate 212

A Novozym 435 H
? ¢ NaH,PO,/K,HPO, ° CuCN (20 mol %) oH ?H
@ (pH =8.0) @ MeMgCl ;
> —_— +
A 23-24°C ) THF, —20 °C Q @f
AcO (95% yield) AcO (91% yield)
208 (+)-186 209 (95:5) 210
99% ee
PhCO,H OBz OH o)
Ph,P, DIAD K,CO,3 Zn(OTf), (5 mol %) (P
_— —_—— >
PhMe, -78 °C MeOH 185, PhMe Fe(CO)s
3 . 0->23°C
(90% yield) (90% yield)
211 178 (82% yield) 212
98% ee

Efforts toward the intramolecular cyclobutadiene—olefin cycloaddition of 212
promoted by CAN resulted in low yields and complex mixtures of products, presumably
the result of competing intermolecular dimerization reactions. Snapper has established
that the rapid oxidative decomplexation of tricarbonyliron-cyclobutadiene complexes
using CAN provides sufficient access to cycloadducts of substrates predisposed for the
intramolecular cycloaddition (e.g., 188).""" Oxidations using trimethylamine-N-oxide,
however, enact a slow release of cyclobutadiene to enable access to cycloadducts of
substrates with a lower reactivity for this process (e.g., 212). The gradual liberation of
the highly reactive intermediate favors an intramolecular cycloaddition process by
disfavoring intermolecular reaction pathways. Application of trimethylamine-N-oxide to
facilitate the oxidative decomplexation of 212 in refluxing acetone smoothly generated
cycloadduct 213 (Scheme 3.2.9).*”° Subsequent unsymmetrical ozonolysis of 213, acetal
equilibration promoted by 4 A MS in refluxing methanol and Wittig methylenation
afforded a 2.7:1 ratio olefins 216 and 217, in addition to acetals 214 and 215. This

reaction sequence provided desired olefin 216 in 16% yield over four steps, together with
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17% yield of recyclable acetal 214.”' Critically, acetal 215 was sufficiently crystalline
to enable X-ray analysis, providing further confirmation of the desired relative

stereochemistry of this polycyclic fragment (Figure 3.2.2).*

Scheme 3.2.9. Cycloaddition, ozonolysis, and olefination toward an asymmetric Wolff/Cope

substrate

o
(P Me;NO-2H,0

Fe(CO)s  acetone
reflux

03, NaHCO,
CH,Cly/MeOH
(5:1),-78 °C

—»
I then Ac,0
Et;N, CH,Cl,
0°C

+ minor
aldehydes

H owme

212 213 (48% combined 214 215
yield)

1.4 A MS, MeOH
reflux

2. PhyPCH,Br, KOt-Bu A
HHY

THF, 0 — 23 °C H Ome
(over four steps) 214 215
17% yield 6% yield

Figure 3.2.2. X-ray crystal structure of acetal 215. The molecular structure is shown with 50%

probability ellipsoids. a) Side view. b) Top view.

a) b)
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3.2.2.2 a-DIAZOKETONE SYNTHESIS AND WOLFF/COPE STUDIES

In the synthesis of our asymmetric AB ring fragment, we desired cyclooctadienone
products 176 where R = H, Me, or alkyl (Scheme 3.1.1). Model studies have
demonstrated the tandem rearrangement where R = H (i.e., 200 — 201, see subsection
3.2.1.2). However, alkyl substitution had not yet been explored for the Wolff/Cope
rearrangement and thus represented an unprecedented extension of the methodology.
Advancing to the target oa-diazoketones, hydrolysis of ester 216 to acid 218 and
conversion to the acid chloride and treatment with either diazomethane (199, R = H) or
diazoethane (219, R = Me) produced a-diazoketones 220 and 221, respectively (Scheme
3.2.10). Although diazomethane generated 220 in 91% yield, we were surprised by the

inconsistent and lower-yielding results obtained using diazoethane.”

Despite extensive
efforts toward optimization, however, improvements in yield could not be realized.”
Nonetheless, the microwave-promoted tandem Wolff/Cope rearrangement of both

substrates resulted in the successful construction of their respective cyclooctadienones

(222 and 223).

Scheme 3.2.10. a-Diazoketone synthesis and Wolff/Cope rearrangement

KOTMS (COCl),, DI:IIF
N THF CH,Cl, 0°C
—_— >
"y 0—>23°C then RCHN, (799 or 219)
CO,Me ] IRA-67, THF/CH,Cl,
(92% yield) Et,0, 0 °C
216

nwaves, PhMe

R

160 °C, 15 min (for 220)
140 °C, 20 min (for 221)

R = H (220), 91% yield R = H (222), 79% yield
R = Me (221), 46-64% yield R = Me (223), 26% yield
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The notably low yield of a-substituted cyclooctadienone 223 using microwave
irradiation is a direct result of the formation of numerous byproducts.” Inspection of
these various compounds revealed that cyclopropane 224 is a major side product (~1:1
ratio of 223:224) of this reaction, formed through a carbene intermediate. Two
mechanisms have been proposed for the Wolff rearrangement: 1) a concerted group
migration with nitrogen expulsion to a ketene or 2) the stepwise loss of nitrogen to
generate an o-carbonyl carbene intermediate that can either undergo the desired Wolff
rearrangement to a ketene or participate in other intra- or intermolecular reactions.”® A
complicating factor in our analysis of the rearrangement of 221 is that the two
mechanisms often operate competitively with high substrate dependence. However, we
noted the influence of solvent toward substrate conformation (224) and its impact on the
mechanistic pathway,”’ and thus posited that solvent variation might facilitate an increase
in the production of our targeted cyclooctadienone 223 (Table 3.2.2).*® We observed that
high-polarity solvents such as acetonitrile or 1,2-dichloroethane favored cyclopropane
formation decidedly over the Wolff rearrangement (entries 1 and 2). Less-polar solvents,
such as THF, ethyl acetate, and toluene, reversed the selectivity and improved the
formation of desired product 223 (entries 3—-6). Furthermore, the nonpolar solvents
methylcyclohexane and heptane reversed the reaction selectivity to favor the desired 223
as a major product, in a 3:1 ratio (entries 7 and 8). Although solvent polarity roughly
reflects product selectivity, in which less-polar solvents favor the Wolff rearrangement,
the complex reaction profile makes it difficult to conclusively correlate solvent polarity to

reaction pathway.
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Table 3.2.2. Wolff/Cope solvent studies of a-diazoketone 221

o= uwaves
ala solvent (5 mM)

_——
,,”/< 150 °C, 10 min

N
o

+ other

2

221 223 224
entry? solvent dielectric 223 : 2240
constant (€)
1 acetonitrile 375 1:4
2 DCE 10.4 1:2.8
3 THF 7.58 1:1.1
4 EtOAc 6.02 1:1.3
5 toluene 2.38 1.1:1
6 1,4-dioxane 2.21 1:1.7
7 methylcyclohexane 2.02 3:1
8 heptane 1.92 3:1

a Starting material was consumed in all reactions. ° Ratios
determined by 'H NMR analysis of crude reaction mixtures.

The application of these optimized reaction conditions with heptane enabled the
microwave-promoted rearrangement of 221 to produce a-methyl cyclooctadienone 223 in
42% isolated yield (Scheme 3.2.11). The success of this rearrangement is significant as it
represents the first example of the tandem Wolff/Cope rearrangement of a substrate
possessing o-alkyl functionality. Moreover, the combined results from all substrates in
this study (i.e., 200, 220, and 221) highlight the utility of microwave energy to facilitate
tandem rearrangements and expand the collection of eight-membered rings available by
this method. This Wolff/Cope approach to variecolin AB ring systems 222 and 223
provided advanced material to support fragment coupling studies toward completion of

the natural product.
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Scheme 3.2.11. Optimized rearrangement of a-diazoketone 221 to a-methyl cyclooctadienone

223

— uwaves

S== 150 °C

—_—
-, ,/< heptane
ci, N (42% yield)
221 223

3.3 CATALYTIC ASYMMETRIC SYNTHESIS OF A D-RING FRAGMENT

D-ring fragment 179 presents an all-carbon quaternary stereocenter contained within
the cyclopentene core as the key synthetic challenge. Literature reports of approaches to
similar quaternary acylcyclopentenes are remarkably limited,” and thus we sought a
novel route to construct these potentially useful substances. Structures analogous to 179
have been assembled both from five-membered rings® and as the products of six-
membered ring contractions.*"** In our design of a synthetic route to D-ring fragment
225 we envisioned the contraction of cycloheptenone 180 via a retro-aldol/aldol

sequence™® to enable the direct formation of a cyclopentene intermediate (Scheme 3.3.1).

Scheme 3.3.1. Proposed ring contraction approach to acylcyclopentene 225
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The palladium-catalyzed enantioselective alkylation of unstabilized, prochiral
ketone enolates has been an area of intense investigation in our laboratory.” This
technology has enabled the preparation of a wide variety of cyclic carbonyl compounds
possessing adjacent quaternary stereocenters with high levels of selectivity and excellent
yields. To explore this ring contraction pathway, we pursued the enantioselective
construction of the C(14) quaternary stereocenter via the asymmetric alkylation of

racemic vinylogous* B-ketoester (+)-181.

3.3.1 OPTIMIZATION OF THE Pd-CATALYZED ASYMMETRIC
ALKYLATION OF CYCLIC SEVEN-MEMBERED VINYLOGOUS

B-KETOESTERS

The synthesis of a suitable (3-ketoester substrate initiated with the production of
vinylogous ester 228 from cycloheptane-1,3-dione (227)* (Scheme 3.3.2). Ketone
enolization and acylation with allyl chloroformate formed an intermediate (-ketoester
that was subsequently alkylated with methyl iodide to produce racemic [(-ketoester
(£)-181. In the presence of our standard alkylation conditions employing a catalyst
complex generated in situ from Pd,(pmdba), and (S)-~-Bu-PHOX (($)-55) in THF at
30 °C, vinylogous (-ketoester was transformed to a-quaternary ketone (—)-229 in 94%

yield and 84% ee.
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Scheme 3.3.2. Vinylogous p-ketoester substrate synthesis and Pd-catalyzed asymmetric alkylation

o -BUOH o 1. LDA, PhMe, -78 °C
PPTS then CICOsallyl
—_— -
PhMe, reflux i 2. Cs,C0O3, Mel
(o] Dean-Stark 0i-Bu MeCN, 80 °C
227 (84% yield) 228 (81% yield, 2 steps)

o
o o Ph,P NI\> _ 0

N (S)-55 ’“3 N i
\/\o%\ (6.25 mol %) u
0i-Bu > 0i-Bu
Pd,(pmdba); (2.5 mol %)

(£)-181 T“F(;;’; ":’I')el :;’ € (~)-229, 84% ee

Although allyl ketone 229 was produced in excellent yield, we sought to improve the
enantioselectivity of the process. A survey of common solvents afforded similar yields of
allyl ketone 229 with a distinct enhancement of enantioselectivity (Table 3.3.1). Ethereal
solvents enabled a modest selectivity increase to 86% ee in Et,O (entries 1-3), while
aromatic solvents provided a more substantial improvement to 88% ee in toluene (entries
4 and 5). In addition, we altered the electronics of our ligand, using fluorinated
derivative 230* to produce allyl ketone 229 in 90% ee, albeit with diminished yield at
higher catalyst loading (entry 6). Since the diminished reactivity”’ of the electronically
deficient palladium complex derived from 230 required increased catalyst loadings and
resulted in lower yields, we elected to use the standard ~-Bu-PHOX ligand (55) in toluene
to carry out our asymmetric alkylation. The large-scale application of this method was
facilitated by lower catalyst loadings (2.4 mol %) and increased reaction concentrations
(0.2 M) to smoothly form allyl ketone 229 in 98% yield and 88% ee, a critical result that
enhanced the practicality of the transformation (Scheme 3.3.3). Moreover, the optimal

conditions for this class of cyclic vinylogous esters provide us with a new variety of
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substrates for our asymmetric alkylation methodology as we continue to seek new

synthetic applications for this chemistry.

Table 3.3.1. Asymmetric alkylation screen of vinylogous (-ketoester (+)-181

R

(o]
|
(o] (o] Ar,P N\)

\ 55 or 230 *Bu
"o (6.25 mol %)
0i-Bu >
Pdy(pmdba); (2.5 mol %)
solvent (0.1 M), 30 °C

(x)-181 (-)-229
entry? ligand solvent yield (%)? ee (%)°
1 55 (R =H, Ar = Ph) THF 94 84
2 55 (R = H, Ar = Ph) TBME 88 85
3 55 (R =H, Ar = Ph) Et,O 93 86
4 55 (R =H, Ar = Ph) benzene 84 86
5 55 (R =H, Ar =Ph) toluene 91 88
69 230 (R =CFj3, Ar=4-CF3-C4H;) benzene 57 90

2 pmdba = bis(4-methoxybenzylidene)acetone. ? Isolated yield. ¢ Enantiomeric excess
determined by chiral HPLC. 5 mol % Pd,(pmdba); and 12.5 mol % 230 were used to
reach complete conversion.

Scheme 3.3.3. Large-scale enantioselective alkylation of p-ketoester (+)-181

(o} 0 Pd,(pmdba); (1.2 mol %)
\/\0 (S)-55 (3.12 mol %) .
0i-Bu PhMe (0.2 M), 30 °C
(¢)-181 (-)-229
10.2 g scale 98% yield, 88% ee
3.3.2 RING CONTRACTION INVESTIGATIONS AND DETERMINATION

OF THE ABSOLUTE STEREOCHEMISTRY

A scalable and efficient asymmetric preparation of allyl ketone 229 enabled our

pursuit of the targeted D-ring fragment 179. Reduction of vinylogous ester 229 with
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acidic workup furnished a 10:1 mixture of 3-hydroxyketone 231 and enone 180 in 99%

overall yield (Scheme 3.3.4). Exposure of this crude mixture to aldol conditions using
LiO#-Bu in +-BuOH produced the desired ring-contracted acylcyclopentene 225 in 53%
yield. Our isolation of the desired product in greater than 10% yield indicated to us that
B-hydroxyketone 231 is readily converted to 225, whereas the minor cycloheptenone 180
remained in the reaction after consumption of 231. Since f-hydroxyketone 231 is
equivalent to the first step of the retro-aldol/aldol sequence (through water addition to the
enone) and is available as the major product from the reduction of 229, it thus provided

us with an ideal substrate on which to pursue further studies.*®

Scheme 3.3.4. Reduction of ketone 229 and preliminary ring contraction

LiAIH, ° LiO#-Bu
Et,0, 0 °C t-BuOH
then 10% HCI 40 °C
‘ (99% yield) (53% yield)
229 231 (10:1) 180 225 180

53% yield

Our subsequent efforts to maximize the efficiency of this transformation focused on
the ring contraction of the major reduction product, (3-hydroxyketone 231. Given our
early result using LiOz-Bu (Scheme 3.3.4), we examined numerous aldol conditions that
consisted of a variety of non-nucleophilic bases (Table 3.3.2)." We observed that several
t-butoxides in ~BuOH and THF effected substrate conversion to the desired product
(225) in good yields (entries 1-4), noting that the rate of product formation was
comparatively slower with LiOz-Bu than that of Na- and KO#-Bu. The use of various

hydroxides revealed a similar trend, where NaOH and KOH generated 225 in 4 hours
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with improved yields over their respective #-butoxides (entries 5 and 6). In contrast,

the reactivity of LiOH was comparatively sluggish, providing 225 in low yield with the
formation of various intermediates (entry 7). To harness the mild reactivity of LiOH
while improving the yield of 225, we investigated the effect of alcohol additives to
modulate the efficacy of the transformation. The combination of -BuOH and LiOH in
THEF increased the yield of 225 to a similar level as that observed with LiOz-Bu, although
the reaction continued to proceed at a slow rate (entry 8). Application of more acidic,
non-nucleophilic alcohols such as trifluoroethanol (TFE) and hexafluoroisopropanol
(HFIP)’' demonstrated exceptional reactivity with LiOH to efficiently produce 225 in
high yields (entries 9 and 10).> This is reflective of the recently reported use of
fluorinated lithium alkoxides to promote Horner—Wadsworth—-Emmons olefinations of
sensitive substrates and underscores their mild reactivity and efficacy.” The data from
our study further recognize the unique properties of these mild bases and suggest their
application may be examined in a broader context. While a number of bases are effective
in the production of 225 in good yields, we selected the combination of LiOH and TFE as
our optimal conditions for scale-up efforts. Importantly, none of the conditions surveyed
for the ring contraction studies generated the f-elimination product, cycloheptenone 180,
providing further validation that (-hydroxyketone 231 is an ideal substrate for this

transformation.>*
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Table 3.3.2. Ring contraction investigations of 231

base
additive
—»
solvent, temp

180
not observed
entry®®  base additive  solvent temp (°C) t(h) conversion (%)¢ yield (%)°
1 LiOt-Bu — +-BuOH 40 9 100 71
2 LiOt-Bu — THF 40 8 100 60
3 NaOtBu — THF 40 5 100 81
4 KOtBu — THF 40 5 100 85
5 NaOH — THF 60 4 100 89
6 KOH — THF 60 4 100 87
7 LiOH - THF 60 24 78 199
8 LiOH +-BuOH THF 60 24 98 78
9 LiOH TFE THF 60 12.5 99 96
10 LiOH HFIP THF 60 12.5 99 87

a TFE = 2,2,2-trifluoroethanol; HFIP = hexafluoro-2-propanol. © Reactions performed with 1.5
equiv each of base and additive at 0.1 M in solvent. ©Determined by GC analysis using an
internal standard. ¢ Several intermediates observed by TLC and GC analysis.

The reduction of allyl ketone 229 with acidic workup furnished -hydroxyketone 231
in 90% yield and 1:1.5 dr (Scheme 3.3.5). Application of the devised ring contraction
conditions consisting of LiOH and TFE in THF at 60 °C facilitated the preparation of
desired acylcyclopentene 225 in 96% yield, and enabled access to multigram quantities of
this important intermediate. The production of allyl ketone 229 in 88% ee from the
asymmetric allylic alkylation reaction was satisfactory for our synthetic efforts, but we
were interested in identifying an appropriate crystalline derivative to enhance the optical
purity of our material. We thus pursued the derivatization of acylcyclopentene 225 by
conversion to semicarbazone 232 in 92% yield and with a marginal increase in ee to
91%.” Recrystallization of this material provided semicarbazone 232 in 98% ee, which

was readily cleaved under acidic conditions to reveal the desired acylcyclopentene (225).

Further functionalization of semicarbazone 232 with 4-iodobenzyl amine furnished 233,
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and enabled X-ray crystal structure analysis to confirm the absolute stereochemistry of

the asymmetric alkylation (Figure 3.3.1).%

Scheme 3.3.5. Scale-up, derivatization, and enantioenrichment of acylcyclopentene 225

(o]

o]
LiAIH, LiOH
Et,0,0 °C CF;CH,0H semicarbazide-HCI
0iB then 10% HCI & THF, 60 °C NaOAc, H,0, 60 °C
I-bu
(90% yield) N (96% yield) (92% yield)
(-)-229, 88% ee 231, 1.5:1dr

hexanes/PhMe (1:1) _ 6 M HCI (aq)
recrystallize twice o THF/H,0, 23 °C
(68% yield) (93% vyield)
225
98% ee

4-iodobenzyl amine (o]
m-xylene, 150 °C

(89% yield)

233
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Figure 3.3.1. X-ray crystal structure of semicarbazone 233. The molecular structure is shown

with 50 % probability ellipsoids.

3.3.3 COMPLETION OF THE D-RING FRAGMENT

The completion of a viable D-ring fragment required protection of the carbonyl as
acetal 235 (Scheme 3.3.6).°" Oxidative cleavage of the allyl group using modified
Lemieux—Johnson conditions™ with reduction of the resulting aldehyde generated alcohol
236, a useful intermediate for further derivatization. Conversion to iodide 237 was
readily achieved with iodine/Ph;P, completing the synthesis of the devised D-ring
component to enable fragment-coupling studies with AB ring intermediates 222 and 223

toward the synthesis of variecolin (95).
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Scheme 3.3.6. Completion of D-ring fragment 237

234
1. 0s04 (2 mol %), 2,6-lutidine
HO\></0H NalO,, dioxane/H,0 (3:1), 0 °C
PPTS, PhMe 2. NaBH,, EtOH, 0 °C

110 °C, Dean-Stark
(77% yield, two steps)

(82% yield)

I, Ph3P, imidazole

L

CH,Cl,, 0 » 23 °C

(92% yield)

3.4 STUDIES TOWARD THE FRAGMENT COUPLING OF THE AB AND

D-RING FRAGMENTS TOWARD VARIECOLIN

The asymmetric syntheses of AB ring fragments 222 and 223 and D-ring fragment
237 allowed the evaluation of C-ring annulation strategies toward completion of the
target. We envisioned that construction of the final two bonds of the tetracyclic core of
variecolin could be achieved by a convergent, strategic operation from these advanced
intermediates. An important characteristic of the cyclooctadienones generated by the
Wolff/Cope rearrangement is the ability of the enone functionality to provide
regiocontrol for the reductive generation of nonsymmetrical ketone enolates.”” We
planned to harness this regiospecific enolate generation to carry out a diastereoselective
C(11)’ alkylation of D-ring iodide 237 to produce a derivative of coupled diketone 175
(Scheme 3.1.1). With the fusion of fragments 223 and 237 to produce a derivative of

diketone 175, we envisioned that the final C-ring closure would occur via radical addition
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to the conjugated enone. Toward this end, we examined model compounds to

determine the feasibility of this convergent approach for the construction of the C ring.

3.4.1 MODEL STUDIES FOR FRAGMENT COUPLING AND C-RING
ANNULATION
3.4.1.1 MODEL REDUCTIVE ENONE ALKYLATION AND

HYDROSILYLATION/ALKYLATION

The availability of 2-methyl cyclooctenone (238) as a model a-substituted eight-
membered enone allowed us to evaluate various reductive methods to install the C(11)
all-carbon quaternary stereocenter of variecolin (95). This can be readily accomplished
with 238 in a one-pot dissolving metal (Li/NH,) reductive alkylation procedure® to
generate an intermediate lithium enolate that was subsequently alkylated with D-ring
iodide 237 to construct ketone 239 in 75% yield as a mixture of diastereomers (Scheme
34.1). An alternative two-step method used a rhodium(I)-catalyzed hydrosilylation of
enone 238 with PhMe,SiH to produce isolable enol silane 240.°' This was next exposed
to Noyori’s” alkylation conditions with D-ring iodide 237 to furnish the desired
quaternary ketone (239) in 61% yield over two steps. The results of this model study
establish a reasonable precedent for the construction of the C(11) quaternary stereocenter
via alkylation, and importantly underscore the reactivity of D-ring iodide 237 with a

congested lithium enolate (derived from 238).
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Scheme 3.4.1. Model studies for B-D ring coupling

Li (s), NHy
o Et,0, -78 — 35 °C o
> o__O
then (£)-237, H,0

(75% yield)
238 239
RAH(PhsPly (26 mol %) MeLi, Me,Zn
PhMe,SiH —78°C;
THF, 30 °C OSiMe,Ph (LTZS%?’& ~ 23 Sc’:
(76% yield) (80% yield)
240
3.4.1.2 MODEL C-RING RADICAL CYCLIZATION

With a plausible unification of the model fragments to form BD ring ketone 239
established, we pursued a radical-mediated formation of the final C—C bond to complete
the C-ring annulation.”” The requisite substrate was prepared from LiAlH, reduction of
ketone 239 with acidic workup to effect protecting group cleavage and reveal
cyclopentene 241 as a mixture of four diastereomers (Scheme 3.4.2). Conversion of the
alcohol into imidazoyl thiocarbonate 242 followed by the AIBN-initiated radical
cyclization with slow addition of tri-n-butyltin hydride formed the final C—C bond of our
model BCD ring core (i.e., 243) for the variecolin sesterterpenes. This significant result
provides firm precedent for the C-ring annulation approach for completion of the
tetracyclic core of this family, although information concerning the stereochemistry of
our model cyclization product could not be conclusively discerned from this system
owing to the number of diastereomers present in the starting material and product

mixtures.
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Scheme 3.4.2. Model radical cyclization for annulation of the C ring

(o}
TCDI
0 ! ) LiAlH,, THF, 0 °C o OH DMAP (30 mol %) _
then 10% HCI CH,Cl,, 23 °C
0—-21°C
(98% yield)

(81% yield)

239 241
N 0 0
<\,\r,| o AIBN
\FS (25 mol %) <
o) T Bu.SnH | .
PR, softux N
242 242a 243
83% yield
3.4.2 COUPLING STUDIES REGARDING THE ASYMMETRIC AB RING
FRAGMENT OF VARIECOLIN
3.4.2.1 ENONE REDUCTIVE ALKYLATION OF THE ASYMMETRIC AB
RING FRAGMENT

The confirmation of our model alkylation/radical cyclization sequence to form the C
ring of variecolin prompted application toward the total synthesis. The direct formation
of the C(11) quaternary stereocenter was initially examined using the one-pot reductive
alkylation procedure. In the event, dissolving metal reduction of a-substituted
cyclooctadienone intermediate 223 and exposure to an excess of D-ring iodide 237
resulted in a number of products, with saturated ketone 244 —the 1,4-reduction product of
223 —as the major component (Scheme 3.4.3). Unfortunately, the desired o-quaternary

ketone 246 was not observed. Further investigation of this direct reductive alkylation of
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AB ring fragment 222 yielded similar results, thus indicating that D-ring iodide 237 is

not sufficiently reactive toward enolates derived from 222 and 223.

Scheme 3.4.3. Efforts toward the direct reductive alkylation of enones 222 and 223 with iodide 237

223 (R = Me) 244 (R = Me) 246 (R = Me)
222 (R=H) 245 (R=H) 247 (R=H)
major product desired product
not observed

To understand the reactivity difference of the alkylation model system (238) and AB
ring nucleophiles (222 and 223) toward the D-ring iodide (237), we explored more
reactive electrophiles. Interestingly, the reductive alkylation of enone 222 using either
methyl iodide or allyl bromide produced the desired o-tertiary ketones 244 and 248 in
good yield and diastereoselectivity with only minor quantities of reduced ketone 245
(Scheme 3.4.4).°* These observations provide further evidence that D-ring iodide 237 is
not sufficiently reactive toward AB ring nucleophiles derived from 222 and 223. Due to
limited quantities of o-substituted cyclooctadienone 223, we are currently unable to
assess the potential of a direct reductive alkylation with reactive electrophiles (e.g., allyl

bromide) to generate the C(11) quaternary stereocenter.
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Scheme 3.4.4. Diastereoselective reductive alkylation of 222 with methyl iodide or allyl bromide

Li/NH3, THF/Et,0
-45 - -35°C
—_—
then Mel or
allyl bromide

244 248 245
80% yield, >10:1 dr 72% yield, >10:1 dr minor

Although we are currently unable to construct the C(11) quaternary stereocenter using
a direct reductive alkylation of D-ring iodide 237, the availability of saturated o-
substituted ketones 244 and 248 encouraged us to determine the plausibility for
regioselective enolate formation for this alkylative step. Soft enolization conditions
employing TMSI/Et,N®* smoothly transformed ketones 244 and 248 to tetrasubstituted
enol silanes 249 and 250, respectively, as the exclusive reaction products (Scheme 3.4.5).
The preparation of various latent enolate equivalents thus expands our investigations to
include a host of enolate alkylation conditions that will promote the formation of the

C(11) all-carbon quaternary stereocenter.

Scheme 3.4.5. Soft enolization of ketones 244 and 248

Nal, TMSCI

Et;N, MeCN

244 (R = Me) 249 (R = Me)
248 (R = allyl) 250 (R = allyl)
exclusive product
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3.4.2.2 ENONE HYDROSILYLATION OF THE ASYMMETRIC AB RING

FRAGMENT

After identifying an effective two-step procedure to generate substituted enol silanes
in model studies (see subsection 3.4.1.1), we explored a potential one-step transformation
using a transition-metal catalyzed hydrosilylation reaction. We applied conditions
optimized using model studies to a-substituted enone 223 that provided a number of
compounds by TLC analysis, including saturated ketone 244 (Scheme 3.4.6)."° We were
unable to determine if any of the remaining products were the desired silyl enol ether due
to difficulties encountered during purification of the side products. Purification of 244
and exposure of the mass balance to TBAF provided 244, suggesting that some of the
products formed under the reaction conditions are isomeric to the desired enol silane.
The use of enone 222, which does not possess a-substitution, yielded similar results,
demonstrating a unique conformational preference for the fused [5-5-8] system that
inhibits the desired reactivity observed in the model system. The inability to generate a

pure enol silane product and isolation difficulties halted further hydrosilylation efforts.

Scheme 3.4.6. Hydrosilylation investigations of enones 222 and 223

catalyst
PhMe,SiH .
—_ . mixture of
solvent compounds

30-50 °C

TBAF
223 (R = Me) 244 (R = Me) THF

222(R=H) 245 (R = H)
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3.5 PROPOSED COMPLETION OF VARIECOLIN

The regioselective preparation of enol silane 249 provides optimism for advancing
the AB and D-ring fragments toward variecolin (95). Potential access to a variety of D-
ring derivatives through our synthetic route, and the observed stereoselective alkylation
(222 — 244, Scheme 3.4.4) are key elements that predict the success of this strategy. In
the event of the desired C(11) alkylation with a suitable D-ring fragment to form ketone
246, we anticipate that the following transformations will enable the rapid completion of
the total synthesis (Scheme 3.5.1). Reduction of ketone 246 and acylation with
thiocarbonyldiimidazole (TCDI) should form the imidazoyl thiocarbonate 251. Radical
generation and diastereoselective cyclization should accomplish the C(10)-C(15) ring
closure to complete the tetracyclic core of variecolin (i.e., 252). Carbonyl methylenation,
allylic ether oxidation with PCC/pyridine,*" and lactone reduction with i-Bu,AlH will

produce emericolin B (105). Diol oxidation using Dess—Martin periodinane®” will then

furnish variecolin (95).
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Scheme 3.5.1. Proposed end game strategy for completion of variecolin

N-:\ s o
K/N\(
1. LiAlH,, THF AIBN (cat)
then 10% HCI (] n-BuzSnH
............... > [ R -
2. TCDI, DMAP [o) PhH, reflux
CH,Cl,
246 251

1. PhyPCH,Br

KOt-Bu, THF
2. PCC, Py
CH,ClI,, reflux Dess—Martin
3. -Bu,AlH, PhMe CH,Cl,
Emericolin B (105) Variecolin (95)

3.6 CONCLUSION

In summary, we have achieved significant progress toward a general, convergent
asymmetric approach for the total synthesis of the variecolin sesterterpenoids. Our
critical disconnection bisected variecolin into two highly substituted fragments
containing the central eight-membered ring and an important all-carbon quaternary
stereocenter. The AB ring preparation features an intriguing regioselective cleavage of a
fused cyclobutene to terminally differentiated products en route to several advanced
a-diazoketones, and set the stage for a key tandem Wolff/Cope rearrangement to
construct the eight-membered ring. Importantly, our investigations revealed the
proficiency of microwave energy to promote this tandem process, and provided first
examples of a-substituted cyclooctadienones to further expand the collection of eight-

membered rings available by this method. Our synthetic route to the D ring features a
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palladium-catalyzed enantioselective alkylation of racemic vinylogous p-ketoester

(£)-181 for the construction of the C(14) quaternary stereocenter. The efficient, large-
scale preparation of ketone 229 enabled our development of a new strategy for the
synthesis of enantioenriched quaternary cyclopentenes that harnesses the exceptional
reactivity of fluorinated lithium alkoxides, and moreover, provides a new variety of
substrates for our Pd-catalyzed asymmetric alkylation methodology. We believe that the
results achieved from this synthetic endeavor highlight intriguing reactivity and expand
synthetic methods that can be of general use for the preparation of natural and non-
natural substances. Studies directed toward the coupling of these highly substituted AB
and D-ring fragments for the final C-ring annulation and completion of the synthesis are

ongoing.
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3.7 EXPERIMENTAL SECTION

3.7.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under an
argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by
passage through an activated alumina column under argon. Reagent grade acetone was
used as received. Water (18 MQ) used as reaction medium was obtained from a
Millipore MiliQ water purification system. All starting materials were purchased from
commercial sources and used as received, unless otherwise stated. Liquids and solutions
were transferred via syringe or positive-pressure cannulation. Brine solutions refer to
saturated aqueous sodium chloride solutions. Diiron nonacarbonyl was stored and
handled in a glove box. Triethylamine, diisopropylamine, and -BuOH were distilled
from CaH, prior to use. The following liquids were purified by distillation and stored in
a Schlenk tube under nitrogen: acetic acid (from CrO;), hexamethylphophoramide (from
CaH,), and oxalyl chloride. Zinc dust was activated over 1% HCI. Solutions of n-BuLi,
MelLi, p-TolMgBr, and MeMgCl were titrated prior to use. Molecular sieves were dried
and stored in a 115 °C oven. Anhydrous granular LiOH was pulverized using a mortar
and pestle. Lithium wire was stored over mineral oil and washed with hexanes, then
methanol, then hexanes prior to use. Previously reported methods were used to prepare
Pd,(pmdba),,*® (S)--Bu-PHOX ((5)-55),”” fluorinated PHOX ligand 230, and
RhH(Ph,P),”" Diazomethane (199) was freshly prepared from N-methyl-N-nitroso-p-
toluenesulfonamide (Diazald) as a solution in Et,O using a Diazald kit. Diazoethane

(219) was freshly prepared from N-ethyl-N-nitrosourea’' as a solution in Et,O using a
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Diazald kit. Diazoalkane solutions were dried over KOH pellets for ca. 30 min at or

below 0 °C and cannula (Teflon) transferred under nitrogen to a dry Erlenmeyer flask
prior to use. Reaction temperatures were controlled by an IKAmag temperature
modulator. Ozonolysis reactions were performed with an OzoneLab OL80 Desktop
ozone generator. Photochemical irradiation was performed in septum sealed quartz tubes
with a Luzchem Photochemical reactor or with a water-cooled Hanovia 450 W medium
pressure mercury-vapor immersion lamp. Microwave reactions were performed with a
Biotage Initiator Eight 400 W apparatus at 2.45 GHz. Thin-layer chromatography was
performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) and visualized
by UV fluorescence quenching, p-anisaldehyde, potassium permanganate, or ceric
ammonium molybdate staining. SiliCycle SiliaFlash P60 Academic Silica Gel (particle
size 40-63 um; pore diameter 60 A) was used for flash chromatography. Analytical
chiral HPLC was performed with an Agilent 1100 Series HPLC utilizing a Chiralpak
OD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with 1
mL/min mobile phase and visualization at 254 nm. Analytical achiral GC was performed
on an Agilent 6850 GC with FID detector using an Agilent DB-WAX (30.0 m x
0.25 mm) column at 1.0 mL/min He carrier gas flow. Chiral GC was performed on an
Agilent 6850 GC with FID detector using a Chiraldex GTA column (30.0 m x 0.25 mm,
purchased from Bodman Industries) at 1.0 mL/min He carrier gas flow. Optical rotations
were measured with a Jasco P-1010 polarimeter at 589 nm using spectrophotometric
grade solvents. 'H and "C NMR spectra were recorded on a Varian Mercury 300 (at 300
MHz and 75 MHz respectively), Varian Inova 500 (at 500 MHz and 126 MHz,

respectively) or Varian Inova 600 (at 600 MHz), and are reported relative to Me,Si (6 0.0
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ppm).”> Data for '"H NMR spectra are reported as follows: chemical shift (§ ppm)

(multiplicity, coupling constant (Hz), integration). IR spectra were recorded on a Perkin
Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm™).
Melting points were acquired using a Buchi Melting Point B-545 instrument and the
values are uncorrected. High-resolution mass spectra were acquired using an Agilent
6200 Series TOF with an Agilent G1978 A Multimode source in ESI, APCI, or MM
(ESIVAPCI) ionization mode, in addition to the Caltech Mass Spectral Facility.
Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK, and copies can be obtained on request, free of charge, by quoting the

publication citation and the deposition number.
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3.7.2 PREPARATIVE PROCEDURES
3.7.2.1 TRICARBONYLIRON-CYCLOBUTADIENE FRAGMENTS
o} hv, PhH
o COZMe 25-35 °C (P COzMe
« | thenslgeoz((:CO)g TS(CO)
182 (52% yield) 183

Tricarbonyliron-cyclobutadiene methyl ester 183."* Pyrone 182 (5.086 g,
33.00 mmol, 1.0 equiv) was dissolved in spectrophotometric grade benzene (1 L,
0.033 M) in a flame-dried 1 L photochemical reactor containing a stir bar, the reactor and
lamp were assembled and the solution was sparged with N, for 30 min. The resulting
degassed solution was irradiated with a Hanovia medium-pressure mercury-vapor lamp
affixed with a pyrex filter until consumption of pyrone 182 by TLC (5:1 CH,Cl,/EtOAc,

typically requires 20 h to 5 d; T,,.,.. = 25-35 °C). The lamp was removed from the

reactor and the solution was transferred to a dry 3 L flask containing a stir bar, washing
the photoreaction with excess benzene (2 x 30 mL). Fe,(CO), (14.4 g, 39.6 mmol, 1.2
equiv) was weighed into a glass jar in a glove box, transferred out of the box, and added
to the reaction. The resulting suspension was warmed to 50 °C (internal) in an oil bath (T
= 55-60 °C) and after 2 h at 50 °C, a second portion of Fe,(CO), (2.40 g, 6.60 mmol, 0.2
equiv) was added to the reaction. After another 1 h, the turbid reaction was cooled to
room temperature and filtered through a plug of basic alumina (5 x 8 cm) capped with
Celite (5 x 16 cm) washing with excess Et,O (ca. 400 mL) until the eluent was colorless.

The dark yellow solution was concentrated under reduced pressure to a turbid,

yellow/brown oil. The crude material was purified by flash chromatography on SiO, (2.5
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X 24 cm, 15:1 — 9:1 — 4:1 hexanes/Et,O) to afford tricarbonyliron-cyclobutadiene
methyl ester 183 (4.2585 g, 17.03 mmol, 52% yield) as a dark yellow/brown oil that
solidified in a 20 °C freezer. R;=0.54 (2:1 hexanes/EtOAc); '"H NMR (300 MHz, C,D,)

0 3.84 (s, 2H), 3.22 (s, 3H), 3.20 (s, 1H). All other spectral data are consistent with

reported values.

|_@l/COZ""" BuAlH @/\OH
_—
L cor PhMe, —78 ° C L coN,
(100% vyield)
183 184

Hydroxymethyl cyclobutadiene 184. To a solution of cyclobutadiene ester 183
(9.066 g, 36.27 mmol, 1.0 equiv) in PhMe (120 mL, 0.3 M) at —78 °C was added neat
i-Bu,AlH (14.54 mL, 81.60 mmol, 2.25 equiv) dropwise over 15 min with vigorous
stirring. Upon consumption of 183 by TLC analysis (typically as last of i-Bu,AlH is
added), EtOAc (3.54 mL, dried over MgSO,, 1.0 equiv) was added and after 5 min the
reaction was placed in a 0 °C ice bath. After 30 min the reaction was slowly quenched
with a 1 M solution of Na/K tartrate (100 mL) with vigorous stirring. After 5 min, the
cooling bath was removed and EtOAc (50 mL) was added to the thick suspension. When
the layers became homogeneous (typically 5-8 h), the layers were separated and the aq
phase was extracted with Et,0 (2 x 50 mL). The combined organic layers were dried
with MgSO,, filtered, and concentrated in vacuo. The thick oil was dried under high
vacuum until a constant mass was achieved to afford hydroxymethyl cyclobutadiene 184
(8.105 g, 36.51 mmol, 100% yield) as a pale brown solid. R, = 029 (2:1
hexanes/EtOAc); 'H NMR (300 MHz, C,D,) & 3.37 (s, 3H), 3.34 (s, 1H), 3.26 (s, 1H),

0.62 (t,J = 5.9 Hz, 1H); "C NMR (126 MHz, C,D) § 214.9, 85.0, 63.9, 62.2, 58.0; IR
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(Neat Film NaCl) 3326 (br), 2932, 2872, 2046, 1963, 1448, 1297, 1070, 997, 822,

613 cm™'; HRMS (EI+) m/z calc’d for CgH,O,Fe [M]": 221.9616, found 221.9615.

NH

@/\ o _KHCLON _ @/\OJ\C%

Fe(CO), Et,0,0 — 23 °C

(100% yield) Fe(CO);

184 185

Cyclobutadiene trichloroacetimidate 185. To a round-bottom flask charged with
KH (41 mg, 1.0 mmol, 0.057 equiv) and Et,0 (43 mL) at O °C was added a solution of
hydroxymethyl cyclobutadiene 184 (3.86 g, 17.4 mmol, 1.0 equiv) in Et,0 (43 mL,0.2 M
total) by cannula. After 10 min, trichloroacetonitrile (8.7 mL, 87 mmol, 5.0 equiv) was
added to the light orange solution dropwise by syringe. Over the course of the addition,
the reaction turned dark brown. After 15 min, the ice bath was removed and the reaction
was allowed to warm to room temperature. Upon reaching ambient temperature the
volatiles were removed in vacuo and the remaining dark brown oil was taken up in
hexane (20 mL, from solvent column) with vigorous shaking. This solution was filtered
through a pad of Celite, and the reaction flask was washed with an additional portion of
hexane (20 mL) and filtered. The combined filtrate was concentrated in vacuo to afford
trichloroacetimidate 185 (6.38 g, 17.4 mmol, 100% yield) as a clear, pale red oil. This oil
was immediately used in the next step without further purification and is not stable to
prolonged storage. R, = unstable to SiO,; '"H NMR (500 MHz, C,D,) & 8.22 (br s, 1H),
4.25 (s, 2H), 3.49 (s, 2H), 3.30 (s, 1H); "C NMR (126 MHz, C,D;) § 214.5, 162.6, 92.0,

76.8, 65.7,64.9, 64.5; IR (Neat Film NaCl) 3344, 2049, 1971, 1666, 1449, 1368, 1304,
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1288 cm™'; HRMS (FAB+) m/z calc’d for C,H,CL,FeNO, [M — COJ*: 336.8763, found

336.8769.

3.7.2.2 AB RING MODEL SYSTEM FRAGMENTS

OH
@ Pd(Ph3P),, (0.1 mol %)
o >
AcOH, THF, 0 °C
(85% vyield) AcO
252 (2)-186

Monoacetate 186.”° A 1 L 3-neck flask fitted with an addition funnel was charged
with Pd(Ph,;P), (595 mg, 0.515 mmol, 0.001 equiv) and dissolved in THF (258 mL, 2 M).
The catalyst solution was cooled to 0 °C and a solution of epoxide 252 (42.29 g
corrected, 515.1 mmol, 1.0 equiv) in THF (86 mL) was transferred to the addition funnel
via cannulation. To the catalyst solution was added AcOH (29.5 mL, 515.1 mmol, 1.0
equiv) via syringe, followed by the solution of 252 via addition funnel over 20 min.
Upon consumption by TLC (reaction turns orange in color when complete) the solution
was transferred to a flask washing with EtOAc and concentrated in vacuo. The crude
material was purified by flash chromatography on SiO, (7 x 5 cm, dry load onto SiO,,
flush with Et,O until product elutes by TLC) to afford monoacetate (+)-186 as a yellow
semisolid. This was diluted with heptane (100 mL), concentrated and dried under high
vacuum to afford a pale yellow semisolid (62.30 g, 438.3 mmol, 85.1% yield) that
completely solidified in a —20 °C freezer. R; = 0.33 (1:1 hexanes/EtOAc); 'H NMR
(300 MHz, CDCl,) 6 6.12 (ddd, J = 5.61, 2.07, 1.30 Hz, 1H), 5.99 (ddd, J = 5.57, 2.04,

1.06 Hz, 1H), 5.52-5.47 (m, 1H), 4.76-4.69 (m, 1H), 2.81 (app dt, J = 14.7, 7.4 Hz, 1H),
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2.06 (s, 3H), 1.72 (br s, 1H), 1.66 (app dt, J = 14.6, 3.8 Hz, 1H). All other spectral

data are consistent with reported values.

OH OH

CuCN (30 mol %)
p-TolMgBr, LiCl
AcO (90% vyield) p-Tol®
(2)-186 (2)-187

Aryl cyclopentenol 187.'"" A flask was charged with LiCl (896.4 mg, 21.1 mmol,
4.0 equiv), flame-dried under vacuum and cooled under nitrogen. To this was added
CuCN (142 mg, 1.59 mmol, 0.3 equiv) and the solids were partially dissolved in THF
(20 mL) and cooled to 0 °C. To this suspension was added a solution p-TolMgBr
(159 mL, 159 mmol, 1 M in Et,0). After 5 min, a solution of monoacetate (+)-186
(751.5 mg, 5.29 mmol, 1.0 equiv) in THF (15 mL) over 5 min via cannulation and the
flask was washed with additional THF (2 x 1 mL) for a quantitative transfer. Upon
consumption of 186 by TLC (ca. 1.5 h), the reaction was slowly quenched with sat aq
NH,CI (10 mL) and water (5 mL) and stirred vigorously for 30 min. The homogeneous
phases were separated, the aq layer was extracted with EtOAc (3 x 30 mL), and the
combined organics were dried over MgSQO,, filtered, and concentrated in vacuo. The
crude material was purified by flash chromatography on SiO, (6:1 — 3:1 — 1:1
hexanes/Et,0) to afford aryl cyclopentenol 187 (829.7 mg, 4.76 mmol, 90% yield) as a
pale yellow oil. R;=0.63 (1:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) § 7.10 (d, J
=7.83,2H),7.03 (d, J = 8.0 Hz, 2H), 6.04-6.01 (comp m, 2H), 5.05 (d, J = 5.1 Hz, 1H),
4.13-4.10 (m, 1H), 2.32 (s, 3H), 2.27 (ddd, J = 14.1, 8.0, 2.7 Hz, 1H), 2.09 (ddd, J =

14.1,7.0,5.5, 1H). All other spectral data are consistent with reported values.
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OH Zn(OTH), o
(5 mol %) (P
.
185, PhMe Fe(CO)s
p-ToI$ 0—-23°C p-ToIs
(2)-187 (76% yield) (2)-188

Aryl cyclopentenol ether 188. To a round-bottom flask charged with zinc(Il) triflate
(149 mg, 0.041 mmol, 5 mol %) and PhMe (0.2 mL) at O °C was added aryl
cyclopentenol 187 (151.3 mg, 0.868 mmol, 1.0 equiv) by syringe. To this suspension
was added a solution of cyclobutadiene trichloroacetimidate 185 (370 mg, 1.01 mmol, 1.2
equiv) in PhMe (0.2 mL) by cannula transfer, with further washing by additional PhMe
(0.2 mL). A yellow precipitate was observed at the beginning of the addition, and this
turned into a thick slurry upon completion of the addition. The ice bath was allowed to
expire over 1.5 h and the reaction was stirred for an additional 6 h at ambient
temperature. The crude reaction mixture was transferred directly onto a 5 g silica gel
loading cartridge and purified with a Teledyne ISCO CombiFlash system using a 40 g
silica column (1:0 — 9:1 hexanes/EtOAc) to afford ether 188 (250.8 mg, 0.663 mmol,
76% yield) as a pale yellow oil. R, = 0.56 (4:1 hexanes/EtOAc); 'H NMR (300 MHz,
C¢Dy) 6 7.00 (d,J =7.8 Hz, 2H), 6.94 (d, J = 7.9 Hz, 2H), 5.88-5.85 (m, 1H), 4.45-4 .44
(m, 1H), 3.96-3.94 (m, 1H), 3.55 (d, J = 1.2 Hz, 2H), 3.46 (s, 2H), 3.33 (s, 1H), 2.28
(ddd, J = 13.8, 6.9, 5.4 Hz, 1H), 2.14 (s, 3H), 1.86 (ddd, J = 13.7, 6.9, 5.4 Hz, 1H); °C
NMR (126 MHz, C,Dy) 6 215.0, 142.3, 140.1, 135.9, 131.6, 129.5, 1274, 84.9, 82.5, 64.6
(two lines), 64.0, 62.3, 50.1, 41.2, 21.0; IR (Neat Film NaCl) 2863, 2044, 1959, 1513,
1075, 1048, 613 cm™; HRMS (FAB+) m/z calc’d for C, H,;O,Fe [M]*: 378.0554, found

378.0551.
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(P CAN, acetone é?
ﬁ
@ Fe(CO)s 24°C + :ll

H H

p-Tol’ (76% yield) p-Toi
(2)-188 (%)-189

Aryl cyclobutene 189. To a vigorously stirring solution of aryl cyclopentenol ether
188 (683 mg, 1.806 mmol, 1.0 equiv) in acetone (1.81 mL, 1 mM) was added CAN
(1.98 g, 3.61 mmol, 2.0 equiv) under ambient atmosphere. After 15 min, a second
portion of CAN (1.98 g, 3.61 mmol, 2.0 equiv) was added. After 5 min, TLC showed
consumption of 188 (4:1 hexanes/Et,O, developed twice) and the reaction was quenched
by addition of sat ag NaHCO; (50 mL). After 15 min, stirring was ceased, the solids
were allowed to settle and the supernatant was decanted into a flask (to prevent bumping)
and concentrated in vacuo to ca. 50 mL. This slurry and the remnants of the flask were
transferred to a separatory funnel with minimal acetone, diluted with brine (10 mL) and
pentane (200 mL). The layers were separated, the organic phase was washed with water
(2 x 100 mL), and the combined aq layers were extracted with 1:1 hexanes/Et,0O
(200 mL). The combined organic layers were concentrated to ca. 25 mL, transferred to a
sep funnel and diluted with CH,Cl, (30 mL) and brine (25 mL). The layers were
separated, the aq was extracted with CH,Cl, (2 x 30 mL), the organics were dried over
MgSO,, filtered, and concentrated to a dark orange oil. The crude material was purified
by flash chromatography on SiO, (2.5 x 21 cm, 15:1 — 9:1 hexanes/Et,O, slow gradient)
to afford aryl cyclobutene 189 (326.2 mg, 1.37 mmol, 76% yield) as a colorless oil that
solidified in a —20 °C freezer. R;=0.54 (4:1 hexanes/Et,0, developed twice); '"H NMR

(500 MHz, CDCl) 8 7.11 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 8.2 Hz, 2H), 6.35 (d, / = 2.1
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Hz, 1H), 6.31 (d, J = 2.3 Hz, 1H), 4.71-4.69 (m, 1H), 391 (d, J = 9.8 Hz, 1H), 3.87

(d,J/=9.8 Hz, 1H), 3.27 (ddd, J = 8.6, 8.6, 3.9 Hz, 1H), 3.06 (app t,J = 3.1 Hz, 1H), 2.94
(s, 1H), 2.46 (ddd, J = 13.8, 7.0, 2.3 Hz, 1H), 2.35 (app t, J = 4.8 Hz, 1H), 2.32 (s, 3H),
2.03 (ddd, J =13.8,8.8,4.9 Hz, 1H); "C NMR (126 MHz, CDCl,) 6 142.9, 140.3, 138 4,
135.6, 129.3, 127.2, 84.1, 71.2, 59.6, 54.9, 52.6, 50.3, 46.5, 44.6, 21.1; IR (Neat Film
NaCl) 3025, 2949, 1514, 1074, 1041, 1025, 811, 744 cm™'; HRMS (FAB+) m/z calc’d for

C,;H,,0 [M + H — H,]*: 237.1279, found 237.1271.

0 0
H 03, CH,Cl,/MeOH (2:1) H .
: ~78°C; =\ oy
i -
—t then NaBH,, 78 — 23 °C i, O

S A H N
p-Tol (88% yield) p-Tol

(2)-189 ()-253

H

Diol 253. To a solution of aryl cyclobutene 189 (18.0 mg, 75.5 umol, 1.0 equiv) in a
2:1 mixture of CH,Cl, (1.0 mL) and MeOH (0.5 mL) was added a solution of Sudan Red
7b (25 uL of a 0.05 wt % in MeOH) and cooled to —78 °C. The resulting pink solution
was sparged with a gentle stream of oxygen for ~1 min, then ozonolyzed until
consumption of 189 by TLC (indicator typically turned colorless just prior to
completion). The solution was sparged with oxygen for another 1 min, and NaBH,
(28.8 mg, 0.76 mmol, 10 equiv) was added and the bath was removed. When the reaction
reached room temperature, CH,Cl, (2 mL) was added followed by quenching with 10%
HCI (1 mL). The layers were separated, the aq extracted with CH,Cl, (3 x 2 mL), the
organics were dried over Na,SO,, filtered, and concentrated in vacuo. The crude material
was purified by flash chromatography on SiO, to afford diol 253 (18.2 mg, 66.3 umol,

88% yield) as a colorless oil. R, = 0.31 (3:1 hexanes/EtOAc); 'H NMR (300 MHz,
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CDCly) 8 7.09 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 4.60 (app t, J = 4.3 Hz,

1H), 4.24 (d, J =11.5 Hz, 1H), 4.10 (d, J = 9.2 Hz, 1H), 3.88-3.78 (comp m, 2H), 3.69
(d,J=92Hz, 1H),3.55 (d,J=11.5 Hz, 1H), 3.42 (ddd, J = 10.6, 7.1, 3.8 Hz, 1H), 3.09
(brs, 2H), 2.82 (dd, J = 8.5, 5.3 Hz, 1H), 2.58 (dd, J = 14.0, 7.2 Hz, 1H), 2.36 (dd, J =
11.0, 54 Hz, 1H), 2.31 (s, 3H), 1.99 (app dt, J = 8.7, 4.4 Hz, 1H), 1.73 (ddd, J = 13.9,
10.5, 3.4 Hz, 1H); "C NMR (75 MHz, CDCl,) § 143.1, 135.7, 129.3, 127.0, 86.2, 80.6,
63.5,63.4,51.4,50.8,50.7,49.1,44.8, 42.2, 21.1; IR (Neat Film NaCl) 3332 (br), 2922,
1514, 1436, 1100, 1037, 811 cm™'; HRMS (FAB+) m/z calc’d for C;H,0; [M + H —

H,]": 273.1491, found 273.1485.

°|;| 03, CH,Cl,/MeOH (5:1) 0 o 0 OMe o
: NaHCO,, -78 °C : : ¢ \..CHO
jl - o] + o] +
: then Ac,0, Et;N 0

= o, é é o M
i Hn CH,Cl,, 0 °C RN CO,Me

/

p-Tol p-ToIs H H bue p-ToIE p-ToIS
(+)-189 ()-190 (#)-191 (9:1) (%)-192
13% yield 68% yield

Ozonolysis of cyclobutene 189 to form acetals 190 and 191, along with aldehyde
192. To a solution of aryl cyclobutene 189 (49.6 mg, 0.208 mmol, 1.0 equiv) in a 5:1
mixture of CH,Cl, (1.75 mL) and MeOH (0.35 mL, 0.1 M total) was added NaHCO,
(5.2 mg, 63 umol, 0.3 equiv) and a solution of Sudan Red 7b (75 uL of a 0.05 wt %
solution in MeOH). The resulting pink-colored solution was cooled to —78 °C, sparged
with a stream of oxygen for 1 min, then ozonolyzed until consumption of 189 by TLC
(typically just as indicator turns colorless). The solution was sparged with oxygen for
1 min, the gas inlet was removed and the flask was fitted with a drying tube and warmed
to room temperature. The crude reaction was filtered through a cotton plug with CH,Cl,

(2 x 1 mL) and benzene (1 mL). The filtrate was concentrated to ca. 0.5 mL in vacuo,
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diluted with 5 mL of benzene, and further concentrated to ca. 0.5 mL. This crude was
dissolved in CH,Cl, (2.1 mL), cooled to 0 °C, and Ac,0 (58.5 uL, 0.624 mmol, 3 equiv)
and Et;N (37.7 uL, 0.270 mmol, 1.3 equiv) were added. After 5 min the bath was
removed and the reaction was stirred at room temperature for 5 h, at which point the
reaction was diluted with CH,Cl, (25 mL), washed with 5% H,SO, (3 x 5 mL), sat aq
NaHCO; (3 x 5 mL), brine, and dried over Na,SO,. The crude pale yellow oil was
purfied by flash chromatography on SiO, (4:1 — 3:1 — 1:1 hexanes/EtOAc) to furnish
acetal 190 (8.3 mg, 27.6 umol, 13% yield) as a colorless oil and an inseparable 9:1
mixture of acetal 191 and aldehyde 192 (42.6 mg, 0.142 mmol, 68% yield) as a pale
yellow oil.

Acetal 190. R,=0.52 (1:2 hexanes/Et,0); 'H NMR (500 MHz, CDCl,)  7.13 (d, J =
7.8 Hz,2H),7.05 (d,J = 8.1 Hz,2H), 5.36 (s, 1H),4.75 (dd,J =5.2,4.0 Hz, 1H), 4.13 (d,
J=9.7Hz,1H),4.01 (d,J=9.7 Hz, 1H), 3.56 (app t, J = 6.3 Hz, 1H), 3.49 (s, 3H), 3.48-
345 (m, 1H), 2.58-2.52 (comp m, 3H), 2.33 (s, 3H), 1.80 (ddd, J = 14.4, 10.9, 3.7 Hz,
1H); "C NMR (126 MHz, CDCl,) § 175.5, 141.3, 136.3, 129.5, 127.2, 109.0, 85.9, 73.0,
56.8, 555, 51.9, 51.3, 51.2, 445, 44.2, 21.1; IR (Neat Film NaCl) 2927, 1773, 1515,
1353, 1182, 1143, 1118, 1018, 990, 930, 814 ¢cm™'; HRMS (FAB+) m/z calc’d for
C,;sH,,0, [M + H]": 301.1440, found 301.1448. Relative stereochemistry determined by

NOE interactions shown below.
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Mix of acetal 191 and aldehyde 192. Aldehyde 192 was difficult to isolate as a
pure compound, as it usually contained varying quantities of acetal 191. It has the
following spectrum: 'H NMR (300 MHz, CDCl,) § 9.76 (s, 1H), 7.10 (d, J = 8.3 Hz, 2H),
7.04 (d,J=8.2Hz,2H),4.69 (dd,J =4.5,3.9 Hz, 1H),4.10 (d,/ =9.6 Hz, 1H), 3.91 (d,
J=9.7Hz, 1H), 3.70 (s, 3H), 3.59 (dd, J = 8.3, 5.3 Hz, 1H), 3.45 (ddd, J = 10.7,7.1, 3.7
Hz, 1H), 3.06-2.97 (comp m, 2H), 2.63 (dd, J = 14.2, 7.3 Hz, 1H), 2.31 (s, 3H), 1.81

(ddd,J=14.1,10.6,3.4 Hz, 1H).

(o] OMe OH Ph3PCH3Br 0 OMe OH
: : \..CHO KOt-Bu : HI R
_— [o] +
0 * THF —": —.,

b i ™coMe 0->23°C i i & COMe
pToi H H G pToi H 2 pToi H H o p-Toi
(2)-191 9:1) (2)-192 (£)-191 (2)-193
79% yield 5% yield

Wittig methylenation to form olefin 193 and recover acetal 191. To a suspension
of methyltriphenylphosphonium bromide (23.6 mg, 66 umol, 0.58 equiv) in THF
(0.4 mL) at 0 °C was added KO#-Bu (6.4 mg, 57 umol, 0.5 equiv) in one portion. The
white suspension immediately turned bright yellow in color and was stirred for 15 min, at
which point a solution of a ~9:1 mixture acetal 191 and aldehyde 192 (34.2 mg,
114 umol, 1.0 equiv) in THF (0.2 mL) was quantitatively transferred via cannulation.
After 30 min, the reaction was quenched with 0.5 mL water and diluted with CH,Cl,
(3 mL). The layers were separated, the aq layer was extracted with CH,Cl, (3 x 2 mL),
the organics were dried over Na,SO,, filtered, and concentrated in vacuo. The crude
material was purified by preparative TLC on SiO, (2:1 hexanes/EtOAc) to give olefin
193 (1.8 mg, 6.0 umol, 5% yield) as a colorless oil and recovered acetal 191 (27.1 mg,

90.2 wmol, 79% yield) as a colorless oil.
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Olefin 193. R, = 0.62 (2:1 hexanes/EtOAc); 'H NMR (500 MHz, CDCl;) & 7.09
(d,J=8.0Hz, 2H),7.05 (d,J=8.2 Hz, 2H), 594 (dd, J=17.5, 10.8 Hz, 1H), 5.18 (dd, J
=10.8,1.1 Hz, 1H),5.14 (dd,J=17.5, 1.1 Hz, 1H), 4.64 (app t,J =4.3 Hz, 1H), 4.03 (d,
J=9.2Hz, 1H), 3.62 (s, 3H), 3.57 (d, J =9.2 Hz, 1H), 3.40 (ddd, J = 10.7, 7.3, 3.8 Hz,
1H), 3.26 (dd, J=8.5,5.2 Hz, 1H), 3.04-3.01 (m, 1H),2.98 (d, /= 5.5 Hz, 1H), 2.64 (dd,
J=14.1,73 Hz, 1H), 2.31 (s, 3H), 1.78 (ddd, J = 14.0, 10.5, 3.3 Hz, 1H); "C NMR (126
MHz, CDCl,) 6 173.3, 142.6, 135.6, 134.7, 1292, 127.1, 116.3, 86.5, 78.9, 55.2, 53.0,
51.6,51.2,51.1, 45.0, 40.8, 21.1; IR (Neat Film NaCl) 2952, 2922, 1733, 1515, 1435,
1210, 1158, 1055, 1037, 919, 812 cm™; HRMS (EI+) m/z calc’d for C,,H,,0, [M]":
298.1569, found 298.1580.

Acetal 191. R, = 0.33 (1:2 hexanes/Et,0); '"H NMR (500 MHz, CDCl;) 8 7.09 (d, J =
8.0 Hz,2H), 7.06 (d,J =8.1 Hz,2H), 5.40 (s, 1H),4.71 (dd,J =54, 3.1 Hz, 1H), 4.08 (d,
J =10.5 Hz, 1H), 3.78 (d, J = 10.5 Hz, 1H), 3.55 (app pentet, J = 6.1 Hz, 1H), 3.48 (s,
3H),3.31(dd,J=74,5.7Hz, 1H),2.89 (d,J =24 Hz, 1H), 2.66 (ddd,J=7.6,5.2,2.4
Hz, 1H), 2.53 (dd, J = 13.8, 6.7 Hz, 1H), 2.31 (s, 3H), 1.76 (ddd, J = 13.9, 11.7, 3.2 Hz,
1H); "C NMR (126 MHz, CDCl,) § 177.7, 140.1, 136.1, 129.4, 127.1, 106.3, 85.7, 71.8,
56.8, 55.0, 51.1, 50.0, 479, 46.2, 43.9, 21.1; IR (Neat Film NaCl) 2925, 2847, 1772,
1516, 1352, 1207, 1168, 1144, 1108, 1042, 943, 814, 729, 705 cm™; HRMS (FAB+) m/z
calc’d for C,;,C,,O, [M + HJ]": 301.1440, found 301.1444. Relative stereochemistry

determined by NOE interactions shown below.
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NOE (\
|

(o] OMe (o} :OMe MeOH Ot| cHo
: : additive I\
0 + 0 =
A 23°C PR

i H iz iz ‘CO,Me
p-Tol H H o p-Tol HH 9 p-Tol H

(2)-191 (2)-197 (2)-192

Equilibration of acetal 191. To a solution of pure acetal 191 in MeOH (25 mM) as
added the appropriate additive (MS = 0.5 mg/umol; Lewis acid = 20 mol %). The
reaction atmosphere was purged with nitrogen, capped and stirred at ambient
temperature. After 20—24 h the reaction was diluted with Et,0, filtered through a small
plug of SiO, and concentrated in vacuo. The crude filtrate was then analyzed by 'H NMR
analysis. In addition to acetal 191 and aldehyde 192, acetal diastereomer 197 was
identified as a minor product.

Acetal 197. R, =0.19 (1:2 hexanes/Et,0); 'H NMR (500 MHz, CDCL,) 8 7.1 (d, J =
8.0 Hz, 2H), 7.06 (d, J =8.1 Hz, 2H), 5.30 (s, 1H), 4.68 (dd, J =5.6,3.3 Hz, 1H), 4.07 (d,
J =95 Hz, 1H), 3.72 (dd, 7.2, 6.2 Hz, 1H), 3.69 (d, J = 9.5 Hz, 1H), 3.63 (s, 3H), 3.52—
347 (m, 1H),2.85 (d,J=2.7 Hz, 1H), 2.66 (ddd,J =7.7,5.0, 2.7 Hz, 1H), 2.54 (dd, J =
13.9, 6.8 Hz, 1H), 2.31 (s, 3H), 1.79 (ddd, J = 14.0, 11.5, 3.3 Hz, 1H); "C NMR
(126 MHz, CDCl,) 8 175.8, 140.8, 136.1, 129.4, 127.1, 104.0, 86.0, 72.7, 58.7, 54.5,50.2
(two lines), 47.7, 44.8, 44.0, 21.1; IR (Neat Film NaCl) 2922, 1770, 1515, 1450, 1386,

1209, 1170, 1106, 1041, 995, 942, 813 cm™'; HRMS (MM: ESI/APCI) m/z calc’d for
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C,;sH,,0, [M + H]": 301.1434, found 301.1432. Relative stereochemistry determined

by NOE analysis as shown below.

OMe
0 OMe Sm(OTf); or La(OTf), On k
: H W
. (20 mol%) _ A L
A MeOH, 23 °C —
- © i : ‘CO,Me
p-Tol o p-Tol
(%)-191 (x)-254

Dimethyl acetal 254. To a solution of acetal 191 (1.0 equiv) in MeOH (25 mM) was
added either La(OTf); or Sm(OTf),; (20 mol %). The reaction was stirred until complete
conversion by TLC, diluted with Et,0, filtered through a plug of Celite, and concentrated
in vacuo. The crude '"H NMR showed dimethyl acetal 254 as the exclusive product. R, =
0.36 (1:2 hexanes/Et,0); '"H NMR (600 MHz, CDCl;) 8 7.08 (d, J = 7.9 Hz, 2H), 7.04 (d,
J = 8.1 Hz, 2H), 4.69 (s, 1H), 4.58 (dd, J = 4.8, 3.8 Hz, 1H), 3.88 (d, J = 9.2 Hz, 1H),
3.86 (d,J=9.2 Hz, 1H), 3.67 (s, 3H), 3.51 (s, 3H), 3.39 (s, 3H), 3.36 (ddd, J = 10.7,7 4,
3.8 Hz, 1H), 3.23 (dd,J=8.7,5.3 Hz, 1H), 2.93 (ddd, J=9.1, 5.6, 3.8 Hz, 1H), 2.82 (d, J
=5.7Hz, 1H),2.60 (dd,J = 14.1,7.4 Hz, 1H), 2.30 (s, 3H), 1.75 (ddd, J/ = 14.0, 10.3, 3.5
Hz, 1H); "C NMR (126 MHz, CDCl,) 6 174.1, 142.7, 135.6, 129.2, 127.1, 105.0, 85.8,
75.0,58.3,56.6,54.5,52.1,51.7,51.4,49.4,45.0,42.4, 21.1; IR (Neat Film NaCl) 2952,
1727, 1515, 1435, 1362, 1210, 1069, 1042, 977, 813 cm™'; HRMS (FAB+) m/z calc’d for

C,oH,505 [M + H — H,]*: 345.1702, found 345.1701.
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1. 05, CH,Cl,/MeOH (5:1)

o7 \ NaHCO,, 78 °C; o OMe on
: Ac,,0, Et;N, CH,Cl,, 0 °C T = \..CHO
I " > o +
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i g é H iz 002Me
p-Tol H H p-Tol HH 9 p-Tol
(+)-189 (»)-191  (~1:3) (2)-192
(2)-197
OH (8] OMe (8] OMe
Ph3PCH;Br, KOt-Bu &\ d : :
> + (o] + (o}
THF, 0 — 23 °C Y "1C0Me Y N
(three steps) pToi H pToi H H o pToi H H o
(%)-193 (£)-191 ~7:3 (2)-197
40% yield (14% yield)

Conversion of cyclobutene 189 over three steps to olefin 193 and acetals 191 and
197. A solution of cyclobutene 189 (326.2 mg, 1.369 mmol, 1.0 equiv) in CH,Cl,/MeOH
(5:1,27.4 mL, 0.05 M) containing NaHCO; (34.5 mg, 0.411 mmol, 0.3 equiv) and Sudan
Red 7b (150 uL of a 0.05 wt % solution in MeOH) at —78 °C was sparged with a stream
of oxygen for ~1 min and ozonolyzed until comsumption by TLC analysis (typically as
indicator turned colorless. After sparging with oxygen for an additional 3 min, the
reaction was capped with a drying tube and warmed to room temperature. The solution
was filtered through a cotton plug, washing with benzene (3 mL). The reaction was
concentrated in vacuo to ~2 mL, and to this flask was added a stir bar, septum, and the
flask was evacuated/purged briefly (3x). To the crude was added CH,Cl, (13.7 mL), the
solution was cooled to 0 °C, and to this was added Ac,O (387 uL, 4.11 mmol, 3.0 equiv)
and Et;N (286 uL, 2.05 mmol, 1.5 equiv). The bath was removed and the reaction was
stirred at room temperature for 8 h, diluted with CH,Cl, (25 mL), washed with 2% HCl
(10 mL), then 10% NaOH (10 mL), dried over MgSO,, filtered, and concentrated in
vacuo to a pale yellow oil. The crude oil was purified by flash chromatography on SiO,

(2.5 x 8 cm, 4:1 — 1:1 hexanes/Et,0) to afford acetal 190 (61.5 g, 0.205 mmol, 15%
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yield) and a mixture of aldehyde 192 and acetals 191 and 197 (293.5 mg, 0.977
mmol, 71% yield).

The mixture of desired isomers (293.5 mg) was dissolved in MeOH (19.5 mL,
0.05 M) and to this was added oven-dried 4 A MS (489 mg, 0.5 g/mmol). After 24 h at
room temperature, the reaction was diluted with EtOAc (20 mL), filtered through a plug
of Celite, and concentrated to a turbid yellow oil. This was dissolved in CH,Cl, and
passed through a small SiO, plug and concentrated in vacuo to afford a pale yellow oil
(312.1 mg).

To a solution of methyltriphenylphosphonium bromide (390 mg, 1.09 mmol, 1.05
equiv) at 0 °C was added KOz-Bu (105 mg, 0.935 mmol, 0.9 equiv). The resulting bright
yellow solution was stirred for 1 h, and a solution of aldehyde 192 and acetals 191 and
197 (312.1 mg) in THF (2 mL) was quantitatively transferred via cannulation. After
10 min, the bath was removed and at 5 h the reaction was quenched with water (5 mL)
and diluted with Et,0 (5 mL). The layers were separated, the aq was extracted with Et,O
(2 x 10 mL), the combined organics were dried over Na,SO,, filtered, and concentrated in
vacuo to a pale yellow oil. The crude material was purified by flash chromatography on
Si0O, (2.5 x 15 cm, 9:1 — 1:1 hexanes/Et,0) to afford olefin 193 (162.2 mg, 0.544 mmol,
40% yield over three steps) and a ~7:3 mixture of acetals 191 and 197 (59.5 mg,

0.198 mmol, 14% yield over three steps).

(o} OMe (o) m (o} OMe
: 1.4 AMS, MeOH A AN . :
o] > o]
+ 2. Ph3PCH;Br, KOt-Bu \ :

A
& THF, 0 — 23 °C § 5 COMe §
H H g pTol H pToi H H o

p-ToI:

(£)-191 + (£)-197 (2)-193 (2)-191
(~7:3) 76% yield 21% yield



Chapter 3—Progress toward the Asymmetric Total Synthesis of Variecolin 121

Recycling of acetals 191 and 197. A ~7:3 mixture of acetals 191 and 197
(60.7 mg, 0.202 mmol) were equilibrated in MeOH with 4 A MS to ~3:1 mixture of
aldehyde 192 and acetals 191 and 197, and the resulting crude was olefinated as detailed
above with methyltriphenylphosphonium bromide (1.5 equiv) and KO#Bu (1.25 equiv)
and purified by flash chromatography on SiO, to provide olefin 193 (46.2 mg,
0.155 mmol, 76% yield over two steps) and acetal 191 (13.0 mg, 0.432 mmol, 21% yield

over two steps).

0 H o H
HANN KOTMS A PN
_———
L1, THF, 0 — 23 °C L1,
i coMe i "CoH
pTol H (96% yield) p-Tol

(2)-193 ()-198

Acid 198. To a solution of olefin 193 (162.2 mg, 0.544 mmol, 1.0 equiv) in THF
(10.9 mL, 0.05 M) at 0 °C was added KOTMS (698 mg, 5.44 mmol, 10 equiv) in one
portion. The cooling bath was removed and the reaction was stirred until consumption of
193 by TLC analysis (typically 5-6 h). The reaction was cooled to 0 °C and slowly
quenched with 1 N HCI (10 mL), diluted with EtOAc (20 mL) and brine (5 mL). The
layers were separated, the aq was extracted with EtOAc (3 x 20 mL), the combined
organics were dried over Na,SO,, filtered, and concentrated to a pale yellow semisolid.
The crude material was purified by flash chromatography on SiO, (1:1 hexanes/EtOAc)
to give acid 198 (148.7 mg, 0.523 mmol, 96% yield) as a white solid. R, = 0.23 (2:1
hexanes/EtOAc); 'H NMR (500 MHz, CDCl,) § 7.09 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.1
Hz, 2H), 6.00 (dd, J = 174, 10.8 Hz, 1H), 5.21 (dd, J = 10.8, 1.1 Hz, 1H), 5.17 (dd, J =

17.6,1.2Hz, 1H),3.64 (dd,J=4.7,3.7Hz, 1H),4.04 (d,J =93 Hz, 1H),3.57 (d,/=9.3



Chapter 3—Progress toward the Asymmetric Total Synthesis of Variecolin 122

Hz, 1H), 3.40 (ddd, J = 10.6, 7.3, 3.6 Hz, 1H), 3.26 (dd, J = 8.2, 5.2 Hz, 1H), 3.00—

2.95 (comp m, 2H), 2.64 (d, J = 14.2,7.3 Hz, 1H), 2.31 (s, 3H), 1.78 (ddd, J = 14.0, 10.5,
3.3 Hz, 1H); "C NMR (126 MHz, CDCl,) § 177.7, 142.6, 135.7, 134.4, 139.3, 127.7,
116.6, 86.6, 79.0, 54.9, 53.2, 51.1 (two lines), 44.9, 40.8, 21.1; IR (Neat Film NaCl)
2923, 1729, 1700, 1515, 1418, 1223, 1053, 992, 918, 812 cm'; HRMS (FAB+) m/z

calc’d for C;gH,,0, [M + H]": 285.1491, found 285.1495.

OH (COocCl),, DMF OH
H .“\\\ CH,Cl,, 0 °C _ H “‘\\\
then CH,N, (199)

i COH  CH,CI/EL,0, 0°C g Fl "’1]/§N2
p-Tol 0

p-ToI:
()-198 (83% yield) ()-200

a.-Diazoketone 200. To a solution of acid 198 (14.7 mg, 51.7 wmol, 1.0 equiv) in
CH,CI, (2 mL, 0.025 M) at 0 °C was added a solution of oxalyl chloride (107 uL of a
1.45 M solution in CH,Cl,, 155 wmol, 3.0 equiv), followed by 1 drop of DMF. The
reaction was stirred for 1 h, at which point the stir bar was removed and the volatiles
were removed on a rotovap purged with argon. The septum and stir bar were replaced
and the crude material was further dried under high vacuum for 10 min. The resulting
crude semisolid was partially dissolved in CH,Cl, (1 mL) and transferred quantitatively
via Teflon cannula to a vigorously stirring solution of excess diazomethane (199, 5-8
mL) at 0 °C. After 30 min the cooling bath was removed, and after a further hour the
diazomethane was pulled off via water aspirator. The pale yellow solution was filtered
through a small SiO, plug (Et,0) and concentrated in vacuo. The crude material was
purified by flash chromatography on SiO, (9:1 — 3:1 hexanes/EtOAc) to afford

a-diazoketone 200 (13.2 mg, 42.8 umol, 83% yield) as a bright yellow oil that solidified
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in a 20 °C freezer. R, = 0.31 (2:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,)

0707(,J=79Hz,2H),7.03 (d,J=7.9 Hz, 2H), 6.01 (dd, 17.5, 10.8 Hz, 1H), 5.17 (d,
J =10.8 Hz, 1H), 5.11-5.06 (br m, 2H), 4.64 (app t, J = 4.0 Hz, 1H), 3.97 (br d, J =9.1
Hz, 1H), 3.66 (br d, J = 8.6 Hz, 1H), 3.36 (ddd, J = 10.6, 7.7, 3.5 Hz, 1H), 3.19 (br s,
1H), 3.11 (br s, 1H), 2.92 (br s, 1H), 2.64 (dd, J = 14.2, 7.3 Hz, 1H), 2.30 (s, 3H), 1.78
(ddd, J = 13.7, 10.5, 3.0 Hz, 1H); "C NMR (126 MHz, CDCl;) § 193.6, 142.5, 135.7,
134.9, 129.3, 127.1, 116.0, 86.5, 78.6, 60.8, 55.3, 53.6, 51.4, 449, 405, 304, 21.1; IR
(Neat Film NaCl) 2955, 2921, 2100, 1633, 1514, 1370, 1352, 1048, 812 cm™'; HRMS

(FAB+) m/z calc’d for C,,H,,0,N, [M + H]": 309.1603, found 309.1619.

W 4
T hv (350 nm) PN
—>
T AN MeOH, 24 °C ", ~CO2Me
N i
H o H

(%)-200 (%)-203

p-ToI:

Homologated ester 203. A solution of a-diazoketone 200 (3.2 mg, 104 umol) in
MeOH (5.2 mL, 2 mM) in a dried quartz tube was irradiated in a Luzchem rayonette (A =
350 nm) for 1.5 h. The solution was concentrated in vacuo and revealed homologated
ester 203 as the sole product by crude '"H NMR. An analytical sample was obtained from
purification by preparative TLC on SiO, (2:1 hexanes/EtOAc) to give 203 (2.4 mg,
7.7 umol, 74% yield) as a colorless oil. R, = 0.43 (2:1 hexanes/EtOAc); 'H NMR
(500 MHz, CDCl,) 6 707 (d, J = 7.5 Hz, 2H), 7.02 (d, J = 7.5 Hz, 2H), 5.89 (dd, J =
169, 10.2 Hz, 1H), 5.22 (d,J = 10.7 Hz, 1H), 5.13 (d, J = 17.5 Hz, 1H), 4.64 (app t, J =
39 Hz, 1H), 3.97 (d, J = 8.7 Hz, 1H), 3.51 (s, 3H), 3.50 (d, J = 8.7 Hz, 1H), 3.46-3.42

(m, 1H), 3.23 (dd, J = 7.9, 5.8 Hz, 1H), 2.61 (dd, J = 14.1, 7.3 Hz, 1H), 2.54-2.36 (comp
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m, 3H), 2.30 (s, 3H), 2.11 (app dt, J = 7.7, 3.8 Hz, 1H), 1.78 (ddd, J = 12.7, 10.4, 2.1

Hz, 1H); *C NMR (126 MHz, CDCL,) § 173.1, 143.6, 135.5, 135.3, 129.2, 127.1, 116 4,
86.7,79.2,52.4,51.9,51.6,50.1,47.0,46.9,45.0,37.2, 21.1; IR (Neat Film NaCl) 2951,
2922, 1736, 1514, 1435, 1207, 1163, 1041, 916, 808 cm™'; HRMS (EI+) m/z calc’d for

C,,H,,0; [M]*: 312.1726, found 312.1725.

[o) (o]
H\ . hv (310 nm), PhH, 23 °C; »
AR then 80 °C (59% yield) oH-.,
., OR o "
(N H
0

i f :
p-Tol uwaves, PhMe, 140 °C p-Tol

20 min (95% yield)
(x)-200 (%)-201

Cyclooctadienone 201. Photochemical/Thermal: A solution of a-diazoketone 200
(3.5 mg, 11.4 wmol) in PhH (5.7 mL, 2 mM) in a dried quartz tube was irradiated in a
Luzchem photochemical reactor (A = 310 nm) for 10 min, and then the lamp was turned
off and the quartz tube was placed in an 80 °C oil bath for 2 h. The reaction was
concentrated in vacuo and purified by preparative TLC on SiO, (1:1 hexanes/Et,0,
developed twice) to give cyclooctadienone 201 (1.9 mg, 6.8 umol, 59% yield) as a
colorless oil.

Microwave (thermal): A solution of a-diazoketone 200 (2.3 mg, 7.5 wmol) in PhMe
(1.5 mL, 5 mM) was prepared in a nondried microwave vial containing a stir bar under
ambient atmosphere. The vial was sealed and irradiated in a Biotage Initiator microwave
reactor at 400 W until the temperature reached 140 °C, and the temperature was
maintained for 20 min. The vial was cooled to room temperature, the seal was removed,
and the contents were concentrated in vacuo. Reaction conversion was monitored by

crude 'H NMR analysis (C4D¢). The crude material was purified by preparative TLC on
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Si0O, (2:1 hexanes/EtOAc) to give 201 (2.0 mg, 7.1 umol, 95% yield) as a colorless

oil that solidified in a —20 °C freezer. R,=0.32 (3:1 hexanes/EtOAc); '"H NMR (CDCl,,
500 MHz) 6 7.17-7.13 (comp m, 4H), 5.80-5.73 (comp m, 2H), 5.63-5.59 (m, 1H), 4.76
(d,J=5.2Hz, 1H), 3.66 (dd, J =10.8,5.9 Hz, 1H), 3.41 (dd, J = 14.7, 8.1 Hz, 1H), 3.23
(app t, J = 11.3 Hz, 1H), 3.13-3.05 (comp m, 2H), 2.34 (s, 3H), 2.30 (dd, J = 13.8,5.9
Hz, 1H), 1.93 (ddd, J = 13.8, 12.1, 4.6 Hz, 1H); "C NMR (126 MHz, CDCl,) § 203.3,
146.8, 139.7, 138 4, 136.9, 129.7, 129.2, 127.9, 144 .2, 85.3,72.2, 53.9, 50.6, 48.1, 45 4,
41.4,21.2; '"H NMR (500 MHz, C,Dy) 8 6.99 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 6.9 Hz,
2H), 5.78-5.75 (m, 1H), 5.55 (d, J = 13.6 Hz, 1H), 5.11-5.08 (m, 1H), 4.35 (app t, J =
5.13 Hz, 1H), 4.24 (d, J = 13.1 Hz, 1H), 4.11 (d, J = 13.2 Hz, 1H), 3.04-2.89 (comp m,
4H), 2.70 (app t, J = 11.3 Hz, 1H), 2.20 (dd, J = 13.6, 5.9 Hz, 1H), 2.15 (s, 3H), 1.53—
1.46 (m, 1H); "C NMR (126 MHz, C,D,) § 201.9, 147.2, 139.2, 138.6, 136.8, 130.1,
130.0, 128.7, 114.4, 85.5, 72.5, 53.8, 51.2, 48.3,45.9, 41.9, 21.3; IR (Neat Film NaCl)
3015, 2922, 1693, 1661, 1516, 1435, 1318, 1208, 1062, 1030, 817 cm™'; HRMS (MM:

ESI/APCI) m/z calc’d for C,,H,,0, [M — H]": 279.1319, found 279.1384.

3.7.2.3 AB RING ASYMMETRIC FRAGMENTS
oH Ac,0 QAc N::-IOZ‘I”OOZZ/IIL];-I:;PSO‘, oH
imidazole (pH = 8.0)
Q CH,Cl, @ 23-24°C @
AcO 0—-25°C AcO AcO'

(95 % yield)

(+)-186 208 (+)-186
99% ee
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Monoacetate (+)-186.” To a solution of monoacetate (+)-186 (40.43 g, 2844
mmol, 1.0 equiv) in CH,Cl, (47 mL, 6 M) was added imidazole (21.11 g, 310 mmol, 1.09
equiv), and after the contents were completely dissolved, the solution was cooled to 0 °C
and Ac,0 (29.3 mL, 310 mmol, 1.09 equiv) was added over 5-7 min via syringe. After
10 min, the bath was removed and the solution was stirred for 22 h at room temperature,
at which EtOAc (150 mL) was added and the contents were poured into ice-cold 1 N HCI
(150 mL). The layers were separated and the aq layer was saturated with NaCl (s) and
extracted with Et,0 (2 x 100 mL, 1 x 50 mL). The combined organics were washed with
sat. aq NaHCO; (100 mL), this aq layer was saturated with NaCl (s) and extracted with
Et,O (2 x 100 mL). The combined organics were dried over MgSO,, filtered,
concentrated, and dried under high vacuum to afford meso-bisacetate 208 (50.88 g, 276.2
mmol, 97% yield) as a pale yellow oil. This material could be used in subsequent
reactions as is, or can be purified by short-path distillation (bp = 74-98 °C, ~0.8 torr) to
give 208 as a colorless oil in 89% yield. R,=0.75 (Et,0); '"H NMR (300 MHz, CDCl,) §
6.09 (d,J =0.9 Hz, 2H), 5.54 (ddd, J = 7.6, 3.8,0.9 Hz, 2H), 2.88 (app dt, J/ = 15.1, 7.6
Hz, 1H), 2.06 (s, 6H), 1.74 (app dt, J = 15.0, 3.8 Hz, 1H). All other spectral data are
consistent with reported values.”

meso-Bisacetate 208 (33.15 g, 180.0 mmol, 1.0 equiv) was added to a purified water
triple-rinsed 1 L Erlenmeyer flask containing a stir bar and partially dissolved in aq
NaH,PO,/K,HPO, buffer (0.05 M, pH = 8.0). To this solution was added Novozym 435
(4.0 g), the flask was covered with parafilm and stirred gently to at room temperature
until consumption of 208 by TLC analysis (5-8 h). The contents were vacuum filtered

and the supported enzyme was washed with water (150 mL) and EtOAc (2 x 150 mL).
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The filtrate layers were separated and the aq layer was saturated with NaCl (200 g),
extracted with EtOAc (5 x 200 mL, follow by TLC), and the combined organics were
dried over MgSQO,, filtered, and concentrated in vacuo. The crude oil was dissolved in
Et,0 (150 mL) and heptane was added (150 mL), followed by concentration in vacuo to
afford a white semisolid. This was repeated one more time and the solid was dried under
high vacuum to provide monoacetate (+)-186 (24.36 g, 171 mmol, 95% yield) as a white
semisolid. The crude material is >95% pure by '"H NMR, but can be purified by flash
chromatography on SiO, (1:2 hexanes/Et,O, dry load onto SiO,) to provide 186 in 89%
yield. The material displayed the same spectral properties as above;””*” mp = 45-49 °C;
[a]p?® +61.2° (¢ 1.28, CHCL;, 99% ee). GC conditions: 100 °C isothermal, GTA
column, #; (min): major = 30.5, minor = 27.6. We have reused the recovered Novozym
435 up to four times and observed slightly lower activity for each subsequent use with
identical selectivities.

?H CuCN (20 mol %)

MeMgCI
Q THF -20°C Q Q/

AcO (91% yield)

(+)-186 209 (95:5) 210
99% ee

anti-Cyclopentenols 209 and 210. A 2 L 3-neck flask was charged with CuCN
(2.01 g, 112.2 mmol. 0.2 equiv) and THF (280 mL), and the suspension was cooled to ca.
—20 °C (internal) using a cryocool. To this was added a solution of MeMgCl (109 mL,
337 mmol of a 3.1 M solution in THF) and the internal temperature warmed to —14 °C.
After 30 min at —20 °C, a solution of monoacetate (+)-186 (15.95 g, 112.2 mmol, 1.0

equiv) in THF (40 mL) was slowly transferred (quantitative) via cannulation at such a
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rate that the temperature does not rise above —10 °C (requires ~1 h). After 30 min the
reaction was slowly quenched with sat. aq NH,C1 (100 mL), 50% sat. brine (100 mL), the
cooling bath was removed and the viscous suspension was stirred vigorously for several
hours. Additional water (200 mL) and 3% HCI (100 mL) was added and the layers were
separated. The aq layer was extracted with Et,O (3 x 200 mL), the combined organics
were dried over MgSO,, filtered, and concentrated carefully (water bath = 5 °C, down to
30 torr) to a pale yellow oil. The crude material was purified by short path distillation
(bp = 88-92 °C, 40 torr) to afford a 95:5 mixture of anti-cyclopentenols 209 and 210
(8.847 g, 90.2 mmol, 80% yield). The early distillation fractions and washing from the
apparatus were combined and purified by flash chromatography on SiO, (2.5 x 27 cm,
6:1 — 1:1 pentane/Et,0) to provide another 1.049 g of 209 and 210. The combined yield
obtained was 9.996 g, 101.9 mmol, 91% yield. R,(210) = 0.35 (1:1 hexanes/EtOAc); R,
(209) = 0.29 (1:1 hexanes/EtOAc); bp = 88-92 °C (40 torr).

An analytical sample of 209 was obtained from the column conditions above. 'H
NMR (500 MHz, CDCl,) 8 5.89 (dd,J=5.5,1.9 Hz, 1H), 5.79 (ddd, J =4.6,2.2,2.2 Hz,
1H), 4.88-4.86 (m, 1H), 2.99-2.91 (m, 1H), 1.96 (ddd, J = 14.0, 7.5, 2.6 Hz, 1H), 1.71
(ddd, J = 14.0, 7.1, 5.2 Hz, 1H), 1.48 (br s, 1H), 1.03 (d, J = 7.1 Hz, 3H); "C NMR
(126 MHz, CDClL,) 6 142.0, 132.1,77.6,42.7, 38.5, 21.0; IR (Neat Film NaCl) 3338 (br),
2956, 2870, 1354, 1088, 1017, 982, 742 cm™; HRMS (EI+) m/z calc’d for C,H,,0 [M]*:
98.07317, found 98.07171; [a],” —272.2° (¢ 0.39, CHCl;, 99% ee). GC conditions:

45 °C isothermal, GTA column, #; (min): major = 37.7, minor = 36.7.
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PhCO,H 0Bz
Ph3P DIAD
Q Q/ PhMe -78 °C
(90% yield)
209 (95:5) 210 211

syn-Benzoate 211. To a suspension of Ph,P (13.41 g, 51.12 mmol, 1.2 equiv) and
benzoic acid (6.243 g, 51.12 mmol, 1.2 equiv) in PhMe (237 mL) at —75 °C (internal)
was added DIAD (10.1 mL, 51.12 mmol, 1.2 equiv) dropwise, neat over 15 min. The
resulting yellow suspension was stirred vigorously for 30 min, at which point a solution
of 209 and 210 (4.1806 g, 42.60 mmol, 1.0 equiv) in PhMe (47 mL, 0.15 M total) was
transferred via cannula quantitatively over 30 min (observed maximum temperature
increase to —70 °C). When ~1/3 of this solution was added, the reaction mixture turned
homogeneous. After complete addition of 209 and 210, the reaction was stirred for an
additional 30 min (white precipitate has formed) and quenched with sat. aq NaHCO,
(100 mL) and water (100 mL) and the contents were warmed to room temperature. The
layers were separated, the aq was extracted with Et,0 (2 x 50 mL), and the combined
organics were shaken with 3% aq H,O, until TLC showed disappearance of Ph,P. The
layers were separated, the aq was extracted with Et,0 (1 x 50 mL), and the combined
organics were dried over MgSQO,, filtered, and concentrated to a pale yellow solid. The
crude material was purified by flash chromatography on SiO, (7 x 7.5 cm, 1:0 — 24:1
hexanes/Et,O, dry loaded onto SiO,) to give syn-benzoate 211 (7.792 g, 38.53 mmol,
90% yield) as a pale yellow oil. R, = 0.57 (3:1 hexanes/EtOAc); 'H NMR (500 MHz,
CDCL,) 6 8.04 (dd, J = 8.2, 1.2 Hz, 2H), 7.56-7.53 (m, 1H), 7.43 (app t, J = 7.8 Hz, 2H),
6.03 (dd,J=44,2.0 Hz, 1H), 5.90-5.86 (comp m, 2H), 2.80-2.73 (m, 1H), 2.65 (ddd, J

=14.0,7.8,7.8 Hz, 1H), 1.51 (ddd, J = 14.0,4.4,4.4 Hz, 1H), 1.16 (d, J = 7.0 Hz, 3H);
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C NMR (126 MHz, CDCL,) § 166.6, 142.9, 132.9, 130.8, 129.7, 128.6, 128.4, 80.9,

38.9, 38.7, 21.7; IR (Neat Film NaCl) 2961, 1716, 1451, 1340, 1315, 1272, 1110, 711
cm™'; HRMS (EI+) m/z calc’d for C,;H,0, [M]": 202.0994, found 202.0957;
[a]p>7 +123.8° (¢ 1.175, CHCl,, 98-99% ee). For a chiral analytical assay, see syn-diol

178.

OBz OH
K,CO3
—>
MeOH
(90% vyield)
211 178
98% ee

syn-Cyclopentenol 178. To a solution of benzoate 211 (6.255g, 30.93 mmol, 1.0
equiv) in MeOH (62 mL, 0.5 M) was added K,CO; (8.549 g, 61.85 mmol, 2.0 equiv) in
one portion. After completion as judged by TLC analysis (3 h, 3:1 hexanes/EtOAc), the
reaction was concentrated carefully in vacuo to a slurry (~5-10 mL). The white slurry
was diluted with brine (25 mL) and extracted with Et,O (4 x 25 mL, follow by TLC), the
organics were dried over MgSO,, filtered, and concentrated carefully in vacuo. The
crude material was purified by flash chromatography on SiO, (5 x 12 cm, 6:1 — 1:1
pentane/Et,0) and concentrated down to 100 torr until 'H NMR analysis revealed the
absence of solvent to afford syn-cyclopentenol 178 (2.728 g, 27.79 mmol, 90% yield) as a
colorless oil. R,=0.25 (3:1 hexanes/EtOAc); 'H NMR (500 MHz, CDCl;) & 5.82 (app dt,
J=155,15Hz, 1H), 5.73 (app dt, J = 5.5, 2.0 Hz, 1H), 4.79 (br s, 1H), 2.66-2.59 (m,
1H), 2.52 (ddd, J = 13.4, 7.6, 7.6 Hz, 1H), 1.79 (br s, 1H), 1.17 (app dt, 13.4, 5.4 Hz,
1H), 1.09 (d, J = 7.0 Hz, 3H); "C NMR (126 MHz, CDCl,) 6 140.4, 132.8, 77.8, 42.6,

39.0, 22.0; IR (Neat Film NaCl) 3338 (br), 3048, 2959, 2870, 1456, 1356, 1322, 1115,
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1051, 755 cm™; HRMS (EI+) m/z calc’d for C;H,,O [M]*: 98.07317, found 98.06857;
[a]y” —23.0° (¢ 0.475, CHCl,, 98.2% ee). GC conditions: 50 °C isothermal, GTA

column, #; (min): major = 21.2, minor = 20.7.

OH o]
Zn(OTH), (5 mol %) (P
185 PhMe Fe(CO)s
0->23°C

178 (82% yield) 212

Cyclobutadiene-iron ether complex 212. To a round-bottom flask containing
zinc(Il) triflate (271 mg, 0.745 mmol, 5 mol%) and PhMe (3.7 mL) at 0 °C was added
cyclopentenol 178 (1.45 g, 14.8 mmol, 1.0 equiv) by syringe. To this suspension was
added a solution of cyclobutadiene trichloroacetimidate 185 (6.38 g, 17.4 mmol, 1.2
equiv) in PhMe (2.0 mL) by cannula transfer, with further washing by PhMe (1.7 mL). A
yellow precipitate was observed at the beginning of the addition, and this turned into a
viscous slurry upon completion of the addition. The ice bath was allowed to expire over
1.5 h and the reaction was stirred for an additional 0.5 h at ambient temperature. The
crude reaction mixture was transferred directly onto a 25 g silica gel loading cartridge
and purified with a Teledyne ISCO CombiFlash system using a 125 g silica column
(1:0 = 19:1 hexanes/EtOAc) to afford cyclobutadiene-ether complex 212 (3.65 g,
12.2 mmol, 82% yield) as a pale yellow oil. R, = 0.73 (4:1 hexanes/EtOAc); 'H NMR
(500 MHz, C;D;) 6 5.72 (app dt, J = 5.6, 1.9 Hz, 1H), 5.66 (app dt, J = 5.6, 1.6 Hz, 1H),
4.27-4.24 (m, 1H), 3.54 (d, J = 9.1 Hz, 1H), 3.52 (d, J = 9.1 Hz, 1H), 3.48 (s, 2H), 3.32
(s, 1H), 2.43-2.39 (m, 1H), 2.15 (app dt, J = 13.3,7.6 Hz, 1H), 1.26 (ddd, J = 17.0, 11.2,

6.9 Hz, 1H), 0.98 (d, J = 7.0 Hz, 3H); "C NMR (126 MHz, C,D,) 8 215.0, 140.5, 130.5,
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85.2, 82.6, 64.6 (two lines), 64.0, 62.2, 39.1, 38.9, 21.6; IR (Neat Film NaCl) 2961,
2871, 2046, 1965, 1359, 1076, 1055, 757 cm™'; HRMS (FAB+) m/z calc’d for C,,H,,FeO,

[M]*: 302.0242, found 302.0244; [a],> +22.7° (c 0.86, hexane, 98% ee).

03, NaHCO,
CH,Cly/MeOH
(5:1),-78 °C

—»
I then Ac,0
Et;N, CH,Cl,
0°C

minor
aldehydes

reflux

(o]
Q Me;NO-2H,0
—_—
Fe(CO)s  acetone

H H ome

212 213 (48% combined 214 215
yield)

1.4 A MS, MeOH

reflux N

2. Ph3PCH;Br, KOt-Bu
THF, 0 — 23 °C H H one

(over four steps) 216 217 214 215
16% yield 6% yield 17% yield 6% yield

““CO,Me

H H 5

Cycloaddition to cyclobutene 213. A solution of ether 212 (2.3582 g, 7.806 mmol,
1.0 equiv) dissolved in acetone (780 mL, 10 mM) in a 1 L round-bottom flask fitted with
a reflux condenser was warmed in a 70 °C oil bath. When the solution approached
reflux, the condenser was momentarily removed and Me;NO*2H,0 (8.77 g, 78.9 mmol,
10 equiv) was added in a single portion. The solution was allowed to reflux and within
10 min the reaction vessel was filled with a rust colored precipitate. After 4 h a second
portion of MesNO*2H,0 (4.35 g, 45.9 mmol, 5.8 equiv) was added. The solution was
heated at reflux for an additional 17 h after which the reaction was judged to be complete
by TLC analysis (4:1 hexanes/EtOAc). The solution was cooled to room temperature and
poured directly onto a SiO, column (25 x 5 cm) packed in pentane. The column was
washed with 0 — 10% Et;,O in pentane, and all fractions containing cyclobutene 213

were combined and concentrated carefully to a volume of ~30 mL by atmospheric
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pressure distillation. This solution was purified by flash chromatography on SiO,
(pack with pentane, elute with 20:1 pentane/Et,O). The fractions containing product were
combined and concentrated to a volume of ~10 mL by atmospheric pressure distillation.
This pale yellow cyclobutene solution in pentane was used directly in the following
reaction. An analytical sample of cyclobutene 213 could be prepared by further
chromatography and exhaustive distillation of solvent. R,= 0.39 (3:1 hexanes/Et,0); 'H
NMR (500 MHz, CDCl3) & 6.27 (d, J = 2.2 Hz, 1H), 6.22 (s, 1H), 4.84 (dd, J = 14.4,
7.1 Hz, 1H), 4.04 (d, J = 9.1 Hz, 1H), 3.94 (d, J = 8.6 Hz, 1H), 3.00 (s, 1H), 2.89 (dd, J =
19.7, 13.8 Hz, 1H), 2.27-2.18 (m, 1H), 2.10-2.05 (comp m, 2H), 1.37 (ddd, J = 13.0,
13.0, 7.0 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H); "C NMR (126 MHz, CDCl;) § 140.2, 138.4,
84.7, 70.3, 57.9, 52.0, 47.8, 44.8, 39.0, 37.3, 14.3; IR (Neat Film NaCl) 2955, 2865,
1458, 1334, 1089, 1075, 1057, 1032, 931, 740 cm™'; HRMS (EI+) m/z calc’d for C;1H140
[M]": 162.1045, found 162.1026; an optical rotation was not obtained due to the volatility
of this compound. Cyclobutene 213 was found to possess an optical purity (ee) of 98%
by chiral GC analysis; GC conditions: 110 °C isothermal, GTA column, #; (min): major =
13.6, minor = 13.3.

Ozonolysis, equilibration, and methylenation to olefins 216 and 217, and acetals
214 and 215. In a 250 mL round-bottom flask, the cyclobutene solution prepared above
was diluted with CH,Cl, (130 mL) and methanol (26 mL, 5:1, 0.05 M total). To this was
added NaHCOs; (205.2 mg, 2.44 mmol, 0.3 equiv) and a few drops of Sudan Red
(0.05 wt % in MeOH) until the solution became a persistent pink color (ca. 10 drops).
The reaction vessel was cooled to —78 °C and the solution was sparged with O, gas

(0.5 L/min) for 2 min. The reaction was then ozonolyzed (setting the ozone generator to
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“5” with an O, flow rate of 0.5 L/min) for 60 min, at which point the pink color of the
solution had disappeared and the reaction was judged to be complete by TLC analysis.
The ozone was sparged with O gas (1 L/min) through the solution for 2 min, and the pale
yellow solution was warmed to room temperature and filtered through a cotton plug to
remove the solid NaHCOs;. The cotton plug was washed with PhH (10 mL) and the
filtrate was concentrated to a small volume (ca. 3—4 mL). The resulting crude yellow oil
was dissolved in CH,Cl, (78 mL), cooled to 0 °C, and to this was added Et;N (1.63 mL,
11.7 mmol, 1.5 equiv) and Ac,0O (2.21 mL, 23.4 mmol, 3.0 equiv) dropwise via syringe.
After 6 h, the reaction was quenched by the addition of 2 M HCI (25 mL), the organic
layer was separated and washed with 2 M NaOH (25 mL), and the combined aqueous
layers were extracted with CH,Cl, (5 x 25 mL). The organics were dried over MgSOQOy,
filtered, and concentrated to afford a pale brown oil which was passed through a SiO,
plug eluting with EtOAc, and concentrated to afford a pale yellow oil (0.8504 g,
3.8 mmol, three steps, 48% crude yield) containing mostly acetals 214 and 215.

The crude pale yellow oil prepared above was azeotroped from PhH (2 x 10 mL) in a
250 mL round-bottom flask and dissolved in MeOH (76 mL, 0.05 M). To this was added
oven dried 4 A MS (1.90 g, 0.5 g/mmol) and the flask was fitted with a reflux condenser
and heated to reflux using an 80 °C oil bath. After 6 h, a reaction aliquot was judged
complete by 'H NMR analysis and the reaction was cooled to room temperature. Most of
the 4 A MS were removed by filtration through Celite eluting with EtOAc. The filtrate
was concentrated and the resultant turbid oil was further purified by filtration through a

SiO, plug with EtOAc. This filtrate was concentrated to afford a yellow oil (0.8420 g)
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containing mostly aldehydes derived from 214 and 215 with acetals 214 and 215.
This was used directly in the following reaction.

A flask containing Ph;PCH;Br (1.62 g, 4.54 mmol, 1.2 equiv) was partially dissolved
with THF (15 mL) and cooled to 0 °C. To this was added KO#-Bu (423 mg, 3.77 mmol,
1.0 equiv) in one portion, and the solution immediately displayed a bright yellow color.
The crude yellow oil of aldehydes/acetals (0.8420 g, ~3.7 mmol) prepared above was
azeotroped from PhH (2 x 10 mL), dissolved in THF (7.5 mL), cooled to 0 °C, and
transferred dropwise via positive pressure cannulation into the solution of phosphorane
over ca. 10 min. The flask was then washed with a second portion of THF (7.5 mL) to
ensure quantitative transfer. The reaction was gradually allowed to warm to room
temperature. After 18 h the reaction was quenched by the addition of H,O (25 mL) and
extracted with Et;O (4 x 20 mL) then EtOAc (2 x 20 mL). The combined organics were
dried with MgSOQs,, filtered and concentrated in vacuo. The crude yellow residue was
purified flash chromatography on SiO, (15 x 2 cm, 20:1 — 4:1 hexanes/EtOAc) to afford
olefins 216 and 217 (384.4 mg, 1.729 mmol, 2.7:1 ratio, 22.2% yield over four steps from
ether 212) as a colorless oil and acetals 214 and 215 (400.5 mg, 1.786 mmol; 2.7:1 ratio,
22.9% vyield over four steps from ether 212) as pale yellow oil. Olefins 216 and 217
could be separated by further flash chromatography on SiO, (20:1 — 9:1
hexanes/EtOAc), and acetals 214 and 215 could be separated by further flash
chromatography on SiO, (3:1 — 1:1 hexanes/EtOAc).

Olefin 216. Ry= 0.46 (9:1 hexanes/EtOAc, developed thrice); '"H NMR (500 MHz,
CDCls) 8 5.95 (dd, J=17.5, 10.8 Hz, 1H), 5.15 (dd, J = 10.8, 1.2 Hz, 1H), 5.11 (dd, J =

17.5, 1.2 Hz, 1H), 4.59 (ddd, J = 6.3, 6.3, 1.5 Hz, 1H), 3.99 (d, J = 9.0 Hz, 1H), 3.64 (s,
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3H), 3.54 (d, J = 9.0 Hz, 1H), 3.16 (d, J = 7.1 Hz, 1H), 3.02 (app t, 7.1 Hz, 1H), 2.95
(dd, J =17.5,7.4 Hz, 1H). 2.43-2.34 (m, 1H), 2.18 (ddd, J = 14.7, 10.4, 5.7 Hz, 1H), 1.71
(ddd, J = 14.6, 6.3, 1.7 Hz, 1H), 1.02 (d, J = 7.0 Hz, 3H); "C NMR (126 MHz, CDCl;) &
173.6, 134.9, 115.9, 87.1, 78.7, 52.6, 51.6, 51.4, 44.8, 42.5, 38.9, 37.2, 17.2; IR (Neat
Film NaCl) 2954, 1736, 1436, 1363, 1236, 1206, 1162, 1042, 920 cm'; HRMS
(MM: ESIVAPCI) m/z calc’d for C3;H;;O; [M + H]": 223.13287, found 223.13255;
[a],'*® —4.73° (¢ 1.18, CH,Cl,, 98% ee).

Olefin 217. Ry= 0.39 (9:1 hexanes/EtOAc, developed thrice); "H NMR (500 MHz,
CDCls) 6 5.86 (ddd, J = 17.0, 10.3, 7.8 Hz, 1H), 5.05 (ddd, J = 17.1, 1.5, 1.5 Hz, 1H),
5.02 (ddd, J=10.3, 1.4, 1.4 Hz, 1H), 4.67 (ddd, J = 6.6, 6.6, 2.8 Hz, 1H), 4.02 (d, J = 9.4
Hz, 1H), 3.88 (d, / = 9.4 Hz, 1H), 3.68 (s, 3H), 3.30 (app t, / = 7.2 Hz, 1H), 3.00 (app t, J
= 7.2 Hz, 1H), 2.54 (app q, 7.16 Hz, 1H), 2.35 (d septuplets, J = 9.6, 7.1 Hz, 1H), 2.18
(ddd, J=14.5,9.7, 6.3 Hz, 1H), 1.67 (ddd, J = 14.5, 7.7, 2.8 Hz, 1H), 1.01 (d, J/ = 7.0 Hz,
3H); "C NMR (126 MHz, CDCl3) & 172.3, 137.9, 115.9, 87.1, 76.0, 55.8, 51.7, 48.9,
44.9, 43.6, 41.8, 38.0, 16.2; IR (Neat Film NaCl) 2953, 5873, 1731, 1436, 1295, 1207,
1041, 917 cm™; HRMS (EI+) m/z calc’d for C,;H,;O, [M]*: 222.1256, found 222.1216;
[a]p”! —0.49° (¢ 0.72, CH,Cl,, 98% e¢).

Acetal 214. R,= 0.29 (2:1 hexanes/EtOAc); "H NMR (500 MHz, CDCL3) & 5.39 (s,
1H), 4.80 (ddd, J = 6.5, 6.5, 4.5 Hz, 1H), 4.00 (d, J = 10.6 Hz, 1H), 3.98 (d, / = 10.7 Hz,
1H), 3.48 (s, 3H), 3.13 (app t, J = 6.7 Hz, 1H), 2.89 (d, J = 3.3 Hz, 1H), 2.61 (ddd, J =
6.9, 6.9, 3.3 Hz, 1H), 2.39-2.30 (m, 1H), 2.06 (ddd, J = 14.4, 8.4, 6.3 Hz, 1H), 1.60 (ddd,
J=13.3,8.5, 4.5 Hz, 1H), 1.11 (d, J = 7.0 Hz, 3H); "C NMR (126 MHz, CDCl3) § 179.0,

107.4, 86.7, 70.9, 56.8, 52.4, 51.5, 44.7, 40.8, 38.6, 37.2, 16.9; IR (Neat Film NaCl)
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2961, 2877, 1772, 1353, 1150, 1128, 1100, 1062, 936, 710 cm™'; HRMS (EI+) m/z

cale’d for CjoH 604 [M]™: 224.1049, found 224.1052; [a]p'*? +73.0° (¢ 1.13, CH,CL,

98% ee). Relative stereochemistry determined by NOE interactions shown below.

NOE (.\
|

Acetal 215. R, = 0.19 (2:1 hexanes/EtOAc); mp = 151.5-153 °C (Et,0); 'H NMR
(600 MHz, CDCl3) 8 5.30 (s, 1H), 4.89 (dd, J = 12.9, 7.2 Hz, 1H), 4.19 (d, J = 9.6 Hz,
1H), 4.11 (d, J = 9.6 Hz, 1H), 3.49 (s, 3H), 3.33 (dd, /= 7.0, 6.3 Hz, 1H), 2.58 (d, J = 4.0
Hz, 1H), 2.40 (ddd, J = 10.0, 6.0, 4.1 Hz, 1H), 2.30-2.22 (m, 1H), 2.16 (ddd, J = 14.5,
7.4, 7.4 Hz, 1H), 1.55 (ddd, J = 14.0, 11.1, 5.7 Hz, 1H), 1.03 (d, J = 6.8 Hz, 3H); °C
NMR (126 MHz, CDCl3) & 177.2, 108.4, 86.6, 73.2, 56.5, 55.5, 50.1, 42.8, 41.2, 38.7,
38.2, 15.3; IR (Neat Film NaCl) 2934, 1766, 1460, 1359, 1199, 1171, 1143, 1130, 1115,
1063, 1045, 916, 904, 691 cm™'; HRMS (EI+) m/z calc’d for C;oH ;604 [M]": 224.1049,
found 224.1044; [a]p'"’ —56.7° (¢ 0.62, CH,CL,, 98% ee). Crystals suitable for X-ray
analysis were obtained by slow evaporation from Et,0. See Appendix 3 for the

crystallography report.

KOTMS
L “‘\\\
0—-23°C o
‘CO.H
(92% yield)

218
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Acid 218. To a solution of olefin 216 (41.0 mg, 0.184 mmol, 1.0 equiv) in THF
(3.7 mL, 0.05 M) cooled to 0 °C was added KOTMS (236 mg, 1.84 mmol, 10 equiv) in
one portion. After 5 min the reaction was warmed to room temperature and monitored by
TLC. At 12 h the reaction was cooled to 0 °C and slowly quenched with 10% HCl
(4 mL) and diluted with brine (4 mL) and EtOAc (10 mL). The layers were separated
and the aq layer was extracted with EtOAc (3 x 10 mL), the combined organics were
dried over Na,SO,, filtered, and concentrated to a pale yellow oil. The crude was purified
by flash chromatography on SiO, (6:1 — 3:1 hexanes/EtOAc, CH,Cl, load) to afford acid
218 (35.2 mg, 0.169 mmol, 92% yield) as a white solid. R,=0.21 (2:1 hexanes/EtOAc);
'H NMR (600 MHz, CDCl,) 8 6.04 (dd, J = 17.5, 10.8 Hz, 1H), 5.20 (dd, J = 10.8, 1.2
Hz, 1H),5.17 (dd,J=17.5,1.2 Hz, 1H),4.61 (ddd,/=64,64,1.6 Hz, 1H),4.02 (d,J =
9.1 Hz, 1H), 3.54 (d,J =9.1 Hz, 1H), 3.22 (d, J = 7.3 Hz, 1H), 3.05 (app t, J = 7.1 Hz,
1H), 2.91 (app q,J = 7.6 Hz, 1H), 2.40 (d septuplets, J = 10.4, 7.0 Hz, 1H), 2.20 (ddd, J =
147,104, 5.8 Hz, 1H), 1.73 (ddd, J = 14.7, 6.3, 1.7 Hz, 1H), 1.05 (d, J = 7.1 Hz, 3H);
"C NMR (126 MHz, CDCl;) § 178.6, 134.5, 116.2, 87.2, 78.8, 52.8, 51.2, 44.7, 42.5,
39.0, 37.2, 17.2; IR (Neat Film NaCl) 3085 (br), 2958, 2930, 1731, 1704, 1418, 1283,
1241, 1086, 1041, 996, 921 cm™'; HRMS (EI+) m/z calc’d for C,,H,,0, [M]*: 208.1100,

found 208.1094; [a],"” +28.3° (¢ 0.97, CH,Cl,, 98% e¢).

(COCI),, DMF
N CH,CL,0°C X
then CH,N, (199)
COH  |RA-67, THF/CH,CI, T N

Et,0, 0 °C 0
218 (91% yield) 220
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Diazoketone 220. To a solution of acid 218 (62.5 mg, 0.300 mmol, 1.0 equiv) in
CH,CI, (6.0 mL, 0.05 M) at 0 °C was added a solution of oxalyl chloride (353 uL of a
1.7 M solution in CH,Cl,, 0.600 mmol, 2.0 equiv), followed by 1 drop of DMF. The
reaction was stirred for 45 min at 0 °C, at which point the stir bar was removed, PhMe
was added (6 mL), and the volatiles were removed on a rotovap purged with argon. The
septum and stir bar were replaced and the crude material was further dried under high
vacuum for 10 min. The resulting crude semisolid was partially dissolved in CH,Cl,
(2 mL) and THF (4 mL) and transferred quantitatively via Teflon cannula to a vigorously
stirring solution of excess diazomethane (199, ca. 30 mL) containing IRA-67 (161 mg,
ca. 0.9 mmol, 3.0 equiv) at O °C. The flask was further washed with CH,Cl, (4 mL) and
THF (2 mL) and quantitatively transferred. After 3.5 h the cooling bath was removed
and the diazomethane was pulled off via water aspirator. The pale yellow solution was
filtered through a small SiO, plug (Et,0) and concentrated in vacuo. The crude material
was purified by flash chromatography on SiO, (6:1 — 2:1 hexanes/Et,0) to afford
a-diazoketone 220 (63.2 mg, 0.272 mmol, 91% yield) as a bright yellow oil that
solidifies in a —20 °C freezer. R, = 0.24 (3:1 hexanes/EtOAc); '"H NMR (500 MHz,
CDCl,) 6 6.01 (dd,J=17.5,10.8 Hz, 1H), 5.15 (d,J = 10.9 Hz, 1H), 5.10 (br s, 1H), 5.05
(d,J=17.5Hz, 1H),4.59 (app t, J = 6.1 Hz, 1H),3.92 (d,/=9.0 Hz, 1H), 3.63 (d, J =
9.0 Hz, 1H), 3.11 (br d, J = 14.8, 2H), 2.96 (app t, J = 6.9 Hz, 1H), 2.44-2.35 (m, 1H),
2.20 (ddd, J = 154, 10.5, 5.8 Hz, 1H), 1.70 (dd, J = 14.7, 6.3 Hz, 1H), 0.99 (d, J =
7.0 Hz, 3H); "C NMR (126 MHz, CDCl;) & 193.7, 134.9, 115.7, 87.2, 78.3, 54.8, 53.3,

519, 504, 42.6, 38.3, 37.3, 17.2; IR (Neat Film NaCl) 3081, 2956, 2100, 1635, 1373,
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1047,919 cm™; HRMS (FAB+) m/z calc’d for C;H,,N,O, [M + H]*: 233.1290, found

233.1296; [a] " —66.3° (¢ 0.99, CH,Cl,, 98% ee).

(cocl),, DMF
NG CH,Cl,, 0 °C

po

R
then CH3CHN, (219)
CO,H IRA-67, THF/CH,CI, I N
2

Et,0, 0 °C 0

218 (46-64% yield) 221

Diazoketone 221. a-Diazoketone was prepared by the same procedure as described
for diazoketone 220 using acid 218 (17.3 mg, 83.1 umol, 1.0 equiv), but with freshly
prepared and KOH-dried diazoethane (219, ca. 20 mL). After 4 h at 0 °C the excess
diazoethane was removed via water aspirator. The pale orange solution was filtered
through a small SiO, plug (Et,0) and concentrated in vacuo. The crude material was
purified by flash chromatography on SiO, (6:1 — 4:1 hexanes/Et,0, CH,Cl, load) to
afford a-diazoketone 221 (13.0 mg, 52.8 umol, 64% yield) as a bright yellow oil. R, =
0.38 (2:1 hexanes/Et,0); '"H NMR (500 MHz, CDCl;) & 5.95 (dd, J = 17.5, 10.9 Hz, 1H),
5.10(d,J=10.8 Hz, 1H),5.05 (d,J=17.6 Hz, 1H), 4.57 (app t,J = 5.7 Hz, 1H), 3.86 (d,
J=93Hz,1H),3.66 (d,J =93 Hz, 1H),3.34 (d,/=6.8 Hz, 1H),3.28 (dd,J=14.9,7.5
Hz, 1H), 2.93 (app t, J/ = 6.9 Hz, 1H), 2.45-2.36 (m, 1H), 2.16 (ddd, J = 15.1, 10.6, 5.7
Hz, 1H), 1.94 (s, 3H), 1.70 (dd, J = 14.5, 5.9 Hz, 1H), 0.98 (d, J = 7.1 Hz, 3H); "C NMR
(126 MHz, CDCl,) & 14.3, 134.8, 115.5, 87.0, 77.3, 53.0, 52.5, 47.7, 42.3, 36.7, 36.3,
17.3, 8.3; IR (Neat Film NaCl) 2957, 2926, 2064, 1631, 1286, 1050 cm™'; HRMS (FAB+)
m/z calc’d for C,,H,,O,N, [M + HJ*: 247.1447, found 247.1457; [a]p,"”° +71.6° (¢ 0.57,

CH,Cl,, 98% ee).
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nwaves, PhMe

160 °C, 15 min

(79% yield)

220 222

Cyclooctadienone 222. A solution of a-diazoketone 220 (69.2 mg, 0.271 mmol) in
PhMe (54 mL, 5 mM) was partitioned equally into three nondried 20 mL microwave
reaction vessels containing a stir bar under ambient atmosphere. Each vial was sealed
and irradiated in a Biotage Initiator microwave reactor at 400 W until the temperature
reached 160 °C, and the temperature was maintained for 15 min. The vial was cooled to
room temperature, the seal was removed, and the contents were concentrated in vacuo.
Reaction conversion was monitored by crude 'H NMR analysis (CDCl;). The crude
material was purified by flash chromatography on SiO, (9:1 — 6:1 — 3:1
hexanes/EtOAc) to give 222 (43.9 mg, 0.215 mmol, 79% yield) as a colorless oil that
solidifies in a —20 °C freezer. R, = 0.35 (3:1 hexanes/EtOAc); '"H NMR (500 MHz,
CDCl,) 6 6.08 (dd, J =124, 6.5 Hz, 1H), 593 (app dt, J = 12.4, 1.9 Hz, 1H), 5.54 (dtdd,
J=48,32,26,1.7 Hz, 1H), 4.59 (dd, J = 14.1, 6.9 Hz, 1H), 4.38 (d, = 12.1 Hz, 1H),
432(d,J=122Hz,1H),3.44 (ddd,J=9.4,2.2,1.0 Hz, 1H), 3.28 (dd, J = 14.3,9.8 Hz,
1H), 3.18-3.13 (m, 1H), 2.99 (ddd, J = 14.3, 6.2, 1.2 Hz, 1H), 2.41-2.32 (m, 1H), 2.18
(dddd,J=13.1,7.1,6.1,1.2 Hz, 1H), 1.44 (ddd, J = 13.2,13.2,5.9 Hz, 1H), 1.11 (s, 3H);
"C NMR (126 MHz, CDCL,) § 204.4, 146.1, 139.2, 131.6, 114.2, 85.1, 74.6, 52.9, 47.8,
40.1, 38.9, 15.0; IR (Neat Film NaCl) 2958, 2874, 1691, 1666, 1116, 1064, 1032, 974,
867 cm™'; HRMS (FAB+) m/z calc’d for C,;H,;0, [M + H]*: 205.1229, found 205.1223;

[a], 2 —642° (¢ 1.38, CH,Cl,, 98% ee).
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pwaves, heptane

150 °C, 15 min

221 223
42% yield

Wolff/Cope rearrangement for cyclooctadienone 223 and cyclopropane 224. A
solution of a-diazoketone 221 (17.7 mg, 71.9 wmol) in heptane (14.4 mL, 5 mM) was
prepared in a nondried 20 mL microwave reaction vessel under ambient atmosphere and
sealed. The contents were irradiated in a Biotage Initiator microwave reactor at 400 W
until the temperature reached 150 °C, and the temperature was maintained for 10 min.
The reaction was cooled to room temperature and TLC analysis showed consumption of
221. The solution was concentrated in vacuo and purified by preparative TLC on SiO,
(3:1 hexanes/EtOAc, develop twice) to afford a-methyl cyclooctadienone 223 (6.6 mg,
30.2 umol, 42% yield) as a colorless oil and cyclopropane 224 as a single diastereomer.

Cyclooctadienone 223. R,=0.41 (3:1 hexanes/EtOAc); '"H NMR (600 MHz, CDCI,)
0 5.80 (app dq, J =7.2, 1.3 Hz, 1H), 5.52-5.48 (m, 1H), 4.58 (ddd, J =7.3,7.3, 6.2 Hz,
1H), 4.38 (d, J=12.1 Hz, 1H), 4.31 (ddd, J =10.7, 3.0, 1.6 Hz, 1H), 3.36 (dddd, J = 9.3,
8.1,2.4,1.1 Hz, 1H), 3.24 (dd, J = 15.6, 9.5 Hz, 1H), 3.02-2.98 (comp m, 2H), 2.36-2.14
(m, 1H), 2.16 (ddd, J=13.2,7.1,1.0 Hz, 1H), 1.84 (app t,J = 1.5 Hz, 3H), 1.47 (ddd, J =
13.3,13.3,5.9 Hz, 1H), 1.08 (d, J = 6.9 Hz, 3H). "C NMR (126 MHz, CDCl,) § 207.6,
146.6, 137.2, 132.5, 113.7, 85.1, 74.5, 53.3, 47.0, 46.8, 40.3, 38.9, 20.8, 15.0; IR (Neat
Film NaCl) 2956, 2923, 2874, 1693, 1667, 1452, 1375, 1076, 1045, 1020, 973, 873, 838
cm’'; HRMS (MM: ESI/APCI) m/z calc’d for C,,H,,O, [M + HJ": 219.1380, found

219.1379; [, =573° (¢ 0.35, CHCl;, 98% ee)
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Cyclopropane 224. R, =0.36 (3:1 hexanes/EtOAc); 'H NMR (500 MHz, CDCl,)
04.80(ddd,J=7.2,7.2,6.0Hz, 1H),394 (d,J =9.3 Hz, 1H), 3.84 (d, J = 9.3 Hz, 1H),
2.86 (d,J=1.8 Hz, 1H), 2.84 (dd, J =74, 5.8 Hz, 1H), 2.25 (d, J = 2.9 Hz, 1H), 2.16
(dddd, /=105, 10.5,8.6,4.1 Hz, 1H), 2.12-2.07 (m, 1H), 2.04 (ddd, J=9.0,4.6, 1.8 Hz,
1H), 1.56-1.54 (comp m, 2H), 1.49 (ddd, J = 13.6, 10.9, 5.8 Hz, 1H), 1.22 (s, 3H), 0.96
(d, J = 6.7 Hz, 3H); "C NMR (126 MHz, CDCl,) & 198.7, 86.3, 74.3, 67.1, 57.9, 51 .0,
49.7,46.7,43.1,38.8,37.4,32.7,15.2,9.4; IR (Neat Film NaCl) 2953, 2923, 2868, 1776,
1449, 1073, 1015, 937 cm™'; HRMS (MM: ESI/APCI) m/z calc’d for C,,H,,0, [M + H]":

219.1380, found 219.1382; [, +46.1° (¢ 0.38, CHCl;, 98% ee)

3.7.2.4 D-RING FRAGMENTS

o 1. Nal, TMSCI TMSO ClI o

Et;N, MeCN Cl Zn, AcOH
D ——
é 2. Cl,CHCOCI H,0/i-PrOH
Et;N, hexanes H O -10-23°C o

(82% yield, two steps) 255 (96% yield) 227

254
Cycloheptane-1,3-dione (227).” Nal (156.74 g, 1.046 mol, 1.25 equiv) was placed

in a 3 L 3-neck flask and dried under high vacuum at 90 °C for 12 h and then cooled to
ambient temperature under N,. CH,CN (1.3 L, 0.65 M) was added to dissolve the Nal
and to the resulting solution was added cyclopentanone (254, 70.7 g, 74.3 mL, 0.840 mol,
1.0 equiv) followed by Et;N (106.25 g, 146.3 mL, 1.050 mol, 1.25 equiv). The flask was
fitted with an oven-dried addition funnel and was charged with TMSCI] (104.03 g,

122 mL, 0.958 mol, 1.15 equiv), which was added dropwise over 30 min. The resulting

suspension was stirred for an additional 1 h at ambient temperature. Pentane (1.0 L) was
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added and the biphasic system was stirred vigorously for 10 min. The layers were
separated and the CH,CN layer was extracted with pentane (3 x 400 mL). The combined
pentane extracts were washed with H,O (2 x 500 mL), brine (500 mL), dried over
Na,SQO,, filtered, and carefully concentrated under reduced pressure (down to 100 torr) to
afford the desired silyl enol ether (131.4 g, 0.840 mol, quantitative yield) as a colorless
oil. This material was used directly in the following reaction without further purification.
R, = 0.83 (4:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCl,) 8 4.78 (dt, J = 3.9, 2.0 Hz,
1H), 2.45-2.33 (comp m, 4H), 1.89-1.79 (comp m, 2H), 0.27 (s, 9H). All other spectral
data are consistent with reported values.

The obtained silyl enol ether (89.7 g, 0.574 mol, 1.0 equiv) was placed in a 3 L
3-neck round-bottom flask fitted with a stopper, an addition funnel, and an overhead
stirrer. Hexanes (900 mL) were added followed by Et;N (80.7 g, 111.2 mL, 0.798 mol,
1.4 equiv). Dichloroacetyl chloride (101.70 g, 66.4 mL, 0.690 mol, 1.2 equiv) was
dissolved in hexanes (400 mL), transferred to the closed addition funnel, and added
dropwise to the reaction over 9.5 h with vigorous stirring. After 18 h of stirring at 23 °C,
the brown suspension was vacuum filtered through a coarse sintered-glass funnel. The
filter cake was thoroughly rinsed with EtOAc (3 x 500 mL) while agitating the precipitate
with a stirring rod. The clear brown solution was concentrated under reduced pressure
and then filtered through a pad of ALO; (neutral, 7 x 18 cm) eluting with EtOAc. The
resulting solution was concentrated under reduced pressure to afford
dichlorocyclobutanone 255 (124.7 g, 0.467 mol, 82% yield) as a dark brown oil that
crystallized in a —20 °C freezer. This material was used directly in the next reaction

without further purification. R,=0.58 (6:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,)
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0 3.669d,J=8.4Hz, 1H), 2.55 (dd, J = 13.3, 6.8 Hz, 1H), 2.12-1.84 (comp m, 4H),
1.64-1.51 (m, 1H), 0.25 (s, 9H). All other spectral data are consistent with reported
values.

The above dichlorocyclobutanone 255 (53.4 g, 0.200 mol, 1.0 equiv) was placed in a
3 L 3-neck round-bottom flask fitted with a thermometer, an addition funnel and an
overhead stirrer. This material was dissolved in i-PrOH and purified water (170 mL
each). The suspension was cooled to —10 °C (internally) in a MeOH/ice bath. To this
cooled solution was added Zn dust (58.8 g, 0.899 mol, 4.5 equiv) in four portions (5 min
between each). The addition funnel was charged with a solution of AcOH (66.1 g,
63 mL, 1.10 mol, 5.5 equiv) dissolved in purified water (130 mL) and this solution was
added to the reaction in a dropwise manner at such a rate to keep the internal temperature
below 0 °C (typically added over 1.5 h). Upon complete addition, the suspension was
stirred for an additional 30 min at —10 °C (internal) and then the cooling bath was
removed and the reaction was allowed to warm to ambient temperature. After 8.5 h, the
reaction mixture was filtered through a coarse sintered-glass funnel and rinsed with
i-PrOH (100 mL). The filtrate was cooled to 0 °C and slowly neutralized by portionwise
addition of K,CO; (74.6 g, 0.54 mol, 2.7 equiv) with vigorous stirring (overhead stirrer).
The viscous suspension was filtered and rinsed with H,O (100 mL) and EtOAc (300 mL).
The biphasic system was concentrated under reduced pressure to ~200 mL to remove a
large portion of the i-PrOH and extracted with CH,Cl, (100 mL portions until TLC clear).
The combined organics were dried over MgSO,, filtered, and concentrated under reduced
pressure to afford cycloheptane-1,3-dione (227) (24.2 g, 0.192 mol, 96% yield) as a pale

orange oil. R;=0.16 (4:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,)  3.59 (s, 2H),
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2.60-2.56 (comp m, 4H), 2.02-1.94 (comp m, 4H). All other spectral data are

consistent with reported values.

o -BuOH 0
PPTS
—»
PhMe, reflux i
o Dean-Stark 0i-Bu
227 (84% yield) 228

Vinylogous ester 228. To a solution of 227 (35.8 g, 0.284 mol, 1.0 equiv) in toluene
(280 mL, 1 M) in a flask fitted with a Dean—Stark trap and reflux condenser was added
i-BuOH (168.3 g, 208 mL, 2.27 mol, 8.0 equiv) and PPTS (1.07 g, 4.26 mmol, 0.0015
equiv). The solution was immersed into an oil bath at 130 °C and monitored by TLC.
Upon consumption of the starting material (typically within 4-6 h), the reaction was
allowed to cool to room temperature and the resulting dark orange solution was washed
with sat. aqg NaHCO; (200 mL). The aqueous phase was extracted with EtOAc (3 x 150
mL), the combined organics were washed with brine, dried over MgSO,, filtered and
concentrated under reduced pressure to afford a thick dark orange oil. The crude oil was
flushed through a plug of silica gel (7 x 9 cm SiO,, 1:4 — 3:7— 1:1 hexanes/Et,0O) to
afford the vinylogous ester 228 (43.5 g, 0.239 mol, 84% yield) as a pale orange oil. R, =
0.22 (2:1 hexanes/EtOAc); 'H NMR (500 MHz, CDCl;) & 5.37 (s, 1H), 3.49 (d, J =
6.6 Hz, 2H), 2.60-2.56 (comp m, 4H), 2.00 (septuplet, J = 6.6 Hz, 1H), 1.88—1.77 (comp
m, 4H), 0.96 (d, J = 6.8 Hz, 6H); "C NMR (126 MHz, CDCl,) § 202.5, 176.6, 106.0,
750, 41.9, 33.1, 27.9, 23.7, 21.5, 19.3; IR (Neat Film NaCl) 2958, 2872, 1646, 1607,
1469, 1237, 1190, 1174 cm™'; HRMS (EI+) m/z calc'd for C,H,0, [M]*: 182.1307;

found 182.1310.
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o 1. LDA, PhMe, -78 °C 0 (o]
then CICOaallyl
- \/\o
i 2. Cs,COg3, Mel
Oi-Bu MeCN, 80 °C Oi-Bu
228 (81% yield, 2 steps) 181

Vinylogous p-ketoester (£)-181. To a solution of i-Pr,NH (3.06 mL, 21.9 mmol,
2.05 equiv) in PhMe (75 mL) cooled to —78 °C was added a solution of n-BuLi (8.36 mL,
21.3 mmol, 2.0 equiv; 2.55 M in hexane) via syringe. The flask was placed in a 0 °C ice
bath for 10 min, and then cooled back to —78 °C at which point a solution a solution of
228 (1.9434 g, 10.7 mmol, 1.0 equiv) in PhMe (7 mL) was added dropwise via cannula.
The flask was washed with extra PhMe (5 mL) to ensure complete transfer. After
30 min, allyl chloroformate (1.25 mL, 11.7 mmol, 1.1 equiv) was added dropwise and the
cooling bath was removed. After 1 h at room temperature the reaction was quenched
with 1 N KHSO, (25 mL) and the layers were separated. The aq layer was extracted with
Et,0 (2 x 40 mL) and the combined organics were washed with brine, dried over Na,SO,,
filtered, and concentrated to a viscous yellow oil.

The crude oil was dissolved in MeCN (43 mL, 0.25 M) and to this was added Cs,CO,
(4.34 g, 13.3 mmol, 1.25 equiv) and Mel (2.0 mL, 32.0 mmol, 3.0 equiv). The flask was
fitted with a reflux condenser and placed in an 80 °C oil bath with vigorous stirring.
After 68 h the reaction was warmed to room temperature, diluted with EtOAc (50 mL),
dried over MgSOQO,, filtered, and concentrated in vacuo. The crude material was purified
by flash chromatography on Si0O, (9:1 — 6:1 — 3:1 hexanes/EtOAc, PhMe load) to give
vinylogous [-ketoester (+)-181 (2.4416 g, 8.71 mmol, 81% yield over two steps) as a

pale yellow oil. R; = 0.43 (4:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) & 5.86
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(dddd,J=17.1,10.7,5.6,5.6 Hz, 1H), 5.39 (s, 1H), 5.29 (ddd, J = 17.1, 2.9, 1.5 Hz,
1H), 5.20 (app d, J = 10.5 Hz, 1H), 4.59 (dddd, J = 19.0, 13.2, 5.6, 1.2 Hz, 2H), 3.50 (dd,
J=93,68Hz, 1H),3.47 (dd,J=9.3,6.6 Hz, 1H), 2.59 (ddd, J = 17.8,9.8,3.9 Hz, 1H),
2.45-2.38 (comp m, 2H), 2.02-1.94 (m, 1H), 1.84-1.75 (m, 1H), 1.70 (ddd, J = 144, 7.3,
4.4 Hz, 1H), 1.43 (s, 3H),0.94 (d, J = 6.6 Hz, 6H); °C NMR (126 MHz, CDCl,) § 199.1,
174.0, 173.5, 1320, 118.4, 105.2, 74.8, 65.8, 59.1, 34.3,33.9,27.9,24.2, 214, 19.3; IR
(Neat Film NaCl) 2959, 2936, 2875, 1734, 1650, 1613, 1456, 1384, 1233, 1170, 1115,
994 cm™'; HRMS (EI+) m/z calc'd for C,(H,,0, [M]": 280.1675; found 280.1686.
Alternative procedure using allyl cyanoformate. To a solution of i-Pr,NH (4.66 g,
6.46 mL, 46.1 mmol, 1.2 equiv) in THF (180 mL) cooled to 0 °C in a 500 mL round-
bottom flask was added n-BuLi (17.2 mL, 44.2 mmol, 2.57 M in hexanes, 1.15 equiv)
dropwise over 15 min by use of syringe pump. After 15 min stirring at O °C, the mixture
was cooled to —78 °C and a solution of vinylogous ester 228 (7.01 g, 38.4 mmol, 1.0
equiv) dissolved in THF (20 mL) and added in a dropwise manner over 20 min by use of
a syringe pump. After an additional 1 h of stirring at —78 °C, allyl cyanoformate (4.69 g,
4.60 mL, 42.2 mmol, 1.1 equiv) was added in a dropwise manner over 10 min. The
mixture was stirred at —78 °C for 2.5 h and quenched with 50% sat. ag NH,Cl (60 mL)
and allowed to warm to ambient temperature. The reaction mixture was diluted with
Et,0 (100 mL) and the phases were separated. The aq phase was extracted with Et,O (2
x 100 mL) and the combined organic phases were dried over MgSO,, filtered and
concentrated under reduced pressure to afford a pale orange oil (10.5 g, >100%, some

allyl cyanoformate left).
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The crude oil was converted to vinylogous f-ketoester 181 as above using
CH,CN (130 mL, 0.3 M), Mel (16.35 g, 7.2 mL, 115 mmol, 3.0 equiv), and Cs,CO,
(16.76 g, 49.9 mmol, 1.3 equiv). Purification by flash chromatography on SiO, (19:1 —
9:1, hexanes/EtOAc, dry-loaded using Celite) afforded vinylogous pB-ketoester (+)-181

(8.51 g, 30.4 mmol, 79% yield over two steps) as a pale yellow oil.

o [o] ligand (6.25 mol %) (o]

Pd,(pmdba); (2.5 mol %) H
\/\O > X :
solvent (0.1 M), 30 °C
0i-Bu 0i-Bu

181 (-)-229

Screen for ketone (-)-229. To a dry flask was added Pd,(pmdba), (2.5 mol %) and
ligand (6.25 mol %) and the contents were evacuated/purged 3x with N,. To this was
added solvent (0.1 M, most of it) and the contents were stirred for 30 min in a 30 °C oil
bath, at which point a solution of (+)-181 (1.0 equiv) in remaining solvent was transferred
via cannula. When judged complete by TLC analysis, the reaction was filtered through a
small plug of SiO, eluting with Et,0O and concentrated in vacuo. Purification by flash
chromatography (15:1 — 9:1 hexanes/EtOAc) or preparative TLC (4:1 hexanes/EtOAc)
provided ketone 229 for analytical analysis. R,=0.31 (3:1 hexanes/Et,0); '"H NMR
(500 MHz, CDCl,) & 5.72 (dddd, J = 16.6, 10.5,7.3,7.3 Hz, 1H), 5.31 (s, 1H), 5.05-5.00
(m, 2H), 3.50 (dd, J =9.3,6.6 Hz, 1H), 3.47 (dd, J=9.3, 6.6 Hz, 1H), 2.53-2.42 (m, 2H),
2.38 (dd, J=13.7,7.1 Hz, 1H), 2.20 (dd, J = 13.7, 7.8 Hz, 1H), 1.98 (app septuplet, J =
6.6 Hz, 1H), 1.86-1.70 (comp m, 3H), 1.62—-1.56 (m, 1H), 1.14 (s, 3H), 0.95 (app d, J =
6.6 Hz, 6H); "C NMR (126 MHz, CDCl,) § 206.7,171.3, 134.6, 117.9, 105.0, 74.5, 51.5,

454, 36.1, 35.2, 28.0, 25.2, 19.9, 193, 19.3; IR (Neat Film NaCl) 2960, 2933, 2873,
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1614, 1470, 1387, 1192, 1171, 998, 912 cm™; HRMS (EI+) m/z calc'd for C,sH,,0,
[M]": 236.1776; found 236.1767. HPLC conditions: 1% i-PrOH in hexanes, OD-H

column, #; (min): major = 6.3, minor = 7.3.

(o] o Pd,(pmdba); (1.2 mol %) (o]
(S)-55 (3.12 mol %) H
X"No . N
P PhMe (0.2 M), 30 °C OLBuU
(x)-181 (-)-229
10.2 g scale 98% yield, 88% ee

Scale-up of ketone (-)-229. Pd,(pmdba); (496 mg, 0.453 mmol, 0.0125 equiv) and
ligand (§)-55 (439 mg, 1.13 mmol, 0.0312 equiv) were placed in a 500 mL round-bottom
flask and the flask was evacuated and backfilled with N, (3 cycles with 10 min
evacuation per cycle). Toluene (150 mL, sparged with N, for 1 h immediately prior to
use) was added and the dark purple suspension was immersed into a 30 °C oil bath. After
30 min stirring the solution had changed to a dark orange color and vinylogous
B-ketoester (+)-181 (10.16 g, 36.24 mmol, 1.0 equiv) dissolved in toluene (31 mL
sparged with N, immediately before use) was added via positive pressure cannulation.
Upon addition of (+)-181, the dark orange catalyst solution immediately turned olive
green. The reaction mixture was stirred at 30 °C for 21 h (consumption by TLC),
allowed to cool to ambient temperature, filtered through a small plug of SiO, (5.5 x 2 cm,
Et,0 eluent) and concentrated under reduced pressure.  Purification by flash
chromatography on SiO, (5§ x 15 cm, 19:1 hexanes/EtOAc, dry-loaded on SiO,) afforded
ketone (—)-229 (8.38 g, 35.46 mmol, 98% yield) as a pale yellow oil. [a],>® —69.04°

(c 1.08, CHCl;, 88% ee).
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o]
_ 0 LiAIH,
A Et,0,0°C
—> +
then 10% HCI
0i-Bu HO
229 231 180

90% yield 7% yield

Reduction of ketone (-)-229. To a flask charged with Et,O (15 mL) cooled to 0 °C
was added LiAIH, (71.2 mg, 1.88 mmol, 0.55 equiv) in one portion. After 10 min, a
solution of ketone 229 (806.1 mg, 3.41 mmol, 1.0 equiv) in Et,0 (2 mL) was added via
cannula, washing the transfer flask with excess Et,O to ensure quantitative transfer. After
consumption of 229 by TLC analysis (1 h), the reaction was quenched by slow addition
of 10% HCI (10 mL). The resulting biphasic system was allowed to warm to ambient
temperature and stirred vigorously for 815 h. The layers were separated and the aq
phase was extracted with Et,0 (3 x 20 mL). The combined organic phases were dried
over Na,SO,, filtered and concentrated under reduced pressure. The crude product was
azeotroped with toluene (3 x 5 mL) and purified by flash chromatography on SiO, (9:1 —
3:1 hexanes/EtOAc) to afford -hydroxyketone 231 (558.8 mg, 3.07 mmol, 90% yield) as
a colorless oil that forms a semisolid in a —20 °C freezer and cycloheptenone 180
(40.8 mg, 0.248 mmol, 7% yield) as a colorless oil.

B-Hydroxyketone 231. R, = 0.23 (7:3 hexanes/EtOAc); 'H NMR (500 MHz,
CDCl,) 6 major diastereomer: 5.88 (dddd, J =15.1,9.0,7.6,7.6 Hz, 1H), 5.12-5.08 (m,
2H), 3.70 (dd, J = 4.9, 3.9 Hz, 1H), 2.86 (dd, J = 15.6, 1.7 Hz, 1H), 2.65 (dd, J = 15.6,
7.3 Hz, 1H), 2.54-2.43 (m, 2H), 2.24 (dd, J = 13.7, 7.8 Hz, 1H), 2.07 (dd, J =134, 7.3
Hz, 1H), 1.99 (dd, J = 15.9, 4.4 Hz, 1H), 1.82-1.69 (comp m, 2H), 1.45-1.41 (m, 1H),
0.96 (s, 3H); minor diastereomer: 5.83 (dddd, J = 14.9, 10.3, 7.6, 7.6 Hz, 1H), 5.12—

5.06 (m,2H),3.68 (dd,J=4.1,2.4 Hz, 1H) 2.80 (dd, J=15.4,2.4 Hz, 1H), 2.74 (dd, J =
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154, 8.1 Hz 1H), 2.46-2.38 (m, 2H), 2.18 (dd, J = 13.9, 7.3 Hz, 1H), 2.09 (dd, J =
12.9, 7.8 Hz, 1H), 1.82-1.65 (comp m, 3H) 1.50-1.47 (m, 1H), 1.02 (s, 3H); "C NMR
(75 MHz, CDCl;) 6 major diastereomer: 213.2, 135.0, 118.1, 72.9, 46.7, 449, 44.2,
41.0, 36.3, 21.9, 18.9; minor diastereomer: 212.6, 134.2, 118.3, 73.3,47.2, 42.8, 41.0,
35.9,22.6, 18.7 one peak overlapping; IR (Neat Film NaCl) 3436 (br), 3074, 2932, 1692,
1638, 1443, 1403, 1380, 1352, 1318, 1246, 1168, 1106, 1069, 999, 913, 840 cm™'; HRMS
(EI+) m/z calc'd for C,H,;O, [M]*: 182.1307; found 182.1313; [a],>® —57.1° (¢ 2.56,
CHCI,, 1.5:1 dr and 88% ee).

Cycloheptenone 180. R, =0.54 (7:3 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) §
6.04 (dd,J=12.9,0.7 Hz, 1H), 5.82 (d,J = 12.9 Hz, 1H), 5.75 (dddd, J = 17.1, 10.3, 7.8,
7.1 Hz, 1H), 5.10 (dddd, J = 10.3, 1.2, 1.2, 1.2 Hz, 1H), 5.08-5.03 (m, 1H), 2.65-2.52
(m, 2H), 2.19 (app dd, J = 13.7, 6.8 Hz, 1H), 2.11 (app dd, J = 13.7, 8.1 Hz, 1H), 1.84—
1.76 (m, 3H), 1.68-1.63 (m, 1H), 1.10 (s, 3H); "C NMR (75 MHz, CDCl,) & 204.7,
152.5,133.8, 128.6. 118.6,47.2,45.1,42.7, 38.2,27.1, 18.4; IR (Neat Film NaCl) 3076,
3011, 2962, 2934, 2870, 1659, 1454, 1402, 1373, 1349, 1335, 1278, 1208, 1172, 997,
916, 874, 822, 772 cm’'; HRMS (EI+) m/z calc'd for C,,H,;O [M]*: 164.1201; found

164.1209; [a],'? =9.55° (¢ 1.07, CHCl,, 88% ee).

base
additive
—_——
solvent
temp

231

Ring contraction screen to produce acylcyclopentene 225. A benzene solution of

B-hydroxyketone 231 was transferred to a dry 1-dram vial and concentrated in vacuo to
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obtain a starting mass. To this vial was added a stir bar, 1,4-diisopropylbenzene (by

mass, as internal standard), and the contents were solvated in either --BuOH or THF (0.1
M). After complete solvation, an appropriate additive (--BuOH, TFE, or HFIP; 1.5
equiv) followed by a base (1.5 equiv) were added, the head space of the vial was purged
with nitrogen, and the vial was capped with a teflon-lined cap and placed on the
appropriate heating block (40 or 60 °C). Reaction progress was initially followed by
TLC analysis, and when necessary aliquots were removed and flushed through a small
Si0, plug with EtOAc for GC analysis. GC conditions: 90 °C isothermal for 5 min, then
ramp 10 °C/min to 250 °C, DB-WAX column, #; (min): 1,4-diisopropylbenzene = 5.3,

acylcyclopentene 225 = 9.3, B-hydroxyketone 231 = 17.1 and 17.2 (two diastereomers).

LiOH
CF,CH,0H

THF,60°C \™ '

(96% yield)
231, 1.5:1dr 225

\

Scale-up of acylcyclopentene 225. To a solution of B-hydroxyketone 231 (6.09 g,
33.4 mmol, 1.0 equiv) dissolved in THF (334 mL, 0.1 M) in a 500 mL flask was added
2,2 2-trifluoroethanol (5.04 g, 3.67 mL, 50.1 mmol, 1.5 equiv) and LiOH (1.20 g, 50.1
mmol, 1.5 equiv). The flask was fitted with a reflux condenser, purged with a stream of
N,, and placed in a 60 °C oil bath. After 18 h the suspension was allowed to cool to
ambient temperature, diluted with Et,0 (150 mL), dried over Na,SO, (30 min stirring),
filtered, and concentrated carefully under vacuum allowing for a film of ice to form on

the outside of the flask. The crude product was purified by flash chromatography on

SiO, (5 x 15 cm, 15:1 hexanes/Et,0) and concentrated carefully to afford
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acylcyclopentene 225 (5.29 g, 32.2 mmol, 96% yield) as a colorless fragrant oil. R, =

0.67 (4:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCL,) & 6.45 (app t, J = 1.7 Hz, 1H),
5.76 (dddd, J = 164, 10.7, 7.3, 7.3 Hz, 1H), 5.07-5.03 (comp m, 2H), 2.59-2.48 (comp
m, 2H), 2.21-2.14 (comp m, 2H), 2.30 (s, 3H), 1.85 (ddd, J = 12.9, 8.3, 6.3 Hz, 1H), 1.64
(ddd, J = 6.1, 8.5, 12.9 Hz), 1.11 (s, 3H); "C NMR (126 MHz, CDCl,) & 197.5, 151.9,
143.8, 1349, 117.8, 50.0, 45.3, 36.0, 29.7, 26.8, 25.6; IR (Neat Film NaCl) 3077, 2956,
2863, 1668, 1635, 1616, 1454, 1435, 1372, 1366, 1309, 1265, 1213, 1177, 993, 914, 862
cm’'; HRMS (EI+) m/z calc'd for C,H,,O [M]": 164.1201; found 164.1216; [a],™"*
+17.3° (¢ 0.955, CHCl,, 88% ee). GC conditions: 80 °C isothermal, GTA column, 7

(min): major = 54.7, minor = 60.2.

semicarbazide-HCI

h

hexanes/PhMe (1:1)

’

NaOAc, H,0, 60 °C recrystallize twice

(92% yield) (68% yield)

232 \ 232 \
91% ee 98% ee

Semicarbazone 232. A 15 mL round-bottom flask was charged with sodium acetate
(150 mg, 1.83 mmol, 1.2 equiv), and semicarbazide hydrochloride (204 mg, 1.83 mmol,
1.2 equiv). The solids were dissolved in purified water (1.7 mL). Acylcyclopentene 225
(250 mg, 1.52 mmol, 1.0 equiv) was added neat and the mixture was heated to 60 °C for
4 h. The slurry was allowed to cool to ambient temperature while stirring and vacuum
filtered (water aspirator). The white solid was dried under reduced pressure to afford
semicarbazone 232 (311 mg, 1.41 mmol, 92% yield). The ee of 232 at this point was

found to be 91% (measured by hydrolysis to acylcyclopentene 225). Semicarbazone 232
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(300 mg, 1.36 mmol) was transferred to a round-bottom flask, the solids were

suspended in toluene/hexanes (1:1), and the mixture was heated to 90 °C with stirring.
After a few minutes stirring, the solids had dissolved completely to afford a clear,
colorless solution. Heating was discontinued and the stirring mixture was allowed to cool
to 23 °C while still immersed in the oil bath. After 10 h had elapsed, the slurry was
vacuum filtered to afford 232 (246 mg, 1.11 mmol, 82% yield). The ee at this point was
found to be 94.5% (measured by hydrolysis to 225 and chiral GC analysis). A second
recrystallization following the above procedure (241 mg, 1.09 mmol) afforded 232 (201
mg, 0.908 mmol, 83% yield). The ee at this point was found to be 97.9% (measured by
hydrolysis to 225). R, = 030 (9:1 CHCly/MeOH); mp = 145-146 °C (l:1
toluene/hexanes); 'H NMR (300 MHz, CDCIl,) & 8.52 (br s, 1H), 6.06 (br s, 1H), 5.85
(app t,J=1.6 Hz, 1H), 5.76 (dddd, J = 16.7,9.3,7.4,7.4 Hz, 1H), 5.47 (br s, 1H), 5.06—
4.98 (comp m, 2H), 2.67-2.49 (m, 2H), 2.15-2.12 (m, 2H), 1.98 (s, 3H), 1.82 (ddd, J =
12.8,8.2,6.9 Hz, 1H), 1.62 (ddd, J = 12.8, 8.5, 6.4 Hz, 1H), 1.07 (s, 3H); "C NMR (75
MHz, CDCl,) 0 158.1, 145.0, 141.7, 141.2, 1356, 117.2, 49.2, 459, 36.2, 30.8, 26.3,
12.8; IR (Neat Film NaCl) 3473, 3266, 3189, 2946, 2858, 1698, 1579, 1478, 1437, 1377,
1349, 1321, 1130, 1109, 993, 910, 845, 768 cm™'; HRMS (TOF MS ES+) m/z calc'd for
C,,H,(N;O [M + HJ*": 222.1606; found; 222.1610; [a],*'” +39.8° (¢ 0.84, CHCl,, 97.9%

ee).

6 M HCI (aq)
é
THF/H,0, 23 °C

(93% yield)

232 \ 225
98% ee 98% ee
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Hydrolysis to acylcyclopentene 225. Semicarbazone 232 (191.8 mg, 0.867
mmol) was dissolved in THF (1.92 mL) and aq HCI (3.84 mL, 6 M) was added. The
resulting biphasic mixture was stirred vigorously at 23 °C for 30 h. The reaction mixture
was diluted with Et,0 (10 mL), the phases were separated, and the aqueous phase was
extracted with Et,0 (2 x 10 mL). The combined organics were dried over MgSO,,
filtered and concentrated carefully under vacuum allowing for a film of ice to form on the
outside of the flask. The residue was filtered through a short pad of SiO, (4:1
hexanes/Et,0) to afford 225 (132.6 mg, 0.81 mmol, 93% yield); [a]p™'* +19.6° (¢ 1.035,

CHCl,, 97.9% ee).

|
H H
4-iodobenzyl amine N\n/N

m-xylene, 150 °C o o

(89% yield)

233

Iodoarene 233. To a solution of semicarbazone 232 (50 mg, 0.23 mmol, 91% ee, 1.0
equiv) in m-xylene (2.2 mL) was added 4-iodobenzylamine (63 mg, 0.27 mmol, 1.2
equiv). The resulting pale yellow solution was immersed in a 150 °C oil bath. After 9 h,
the mixture was allowed to cool to ambient temperature and concentrated under reduced
pressure to afford a pale yellow solid. The crude solid was purified by flash
chromatography on SiO, (9:1 — 7:3 hexanes/EtOAc) to afford iodoarene 233 (88 mg,
0.20 mmol, 89% yield) as a white solid. X-ray-quality crystals were obtained by slow
vapor diffusion of pentane into a chloroform solution of 233. R, = 0.52 (9:1

CHCl1,/MeOH); mp = 123-124°C (CHCl,/n-pentane); 'H NMR (500 MHz, CDCl,) § 7.88
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(s, 1H), 7.66-7.64 (m, 2H), 7.08 (d, J = 8.5 Hz, 2H), 6.50 (t, J = 6.1 Hz, 1H), 5.86

(app t, J = 1.5 Hz, 1H), (dddd, J = 16.9, 9.0, 7.6,7.6 Hz, 1H), 5.04-5.01 (comp m, 2H),
4.46 (d,J=6.3 Hz, 2H), 2.60-2.49 (comp m, 2H), 2.18-2.10 (comp m, 2H); 1.95 (s, 3H),
1.82 (ddd, J =129, 8.5, 6.3 Hz, 1H), 1.62 (ddd, J = 12.9, 8.5, 6.1 Hz, 1H), 1.07 (s, 3H);
"C NMR (126 MHz, CDCl,) § 156.3, 144.5, 141.5, 141.4, 139.2, 137.8, 135.6, 1294,
117.2,92.6, 49.3, 459, 43.2, 36.2, 30.9, 26.3, 12.5; IR (Neat Film NaCl) 3411, 3194,
3075, 2946, 2920, 2863, 1677, 1528, 1486, 1401, 1323, 1259, 1142, 1114, 1057, 1000,
913, 845 cm™'; HRMS (FAB+) m/z calc'd for C,,H,sN,OI [M + H]*: 438.1043; found

438.1036; [a],>* +31.4° (¢ 0.385, CHCL,, 91% ee).

234

H0\></OH

PPTS, PhMe
110 °C, Dean-Stark

(82% yield)

225

Acetal 235. To a solution of acylcyclopentene 225 (5.29 g, 32.2 mmol, 1.0 equiv) in
toluene (322 mL) in a 1 L round-bottom flask was added neopentyl glycol (234) (20.1 g,
193.2 mmol, 6.0 equiv) and PPTS (809 mg, 3.22 mmol, 0.1 equiv). The flask was fitted
with a Dean—Stark trap and a condenser and the mixture was placed in a 135 °C oil bath
and heated to reflux. After 25 h the mixture was allowed to cool to ambient temperature,
diluted with Et,0 (250 mL), and poured into sat. aqg NaHCO; (100 mL). The aq phase
was extracted with Et,0 (2 x 100 mL) and the combined organic phases were dried over
Na,SO,, filtered, and concentrated under reduced pressure to afford a white semisolid.
The crude product was purified by flash chromatography on SiO, (1:0 — 99:1 — 98:2

hexanes/EtOAc) to afford acetal 235 (6.59 g, 26.3 mmol, 82% yield) as a pale yellow oil.
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R;=0.62 (7:3 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) 6 5.80 (dddd, J = 16.7,

93,74,74Hz, 1H),5.52 (app t,J = 1.8 Hz, 1H), 5.06-4.99 (comp m, 2H), 3.59 (dd, J =
11.2,0.8 Hz, 1H), 3.51 (dd, J = 11.2, 0.8 Hz, 1H), 3.31 (d, J/ = 11.2 Hz, 2H), 2.37-2.19
(m, 2H), 2.13 (app dt, J = 7.4, 1.1 Hz, 2H), 1.853 (ddd, J = 12.8, 8.2, 6.4 Hz, 1H), 1.63
(ddd, J = 12.8, 8.8, 6.1 Hz, 1H), 1.41 (s, 3H), 1.17 (s, 3H), 1.07 (s, 3H), 0.69 (s, 3H); °C
NMR (75 MHz, CDCl,) & 141.1, 138.2, 136.1, 116.9, 98.8, 71.8, 71.7, 49.0, 46.2, 36 4,
314,298, 27.8, 269, 22.8, 22.2; IR (Neat Film NaCl) 3075, 2952, 2906, 2868, 1640,
1472, 1455, 1182, 1118, 1041, 996, 950, 911, 862 cm'; HRMS (EI+) m/z calc'd for

C,H,,0, [M + H]*: 251.2011; found 251.2011; [a],*** +11.5° (¢ 1.01, CHCl,, 88% ee).

0 OH o 0
HO 255
PPTS
—>
PhMe, 110 °C
Dean-Stark
(%)-225 \ (78% yield) (x)-256 \

Dioxolane 256. To a solution of 225 (388.1 mg, 2.36 mmol, 1.0 equiv) in benzene
(11.8 mL) in a 25 mL round-bottom flask was added ethylene glycol (255) (880 mg, 791
uL, 14.2 mmol, 6.0 equiv) and PPTS (59.4 mg, 0.24 mmol, 0.1 equiv). The flask was
fitted with a condenser and a Dean—Stark trap and immersed into a 115 °C oil bath and
heated to reflux. After 18 h at reflux, the mixture was allowed to cool to ambient
temperature, diluted with Et,0 (50 mL), and washed with brine (10 mL). The aq phase
was extracted with Et,O (2 x 10 mL) and the combined organic phases were dried over
Na,SO,, filtered and concentrated under reduced pressure to give a colorless oil. The
crude product was purified by flash chromatography on SiO, (15:1 — 9:1

hexanes/EtOAc) to afford dioxolane 256 (381.4 mg, 1.83 mmol, 78% yield) as a colorless
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oil. R,=0.49 (7:3 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) 6 5.76 (dddd, J =

17.1, 9.3, 7.6, 7.6 Hz, 1H), 5.50, (br s, 1H), 5.02—4.99 (comp m, 4H), 3.98-3.84 (comp
m, 2H), 2.36 (dddd, /=10.3, 8.1, 5.9, 1.7 Hz, 1H), 2.30 (dddd, J=10.3, 8.1, 6.1, 1.7 Hz,
1H), 2.09 (d, J = 7.3 Hz, 2H), 1.82 (ddd, J = 12.9, 8.5, 6.1 Hz, 1H), 1.62 (ddd, J = 12.7,
8.8, 5.9 Hz, 1H), 1.48-1.47 (m, 3H), 1.03 (s, 3H); "C NMR (126 MHz, CDCl,) § 142.9,
136.0, 135.7, 116.8, 107.4, 64.7, 64.7 (two lines), 48.4, 46.1, 36.8, 30.6, 26.5, 24.0; IR
(Neat Film NaCl) 2951, 2888, 1454, 1372, 1192, 1108, 1043, 996, 946, 912, 858 cm™';

HRMS (EI+) m/z calc'd for C,H,,0, [M — CH,]": 193.1229; found 193.1232.

03

1. 0s04 (2 mol %), 2,6-lutidine
NalO,, dioxane/H,0 (3:1), 0 °C

2. NaBH,, EtOH, 0 °C

(77% yield, two steps)

236 OH

Alcohol 236. To a solution of acetal 235 (1.51 g, 6.03 mmol, 1.0 equiv) in
1 4-dioxane (45 mL) and purified H,O (15 mL) was added 2,6-lutidine (1.29 g, 1.40 mL,
12.0 mmol, 2.0 equiv). The mixture was cooled to 0 °C and NalO, (5.13 g, 24.0 mmol,
4.0 equiv) was added followed by OsO, (30.5 mg, 0.120 mmol, 0.02 equiv). The
resulting suspension was stirred for 4.5 h at 0 °C and then vacuum filtered, rinsing with
EtOAc (100 mL). The aq phase was separated and extracted with EtOAc (2 x 25 mL),
the combined organic phases were dried over Na,SO,, filtered, and concentrated under
reduced pressure to afford the desired product 1.82 g (>100%, contains some 2,6-
lutidine) as a clear brown oil. This material was used in the subsequent step without

purification.
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The crude product was dissolved in EtOH (7.5 mL) and cooled to —21 °C by use
of a MeOH/ice bath. A solution of NaBH, (227.0 mg, 6.00 mmol, 1.0 equiv) dissolved in
EtOH (7.5 mL) and precooled to 0 °C was added dropwise over 25 min to the reaction
mixture via positive pressure cannulation. After an additional 1 h stirring at —21 °C, the
reaction was quenched by slow addition of H,O (4.5 mL). The reaction mixture was
allowed to warm to O °C, concentrated under reduced pressure to ca. 10 mL and extracted
with CH,Cl, (3 x 25 mL), dried over Na,SO,, filtered and concentrated under reduced
pressure to afford a pale brown oil. The crude material was purified by flash
chromatography on SiO, (19:1 — 9:1 — 4:1 hexanes/EtOAc) to afford alcohol 236
(1.18 g, 4.64 mmol, 77% yield over two steps) as a pale yellow oil. R, = 0.38 (7:3
hexanes/EtOAc); '"H NMR (500 MHz, CDCL,) 6 5.57 (app t,J = 1.7 Hz, 1H), 3.71 (ddd, J
=7.3,7.3,54 Hz, 2H), 3.52 (app t, J/ = 11.0 Hz, 2H), 3.34 (11.0 Hz, 2H), 2.38-2.26
(comp m, 2H), 1.88 (ddd, J =129, 8.5, 6.1 Hz, 1H), 1.71 (t,J = 7.3 Hz, 2H), 1.69 (ddd, J
=12.9,8.5,59 Hz, 1H), 142 (s, 3H), 1.21 (t,J = 5.1 Hz, 1H), 1.16 (s, 3H), 1.09 (s, 3H).
0.71 (s, 3H); "C NMR (75 MHz, CDCl,) & 141.1, 138.1, 98.6, 71.7, 60.2, 47.5, 44.1,
36.9,31.1,29.7,27.4,27.1,22.7,22.2; IR (Neat Film NaCl) 3428 (br), 3041, 2951, 2868,
1472, 1456, 1396, 1370, 1353, 1321, 1259, 1242, 1181, 1117, 1082, 1040, 1015, 950,
911, 862, 809, 793 cm™; HRMS (FAB+) m/z calc'd for C;sH,,0, [M + H]": 255.1960;

found 255.1951; [a],"? =3.25° (¢ 0.99, CHCl,, 88% ee).
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(o] 0 l,, PhsP, imidazole

R

CH,Cl,, 0 >23°C

(92% vyield)

236 OH 237 1

Iodide 237. A 25 mL flask was charged with PPh; (881.3 mg, 3.36 mmol, 1.5 equiv)
and imidazole (457.5 mg, 6.72 mmol, 3.0 equiv) and the flask was evacuated and
backfilled with Ar (3x). The solids were dissolved in CH,Cl, (8.0 mL, typically solvated
within 10 min). The flask was wrapped in aluminum foil and I, (869.6 mg, 3.36 mmol,
1.5 equiv) was added. After 10 min, the mixture was cooled to O °C and a solution of
alcohol 236 (571.2 mg, 2.24 mmol, 1.0 equiv) in CH,Cl, (3.0 mL) was added via syringe.
The reaction mixture was stirred at O °C for 1 h and then allowed to warm to 23 °C.
After an additional 3 h stirring, hexanes (11 mL) was added and the resulting slurry was
filtered through a plug of Celite (5 x 1 cm) eluting with hexanes/Et,O (1:1, 100 mL). The
filtrate was concentrated under reduced pressure, resuspended in hexanes (50 mL),
filtered, and concentrated under reduced pressure. The crude material was purified by
flash chromatography on SiO, (1:0 — 99:1 — 98:2 — 90:10 hexanes/Et,0, dry-loaded on
Celite) to afford iodide 237 (753 mg, 2.07 mmol, 92% yield) as a colorless oil. R,=0.71
(7:3 hexanes/EtOAc); '"H NMR (500 MHz, CDCL,) & 5.51 (s, 1H), 3.50 (app t, 11.5 Hz,
2H), 3.34 (d, J = 11.2 Hz, 2H), 3.19-3.06 (comp m, 2H), 2.38-2.25 (comp m, 2H), 2.12-
2.02 (comp m, 2H), 1.84 (ddd,J =13.2,8.8,5.9 Hz, 1H), 1.67 (ddd, J = 13.2, 8.8, 5.6 Hz,
1H), 1.41 (s, 3H), 1.16 (s, 3H), 1.07 (s, 3H), 0.71 (s, 3H); "C NMR (126 MHz, CDCl,)
0 142.5, 136.6,98.6,71.9, 71.9 (two lines), 51.2,46.8, 36.1, 31.4,29.8, 27.5,26.4,22.8,

22.3, 1.1; IR (Neat Film NaCl) 3039, 2956, 2863, 1470, 1450, 1390, 1365, 1315, 1254,
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1173, 1119, 1083, 1039, 1011, 944, 915, 866, 814 cm™'; HRMS (FAB+) m/z calc'd for

CsH,c0,1 [M + H]": 365.0978; found 365.0980; [c],> +31.2° (¢ 1.03, CHCL, 88% ee).

3.7.2.5 MODEL FRAGMENT COUPLING AND C-RING ANNULATION

1. TMSCI, Nal, Et;N, MeCN
o 2. CI,CHCH, n-BuLi, Et,0 0

-43—-0°C
3. Et;N, MeOH, 65 °C

(68% yield over three steps)
257 238

2-Methyl cyclooctenone (238). A 500 mL round-bottom flask was charged with Nal
(18.74 g, 125 mmol, 1.25 equiv), MeCN (140 mL) was added, and the system was
evacuated and backfilled with Ar. Cycloheptanone (257) (11.2 g, 11.8 mL, 100 mmol,
1.0 equiv) was added followed by Et;N (16.7g, 17.4 mL, 125 mmol, 1.25 equiv) and
dropwise addition of TMSCI (12.4 g, 14.6 mL, 114 mmol, 1.14 equiv). The resulting
suspension was stirred at 23 °C for 30 min and then petroleum ether (100 mL) was added.
The biphasic system was stirred vigorously for 10 min, the petroleum ether layer was
decanted, and the MeCN layer was extracted with petroleum ether (3 x 50 mL). The
combined petroleum ether layers were washed with H,O (2 x 50 mL), brine (50 mL),
dried over Na,SO,, filtered, and concentrated under reduced pressure. The crude oil was
purified by short path distillation (8.7 torr, bp = 75-81°C) to afford the desired silyl enol
ether (18.4 g, 99.8 mmol, 99.8% yield) as a colorless oil.

A solution of the above silyl enol ether (8.20 g, 44.5 mmol) in Et,0 (22.8 mL) and
1,1-dichloroethane (17.8 g, 15.1 mL, 180 mmol, 4.0 equiv) in a 250 mL round-bottom

flask was cooled to —40 °C by use of a MeCN/CO,, bath. To this was added n-BuLi
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(58.7 mL, 135 mmol, 2.3 M in hexanes, 3.0 equiv) in a dropwise manner over 3 h by
use of a syringe pump. The resulting mixture was stirred for an additional 1 h at —40 °C,
at which time the reaction was warmed to 0 °C for 2 h, quenched with H,O (20 mL) and
allowed to warm to ambient temperature. The phases were separated and the organic
phase was washed with H,O (4 x 20 mL) until the aqueous phase showed neutral pH.
The organic phase was dried over Na,SO,, filtered, and concentrated under reduced
pressure to afford the desired cyclopropane (11.1 g, 45.0 mmol, quantitative) as a clear,
pale yellow oil. This material was used in the following reaction without further
purification.

To a solution of the above cyclopropane (11.1 g, 45.0 mmol, 1.0 equiv) in MeOH
(136 mL) was added Et;N (41.0 g, 56 mL, 405 mmol, 9.0 equiv). The flask was fitted
with a condenser and the mixture was immersed into a 85 °C oil bath and heated to
reflux. After 65 h, the mixture was allowed to cool to ambient temperature and
concentrated carefully under reduced pressure (the compound is somewhat volatile). The
residue was suspended in pentane (50 mL), filtered, and concentrated under reduced
pressure. The final traces of Et;N were removed by dissolving the residue in Et,O
(100 mL) and washing with KHSO, (20 mL, 1.0 M). The organic phase was dried over
MgSO,, filtered, and concentrated under reduced pressure. The crude material was
purified by flash chromatography on SiO, (1:0 — 19:1 hexanes/Et,0) to 2-methyl
cyclooctenone (239) (4.21 g, 30.5 mmol, 68% yield over three steps) as a colorless oil.
R;=0.43 (4:1 hexanes/Et,0); 'H NMR (300 MHz, CDCL,) 6 6.09 (app tq,J = 6.9, 1.5 Hz,
1H), 2.65-2.61 (comp m, 2H), 2.42-2.35 (comp m, 2H), 1.86—1.77 (comp m, 3H), 1.84

(q, J = 1.4 Hz, 2H), 1.64—1.49 (comp m, 4H); "C NMR (75 MHz, CDCl,) & 208.9,
q
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137.5, 135.0, 42.9, 28.6, 25.9, 23.3, 22.8, 21.1; IR (Neat Film NaCl) 2928, 1685,
1654, 1452, 1377, 1099, 850 cm™'; HRMS (MM: ESI/APCI) m/z calc’d for C,H,;0

[M + H]": 139.1117, found 139.1114.

Li/NHg
i W
then (%)-237, H,0
(75% yield)
238 239

Ketone 239. Ammonia (ca. 5 mL) was condensed into a 2-neck round-bottom flask
fitted with a septum, an argon inlet, and a glass-coated stir bar at =78 °C, and to this was
added lithium wire (9.3 mg, 1.3 mmol, 3.0 equiv). The solution turned dark blue. The
mixture was stirred for 20 min, at which point a solution of 2-methyl cyclooctenone (238,
60.2 mg, 0.436 mmol, 1.0 equiv) in a 0.21 M H,O solution in Et,O (2 mL, prepared by
dissolving H,O (94 uL) in Et,0 (25 mL) in a flame-dried round-bottom flask under
argon) was added via cannula transfer. The vial was further washed and transferred with
a portion of anhydrous Et,O (1 mL). The bright blue color remained after addition and
the solution was stirred for 10 min, at which point a solution of iodide (£)-237 (324 mg,
0.980 mmol, 2.0 equiv) in Et,0 (2 mL) was added dropwise via cannula. During the
addition of iodide (%)-237, the color of the solution changed from blue to colorless and
stirring was continued in the acetone/CO,i) bath. After 2 h, the cooling bath was
replaced with a MeCN/CO,s cooling bath held between —45 and —35 °C. The mixture
was stirred for an additional 2 h, at which point solid NH4CI (523 mg) was added, the
cooling bath was removed, and the reaction was allowed to reach room temperature.

After most of the ammonia had evaporated, the reaction was diluted with H;O (10 mL)
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and Et;O (25 mL). The aqueous layer was extracted with Et,O (5 x 15 mL) and the

combined organics were washed with brine (10 mL), dried with MgSQ,, filtered, and
concentrated. The crude residue was purified by flash chromatography on SiO, (95:5
hexanes/EtOAc) to afford desired ketone 239 (122.9 mg, 0.326 mmol, 75% yield) as
1:1.2 mixture of diastereomers. R;=0.70 (3:7 hexanes/Et,0); '"H NMR (500 MHz, C,D,)
0 major diastereomer: 5.58 (app t,J=1.7 Hz, 1H),3.55(d,/=11.0 Hz, 1H),3.48 (d, J
=11.0 Hz, 1H), 3.31 (d, J = 11.0 Hz, 2H), 2.40-2.36 (comp m, 3H), 2.03 (ddd, J = 10.7,
7.1,3.4 Hz, 1H), 1.81-1.69 (comp m, 3H), 1.62 (s, 3H), 1.60—1.50 (comp m, 3H), 1.42—
1.22 (comp m, 8H), 1.19 (s, 3H), 1.18-1.10 (comp m, 3H), 1.02 (s, 3H), 1.00 (s, 3H),
0.53 (s, 3H); minor diastereomer: 5.56 (app t, J = 1.7 Hz, 1H), 3.52 (d, J = 11.0 Hz,
1H), 3.48 (d,J=10.7 Hz, 1H), 3.30 (d, J = 11.0 Hz, 2H), 2.40-2.36 (comp m, 3H), 2.02
(ddd, J = 10.7, 7.1, 3.4 Hz, 1H), 1.81-1.69 (comp m, 3H), 1.62 (s, 3H), 1.62 (s, 3H),
1.60-1.50 (comp m, 3H), 1.42—-1.22 (comp m, 8H), 1.19 (s, 3H), 1.18-1.10 (comp m,
3H), 1.03 (s, 3H), 1.00 (s, 3H), 0.52 (s, 3H); "C NMR (126 MHz, C,D,) 8 mixture of
two diastereomers: 218.1 (two lines), 142.4 (two lines), 137.9, 137.8, 98.9 (two lines),
71.9, 71.8 (three lines), 49.8 (two lines), 48.7 (two lines), 36.9, 36.8, 36.5 (two lines),
35.9,35.8,34.6,34.5,34.2,34.1,31.9 (two lines), 30.4 (two lines), 29.7, 28.1,28.0, 27 .2,
27.1,26.2, (two lines), 25.3 (two lines), 24.5,22.9,22.2, 22.1, 19.2, 19.1; IR (Neat Film
NaCl) 2932, 2858, 1698, 1469, 1448, 1396, 1368, 1254, 1239, 1180, 1117, 1083, 1040,
950, 911, 863, 810, 793 cm'; HRMS (FAB+) m/z calc'd for C,,H,,0, [M + HJ":

377.3056; found 377.3043.
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RhH(PhsP) )
(o] (2_5 mols%;‘ OS|Me2Ph
[
PhMe,SiH
THF, 30 °C
238 (76% yield) 240

Silyl enol ether 240. Enone 238 (100 mg, 0.724 mmol, 1.0 equiv) was placed in a 1-
dram vial, evacuated and backfilled with N, (3x), and solvated in THF (350 uL). A
separate flask containing RhH(PPh;), (209 mg, 0.0181 mmol, 0.025 equiv) was
evacuated and backfilled with N, (3 cycles with 5 min evacuation per cycle) and then
THF (1.1 mL) was added. A separate vial containing an excess of PhMe,SiH was
degassed by evacuation/backfilling with N, (3x). The required amount of PhMe,SiH
(631 mg, 720 uL, 4.63 mmol, 6.4 equiv) was added to the catalyst suspension via syringe
and the resulting clear orange solution was immersed in a 30 °C oil bath. After 10 min,
the THF solution of enone 238 was added via positive pressure cannulation. After 25 h
the reaction was allowed to cool to ambient temperature, filtered through a plug of SiO,
(2 x 1 cm, Et,0) and concentrated under reduced pressure to afford a pale orange oil.
The crude material was purified by flash chromatography on SiO, (99:1 — 98:2
hexanes/PhH) to afford silyl enol ether 240 (150.2 mg, 0.547 mmol, 76% yield) as a
colorless oil. R, = 0.52 (hexanes); 'H NMR (300 MHz, CDCL,) § 7.65-7.61 (comp m,
2H), 7.42-7.34 (comp m, 3H), 2.18-2.14 (comp m, 2H), 2.06-2.02 (comp m, 2H), 1.59
(s, 3H), 1.55-1.38 (comp m, 8H), 0.44 (s, 6H); "C NMR (75 MHz, CDCL,) § 145.1,
138.7,133.5, 129.6, 1279, 1139, 31.9, 31.6, 290, 28.7, 26.8, 26.5, 16.1, -0.4; IR (Neat
Film NaCl) 3075, 2951, 2863, 1638, 1468, 1450, 1393, 1370, 1254, 1241, 1179, 1117,
1080, 1037, 1011, 995, 949, 910, 861, 809 cm™; HRMS (FAB+) m/z calc'd for C,,H,0Si

[M]": 274.1753; found 274.1752.
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. MeLi, Me,Zn
OSiMe,Ph THF/HMPA, —78 °C; (o) %
> 0 °
(t)-237, -78 —» 23 °C

(80% yield)
240 239

Ketone 239. Silyl enol ether 240 (39.7 mg, 0.145 mmol, 1.0 equiv) was placed in a
10 mL round-bottom flask, the flask was evacuated and backfilled with N, (3x), solvated
in THF (1.45 mL, 0.1 M) and cooled to 0 °C. To this solution was added MeLi (57 uL,
0.152 mmol, 2.66 M in dimethoxymethane, 1.05 equiv) was added dropwise over 5 min.
After an additional 1 h stirring at 0 °C, HMPA (260 mg, 252 uL, 1.45 mmol) was added
in a dropwise manner over 5 min, at which point the reaction was cooled in a dry
ice/acetone bath to —78 °C. The resulting clear solution mixture was stirred for 10 min
followed by dropwise addition of Me,Zn (145 uL, 0.145 mmol, 1.0 M in heptane, 1.0
equiv). After an additional 10 min, a solution of iodide (+)-237 (63.4 mg, 0.0174 mmol)
in THF (200 uL) was added dropwise over 2 min. After 1 h at —78 °C, the reaction was
allowed to gradually warm to ambient temperature. After a further 21 h at 23 °C, the
reaction mixture was diluted with Et,0 and washed with H,O (10 mL). The aqueous
phase was extracted with Et,O (2 x 10 mL) and the combined organic phases were dried
over Na,SO,, filtered, and concentrated under reduced pressure. The crude oil was
purified by flash chromatography on Si0O, (99:1 — 98:2 — 95:5 — 90:10 hexanes/Et,0)
to afford ketone 239 (439 mg, 0.117 mmol, 80% yield) as a 1:1.25 mixture of

diastereomers.
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% j
LiAlH4, THF, 0 °C
0 4 ’
o (o] > OH
then 10% HCI
0—»21°C
239 241

(81% yield)

Ketoalcohol 241. To THF (12.5 mL) cooled to 0 °C was added LiAIH, (56.9 mg,
1.50 mmol, 1.2 equiv) followed by dropwise addition of a solution of ketone 239
(472 mg, 1.25 mmol, 1.0 equiv) in THF (4.7 mL). The suspension was stirred at 0 °C for
1.5 h and quenched by slow dropwise addition of 10% HCI (10 mL). The biphasic
mixture was stirred at O °C for 2 h, allowed to warm to 23 °C and stirred for an additional
30 min. The reaction was diluted with Et,O (25 mL), the phases were separated, and the
aqueous phase was extracted with CH,Cl, (2 x 25 mL). The combined organic phases
were dried over MgSQ,, filtered, and concentrated under reduced pressure. The crude
material was purified by flash chromatography on SiO, (7:3 hexanes/EtOAc) to afford a
mixture of diastereomers of ketoalcohol 241 (296 mg, 1.01 mmol, 81% yield) as a
colorless viscous oil. R; = 0.22 (7:3 Hexanes-Et,0); 'H NMR (500 MHz, CDCl,) &
major set of diastereomers: 6.48 (q, J = 1.7, 2H), 3.69 (app d, J = 7.1 Hz, 1H), 3.68
(app d, J = 7.1 Hz, 1H), 2.56-2.52 (comp m, 4H), 2.30 (s, 6H), 1.95-1.20 (comp m, 36
H), 1.10 (s, 6H), 1.09 (s, 6H); minor set of diastereomers: 6.47 (q,J =2.2 Hz, 2H), 3.76
(app d, J = 8.8 Hz, 2H), 2.56-2.52 (comp m, 4H), 2.30 (s, 6H), 1.95-1.20 (comp m, 36
H), 0.96 (s, 3H), 0.95 (s, 3H), 0.78 (two lines, s, 3H each); *C NMR (126 MHz, CDCl,)
0 mixture of four diastereomers: 197.7 (two lines), 152.9 (two lines), 152.8, 143.4 (two
lines), 78.2 (two lines), 77.5, 50.1 (two lines), 50.0 (two lines), 40.3 (two lines), 39.6
(two lines), 36.3, 36.2, 35.3, 35.2, 34.7 (three lines), 34.5 (two lines), 33.6 (two lines),

32.3, 32.3 (three lines), 32.1, 29.7, 29.6, 29.1 (two lines), 28.1 (two lines), 27.9 (two
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lines), 26.8, 26.6 (two lines), 26.0, 25.8, 25.6 (two lines), 25.5, 25.4, 23.7,22.7,22.2
(two lines), 19.3; IR (Neat Film NaCl) 3468, 3039, 2925, 2853, 1667, 1618, 1468, 1447,
1377, 1365, 1305, 1269, 1204, 1044, 964, 944, 871 cm™'; HRMS (EI+) m/z calc'd for

C,,H,,0, [M]*: 292.2402; found 292.2401.

)
TCDI \lé
L
oH DMAP (30 mol %) . J
CH,Cl,, 23 °C
(98% yield)
241 242

Imidazoyl thiocarbonate 242. To a solution of ketoalcohol 241 (66.0 mg,
0.226 mmol, 1.0 equiv) in CH,Cl, (4.7 mL) was added DMAP (8.28 mg, 0.068 mmol, 0.3
equiv) and 1,1’-thiocarbonyldiimidazole (TCDI) (201.4 mg, 1.13 mmol, 5.0 equiv). The
resulting yellow solution was stirred at 23 °C. After 29 h, the reaction mixture was
concentrated under reduced pressure and the crude material was purified by flash
chromatography on Si0O, (9:1 — 4:1 hexanes/EtOAc) to afford imidazoyl thiocarbonate
242 (89.2 mg, 0.222 mmol, 98% yield) as a viscous colorless oil. R, = 0.19 (7:3
hexanes/EtOAc); '"H NMR (500 MHz, CDCl;) § major set of diastereomers: 8.32 (s,
1H), 8.30 (s, 1H), 7.60 (s, 2H), 7.03 (s, 2H), 6.37 (s, 1H), 6.34 (s, 1H), 5.65 (app d, J =
8.5 Hz, 2H), 2.63-2.53 (comp m, 2H), 2.53-2.42 (comp m, 2H), 2.23 (s, 3H), 2.21 (s,
3H), 2.09-2.03 (comp m, 2H), 1.84—1.22 (comp m, 34 H), 1.03 (s, 6H), 1.02 (two lines, s,
3H each); minor set of diastereomers: 8.30 (s, 1H), 8.29 (s, 1 H), 7.59 (s, 1H), 7.55 (s,
1H), 7.03 (s, 2H), 6.45 (s, 1H), 6.44 (s, 1H), 5.77 (app d, J = 9.3 Hz, 2H), 2.63-2.53
(comp m, 2H), 2.53-2.42 (comp m, 2H), 2.31 (two lines, s, 3H each), 2.09-2.03 (comp

m, 2H), 1.84-1.22 (comp m, 34 H), 1.13 (two lines, s, 3H each), 0.95 (s, 3H), 0.94 (s,
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3H) ; ”C NMR (126 MHz, CDCl;) 8 mixture of four diastereomers: 197.5, 197.4

(two lines), 184.1, 152.0, 151.9 (two lines), 151.8, 143.8, 143.7, 143.6 (two lines), 136.8,
136.7, 130.9 (two lines), 118.0, 117.9, 117.8,91.7,91.6,91.3,91.2 50.0, 49.9, 49.7 (two
lines), 40.2 (two lines), 39.9 (two lines), 36.3, 36.1 (two lines), 36.0, 35.2, 34.8, 34.7,
34.6,34.5,34.4,32.5,32.4,32.3,31.3, 30.5 (two lines), 29.9, 29.8, 29.7, 29.6, 28.7, 28.6,
27.6,27.4 (two lines), 26.8 (two lines), 26.7, 26.4,26.2,25.7, 25.6, 25.3 (two lines), 25.1
(two lines), 23.3 (two lines), 22.6 (two lines), 22.1 (two lines), 21.5, 21.4; IR (Neat Film
NaCl) 3158, 3121, 2930, 2853, 1664, 1618, 1530, 1460, 1383, 1328, 1282, 1228, 1099,
1037, 1013, 967, 889, 871, 830, 734 cm™; HRMS (EI+) m/z calc'd for C,;H,,N,O,S [M]":

402.2341; found 402.2354.

N ﬁ (o}
\
N lo) AIBN
\775 (25 mol %)
—»
o n-BuzSnH
PhH, reflux
(83% yield)
242 243

Ketone 243. Imidazoyl thiocarbonate 242 (41.2 mg, 0.102 mmol, 1.0 equiv) was placed
in a 50 mL round-bottom 2-neck flask fitted with a condenser, solvated in PhH
(18.4 mL), and the solution was sparged with N, for 1 h. The reaction mixture was
immersed into an 85 °C oil bath and heated to reflux. A separate flask was charged with
AIBN (4.19 mg, 0.026 mmol, 0.25 equiv), evacuated and backfilled with N, (3x), and
PhH (2.0 mL, sparged with N, for 1 h prior to use) was added followed by n-Bu,;SnH
(59.4 mg, 54 uL, 0.204 mmol, 2.0 equiv). The solution of AIBN/n-Bu,SnH was added
dropwise to substrate 242 over 5 h via syringe pump. The reaction was stirred for an

additional 12 h at reflux, allowed to cool to ambient temperature, and concentrated under
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reduced pressure to afford a pale yellow oil. The crude oil was purified by flash
chromatography on SiO, impregnated with AgNO; (hexanes eluent) to afford a mixture
of diastereomers of the desired ketone 243 (234 mg, 0.0846 mmol, 83% yield) as a
colorless oil. Samples of sufficient purity for characterization were obtained by flash
chromatography (1:0 — 99:1 — 98:1 hexanes/Et,O) and subsequent preparative TLC on
Si0O, (20 x 20 cm, PhMe, developed thrice) of the fractions containing mainly the desired
set of diastereomers.

Major diastereomer. R, = 0.52 (4:1 hexanes/Et,0); 'H NMR (600 MHz, CDCl,)
03.27 (ddd, J = 10.8,7.3, 7.3 Hz, 1H), 2.38 (app dt, J = 7.0, 1.2 Hz, 1H), 2.27-2.22 (m,
1H), 2.20 (s, 3H), 1.78-1.74 (m, 2H), 1.67-1.10 (comp m, 12H), 0.98 (s, 3H), 0.96 (s,
3H), 0.89-0.81 (comp m, 6H); "C NMR (126 MHz, CDCl,) § 210.3, 56.9, 49.5, 42.7,
420, 379, 364, 34.6,31.7,31.6,31.5,30.9, 304, 26.8, 260, 25.6, 23.3, 23.0, 22.4; IR
(Neat Film NaCl) 2920, 2853, 1708, 1460, 1377, 1199, 1179 cm™; HRMS (EI+) m/z
calc'd for C,,H;,0 [M]*: 276.2453; found 276.2450.

Minor set of diastereomers. R, = 0.58 (4:1 hexanes/Et,0); 'H NMR (500 MHz,
CDCLy) 6 2.90 (ddd, J = 10.0, 8.3, 5.6 Hz, 1H), 2.71-2.64 (m, 1H), 2.35 (app t, J =
7.3 Hz, 1H), 2.17 (s, 3H), 2.16 (s, 3H), 2.07-1.85 (comp m, 4H), 1.76-1.06 (comp m,
33H), 1.04 (s, 3H), 1.03 (s, 3H), 1.00-0.82 (comp m, 6H), 0.77 (s, 3H), 0.76 (s, 3H); °C
NMR (126 MHz, CDCl,) 0 211.5, 211.2, 58.8, 55.9, 44.6, 44.5, 41.3, 40.9 (two lines),
39.6,36.4,35.2,34.6,34.0,33.1,32.1, 32.0, 30.7, 29.9 (two lines), 29.5,29.4,29.2,29.0,
28.8,28.7,27.9,27.2,264,26.2,258,254, 246, 245,243,228, 22.1, 19.8; IR (Neat
Film NaCl) 2919, 2848, 1737, 1711, 1460, 1383, 1352, 1261, 1173 cm'; HRMS (EI+)

m/z calc'd for C,,H;,0 [M]*: 276.2453; found 276.2441.
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3.7.2.6 ASYMMETRIC AB RING AND D-RING FRAGMENT COUPLING

-45 - -35 °C
_—
then 237, H,0

223 (R = Me) 244 (R = Me) 246 (R = Me)
222 (R=H) 245 (R=H) 247 (R=H)
major product desired product
not observed

Attempted reductive alkylation of the asymmetric AB and D-ring systems.
Reductive alkylations of cyclooctadienones 223 and 222 were attempted using the
Li/NH; conditions with a large excess of iodide 237 described above to afford the enolate
protonation product ketones 244 and 245, respectively, as the only products.

o.-Methyl cyclooctanone 244. 'H NMR (500 MHz, C,.D,) 6 4.84—4.80 (m, 1H),
4.42-4.39 (m, 1H), 4.25 (dm, J = 12.5 Hz, 1H), 4.08 (dm, J = 12.5 Hz, 1H), 3.07 (dm,
J =165 Hz, 1H), 2.98 (br m, 1H), 2.61-2.54 (m, 1H), 2.39-2.32 (m, 1H), 1.79-1.76 (m,
3H), 1.66-1.58 (m, 1H), 1.44-1.38 (m, 1H), 1.15 (dm, J = 14.0 Hz, 1H), 0.88 (d,J=7.5
Hz,3H),0.86 (d, J = 3H).

Cyclooctanone 245. R, =0.28 (3:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) &
5.39-5.35 (m, 1H), 4.64 (ddd, J = 6.5,3.1, 3.1 Hz, 1H), 4.43 (d pentets, J = 12.6, 1.9 Hz,
1H), 4.27-4.22 (m, 1H), 3.47-3.41 (m, 1H), 3.16-3.14 (m, 1H), 2.98-2.92 (m, 1H), 2.72
(ddd, J =13.6,5.3,2.7 Hz, 1H), 2.38-2.32 (m, 1H), 2.20-2.04 (comp m, 3H), 1.83-1.78

(m, 1H), 1.77-1.75 (comp m, 2H), 0.91 (d, J = 7.3 Hz, 3H); *C NMR (126 MHz, CDCL,)
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8 213.8, 143.3, 112.6, 88.5, 73.3, 48.9, 474, 460, 44.6, 40.4, 38.1, 24.1, 16.5; IR
(Neat Film NaCl) 2952, 2918, 1707, 1432, 1246, 1145, 1074 cm’; HRMS (MM:
ESI/APCI) m/z calc’d for C;H,,0, [M — HJ*: 205.1234, found 205.1225; [a],2 —4.35°

(c 0.953, CHCl;, 98% ee).

Li/NH3, THF
-45 — -35 °C
—»
then Mel

222 244 245
80% yield, >10:1 dr minor

a.-Methyl cyclooctanone 244. Ammonia (ca. 5 mL) was condensed into a 2-neck
round-bottom flask fitted with a septum, an argon inlet, and a glass-coated stir bar cooled
to —78 °C, and to this was added lithium wire (3.3 mg, 0.5 mmol, 11 equiv). The solution
turned dark blue. The cooling bath was replaced with a MeCN/COy) bath held between
—45 and -35 °C. The mixture was stirred for 20 minutes, at which point
cyclooctadienone 22 (9.3 mg, 0.045 mmol, 1.0 equiv) in THF (1 mL) was added
dropwise via cannula transfer. The vial was further washed and transferred with a
portion of anhydrous THF (1 mL). The bright blue color remained after addition. As
quickly as possible, Mel (100 uL, 1.61 mmol, 35 equiv) was added to the stirred solution
by syringe, and the reaction color changed from blue to clear. After 1 h, solid NH4Cl
(100 mg) was added to the reaction, the cooling bath was removed, and the reaction was
allowed to reach room temperature. After most of the ammonia had evaporated, the
reaction was diluted with H,O (10 mL) and Et;O (25 mL). The aqueous layer was
extracted with Et;O (5 x 15 mL) and the combined organics were washed with brine (2 x

10 mL), dried with MgSQsy, filtered and concentrated. The crude residue was purified by
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flash chromatography on SiO, (2 x 10 cm, 25:1 — 10:1 hexanes/EtOAc) to afford
a-methyl cyclooctanone 244 (8.0 mg, 36 umol, 80% yield) as a single major

diastereomer with a minor amount of cyclooctanone 245.

Li/NH3, +-BuOH
THF, -45 — —35 °C

then allyl bromide

222 248 245
72% yield, >10:1 dr minor

a-Allyl cyclooctenone 248. Ammonia (ca. 7 mL) was condensed into a 2-neck
round-bottom flask fitted with a septum, an argon inlet, and a glass-coated stir bar cooled
to =78 °C, and to this was added lithium wire (5.6 mg, 0.81 mmol, 45 equiv). The
solution turned dark blue. The cooling bath was replaced with a MeCN/CO,, bath held
between —40 and —35 °C. The mixture was stirred for 20 minutes, at which point
cyclooctadienone 222 (3.7 mg, 0.018 mmol, 1.0 equiv) dissolved in a 0.009 M -BuOH
solution in THF (2 mL, prepared by dissolving +-BuOH (21.5 uL) in THF (25 mL) in a
flamed dried round-bottom flask under argon) was transferred dropwise via cannula. The
bright blue color remained after addition and the solution was stirred for 30 s, after which
allyl bromide (200 uL, 2.31 mmol, 128 equiv) was added by syringe. Stirring was
continued for 30 min after which the cold bath was removed, NH4Cl (420 mg) was added
in a single portion and the reaction was allowed to reach room temperature. The reaction
was diluted with H,O (5 mL) and extracted with Et,0 (5 x 20 mL). The combined
organics were washed with H,O (5 mL) then brine (5 mL), dried with MgSQO,, and
concentrated in vacuo. The crude residue was purified by flash chromatography on SiO,

(15:1 — 4:1 hexanes/EtOAc) to afford a-allyl cyclooctanone 248 (3.2 mg, 13 wmol, 72%
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yield) as a single major diastereomer with a minor amount of cyclooctanone 245. 'H

NMR (500 MHz, CDCl,) § 5.66-5.58 (m, 1H), 5.31-5.29 (m, 1H), 5.01-4.96 (m, 2H),
4.58-4.56 (m, 1H), 4.36 (d m,J =11 Hz, 1H), 4.17 (m,J = 11 Hz, 1H),3.44 (d m, J =
15.5 Hz, 1H), 3.07 (br m, 1H), 2.76-2.70 (m, 1H), 2.52-2.38 (m, 1H), 2.28-2.23 (m, 2H),

2.08-1.97 (m, 2H) 1.87-1.79 (m, 2H), 1.70-1.64 (m, 2H), 0.82 (d, J = 7.5 Hz, 3H).

Nal, TMSCI

Et;N, MeCN

244 (R = Me) 249 (R = Me)
248 (R = allyl) 250 (R = allyl)
exclusive product

Representative procedure for the soft enolization to silyl enol ethers 249 and 250.
To a solution of sodium iodide (1.2 mg, 0.008 mmol, 2 equiv) and a-allyl cyclooctanone
248 (1.0 mg, 0.004 mmol, 1 equiv) in MeCN (0.5 mL) was added EtsN (162 uL of a
0.05 M solution in MeCN, 0.008 mmol, 2 equiv) followed by TMSCI (121 uL of a
0.05 M solution in MeCN, 0.006 mmol, 1.5 equiv). After 1.5 h the solution was diluted
with pentane (1 mL) and stirred for several minutes. The pentane was removed by
pipette and the acetonitrile was further extracted with pentane (4 x 1 mL). The combined
pentane extracts were dried with Na,SOs, filtered and concentrated to afford crude silyl
enol ether 250 (2.0 mg) as a single isomer by 'H NMR analysis. This compound was

used directly in subsequent reactions. R,= unstable to SiO,.
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Alcohol isomer 210 is not reactive under these Mitsunobu conditions.

TLC analysis of the reaction progress indicated cycloadduct 213 as the major
product, however, we are thus far unable to obtain isolated yields due to the
volatility of this compound and its challenging isolation from a large volume of

acetone.
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The catalyst derived from Pd(0) and fluorinated ligand 230 is highly effective for
reactive substrates such as allyl enol carbonates (ref 46). However, alkylation
reactions of vinylogous f3-ketoester (+)-181 using this catalyst proceed at a slow
rate, even with 10 mol % of the palladium complex, presumably due to a slower
rate of decarboxylation. The related increase in reaction times often result in

catalyst decomposition prior to complete conversion of substrate.

The remarkable stability of p-hydroxyketone 231 is likely the result of
transannular interactions or some other form of ring strain. This is comparable to

the observation that cycloheptane-1,3-dione (227) exists exclusively in the diketo-
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APPENDIX 1

Synthetic Summary toward the Asymmetric

Total Synthesis of Variecolin

Scheme Al.1. Retrosynthetic analysis of variecolin

Variecolin (95) 175 179 180

asymmetric
alkylation
OH
178




Appendix 1 —Synthetic Summary toward the Total Synthesis of Variecolin

189

Scheme A1.2. Intramolecular cycloaddition and unsymmetrical ozonolysis toward the AB ring

Novozym 435
?Ac NaH,PO,/K,HPO, ?H CuCN (20 mol %) ?H ?H
@ (pH =8.0) MeMgCl
+
\ 23-24°C Q THF, -20 °C Q Q/
AcO (95% yield) AcO (91% yield)
208 (+)-186 209 (95:5) 210
99% ee
PhCO,H 0Bz OH o
Ph,P, DIAD K,CO, La(OTf); (5 mol %) (P
PhMe, 78 °C MeOH 185 PhMe Fe(CO)s
. 0—23°C
(90% yield) (90% yield)
211 178 (82% yield) 212
98% ee
03, NaHCO;
CH,Cl,/MeOH 0 o
Me3;NO-2H,0 (5:1),-78 °C .
—_ > + o+ minor
I
acetone then Ac,0 aldehydes
fl Et3N, CH,CI
retiux 3 050G 2Cly H OMe
213 (48% combined 214 215
yield)
(o] OMe o] o]

1.4 AMS, MeOH

reflux N +
2. PhyPCH;Br, KOt-Bu ““CO,Me
THF, 0 — 23 °C
(over four steps) 216 217
16% yield 6% yield

HH 9 H owme
214 215
17% yield 6% yield

Scheme A1.3. o-Diazoketone synthesis and Wolff/Cope rearrangement to AB ring fragments

(o) (o}

KOTMS
BN THF ,.o‘%
0->23°C
‘CO,Me ‘CO,H
(92% vyield)
216 218

o uwaves, PhMe
S

(cocl),, DMF
CH,Cly, 0 °C

L

160 °C, 15 min (for 220)

pwaves, heptane
150 °C, 10 min (for 2217)

R
[
R = H (220), 91% yield
R = Me (221), 46-64% yield

then RCHN, (199 or 219)
IRA-67, THF/CH,Cl,
Et,0, 0 °C

R = H (222), 79% yield
R = Me (223), 42% yield
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Scheme A1.4. Asymmetric alkylation and ring contraction to the D-ring fragment

i-BuOH o 1. LDA, PhMe, -78 °C
PPTS then CICO,allyl
E— >
PhMe, reflux i 2. Cs,CO3, Mel
(o] Dean—Stark 0i-Bu MeCN, 80 °C
227 (84% yield) 228 (81% yield, 2 steps)
o
Z o 0 Ph,P N|\>
a 1Bu
(S)-55 g LiAlH,
(Y (3.12 mol %) Et,0,0 °C
Oi-Bu > OiBu T >
Pd,(pmdba); (1.2 mol %) then 10% HCI
PhMe (0.2 M), 30 °C .
(2)-181 e (021) (-)-229 (90% yield)
10.2 g scale 98% yield, 88% ee

234

LiOH \></
CF3CH,0H HO OH
THF, 60 °C PPTS, PhMe
HO 110 °C, Dean-Stark
N (96% yield)
82% yield
231, 1.5:1 dr 225 (62% yield)

1. 0s04 (2 mol %), 2,6-lutidine %
NalO,, dioxane/H,0

I, Ph3P, imidazole

(3:1),0°C N -
2. NaBH,, EtOH, 0 °C o CHyCl5, 0~ 23°C
(77% yield, two steps) (92% yield)
236 OH 237 1

Scheme A1.5. Enrichment of acylcyclopentene 225 for the D-ring fragment

(o]

2! ~
semicarbazide+HClI \n/ N

NaOAc, H,0, 60 °C fo) 6 M HCI (aq)

L

then recrystallize twice

THF/H,0, 23 °C

(63% yield) (93% yield)
232

98% ee

225
98% ee
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Scheme A1.6. AB ring reductive alkylation and soft enolization poised for fragment coupling

Li/NHg, THF/Et,0 0
—-45 —» -35°C o, H., OR +
—»
then Mel or
allyl bromide
244 248 245
80% yield, >10:1 dr 72% yield, >10:1 dr minor
Nal, TMSCI
Et;N, MeCN

249 (R = Me)
250 (R = allyl)
exclusive product

Scheme Al.7. Proposed completion of variecolin

1. LiAlH,, THF AIBN (cat)
then 10% HCI n-BuzSnH
............... > [ R -
2. TCDI, DMAP PhH, reflux
CH,CI,
246 251

1. PhyPCH,Br

KOt-Bu, THF
2. PCC, Py HO

CH,CI,, reflux Dess—Martin
----------------- > S P TTTEEEL
3. i-Bu,AlH, PhMe HO CH,CI,

Emericolin B (105) Variecolin (95)
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APPENDIX 2

Spectra Relevant to Chapter 3:
Progress toward the Asymmetric

Total Synthesis of Variecolin
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Figure A2.2. Infrared spectrum (neat film/NaCl) of 178.

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.3. C NMR spectrum (126 MHz, CDCl;) of 178.
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Figure A2.8. Infrared spectrum (neat film/NaCl) of 181.
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Figure A2.12. Infrared spectrum (neat film/NaCl) of 184.
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Figure A2.13. ?C NMR spectrum (126 MHz, C,D,) of 184.
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Figure A2.15. Infrared spectrum (neat film/NaCl) of 185.
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Figure A2.16. ?C NMR spectrum (126 MHz, C,D,) of 185.
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Figure A2.20. Infrared spectrum (neat film/NaCl) of 188.
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Figure A2.21. ?C NMR spectrum (126 MHz, C,D,) of 188.



208

Appendix 2—Spectra Relevant to Chapter 3

wdd

681 JO (f1DAD ‘ZHW 00§) wnndads YNN H, 72V 9in814

(I




Appendix 2—Spectra Relevant to Chapter 3 209

115.0_

114 4

113 |

112 |

111

110 |

109 |

108 |

107 |

106 |

105 |

%T 104

103 |

102 |

101 ]

100 |

99

98 |

97 |

96 |

95 |

94.0 . . . . .
4000.0 3000 2000 et 1500 1000 000

Figure A2.23. Infrared spectrum (neat film/NaCl) of 189.
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Figure A2.24. ?C NMR spectrum (126 MHz, CDCl;) of 189.
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Figure A2.26. Infrared spectrum (neat film/NaCl) of 190.
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Figure A2.27. ?C NMR spectrum (126 MHz, CDCl;) of 190.
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Figure A2.29. Infrared spectrum (neat film/NaCl) of 191.
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Figure A2.30. ?C NMR spectrum (126 MHz, CDCl;) of 191.
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Figure A2.33. Infrared spectrum (neat film/NaCl) of 193.
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Figure A2.34. ?C NMR spectrum (126 MHz, CDCl;) of 193.
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Figure A2.36. Infrared spectrum (neat film/NaCl) of 197.
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Figure A2.37. ?C NMR spectrum (126 MHz, CDCl;) of 197.
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Figure A2.39. Infrared spectrum (neat film/NaCl) of 198.
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Figure A2.40. ?C NMR spectrum (126 MHz, CDCl;) of 198.
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Figure A2.42. Infrared spectrum (neat film/NaCl) of 200.
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Figure A2.43. ?C NMR spectrum (126 MHz, CDCl;) of 200.
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Figure A2.46. Infrared spectrum (neat film/NaCl) of 201.
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Figure A2.47. ?C NMR spectrum (126 MHz, CDCl;) of 201.
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Figure A2.49. Infrared spectrum (neat film/NaCl) of 203.
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Figure A2.50. ?C NMR spectrum (126 MHz, CDCl;) of 203.
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Figure A2.53. Infrared spectrum (neat film/NaCl) of 209.
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Figure A2.54. ?C NMR spectrum (126 MHz, CDCl;) of 209.
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Figure A2.56. Infrared spectrum (neat film/NaCl) of 211.
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Figure A2.57. ?C NMR spectrum (126 MHz, CDCl;) of 211.
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Figure A2.59. Infrared spectrum (neat film/NaCl) of 212.
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Figure A2.60. ?C NMR spectrum (126 MHz, CDCl;) of 212.
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Figure A2.62. Infrared spectrum (neat film/NaCl) of 213.
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Figure A2.63. ?C NMR spectrum (126 MHz, CDCl;) of 213.
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Figure A2.65. Infrared spectrum (neat film/NaCl) of 214.
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Figure A2.66. ?C NMR spectrum (126 MHz, CDCl;) of 214.
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Figure A2.68. Infrared spectrum (neat film/NaCl) of 215.
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Figure A2.69. ?C NMR spectrum (126 MHz, CDCl;) of 215.
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Figure A2.71. Infrared spectrum (neat film/NaCl) of 216.

TT T T[T T T T [T T[T T T T [ T T T T [T T T[T T T T [T T T T[T T T [T T T[T T[T T T T [T T T T[T T T T [T T[T T T T[T T T T[T T[T T T[T TTT[TTTT[IT1TT]|

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.72. ?C NMR spectrum (126 MHz, CDCl;) of 216.
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Figure A2.74. Infrared spectrum (neat film/NaCl) of 217.
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Figure A2.75. ?C NMR spectrum (126 MHz, CDCl;) of 217.
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Figure A2.77. Infrared spectrum (neat film/NaCl) of 218.
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Figure A2.78. ?C NMR spectrum (126 MHz, CDCl;) of 218.
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Figure A2.80. Infrared spectrum (neat film/NaCl) of 220.
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Figure A2.81. ?C NMR spectrum (126 MHz, CDCl;) of 220.
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Figure A2.83. Infrared spectrum (neat film/NaCl) of 221.
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Figure A2.84. ?C NMR spectrum (126 MHz, CDCl;) of 221.
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Figure A2.86. Infrared spectrum (neat film/NaCl) of 222.

TT T T[T T T T [T I T[T T T [ T T T T[T T T[T T T T [T T T T[T T T T [T T T[T T T[T T I T [T T T T[T T T T [T T[T T T T[T T T[T T [ TITT [T ITT[TTTT[ITTT]

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.87. ?C NMR spectrum (126 MHz, CDCl;) of 222.



253

Appendix 2—Spectra Relevant to Chapter 3

wdd

€2 J0 (F1DAD ‘ZHW 009) wnndads YNN H, 88V 9insl14




Appendix 2—Spectra Relevant to Chapter 3 254

100.0_
98]
96
94
92 |
90 |
88|
86
84 ]

%T
82
80
78
76

74 |

72 |

70

68.0
T T T T 1
4000.0 3000 2000 1500 1000 000

Figure A2.89. Infrared spectrum (neat film/NaCl) of 223.

TT T T[T T T T [T T[T T T[T T T T[T T T[T T T T [T T T T[T T T T [T T T [ T T T[T T I T [T T T T[T T T [T T[T T T T[T T T[T T [ TI T[T ITT[TTTT[IT1TT]

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.90. ?C NMR spectrum (126 MHz, CDCl;) of 223.
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Figure A2.92. Infrared spectrum (neat film/NaCl) of 224.
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Figure A2.93. ?C NMR spectrum (126 MHz, CDCl;) of 224.
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Figure A2.95. Infrared spectrum (neat film/NaCl) of 225.
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Figure A2.96. ?C NMR spectrum (126 MHz, CDCl;) of 225.
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Figure A2.99. Infrared spectrum (neat film/NaCl) of 228.
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Figure A2.100. C NMR spectrum (126 MHz, CDCl;) of 228.
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Figure A2.102. Infrared spectrum (neat film/NaCl) of 229.
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Figure A2.103. C NMR spectrum (126 MHz, CDCl;) of 229.
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Figure A2.105. Infrared spectrum (neat film/NaCl) of 231.
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Figure A2.106. C NMR spectrum (75 MHz, CDCl;) of 231.
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Figure A2.108. Infrared spectrum (neat film/NaCl) of 232.
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Figure A2.109. C NMR spectrum (75 MHz, CDCl;) of 232.
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Figure A2.110. "H NMR spectrum (500 MHz, CDCl,) of 233.
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Figure A2.111. Infrared spectrum (neat film/NaCl) of 233.
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Figure A2.114. Infrared spectrum (neat film/NaCl) of 235.

TT T T[T T T T [T I T[T T T [ T T T T[T T T[T T T T [T T T T[T T T T [T T T[T T T[T T I T [T T T T[T T T T [T T[T T T T[T T T[T T [ TITT [T ITT[TTTT[ITTT]

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.115. C NMR spectrum (75 MHz, CDCl;) of 235.
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Figure A2.117. Infrared spectrum (neat film/NaCl) of 236.
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Figure A2.118. C NMR spectrum (75 MHz, CDCl;) of 236.
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Figure A2.120. Infrared spectrum (neat film/NaCl) of 237.
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Figure A2.121. C NMR spectrum (126 MHz, CDCl;) of 237.
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Figure A2.123. Infrared spectrum (neat film/NaCl) of 238.
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Figure A2.124. C NMR spectrum (75 MHz, CDCl;) of 238.
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Figure A2.126. Infrared spectrum (neat film/NaCl) of 239.
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Figure A2.127. C NMR spectrum (126 MHz, C,D;) of 239.
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Figure A2.129. Infrared spectrum (neat film/NaCl) of 240.
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Figure A2.130. C NMR spectrum (75 MHz, CDCl;) of 240.
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Figure A2.132. Infrared spectrum (neat film/NaCl) of 241.

200 180 160 140 120 100 80 60 40 20 ppm

Figure A2.133. C NMR spectrum (126 MHz, CDCl;) of 241.
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Figure A2.135. Infrared spectrum (neat film/NaCl) of 242.
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Figure A2.136. C NMR spectrum (126 MHz, CDCl;) of 242.
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Figure A2.138. Infrared spectrum (neat film/NaCl) of the major diastereomer of 243.
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Figure A2.139. C NMR spectrum (126 MHz, CDCl;) of the major diastereomer of 243.
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Figure A2.141. Infrared spectrum (neat film/NaCl) of the minor diastereomer of 243.
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Figure A2.142. >C NMR spectrum (neat film/NaCl) of the minor diastereomer of 243.
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Figure A2.144. Infrared spectrum (neat film/NaCl) of 245.
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Figure A2.145. C NMR spectrum (126 MHz, CDCl;) of 245.
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Figure A2.147. Infrared spectrum (neat film/NaCl) of 253.
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Figure A2.148. C NMR spectrum (75 MHz, CDCl;) of 253.
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Figure A2.150. Infrared spectrum (neat film/NaCl) of 254.
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Figure A2.151. C NMR spectrum (126 MHz, CDCl;) of 254.
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Figure A2.154. Infrared spectrum (neat film/NaCl) of 256.
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Figure A2.155. C NMR spectrum (126 MHz, CDCl;) of 256.
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APPENDIX 3

X-Ray Crystallography Reports Relevant to Chapter 3:

Progress toward the Asymmetric Total Synthesis of Variecolin

A3.1 CRYSTAL STRUCTURE ANALYSIS OF 215

Figure A3.1.1. Acetal 215 is shown with 50% probability ellipsoids. Crystallographic data have
been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be
obtained on request, free of charge, by quoting the publication citation and the deposition number

718289.




Empirical formula
Formula weight
Crystallization solvent
Crystal habit

Crystal size

Crystal color

Type of diffractometer
Wavelength

Data collection temperature

0 range for 9805 reflections used

in lattice determination

Unit cell dimensions

Volume

Z

Crystal system

Space group

Density (calculated)
F(000)

Data collection program

0 range for data collection
Completeness to 6 = 35.05°
Index ranges

Data collection scan type
Data reduction program
Reflections collected
Independent reflections
Absorption coefficient
Absorption correction

Max. and min. transmission
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Table A3.1.1. Crystal data and structure refinement for 215 (CCDC 718289)

C,H,,0,

22425
Chloroform/dichloromethane/diethyl ether
Block

0.30 x 0.28 x 0.20 mm’

Colorless

Data Collection

Bruker KAPPA APEX II
0.71073 A MoKa.
100(2) K

3.31to 34.80°

a=63017(3) A
b=11.7387(5) A
¢ = 14.4000(6) A

1065.22(8) A®

4

Orthorhombic

P2,2,2,

1.398 Mg/m?3

480

Bruker APEX2 v2.1-0

2.24 t0 35.05°

97.3%
-10<h=<10,-17<k=<18,23<1<22
 scans; 13 settings

Bruker SAINT-Plus v7.34A

37096

4514 [R, =0.1080]
0.104 mm™!

None

0.9794 and 0.9694
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Table A3.1.1 (cont.)

Structure solution and Refinement

Structure solution program
Primary solution method
Secondary solution method
Hydrogen placement

Structure refinement program
Refinement method

Data / restraints / parameters
Treatment of hydrogen atoms
Goodness-of-fit on F?

Final R indices [[>20(I), 4349 reflections]
R indices (all data)

Type of weighting scheme used
Weighting scheme used

Max shift/error

Average shift/error

Absolute structure determination
Absolute structure parameter

Largest diff. peak and hole

SHELXS-97 (Sheldrick, 2008)
Direct methods

Difference Fourier map
Difference Fourier map
SHELXL-97 (Sheldrick, 2008)
Full matrix least-squares on F
4514/0/209

Unrestrained

1.899

R1 =0.0286, wR2 =0.0740
R1=0.0301,wR2 =0.0744
Sigma

w=1/0*(Fo®)

0.001

0.000

Not able to determine reliably
0.14)

0.339 and -0.290 e.A

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a

nitrogen stream at 100 K.

Refinement of F* against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are

based on F?, conventional R-factors (R) are based on F, with F set to zero for negative F°. The threshold

expression of F* > 20( F?) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of

reflections for refinement. R-factors based on F* are statistically about twice as large as those based on F,

and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two ls. planes) are estimated using the full

covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances,
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angles and torsion angles; correlations between esds in cell parameters are only used when they are

defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds

involving 1.s. planes.

Figure A3.1.2. Acetal 215.
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Table A3.1.2. Atomic coordinates (x 10%) and equivalent isotropic displacement parameters

(A2 x 10°) for acetal 215 (CCDC 718289). U(eq) is defined as the trace of the orthogonalized Ui

tensor

X y 4 Ueq
o(1) 3796(1) 867(1) 1413(1) 15(1)
0Q2) -1332(1) 917(1) 2033(1) 18(1)
0(3) ~426(1) “1149(1) 3528(1) 14(1)
0(4) 2465(1) 2244(1) 3980(1) 14(1)
C(1) 2711(1) 953(1) 3797(1) 12(1)
CQ) 3032(1) 331(1) 3582(1) 11(1)
C3) 2043(1) 173(1) 2600(1) 11(1)
C4) 1818(1) 1127(1) 2799(1) 12(1)
C(5) 3644(1) 1607(1) 2205(1) 12(1)
C(6) 5609(1) 1592(1) 2839(1) 12(1)
C(7) 4740(1) 1674(1) 3834(1) 13(1)
C(8) 6340(1) 1339(1) 4579(1) 19(1)
C(9) 3337(1) 276(1) 1708(1) 13(1)
C(10) 1560(1) 1173(1) 4061(1) 12(1)
C(11) 47(1) 785(1) 2646(1) 13(1)

C(12) 1362(1) 3130(1) 4468(1) 17(1)
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Table A3.1.3. Bond lengths [A] and angles [°] for acetal 215 (CCDC 718289)

O(D-C%)
O(D-C(5)
0(2)-C(11)
0(3)-C(11)
0(3)-C(10)
0(4)-C(10)
0(4)-C(12)
C(1)-C(7)
C(1)-C(2)
C(1)-C(4)
C(1)-H(1)
C(2)-C(10)
C(2)-C3)
C(2)-H(2)
C(3)-C11)
C(3)-C(9)
C(3)-C(4)
C(4)-C(5)
C(4)-H4)
C(5)-C(6)
C(5)-H()
C(6)-C(7)
C(6)-H(6A)
C(6)-H(6B)
C(7)-C(8)
C(7)-H(7)
C(8)-H(8A)
C(8)-H(8B)
C(8)-H(8C)
C(9)-H(9A)
C(9)-H(YB)
C(10)-H(10)
C(12)-H(12A)
C(12)-H(12B)
C(12)-H(12C)

C(9)-0(1)-C(5)

C(11)-0(3)-C(10)
C(10)-0(4)-C(12)

C(N-C(D)-C(2)
C(N-C(1)-C(4)
C(2)-C(1)-C(4)
C(N-C(D)-H(1)
C(2)-C(D)-H(D)
C)-C(D)-H(D)
C(10)-C(2)-C(1)
C(10)-C(2)-C(3)
C(1)-C(2)-C(3)
C(10)-C(2)-H(2)
C(1)-C(2)-H(?2)

1.4372(9)
1.4374(8)
1.2077(8)
1.3610(7)
1.4689(8)
1.3853(9)
1.4356(9)
1.5344(9)
1.5518(10)
1.5569(8)
0.942(11)
1.5213(9)
1.5565(8)
0.997(11)
1.5018(9)
1.5263(8)
1.5590(10)
1.5406(9)
0.962(10)
1.5385(9)
1.020(12)
1.5370(8)
0.998(12)
0.957(11)
1.5237(10)
0.960(14)
1.004(13)
0.934(15)
0.985(15)
0.919(12)
0.973(11)
0.947(13)
0.977(13)
1.005(16)
0.982(13)

108.46(4)
110.14(5)
114.65(6)
115.74(6)
105.16(5)
89.45(5)
113.3(8)
114.1(8)
116.8(7)
117.45(5)
104.21(5)
90.76(5)
109.7(6)
116.9(7)

C(3)-C(2)-H(2)
C(11)-C(3)-C(9)
C(11)-C(3)-C(2)
C(9)-C(3)-C(2)
C(11)-C(3)-C(4)
C(9)-C(3)-C(4)
C(2)-C(3)-C(4)
C(5)-C(4)-C(1)
C(5)-C(4)-C(3)
C(1)-C(4)-C(3)
C(5)-C(4)-H(4)
C(1)-C(4)-H(4)
C(3)-C(4)-H(4)
0(1)-C(5)-C(6)
0O(1)-C(5)-C(4)
C(6)-C(5)-C(4)
O(1)-C(5)-H(5)
C(6)-C(5)-H(5)
C(4)-C(5)-H(5)
C(7)-C(6)-C(5)
C(7)-C(6)-H(6A)
C(5)-C(6)-H(6A)
C(7)-C(6)-H(6B)
C(5)-C(6)-H(6B)
H(6A)-C(6)-H(6B)
C(8)-C(7)-C(1)
C(8)-C(7)-C(6)
C(1)-C(7)-C(6)
C(8)-C(7)-H(7)
C(1)-C(7)-H(7)
C(6)-C(7)-H(7)
C(7)-C(8)-H(8A)
C(7)-C(8)-H(8B)
H(8A)-C(8)-H(8B)
C(7)-C(8)-H(8C)
H(8A)-C(8)-H(8C)
H(8B)-C(8)-H(8C)
0(1)-C(9)-C(3)
O(1)-C(9)-H(9A)
C(3)-C(9)-H(9A)
0(1)-C(9)-H(9B)
C(3)-C(9)-H(9B)
H(9A)-C(9)-H(9B)
0(4)-C(10)-0(3)
0(4)-C(10)-C(2)
0(3)-C(10)-C(2)
O(4)-C(10)-H(10)
0(3)-C(10)-H(10)
C(2)-C(10)-H(10)
0(2)-C(11)-0(3)

116.1(6)
117.88(5)
104.72(5)
122.77(5)
112.36(5)
106.32(5)
89.20(5)
106.87(5)
100.86(5)
90.48(5)
113.5(6)
123.1(6)
118.0(7)
114.23(6)
105.60(6)
105.50(5)
106.8(6)
112.0(6)
112.7(6)
105.43(5)
110.2(6)
108.8(6)
111.8(6)
111.5(6)
109.1(8)
115.71(6)
113.83(6)
103.23(5)
108.4(7)
106.3(7)
108.9(7)
112.1(8)
110.6(8)
110.3(11)
111.7(7)
108.7(12)
103.0(11)
106.39(5)
109.3(7)
111.9(7)
110.2(7)
111.9(7)
107.2(10)
108.92(5)
107.47(5)
105.66(5)
114.1(8)
103.9(8)
116.2(8)
121.58(6)
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Table A3.1.3 (cont.)

0(2)-C(11)-C(3) 128.11(6) H(12A)-C(12)-H(12B)
0(3)-C(11)-C(3) 110.21(5) 0(4)-C(12)-H(12C)

0(4)-C(12)-H(12A) 112.8(8) H(12A)-C(12)-H(12C)
0(4)-C(12)-H(12B) 106.4(8) H(12B)-C(12)-H(12C)

114.0(11)
113.9(8)

103.4(11)
106.4(12)
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Table A3.1.4. Anisotropic displacement parameters (A? x 10%) for acetal 215 (CCDC 718289). The

anisotropic displacement factor exponent takes the form: =27°[ h*a**U"" + ... + 2 h k a* b* U]

Ul 1 U22 U33 U23 U13 U12
0o(1) 193(2) 161(2) 85(2) 112) 10(2) -16(2)
0(2) 154(2) 213(3) 175(2) 3(2) -58(2) 25(2)
0@3) 104(2) 182(2) 129(2) 20(2) 0(2) 20(2)
04) 156(2) 124(2) 128(2) 24(2) 24(2) -6(2)
Cc(1) 128(3) 132(3) 98(2) -18(2) 20(2) -11(2)
C(2) 107(2) 125(3) 83(2) 3(2) -1(2) -12(2)
C(3) 101(2) 129(3) 86(2) 2(2) 5(2) -1(2)
C(4) 112(2) 126(3) 115(2) 2(2) 4(2) 15(2)
C(5) 134(3) 126(3) 105(2) 14(2) 7(2) 5(2)
C(6) 116(3) 147(3) 110(2) 6(2) 12(2) -8(2)
C(7) 138(3) 138(3) 103(2) -12(2) 8(2) 31(2)
C®) 195(3) 242(4) 129(2) 6(2) -40(2) 61(3)
C(9) 156(3) 147(3) 94(2) -8(2) 16(2) 2(2)
C(10) 119(2) 139(3) 91(2) 0(2) 2(2) -10(2)
C(11) 119(3) 134(3) 127(2) -5(2) -1(2) 0(2)
C(12) 192(3) 160(3) 172(2) 49(2) 12(2) -38(3)
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Table A3.1.5. Hydrogen coordinates (x 10*) and isotropic displacement parameters (A’ x 10°)
for acetal 215 (CCDC 718289)

X y z iso
H(1) 1775(19) 1097(12) 4293(8) 21(3)
H(Q2) 4516(17) -624(10) 3599(7) 11(2)
H(4) 471(15) 1482(10) 2675(7) 9(2)
H(5) 3332(18) 2403(11) 1957(8) 19(3)
H(6A) 6371(17) 854(10) 2751(7) 16(2)
H(6B) 6554(17) 2206(10) 2698(7) 13(2)
H(7) 4294(18) 2443(12) 3949(8) 22(3)
H(8A) 5740(20) 1409(13) 5221(9) 31(3)
H($B) 7570(20) 1775(13) 4526(9) 31(3)
H(8C) 6860(20) 555(13) 4490(9) 30(3)
H(9A) 4588(18) ~661(10) 1802(7) 13(2)
H(9B) 2564(18) -681(10) 1225(8) 20(3)
H(10) 1140(20) -983(12) 4673(9) 25(3)
H(12A) 1180(20) 2961(12) 5127(9) 31(3)
H(12B) 2160(20) -3854(14) 4343(9) 34(3)

H(12C) -90(20) -3258(13) 4249(8) 28(3)




Appendix 3—X-Ray Crystallography Reports Relevant to Chapter 3 307

A3.2 CRYSTAL STRUCTURE ANALYSIS OF 233

Figure A3.2.1. Semicarbazone 233 is shown with 50% probability ellipsoids. Crystallographic data
have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can be

obtained on request, free of charge, by quoting the publication citation and the deposition number

686849.

x
it

Table A3.2.1 Crystal data and structure refinement for 233 (CCDC 686849)

Empirical formula C,oH,,N;01

Formula weight 43731

Crystallization solvent Dichloromethane/pentane
Crystal habit Needle

Crystal size 0.28 x 0.11 x 0.07 mm’
Crystal color Colorless

Data Collection
Type of diffractometer Bruker KAPPA APEX II
Wavelength 0.71073 A MoK o

Data collection temperature 100(2) K



Table A3.2.1 (cont.)

0 range for 9911 reflections used
in lattice determination

Unit cell dimensions

Volume

Z

Crystal system

Space group

Density (calculated)
F(000)

Data collection program

0 range for data collection
Completeness to 0 =29.84°
Index ranges

Data collection scan type
Data reduction program
Reflections collected
Independent reflections
Absorption coefficient
Absorption correction

Max. and min. transmission

Appendix 3—X-Ray Crystallography Reports Relevant to Chapter 3

2.57 to 28.78°

a=17.160(4) A
b=5.5921(14) A B=90.689(6)°
c=19.984(5) A

1917.6(8) A3

4

Monoclinic

P2,

1.515 Mg/m3

880

Bruker APEX2 v2.1-0

1.55 t0 29.84°

88.9 %
-23<h=<23,-7<k=<7,-26<1<25
 scans; 16 settings

Bruker SAINT-Plus v7.34A

8962

8962 [R, = 0.0000]

1.680 mm™!

Semi-empirical from equivalents (TWNABS)
0.7460 and 0.5010

Structure solution and Refinement

Structure solution program
Primary solution method
Secondary solution method
Hydrogen placement
Structure refinement program
Refinement method

Data / restraints / parameters
Treatment of hydrogen atoms
Goodness-of-fit on F?

Final R indices [I>20(I), 7203 reflections]
R indices (all data)

SHELXS-97 (Sheldrick, 2008)
Direct methods

Difference Fourier map
Geometric positions
SHELXL-97 (Sheldrick, 2008)
Full matrix least-squares on F2
8962 /1/437

Riding

1.609

R1 =0.0409, wR2 =0.0481
R1=0.0619, wR2 =0.0493
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Table A3.2.1 (cont.)

Type of weighting scheme used Sigma

Weighting scheme used w=1/6*(Fo®)

Max shift/error 0.002

Average shift/error 0.000

Absolute structure determination Anomalous differences
Absolute structure parameter 0.003(11)

Largest diff. peak and hole 0.807 and —0.967 ¢.A-3

Special Refinement Details

The structure was refined as a single component, although the crystals were twins, using an HKLF4
format reflection file prepared with TWINABS (see below). The two orientations were separated using
CELL_NOW as follows.

Rotated from first domain by 178.9 degrees about reciprocal axis -0.032 1.000 0.104 and real axis

-0.001 1.000 0.007. Twin law to convert hkl from first to this domain (SHELXL TWIN matrix):

-1.000 -0.065 0.016
-0.003 0.998 0014

-0.022 0.207 -0.999

From Saint integration; Twin Law, Sample 1 of 1 transforms h1.1(1)->h1.2(2)

-0.99897 -0.07583 0.01646
-0.00750 0.99693 0.01538

-0.02464 0.19596 -0.99910

Twinabs;

PART 1 - Refinement of parameters to model systematic errors

18757 data (4443 unique ) involve domain 1 only, mean I/sigma 13.7

18551 data ( 4364 unique ) involve domain 2 only, mean I/sigma 7.1
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10342 data ( 4106 unique ) involve 2 domains, mean I/sigma 19.2

HKLF 4 dataset constructed from all observations involving domains 1..2
8970 Corrected reflections written to file twin4.hkl

Reflections merged according to point-group 2

Minimum and maximum apparent transmission: 0.501007 0.745969

Additional spherical absorption correction applied with mu*r = 0.2000

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a
nitrogen stream at 100 K.

Refinement of F* against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are
based on F?, conventional R-factors (R) are based on F, with F set to zero for negative F°. The threshold
expression of F* > 20( F?) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of
reflections for refinement. R-factors based on F* are statistically about twice as large as those based on F,
and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two ls. planes) are estimated using the full
covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances,
angles and torsion angles; correlations between esds in cell parameters are only used when they are defined
by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds

involving 1.s. planes.
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Figure A3.2.2. Semicarbazone 233.

12

Table A3.2.2.  Atomic coordinates (x 10%) and equivalent isotropic displacement parameters
(A’x 10°) for semicarbazone 233 (CCDC 686849). U(eq) is defined as the trace of the

orthogonalized U' tensor

X y 4 Ueq
(1) 9525(1) 8297(1) 6590(1) 36(1)
O(1A) 7955(1) 941(3) 3051(1) 30(1)
N(1A) 7500(2) 3872(4) 3727(1) 30(1)
N(Q2A) 6670(2) 1070(4) 3270(1) 28(1)
N(3A) 6059(2) 2296(4) 3562(1) 28(1)
C(1A) 8489(2) 4383(5) 4938(2) 26(1)
C(2A) 8786(2) 5006(6) 5555(2) 27(1)
C(3A) 9158(2) 7186(5) 5637(2) 24(1)
C(4A) 9240(2) 8700(6) 5094(2) 23(1)
C(5A) 8934(2) 8049(6) 4481(2) 24(1)
C(6A) 8541(2) 5886(5) 4389(2) 21(1)
C(7A) 8214(2) 5251(6) 3716(2) 29(1)
C(8A) 7411(2) 1915(5) 3335(2) 24(1)
C(9A) 5356(2) 1676(5) 3411(2) 25(1)

C(10A) 5153(2) 221(5) 2912(2) 34(1)
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Table A3.2.2 (cont.)

C(11A) 4738(2) 3016(6) 3736(2) 25(1)
C(12A) 4902(2) 5012(5) 4229(2) 30(1)
C(13A) 4096(2) 6199(5) 4302(2) 34(1)
C(14A) 3501(2) 4222(5) 4130(2) 33(1)
C(15A) 3985(2) 2625(5) 3693(2) 32(1)
C(16A) 3271(2) 2838(6) 4771(2) 47(1)
C(17A) 2751(2) 5160(6) 3793(2) 36(1)
C(18A) 2864(2) 6198(6) 3116(2) 39(1)
C(19A) 2612(2) 8233(8) 2900(2) 51(1)
1(2) 5760(1) 351(1) “1541(1) 52(1)
O(1B) 6661(1) 7118(3) 2275(1) 34(1)
N(1B) 7173(2) 4167(4) 1625(1) 34(1)
N(2B) 7955(2) 7040(4) 2098(1) 27(1)
N(3B) 8578(2) 5882(4) 1807(1) 26(1)
C(1B) 6496(2) 3858(5) 289(2) 33(1)
C(2B) 6341(2) 3322(8) 374(2) 35(1)
C(3B) 5958(2) 1240(6) -534(2) 29(1)
C(4B) 5742(2) -303(6) ~40(2) 31(1)
C(5B) 5895(2) 235(6) 618(2) 28(1)
C(6B) 6287(2) 2329(5) 795(2) 26(1)
C(7B) 6454(2) 2863(6) 1519(2) 32(1)
C(8B) 7233(2) 6143(5) 2016(2) 25(1)
C(9B) 9266(2) 6619(5) 1925(2) 24(1)
C(10B) 9471(2) 8670(6) 2382(2) 33(1)
C(11B) 9892(2) 5325(6) 1586(2) 25(1)
C(12B) 9704(2) 3469(7) 1051(2) 34(1)
C(13B) 10499(2) 2401(6) 903(2) 54(1)
C(14B) 11131(2) 4019(5) 1204(2) 33(1)
C(15B) 10659(2) 5558(6) 1666(2) 30(1)
C(16B) 11736(3) 2543(7) 1600(2) 67(2)
C(17B) 11522(2) 5571(7) 690(2) 58(1)
C(18B) 12017(3) 4302(6) 194(2) 52(1)

C(19B) 11859(3) 3982(7) 416(2) 77(2)
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Table A3.2.3. Bond lengths [A] and angles [°] for semicarbazone 233 (CCDC 686849)

I(1)-C(3A) 2.092(3)

O(1A)-C(8A) 1.226(4) C(8A)-N(1A)-C(7A) 120.7(3)
N(1A)-C(8A) 1.354(4) C(8A)-N(2A)-N(3A) 119.8(3)
N(1A)-C(7A) 1.449(4) C(9A)-N(3A)-N(2A) 118.6(3)
N(2A)-C(8A) 1.361(4) C(2A)-C(1A)-C(6A) 122.1(3)
N(2A)-N(3A) 1.388(3) C(1A)-C(2A)-C(3A) 119.6(3)
N(3A)-C(9A) 1.289(4) C(2A)-C(3A)-C(4A) 119.8(3)
C(1A)-C(2A) 1.375(5) C(2A)-C(3A)-I(1) 120.1(2)
C(1A)-C(6A) 1.386(4) C(4A)-C(3A)-I(1) 119.9(2)
C(2A)-C(3A) 1.385(4) C(5A)-C(4A)-C(3A) 119.7(3)
C(3A)-C(4A) 1.384(4) C(4A)-C(5A)-C(6A) 121.7(3)
C(4A)-C(5A) 1.376(4) C(1A)-C(6A)-C(5A) 117.2(3)
C(5A)-C(6A) 1.397(5) C(1A)-C(6A)-C(7A) 122.8(3)
C(6A)-C(7A) 1.494(4) C(5A)-C(6A)-C(7A) 120.1(3)
C(9A)-C(11A) 1.457(4) N(1A)-C(7A)-C(6A) 115.0(3)
C(9A)-C(10A) 1.494(4) O(1A)-C(8A)-N(1A) 123.1(3)
C(11A)-C(15A) 1.312(4) O(1A)-C(8A)-N(2A) 121.2(3)
C(11A)-C(12A) 1.514(5) N(1A)-C(8A)-N(2A) 115.8(3)
C(12A)-C(13A) 1.542(4) N(3A)-C(9A)-C(11A) 116.2(3)
C(13A)-C(14A) 1.542(5) N(3A)-C(9A)-C(10A) 123.9(3)
C(14A)-C(15A) 1.505(4) C(11A)-C(9A)-C(10A) 119.8(3)
C(14A)-C(17A) 1.538(5) C(15A)-C(11A)-C(9A) 127.4(3)
C(14A)-C(16A) 1.552(5) C(15A)-C(11A)-C(12A) 109.9(3)
C(17A)-C(18A) 1.487(5) C(9A)-C(11A)-C(12A) 122.6(3)
C(18A)-C(19A) 1.290(5) C(11A)-C(12A)-C(13A) 102.6(3)
1(2)-C(3B) 2.096(3) C(12A)-C(13A)-C(14A) 105.2(2)
O(1B)-C(8B) 1.242(4) C(15A)-C(14A)-C(17A) 114.4(3)
N(1B)-C(8B) 1.356(4) C(15A)-C(14A)-C(13A) 100.7(3)
N(1B)-C(7B) 1.447(4) C(17A)-C(14A)-C(13A) 113.7(3)
N(2B)-C(8B) 1.346(4) C(15A)-C(14A)-C(16A) 109.3(3)
N(2B)-N(3B) 1.383(3) C(17A)-C(14A)-C(16A) 108.2(3)
N(3B)-C(9B) 1.270(4) C(13A)-C(14A)-C(16A) 110.3(3)
C(1B)-C(6B) 1.376(4) C(11A)-C(15A)-C(14A) 114.4(3)
C(1B)-C(2B) 1.380(5) C(18A)-C(17A)-C(14A) 114.4(3)
C(2B)-C(3B) 1.373(5) C(19A)-C(18A)-C(17A) 127.0(3)
C(3B)-C(4B) 1.366(4) C(8B)-N(1B)-C(7B) 123.6(3)
C(4B)-C(5B) 1.372(4) C(8B)-N(2B)-N(3B) 119.3(3)
C(5B)-C(6B) 1.394(5) C(9B)-N(3B)-N(2B) 119.4(3)
C(6B)-C(7B) 1.501(5) C(6B)-C(1B)-C(2B) 121.4(3)
C(9B)-C(11B) 1.467(4) C(3B)-C(2B)-C(1B) 119.6(3)
C(9B)-C(10B) 1.504(4) C(4B)-C(3B)-C(2B) 120.0(3)
C(11B)-C(15B) 1.330(4) C(4B)-C(3B)-1(2) 120.1(3)
C(11B)-C(12B) 1.522(4) C(2B)-C(3B)-1(2) 119.8(2)
C(12B)-C(13B) 1.521(5) C(3B)-C(4B)-C(5B) 120.3(3)
C(13B)-C(14B) 1.530(5) C(4B)-C(5B)-C(6B) 120.9(3)
C(14B)-C(15B) 1.505(4) C(1B)-C(6B)-C(5B) 117.7(3)
C(14B)-C(17B) 1.509(5) C(1B)-C(6B)-C(7B) 122.4(3)
C(14B)-C(16B) 1.537(6) C(5B)-C(6B)-C(7B) 119.8(3)
C(17B)-C(18B) 1.493(5) N(1B)-C(7B)-C(6B) 113.3(3)

C(18B)-C(19B) 1.260(5) O(1B)-C(8B)-N(2B) 121.1(3)
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Table A3.2.3 (cont.)

O(1B)-C(8B)-N(1B) 123.0(3) C(12B)-C(13B)-C(14B) 108.9(3)
N(2B)-C(8B)-N(1B) 115.9(3) C(15B)-C(14B)-C(17B) 109.6(3)
N(3B)-C(9B)-C(11B) 116.0(3) C(15B)-C(14B)-C(13B) 101.3(3)
N(3B)-C(9B)-C(10B) 124.7(3) C(17B)-C(14B)-C(13B) 112.9(3)
C(11B)-C(9B)-C(10B) 119.3(3) C(15B)-C(14B)-C(16B) 110.9(3)
C(15B)-C(11B)-C(9B) 128.7(3) C(17B)-C(14B)-C(16B) 110.8(3)
C(15B)-C(11B)-C(12B) 110.6(3) C(13B)-C(14B)-C(16B) 110.9(3)
C(9B)-C(11B)-C(12B) 120.7(3) C(11B)-C(15B)-C(14B) 114.2(3)
C(13B)-C(12B)-C(11B) 102.9(3) C(18B)-C(17B)-C(14B) 116.1(3)

C(19B)-C(18B)-C(17B) 126.3(5)
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Table A3.2.4. Anisotropic displacement parameters (A’ x 10*) for semicarbazone 233 (CCDC

315

686849). The anisotropic displacement factor exponent takes the form: =27°[ h’a**U"" + ... + 2 h k

a*b*U" ]
Ull U22 U33 U23 U13 U12

I(1) 340(2) 433(1) 310(1) 1(1) -116(1) 2(1)
O(1A)  177(14) 294(13) 431(15) -131(10) -15(11) 35(10)
N(1A)  166(17) 377(19) 352(17) -168(12) 3(13) -6(12)
NQA)  150(17) 315(15) 378(18) -133(12) 22(13) 22(12)
N(3A)  186(19) 310(15) 328(18) -35(12) -35(15) 38(13)
C(1A)  190(20) 176(16) 420(20) 13(15) 22(18) 9(13)
C(2A)  250(20) 237(18) 320(20) 88(15) -7(16) _4(16)
C(3A)  170(20) 261(17) 270(20) -18(14) -7(16) 69(14)
C(4A)  180(20) 200(20) 310(20) -23(14) -29(15) -13(14)
C(5A)  240(20) 201(19) 275(19) 26(16) 5(15) 34(16)
C(6A)  171(19) 195(18) 269(19) -26(14) -8(15) 64(14)
C(7A)  260(20) 280(18) 330(20) -40(17) -16(16) -38(18)
C(8A)  200(20) 257(18) 260(20) -33(14) 61(17) 19(16)
C(9A)  200(20) 231(17) 330(20) 9(14) 9(18) -26(15)
C(10A)  200(20) 410(20) 430(20) -69(17) 3(18) -44(17)
C(11A)  190(20) 240(20) 330(20) 21(16) -31(15) 26(17)
C(12A)  250(20) 283(18) 360(20) -23(16) -60(16) -30(16)
C(13A)  260(20) 305(19) 440(20) -99(15) -50(18) 42(16)
C(14A)  190(20) 305(19) 490(30) -7(15) 9(19) 19(15)
C(15A)  260(20) 240(20) 460(20) -48(14) -26(19) -18(15)
C(16A)  360(30) 500(30) 540(30) 114(18) 30(20) 88(19)
C(17A)  250(20) 390(20) 450(20) -34(18) 9(18) 40(20)
C(18A)  270(20) 480(20) 420(30) -75(18) -70(20) 77(18)
C(19A)  410(30) 600(20) 510(20) 40(20) -88(19) 120(30)
1(2) 431(2) 791(2) 333(2) -69(1) -57(1) -30(2)
O(1B)  227(16) 346(12) 447(16) -105(10) 2(13) 9(11)
N(1B)  220(19) 350(17) 440(20) -151(12) -38(16) 9(12)
N(2B)  230(20) 301(15) 272(17) -106(12) -29(14) 3(13)
N(3B)  208(18) 309(16) 277(16) -57(12) 23(14) 26(14)
C(1B)  340(30) 190(20) 470(30) 9(15) -50(20) -62(15)
C(2B)  310(20) 404(19) 350(20) 130(20) 22(16) 20(20)
C(3B)  190(20) 370(20) 310(20) -17(16) 51(17) 17(16)
C(4B)  200(20) 270(20) 450(30) -58(16) -50(18) -39(15)
C(5B)  270(20) 236(18) 340(20) 71(16) -20(16) -10(17)
C(6B)  170(20) 246(18) 350(20) 8(15) -46(17) 2(14)
C(7B)  300(20) 310(20) 360(20) -12(15) -23(17) -59(16)
C(8B)  200(20) 282(19) 270(20) -34(14) -76(16) -6(16)
CYB)  250(20) 257(18) 220(20) 11(14) 2(17) 11(16)
C(10B)  260(20) 400(20) 330(20) -104(16) 37(16) -60(18)
C(11B)  250(20) 241(17) 253(19) -25(16) -45(15) -52(18)
C(12B)  340(20) 341(18) 330(20) -105(19) -60(16) 10(20)
C(13B)  450(30) 450(20) 730(30) -310(20) 70(30) -4(19)
C(14B)  250(20) 350(20) 390(20) -54(15) 20(19) 25(15)
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Table A3.2.4 (cont.)

C(15B)  340(20)
C(16B)  720(40)
C(17B)  840(30)
C(18B)  500(30)
C(19B) 1060(50)

290(18)
680(30)
400(20)
540(30)
830(40)

266(19)
610(30)
510(30)
520(30)
420(30)

75(16)
~170(20)
~150(20)
-104(19)

40(20)

25(16)
-50(30)
330(20)
110(30)

60(30)

33(18)
380(30)
-90(20)
-49(19)
500(30)

Table A3.2.5. Hydrogen bonds for semicarbazone 233 (CCDC 686849) A and °]

D-H..A d(D-H) dH..A) d(D..A) <(DHA)
N(2A)-H(2A)..O(1B)#1 0.88 2.13 2.972(3) 159.7
N(2B)-H(2B)...O(1A)#2 0.88 2.04 2.895(3) 163.1

Symmetry transformations used to generate equivalent atoms:

#1 x,y-1,2
#2 x,y+1.z

316
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CHAPTER 4

Enantioselective Allylic Alkylations of Vinylogous

B-Ketoester Derivatives: Total Synthesis of (+)-Carissone’

4.1 INTRODUCTION

Cyclic, unsaturated ketones possessing y-substitution (e.g., 261) are highly useful
intermediates for applications in complex molecule synthesis (Figure 4.1.1)." Such
y-substituted enone moieties are typically accessed via transformations of masked, cyclic
1,3-dicarbonyl compounds made popular by Stork and Danheiser.” These so-called
vinylogous esters (e.g., 259) enable the regioselective functionalization of the ring, and
are amenable to the preparation of numerous compounds possessing an array of
substitution. A principle challenge to accessing members of this substrate class is the
stereoselective construction of a quaternary stereocenter at the y-position of the enone.’

Although methods for the asymmetric introduction of this moiety exist," we envisioned

" Studies toward the synthesis of (+)-carissone were performed primarily by Samantha R. Levine as a
Marcella R. Bonsall Summer Undergraduate Research Fellow and partially sponsored by the Dalton Fund.
Portions of this work were also conducted in collaboration with Krastina V. Petrova and Justin T. Mohr.
These works have been published. See: (a) Levine, S. R.; Krout, M. R.; Stoltz, B. M. Org. Lett. 2009, 11,
289-292. (b) Petrova, K. V.; Mohr,J. T.; Stoltz, B. M. Org. Lett. 2009, 11,293-295.
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an enantioselective approach that harnesses the palladium-catalyzed alkylation
methodology that has recently been developed in our laboratory.” Herein, we detail our
investigations of this important class of substrates and uncover a complex interplay

between reaction selectivity and substrate structure and electronics.

Figure 4.1.1. Representative transformations of vinylogous esters.

o o (o) RS (o]
) RZ 4 RI . R1
R! alkylation R! R*-M alkylation R6
> Ry —> —
( (
n 4 n 4
RO ), RO ), 2 R R
259 260 261 262

R® R?

4.2 ENANTIOSELECTIVE DECARBOXYLATIVE ALKYLATIONS OF

VINYLOGOUS B-KETOESTER DERIVATIVES

Our explorations of the asymmetric alkylation of vinylogous esters focused on the
application of racemic f3-ketoester derivatives. These substrates offer a practical
advantage over enol carbonate and silyl enol ether substrates due to their ease of
preparation and purification, as well as increased stability as enolate precursors.’ The
design of methods directed toward the preparation and functionalization of seven-
membered rings en route to the synthesis of natural products is an ongoing area of
research in our laboratory,” and thus our asymmetric alkylation studies initiated with the

seven-membered ring vinylogous ester substrate class.
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4.2.1 EFFECT OF SOLVENT

The optimization of the decarboxylative alkylation of vinylogous ester derivatives
centered on vinylogous [-ketoester (+)-181 (Table 4.2.1). Exposure of this substrate to
our typical reaction conditions employing a palladium(0) catalyst and (S)--Bu-PHOX
((S)-55) in THF at 30 °C smoothly generated a-quaternary ketone 229 in 94% yield and
84% ee (entry 1). While this substrate class exhibited good reactivity, the selectivity
provided by ligand 55 was lower than anticipated. Previous studies in our laboratory
have established a minor role of solvent for selectivity of the asymmetric alkylation
reactions,”™ although in certain circumstances solvent can have a notable effect on
selectivity. Accordingly, a survey of common reaction solvents revealed similar yields
of ketone 229 with a distinct enhancement in selectivity. The use of ethereal solvents
provided a modest increase in enantioselectivity, with conditions in Et,O producing 229
in 86% ee (entries 2-5). Substitution with aromatic solvents benzene and toluene enabled
a more substantial improvement in selectivity, with up to 88% ee in toluene (entries 6 and
7). Our results indicate that alkylations of substrates such as 181 are readily influenced

by solvent, and thus it is a necessary variable for future vinylogous p-ketoester studies.
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Table 4.2.1. Solvent screen for the Pd-catalyzed alkylation of vinylogous f3-ketoester (+)-181

o]

(o} (o] Ph,P NIJ (o]

_ (S)-55 ‘iBu oA
o NF (6.25 mol %) F
BuO > i .BuO

Pdy(pmdba); (2.5 mol %)
solvent (0.1 M), 30 °C

(x)-181 (-)-229
entry? solvent yield (%) ee (%)°
1 THF 94 84
2 1,4-dioxane 86 84
3 2-methyl THF 75 85
4 TBME 88 85
5 Et,O 93 86
6 benzene 84 86
7 toluene 91 88
2 pmdba = bis(4-methoxybenzylidene)acetone.

b |solated yield. ¢ Enantiomeric excess determined
by chiral HPLC.

4.2.2 EFFECT OF SUBSTRATE SUBSTITUTION

In addition to the optimization of solvent for the alkylation selectivity, we also
examined the identity of the vinylogous moiety. The vinylogous ester substrate class
contrasts most other substrates that we have examined in that they allow structural
variations while maintaining similar functional reactivity for subsequent transformations.
For example, the vinylogous ester 259 depicted in Figure 4.1.1 could possess OR where
R = Me, Et, and i-Bu, and all three substrates would be unique, yet could function in a
similar manner for each subsequent transformation, ultimately providing the same
product at the end of the reaction sequence (i.e., 261). This significant feature greatly
expands the substrate potential for the transformation and allows the examination of the

role of electronics toward reactivity and selectivity.
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In our studies of vinylogous (-ketoester derivatives, we observed that substitution of
the R group with ether derivative 263 furnished quaternary ketone 264 in similar
selectivity (cf. entries 1-3, Table 4.2.2). Modification of the ether group to an acyl
functionality facilitated the construction of ketones 266 and 268 with enhanced
selectivity (88 and 90% ee, respectively), with benzoate 268 providing the best results
(entries 4-6). The use of a thiophenyl-derived vinylogous ester 269 produced a similar
result, affording vinylogous thioester 270 in 89% ee (entry 7). This limited data set
demonstrates that reducing the electron density of the vinylogous moiety results in a
marked improvement in selectivity and facilitates an increase in the reaction rate.® We
can rationalize the electronic role of substitution and reaction rate as a decrease in the
energy required for the cleavage of a C—C bond in the decarboxylation event.” However,
the influence on selectivity is complex. As we descend down each entry in Table 4.2.2,
the resulting enolate pKa is distinctly reduced, suggesting that the electronics of the
palladium—enolate complex impact the reaction such that an electron-deficient complex
enhances selectivity,”” although the exact correlation is difficult to discern."
Nonetheless, the versatile nature of this substrate class holds the potential for interesting

applications.
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Table 4.2.2. Variation of the vinylogous functional group for improved stereoselectivity

[0} [0} [0}
— Pdy(pmdba); (2.5 mol%) W\ A
0NF (S)-55 (6.25 mol%) NF
R > R
solvent (0.1 M), 30 °C
entry R substrate  product  solvent vyield (%)? ee (%)?
1 -BuO 181 229 THF 94 84
2 i-BuO 181 229 Et,O 93 86
3 CH30CH,0 263 264 THF 79 85
4 +BuCO, 265 266 THF 68 87
6 PhCO, 267 268 THF 85 90
7¢ PhS 269 270 Et,0 86 89
2|solated yield. ©? Enantiomeric excess determined by chiral HPLC. ¢Using Pd(dmdba),
at 25 °C.
4.2.3 EXTENSIONS TO SIX-MEMBERED RINGS

The established viability of seven-membered vinylogous f3-ketoester substrates for
our asymmetric alkylation method encouraged the extension to six-membered
derivatives. Application of the six-membered analog 271 with our standard conditions
required an increase in reaction temperature to 50 °C to achieve complete conversion to
ketone 272, although with a noticeable decrease in selectivity to 83% ee (entry 1, Table
4.2.3). Solvent identity displays a key role for six-membered substrates, as the use of
toluene for the production of 272 increased the selectivity to 86% ee (entry 2).
Moreover, substitution at the o-position of the P-ketoester to an ethyl group afforded
ketone 274 in 86% ee (entry 3)."”” Examination of substrates that possess substitution o. to
the vinylogous moiety afforded strikingly different results. Substrate reactivity for the
production of vinylogous ester 275 was exceedingly slow at 50 °C, and an increase to

80 °C facilitated complete conversion to 276 with a modest 75% ee (entries 4 and 5).
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However, the utilization of a vinylogous thioester 277 enabled complete conversion at

50 °C to a-quaternary vinylogous thioester 278 in a remarkable 92% ee, with an absence

of solvent influence (entries 6 and 7).

Table 4.2.3. Six-membered vinylogous p-ketoester substrates

Pdy(pmdba); (2.5 mol %)

(o} R3 (o} (o} R3
R2 N (5)-55625mol%) g2 o~
THF or PhMe, 50 °C
R1 H1

entry product R3 substrate product solvent yield (%) ee (%)
0 3
1 R Me 271 272 THF 80 83
“\\‘\/
2 Me 271 272 toluene 79 86
3% iBuO Et 273 274 THF 82 86
) o]
4 275 276 toluene 19 79
‘.\\‘\/
5¢ ﬁ 275 276 toluene 86 75
FBuO
o]

N O

W\ F 277 278  toluene 86 92
277 278 THF 88 92
PhS

a Reaction performed using 5 mol % Pd(dmdba),. © p-ketoester starting material was isolated
in 69% yield. ¢ At 80 °C.

In general, substrates that possess a six-membered ring require additional energy to
break the C—C bond in the decarboxylation event of the -ketoester compared to seven-
membered rings, resulting in increased reaction temperatures and times (see the
subsection 4.3.3.1)."” A comparison of substrates 271 and 275 underscores the difference
in reactivity and selectivity resulting from the addition of a methyl group to the
a-position (cf. entries 2 and 4). Moreover, adjusting the electronics of the vinylogous

moiety exhibits a large impact on selectivity (cf. entries 4 and 6). Taken together, these
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seemingly trivial substrate changes have a significant impact on reactivity and selectivity,

making it difficult to delineate reaction trends.

4.2.4 FUTURE STUDIES OF VINYLOGOUS B-KETOESTER SUBSTRATES

Our preliminary asymmetric alkylation studies of vinylogous f3-ketoester substrates
have displayed a range of selectivities and reactivities, indicating a complex role of
substrate structure and electronics of the vinylogous moiety. Future efforts for this class
of substrates will expand on substrate substitution for both seven and six-membered rings
to examine the generality of the transformation. In addition to the increase in number of
substrates, a thorough investigation encompassing solvent variation and substrate
electronics could enable the development of predictive tools for general use.
Furthermore, the utility of enol carbonate vinylogous ester derivatives and ligands
possessing variable electronic properties are viable options for challenging substrates.'’
The elaboration of the various vinylogous products obtained from the asymmetric
alkylation reaction into useful intermediates is of importance for the utility of this class of
molecules. Importantly, the reactivities and selectivities observed for the vinylogous
ester derivatives provide access to a variety of enantioenriched a-quaternary enones

using Stork—Danheiser chemistry and provide a firm precedent for future studies.
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4.3 CATALYTIC ENANTIOSELECTIVE APPROACH TO THE

EUDESMANE SESQUITERPENOIDS

The production of highly enantioenriched materials from the enantioselective
alkylation of vinylogous f-ketoester derivatives enables their use for various
applications.  Specifically, we sought to harness this transformation as the key
enantioselective reaction in a multistep synthesis. Here we detail our efforts to utilize the
asymmetric alkylation of vinylogous 3-ketoester derivatives toward a general approach to

the eudesmane sesquiterpenoids.

4.3.1 BACKGROUND OF THE EUDESMANE SESQUITERPENOIDS

The flowering plants of the family Asteraceae (Compositae) have many historical

uses, including rubber, medicines, edible oils and vegetables, and pesticides."

Among
these floras are a large number of species abundant in structurally diverse
sesquiterpenoids, particularly ones that contain the eudesmane skeleton (Figure 4.3.1).

Over 1000 eudesmanes have been identified from these sources with their structures

diverging based on oxygenation and oxidation patterns within the carbon framework.
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Figure 4.3.1. Representative eudesmane sesquiterpenoids.

“ Eudesmane
3 A skeleton

CO,H

(+)-Carissone (+)-3-Oxocostusic acid (-)-a-Eudesmol
(279) (280) (281)

This ever-growing' class of important secondary metabolites possesses a wide range
of biological properties including plant growth inhibition, insect antifeedant,
antibacterial, antifungal, and antitumor activities. Representative eudesmanes comprise
antibacterial agents (+)-carissone (279)'° and (+)-3-oxocostusic acid (280)," as well as
P/Q-type calcium channel blocker (-)-o-eudesmol (281)'® (Figure 4.3.1). These
examples typify common structural motifs within this class of sesquiterpenoids, primarily
the C(10) all-carbon quaternary stereocenter and stereogenic C(7) substituent. The
structural similarities and interesting biology associated with this class of molecules has
stimulated several synthetic efforts, most of which employ semisynthetic or chiral pool
strategies.'”””*' To date, no catalytic asymmetric approach toward these eudesmanes has
been developed. Herein, we report an approach® that incorporates our recent method for
the catalytic asymmetric formation of enantioenriched all-carbon quaternary stereocenters

into a general synthetic strategy for this class of sesquiterpenoids.
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4.3.2 RETROSYNTHETIC ANALYSIS OF THE EUDESMANE

CARBOCYCLIC CORE

In devising a strategy to access the eudesmanes, we simplified our target structure to
enone 283, which has been utilized in the preparation of structures such as 282'° and
embodies many features present in various family members (cf. 283 and 279, 280)
(Scheme 4.3.1). We envisioned that the stereochemistry of the C(7) substituent could
arise by means of the diastereoselective hydrogenation of a substituted cyclohexene (i.e.,
284), the stereochemical outcome of which would be controlled by the C(10) quaternary
stereocenter. This cyclohexene could be obtained from a ring-closing metathesis of
triolefin 285, which would be derived from an appropriately substituted o.-quaternary
ketone (i.e., 286). Thus, we sought to develop an efficient and selective preparation of
the C(10) quaternary stereocenter’ as the key control element in our synthetic approach

toward the eudesmanes.

Scheme 4.3.1. Retrosynthetic analysis of the eudesmanes

= 1:> L;@L
R (o] 7R (o] R
283 284

282
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4.3.3 TOTAL SYNTHESIS OF (+)-CARISSONE

4.3.3.1 Pd-CATALYZED ENANTIOSELECTIVE ALKYLATION OF

VINYLOGOUS ESTER DERIVATIVES

The enantioselective alkylation of ketone enolates is an area of intense investigation
in our laboratory.” This method has resulted in the preparation of a wide range of
carbonyl compounds with adjacent quaternary stereocenters with high levels of
selectivity and excellent yields, some of which have proved valuable in synthetic

endeavors.’®'%°2

The application of a-quaternary ketones such as 286 for the devised
strategy would require a carbonyl transposition (i.e., 286 — 285), and we therefore chose
to exploit the unique properties of vinylogous esters (i.e., 286 where R* = OR) pioneered
by Stork and Danheiser” for this purpose.

Our initial studies for the asymmetric generation of quaternary stereocenters utilizing
vinylogous ester derivatives focused on enol carbonates due to preliminary

investigations*'"

that have demonstrated successes for similar substrates. Exposure of
allyl enol carbonate 287 to typical reaction conditions consisting of a palladium(0)
catalyst and ligand (S)-55* in toluene generated vinylogous ester (+)-276, albeit in
variable yield and selectivity (Table 4.3.1, entry 1). Unfortunately, the instability of 287
impeded further studies, as these results were highly dependent on the composition of this
enol carbonate.” Given the range of substrate possibilities for this transformation,™ we
next focused on racemic f-ketoester (+)-275. Surprisingly, this substrate proved only
modestly reactive at 50 °C, producing ketone 276 in 19% yield and 79% ee (entry 2).”°

Increasing the reaction temperature to 80 °C enabled complete conversion to ketone 276,

although with slightly reduced selectivity (entry 3). As the lack of reactivity seemed to
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be a major complication with this substrate, we considered vinylogous thioesters (i.e.,
(%)-277) for their reported activation properties.” Indeed, racemic B-ketoester (+)-277
did prove more reactive and produced ketone (+)-278 at 50 °C in good yield and 92% ee
(entry 4). A screen of solvents revealed that benzene (entry 5) and ethereal solvents

(entries 6 and 7) provided similar selectivities to toluene.

Table 4.3.1. Asymmetric allylation of vinylogous ester derivatives

o
0 Ph,P NIJ

(S)-55 ‘Bu

(o}
(6.25 mol %) ““\\/
Pd,(pmdba);
i-BuO (2.5 mol %) R

solvent, temp

R = Oi-Bu, ()-275 R = Oi-Bu, (+)-276
R = SPh, (1)-277 R = SPh, (+)-278
entry  substrate solvent T(°C) product yield® (%)  eeP (%)

1 287 toluene 25 276 22-61 84-88

2 275 toluene 50 276 19¢ 79

3 275 toluene 80 276 86 75

4 277 toluene 50 278 86 92

5 277 benzene 50 278 61¢ 92

6 277 THF 50 278 88 92

7 277 1,4-dioxane 50 278 90 91

2|solated yields. © Enantiomeric excess determined by chiral HPLC or SFC. ¢ p-Ketoester
(+)-275 was recovered in 69% yield. 9 p-Ketoester (x)-277 was recovered in 26% yield.

4.3.3.2 PREPARATION OF THE BICYCLIC CORE

With optimal conditions for the preparation of 278, we sought to demonstrate the
feasibility of using this ketone for the total synthesis of (+)-carissone (279). Accordingly,
racemic B-ketoester (+)-277 was transformed to (—)-278 in 85% yield”” and 92% ee using

ligand (R)-55 to correlate with the natural antipode of 279 (Scheme 4.3.2). Subsequent
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conversion of vinylogous thioester 278 into vinylogous ester 288 was achieved with
sodium methoxide in refluxing methanol. Exposure of the resulting vinylogous ester to
the substituted allylmagnesium bromide generated from 289 provided enone 290 in 94%
yield. We were encouraged by the success of allylmagnesium bromide additions to
vinylogous ester 288 and investigated similar reactions of various organometallic
reagents with vinylogous thioester 278; however, several conditions afforded intractable
mixtures with no desired products.””’ Nonetheless, ring-closing metathesis of enone 290
using Grubbs’ catalyst 291" efficiently prepared the desired substrate (i.e., 292) for the
diastereoselective hydrogenation. Gratifyingly, the heterogeneous hydrogenation of 292
utilizing Rh/AL,O, catalyst’ in methanol and subsequent TBS cleavage provided alcohol
293 in good overall yield with excellent diastereoselectivity.’””  This notable
transformation generates alcohol 293 with the C(10) and C(7) stereocenters in the desired
syn configuration required for 279. Conversion of alcohol 293 to ester 294 was achieved
by a two-step process involving Dess—Martin oxidation,” followed by chlorite oxidation™

with diazomethane workup.
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Scheme 4.3.2. Enantioselective synthesis of the eudesmane bicyclic core

(o} Pd,(pmdba); (2.5 mol %) (o] (o}
COallyl (R)-55 (6.25 mol %) : _ Na®, MeOH : _
- : :
PhMe, 50 °C reflux
PhS PhS MeO
(85% yield) (89% yield)
(%)-277 (-)-278, 92% ee 288
M N/_\NM
es es
ﬁ/,m
,Ru:\
B"/\H/\OTBS _ [¢] Fl, Cy, P
3
289 291 (3 mol %)
- R ——
Mg®, I, Et,O/THF PhH, 40 °C o OTBS
0->23°C oTBS
(99% yield)
(94% yield) 290 292
1. Rh/Al,03 (5 mol %) 1. Dess—Martin
H, (1 atm), MeOH CH,Cl,, 0 —>23°C
2. HCI, THF T 5 OH 2.NaCIO, NaH,PO, o CO,Me
2-methyl-2-butene
(56% yield, two steps) t-BuOH/H,0; CH,N,
293, 10:1 dr . 294
(87% yield, two steps)
4.3.3.3 COMPLETION OF (+)-CARISSONE AND A FORMAL SYNTHESIS

OF (-)-a-EUDESMOL

The availability of ester 294 in the desired configuration enabled preparation of
(+)-carissone (279) in short order. Diastereoselective reduction of the enone carbonyl
under Luche conditions,” followed by treatment of the resulting alcohol with
methylmagnesium bromide®"" provided diol 295" in 73% yield (Scheme 4.3.3). The
preparation of this diol intersects Aoyama’s synthesis (—)-o-eudesmol (281)'”° and
represents a formal total synthesis. Furthermore, facile allylic oxidation with manganese
dioxide gave (+)-carissone (279) having spectroscopic data (‘H NMR, "C NMR, IR,

HRMS, optical rotation) identical to those reported for natural 279.
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Scheme 4.3.3. End game for (+)-carissone (279) and the formal synthesis of (-)-o-eudesmol (281)

1. CeCly*7H,0, NaBH, MnO,
MeOH, —45 °C 4Ams
’ _—
(o} CO,Me 2. MeMgBr, THF HO OH CH,Cl, o oH
0—26°C
294 (73% yield, two steps) 295 (100% yield) (+)-Carissone

(279)

2 steps
(Ref 19¢)

(-)-a-Eudesmol
(281)

4.4 CONCLUSION

In summary, we have described the palladium-catalyzed asymmetric alkylation of
various vinylogous [(-ketoester substrates to provide access to enantioenriched
a-quaternary ketones in high yields. Our studies revealed a significant influence of
solvent, substrate structure, and electronics on the reactivity and selectivity of the
transformation. Importantly, the incorporation of electron-withdrawing groups on the
vinylogous moiety increases reaction rates and enhances selectivities over tradition
vinylogous esters. We have demonstrated the utility of the resulting o-quaternary
products in a general synthetic approach for the total synthesis of the eudesmane
sesquiterpenoids. Fundamental to this strategy is the use of the resulting C(10)
quaternary stereocenter to control the C(7) stereochemistry via a diastereoselective
hydrogenation, providing a highly selective and efficient route to the antibacterial agent
(+)-carissone (279). Studies to understand the interplay between substrate reactivity and

selectivity for the asymmetric alkylation of vinylogous ester derivatives, as well as the
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use of the resulting enantioenriched products in the synthesis of other bioactive natural

substances, are currently underway.
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4.5 EXPERIMENTAL SECTION

4.5.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under an
argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by
passage through an activated alumina column under argon. All the starting materials
were purchased from commercial sources and used as received, unless otherwise stated.
Liquids and solutions were transferred via syringe or positive-pressure cannulation.
Brine solutions refer to saturated aqueous sodium chloride solutions. TMEDA was
distilled from sodium under nitrogen prior to use. Benzenethiol was distilled under
nitrogen prior to use. For data regarding the conversion of (+)-181 to (-)-229, see
Chapter 3 of this thesis. Previously reported methods were used to prepare (S)-t-
BuPHOX (($)-55) and (R)-+-BuPHOX ((R)-55), as well as Pd,(pmdba),.”” Grubbs’
catalyst 291 was a generous gift from Materia, Inc. Rhodium was purchased from Strem
as a 1 wt % loading on alumina powder in reduced form. Diazomethane (199) was
freshly prepared from Diazald as a solution in Et,0. Manganese dioxide was purchased
from Aldrich in activated form, ~85%, <5 um, and used as received. Reaction
temperatures were controlled by an IKAmag temperature modulator. Thin-layer
chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated
plates (0.25 mm) and visualized by UV fluorescence quenching, anisaldehyde, or KMnO,
staining. SiliCycle SiliaFlash P60 Academic Silica Gel (particle size 40-63 um; pore
diameter 60 A) was used for flash chromatography. Analytical chiral HPLC was

performed with an Agilent 1100 Series HPLC utilizing Chiralpak AD and OD-H columns
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(4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with 1 mL/min flow
rate and visualization at 254 nm. Analytical chiral supercritical fluid chromatography
was performed with a Berger Analytix SFC (Thar Technologies) utilizing a Chiralpak
AD-H column (4.6 mm x 25 cm) obtained from Daicel Chemical Industries, Ltd. with 2
mL/min flow rate at 30 °C and visualization at 244 nm. Optical rotations were measured
with a Jasco P-1010 polarimeter at 589 nm in spectrophotometric grade solvents. 'H and
"C NMR spectra were recorded on a Varian Mercury 300 (at 300 MHz and 75 MHz
respectively) or a Varian Inova 500 (at 500 MHz and 126 MHz, respectively), and are
reported relative to Me,Si (8 0.0 ppm).*® Data for 'H NMR spectra are reported as
follows: chemical shift (8 ppm) (multiplicity, coupling constant (Hz), integration).
Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet,
q = quartet, m = multiplet, comp = complex, br = broad, app = apparent. IR spectra were
recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of
absorption (cm™'). Melting points are uncorrected. High-resolution mass spectra were

obtained from the Caltech Mass Spectral Facility
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4.5.2 PREPARATIVE PROCEDURES
4.5.2.1 ASYMMETRIC ALKYLATION OF VINYLOGOUS B-KETOESTER
DERIVATIVES
(o] (o]
MOMCI, i-Pr,NEt o
{ ) CH.Cl, ( \
o) MOMO
(57% yield)
227 296

Vinylogous ester 296. To a solution of dione 227 (574.6 mg, 4.55 mmol, 1.0 equiv)
in CH,Cl, (22.8 ml, 0.2 M) was added MOM-CI (381 uL, 5.01 mmol, 1.1 equiv) followed
by i-Pr,NEt (873 uL, 5.01 mmol, 1.1 equiv). After 12 h the reaction was diluted with
CH,Cl, (25 mL), washed with 1 N HCI, sat ag NaHCO,, brine, dried over MgSO,,
filtered, and concentrated in vacuo. The crude material was purfied by flash
chromatography on SiO, (4:1 — 2:1 hexanes/EtOAc) to give 296 (4419 mg,
2.596 mmol, 57% yield) as a pale yellow oil. R, =0.16 (2:1 hexanes/EtOAc); 'H NMR
(300 MHz, CDCl,) 6 5.50 (s, 1H), 4.97 (s, 2H), 3.43 (s, 3H), 2.59-2.55 (comp m, 4H),
1.90-1.74 (comp m, 4H); "C NMR (75 MHz, CDCl,) § 202.4, 173.8, 108.0, 94.2, 57.0,
420, 329, 23.8, 21.4; IR (Neat Film NaCl) 2942, 1645, 1611, 1454, 1376, 1215, 1153,
1071, 972, 924 cm™'; HRMS (FAB+) m/z calc’d for C;H,sO; [M + HJ": 171.1021, found

171.1055.

1. LDA, PhMe, —78 °C;
o) © o O

allyl chloroformate
-78 - 23 °C - 0/\/
2. NaH, Mel, THF
MOMO 0—23°C MOMO

296 (66% yield, two steps) 263
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Vinylogous pB-ketoester 263. To a solution of i-Pr,NH (764 uL, 5.45 mmol, 2.1

equiv) in PhMe (18 mL) cooled to —78 °C was added a solution of n-BuLi (2.09 mL of a
2.55 M solution in hexane, 5.32 mmol, 2.05 equiv). The flask was placed in a 0 °C
cooling bath for 10 min, cooled back down to —78 °C, and to this was added a solution of
vinylogous ester 296 (441.9 mg, 2.60 mmol, 1.0 equiv) in PhMe (2 mL, wash with extra
2 mL). After 30 min, allyl chloroformate (290 uL, 2.73 mmol, 1.05 equiv) was added
dropwise and the bath was removed. The reaction was quenched with 1 N KHSO,
(15 mL) after stirring at room temperature for 30 min, the layers were separated, and the
aq was extracted with CH,Cl, (3 x 15 mL). The combined organics were washed with
brine, dried over MgSQO,, filtered, and concentrated in vacuo.

The resulting crude oil was dissolved in THF (5.2 mL, 0.5 M) and cooled to 0 °C in
an ice bath. To this was added NaH (124.6 mg, 3.12 mmol, 1.2 equiv) in one portion,
and after 30 min, Mel (485 uL, 7.79 mmol, 3.0 equiv) was added and the cooling bath
was removed. After 4 h, the reaction was quenched with 50% sat. aq NH,C1 (15 mL) and
diluted with Et,O (15 mL), the layers were separated, and the aq was extracted with Et,0
(3 x 15 mL). The combined organics were washed with brine, dried over Na,SO,,
filtered, and concentrated in vacuo. The crude was purified by flash chromatography on
Si0O, (6:1 — 3:1 — 2:1 hexanes/EtOAc) to afford vinylogous p-ketoester 263 (459.6 mg,
1.71 mmol, 66% yield over two steps) as a colorless oil. R;=0.22 (4:1 hexanes/EtOAc);
'H NMR (300 MHz, CDCl;) & 5.87 (dddd, J = 17.2, 10.4, 5.6, 5.6 Hz, 1H), 5.57 (d, J =
1.1 Hz, 1H), 5.29 (app dq,J = 17.2, 1.6 Hz, 1H), 5.21 (app dq,J = 10.4, 1.3 Hz, 1H), 4.99
(d,J=6.1 Hz, 1H),4.96 (d,J =6.1 Hz, 1H), 4.66-4.52 (comp m, 2H), 3.43 (s, 3H), 2.61

(dddd, J =18.1,9.8,4.1, 1.2 Hz, 1H), 2.48-2.38 (comp m, 2H), 2.06-1.92 (m, 1H), 1.87-
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1.64 (comp m, 2H), 1.43 (s, 3H); IR (Neat Film NaCl) 2938, 1734, 1649, 1617, 1454,

1423, 1379, 1234, 1147, 1114, 1069, 966, 926, 861 cm™'; HRMS (FAB+) m/z calc’d for

C,,H,,0, [M + HJ": 269.1389, found 269.1381.

o]

_“\‘\/
MOMO

264

Vinylogous ester 264. A typical asymmetric alkylation reaction was run on 28.6 mg
(0.100 mmol) of 263 at 30 °C in THF (0.1 M) for 9 h using (S)-55 and Pd,(pmdba),;. The
crude material was purified by flash chromatography on SiO, (6:1 hexanes/EtOAc, PhMe
load) to provide 264 (17.8 mg, 0.0794 mmol, 79% yield) as a pale yellow oil. R,=0.31
(1:1 hexanes/EtOAc); IR (Neat Film NaCl) 2934, 1620, 1454, 1389, 1216, 1148, 1067,
992, 957, 924, 879 cm™'. HPLC conditions: 0.5% EtOH in hexanes, OD-H column, ,

(min): major = 12.69, minor = 13.59.

o PivClI, Py o
DMAP
D —
’é CH3,Cl, 40 °C ) ,@
(o] PivO
(56% yield)
227 297

Vinylogous pivalate 297. To a solution of diketone 227 (229.7 mg, 1.82 mmol, 1.0
equiv) dissolved in CHCl; (9.1 mL, 0.2 M) was added pyridine (147 uL, 1.82 mmol, 1.0
equiv), PivCl (247 uL, 2.00 mmol, 1.1 equiv), and DMAP (44.5 mg, 0.364 mmol, 0.2
equiv), and the resulting solution was placed in a 40 °C oil bath. After 24 h, the reaction
was diluted with CH,Cl, (10 mL), washed with 1 N HCI (10 mL), then sat. aq NaHCO,

(10 mL), dried over MgSO,, filtered, and concentrated in vacuo. The crude oil was
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purified by flash chromatography on SiO, (9:1 — 6:1 hexanes/EtOAc, PhMe load) to

give 297 (2132 mg, 1.01 mmol, 56% yield) as a colorless oil. R, = 0.23 (6:1
hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) & 5.80-5.79 (m, 1H), 2.64 (dd,J=7.0,5.4
Hz, 2H), 2.58 (dd, J =6.7,5.5 Hz, 2H), 1.97-1.81 (comp m, 4H), 1.24 (s, 9H); BC NMR
(75 MHz, CDCl,) 8§ 201.7, 176.3, 167.5, 122.1, 43.2, 39.1, 334, 27.0, 244, 21.7; IR
(Neat Film NaCl) 2974, 2938, 2873, 1749, 1667, 1650, 1481, 1458, 1369, 1275, 1114

cm™'; HRMS (EI+) m/z calc’d for C,H,;O, [M]*: 210.1256, found 210.1253.

0 1. LDA, THF, —78 °C; o 0
allyl cyanoformate
> o/\/
. 2. NaH, Mel, THF .
PivO 0— 23°C PivO
297 (41% yield, two steps) 265

Vinylogous p-ketoester 265. To a solution of i-Pr,NH (333 uL, 2.38 mmol, 1.2
equiv) in THF (8 mL) at 0 °C was added a solution of n-BuLi (890 uL of a 245 M
solution in hexane, 2.18 mmol, 1.1 equiv). After 30 min, the solution was cooled to
—78 °C and a solution of vinylogous pivalate 297 (416.5 mg, 1.98 mmol, 1.0 equiv) in
THF (2 mL) was added dropwise via cannula transfer. After 1 h at -78 °C, allyl
cyanoformate (237 uL, 2.18 mmol, 1.1 equiv) was added. After 30 min the reaction was
quenched with 50% sat. aq NH,CI (10 mL) and warmed to room temperature. The layers
were separated and the aq layer was extracted with Et,O (3 x 15 mL), the combined
organics were washed with brine (10 mL), dried over MgSO,, filtered, and concentrated
in vacuo. The crude material was purified by flash chromatography on SiO, (9:1 — 3:1
hexanes/Et,0) to provide the desired acylated intermediate (274.0 mg, 0.93 mmol, 47%

yield).
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The resulting intermediate was dissolved in THF (4.7 mL, 0.2 M) and cooled to 0 °C,

at which point NaH (44.7 mg, 1.12 mmol, 1.2 equiv) was added in one portion. After 20
min, Mel (173 pL, 2.79 mmol, 3.0 equiv) was added and the cooling bath was removed.
The reaction was quenched with 50% sat. aq NH,Cl after 10 h, diluted with Et,O
(10 mL), the layers were separated and the aq layer was extracted with Et,O (3 x 10 mL).
The combined organics were washed with brine, dried over MgSO,, filtered, and
concentrated to a crude oil. Purification by flash chromatography on SiO, (9:1 — 6:1
hexanes/Et,0) provided vinylogous pB-ketoester 265 (253.2, 0.821 mmol, 41% yield over
two steps) as a colorless oil. R, =0.34 (3:1 hexanes/Et,0); '"H NMR (300 MHz, CDCl,) §
5.87 (dddd, J =17.2,104,5.7,5.7 Hz, 1H), 583 (d, J = 1.0 Hz, 1H), 5.29 (app dq, J =
17.2,1.5 Hz, 1H), 5.21 (app dq, J = 10.4, 1.3 Hz, 1H), 4.62 (app dt, J = 5.6, 1.4 Hz, 2H),
2.61 (dddd, J = 18.6,8.7,4.3, 1.4 Hz, 1H), 2.50-2.39 (comp m, 2H), 2.07-1.94 (m, 1H),
1.91-1.81 (m, 1H), 1.76 (ddd, J = 11.0, 7.6, 2.9 Hz, 1H), 1.43 (s, 3H), 1.24 (s, 9H); °C
NMR (75 MHz, CDCl,) 6 1989, 176.1, 173.2, 164.6, 131.8, 121.0, 118.5, 66.1, 66.0,
60.0, 39.2, 34.0, 33.7, 27.0, 23.5, 21.6, 15.4; IR (Neat Film NaCl) 2977, 2934, 1746,
1685, 1650, 1454, 1379, 1274, 1233, 1180, 1103, 1027, 980, 909 cm™'; HRMS (FAB+)

m/z calc’d for C,;H,;O; [M + H]": 309.1702, found 309.1619.

(o]

‘.\\‘\/
PivO

266
Vinylogous pivalate 266. A typical asymmetric alkylation reaction was run on

420 mg (0.136 mmol) of 265 at 30 °C in Et,0 (0.1 M) for 2 h using (5)-55 and

Pd,(pmdba);. The crude material was purified by preparative TLC on SiO, (3:1
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hexanes/Et,0) to provide 266 (30.2 mg, 0.114 mmol, 84% yield) as a pale yellow oil.

R,=0.34 (1:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCl,) 8 5.72-5.71 (m, 1H), 5.70
(dddd, J =16.6,10.5,7.4,7.4 Hz, 1H), 5.08-5.06 (m, 1H), 5.05-5.06 (m, 1H), 5.05-5.00
(m, 1H), 2.49 (dd, J = 6.3, 5.3 Hz, 2H), 2.30 (app qd, J = 13.7, 7.4 Hz, 2H), 1.92-1.61
(comp m, 4H), 1.25 (s, 9H), 1.15 (s, 3H); "C NMR (75 MHz, CDCl,) § 206.2, 176 .4,
162.7, 133.8, 120.6, 118.4, 52.5, 44.6, 39.2, 34.9, 34.8, 27.1, 243, 20.0; IR (Neat Film
NaCl) 2976, 2936, 2873, 1749, 1656, 1480, 1461, 1379, 1276, 1105, 914 cm™'. HPLC
conditions: 0.25% i-PrOH in hexanes, OD-H column, #; (min): major = 10.24, minor =

11.73.

o BzCl, Py 0

DMAP
_—
CH4Cl, 40 °C
(o} BzO

(72% vyield)
227 298

Vinylogous benzoate 298. Prepared in the exact manner as vinylogous pivalate 297
using 220.5 mg (1.75 mmol) of diketone 227. The crude material was purified by flash
chromatography on SiO, (6:1 — 4:1 hexanes/EtOAc, PhMe load) to provide 298 (291.8
mg, 1.27 mmol, 72% yield) as a pale yellow oil. R, = 0.26 (4:1 hexanes/EtOAc); 'H
NMR (300 MHz, CDCl;) 8 8.08-8.05 (comp m, 2H), 7.66-7.60 (m, 1H), 7.51-7.46
(comp m, 2H), 5.99 (s, 1H), 2.77-2.69 (comp m, 4H), 2.05-1.87 (comp m, 4H); BC
NMR (75 MHz, CDCl,) 6 201.7, 167.4, 164.3, 134.0, 130.2, 129.8, 128.8, 122.6, 43.3,
33.5,24.5, 21.8; IR (Neat Film NaCl) 3064, 2941, 2870, 1733, 1663, 1652, 1601, 1452,
1315, 1262, 1202, 1176, 1112, 1090, 1052, 1024, 878, 855, 708, 524 cm™'; HRMS (EI+)

m/z calc’d for C,,H,,0; [M]*: 230.0943, found 230.0940.
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o 1. LDA, THF, —78 °C; o o

allyl cyanoformate
> o/\/
2. NaH, Mel, THF
BzO 0— 23°C BzO
298 (33% yield, two steps) 267

Vinylogous p-ketoester 267. Prepared in the exact manner as vinylogous
B-ketoester 265. Purified by flash chromatography on SiO, (9:1 — 6:1 hexanes/EtOAc)
to afford 267 (229.6 mg, 0.699 mmol, 33% yield over two steps) as a pale yellow oil.
R;=0.37 (4:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCl,) 6 8.06-8.03 (comp m, 2H),
7.64-7.58 (m, 1H), 7.49-7.44 (comp m, 4H), 6.01 (d, J = 6.0 Hz, 1H), 5.90 (dddd, J =
17.0,10.6,5.7,5.7 Hz, 1H), 5.31 (app dq, J = 17.2, 1.4 Hz, 1H), 5.22 (ddd, J = 104, 2.3,
1.2 Hz, 1H), 4.65 (app dt, J = 5.7, 1.3 Hz, 2H), 2.77 (dddd, J = 18.6, 8.9, 4.1, 1.4 Hz,
1H), 2.65-2.47 (comp m, 2H), 2.13-2.01 (m, 1H), 1.97-1.76 (m, 1H), 1.81 (ddd, J =
14.3, 7.6, 3.5 Hz, 1H), 1.47 (s, 3H); "C NMR (75 MHz, CDCl,) § 198.8, 173.2, 164.3,
164.1, 133.9, 131.8, 130.2, 129.0, 128.7, 121.4, 118.6, 66.1, 60.0, 34.1, 33.9, 23 4, 21.8;

HRMS (FAB+) m/z calc’d for C,4H,,O5 [M + H]": 329.1389, found 329.1378.

o]

o \/
BzO

268

Vinylogous benzoate 268. A typical asymmetric alkylation reaction was run on
39.5 mg (0.120 mmol) of 267 at 30 °C in THF (0.1 M) for 8 h (overnight) using (S)-55
and Pd,(pmdba);. The crude material was purified by preparative TLC on SiO, (4:1
hexanes/EtOAc) to provide 268 (2.1 mg, 0.102 mmol, 85% yield) as a colorless oil. R,=
0.47 (4:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCL,) 8 8.08-8.04 (comp m, 2H),

7.64-7.59 (m, 1H), 7.51-7.45 (comp m, 2H), 5.90 (app t, /= 1.1 Hz, 1H), 5.74 (dddd, J =
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16.3, 10.8, 74, 74, 1H), 5.10-5.09 (m, 1H), 5.07-5.03 (m, 1H), 2.68-2.63 (comp m,

2H), 2.34 (app qt, J = 13.8, 1.1 Hz, 2H), 1.99-1.67 (comp m, 4H), 1.19 (s, 3H). HPLC
conditions: 2% i-PrOH in hexanes, OD-H column, #; (min): major = 10.86, minor =

12.39.

(o] Et;N, MsClI o
MeCN, 0 — 23 °C
then PhSH, Et;N
(o} 0—23°C PhS
227 (66% yield) 299

Vinylogous thioester 299. To a solution of dione 227 (1.3727 g, 10.88 mmol, 1.0
equiv) in MeCN (12.1 mL, 0.9 M) cooled to 0 °C was added Et;N (1.70 mL, 12.2 mmol,
1.12 equiv) and MsCl (884 uL, 11.4 mmol, 1.05 equiv). The reaction was slowly
warmed to 23 °C over 1 h, then cooled to 0 °C and Et;N (1.70 mL, 12.2 mmol, 1.12
equiv) followed by freshly distilled PhSH (1.15 mL, 11.21 mmol, 1.03 equiv) were
added. The reaction was slowly warmed to 23 °C overnight. When starting material was
consumed, the reaction was quenched with sat. aq Na,CO, (30 mL), extracted with Et,O
(3 x 50 mL), the organics were dried over MgSQ,, filtered, and concentrated under
reduced pressure to a yellow oil. The crude oil was purified by flash chromatography on
SiO, (3:1 — 1:1 hexanes/Et,0) to afford 299 as a pale yellow solid (1.5617 g, 7.154
mmol, 66% yield). R;=0.31 (1:1 hexanes/Et,0); mp = 73-75 °C; '"H NMR (500 MHz,
CDCl,) 8 7.48-7.46 (comp m, 2H), 7.43-7.40 (comp m, 3H), 5.48 (s, 1H), 2.65 (dd, J =
6.1, 6.1 Hz, 2H), 2.55 (dd, J = 6.3, 6.3 Hz, 2H), 1.93-1.88 (comp m, 2H), 1.84-1.79
(comp m, 2H); "C NMR (125 MHz, CDCl,) § 200.6, 163.5, 163.4, 135.6, 130.2, 130.0,

129.7, 1243, 414, 33.0, 24.9, 21.0; IR (Neat Film NaCl) 3058, 2939, 2866, 1648. 1586,
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1475, 1440, 1267, 1190, 1016, 750, 691 cm'; HRMS (EI+) m/z calc'd for C,;H,,08 [M]*:

218.0765, found 218.0758.

o 1. LDA, THF, -78 °C; o 2
Iyl f t
allyl cyanoformate . o/\/
2. NaH, Mel, THF
PhS 0—24°C PhS
299 (44% vyield, two steps) 269

Vinylogous p-ketoester 269. To a solution of i-Pr,NH (590 uL, 4.21 mmol, 1.3
equiv) in THF (14 mL) at 0 °C was added a solution of n-BuLi (1.56 mL of a 2.5 M
solution in hexane, 3.89 mmol, 1.2 equiv). After 30 min, the solution was cooled to
—78 °C and a solution of vinylogous thioester 299 (707.5 mg, 3.24 mmol, 1.0 equiv) in
THF (2.2 mL) was added dropwise via cannula transfer. After 1 h at —78 °C, allyl
cyanoformate (389 uL, 3.56 mmol, 1.1 equiv) was added. After 2 h the reaction was
quenched with 50% sat. aqg NH,Cl (5 mL) and warmed to room temperature. The layers
were separated and the aq layer was extracted with Et,O (3 x 10 mL), the combined
organics were washed with brine (10 mL), dried over MgSO,, filtered, and concentrated
in vacuo.

The resulting crude oil was dissolved in THF (4.7 mL) and cooled to 0 °C, at which
point NaH (149 mg, 3.73 mmol, 1.15 equiv) was added in two portions. After 20 min,
Mel (605 uL, 9.72 mmol, 3 equiv) was added and the cooling bath was removed. The
reaction was quenched with 50% sat. aq NH,Cl after 11 h, diluted with Et,0O (10 mL), the
layers were separated and the aq layer was extracted with Et,O (3 x 10 mL). The
combined organics were washed with brine, dried over MgSQO,, filtered, and concentrated
to a crude yellow oil. Purification by flash chromatography on SiO, (6:1 — 3:1

hexanes/Et,0) provided vinylogous p-ketoester 269 (0.3426 g, 1.08 mmol, 34% yield
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over two steps) as a pale yellow oil. R, =0.25 (3:1 hexanes/Et,0); '"H NMR (500 MHz,

CDCl,;) & 7.46-7.38 (comp m, 5H), 5.86 (dddd, J = 10.5,5.6,5.6,0.7 Hz, 1H), 5.56 (d, J
= 1.5 Hz, 1H), 5.29 (dddd, J=17.1,1.5, 1.5, 1.5 Hz, 1H), 5.23 (dddd, J = 10.5, 1.2, 1.2,
1.2 Hz, 1H), 4.60 (dddd, J=19.5,59, 1.5, 1.5 Hz, 2H), 2.67 (dddd, J = 17.6, 10.3, 3.7,
1.7 Hz, 1H), 2.50-2.43 (comp m, 2H), 2.08-1.98 (m, 1H), 1.86-1.77 (m, 1H), 1.68 (ddd,
J=142,64,54 Hz, 1H), 1.38 (s, 3H) ); "C NMR (125 MHz, CDCL,) § 197.6, 173.6,
1595, 135.6, 131.8, 130.1, 129.9, 123.8, 118.7, 66.0, 58.8, 34.2, 33.7, 23.9, 23.8; IR
(Neat Film NaCl) 3060, 2982, 2935, 1735, 1650, 1593, 1440, 1230, 1178, 1113, 980,

750, 692 cm™'; HRMS (EI+) m/z calc'd for C,H,,0,S [M]": 316.1133, found 316.1119.

o]

SN\ F
PhS

270

Vinylogous thioester 270. A typical asymmetric alkylation reaction was run on
78.2 mg (0.287 mmol) of 269 at 25 °C in Et,O (0.1 M) for 5 h using (5)-55 and
Pd(dmdba),. The crude material was purified by flash chromatography on SiO, (15:1 —
9:1 hexanes/Et,0, PhMe load) to provide 270 (67.1 mg, 0.246 mmol, 86% yield) as a
pale yellow oil. R, = 0.46 (3:1 hexanes/Et,0); '"H NMR (500 MHz, CDCl,) & 7.49-7 .46
(comp m, 2H), 7.42-7.38 (comp m, 3H), 5.66 (dddd, J = 16.8, 10.1, 7.3, 7.3 Hz, 1H),
5.54 (s, 1H), 5.044.98 (comp m, 2H), 2.59-2.48 (m, 2H), 2.29 (dd, J = 13.7 7.3 Hz, 1H),
220 (dd, J = 13.7, 7.6 Hz, 1H), 1.93-1.77 (comp m, 2H), 1.64-1.58 (m, 1H), 1.09 (s,
3H); "C NMR (125 MHz, CDCl;) § 206.0, 155.7, 135.5, 134.2, 130.4, 129.8, 129.8,
1240, 118.1, 51.3, 44.6, 36.3, 35.2, 24.3, 22.5; IR (Neat Film NaCl) 3074, 2931, 2865,

1650, 1597, 1474, 1440, 1197, 916, 749, 691 cm™'; HRMS (EI+) m/z calc'd for C,;H,,SO
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[M]*: 272.1235, found 272.1243; [a],™*® —86.35° (¢ 0.905, CH,Cl,, 89% ee). HPLC

conditions: see derivative 300.

/@ ~F 291 (5 mol %) /@ \/\c02Me
ons methyl acrylate
70 (93% yield)

Acrylate 300. To a solution of vinylogous thioester 270 (19.4 mg, 0.0712 mmol, 1.0
equiv) was added methyl acrylate (128 uL, 0.142 mmol, 20 equiv), followed by Grubbs’
catalyst 291 (3.1 mg, 0.0036 mmol, 0.05 equiv) and CH,Cl, (100 uL). The vial was
flushed with argon, capped, and immersed in a 40 °C oil bath overnight. After 10 h, the
reaction was concentrated under reduced pressure and purified by preparative TLC on
SiO, (3:1 hexanes/Et,O) to give acrylate 300 (21.9 mg, 0.0663 mmol, 93% yield) as a
pale yellow oil. R, = 0.19 (3:1 hexanes/Et,0); '"H NMR (500 MHz, CDCl,) § 7.50-7.40
(comp m, 5H), 6.84 (ddd, J = 15.7, 8.0, 8.0 Hz, 1H), 5.81 (ddd, J = 154, 1.3, 1.3 Hz,
1H), 5.51 (s, 1H), 3.72 (s, 3H), 2.56 (dd, J = 7.0, 5.0 Hz, 2H), 2.46 (ddd, J = 13.8, 7 4,
1.3 Hz, 1H), 2.33 (ddd, J = 13.8, 7.4, 1.3 Hz, 1H), 1.90-1.75 (comp m, 3H), 1.69-1.61
(m, 1H), 1.14 (s, 3H); "C NMR (125 MHz, CDCl;) § 204.7, 166.7, 157.0, 145.3, 135.6,
130.1, 130.0, 1299, 124.0, 123.3, 51.6, 51.3, 42.8, 36.3, 35.3, 24.8, 22.5; IR (Neat Film
NaCl) 3057, 2934, 1723, 1654, 1597, 1439, 1272, 1197, 1113, 986, 751, 692 cm';
HRMS (EI+) m/z calc'd for C,oH,,0,S [M]*: 330.1290, found 330.1293; [a],>" —58.79°
(c 0.355, CH,Cl,, 89% ee). HPLC conditions: 3% EtOH in hexanes, AD column, #;

(min): major =22.3, minor = 18.7.
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o 1. LDA, THF, -78 °C; o o
E%I _c)h;gr?éormate - ﬁ)l\o /\/
+BuO” i 2.C5,CO5Mel  iBuO
MeCN, 80 °C
301 (86% yield, two steps) 271

Vinylogous p-ketoester 271. To a solution of i-Pr,NH (854 uL, 6.09 mmol, 2.05
equiv) in PhMe (20 mL) cooled to —78 °C was added a solution of n-BuLi (2.32 mL of a
2.56 M solution in hexane, 5.94 mmol, 2.0 equiv). The flask was placed in a 0 °C
cooling bath for 10 min, cooled back down to —78 °C, and to this was added a solution of
vinylogous ester 301*° (500 mg, 2.97 mmol, 1.0 equiv) in PhMe (3 mL, wash with extra
I mL). After 30 min, allyl chloroformate (332 uL, 3.12 mmol, 1.05 equiv) was added
dropwise and the bath was removed. The reaction was quenched with 1 N KHSO,
(15 mL) after stirring at room temperature for 30 min, the layers were separated, and the
aq was extracted with Et,0O (2 x 10 mL). The combined organics were washed with
brine, dried over MgSQO,, filtered, and concentrated in vacuo.

The resulting crude oil was dissolved in MeCN (12 mL, 0.25 M), and to this was
added Cs,CO; (1.160 g, 3.56 mmol, 1.2 equiv) and Mel (555 uL, 8.90 mmol, 3.0 equiv).
The reaction was placed in an 80 °C oil bath and stirred vigorously, and after 17 h the
contents were warmed to room temperature. The reaction was diluted with EtOAc
(25 mL), dried over MgSQO,, filtered, and concentrated to a crude oil. Purification by
flash chromatography on SiO, (6:1 — 2:1 — 1:2 hexanes/Et,O) to afford vinylogous
B-ketoester 271 (679.8 mg, 2.55 mmol, 86% yield over two steps) as a colorless oil. R, =
0.53 (2:1 hexanes/EtOAc); 'H NMR (300 MHz, CDCl,) § 5.94-5.81 (m, 1H), 5.36 (s,
3H), 5.29 (app dq,J =172, 1.6, 1H), 5.20 (app dq, J = 10.5, 1.3 Hz, 1H), 4.61 (ddd, J =

5.5,29,1.5Hz,2H), 3.60 (d, J = 6.5 Hz, 2H), 2.65-2.35 (comp m, 4H), 2.01 (septuplet,
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J =68 Hz, 1H), 1.88 (ddd, J = 13.0, 8.0, 4.8 Hz, 1H), 1.42 (s, 3H), 0.97 (d, J = 6.7 Hz,

6H); “C NMR (75 MHz, CDCl,) § 196.7, 176.9, 172.7, 131.9, 118.2, 101.8, 75.0, 65.7,
52.5, 31.8, 27.8, 26.5, 20.7, 19.2; HRMS (FAB+) m/z calc’d for C,;H,;0, [M + H]":

267.1596, found 267.1594.

0

Jﬁﬂ\/
iFBuO

272

Vinylogous ester 272. A typical asymmetric alkylation reaction was run on 26.6 mg
(0.100 mmol) of 271 at 50 °C in PhMe (0.1 M) for 33 h using (5)-55 and Pd(dmdba),.
The crude material was purified by flash chromatography on SiO, (9:1 — 6:1
hexanes/EtOAc) to provide 272 (17.5 mg, 078.7 umol, 79% yield) as a colorless oil. R, =
0.37 (6:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) § 5.81-5.68 (m, 1H), 5.25 (s,
1H), 5.08 (s, 1H), 5.05-5.02 (m, 1H), 3.58 (d, J = 3.5 Hz, 2H), 2.42 (t, / = 6.4 Hz, 2H),
2.36 (dd, J =13.6,7.7 Hz, 1H), 2.18 (dd, J = 13.6, 7.7 Hz, 1H), 2.02 (septuplet, J = 6.7
Hz, 1H), 1.92 (app dt, J = 13.4, 6.2 Hz, 1H), 1.70 (app dt, J = 13.5, 6.2 Hz, 1H), 1.08 (s,
3H), 0.97 (d, J = 6.7 Hz, 6H); "C NMR (75 MHz, CDCl,) 6 203.7, 176.2, 134.5, 118.0,
101.4, 748, 433, 41.7, 31.9, 279, 26.1, 22.3, 19.2; IR (Neat Film NaCl) 2962, 2932,
2875, 1654, 1611, 1384, 1368, 1239, 1194, 1178, 996, 912, 840 cm™'; HRMS (FAB+) m/z
calc’d for C,,H,,0, [M + H]": 223.1698, found 223.1706. HPLC conditions: 5% i-PrOH,

OD-H column, #; (min): major = 5.75, minor = 6.40.
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4.5.2.2 ENANTIOSELECTIVE TOTAL SYNTHESIS OF (+)-CARISSONE
0 i-BuOH o
p-TsOH-H,0
PhH, reflux
o Dean-Stark i-BuO
301 (92% yield) 302

Vinylogous ester 302.*" Diketone 301 (3.000 g, 23.78 mmol, 1.0 equiv) was partially
dissolved in PhH (42.5 mL, 0.56 M), and i-BuOH (12.75 mL, 137.9 mmol, 5.8 equiv) and
p-TsOHeH,O (226 mg, 1.19 mmol, 0.05 equiv) were added with vigorous stirring. A
Dean-Stark adapter and a water-cooled condenser were attached to the flask and the
contents were warmed to reflux in a 104 °C oil bath. Upon consumption of 301 by TLC
analysis (ca. 3.5 h), the reaction was cooled to ambient temperature, diluted with Et,O
(50 mL), and poured into saturated aq NaHCO; (20 mL). The layers were separated and
the aq layer was extracted with Et,O (3 x 15 mL). The organics were combined, washed
with brine, dried over Na,SO,, filtered, and concentrated in vacuo to afford a pale brown
oil. To this oil was added PhMe (ca. 10 mL) followed by further concentration in vacuo.
Purification by bulb-to-bulb distillation yielded vinylogous ester 302 (3.988 g,
21.88 mmol, 92% yield) as a clear, colorless oil. R, = 0.48 (2:1 EtOAc/hexanes); bp =
135-140 °C at 0.8 torr; 'H NMR (300 MHz, CDCl,) & 3.76 (d, J = 6.5 Hz, 2H), 2.54
(ddd, J=6.1, 1.5, 1.5 Hz, 2H), 2.34 (t, J = 7.1 Hz, 2H), 2.08-1.90 (comp m, 3H), 1.72
(app t, J = 1.5 Hz, 3H), 0.99 (d, J = 6.7 Hz, 6H). All other spectral data are consistent

with reported values.
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o LDA, THF o
0—-78°C
-
Mel, —78 — 23 °C
BuO ) BuO
(80% yield)
302 303

Methyl vinylogous ester 303.* To a solution of i-Pr,NH (1.12 mL, 7.99 mmol, 1.9
equiv) in THF (26 mL, 0.15 M) at 0 °C was added dropwise a solution of n-BuLi (2.55 M
in hexanes, 3.06 mL, 7.80 mmol, 1.85 equiv). After 15 min, a solution of vinylogous
ester 302 (765.2 mg, 4.198 mmol, 1.0 equiv) in THF (2.0 mL) was added dropwise via
cannula transfer. The resulting solution was cooled to —78 °C and stirred for 45 min, to
which a solution of Mel (485 uL, 7.80 mmol, 1.85 equiv) in THF (5.0 mL) was added
over 30 min via positive-pressure cannula transfer. The cooling bath was allowed to
expire over ca. 4 h and the reaction was quenched with brine (15 mL), the phases were
separated, and the aq layer was extracted with hexanes (3 x 25 mL). The combined
organics were washed with brine, dried over MgSQ,, filtered, and concentrated in vacuo
to a yellow oil. Purification by flash chromatography (4:1 — 2:1 hexanes/Et,0) afforded
methyl vinylogous ester 303 (659 mg, 3.36 mmol, 80% yield) as a pale yellow oil. R, =
0.48 (2:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCl;) 6 3.73 (ddd, J = 15.6,9.2, 6.5
Hz, 2H), 2.61 (ddd, J = 17.3, 5.3, 1.2 Hz, 1H), 2.55-2.44 (m, 1H), 2.35-2.19 (m, 1H),
2.06 (app dq,J =8.3,4.8 Hz, 1H), 1.98 (app septet, J = 6.6 Hz, 1H), 1.71 (dd,J=1.6,1.6
Hz,3H), 1.73-1.60 (m, 1H), 1.14 (d,J=6.9 Hz, 3H),0.99 (d, J = 6.7 Hz, 6H). All other

spectral data are consistent with reported values.

(o} LDA, THF, =78 °C OCOaallyl 0OCOallyl

then TMEDA
then CICO,allyl
BuO FBuO i-BuO

303 287 304
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Enol carbonate 287. To a solution of i-Pr,NH (1.56 mL, 11.15 mmol, 1.2 equiv) in

THF (85 mL, 0.11 M) at 0 °C was added a solution of n-BuLi (2.55 M in hexanes,
4.0 mL, 10.22 mmol, 1.1 equiv) dropwise. The reaction mixture was allowed to stir for
30 min and then cooled to =78 °C. A solution of ketone 303 (1.824 g, 9.29 mmol, 1.0
equiv) in THF (10 mL) was added dropwise via cannula and stirred for 1 h. TMEDA
(1.67 mL, 11.15 mmol, 1.2 equiv) was then added via syringe and the resulting solution
stirred for 75 min. To this solution was added allyl chloroformate (1.08 mL, 10.13 mmol,
1.09 equiv) via syringe and the reaction mixture was stirred at —78 °C for an additional
hour. The reaction was quenched with saturated aqg NaHCO, (40 mL) and H,O (40 mL),
and the flask was transferred to a 23 °C water bath and allowed to equilibrate. The
phases were separated and the aqueous was extracted with Et,O (2 x 200 mL). The
combined organics were washed with brine, dried over MgSO,, and concentrated in
vacuo to afford enol carbonate 287 as a yellow oil (2.472 g); 'H NMR analysis shows 287
is the major product with other impurities present. R, = unstable to SiO,; 'H NMR
(500 MHz, CDCl,) & 597 (dddd, J = 16.4, 10.8, 5.8, 5.8 Hz, 1H), 542 (app d, J =
17.2 Hz, 1H), 5.33 (app d, J = 10.4 Hz, 1H), 4.72 (dd, J = 5.7, 0.8 Hz, 2H), 3.86 (d, J =
6.7 Hz, 2H), 2.85 (app t, J = 7.9 Hz, 2H), 2.52 (app t, J = 7.9 Hz, 2H), 2.19 (s, 3H), 1.92
(app septuplet, J = 6.7 Hz, 1H), 1.82 (s, 3H), 0.93 (d, J = 6.7 Hz, 6H); IR (Neat Film
NaCl) 2963, 1760, 1736, 1699, 1361, 1248, 1170, 990 cm™'; HRMS (FAB+) m/z calc’d
for C;H,,0, [M — C;H,]": 239.1283, found 239.1273.

This material was unstable to various purification attempts (distillation or flash
chromatography using silica gel or Florisil) and storage. Aromatic carbonate 304 was

identified as a colorless oil from this complex mixture. R,=0.51 (4:1 hexanes/EtOAc);
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'H NMR (500 MHz, CDCl,) § 6.97 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 8.4 Hz, 1H), 6.00

(dddd, J=17.1,10.5,5.7,5.7 Hz, 1H), 543 (dddd, J = 17.2, 1.4, 1.4, 1.4 Hz, 1H), 5.33
(dddd, J = 10.5, 1.2, 1.2, 1.2 Hz, 1H), 4.75 (app dt, J = 5.8, 1.3 Hz, 2H), 3.70 (d, J =
6.4 Hz, 2H), 2.14 (s, 3H), 2.09 (s, 3H), 2.09 (app septuplet, J = 6.6 Hz, 1H), 1.03 (d, J =
6.7 Hz, 6H); °C NMR (126 MHz, CDCl,) § 156.3, 153.0, 148.7, 131.4, 127.7, 121.8,
1195, 1194, 109.1, 749, 69.2, 28.6, 19.5, 15.7, 9.2; IR (Neat Film NaCl) 2960, 2874,
1762, 1620, 1494, 1470, 1365, 1244, 1202, 1172, 1115, 1048, 799 cm™'; HRMS (FAB+)

m/z cale’d for C, H,,0, [M]": 278.1518, found 278.1517.

1. LDA, PhMe, -78 °C
o then CICO,allyl o o

-78 — 23 °C - 0/\/
2. Mel, Cs,CO3
BuO MeCN, 80 °C BuO
302 (55% vyield, two steps) (2)-275

B-Ketoester (+)-275. To a —78 °C solution of i-Pr,NH (425 uL, 3.03 mmol, 1.9
equiv) in PhMe (10 mL) was added dropwise n-BuLi (2.55 M in hexanes, 1.16 mL,
2.96 mmol, 1.85 equiv). The reaction vessel was placed in an ice/water bath and allowed
to stir for 10 min, and then cooled to —78 °C. A solution of vinylogous ester 302
(291 mg, 1.60 mmol, 1.0 equiv) in PhMe (1.4 mL) was added dropwise via cannula to the
reaction vessel, and the resulting solution was allowed to stir for 30 min. Allyl
chloroformate (173 uL, 1.63 mmol, 1.02 equiv) was added dropwise, and the reaction
vessel was allowed to warm to 23 °C over 1 h. After stirring for 4 h, the reaction was
slowly quenched with aqg KHSO, (1 N, 4 mL) and the resulting biphasic mixture was
allowed to stir for 10 min. The phases were separated, and the aq phase was extracted

with Et,0 (2 x 10 mL). The combined organic extracts were washed with brine (10 mL),
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dried over MgSQ,, filtered, and concentrated in vacuo. The isolated crude yellow oil was
used in the next step without further purification.

The resulting crude yellow oil was dissolved in MeCN (5.9 mL, 0.27 M), and Cs,CO,
(603 mg, 1.85 mmol, 1.16 equiv), and Mel (276 ul, 4.44 mmol, 2.8 equiv) were added.
A water-cooled condenser was attached to the flask and the resulting suspension was
warmed to reflux in an 80 °C oil bath with vigorous stirring. After 10 h, the reaction was
cooled to room temperature and diluted with EtOAc (25 mL). The organics were dried
with MgSO,, filtered, and the solvent was evaporated in vacuo. Purification by flash
chromatography (15:1 — 9:1 — 4:1 hexanes/EtOAc) afforded 3-ketoester (+)-275 as pale
yellow oil (246 mg, 55% yield over two steps). R,=0.27 (2:1 hexanes/EtOAc); 'H NMR
(500 MHz, CDCl,) & 5.82 (dddd, J = 17.2, 10.7, 5.4, 54 Hz, 1H), 5.22 (dddd, J = 17.2,
1.6, 1.6, 1.6 Hz, 1H), 5.15 (dddd, J = 10.5, 1.2, 1.2, 1.2 Hz, 1H), 4.56 (dddd, J = 13.5,
54,15,1.5 Hz, 2H), 3.72 (ddd, J = 9.2, 6.6, 3.2 Hz, 2H), 2.69-2.62 (m, 1H), 2.53-2.44
(comp m, 2H), 1.95 (app septuplet, J = 6.6 Hz, 1H), 1.85-1.80 (m, 1H), 1.70 (dd, J = 1.5,
1.5 Hz, 3H), 1.36 (s, 3H), 0.95 (dd, J = 6.7, 0.8 Hz, 6H); "C NMR (126 MHz, CDCl,)
01958, 172.6,170.3, 1319, 117.8, 113.8, 73.9, 65.5, 51.6, 31.2, 28.8, 23.0, 20.8, 19.1,
19.0, 8.0; IR (Neat Film NaCl) 2961, 2935, 2875, 1733, 1649, 1618, 1460, 1382, 1354,
1237, 1176, 1103, 983 cm™'; HRMS (FAB+) m/z calc’d for C,,H,,O, [M + H]*: 281.1753,

found 281.1740.

o Et;N, MsCl, MeCN o

0->23°C
then PhSH, Et;N
o) 0—>23°C PhS
301 (82% yield) 305

Vinylogous Thioester 305.* To a solution of diketone 301 (2.500 g, 19.82 mmol,
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1.0 equiv) in MeCN (22.0 mL, 0.9 M) was added Et;N (3.1 mL, 22.2 mmol, 1.12 equiv)

and the solution was allowed to stir for 5 min, then cooled to 0 °C. Methanesulfonyl
chloride (1.63 mL, 21.0 mmol, 1.06 equiv) was added, and the reaction was warmed to
23 °C over 2 h. Stirring was continued for 5 h, at which point the reaction was cooled to
0 °C. Triethylamine (3.1 mL, 22.2 mmol, 1.12 equiv) was added, followed by
benzenethiol (2.1 mL, 20.4 mmol, 1.03 equiv). The reaction was allowed to warm to
23 °C over 2 h and stirring was continued for 9 h. Saturated aq Na,CO; (35 mL) was
added, the phases were separated, and the aq phase was extracted with Et,0O (3 x 60 mL).
The combined organic extracts were dried over Na,SO,, filtered, and the solvent was
evaporated in vacuo. Purification by flash chromatography (4:1 — 2:1 hexanes/Et,0O)
afforded vinylogous thioester 305 as a white crystalline solid (3.565 g, 16.33 mmol, 82%
yield). R,=0.34 (1:1 hexanes/Et,0); mp = 85 °C; '"H NMR (500 MHz, CDCl,) 8 7.51-
7.49 (m, 2H), 7.44-7.37 (comp m, 3H), 2.38 (t,J = 6.5 Hz, 2H), 2.18 (tq, J = 6.5, 2.0 Hz,
2H), 1.97 (t,J =2.0 Hz, 3H), 1.87 (app pentuplet, J = 6.0 Hz, 2H). All other spectral data

are consistent with reported values.

1. LDA, PhMe, -78 °C
then CICO,allyl

(o} (o} (o]
-78 - 23°C
. 0/\/
2. Mel, Cs,CO;
PhS MeCN, 80 °C PhS

305 (78% yield) (2)-277

B-Ketoester (+)-277. To a —78 °C solution of i-Pr,NH (2.63 mL, 18.78 mmol, 2.00
equiv) in PhMe (70 mL) was added dropwise n-BuLi (2.53 M in hexanes, 7.24 mL, 2.00
equiv). The reaction vessel was warmed to 0 °C, allowed to stir for 10 min, and cooled to

—78 °C. A solution of vinylogous thioester 305 (2.00 g, 9.16 mmol, 1.00 equiv) in PhMe
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(15 mL) was added dropwise via cannula to the reaction vessel, and the resulting solution
was allowed to stir for 30 min. Allyl chloroformate (1.02 mL, 9.62 mmol, 1.05 equiv)
was added dropwise and the reaction vessel was allowed to warm to 23 °C over 1 h.
Stirring was continued for 4 h, at which point aq KHSO, (1 N, 70 ml) was slowly added
and the resulting solution was allowed to stir for 10 min. The phases were separated, and
the aq phase was extracted with Et,O (3 x 30 mL). The combined organic extracts were
washed with brine (1 x 30 mL), dried over Na,SO,, filtered, and concentrated in vacuo.
The isolated crude yellow oil was used in the next step without further purification.

To a solution of the crude yellow oil (3.32 g) in CH;CN (40 mL) in a flask with an
attached reflux condenser was added cesium carbonate (4.48 g, 13.74 mmol, 1.50 equiv)
and Mel (1.71 mL, 27.48 mmol, 3.00 equiv). The resulting suspension was refluxed at
80 °C for 5 h, at which point additional Mel (1.00 mL, 16.06 mmol, 1.75 equiv) was
added. The reaction was refluxed at 80 °C for 2 h, cooled to room temperature, filtered
through Celite (EtOAc eluent), dried over Na,SO,, filtered, and the solvent was
evaporated in vacuo. Purification by flash chromatography (18% EtOAc in hexanes)
afforded [-ketoester (+)-277 as a colorless oil that solidifies to a white solid over time or
in a =20 °C freezer (2.26 g, 7.14 mmol, 78% yield over two steps). R, = 0.35 (30%
EtOAc in hexanes); mp 34 °C; '"H NMR (300 MHz, CDCL,) & 7.51-7.35 (comp m, 5H),
5.87 (app ddt, J =10.5,17.1,5.4 Hz, 1H), 5.27 (app ddt, J = 17.1, 1.7, 1.8 Hz, 1H), 5.22
(app ddt,J=99,1.7,1.2 Hz, 1H), 4.65 (dddd, J=1.5,1.8,5.7, 13.5 Hz, 1H), 4.55 (dddd,
J=15,18,5.7,13.5 Hz, 1H), 2.41-2.32 (m, 1H), 2.30-2.21 (m, 1H), 2.16-2.06 (1H),
2.00 (t, J = 1.8 Hz, 3H), 1.78 (ddd, J = 4.5, 8.1, 13.2 Hz, 1H), 1.38 (s, 3H); "C NMR

(75 MHz, CDCL,) 8 193.0, 172.6, 156.7, 135.6, 131.9, 129.7, 129.5, 128.9, 118.1, 65.7,
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52.3,33.1, 274, 20.7, 12.9; IR (Neat Film NaCl) 2936, 1733, 1656, 1580, 1314, 1254,

1238, 1174, 985, 752, 693 cm™'; HRMS (FAB+) m/z calc’d for C,;;H,,0,S [M + HJ*:

317.1211, found 317.1211.

OCOaallyl Pdy(pmdba); (2.5 mol %) 0

(S)-55 (6.25 mol %) _ "\\\\/
PhMe, 25 °C
iFBuO i-BuO

(22-61% yield)
287 (+)-276, 84-88% ee

Ketone (+)-276 from enol carbonate 287. A 1-dram vial containing a stir bar was
charged with Pd,(pmdba); (4.9 mg, 0.0045 mmol, 0.025 equiv) and (S)-55 (4.4 mg,
0.0112 mmol, 0.0625 equiv), sealed with a septum, and the atmosphere was purged by
three evacuate/purge cycles. To this was added PhMe (0.9 mL) and the ligation reaction
was stirred for 30 min in a 25 °C oil bath, upon which time a solution of enol carbonate
287 (50.2 mg, 0.179 mmol, 1.0 equiv) in PhMe (0.9 mL, 0.1 M total) was added via
cannula. After 21.5 h the reaction was diluted with Et,O (2 mL), filtered through a SiO,
plug, and concentrated in vacuo. The filtrate was purified by flash chromatography on
SiO, (15:1 — 4:1 hexanes/EtOAc) to afford ketone 276 as a pale yellow oil (22-61%
yield, 84-88% ee). R;=0.49 (4:1 hexanes/EtOAc); '"H NMR (500 MHz, CDCl,) 6 5.73
(dddd, J =16.6,10.6,7.4,7.4 Hz, 1H), 5.06-5.04 (m, 1H), 5.04-5.01 (m, 1H), 3.74 (dd, J
=9.7,6.7 Hz, 2H), 2.59-2.47 (comp m, 2H), 2.33 (dd, J = 13.7, 7.2 Hz, 1H), 2.16 (dddd,
J=13.7,7.6,1.0, 1.0 Hz, 1H), 1.98 (app septuplet, J = 6.6 Hz, 1H), 1.90 (ddd, J = 13.3,
7.2,5.7Hz,1H), 1.72-1.67 (m, 1H), 1.70 (dd, J = 1.6, 1.6 Hz, 3H), 1.06 (s, 3H), 0.99 (d,
J = 6.7 Hz, 6H); "C NMR (126 MHz, CDCl,) & 202.7, 169.5, 134.8, 117.8, 113.3, 73.8,

42.5,41.9,31.5,29.0,22.5,22.4,19.2, 8.0; IR (Neat Film NaCl) 3076, 2962, 2931, 1622,
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1463, 1381, 1355, 1229, 1113, 1002, 915 cm™'; HRMS (EI+) m/z calc’d for C,sH,,0,

[M]*: 236.1776, found 236.1771; [a]y™'? +13.2° (¢ 0.20, CH,Cl,, 88% ee). SFC

conditions: 5% i-PrOH, AD column, #; (min): major = 5.18, minor = 6.02.

o) o Pdy(pmdba); (2.5 mol %) lo)

(S)-55 (6.25 mol %)
o > WNF
PhMe, 80 °C
i-BuO i-BuO

(86% vyield)
(2)-275 (+)-276, 75% ee

Ketone (+)-276 from p-ketoester (+)-275. A 2-dram vial containing a stir bar was
charged with Pd,(pmdba),; (10.6 mg, 0.00968 mmol, 0.025 equiv) and (S)-55 (9.4 mg,
0.0242 mmol, 0.0625 equiv). This was connected to a 1-dram vial containing a stir bar
and B-ketoester (+)-275 (108.6 mg, 0.387 mmol, 1.0 equiv) via a cannula, and PhMe
(39 mL, 0.1 M) was added to the vial containing the Pd/L and immediately immersed in
liquid N,. The vials were rigorously degassed by three freeze-pump-thaw cycles and
warmed to 23 °C. After ligation for 30 min (purple — orange color change), the catalyst
solution was transferred to the substrate via cannula and immersed in an 80 °C oil bath, at
which point the reaction immediately turned yellow in color. After 23 h the reaction was
cooled to ambient temperature, diluted with Et,O (4 mL), and filtered through a small
Si0O, plug. The filtrate was concentrated and purified by flash chromatography as above

to afford ketone 276 as a colorless oil (78.5 mg, 0.332 mmol, 86% yield, 75% ee).

(o] 0 Pdy(pmdba); (2.5 mol %) (o]
(S)-55 (6.25 mol %)
o \F > WNF
PhMe, 50 °C
PhS PhS
(86% yield)

()-277 (+)-278, 92% ee
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Ketone (+)-278 from f-ketoester (+)-277. The reaction was performed exactly as
described for enol carbonate 287 using f-ketoester (+)-277 (41.8 mg, 0.132 mmol, 1.0
equiv). After complexation of the metal for 30 min at 25 °C, a solution of the substrate
was added and the reaction was warmed to 50 °C in an oil bath. After 23 h, the reaction
was cooled to room temperature, diluted with Et,O, and filtered through a SiO, plug. The
filtrate was concentrated and purified by flash chromatography (15:1 — 9:1
hexanes/EtOAc) to afford ketone 278 as a colorless oil (31.0 mg, 0.114 mmol, 86% yield,
92% ee). R;=0.35 (9:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) § 7.52-7.48 (m,
2H), 7.43-7.35 (comp m, 3H), 5.68 (dddd, J = 16.6, 10.4,7.6,7.6 Hz, 1H), 5.03 (dddd, J
=99,24,09,0.6 Hz, 1H),5.01 (dddd,/J=17.4,2.4,1.5,1.2 Hz, 1H), 2.32 (app ddt, J =
13.8,7.2,1.2 Hz), 2.19-2.10 (comp m, 3H), 1.96 (app t, /= 1.8 Hz, 3H), 1.81 (ddd, 13.5,
6.4, 6.4 Hz, 1H), 1.66-1.56 (m, 1H), 1.04 (s, 3H); "C NMR (75 MHz, CDCl;) § 199.5,
155.6, 135.6, 134.4 130.3, 129.6, 129.5, 128.8, 118.2, 43.1, 41.7, 33.1, 26.9, 22.3, 12.9;
IR (Neat Film NaCl) 3074, 2964, 2929, 1652, 1582, 1440, 1339, 1287, 1228 cm™'; HRMS
(FAB+) m/z calc’d for C;H,,0S [M + HJ*: 273.1313, found 273.1317; [a],"° +56.7°
(c 1.36, CH,Cl,, 92% ee). HPLC conditions: 4% EtOH in hexanes, AD column, #; (min):

major = 7.24, minor = 9.48.

(o} (o} Pd,(pmdba); (2.5 mol %) [0}

o G (R)-55 (6.25 mol %) . 5 —
PhMe, 50 °C
PhS PhS
(85% yield)
(x)-277 (-)-278, 92% ee

Scale up of ketone (-)-278 from p-ketoester (+)-277. In a glove box, a flask

containing a stir bar was charged with Pd,(pmdba), (493.1 mg, 045 mmol, 0.025 equiv)
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and ligand (R)-55 (435.9 mg, 1.125 mmol, 0.0625 equiv). The solids were dissolved in

PhMe (150 mL) and stirred for 45 min (purple — orange color change). To this was
added a solution of P-ketoester (+)-277 (5.6956 g, 18.00 mmol, 1.0 equiv) in PhMe
(30 mL, 0.1 M total). The flask was transferred out of the glove box, placed under an
argon atmosphere and warmed in a 50 °C oil bath (orange — yellow color change). After
66 h, the reaction was cooled to room temperature and concentrated in vacuo.
Purification by flash chromatography (as above, dry load onto SiO,) afforded ketone (—)-
278 as a pale yellow oil (4.184 g, 15.36 mmol, 85% yield, 92% ee) and recovered
B-ketoester (+)-277 (500.5 mg, 1.582 mmol, 9% yield). [a],>* —=57.4° (¢ 1.00, CH,CL,,

92% ee).

(o} [0}

\/é/\/ Na®, MeOH jé/\/
ﬁ
PhS 70°C MeO
(-)-278, 92% ee (89% yield) (-)-288

Methoxy vinylogous ester (—)-288. To a 3-neck flask equipped with water-cooled
reflux condenser charged with dry MeOH (33.7 mL, 0.26 M) at 0 °C was added
hexanes-washed Na° (1.047 g,45.5 mmol, 5.2 equiv), after which the bath was removed.
The contents were stirred at 23 °C until all Na° was dissolved. A solution of ketone 278
(2.3991 g, 8.81 mmol, 1.0 equiv) in MeOH (10 mL) was added dropwise via cannula to
the generated NaOMe and the resulting solution was heated in an oil bath at 70 °C. Upon
consumption of 278 by TLC analysis (4:1 hexanes/EtOAc), the reaction mixture was
cooled to ambient temperature and transferred to a separate flask with Et,0 and
concentrated in vacuo to a thick yellow slurry. This was dissolved in saturated aq

NaHCO, (150 mL), stirred for ca. 20 min, and extracted with Et,O (3 x 100 mL). The
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organics were dried over Na,SO,, filtered, and concentrated in vacuo to a yellow oil.
Purification by flash chromatography (15:1 — 6:1 hexanes/EtOAc) afforded ketone (—)-
288 as a colorless oil that solidifies in a =20 °C freezer to an off-white semisolid
(1.5241 g, 7.845 mmol, 89% yield). R,=0.40 (4:1 hexanes-EtOAc); 'H NMR (500 MHz,
CDCl,) 8 5.74 (dddd, J = 16.8, 10.5, 7.5, 7.5 Hz, 1H), 5.07-5.05 (m, 1H), 5.05-5.02 (m,
1H), 3.80 (s, 3H), 2.62-2.49 (comp m, 2H), 2.33 (dd, J = 13.7,7.2 Hz, 1H), 2.17 (dddd, J
=13.8,7.6,10, 1.0 Hz, 1H), 1.92 (ddd, J = 134, 7.2, 5.8 Hz, 1H), 1.72 (ddd, J = 13 4,
6.7, 5.6 Hz, 1H), 1.68 (dd, J = 1.6, 1.6 Hz, 3H), 1.06 (s, 3H); "C NMR (126 MHz,
CDCL) 8 202.6, 169.6, 134.8, 117.9, 113.2, 550, 425, 419, 314, 224, 218, 79; IR
(Neat Film NaCl) 2929, 1620, 1461, 1375, 1356, 1234, 1154, 1116, 999, 916 cm™;
HRMS (EI+) m/z calc’d for C,H O, [M]*: 194.1307, found 194.1310; [a],*® —10.6°

(c 1.26, CH,CL,, 92% ee).

TBSCI

EtO,C EtsN DMAP EtO,C i-Bu,AlH
\"/\ otTBS — 2 5

CHZCIz THF, -78 °C
0—-23°C

307

CBr,, PhsP
HO/\"/\OTBS e Br/\n/\OTBS
CH,Cl,, 0°C

308 (57% over 3 steps) 289

TBS-acrylate 307." To a solution of a-hydroxymethylacrylate 306* (4.7012 g,
36.19 mmol, 1.0 equiv) and TBSCI (6.00 g, 39.8 mmol, 1.1 equiv) in CH,Cl, (72 mL,
0.5M) at 0 °C was added Et;N (15.1 mL, 108.6 mmol, 3.0 equiv) and DMAP (442 mg,
3.62 mmol, 0.1 equiv). The reaction was allowed to stir for 30 min, at which point the
cooling bath was removed and the contents warmed to 23 °C and stirred overnight. The

reaction mixture was filtered into a separatory funnel and washed with 1N HCI (70 mL),
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saturated aq NaHCO, (100 mL), and brine (100 mL). The organics were dried over

MgSO,, filtered, and concentrated in vacuo to afford TBS-acrylate 307 as a colorless oil
(8.806 g). The material was used in the next step without purification. R, = 0.63 (6:1
hexanes/EtOAc); '"H NMR (300 MHz, CDCl,) 8 6.25 (dd, J = 2.0, 2.0 Hz, 1H), 5.90 (dd,
J=20,20Hz, 1H),4.37 (dd,J=2.1, 2.1 Hz, 2H), 4.21 (q,J = 7.1 Hz, 2H), 1.30 (t, J =
7.1 Hz,3H),0.92 (s, 9H), 0.08 (s, 6H).

Allylic alcohol 308." To a solution of crude TBS-acrylate 307 (8.806 g, 36.03
mmol, 1.0 equiv) in THF (144 mL, 0.25 M) cooled to —78 °C was added dropwise
i-Bu,AlH (neat, 14.1 mL, 79.3 mmol, 2.2 equiv) over 15 min. The resulting solution was
stirred at —78 °C until complete consumption by TLC analysis (4:1 hexanes/EtOAc), at
which point the excess i-Bu,AlH was quenched with dry EtOAc (4 mL). The resulting
solution was stirred for 10 min at —78 °C, then warmed to O °C and aged for 30 min. A
solution of Rochelle’s salt (75 mL, 1 M) was then added slowly with vigorous stirring.
The cooling bath was removed and the contents were vigorously stirred until two
homogeneous layers appeared (several hours). The phases were separated and the aq
layer was extracted with Et,O (3 x 75 mL), the combined organics were washed with
brine (2 x 100 mL), dried over MgSQ,, filtered, and concentrated in vacuo to afford 308
as a cloudy colorless oil (7.29 g). The crude material was used in the next reaction
without purification. R,=0.19 (4:1 hexanes/EtOAc); '"H NMR (300 MHz, CDCIl,) & 5.10
(s, 1H),5.08 (s, 1H), 4.24 (s, 2H), 4.17 (d, J = 5.5 Hz, 2H), 1.95 (t, J = 6.0 Hz, 1H), 0.91
(s,9H), 0.09 (s, 6H).

Allylic bromide 289.”* To a solution of crude allylic alcohol 308 (7.29 g, 36.04

mmol, 1.0 equiv) in CH,Cl, (120 mL, 0.3 M) cooled to 0 °C was added CBr, (17.942,
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54.1 mmol, 1.5 equiv) and PPh; (11.331 g, 43.2 mmol, 1.2 equiv). The reaction mixture

was stirred at 0 “C until consumption by TLC analysis (4:1 hexanes/EtOAc; required ca.
30 min). The reaction was then quenched slowly with saturated aq NaHCO; (40 mL) and
warmed to ambient temperature while stirring. The phases were separated and the aq
layer was extracted with EtOAc (3 x 50 mL). The combined organics were washed with
brine, dried over MgSQO,, filtered, and concentrated in vacuo to afford a yellow oil
containing a Ph,PO precipitate. This material was dry loaded on SiO, and purified by
flash chromatography (24:1 — 15:1 — 3:1 hexanes/Et,0). Fractions containing the
desired product were repurified by flash chromatography on SiO, (49:1 — 24:1
hexanes/acetone) to afford allylic bromide 289 as a pale yellow oil (5.4251 g, 20.45
mmol, 57% yield over 3 steps). R, = 0.48 (24:1 hexanes/Et,0); '"H NMR (300 MHz,
CDCL) 6 5.26-5.25 (m, 1H), 523 (ddd, J =14, 1.4, 1.4 Hz, 1H),4.27 (dd,J=14,14
Hz, 2H), 4.01 (s, 2H), 0.92 (s, 9H), 0.10 (s, 6H). All other spectral data are consistent

with reported values.

Br oTBS

AN .
Mgo, Iz, Et20/'I'HF
MeO 0—23°C

(94% yield)
(-)-288 (-)-290

Triolefin (-)-290. To a flask containing Mg° turnings (125.4 mg, 5.16 mmol, 3.0
equiv) was added Et,O (30 mL) and a chip of I,. The contents were stirred for 25 min at
23 °C and then cooled to 0 °C. A solution of allylic bromide 289 (1.141 g, 4.30 mmol,
2.5 equiv) in Et,O (5 mL) was transferred via cannula to the Mg/Et,O and stirred for 30

min at 0 °C, then warmed to 23 °C over 30 min. A solution of ketone 288 (333.5 mg,



Chapter 4—Enantioselective Alkylations of Vinylogous B-Ketoesters: Synthesis of (+)-Carissone 363

1.72 mmol, 1.0 equiv) in THF (5 mL) was transferred dropwise to the allylmagnesium
bromide via cannula, followed by washings to total 35 mL of THF. Upon consumption
of ketone 288 by TLC analysis (4:1 hexanes/EtOAc), the reaction was quenched slowly
with aq ammonium chloride (50 mL) and stirred until complete dissolution of Mg’. The
phases were separated and the aq phase was extracted with EtOAc (3 x 50 mL). The
combined organics were washed with brine, dried over MgSQO,, filtered, and concentrated
to a pale yellow oil. Purification by flash chromatography (9:1 — 4:1 hexanes/Et,O, dry
load onto SiO,) afforded the desired triolefin 290 as a colorless oil (563.4 mg, 1.616
mmol, 94% yield). R, = 0.62 (4:1 hexanes/EtOAc); '"H NMR (500 MHz, C,.D,) & 5.54
(dddd,J=17.6,10.3,7.3,7.3 Hz, 1H), 5.06 (dd,J=3.2,1.7 Hz, 1H),4.97 (ddd, J = 10.3,
22,12 Hz, 1H), 492 (dddd, J =169, 2.4, 1.2, 1.2 Hz, 1H), 4.56 (d, J = 1.2 Hz, 2H),
395 (s, 2H), 2.75 (dd, J =17.1, 17.1 Hz, 2H), 2.36 (dddd, J = 17.1, 17.1, 10.3, 5.1 Hz,
1H),2.33(dddd,J=17.1,17.1,7.1,5.4 Hz, 1H), 2.01 (dddd, J = 13.9,13.9,13.9,7.6 Hz,
2H), 1.89 (s, 3H), 1.60 (ddd, 13.4, 6.8, 5.1 Hz, 1H), 1.41 (ddd, 13.4, 10.0, 5.1 Hz, 1H),
0.98 (s, 9H), 0.87 (s, 3H), 0.06 (s, 6H); "C NMR (126 MHz, C;D;) & 196.6, 158.9, 144 4,
134.5,134.3,118.0,110.3,67.1,43.2,39.2,34.2,339,33.2,26.1,23.9, 18.5,12.5,-5.2;
IR (Neat Film NaCl) 3078, 2930, 2857, 1668, 1610, 1463, 1337, 1081, 1005, 912, 836,
776 cm™'; HRMS (El+) m/z calc’d for C,H,0,Si [M]*: 348.2485, found 348.2499;

[a],2'0 =37.3° (¢ 1.11, CH,Cl,, 92% ee).
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MesN NMes
I

Ru=
ol

PCy, Ph
291 (3 mol %)
R
PhH, 40 °C o oTBS

(99% yield)
(-)-290 (-)-292

Cyclohexene (—)-292. Triolefin 290 (280.1 mg, 0.804 mmol, 1.0 equiv) was
dissolved in PhH (16 mL, 0.05 M) and sparged with N, for 15 min. Grubbs’ catalyst 291
(20.5 mg, 0.0241 mmol, 0.03 equiv) was added to the solution and the flask was placed in
a 40 °C oil bath. Upon consumption by TLC analysis (3:1 hexanes/Et,0), the reaction
was cooled to ambient temperature and ethyl vinyl ether (8 mL) was added to the
solution.  After stirring for ca. 30 min the solution was concentrated in vacuo.
Purification via flash chromatography (9:1 — 4:1 hexanes/Et,O) afforded cyclohexane
292 as a colorless oil (256.3 mg, 0.800 mmol, 99% yield). R,=0.30 (3:1 hexanes/Et,0);
'H NMR (500 MHz, C4Dg)  5.58 (dddd, J = 5.4, 1.5, 1.5, 1.5 Hz, 1H), 3.93 (d, J =
1.2 Hz, 1H), 2.86 (d, J = 22.0 Hz, 1H), 2.60 (d, J = 21.7 Hz, 1H), 2.32-2.29 (comp m,
2H), 1.87 (d, J= 1.2 Hz, 3H), 1.83 (dd, J = 16.9, 2.0 Hz, 1H), 1.61 (dd, /= 16.9, 6.1 Hz,
1H), 1.45-1.35 (comp m, 2H), 0.99 (s, 9H), 0.85 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); °C
NMR (126 MHz, C¢D¢) 8 196.4, 157.4, 135.1, 129.5, 119.5, 66.7, 39.6, 36.4, 35.1, 34.3,
29.7, 26.1, 24.0, 18.6, 11.2, —5.1, —=5.2; IR (Neat Film NaCl) 2929, 2857, 1668, 1615,
1463, 1305, 1257, 1158, 1086, 1048, 837, 776 cm'; HRMS (EI+) m/z calc’d for
CioH3,0,Si [M + H — H,]™: 319.2093, found 319.2096; [a]p*'? —9.4° (¢ 0.60, CH,CL,,

92% ee).
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Rh/A1,03 (5 mol %)

OTBS  H,(1atm), MeOH o oTBS

(59% yield)
(-)-292 (+)-309, 10:1 dr

Enone (+)-309. Cyclohexene 292 (25.0 mg, 78.0 umol, 1.0 equiv) was dissolved in
MeOH (3.1 mL, 25 mM) and Rh/Al,O; catalyst (40.1 mg, 3.90 wmol, 0.05 equiv) was
added with vigorous stirring. The vial was placed under an atmosphere of hydrogen via a
balloon and stirred at 26 °C. Upon consumption by TLC (3:1 hexanes/Et,O, developed
thrice), the solids were filtered over Celite washing with EtOAc and concentrated in
vacuo. Purification via flash chromatography (9:1 hexanes/Et,O) afforded the desired
enone 309 as a colorless oil (14.8 mg, 45.9 umol, 59% yield, 10:1 dr). R,=0.36 (3:1
hexanes/Et,0, developed twice); 'H NMR (500 MHz, C,D,, major diastereomer) & 3.33
(ddd, J =14.0,9.8,5.1 Hz, 2H), 2.63 (ddd, J = 14.7, 1.7, 1.7 Hz, 1H), 2.38-2.26 (comp
m, 2H), 1.96 (s, 3H), 1.68 (dd, J = 13.7, 13.7 Hz, 1H), 1.44 (ddd, J = 134, 13.4, 3.7 Hz,
1H), 1.42-1.39 (m, 1H), 1.31-1.23 (comp m, 2H), 1.08 (ddd, J = 14.2, 14.2, 3.6 Hz, 1H),
0.99 (s, 9H), 0.84 (s, 3H), 0.06 (s, 6H); "C NMR (126 MHz, C;D;) & 197.0, 160.0, 129.2,
68.1,41.6,41.5,37.7,36.0, 34.1, 309, 26.1, 24.7,22.2, 18.5, 11.2, -5.2 (2C); IR (Neat
Film NaCl) 2928, 2857, 1668, 1612, 1472, 1256, 1098, 838, 776 cm™'; HRMS (FAB+)

m/z calc’d for C,,H,s0,Si [M + H]*: 323.2406, found 323.2402; [a],>* +73.0° (¢ 0.53,

CH,Cl,, 92% ee).

HCI
—_— —
OTBS THF OH

(94% yield)

(+)-309 (+)-293
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Alcohol (+)-293. Enone 309 (40.3 mg, 0.125 mmol, 1.0 equiv) was dissolved in THF

(2.5 mL, 50 mM) and aq 1 N HCI (1.0 mL) was added with vigorous stirring. Upon
consumption by TLC (2:1 hexanes/EtOAc), brine was added, the layers were separated,
and the aq layer was extracted with Et,0 (3 x 4 mL). The combined organics were
washed with saturated aq NaHCO;, this aq was back extracted with Et,O (2 x 5 mL), the
organics were dried over MgSQO,, filtered, and concentrated in vacuo. Purification via
flash chromatography (2:1 — 1:1 hexanes/EtOAc) afforded alcohol 293 as a colorless oil
(24.5 mg, 0.118 mmol, 94% yield, 10:1 dr). R,=0.37 (1:1 hexanes/EtOAc); 'H NMR
(500 MHz, C,D,, major diastereomer) 0 3.12 (d, J = 5.5 Hz, 2H), 2.52 (ddd, J = 14.6, 1.9,
1.9 Hz, 1H), 2.37-2.24 (comp m, 2H), 1.92 (dd, J= 1.3, 1.3 Hz, 3H), 1.52 (ddd, J = 13.1,
13.1, 3.1 Hz, 1H), 1.43 (ddd, J = 13.4, 13.4, 5.3 Hz, 1H), 1.36-1.33 (m, 1H), 1.29-1.21
(comp m, 3H), 1.17-1.09 (m, 1H), 1.03 (ddd, J = 12.9, 12.9, 3.3 Hz, 1H), 0.79 (s, 3H),
0.74 (br s, 1H); "C NMR (126 MHz, C,Dy) & 197.2, 160.1, 129.1, 67.7, 41.5,41.4,37.7,
35.9, 34.1, 30.8, 24.6, 22.2, 11.3; IR (Neat Film NaCl) 3418 (br), 2924, 1660, 1652,
1608, 1453, 1352, 1150, 1083, 1013 cm™'; HRMS (EI+) m/z calc’d for C,;H,,0, [M]":

208.1463, found 208.1463; [o],2 +120.9° (c 0.35, CH,Cl,, 92% ee).

1. Dess—Martin
CH,Clp, 0 - 23 °C
OH 3 NaCIO,, NaH,PO,
. 2, NaH,PO,
° 2-methyl-2-butene o CO,Me
BuOH/H,0; CH,N,

(+)-293 (87% yield, two steps) (+)-294

Ester (+)-294. To a solution of alcohol 293 (24.5 mg, 0.118 mmol, 1.0 equiv) in
CH,Cl, (24 mL, 50 mM) at 0 °C was added Dess—Martin periodinane (69.8 mg,

0.165 mmol, 1.4 equiv), and after 5 min the bath was removed and the reaction was
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stirred at room temperature. Upon completion by TLC analysis (2:1 hexanes/EtOAc), the

reaction was diluted with 1:1 hexanes/Et,O (4 mL) and filtered through a small silica gel
plug. Heptanes (5 mL) were added and the filtrate was concentrated in vacuo to a white
solid. Purification by filtration through a silica gel plug (3:1 — 1:1 hexanes/Et,0O)
afforded a colorless oil (22.3 mg) that was used in the next step.

The resulting material was dissolved in +-BuOH (1.7 mL), to which 2-methyl-2-
butene (85 uL, 0.80 mmol, 7.4 equiv) was added with stirring. To this was added a
solution of NaH,PO,*H,O (103 mg, 0.746 mmol, 6.9 equiv) and NaClO, (89.9 mg,
0.995 mmol, 9.2 equiv) in water (850 uL) over ca. 5 min. Upon consumption by TLC
analysis (1:1 hexanes/EtOAc), the -BuOH was removed on a rotovap, water (2 mL) was
added to this slurry, and 1 N HCl was added dropwise until pH < 3. The resulting aq
layer was extracted with Et,O (4 x 4 mL), a stir bar was added and the extract was cooled
in an ice/water bath. A fresh solution of CH,N, in Et,0 (5 mL) was added and the bath
was allowed to expire. After the solution was colorless it was dried over MgSO,, filtered,
and concentrated in vacuo. Purification via flash chromatography (3:1 — 2:1
hexanes/Et,0) afforded ester 294 as a colorless oil that solidifies to a white solid over
time or in a —20 °C freezer (24.4 mg, 0.103 mmol, 87% yield over two steps). The
diastereomers are separable by flash chromatography with 3:1 hexanes/Et,0. R, = 0.59
(1:1 hexanes/EtOAc); mp = 4648 °C; 'H NMR (500 MHz, C,D,, major diastereomer) &
3.38 (s, 3H), 2.83-2.76 (m, 1H), 2.30-2.09 (comp m, 4H), 1.82 (m, 3H), 1.66-1.62
(comp m, 2H), 1.32 (ddd, J = 13.6, 13.6, 4.9 Hz, 1H), 1.17 (ddd, J = 13.2, 3.9, 3.9 Hz,
1H), 1.12 (ddd, J = 13.5, 2.8, 2.8 Hz, 1H), 0.91-0.85 (m, 1H), 0.72 (s, 3H); "C NMR

(126 MHz, CDy) 8 196.8, 174.7, 157.7, 129.9, 51.3, 43.5, 40.9, 37.4, 354, 34.0, 29.9,
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247,219, 11.2; IR (Neat Film NaCl) 2949, 1733, 1668, 1613, 1435, 1350, 1301, 1256,

1190, 1173, 1024, 914 cm™'; HRMS (FAB+) m/z calc’d for C,,H,,0, [M + H]*: 237.1491,

found 237.1493; [a],** +64.0° (¢ 0.56, CH,Cl,, 92% ee).

1. CeCly+7H,0, NaBH,
MeOH, —45 °C

2. MeMgBr, THF
o COZMe 0— 26 °C HO OH

(+)-294 (737% yield, two steps) (+)-295

Diol (+)-295."*¢ To a solution of ester 294 (10.1 mg, 42.7 umol, 1.0 equiv) in MeOH
(1.7 mL, 25 mM) was added CeCl;*7H,O (47.8 mg, 128 umol, 3.0 equiv), followed by
cooling to ca. 45 °C in a MeCN/CO,(s) bath. Solid NaBH, (3.2 mg, 85.5 umol, 2.0
equiv) was added, and upon consumption by TLC analysis (1:1 hexanes/EtOAc), acetone
(5 drops) was added, followed by brine (1 mL) and EtOAc (1 mL). The suspension was
warmed to room temperature, the aq layer was extracted with EtOAc (2 x 4 mL), dried
over MgSQO,, filtered, and concentrated in vacuo to a colorless film (9.1 mg). This
material was used directly in the following reaction.

To a solution of the crude material in THF (1.5 mL, 25 mM) at 0 °C was added a
solution of MeMgBr (71 uL, 2.7 M in THF, 191 umol, 5 equiv) and the bath was
removed after 5 min. Upon consumption by TLC analysis (1:1 hexanes/EtOAc), the
reaction was cooled in an ice/water bath, and MeOH (200 uL), brine (1 mL), saturated aq
NH,CI (ImL), and EtOAc (2 mL) were added. The aq layer was extracted with EtOAc
(2 x 4 mL), dried over MgSQO,, filtered, and concentrated in vacuo. Purification via flash

chromatography (2:1 hexanes/EtOAc) afforded diol 295 as a colorless film that solidifies

over time to an off-white solid (7.4 mg, 31.0 umol, 73% yield over two steps, >20:1 dr).
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R;=0.30 (1:1 hexanes/EtOAc); mp = 123-126 °C; '"H NMR (500 MHz, CDCl,) § 4.03

(app t, J = 6.6 Hz, 1H), 2.60 (app dt, J = 13.5, 2.8 Hz, 1H), 1.94-1.88 (m, 1H), 1.73 (s,
3H), 1.71-1.23 (comp m, 11H), 1.21 (s, 6H), 1.08 (s, 3H); °C NMR (126 MHz, CDCL,) &
139.7,126.9,72.9,71.7,50.7,41.7, 36.2,35.3,29.0,27.4,27.0,26.9,24.8,23.2,15.2; IR
(Neat Film NaCl) 3366 (br), 2934, 2863, 1455, 1374, 1277, 1138, 1076, 1014, 922,
734 cm™'; HRMS (FAB+) m/z calc’d for C;sH,O, [M]": 238.1933, found 238.1921;

[o],2" ¢ +21.6° (¢ 0.34, MeOH, 92% ee).

MnO,, 4AMS
—»
HO OH CH,Cl, (o) OH

(4)-295 (100% yield)

(+)-279

(+)-Carissone (279)." To a solution of diol 295 (3.1 mg, 13.0 umol, 1.0 equiv) in
CH,CI, (520 uL, 25 mM) was added oven-dried 4 A MS (15 mg), followed by MnO,
(13.3 mg, 130 wmol, 10 equiv). Upon consumption by TLC (1:1 hexanes/EtOAc), the
reaction was diluted with Et,O (2 mL) and filtered through a small plug of silica gel,
washing with Et,0. This was concentrated in vacuo to afford (+)-carrisone (279) as a
colorless film (3.1 mg, 131 wmol, 100% yield). R,=0.34 (1:1 hexanes/EtOAc); '"H NMR
(500 MHz, CDCl5) 6 2.86 (app dt, J = 144, 2.6 Hz, 1H), 2.51 (ddd, J = 16.9, 13.3,
6.4 Hz, 1H), 2.39 (app dt, J = 16.8, 3.8 Hz, 1H), 1.90 (app t, J/ = 13.9 Hz, 1H), 1.82-1.69
(comp m, 4H), 1.78 (s, 3H), 1.55-1.36 (comp m, 3H), 1.26 (s, 3H), 1.25 (s, 3H), 1.20 (s,
3H); "C NMR (126 MHz, CDCl;) § 199.1, 162.6, 128.8, 72.4, 49.6, 41.9, 37.3, 35.8,

33.7,28.7,27.5,26.7,22.5,22.4,10.9; IR (Neat Film NaCl) 3448 (br), 2970, 2935, 1652,

1608, 1452, 1353, 1300, 1212, 1189, 1149, 1014, 918, 817 cm™; HRMS (FAB+) m/z
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calc’d for C,sH,,0, [M + H]*: 237.1855, found 237.1844; [a],>" +119.6° (¢ 0.31, CHCl,,

92% ee); lit. [a], > +138.7° (¢ 0.163, CHCl,).
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APPENDIX 4

Spectra Relevant to Chapter 4:
Enantioselective Allylic Alkylations of Vinylogous

p-Ketoester Derivatives: Total Synthesis of (+)-Carissone
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Figure A4.2. Infrared spectrum (neat film/NaCl) of 275.
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Figure A4.3. C NMR spectrum (126 MHz, CDCl;) of 275.
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Figure A4.5. Infrared spectrum (neat film/NaCl) of 276.
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Figure A4.6. "?C NMR spectrum (126 MHz, CDCl;) of 276.
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Figure A4.11. Infrared spectrum (neat film/NaCl) of 278.
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Figure A4.14. Infrared spectrum (neat film/NaCl) of (+)-carissone (279).
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Figure A4.15. C NMR spectrum (126 MHz, CDCl,) of (+)-carissone (279).
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Figure A4.18. Infrared spectrum (neat film/NaCl) of 288.

Gl it
b

200 180 160 140 120 100 80 60 40 20 ppm

Figure A4.19. ?C NMR spectrum (126 MHz, CDCl;) of 288.
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Figure A4.22. Infrared spectrum (neat film/NaCl) of 290.
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Figure A4.23. ?C NMR spectrum (126 MHz, C,D,) of 290.
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Figure A4.25. Infrared spectrum (neat film/NaCl) of 292.
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Figure A4.26. ?C NMR spectrum (126 MHz, C,D,) of 292.
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Figure A4.28. Infrared spectrum (neat film/NaCl) of 293.
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Figure A4.29. ?C NMR spectrum (126 MHz, C,D,) of 293.



399

Appendix 4—Spectra Relevant to Chapter 4

P62 40 (A°D ZHW 00§) wnndads YAN H, "0€ Y 21814

309,

v62-(+)




Appendix 4—Spectra Relevant to Chapter 4 400

1113 _
110 |

108 |
106 |
104
102 ]
100 |
98 |
96
941
92 ]
90 |
T 88
86
84
82
80
78 |
76|
74 |

72 |

704
68

66.0
T T T T 1
4000.0 3000 2000 1500 1000 7000

Figure A4.31. Infrared spectrum (neat film/NaCl) of 294.
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Figure A4.32. °C NMR spectrum (126 MHz, C;D,) of 294.
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Figure A4.34. Infrared spectrum (neat film/NaCl) of 295.
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Figure A4.35. ?C NMR spectrum (126 MHz, CDCl;) of 295.
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Figure A4.37. Infrared spectrum (neat film/NaCl) of 304.
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Figure A4.38. ?C NMR spectrum (126 MHz, CDCl;) of 304.
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Figure A4.42. Infrared spectrum (neat film/NaCl) of the major diastereomer of 309.
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Figure A4.43. >C NMR spectrum (126 MHz, C,Dy) of the major diastereomer of 309.
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CHAPTER 5

Synthesis, Structural Analysis, and Gas-Phase Studies

of 2-Quinuclidonium Tetrafluoroborate®

5.1 INTRODUCTION AND BACKGROUND

5.1.1 THE AMIDE LINKAGE

The amide bond is one of the most fundamental motifs in biology and chemistry as it
plays the essential role of linking functionality between amino acids in peptides.
Extensive studies over the past century have delineated the unique properties of this
indispensable functional group." Typical amides exhibit remarkable stability, with half-
lives in aqueous solution exceeding hundreds of years.” This stability is in part due to
resonance stabilization between the m-orbitals of the O-C-N linkage (Figure 5.1.1).""

The significant contribution of this resonance structure also gives rise to a planar

" This work was performed in collaboration with Tony Ly, a graduate student in laboratory of Prof. Ryan
Julian at the University of California, Riverside, Don K. Pham, a summer NSF REU fellow in the Julian
group, Dr. Kousuke Tani, a postdoctoral scholar in the Stoltz group, and Dr. Ryan R. Julian, assistant Prof.
of Chemistry at the University of California, Riverside. These works have been published. See: (a) Ly, T;
Krout, M.; Pham, D. K.; Tani, K.; Stoltz, B. M.; Julian, R. R. J. Am. Chem. Soc. 2007, 129, 1864-1865.
(b) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731-734.
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geometry about the peptide bond, as demonstrated by a high C-N rotational barrier (~20

kcal/mol) and the propensity for protonation at oxygen over nitrogen.'*

Figure 5.1.1. Resonance stabilization of a typical amide.

Disruption of the preferred planar geometry dramatically changes the stability and
reactivity of the amide functionality. Nonplanar distortions typically lead to increased
nitrogen basicity, pyramidalization of nitrogen, increased hydrolytic lability, and

selective reactivity of electrophiles with nitrogen.'”°

Though more rare than standard
amides, twisted amides are critical design elements in peptide hydrolysis,” antibiotic

efficacy of B-lactams,' and protein folding, with importance in autoimmunosuppression.®

5.1.2 2-QUINUCLIDONE

The intriguing qualities of these twisted amides were first recognized in 1938 when
one of the simplest families was introduced—molecules containing the
1-azabicyclo[2.2.2]octan-2-one system, the quintessential member being 2-quinuclidone
(311).° In this original report, Luke$ surmised that the most effective way to obtain an
amide in twisted conformation is to constrain the nitrogen at the bridgehead of a bicyclic
system. Following the report of these “anti-Bredt” lactams,” Woodward became
interested in the properties of 2-quinuclidone as it related to studies toward quinine

~1941) and later in the context of the structural elucidation of penicillin.'' The
( p
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Woodward laboratory’s inability to synthesize 311 from amino acid 310 was attributed to
the unstable nature of this amide bond (Figure 5.1.2a), and was supported by the ease of
the construction of constitutional isomer 313 from 312 (Figure 5.1.2b).'" These
observations were of significance to the penicillins, as they indicated that their
characteristic reactivity arises not only from ring strain of the f-lactam, but also as a

result of nonplanar amide distortions in the fused bicycle.

Figure 5.1.2. a) Woodward'’s failed synthesis of 311 from amino acid 310. b) Facile amide bond

formation to afford constitutional isomer 313.

b
a) COH ) COH
— [& @ g Lé\f ’
3 NH
N o H,N'
2-Quinuclidone
310 (311) 312 313
R H
}f” is
¢ T
N
o

CO.H
Penicillin nucleus

Subsequent studies toward 2-quinuclidone included a report by Yakhontov'? that
claimed to have synthesized 311 using the Woodward approach for amide bond
formation. The formation of the strained bicyclic lactam proceeded surprisingly with an
aqueous workup, with the reported product (311) characterized only by elemental
analysis for nitrogen. A later study by Pracejus' failed to isolate 311 by the method of
Yakhontov, calling the original synthesis into question. However, the preparation of a

variety of methyl-substituted 2-quinuclidone derivatives (315-318) using the amino acid
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cyclization approach supported the notion that the original Yakhontov synthesis was

flawed, at least in the isolation of 311 (Scheme 5.1.1)."

Scheme 5.1.1. Synthesis of methyl-substituted 2-quinuclidone derivatives

COcClI
base k \%
R! R3
e NT e o} o o o}
2
314 315 316 317 318

Although the definitive characterization and isolation of 311 has remained elusive

despite its apparent simplicity,’"

this quintessential twisted amide has been the subject
of computational investigations.*'® Studies of this model amide are of particular interest
to explore the significance of this distortion phenomenon to provide insights into a

number of research areas.” Owing to the colorful history''®!’
g y

and challenges associated
with the preparation, isolation, characterization of 311, we pursued a synthesis using an

alternative approach to the classic route for amide bond formation.

5.2 THE SYNTHESIS AND  CHARACTERIZATION OF 2-

QUINUCLIDONIUM TETRAFLUOROBORATE

In this section we describe our synthetic approach that has enabled the unambiguous
preparation and characterization of the quintessential twisted amide 2-quinuclidone (311)
as its HBF, salt. The studies presented in section 5.2 are a partial account of work

performed by Dr. Kousuke Tani."
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5.2.1 SYNTHESIS OF 2-QUINUCLIDONIUM VIA AN

INTRAMOLECULAR SCHMIDT-AUBE CYCLIZATION

At the outset of these studies, a strategy was considered that refrained from the use of
typical peptide coupling reagents to aid in purification of the likely reactive molecule. It
was envisioned that reactions that harnessed the release of dinitrogen could impart
significant driving force to assemble the strained bicyclic system. One such approach'’
that met these criteria was the intramolecular Schmidt-Aubé cyclization of ketoazide
320, which has seen wide use for the synthesis of N-substituted lactams since its initial
discovery (Scheme 5.2.1)*° Moreover, this method recently has been used for the

preparation of other types of twisted lactams.”

Scheme 5.2.1. Retrosynthetic analysis of 2-quinuclidone using the Schmidt-Aubé reaction

o)

Ay = ] = b
o) N2 on N,

311 319 320

The preparation of ketoazide 320 was accomplished as shown in Scheme 5.2.2.
Bayer—Villiger oxidation of norcamphor (321) provided bicyclic lactone 322 that was
reduced with LiAlH, to generate syn-diol 323 in good yield. Selective tosylation of 323
and S\2 displacement with sodium azide produced azide 325. Alcohol oxidation using

Dess—Martin periodinane afforded the requisite ketoazide 320.
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Scheme 5.2.2. Preparation of ketoazide 320

m-CPBA
Ncho3 L|AIH4 TsCl, EtsN
CHzclz, 20 °C Et20 0°C CH20|2, 20 °C

(79% yield) (98% yield) (74% yield)
321 322
HO HO o
NaNj Dess—Martin
e —_—
DMF, 70 °C CH,CI,
oTs N, 0-20°C Ng
(92% yield)
324 325 (93% yield) 320

Initial studies toward the intramolecular Schmidt—Aubé reaction of ketoazide 320
demonstrated that a selection of strong acids (e.g., TFA, TfOH, HBF,, and Tf,NH)
produced a noticeable gas evolution with consumption of 320. A survey of various acids
and solvents established HBF, in Et,O as the optimal conditions for the transformation of
320 into isomeric bicyclic lactams 311*HBF, and 326°HBF, (76:24, respectively).”> The
observation of the two structural isomers 311:326 in ~3:1 ratio of indicated a moderately
selective C-N migration of bond a from intermediate 319 to generate 2-quinuclidonium
tetrafluoroborate (311*HBF,) as a major reaction component, whereas minor product
326°HBF, is derived from migration of bond b from 319. The crystallinity of the crude
lactams facilitated purification by selective recrystallization with MeCN/Et,O to afford

pure 2-quinuclidonium tetrafluoroborate (311*HBF,) as colorless crystals.

Scheme 5.2.3. Synthesis of 2-quinuclidonium tetrafluoroborate (311¢HBF,)

(0}
MeCN/Et,0
[N [~+ T e
¥ recrystallize ) BF,
N3 N2 H o

320 311-HBF, 326-HBF, 311-HBF,
59% yield
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5.2.2 CHARACTERIZATION, PROPERTIES, AND REACTIVITY

The structure of 311°HBF, was unambiguously determined by spectroscopic
evaluation. The carbonyl infrared absorption band for 311°HBF, was observed at
1822 cm™ (KBr). This value compares well with the HCI salts of known [2.2.2]bicyclic
lactams 316" and 318'* (1818 and 1811 cm™', respectively) and is more consistent with
that of an acid chloride (1820-1750 cm™") or anhydride (1870-1770 ¢cm™") than an amide
(1690-1650 cm™).* Additionally, the C chemical shift of the carbonyl group was
observed at & 175.9 ppm (CD,CN). Crystals suitable for X-ray analysis enabled the
identification of all hydrogens from the electron density map. The structure depicted in
Figure 5.2.1 shows that 311¢HBF, exists in the N-protonated form, which has been
supported by calculations (see subsection 5.3.1) and highlights the twisted nature of the

amide.

Figure 5.2.1. ORTEP drawing of 311¢HBF, (shown with 50% probability ellipsoids; BF, omitted for

clarity).
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Table 5.2.1 summarizes selected bond lengths and distortion parameters obtained
from the X-ray structure of 311*HBF, and previously calculated structures. Two
crystallographically independent molecules corresponding to 311*HBF, were observed in
the unit cell. The observed bond lengths for the N-C(O) were 1.526 and 1.484 A while
the C=0 bond lengths were 1.192 and 1.168 A. These distances are in good agreement to
calculated values for N-protonated 311*H* and show a minimal decrease in the length of
C=0 bond while the N-C(O) bond is significantly longer than a typical amide (cf.

formamide).*>

Winkler and Dunitz have described distortion parameters for the
quantitative evaluation of the twisting of an amide bond, and include the
pyramidalization about the nitrogen () and carbon () atoms and the torsion about the
C-N bond (t).** For a representative planar amide (e.g., formamide), these parameters
are all 0°.* The structures of 311¢HBF, possessed a yxy of 58.9 and 59.5°, while the ©

was found to be 90.8 and 90.9°. These values compare well with nonplanar formamide

and quantitatively establish the highly twisted nature of 311°HBF,.

Table 5.2.1. Comparison of structural parameters for 311¢HBF, and formamide

bond lenth (A) distortion parameters (°)?

compound N-C(O) Cc=0 AN Xc T
311-HBF, (X-ray) 1.526(5) 1.192(4) 59.5 0.2 90.9

1.484(6) 1.168(6) 58.9 2.4 90.8
311 (N-protonated, calc'd)? 1.504 1.167 57.6 0.0 89.9
311 (calc'd)® 1.433 1.183 55.6 0.0 90.0
formamide (planar, calc'd)?¢ 1.349 1.193 0.0 0.0 0.0
formamide (perpendicular, calc'd)?¢ 1.423 1.179 63.4 0.0 90.0

a Ref 24. P Ref 4. ¢ Ref 25.
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The reactivity of 2-quinuclidonium tetrafluoroborate was investigated. 311*HBF, is
hypersensitive to hydrolysis, with a #,, = <15 s in neat D,0, as well as unstable to
manipulations in common nucleophilic solvents (e.g, DMSO, MeOH, pyridine).
Furthermore, attempts to neutralize the salt of 311 with various bases lead to the
formation of polymeric material, highlighting that the fortuitous protonation of 311 upon
Schmidt—Aubé cyclization to 311HBF, was critical to avoid decomposition. These
observations provide further support for the increased reactivity that results from

nonplanar distortions of the amide bond.

5.3 GAS-PHASE STUDIES

To gain further insight into twisted amides we explored the gas-phase chemistry of
311. In this section we present the first experimental results characterizing the basicity of
311, which is found to be more basic than typical amides. In addition, we report an
intriguing gas-phase dissociation as well as a second synthetic route to 311¢H", which

only occurs in the gas phase.

5.3.1 PROTON AFFINITY VIA THE EXTENDED KINETIC METHOD

The kinetic method, which relies on competitive fragmentation of proton-bound
dimers, was employed to determine the proton affinity (PA) of 311 relative to a series of
reference bases (shown in Figure 5.3.1) according to previously established methods.*
Briefly, dimers were introduced into an LTQ linear ion trap mass spectrometer by

electrospraying solutions of the tetrafluoroborate salt of 311 in dry acetonitrile and a
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reference base. The noncovalently bound dimers were then subjected to
collision-induced dissociation (CID) to determine the most basic site (which retains the
proton more often). The results are shown in Figure 5.3.1. Analysis of the data yields a
PA of 230.6 kcal/mol for 311 using the simple kinetic method. Application of the more
rigorous extended kinetic method”’ yields a value of 230.4 kcal/mol, suggesting that
entropic effects have a minimal impact on the measured PA. Calculations at the B3ALYP
6-311++G** level of theory yield a PA of 225.7 kcal/mol. Previous calculations
predicted a PA of 228.9 kcal/mol.* Thus 311 is found to be very basic by theory and
experiment. By comparison, typical amides have PAs in the range of 210-215 kcal/mol
(Figure 5.3.2). In terms of basicity, 311 behaves more like a secondary or tertiary
amine owing to the lack of resonance within the amide. In addition, the site of
protonation differs for twisted amides with protonation at the nitrogen being favored by
~21.5 kcal/mol according to our calculations.”” In the process of collecting data to
establish the PA of 311, reference bases were found to separate into two groups. The less
bulky bases give the data shown in Figure 5.3.1, which corresponds to dimers that are
capable of hydrogen bonding to the nitrogen of 311. The remaining reference bases are
too bulky to access the nitrogen and presumably interact with the carbonyl oxygen of

311.7°
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Figure 5.3.1. Data from kinetic method experiments showing the relative PA versus natural log of
the ratio of ion intensities minus protonation entropies.”’ Three representative collision energies are
shown for each reference base. The collinearity of all three lines indicates few entropic effects. The

PA of 311 is determined to be 230.4 kcal/mol by the extended kinetic method.
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Figure 5.3.2. Representative amide and amine experimentally determined PAs (kcal/mol).
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5.3.2 COLLISION-INDUCED DISSOCIATION PATHWAY

The gas-phase properties of 2-quinuclidone (311) were explored further by collision-
induced dissociation (CID) experiments. The CID spectrum for 311¢H" is shown in
Figure 5.3.3i. Surprisingly, a single loss of 44 Da is the only major product that is
observed, indicating that a single fragmentation pathway is energetically favored.
Because of the bicyclic nature of 311H", two covalent bonds must be broken en route to

the observed fragmentation. A loss of 44 Da further requires at least one hydrogen
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transfer. We propose the mechanism shown in Scheme 5.3.1a to account for the
observed loss. Homolytic cleavage of the amide to bond to 327 leads to abstraction of
one out of two equivalent hydrogens facing the radical (327 — 328). Two possible
McLafferty-type™ rearrangements (one is shown in Scheme 5.3.1a) then lead to the
second hydrogen transfer and the production of isomeric dihydropyridiniums 329 and
330 with the loss of ethenol (331). In order to verify this mechanism, a series of four

compounds labeled with stable isotopes were prepared (332—335) (Scheme 5.3.1b).

Figure 5.3.3. i) CID spectrum of 311eH" (m/z = 126) with a single fragment being detected. ii)
CID spectrum of 3100H"* (m/z = 144). The loss of water generates 311*H", which simultaneously
fragments. iii) MS® CID spectrum of the reisolated peak at m/z 126 from spectrum ii confirming that

311eH" is generated by the loss of water.
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Scheme 5.3.1. a) Proposed CID fragmentation mechanism of 311eH". b) Isotopically labeled

mechanistic probes

) -y BN OB O
[’N+ — ,ﬂj? — \N@/\\%H — N: N: )\H
H UU o H 0 H’ + |!| |!|
311 327 328 329 330 331
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b) . p D\‘AD
[,N:' [/N"' [,N"' [INQ
H o H o H o H o
332-H* 333-H* 334-H* 335-H*
("°N) (°Cy) (D) (Dy)

The synthesis of variously labeled derivatives of 311*HBF, is shown in Scheme 5.3.2.
Using a route identical to our original synthesis of 311, substitution of monotosylate 324
with 1-"N-sodium azide and oxidation with Dess—Martin periodinane provided ketoazide
336, which was subjected to the optimized Schmidt—Aubé conditions, and upon
recrystallization, afforded "N-labeled 332¢HBF, (Scheme 5.3.2a). The incorporation of
"C into 311 required a new approach starting from C,-acetic acid (337). Accordingly,
Mitsunobu substitution of alcohol 338 generated crystalline ester 339 (Scheme 5.3.2b).
Enol silane generation and modified Mukaiyama—Michael addition to cyclopentenone
employing buffered TBSOTf constructed ketoester 340 in 79% yield over two steps.
Reduction of both carbonyls using LiAIH,, chemoselective oxidation® of the secondary
alcohol, and mesylation of the resulting primary alcohol yielded ketomesylate 341.
Typical azide substitution and cyclization then gave '*C,-labeled 333*HBF,. A similar
procedure using the conjugate addition with acceptor 3-d-cyclopentenone (342)*

provided monodeuterated ketoester 344 that was transformed to D-labeled 334eHBF,
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over five steps (Scheme 5.3.2¢).

Reduction of lactone 322 with LiAlD, and two-step

conversion to mesylate 345 enabled the preparation of D,-labeled 335¢HBF, (Scheme

5.3.2d).

Scheme 5.3.2.

Synthetic route for the preparation of isotopically labeled mechanistic probes.

a) ®N-labeled 332¢HBF,; b) "C,-labeled 333¢HBF, c) D-labeled 334eHBF, d) D,labeled

335¢HBF,

a)
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d) 1. LIAID,, THF, 0 — 23 °C

2. CAN (10 mol %), NaBrO3
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The preparation of various labeled derivatives enabled the verification of our
proposed fragmentation mechanism. CID of 332¢H" yields a single product that retains
the "N label as expected.”” Similarly, 333¢H" and 334¢H" both fragment by yielding a
single observable product with both C or deuterium labels retained, respectively, in

> Additionally, fragmentation of 335¢H" confirms that

agreement with our mechanism.’
hydrogen transfer occurs.” In this case, two products are observed, with the difference
between them being the loss of one or retention of two deuteriums. The loss of hydrogen
is favored by a factor of 1.7, suggesting that isotope effects® may play a role in this
reaction. Nevertheless, in each experiment the labeled atoms were lost or retained in
agreement with the mechanism shown in Scheme 5.3.1a. As predicted, the amide bond is

weakened by the lack of resonance stabilization and is the first bond to break upon

collisional excitation.

5.3.3 GAS-PHASE  SYNTHESIS OF  2-QUINUCLIDONIUM  BY

ELIMINATING WATER

Further insight into the chemistry of twisted amides can be obtained by synthesizing
them in the absence of solvent. 311°HBF, is observed to rapidly hydrolyze in the
presence of water (see subsection 5.2.2), and attempts to drive the reverse reaction in
solution have been unsuccessful.'® Similarly, attempts to synthesize 311 with the acid
chloride of 310 have met with frustration.”” Nevertheless, collisional excitation of the
hydrolyzed derivative 310eH" in the gas phase yields quantitatively a product with the
same mass as 311*H" as shown in Figure 5.3.3ii. Following reisolation and collisional

cooling of this peak, the MS® CID spectrum is identical to that obtained by fragmenting
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311°H" (compare Figure 5.3.3i and iii). Similarly, all isotopically labeled compounds
react exclusively by eliminating water, followed by the same elimination that would be
expected if 311eH* were generated as the product.”” Thus it is possible to selectively
synthesize 311°H" by eliminating water from 310, as shown in Scheme 5.3.3, if the water
can be rigorously removed from the reaction system. This is not a difficulty in the gas
phase; however, the data in Figure 5.3.3ii also suggest that there is a high barrier to this
process. Elimination of water to yield 311¢H" also results spontaneously in further
fragmentation. As mentioned above, this requires the cleavage of two covalent bonds.
Therefore, this reaction appears to be difficult in solution for two reasons: a high barrier

to activation and back reactions with water.

Scheme 5.3.3. Gas-phase elimination of water to construct 311eH" and 318eH"*

R\%R R\%R R\IAR
R N+ R -H,0 +
o o —= ANANT | T R\,[N
H H
R R R 0

H\H/O Hzgé
310-H* (R = H) 311-H* (R=H)
346°H* (R = Me) 318°H* (R = Me)
5.3.4 COMPARISON TO 6,6,7,7-TETRAMETHYL-2-QUINUCLIDONE

These results are further confirmed by examination of 318, which has four additional
methyl groups and can be generated from the acid chloride in solution.”'* CID of the
hydrolyzed product 346°H" yields exclusively 318*H" without the accompanying loss of
additional fragments. The synthesis is again confirmed by comparing fragmentation with

the authentic molecule; comparison of Figure 5.3.4i with Figure 5.3.4iii reveals that even
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very low abundance peaks are reproduced. In addition, the voltage amplitude required to
carry out the dehydration of 346*H" (Scheme 5.3.3) is 20% lower in magnitude when
compared to the voltage required for 310eH". Thus, the energy required to generate
318°H" by eliminating water is much lower, in agreement with the observed synthetic
routes in solution. The gas-phase syntheses suggest that 318 is more nucleophilic than
311 and should therefore be more basic as well. Attempts to determine the PA of 318
experimentally by the kinetic method met with frustration. The steric hindrance of the
additional methyl groups prevents access to the bridgehead nitrogen. However, theory
can be used to estimate the proton affinity. The calculated PA for 318 at the B3LYP/6-
311++G** level is 234.7 kcal/mol, which is significantly higher than that for 311
(230.4 kcal/mol) and supports the idea of enhanced nucleophilicity for 318. The
predicted increase in PA with increasing alkyl substitution is evident with the various
piperidine derivatives depicted in Figure 5.3.2. However, 318 is also much more stable
toward hydrolysis, indicating that stability does not share a simple relationship with

basicity for twisted amides."*
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Figure 5.3.4. i) CID spectrum of 318*H" (m/z = 182). ii) CID spectrum of 346*H" (m/z = 200). In
this case, the synthesis proceeds cleanly without spontaneous fragmentation. iii) MS® CID spectrum
showing that all fragment peaks are reproduced when the gas-phase product is compared to the

bona-fide sample in spectrum i.
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5.4 FUTURE STUDIES

The availability of 2-quinuclidone as its tetrafluoroborate salt (311*HBF,) has
enabled the analysis of physical and chemical properties that were previously available
only by theoretical calculations.* However, experimentation can provide intriguing
details and insights beyond what theory can explore as evidenced by subsections 5.3.2—
5.3.4. Now that we have a powerful method for the construction of these unique twisted
lactams, we can further assess their properties and combine experiment with theory to
further the understanding of twisted amides. One particular area of interest is the
relationship between the ring size of the bicyclic system and the resulting amide

distortion.*
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5.4.1 1-AZABICYCLO[2.2.1]JHEPTAN-2-ONE

We envisioned 1-azabicyclo[2.2.1]heptan-2-one (349) in efforts to pursue a more
strained derivative of the bridgehead bicyclic lactams (cf. 311). By analogy, a
comparison of ring strains in the parent bicyclic alkane systems reveals that the removal
of a carbon from bicyclo[2.2.2]octane (347) to bicyclo[2.2.1]heptane (348) increases the
ring strain from 7.4 to 14.1 kcal/mol, respectively (Figure 5.4.1a).”” We have calculated
the proton affinity of 349 to be 231.7 kcal/mol, which makes it slightly more basic than
2-quinuclidone (311) and less basic than tetramethyl derivative 318 (Figure 5.4.1b). This
indicates that a predicted increase ring strain affects the nitrogen basicity, although ring
strain does not necessarily correlate to an increase in basicity.”*® A detailed theoretical

or experimental study of 349 could provide insights into this strained amide.

Figure 5.4.1. a) Comparison of strain energies of related bicyclic systems (kcal/mol).”

b) Comparison of proton affinity values for select bicyclic twisted amides (kcal/mol).

Ay Ay

347 348
7.4 14.4
[N@ bis £
o o o)
311 349 318
230.42 231.7° 234.7°

a Experimentally determined. ? Calculated value.

A proposed synthetic route to 349 utilizing the Schmidt—Aubé cyclization is shown in

Scheme 5.4.1. Intermolecular [2 + 2] cycloaddition® of dichloroketene generated from
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350 and Zn(Cu) couple with alkyne 351* should provide dichlorocyclobutenone 352.

Reductive dechlorination and olefin hydrogenation with benzyl cleavage could generate
ketoalcohol 353. Conversion to azide 354 over two steps and subsequent HBF,-promoted
intramolecular cyclization*' should construct 349¢H*. The devised synthetic route could

enable rapid access to 349 for thorough experimental evaluation.

Scheme 5.4.1. Proposed synthesis of 349¢H* employing the Schmidt-Aubé cyclization

1.Zn, TMEDA

o)
0 Il Zn(Cu) AcOH, EtOH
J]\ T » (o] =1 Syt >
Cl;,C Cl OoBn DME/Et,O Cl 2. Pd/C, Hy, MeOH
o 1. MsCl, Et;N
CH,Cl, ° HBF,
OH  =rmesmmmeeees > Ny wmooees »  /n*
2. NaN,, DMF Et,0 /
50 °C H o

5.4.2 1-AZABICYCLO[3.3.3]JUNDECAN-2-ONE

Another interesting example with regard to ring size is the theoretical molecule
1-azabicyclo[3.3.3]Jundecan-2-one (355). The parent amine (manxine, 356) is
extraordinary in that it exhibits a near coplanar geometry about the nitrogen in both
neutral and protonated forms.* Greenberg has calculated the PA of amide 355 and found
that the bicyclo[3.3.3] system favors O-protonation over N-protonation by 3.5 kcal/mol,"
suggesting that increase in ring size reduces strain and induces planarity of the nitrogen.
As 355 approaches the geometric requirements for an unstrained amide linkage, it has the

potential to form a hyperstable amide. The concept of hyperstability, as described by
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Schleyer and co-workers for bridgehead olefins,” specifies that the strain energy in the
enolized lactam is less than that of the parent lactam and could result in interesting

reactivity of this larger bicyclic amide.

Figure 5.4.2. Bicyclo[3.3.3] bridgehead amide 355 and amine 356.

o ol

A proposed synthesis of 355 is presented in Scheme 5.4.2. Enolization of vinylogous
ester 228 and alkylation with iodide 357," followed by reductive carbonyl transposition
could afford y-substituted cycloheptenone 358. Olefin hydrogenation with benzyl
cleavage and two-step azide conversion would produce cyclization substrate 359.
Exposure to acidic conditions should facilitate carbonyl addition to intermediate 360 that
can undergo a C—N migration in two possible ways to form desired 355 and isomer 361.
The planned route to 355 could provide material to support the evaluation of this

intriguing amide.
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Scheme 5.4.2. Proposed synthesis of 355 using the Schmidt-Aubé cyclization

0 1. LDA, THF, —78 °C 0 . PalC . Mo
. Pd/C, H,, Me
'/\§5§°Bn 2, MsCl, EtyN, CH,Cl
--------------------- > ECECPEETILEIEIEEIEEEE
+BuO 2. LiAIH,, Et,0 OBn 3 NaN,, DMF, 50 °C
3. NaOAc+3H,0, Ac,0
228 358
o)
HBF, rr
N, sl T Y > N% + VN
Etzo N
Ny OH 0
359 360 355 361
5.5 CONCLUSION

In summary, we have achieved the first unambiguous synthesis, isolation, and X-ray
characterization of the quintessential twisted amide 2-quinuclidone (311) as its HBF, salt.
Our synthesis highlights the power of the Schmidt—Aubé reaction for the construction of
highly strained amides. We have performed a thorough structural and chemical analysis
of 311 and quantitatively established its highly twisted nature. Gas-phase investigations
have assessed the basicity of 311 for the first time, revealing an intriguing dissociation
mechanism and a second synthesis by eliminating water in the gas phase. Our results
indicate that the gas-phase chemistry of these molecules closely reflects the properties
observed in solution. Moreover, the studies herein demonstrate the importance of
combining theory and experiment to further our understanding of this extraordinary class
of compounds. Future studies on the role of ring size and the resulting effect on amide

distortion and properties are proposed.
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5.6 EXPERIMENTAL SECTION
5.6.1 MATERIALS AND METHODS
5.6.1.1 CHEMICAL SYNTHESIS

Unless stated otherwise, reactions were conducted in flame-dried glassware under an
atmosphere of nitrogen using anhydrous solvents passed through activated alumina
columns under argon. All commercially obtained reagents were used as received.
Hexamethylphosphoramide was distilled from CaH, and stored in a Schlenk tube under
argon. 3-d-cyclopentenone (342)** and 6,6,7,7-tetramethyl-2-quinuclidone (318)'* were
prepared by known methods. Labeled sodium azide (1-"°N, 98 atom% ""N) and acetic
acid (337, 1,2-"°C,, 99 atom% "C) were purchased from Cambridge Isotope Laboratories.
Lithium aluminum deuteride (98 atom% d) was purchased from Aldrich. Reaction
temperatures were controlled using an IKAmag temperature modulator, and unless stated
otherwise, reactions were performed at 23 °C. Thin-layer chromatography (TLC) was
conducted with E. Merck silica gel 60 F254 pre-coated plates, (0.25 mm) and visualized
using a combination of UV quenching and charring with p-anisaldehyde, ceric
ammonium molybdate, or potassium permanganate stains. ICN silica gel (particle size
0.032-0.063 mm) was used for flash column chromatography. '"H NMR spectra were
recorded on a Varian Mercury 300 (at 300 MHz) or a Varian Inova 500 (at 500 MHz) and
are reported relative to Me,Si (8 0.0).* Data for 'H NMR spectra are reported as follows:
chemical shift (§ ppm), multiplicity, coupling constant (Hz) and integration. “C NMR
spectra were recorded on a Varian Mercury 300 (at 75 MHz) or a Varian Inova 500 (at

126 MHz) and are reported relative to Me,Si (8 0.0).* Data for "C NMR spectra are
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reported in terms of chemical shift, multiplicity, and coupling constant. ’H NMR spectra
were recorded on a Varian Inova 500 (at 76 MHz) and are reported relative to Me,Si
(80.0).¥ Data for ‘"H NMR spectra are reported in terms of chemical shift and
multiplicity. IR spectra were recorded on a Perkin Elmer Spectrum BXII spectrometer
and are reported in terms of frequency of absorption (cm™). Melting points are
uncorrected. High resolution mass spectra were obtained from the California Institute of

Technology Mass Spectral Facility.

5.6.1.2 EXTENDED KINETIC METHOD, GAS-PHASE SYNTHESIS, AND

CALCULATIONS

All mass spectra were obtained using an LTQ linear ion trap mass spectrometer
(Thermo Electron, Waltham, MA) equipped with a standard electrospray ionization
source. Voltages were optimized to maximize the [311 + H' + By] dimer peak
intensities for kinetic method experiments. All reference bases were purchased from
Sigma-Aldrich and were used without further purification.

To minimize hydrolysis of 311eHBF,, samples containing 300 uM of 311 and
reference base were prepared with dry acetonitrile unless otherwise noted and
immediately infused into the electrospray source. The noncovalently bound dimers were
then isolated and subjected to CID at normalized collision energies ranging from 18% to
85%. These percentages correspond to excitation voltage amplitudes of 0.00641 to
0.0303 V for a 100 m/z ion. To obtain tandem MS data, 30 uM solutions were prepared
and analyzed as above under standard instrument tune conditions. Amino acid

derivatives were prepared by either allowing a sample sufficient time to hydrolyze (ca.
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30 min) or by addition of deionized water in molar excess.

Proton affinities were calculated using hybrid density functional theory as
implemented in Gaussian 03 Version 6.1 Revision D.01. Candidate structures were built
using GaussView 3.0 and then submitted for optimization and vibrational frequency
calculation at the B3LYP/6-31G* level. Total energies were calculated at the B3LYP/6-
311++G** level. Total energies, zero point energies (ZPE), and thermal corrections were
obtained from the optimization/frequency output. Zero point corrections were scaled by
an empirical factor of 0.9877 as recommended by Andersson and Uvdal.*® The basis set
superposition error (BSSE) was calculated using the counterpoise (CP) method of Boys

and Bernardi.*’
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5.6.2 PREPARATIVE PROCEDURES

o HBF,, Et,0
0—20°C;
Lnt
recrystallize /
N;  MeCN/Et,0 H Y9

320 (59% yield)

311-HBF,

2-Quinuclidonium tetrafluoroborate (311°HBF,). To a solution of 320 (356.5 mg,
2.33 mmol, 1.0 equiv) in Et,0 (4.7 mL, 0.5 M) at 0 °C was added an ethereal solution of
HBF, (642 uL of a 54 wt % solution, 4.66 mmol, 2.0 equiv) at which time immediate gas
evolution was observed. The cooling bath was removed and stirred at room temperature
until gas evolution ceased (ca. 8 h) and TLC analysis confirmed consumption of 320.
The supernatant of the resulting suspension was removed by syringe and the remaining
white solid was washed with Et,0O (3 x 3 mL) and dried in vacuo. This crude white solid
was transferred into a glove box and purified by double recrystallization using slow
diffusion of Et,O into a MeCN solution of the crude. Specifically, the crude was
dissolved in a minimal quantity of MeCN, filtered through a pipette with a small filter
paper plug, and washed further with minimal MeCN. The resulting vial containing the
MeCN solution of the crude was placed in a larger chamber, filled ~1/3 full with Et,0,
and the larger chamber was capped and placed in a —20 °C freezer. After 3648 h, the
chamber was equilibrated to ambient, the supernatant was decanted, and the resulting
white solid was washed with excess Et,0O, and recrystallized using the same procedure.
Isolation and drying of the resulting solid under vacuum afforded 311*HBF, (292.1 mg,
1.37 mmol, 59% yield) as white needles. Mp = 185-200 °C dec; 'H NMR (300 MHz,

CD;CN) 6 8.02 (br, 1H), 3.85-3.60 (m, 4H), 2.99 (d, J = 3.0 Hz, 2H), 2.51 (septuplet, J =
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3.0 Hz, 1H), 2.10-1.90 (m, 4H); >C NMR (75 MHz, CD,CN) & 175.9, 48.1, 40.1, 25.7,

22.7; IR (KBr) 3168, 2981, 1822, 1468, 1398, 1336, 1312, 948, 823,799, 766, 716 cm™";

HRMS (FAB+) m/z calc’d for C,;H,,NO [M + HJ*: 126.0919, found 126.0920.

[0}
AcOH, DIAD, PhzP
HO -
e ve
THF, 0 - 23 °C
(97% yield)
338 363

Naphthalen-2-ylmethyl acetate (363). Ph,P (0.787 g, 3.0 mmol, 1.5 equiv) and
alcohol 362 (0.475 g, 3.0 mmol, 1.5 equiv) were dissolved in THF (13.4 mL, 0.15 M).
Acetic acid (114 uL, 2.0 mmol, 1.0 equiv) was added and the solution was cooled to 0 °C
in an ice/water bath. DIAD (591 uL, 3.0 mmol, 1.5 equiv) dissolved in THF (1 mL) was
added dropwise over 5 min via positive pressure cannulation. After 1 h, the reaction was
quenched with 5 mL saturated NaHCO,, extracted with hexanes (3 x 20 mL), the
organics were dried over MgSQO,, filtered, and concentrated under reduced pressure to an
off-white solid. The resulting crude material was purified by flash chromatography on
Si0O, (15:1 — 9:1 hexanes/Et,O, PhMe loaded) to afford 363 (0.3830 g, 1.91 mmol, 96%
yield) as a white solid. R; = 0.28 (9:1 hexanes/Et,0); mp = 53-55 °C; '"H NMR (300
MHz, CDCl,) 8§ 7.89-7.85 (comp m, 4H), 7.53-7.47 (comp m, 3H), 5.30 (s, 2H), 2.16 (s,
3H); "C NMR (125 MHz, CDCl,) § 171.1, 133.5,133.4, 133.3, 128.5, 128.1 (2C), 127.9,
127.5 (2C), 126.5, 126 4, 126.1, 66.6, 21.2; IR (Neat Film NaCl) 3055, 2953, 1736, 1378,
1364, 1248, 1030, 951, 896, 863, 822, 744, 480 cm™; HRMS (EI+) m/z calc’d for

C,H,,0, [M]*: 200.0837, found 200.0844.
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o LDA, THF, -78 °C oTBS
then HMPA, TBSCI

)j\o > 2\0

363 343

o)

cyclopentenone 0
2,6-t-Bu,Py, TBSOTf
CH,Cl,, -78 °C - 0

(79% yield, two steps)
364

Ketoester 364. To a cooled solution of i-Pr,NH (341 uL, 2.44 mmol, 1.15 equiv) in
THF (2.12 mL, 1 M) at 0 °C was added n-BuLi (2.5 M in hexane) dropwise. After
stirring for 15 min at O °C, the solution was cooled to —78 °C and a solution of acetate
363 (424.0 mg, 2.12 mmol, 1.0 equiv) in THF (1 mL) was added dropwise via positive
pressure cannulation. After 15 min, HMPA (332 uL, 1.91 mmol, 0.9 equiv), then TBSCI
(351.0 mg, 2.33 mmol, 1.1 equiv) in THF (0.80 mL) were added and the cooling bath was
removed. The reaction was warmed to ambient temperature and concentrated under
reduced pressure. The resulting thick oil was dissolved in 9:1 hexanes/Et,O (50 mL) and
washed with distilled water (3 x 20 mL, pH = 7) and sat. brine. The organic layer was
dried over MgSQO,, filtered, and concentrated under reduced pressure. The resulting
yellow oil solidified after several hours under high vacuum to afford TBS-silylenol ether
343 (650.9 mg), which was used without further purification in the subsequent reaction.
R, = unstable to SiO,.

To a solution of 343 (1.2 equiv), cyclopentenone (145 uL, 1.72 mmol, 1.0 equiv), and
2,6-di-tert-butylpyridine (465 uL, 2.07 mmol, 1.2 equiv) in CH,Cl, (20.7 mL, 0.1 M)
cooled to =78 °C was added a solution of TBSOTf (475 uL, 2.07 mmol, 1.2 equiv) in
CH,Cl, (2.1 mL) dropwise over 15 min. Following consumption of cyclopentenone by

TLC analysis (ca. 15 min), the cooling bath was removed and the reaction was quenched
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with 15 mL of 3% aq HCI. After stirring for 30 min the layers were separated and the aq

layer was extracted with CH,Cl, (3 x 25 mL), the organics dried over MgSO,, filtered,
and concentrated under reduced pressure to a yellow solid. The crude product was
purified by flash chromatography on SiO, (9:1 — 4:1 — 3:1 hexanes/EtOAc, dry load) to
afford ketoester 364 (385.4 mg, 1.37 mmol) as a light yellow oil. R, = 0.23 (1:1
hexanes/Et,0); 'H NMR (300 MHz, CDCl;) & 7.87-7.82 (comp m, 4H), 7.53-7.49
(comp m, 2H), 7.45 (dd, J = 8.5, 1.9 Hz, 1H), 5.30 (s, 2H), 2.70-2.57 (m, 1H), 2.55 (d, J
= 1.1 Hz, 1H), 2.53 (d, J = 2.9 Hz, 1H), 2.51-2.45 (m, 1H), 2.38-2.11 (comp m, 3H),
1.90 (ddd, J = 18.1,9.8, 1.1 Hz, 1H), 1.66-1.51 (m, 1H); "C NMR (75 MHz, CDCl,) &
218.4,172.0,133.3 (2C), 133.2, 128.6, 128.1, 127.9, 127.7, 126.5 (2C), 126.0, 66.7, 44.7,
39.9, 38.4, 33.6, 29.4; IR (Neat Film NaCl) 3049, 2956, 1737, 1271, 116, 817 cm';

HRMS (EI+) m/z calc’d for C,iH,50; [M]": 282.1256, found 282.1257.

(o]

HO
b\/ﬁ\ LiAlH,, THF
e
o 0 - 23°C
OH
(65% yield)
364 365

Diol 365. To a slurry of LiAIH, (74.3 mg, 1.96 mmol, 4.0 equiv) in THF (4.9 mL,
0.1M) at 0 °C was added ketoester 364 (138.1 mg, 0.498 mmol, 1.0 equiv) in 1.0 mL
THF. The cooling bath was removed and the reaction was stirred for 2.5 h at ambient
temperature. The reaction was then cooled to 0 °C and carefully quenched by slow
addition of Na,SO,*10H,0. When gas evolution had ceased, the flask was diluted up to
25 mL with EtOAc and stirred vigorously at ambient temperature for 2 h. The fine

precipitate was then filtered through Celite, washing with excess EtOAc, and the
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resulting filtrate was concentrated under reduced pressure to an off-white solid. This
residue was purified by flash chromatography on SiO, (2:1 — 1:0 EtOAc/hexanes) to
afford ~1:1 mixture of diastereomers of diol 365 (42.6 mg, 0.320 mmol, 65% yield) as a
colorless oil. R,=0.15 (3:1 EtOAc/hexanes); '"H NMR (500 MHz, CD,0OD) § 4.26 (anti
diastereomer, app dq, J = 8.4, 2.9 Hz, 0.47H), 4.21 (syn diastereomer, app pentet, J =5.9
Hz, 0.53H), 3.56 (app t, J = 6.8 Hz, 2H), 2.20 (ddd, J = 164, 7.8, 7.8 Hz, 0.53H), 2.14
(ddd, J =14.2, 7.6, 7.6 Hz, 0.53H), 1.98-1.90 (comp m, 1.5H), 1.81-1.72 (comp m,
1.5H), 1.65-1.60 (comp m, 1.5H), 1.59-1.51 (comp m, 1.5H), 1.44-1.31 (m, 1H), 1.19-
1.12 (m, 1H); "C NMR (125 MHz, CD,0OD) § 74.1 (syn), 62.2, 62.1 (syn), 43.1, 42.9
(syn), 40.6 (syn), 40.1, 36.1 (syn), 35.8 (syn), 35.6, 35.2, 31.5, 31.2 (syn); IR (Neat Film
NaCl) 3323 (br), 2931, 2864, 1434, 1344, 1052, 1013 cm™'; HRMS (EI+) m/z calc’d for

C,H,,0, [M]*: 130.0994, found 130.0994.

HO 1. CAN (10 mol %), NaBrO; [0}

CH3CN/H,0 (7:3)
2. MsCl, Et3N, CH,Cl,, 0 °C
OH OMs
(83% yield, 2 steps)
365 366

Ketomesylate 366.”° To a solution of diol 365 (87.6 mg, 0.673 mmol, 1.0 equiv) in
CH,CN (2.8 mL, 0.167 M) in a vial was added CAN (36.9 mg, 0.673 mmol, 0.1 equiv),
NaBrO, (101.5 mg, 0.673 mmol, 1.0 equiv), and distilled H,O (1.2 mL) and vigorously
stirred. Following consumption of diol 365 by TLC (ca. 6 h), the reaction was
concentrated under reduced pressure. The resulting slurry was taken up in 10 mL H,O,
extracted with EtOAc (3 x 25 mL), dried over Na,SO,, filtered, and concentrated under

reduced pressure to afford a crude yellow oil (85.5 mg).
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The resulting crude material was dissolved in CH,Cl, (1.35 mL, 0.5 M), cooled to

0 °C, and MsCl1 (774 uL, 1.0 mmol, 1.5 equiv) and Et;N (167 uL, 1.2 mmol, 1.8 equiv)
were added sequentially. After 5 min, the reaction was quenched with saturated aq
NaHCO; (1 mL) and diluted up to 10 mL with CH,Cl,. The biphasic solution was further
diluted with sat. ag NaHCO, (2 mL) and sat. brine (2 mL), the layers were separated, and
the aq layer was extracted with CH,Cl, (3 x 10 mL). The combined organics were dried
over MgSO,, filtered, and concentrated to a light yellow solid under reduced pressure.
This residue was purified by flash chromatography on SiO, (2:1 — 1:2 hexanes/EtOAc,
dry load) to afford ketomesylate 366 (115.4 mg, 0.560 mmol, 83% yield over two steps)
as a colorless oil. R, = 0.31 (3:1 EtOAc/hexanes); '"H NMR (300 MHz, CDCl,) & 4.29
(app dt, J =64,24, 24 Hz, 2H), 3.02 (s, 3H), 2.51-2.42 (m, 1H), 2.40-2.12 (comp m,
4H), 1.95-1.89 (comp m, 2H), 1.84 (ddd, J = 17.6, 7.7, 1.3 Hz, 1H), 1.64-1.48 (m, 1H);
"C NMR (75 MHz, CDCl;) & 218.3, 68.2, 44.8, 38.5, 37.6, 35.0, 33.8, 29.4; IR (Neat
Film NaCl) 3023, 2935, 1737, 1350, 1173, 954 c¢cm'; HRMS (El+) m/z calc’d for

C,H,,0,S [M]*: 206.0613; found 206.0622.

[0} [0}
NaN, DMF
—
70 °C
OMs N3
(88% yield)
366 320

Ketoazide 320. To a solution of mesylate 366 (50.2 mg, 0.243 mmol, 1.0 equiv) in DMF
(0.50 mL, 0.5 M) was added NaN; (17.4 mg, 0.268 mmol, 1.1 equiv), and the mixture
was warmed to 70 °C until consumption of 366 by TLC. The reaction was cooled to 0 °C
and stirred for 15 min, followed by dilution with Et,O. The suspension was filtered

through a plug of Celite with Et,O, concentrated under reduced pressure, and purified by
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flash chromatography SiO, (6:1 — 3:1 hexanes/Et,O, PhMe load) to afford ketoazide 320

(32.8 mg, 0.214 mmol, 88% yield) as a colorless oil. R;=0.25 (3:1 hexanes/EtOAc); 'H
NMR (300 MHz, CDCl,) & 3.36 (t, J = 7.1 Hz, 2H), 2.50-2.10 (m, 5H), 1.90-1.70 (m,

3H), 1.54 (m, 1H). All other spectral data are consistent with reported values.

2:\\/\ +”'I

-N
N Cd
\) 50% probability

367 of 15N incorporation
(99% yield) at either position

(*N)-labeled azidoalcohol 367. Prepared by a known method using (1-'°N)-NaNj.
The reaction was purified by flash chromatography on SiO, (3:1 — 1:1 hexanes/Et,0,
PhMe load) to afford "N-labeled azidoalcohol 367 (186.1 mg, 1.19 mmol, 99% yield) as
colorless oil. R,=0.14 (1:1 hexanes/Et,0); IR (Neat Film NaCl) 3344, 2946, 2868, 2074,
1339, 1243 cm™'; HRMS (FAB+) m/z calc’d for C;H,,N,O”N [M + H]*: 157.1107, found

157.1141. All other spectral data are consistent with reported values.

o)

+ N
é\/\ ’N’

N/
\) 50% probability

336 of 1°N incorporation
(87% yield) at either position

(*N)-labeled ketoazide 336. Prepared by a known method. The reaction was
purified by flash chromatography on SiO, (6:1 — 3:1 hexanes/Et,O) to afford ketoazide
336 (155.5 mg, 1.00 mmol, 87% yield) as colorless oil. R;=0.26 (1:1 hexanes/Et,0); IR
(Neat Film NaCl) 2931, 2873, 2076, 1740, 1242, 1160 cm™. All other spectral data are

consistent with reported values.
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()

50% 1°N incorporation

332-HBF,
(65% yield)

1-"N-2-quinuclidonium tetrafluoroborate (332HBF,). Prepared by a known
method. The crude reaction precipitate was transferred to a glove box and recrystallized
twice by slow diffusion of Et,O into CH,CN at —20 °C to afford 332eHBF, (127.7 mg,
0.598 mmol, 65% yield) as white needles. HRMS (FAB+) m/z calc’d for C,H,,O”N
[M + H]": 127.0889, observed 127.0855; m/z calc’d for C;H,NO [M + H]": 126.0919,

observed 126.0915; relative peak ratio = 1:1.

Base

339
(97% yield)

BC,-labeled acetate 339. Prepared as above to afford 339 (0.8326 g, 4.12 mmol,
97% yield) as an off-white solid. Mp = 54-56 °C; 'H NMR (300 MHz, CDCl,) 6 7.87—
7.83 (comp m, 4H), 7.53—7.45 (comp m, 3H), 5.27 (d, J,, ;e = 3.2 Hz, 2H), 2.13 (dd, J,,_
e = 129.7,6.9 Hz); *C NMR (75 MHz, CDCL) & 170.9 (d, J,,c 5 = 59.4 Hz), 21.1 (d,
J15¢.3c = 59.2 Hz); IR (Neat Film NaCl) 3054, 2955, 1693, 1360, 1276, 1218, 1024, 970,
951, 897, 864, 823, 744 cm’; HRMS (EI+) m/z calc’d for C,,H,,0,°C, [M]*: 202.0904,

found 202.0913.
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340
(79% yield)

BC,-labeled ketoester 340. Prepared as above to afford 340 (0.4204 g, 1.42 mmol,
79% yield) as a pale yellow oil. 'H NMR (300 MHz, CDCL,) 8 7.87-7.82 (comp m, 4H),
7.53-7.49 (comp m, 2H), 7.45 (dd, J = 8.5, 1.6 Hz, 1H), 5.30 (d, J = 3.2 Hz, 2H), 2.54
(dddd, J,, ;50 =129.2, 6.9 Hz, J = 10.9, 2.0 Hz, 2H), 2.71-2.58 (m, 1H), 2.49 (ddd, J =
16.8, 7.4 Hz, J,, ;5 = 1.3 Hz, 1H), 2.28-2.11 (comp m, 3H), 1.96 (dddd, J = 18.1, 104,
5.3 Hz, J,, ;;c = 1.3 Hz, 1H), 1.67-1.50 (m, 1H); “C NMR (75 MHz, CDCL,) § 172.0 (d,
Jisc3c = 572 Hz), 399 (d, J 505 = 57.5 Hz); IR (Neat Film NaCl) 3054, 2958, 1740,
1690, 1403, 1150, 1124, 818, 754 cm™'; HRMS (EI+) m/z calc’d for C,H,;0,"C, [M]*:

284.1323, found 284.1322. All other spectral data are consistent with reported values.

C\;
OH

*

368
(74% yield)

BC,-labeled diol 368. Prepared as above to afford ~1:1 mixture of diastereomers of
368 (54.9 mg, 0.415 mmol, 74% yield) as a colorless oil. '"H NMR (300 MHz, CD,0D) §
4.26 (dddd, J =5.6,5.6,2.9,29 Hz, 0.44H), 4.21 (dddd, J = 4.8, 4.8, 4.8, 4.8, 0.56 H),
3.56 (dddd, J,,_;;c = 140.2, 6.9 Hz, J = 6.9, 24 Hz, 2H), 2.18-2.09 (m, 1H), 2.0-1.7
(comp m, 3H), 1.65-1.49 (m, 1H), 1.46-1.28 (comp m, 2H), 1.23-1.09 (m, 1H); "*C

NMR (75 MHz, CD,0D) § 62.2 (d, J,;¢5c = 37.3 Hz, 0.44C), 62.1 (d, J 53¢ = 37.3 Hz,
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0.56C), 40.6 (d, J, 30 5c = 37.3 Hz, 0.56C), 40.1 (d, J, 35 = 37.3 Hz, 0.44C). All other

spectral data are consistent with reported values.

o)

b\ﬁ*
OMs

*

341
(83% yield, two steps)

BC,-labeled ketomesylate 341. Prepared as above to afford 341 (71.7 mg,
0.344 mmol, 83% yield over two steps) as a colorless oil. 'H NMR (300 MHz, CDCL;) §
4.30 (dddd, J,,_;;c=1494,6.4 Hz,J = 6.4,2.7 Hz, 2H), 3.03 (s, 3H), 2.47 (ddd, J = 17 .8,
7.5Hz,J,, ;;c=1.0 Hz, 1H), 2.41-2.08 (comp m, 5H), 1.85 (dddd, J=17.8, 10.1, 5.1 Hz,
Jy;c = 1 Hz, 1H), 1.74-1.66 (m, 1H), 1.63-1.52 (m, 1H); °C NMR (75 MHz, CDCl;) &
68.1 (d, J;3c.35c = 37.9 Hz), 35.0 (d, J;5c.535c = 38.2 Hz); HRMS (EI+) m/z calc’d for
C,H,,S0,"C, [M]*: 208.0680, found 208.0688. All other spectral data are consistent with

reported values.

O

M 3
369
(96% yield)
BC,-labeled ketoazide 369. Prepared as above to afford 369 (28.5 mg, 0.184 mmol,
96% yield) as a colorless oil. 'H NMR (300 MHz, CDCl;) & 3.36 (app ddt, J,, ;;c = 141.4,
69 Hz,J =32 Hz,2H),2.44 (dd,J=17.8, 8.0 Hz, 1H), 2.37-2.11 (comp m, 4H), 2.00—

1.91 (m, 1H), 1.83 (ddd, J = 17.6, 9.8, 4.8 Hz, 1H), 1.62-1.49 (comp m, 2H); "C NMR
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(75 MHz, CDCL,) & 50.0 (d, J,sc15c = 36.8 Hz), 34.6 (d, J 5,50 = 36.8 Hz). All other

spectral data are consistent with reported values.

*

* -
BF,
gz
H

(o)

333
(60% yield)

5,6-"C,-2-quinuclidonium tetrafluoroborate (333*HBF,). Prepared as above to
afford 333*HBF, (36.5 mg, 0.170 mmol, 60% yield) as white needles. 'H NMR
(300 MHz, CD,CN)  7.99 (br s, 1H), 3.69 (m, 2H), 3.69 (m, J,, ,; = 150.4 Hz, 2H), 2.97
(app d,J=54,33Hz,3H), 2.55-2.47 (m, 1H), 1.98 (m, 2H), 1.98 (m, J,, ;;c = 135.4 Hz,
2H); *C NMR (75 MHz, CD,CN) & 47.9 (d, J ;0 sc = 32.6 Hz), 22.6 (d, Jse s =
32.6 Hz); HRMS (FAB+) m/z calc’d for C;H,,NOPC, [M + HJ": 128.0986, observed

128.0960.

344
(68% yield)

D-labeled ketoester 344. Prepared as above to afford 344 (0.3283 g, 1.15 mmol,
68% yield) as a pale yellow oil. 'H NMR (300 MHz, CDCL,) § 7.87-7.82 (comp m, 4H),
7.53-7.49 (comp m, 2H), 7.45 (dd, J = 8.5, 1.6 Hz, 1H), 5.30 (s, 2H), 2.53 (dd, J = 16.6,
16.6 Hz, 2H), 2.48 (d, J = 18.6 Hz, 1H), 2.37-2.11 (comp m, 3H), 1.89 (d, J = 18.6 Hz,
1H), 1.64-1.51 (m, 1H); "C NMR (75 MHz, CDCL,) § 218.4, 172.0, 133.3 (2C), 128.6,

128.1, 127.9, 127.6, 126.5 (2C), 126.0, 66.7, 44.6, 39.7, 384, 33.2 (t, J, = 20.2 Hz),
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29.2; *H NMR (76 MHz, CHCL,)  2.66 (s); HRMS (EI+) m/z calc’d for C,(H,,0,°H [M]*:

283.1319, found 283.1323. All other spectral data are consistent with reported values.

SO

D

370
(71% yield)

D-labeled diol 370. Prepared as above to afford ~1:1 mixture of diastereomers of
370 (46.0 mg, 0.351 mmol, 71% yield) as a colorless oil. '"H NMR (300 MHz, CD,0D) §
4.26 (ddd,J =8.2,3.5,2.4 Hz,0.45H), 4.21 (ddd,J=11.3,6.4,6.4 Hz, 0.55H), 3.56 (app
t,J =69 Hz, 2H), 2.13 (dd, J = 13.3, 6.4 Hz, 0.45H), 1.99-1.88 (m, 0.55H), 1.82-1.70
(comp m, 2H), 1.59 (dt,J =22.3,6.9,3H), 1.44-1.30 (m, 1H), 1.14 (dd, J = 12.0, 4.5 Hz,
1H): °C NMR (75 MHz, CD;0D) § 74.1, 62.2, 62.1, 43.0, 42.7, 40.5, 40.0, 35.8, 35.6,
35.6 (t, Jop, = 19.5 Hz), 34.8 (t, Jop = 19.5 Hz), 31.4, 31.1; "H NMR (76 MHz, CH,0H) &

2.14 (s), 1.87 (s). All other spectral data are consistent with reported values.

o)

é\/\OMS

D

371
(83% yield, two steps)

D-labeled ketomesylate 371. Prepared as above to afford 371 (60.3 mg,
0.291 mmol, 83% yield over two steps) as a colorless oil. 'H NMR (300 MHz, CDCl,) &
430 (app dt, J = 6.1, 2.7 Hz, 2H), 3.03 (s, 3H), 2.46 (d, J = 18.1 Hz, 1H), 2.40-2.12
(comp m, 3H), 1.91 (app t,J = 6.4 Hz, 2H), 1.85 (d, J = 18.6 Hz, 1H), 1.61-1.50 (m, 1H);

"C NMR (75 MHz, CDCl,) 8 218.3, 68.1,44.7,38.5,37.7,34.9, 33.4 (t, J, = 19.8 Hz),
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29.3; 2H NMR (76 MHz, CHCL,) & 2.35 (s); HRMS (EI+) m/z calc’d for CH,,0,S°H

[M]": 207.0676, found 207.0673. All other spectral data are consistent with reported

values.

O

D

372
(88% yield)

D-labeled ketoazide 372. Prepared as above to afford 372 (39.3 mg, 0.255 mmol,
88% yield) as a colorless oil. 'H NMR (300 MHz, CDCl,) § 3.36 (ddd, J = 6.8, 6.8,
2.9 Hz,2H),2.43 (d,J = 18.3 Hz, 1H), 2.36-2.30 (m, 1H), 2.23-2.14 (comp m, 2H), 1.83
(d, J = 18.1 Hz, 1H), 1.74 (ddd, J = 6.8, 6.8, 3.7 Hz, 2H), 1.58-1.51 (m, 1H); "C NMR
(125 MHz, CDCL,) 6 218.6,50.0, 44.8,38.5, 34.6,34.3 (t, J., = 19.8 Hz), 29.4; "H NMR

(76 MHz, CHCl,) & 2.29 (s). All other spectral data are consistent with reported values.

334-HBF,
(67% yield)

4-d-2-quinuclidonium tetrafluoroborate (334*HBF,). Prepared as above to afford
334°HBF, (33.0 mg, 0.154 mmol, 67% yield) as white needles. 'H NMR (300 MHz,
CD,CN) 8 7.95 (br s, 1H), 3.78-3.58 (m, 4H), 2.96 (s, 2H), 2.00-1.95 (m, 4H); "H NMR
(76 MHz, CH,CN) & 2.49 (s); HRMS (FAB+) m/z calc’d for C;H,,NO’H [M + HJ*

127.0982, observed 127.0943.
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HO

LiAID,, Et,0
—_— D_ D
LEolo 0->23°C ©\><OH

322 (97% yield) 373

D,-labeled syn-diol 373. Prepared by a known method using LiAID,. syn-Diol 373
isolated as a colorless oil (0.6317 g, 4.78 mmol, 97% yield) with >98% d-incorporation.
'H NMR (300 MHz, CD,0D) 6 4.21 (dddd, J = 5.8,5.8,5.8, 5.8 Hz, 1H), 2.14 (ddd, J =
13.6,7.2,7.2 Hz, 1H), 2.01-1.85 (m, 1H), 1.83-1.70 (comp m, 2H), 1.64—1.55 (comp m,
3H), 1.48-1.31 (m, 1H), 1.15 (dddd, J = 14.4, 9.6, 5.6, 0.5 Hz, 1H); "C NMR (75 MHz,
CD,OD): & 74.1, 61.4, 42.9, 40.4, 36.0, 35.8, 31.2; "H NMR (76 MHz, CH,OH) 6 3.51

(s); HRMS (EI+) m/z calc’d for C,H,,0,°H, [M]*: 132.1119, found 132.1113. All other

spectral data are consistent with reported values.

345
(65% yield, two steps)

D,-labeled ketomesylate 345. Prepared as above to afford 345 (0.3775 g, 1.81
mmol, 65% yield over two steps) as a colorless oil. 'H NMR (300 MHz, CDCl,) 6 3.01
(s,3H),2.49-2.40 (m, 1H), 2.39-2.10 (comp m, 4H), 1.89 (d, J/ = 6.9 Hz, 2H), 1.83 (ddd,
J=17.5,74,13 Hz, 1H), 1.63-1.47 (m, 1H); "C NMR (75 MHz, CDCl;)  218.3, 67.6
(pentet, J, = 22.7 Hz), 44.8, 38.4, 37.6, 34.7, 33.7, 29.4; °H NMR (76 MHz, CHCl,) &
4.29 (s); HRMS (EI+) m/z calc’d for CgH,,SO,”H, [M]*: 208.0738, found 208.0741. All

other spectral data are consistent with reported values.
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()

ot
N3

374
(97% yield)

D,-labeled ketoazide 374. Prepared as above to afford 374 (143.6 mg, 0.925 mmol,
97% yield) as a colorless oil. 'H NMR (300 MHz, CDCL,) § 2.48-2.39 (m, 1H), 2.37—
2.11 (comp m, 4H), 1.83 (ddd, J = 17.6,9.8, 1.3 Hz, 1H), 1.74 (d, J = 6.7 Hz, 2H), 1.61-
1.50 (m, 1H); “C NMR (75 MHz, CDCL;) § 218.6, 49.3 (pentet, J., = 21.7 Hz), 44.8,
38.5,34.6,34.4,29.4; *H NMR (76 MHz, CHCL,) 6 3.32 (s). All other spectral data are

consistent with reported values.

D\|AD

[N+ BF4
14
H o

335-HBF,
(27% yield)

6,6-d,-2-quinuclidonium tetrafluoroborate (335°HBF,). Prepared as above to
afford 335¢HBF, (15.3 mg, 0.0712 mmol, 27% yield) as white needles. 'H NMR
(300 MHz, CD,CN) 8 7.96 (br s, 1H), 3.77-3.58 (m, 2H), 2.97 (d, J = 3.2 Hz, 2H), 2.51
(app pentet, J = 3.2 Hz, 1H), 2.15 (m, 2H), 2.02-1.94 (m, 2H); ’H NMR (76 MHz,
CH,CN) & 3.68 (s), 3.59 (s); HRMS (FAB+) m/z calc’d for C;H,,NO’H, [M + HJ":

128.1044, observed 128.1042.

—_— +
\’[N Et,0 \,[IN
o) H o

(79% yield)
318 318-HBF,
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6,6,7,7-tetramethyl-2-quinuclidonium tetrafluoroborate (318°HBF,). 6,6,7,7-

tetramethyl-2-quinuclidone (318, 24.9 mg, 0.137 mmol, 1.0 equiv) was dissolved in Et,O
(1.0 mL, 0.14 M) and HBF, in Et,0 (54 wt % solution, 38 uL, 0.274 mmol, 2.0 equiv)
was added in one portion. The reaction was stirred for 30 min and the precipitate was
collected by filtration and dried under vacuum to afford 318*HBF, (31.6 mg,
0.117 mmol, 86% yield) as a tan solid. HRMS (FAB+) m/z) calc’d for C, H,,NO [M +

H]": 182.1545, observed 182.1552.

5.6.3 COMPUTATIONALLY OPTIMIZED STRUCTURES

Bond lengths below are given in angstroms (A). Structures were optimized at the
B3LYP/6-31G* level. Total energies were then calculated at the B3LYP/6-311++G**

level.

Figure 5.6.1. Optimized structure of 2-quinuclidone (311).

O=C-N—-C dihedral angles: +121°,-121°

Total energy: —403.4361217 hartrees
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Figure 5.6.2. Optimized structure of N-protonated 2-quinuclidone (311¢H*).

O=C-N-C dihedral angles +119°,-119°

Total energy: —403.8028617 hartrees

Figure 5.6.3. Optimized structure of 6,6,7,7-tetramethyl-2-quinuclidone (318).

O=C-N-C dihedral angles: +118°,-118°

Total energy: —560.726844 hartrees

450
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Figure 5.6.4. Optimized structure of N-protonated 6,6,7,7-tetramethyl-2-quinuclidone (318¢H*).

O=C-N-C dihedral angles: +116°,-116°

Total energy: —-561.03524 hartrees
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5.6.4 EXTENDED KINETIC METHOD PLOTS

Figure 5.6.5. Plot of the extended kinetic method of 311 with direct entropy correction.

065 | Yy =-0.236x + 0.5653
0.45
0.25

0.05

-0.15 .

-0.35

APA/RT,; + AS (B)/R

-0.55

-0.75
2.58 2.63 2.68 2.73 2.78 2.83

1/RT,,
The y-intercepts from the entropy corrected kinetic method were plotted against the
slopes at 18%, 25%, 35%, 50%, and 85% normalized collision energies. The slope of the

line shown below is equal to [PA ;, — PA,.].



Chapter 5—Synthesis, Structural Analysis, and Gas-Phase Studies of 2-Quinuclidonium 453

Figure 5.6.6. Entropy corrected kinetic plot using bulky bases.

7.5
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o
5.0
[ C
~ b
(,):c 25 o
< s
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<00
K] best-fit line equations
% 25 0 18% y =2.7241x - 1.7521
- e o 25% y =2.807x - 1.7719
A 35% y =2.784x - 1.875
-5.0 b X 50% y =2.7359x - 1.8932
2 + 85% y = 2.5959x - 1.7294
— Bulky bases Yy = 1.846x + 4.9393
7.5
-2.5 -1.5 -0.5 0.5 1.5 25

PA,-PA,,

The second trend observed is associated with the proton affinity of the carbonyl
oxygen of 2-quinuclidone (311). Bulky bases: (@) 3-aminopyridine; (b) 3,5-lutidine; (c)
diisobutylamine; (d) 2.,4-lutidine; (e) 1,4-diazabicyclo[2.2.2]-octane.

a b c d

e

5.6.5 MS? SPECTRA OF ISOTOPICALLY LABELED DERIVATIVES AND

THEIR HYDROLYSIS PRODUCTS

Fragmentation patterns of all isotopically labeled compounds (332-335) are in

agreement with mechanism proposed in Scheme 5.3.1a.
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Figure 5.6.7. MS? spectrum of 332 ("°N).
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Figure 5.6.8. MS’? spectrum of 333 ("°C,).
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Figure 5.6.9. MS? spectrum of 334 (D).
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Figure 5.6.10. MS? spectrum of 335 (D,).
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APPENDIX 5

Spectra Relevant to Chapter 5:
Synthesis, Structural Analysis, and Gas-Phase Studies

of 2-Quinuclidonium Tetrafluoroborate
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Figure A5.14. ?H NMR spectrum (76 MHz, CHCl,) of 344.
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Figure A5.15. ?C NMR spectrum (75 MHz, CDCl;) of 344.
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Figure A5.17. ?H NMR spectrum (76 MHz, CHCl;) of 345.
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Figure A5.20. Infrared spectrum (neat film/NaCl) of 363.
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Figure A5.21. ?C NMR spectrum (125 MHz, CDCl;) of 363.
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Figure A5.23. Infrared spectrum (neat film/NaCl) of 364.
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Figure A5.24. °C NMR spectrum (75 MHz, CDCl;) of 364.
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Figure A5.26. Infrared spectrum (neat film/NaCl) of 365.
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Figure A5.27. C NMR spectrum (125 MHz, CD;0D) of 365.
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Figure A5.29. Infrared spectrum (neat film/NaCl) of 366.
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Figure A5.30. ?C NMR spectrum (75 MHz, CDCl;) of 366.
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Figure A5.42. ?H NMR spectrum (76 MHz, CHCl;) of 372.
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Figure A5.43. ?C NMR spectrum (125 MHz, CDCl;) of 372.
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Figure A5.45. 2H NMR spectrum (76 MHz, CH;0OH) of 373.
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Figure A5.46. ?C NMR spectrum (75 MHz, CD;0D) of 373.
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APPENDIX 6

An Improved and Highly Efficient Copper(l)-

Catalyzed Preparation of (S)-t-Bu-PHOX

A6.1 INTRODUCTION AND BACKGROUND

Phosphinooxazoline (PHOX) ligands' have emerged as versatile chiral scaffolds for
an array of transition-metal-catalyzed processes. As an important member of this class of
P/N-chelates, (S)-t-Bu-PHOX (55)* has been critical to the development of palladium(0)-
catalyzed decarboxylative alkylation’ and protonation® technologies in our laboratory.
Investigations of these methods prompted the synthesis of numerous PHOX derivatives.’
Ultimately, the efficacy of a copper(I) iodide-catalyzed diarylphosphine—aryl bromide
coupling reported by Buchwald and co-workers® enabled a mild and modular strategy

toward the preparation of these useful ligands.”’

In this appendix, we detail our
improvements to this coupling reaction that increase yields, reduce reagent quantities,

and simplify purification.
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Scheme A6.1.1. Original Cul-catalyzed coupling for the preparation of (S)-t-Bu-PHOX

Cul (12.5 mol %)

MeHN\/\NHMe
| o] 378 (87.5 mol %) l o
NJ T PhpP NJ

Br / Ph,PH, Cs,CO; /
£ PhMe, 110 °C

377 (S)-55

The Ullman-type coupling strategy has proven general for the preparation of a
number of structurally and electronically diverse PHOX derivatives.”” However, recent
scale-up efforts of our optimal ligand, (S)--Bu-PHOX ((5)-55), to support applications in
natural product total synthesis® revealed a significant limitation to our standard Cu(I)-
catalyzed coupling conditions. In particular, various coupling reactions failed to reach
complete conversion (i.e., 377 — 55), thus requiring tedious chromatographic
purification. Upon consideration of our standard conditions, we identified several likely
problematic factors for scale-up, including relatively high catalyst and ligand loadings, as
well as excessive quantities of Cs,CO; and diphenylphosphine. Due to the growing
utility of this ligand in asymmetric catalysis,” and consequently, the synthesis of
biologically relevant substances, we sought to improve these conditions to facilitate the

large-scale preparation of 55.

A6.2 REACTION OPTIMIZATION

Our efforts to maximize the reaction efficiency for the production of 55 first required
a reliable coupling (Table A6.2.1, entry 1). We quickly recognized that it was essential

to maintain vigorous stirring throughout the reaction,” a straightforward task on smaller
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scales but more difficult as quantities of heterogeneous solids increased. A successful

coupling was observed as the Cul was reduced to 5 mol % (entries 2—4) to still provide
complete conversions. Decreasing the equivalents of Ph,PH and Cs,CO, further
improved conversion of 377 (entry 5). An increase in substrate concentration resulted in
similar reactivity, enabling excellent results with 0.5 mol % Cul and a small excess of
Ph,PH in PhMe at 0.5 M (entries 6 and 7). Copper loadings can be further reduced to

0.1 mol %, although prolonged resulted in incomplete conversion (entry 8).

Table A6.2.1. Optimization of the coupling conditions

Q\TO Cul, 378 @\’/o
|
N\> Ph,P N\>

Br / Ph,PH, Cs,CO, /
Y PhMe, 110 °C B
377 /V 55 /V
entry Cul 378 PhyPH CspCO3  [PhMe]  conversion?

(mol%) (mol%) (equiv) (equiv) (M) (%)
1 12.5 87.5 1.88 3.25 0.12 40-97
2 5 35 1.88 3.75 0.12 97
3 1 7 1.88 3.75 0.12 >99
4 0.5 3.5 1.88 3.75 0.12 >99
5 1 5 15 1.88 0.12 98
6 1 5 1.25 1.5 0.25 97
7 0.5 2.5 1.25 1.5 0.50 >99
8 0.1 0.5 1.25 1.5 0.50 98

2 Conversion measured by "H NMR analysis of crude reaction filtrates after 6-16 h.

With our optimized conditions in hand, we examined several common inorganic
bases to determine their utility for this coupling.'” Standard use of Cs,CO; produced
excellent conversions and high yields of 55 on a variety of reaction scales (Table A6.2.2,

entries 1 and 2). Surprisingly, other carbonates such as Li,CO; and Na,CO,; were
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ineffective (entries 3 and 4). Good reactivities were observed for both K,CO, (entries

5 and 6) and K,PO, (entry 7), however lower conversions were achieved.

Table A6.2.2. Inorganic base screen

Cul (0.5 mol %)
o) 378 (2.5 mol %) (o]
/ Ph,PH, base Ph,P N

Br N
PhMe, 110 °C A
377 55
entry@ base time (h) conversion (%) yield (%)?

1 Cs,CO;4 21 >99 94
2c Cs,C0;4 21 >99 91
Li,CO;4 24 0 -

Na,COyg 24 0 _

KoCO3 24 94 68

69 K,COg 24 97 72
7 K3sPOy, 24 71 55

2 Reactions performed at 2.5 mmol of 378 using 1.25 equiv of Ph,PH and
1.5 equiv of base in PhMe (0.5 M). ? Isolated yield. ¢ Performed on 20
mmol. ¢ With 3 equiv of base.

A6.3 CRYSTALLIZATION AND IMPROVED PURIFICATION

During the course of our investigations, we have obtained numerous reaction filtrates
composed of varying mixtures of 5§ and 377 (e.g., entries 5-7, Table A6.2.2). The
previous combination of these two chromatographically similar compounds necessitated
difficult column purification. In our search for an alternative purification method, we
fortuitously discovered that acetonitrile promotes the rapid and selective crystallization of
55 as large blocks. Application of this procedure to impure samples enabled facile
recovery of 55 (yields obtained for entries 5-7, Table A6.2.2) and produced high quality

crystals for X-ray analysis (Figure A6.3.1)."" In addition to the new purification
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procedure, our newly optimized conditions employing 0.5 mol % catalyst facilitate

complete conversion of 377 (entries 1 and 2, Table A6.2.2), thus simplifying the isolation
of 55. A straightforward silica gel plug to remove copper salts and excess
diphenylphosphine, followed by concentration of the remaining filtrate, layering with
acetonitrile, and final removal of volatiles under vacuum provided ligand 55 as a white
crystalline solid in excellent yield and >99% purity as determined by various analytical

methods.

Figure A6.3.1. X-ray crystal analysis of (S)-t-Bu-PHOX ((S)-55). The molecular structure is drawn
with 50 % probability ellipsoids.

A6.4 CONCLUSION

In summary, we have described a significant improvement to our original copper(I)
iodide catalyzed diarylphosphine—aryl bromide coupling reaction that enables reliable
and efficient access to (S)--Bu-PHOX (85). Our optimized conditions employ 0.5 mol %
of the copper(I) iodide catalyst and feature reduced quantities of Cs,CO, and

diphenylphosphine with increased substrate concentrations convenient for large-scale
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preparation. Coupling reactions typically proceed to complete conversion, facilitating

a simplified purification procedure consisting of a silica gel plug, and our discovery of a
selective acetonitrile crystallization provides 55 as a stable, crystalline solid in high
yields and >99% purity. We believe our findings can be extended to a general synthesis
of PHOX ligands and provide opportunities for future discoveries in asymmetric

catalysis.



Appendix 6 —An Improved Cu(l)-Catalyzed Preparation of (S)-t-Bu-PHOX 507

A6.5 EXPERIMENTAL SECTION

A6.5.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under an
argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by
passage through an activated alumina column under argon. Cul (98%) was purchased
from Strem and used as received. Ph,PH (99%) was purchased from Strem and cannula
transferred to a dry Schlenk storage tube under nitrogen to prolong reagent life. Cs,CO,
(ReagentPlus, 99%) and diamine 378 were purchased from Sigma Aldrich and used as
received. Bromooxazoline 377 was prepared according to ref 7b. The reaction stirring
rate was set at ca. 700 setting on an IKAmag RET basic stir/hot plate (a range between
500-800 rpm is sufficient). Reaction temperatures were controlled by an IKAmag
temperature modulator. Thin-layer chromatography was performed using E. Merck silica
gel 60 F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching.
SiliCycle SiliaFlash P60 Academic Silica Gel (particle size 40—-63 um; pore diameter
60 A) was used for flash chromatography. 'H and '>*C NMR spectra were recorded on a
Varian Mercury 300 (at 300 MHz and 75 MHz respectively), or a Varian Inova 500 (at
500 MHz and 126 MHz, respectively) and are reported relative to Me,Si (8 0.0 ppm)."*
Data for 'H NMR spectra are reported as follows: chemical shift (8§ ppm) (multiplicity,
coupling constant (Hz), integration). *'P NMR spectra were recorded on a Varian
Mercury 300 (at 121 MHz) and are reported relative to an H;PO, external standard
(8 0.0 ppm). IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and

are reported in frequency of absorption (cm™). Melting points were acquired using a
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Buchi Melting Point B-545 instrument and the values are uncorrected. High-

resolution mass spectra were acquired from the Caltech Mass Spectral Facility.
Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2
1EZ, UK, and copies can be obtained on request, free of charge, by quoting the

publication citation and the deposition number.
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A6.5.2 PREPARATIVE PROCEDURES

(S)--Bu-PHOX ((S)-55). To a 250 mL Schlenk flask equipped with a Teflon valve,
a 14/20 glass joint, and a large stir bar was added copper(I) iodide (19.0 mg, 0.10 mmol,
0.005 equiv), diphenylphosphine (4.35 mL, 25.0 mmol, 1.25 equiv), diamine 378
(53.3 uL., 0.50 mmol, 0.025 equiv) and toluene (20 mL). The colorless contents were
stirred at ambient temperature for 20 min, and the flask was charged with
bromooxazoline 377 (5.642 g, 20.0 mmol, 1.0 equiv), Cs,CO; (9.775 g, 30.0 mmol, 1.5
equiv), and toluene (20 mL, 0.50 M total) to wash the neck and walls of the flask. The
Teflon valve was closed and the yellow heterogeneous reaction was placed in a 110 °C
oil bath and vigorously stirred. Following consumption of starting material by TLC
analysis, the reaction was allowed to cool to ambient temperature, filtered through a pad
of Celite, and the filter cake washed with CH,Cl, (2 x 40 mL). The filtrate was
concentrated under reduced pressure to a pale yellow semi-solid, dissolved in a minimal
amount of dichloromethane (ca. 40 mL) and ethyl ether (ca. 50 mL), and dry-loaded onto
10 g of silica gel. This material was flushed through a silica gel plug eluting with 24:1
hexanes/Et,O until excess Ph,PH elutes, then with a 9:1 CH,CI/Et,0 mixture until the
desire product elutes. The combined fractions are concentrated to a viscous pale yellow
oil and layered with ca. 5 mL acetonitrile to facilitate crystallization. The flask was
swirled while crystals form within seconds, and after ca. 15 minutes, the flask is placed
under high vacuum to remove volatiles to afford ($)-55 (7.033 g, 18.15 mmol, 90.8%
yield) as white blocks. R;=0.64 (4:1 hexanes/Et,O, developed twice); mp = 114115 °C

(MeCN); *'P NMR (121 MHz, CDCL,) & -5.33 (s); '"H NMR (300 MHz, CDCL,) § 7.94
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(ddd,J=7.4,3.5,13 Hz, 1H),7.36 (app dt,J =74, 1.3 Hz, 1H), 7.33-7.21 (comp m,

11H), 6.86 (ddd, J = 7.4, 4.0, 1.3 Hz, 1H), 4.08 (dd, J = 10.1, 8.2 Hz, 1H), 4.01 (dd, J =
8.0, 8.0 Hz, 1H), 3.88 (dd, J = 10.1, 8.0 Hz, 1H), 0.73 (s, 9H); "C NMR (126 MHz,
CDCly) 0 162.8 (d, Jop =2.8 Hz), 138.9 (d, Jop = 25.3 Hz), 138.7 (d, Jo, = 12.4 Hz), 138 .4
(d,Jp=9.7Hz), 1345 (d, Jo, =212 Hz), 134.2,133.7 (d, Jop = 20.3 Hz), 132.1 (d, Jp =
19.8 Hz), 130.5, 130.0 (d, Jo» = 3.2 Hz), 128.6 (d, J» = 20.2 Hz), 128.5, 128.4 (2 lines),
128.2,76.8, 68.4, 33.7, 25.9; IR (Neat Film NaCl) 3053, 2954, 2902, 2867, 1652, 1477,
1434, 1353, 1336, 1091, 1025, 966, 743, 696, 503 cm™'; HRMS (FAB+) m/z calc'd for
C,sH,,NOP [M + H]*: 388.1830, found 388.1831; [a],> —61.5° (¢ 0.925, CHCl,, >99%
ee); Anal. calc’d. for C,sH,,NOP: C, 77.50; H, 6.76; N, 3.62. Found: C, 77.10; H, 6.62;

N, 3.71.
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Figure A7.2. *'P NMR spectrum (121 MHz, CDCl,) of 55.
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Figure A7.3. ?C NMR spectrum (126 MHz, CDCl;) of 55.
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APPENDIX 8

X-Ray Crystallography Reports Relevant to Appendix 6:
An Improved and Highly Efficient Copper(l)-

Catalyzed Preparation of (S)-t-Bu-PHOX

A8.1 CRYSTAL STRUCTURE ANALYSIS OF (8)-55

Figure A8.1.1. (S)-t-Bu-PHOX ((5)-55) is shown with 50% probability ellipsoids. Crystallographic
data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, and copies can
be obtained on request, free of charge, by quoting the publication citation and the deposition

number 646767.




Empirical formula
Formula weight
Crystallization solvent
Crystal habit

Crystal size

Crystal color

Type of diffractometer
Wavelength

Data collection temperature

0 range for 9143 reflections used

in lattice determination

Unit cell dimensions

Volume

Z

Crystal system

Space group

Density (calculated)
F(000)

Data collection program

0 range for data collection
Completeness to 6 =41.37°
Index ranges

Data collection scan type
Data reduction program
Reflections collected
Independent reflections
Absorption coefficient
Absorption correction

Max. and min. transmission
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Table A8.1.1. Crystal data and structure refinement for (5)-55 (CCDC 664767)

C,sH,,NOP

387.44

Acetonitrile

Block

0.36x0.31 x0.18 mm?

Colorless

Data Collection

Bruker KAPPA APEX II
0.71073 A MoKa.
100(2) K

241 to 40.53°
a=85180(4) A

b=12.7779(7) A B=97.207(3)°

c=9.7689(5) A

1054.87(9) A3

2

Monoclinic

P2,

1.220 Mg/m?3

412

Bruker APEX?22 v2.1-0
2.10to 41.37°

952 %
-14<h=<15,22<k=<22,-17<1=<17
 and ¢ scans; 23 settings
Bruker SAINT-Plus v7.34A
69072

13022 [R; = 0.0373]

0.145 mm!

None

0.9743 and 0.9496

518
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Table A8.1.1 (cont.)

Structure solution and Refinement

Structure solution program
Primary solution method
Secondary solution method
Hydrogen placement

Structure refinement program
Refinement method

Data / restraints / parameters
Treatment of hydrogen atoms
Goodness-of-fit on F?

Final R indices [I>20(I), 11270 reflections]
R indices (all data)

Type of weighting scheme used
Weighting scheme used

Max shift/error

Average shift/error

Absolute structure determination
Absolute structure parameter

Largest diff. peak and hole

SHELXS-97 (Sheldrick, 1990)
Direct methods

Difference Fourier map
Geometric positions
SHELXL-97 (Sheldrick, 1997)
Full matrix least-squares on F2
13022 /1/256

Riding

2.289

R1 =0.0423, wR2 =0.0581
R1 =0.0505, wR2 =0.0583
Sigma

w=1/0*(Fo®)

0.001

0.000

Anomalous differences
0.00(3)

1.524 and -0.683 e A"

Special Refinement Details

Refinement of F* against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are

based on F?, conventional R-factors (R) are based on F, with F set to zero for negative F2. The threshold

expression of F* > 20( F?) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of

reflections for refinement. R-factors based on F* are statistically about twice as large as those based on F,

and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two ls. planes) are estimated using the full

covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances,

angles and torsion angles; correlations between esds in cell parameters are only used when they are defined
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by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds

involving 1.s. planes.

Figure A8.1.2. (S)-t-Bu-PHOX ((S)-55).
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Table A8.1.2. Atomic coordinates (x 10%) and equivalent isotropic displacement parameters

(A2 x 10°) for (S)-55 (CCDC 664767). U(eq) is defined as the trace of the orthogonalized UV tensor

X y z U

eq
P(1) 7718(1) 4116(1) 2536(1) 13(1)
o(1) 8058(1) 5288(1) 1715(1) 19(1)
N(1) 9337(1) 4870(1) 390(1) 15(1)
c(1) 10510(1) 4686(1) -575(1) 16(1)
CQ) 9702(1) 5154(1) -1939(1) 21(1)
Cc@3) 8065(1) 5156(1) -320(1) 14(1)
C4) 6591(1) 5402(1) 244(1) 14(1)
C(5) 5450(1) 6014(1) -535(1) 18(1)
C(6) 4131(1) 6364(1) 15(1) 20(1)
C(7) 3926(1) 6091(1) 1355(1) 19(1)
C(8) 5020(1) 5441(1) 2116(1) 17(1)
C(9) 6372(1) 5079(1) 1587(1) 14(1)
C(10) 10981(1) 3522(1) -605(1) 17(1)
C(11) 9566(1) 2835(1) 1141(1) 24(1)
C(12) 11601(1) 3187(1) 868(1) 25(1)
Cc(13) 12299(1) 3405(1) -1523(1) 26(1)
C(14) 9205(1) 4935(1) 3546(1) 14(1)
C(15) 10662(1) 4483(1) 4024(1) 17(1)
C(16) 11856(1) 5067(1) 4765(1) 22(1)
C(17) 11618(1) 6114(1) 5024(1) 25(1)
C(18) 10175(1) 6572(1) 4563(1) 25(1)
C(19) 8981(1) 5986(1) 3831(1) 20(1)
C(20) 6482(1) 3698(1) 3851(1) 14(1)
c21) 6716(1) 3972(1) 5241(1) 18(1)
C(22) 5804(1) 3526(1) 6164(1) 23(1)
C(23) 4632(1) 2810(1) 5716(1) 22(1)
C(24) 4359(1) 2548(1) 4332(1) 21(1)

C(25) 5287(1) 2982(1) 3414(1) 17(1)
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Table A8.1.3. Bond lengths [A] and angles [°] for (S)-55 (CCDC 664767)

P(1)-C(14) 1.8322(8) N(1)-C(1)-C(10) 111.33(6)
P(1)-C(20) 1.8396(8) C(2)-C(1)-C(10) 116.50(7)
P(1)-C(9) 1.8494(8) O(1)-C(2)-C(1) 104.41(6)
O(1)-C(3) 1.3718(9) N(1)-C(3)-0(1) 118.51(7)
O(1)-C(2) 1.4542(10) N(1)-C(3)-C(4) 124.75(7)
N(1)-C(3) 1.2649(10) 0O(1)-C(3)-C(4) 116.70(6)
N(1)-C(1) 1.4761(10) C(5)-C(4)-C(9) 120.46(7)
C(1)-C(2) 1.5412(11) C(5)-C(4)-C(3) 119.05(7)
C(1)-C(10) 1.5422(11) C(9)-C(4)-C(3) 120.38(7)
C(3)-C(4) 1.4678(11) C(6)-C(5)-C(4) 120.99(8)
C(4)-C(5) 1.3960(11) C(5)-C(6)-C(7) 119.44(8)
C(4)-C(9) 1.4105(11) C(6)-C(7)-C(8) 119.92(8)
C(5)-C(6) 1.3789(12) C(7)-C(8)-C(9) 121.83(8)
C(6)-C(7) 1.3868(12) C(8)-C(9)-C(4) 117.23(7)
C(7)-C(8) 1.3922(11) C(8)-C(9)-P(1) 121.51(6)
C(8)-C(9) 1.3987(11) C(4)-C(9)-P(1) 121.00(6)
C(10)-C(11) 1.5293(12) C(11)-C(10)-C(13) 110.38(7)
C(10)-C(13) 1.5297(11) C(11)-C(10)-C(12) 109.02(7)
C(10)-C(12) 1.5305(11) C(13)-C(10)-C(12) 109.38(7)
C(14)-C(19) 1.3900(11) C(11)-C(10)-C(1) 111.38(7)
C(14)-C(15) 1.3952(11) C(13)-C(10)-C(1) 108.47(7)
C(15)-C(16) 1.3890(11) C(12)-C(10)-C(1) 108.16(7)
C(16)-C(17) 1.3812(13) C(19)-C(14)-C(15) 118.11(7)
C(17)-C(18) 1.3850(13) C(19)-C(14)-P(1) 123.83(6)
C(18)-C(19) 1.3872(12) C(15)-C(14)-P(1) 118.03(6)
C(20)-C(21) 1.3925(11) C(16)-C(15)-C(14) 120.97(8)
C(20)-C(25) 1.3947(11) C(17)-C(16)-C(15) 120.09(8)
C(21)-C(22) 1.3848(11) C(16)-C(17)-C(18) 119.63(8)
C(22)-C(23) 1.3835(12) C(17)-C(18)-C(19) 120.17(8)
C(23)-C(24) 1.3845(12) C(18)-C(19)-C(14) 121.01(8)
C(24)-C(25) 1.3835(12) C(21)-C(20)-C(25) 118.23(7)

C(21)-C(20)-P(1) 125.69(6)
C(14)-P(1)-C(20) 101.95(3) C(25)-C(20)-P(1) 115.90(6)
C(14)-P(1)-C(9) 103.49(3) C(22)-C(21)-C(20) 120.52(8)
C(20)-P(1)-C(9) 99.79(3) C(23)-C(22)-C(21) 120.52(8)
C(3)-0(1)-C(2) 104.53(6) C(22)-C(23)-C(24) 119.68(8)
C(3)-N(1)-C(1) 107.26(6) C(25)-C(24)-C(23) 119.74(8)

N(1)-C(1)-C(2) 103.10(6) C(24)-C(25)-C(20) 121.29(8)




Appendix 8—X-Ray Crystallography Reports Relevant to Appendix 6 523

Table A8.1.4. Anisotropic displacement parameters (A? x 10%) for (S)-55 (CCDC 664767). The

anisotropic displacement factor exponent takes the form: =27 [h* a*°U"" + ... + 2 h ka* b* U"* ]

Ul 1 U22 U33 U23 U13 U12
P(1) 131(1) 123(1) 144(1) 2(1) 13(1) 9(1)
0o(1) 177(3) 262(3) 138(3) 32(2) 24(2) 26(2)
N(1) 138(3) 168(3) 152(3) -17(3) 21(2) 7(3)
Cc(1) 134(4) 198(4) 161(4) -20(3) 29(3) -28(3)
CQ) 203(4) 253(4) 201(4) 39(4) 75(3) 103)
Cc3) 163(4) 124(3) 140(3) 2(3) 13(3) 23(3)
C(4) 142(3) 118(3) 159(3) -5(3) 0(3) -13(3)
C(5) 161(4) 171(4) 188(4) 35(3) -11(3) -16(3)
C(6) 150(4) 169(4) 259(4) 34(3) 23(3) 18(3)
C(7) 135(4) 175(4) 264(4) 2(3) 29(3) 23(3)
C(8) 163(4) 164(4) 171(4) -1(3) 22(3) 3(3)
C(9) 122(3) 129(3) 153(3) -12(3) 3(3) 9(3)
C(10) 156(4) 196(4) 171(4) 23(3) 35(3) 14(3)
c(1  2234) 198(4) 306(5) -49(4) 31(4) 12(4)
C(12) 241(5) 263(5) 231(4) 9(4) 12(4) 87(4)
C(13)  223(4) 299(5) 274(5) 27(4) 91(4) 33(4)
C(14) 137(3) 160(4) 134(3) 16(3) 24(3) -16(3)
C(15) 153(4) 180(4) 173(4) 4(3) 20(3) 17(3)
C(16) 138(4) 301(5) 220(4) 4(4) 2(3) 5(3)
Cc(17) 225(4) 288(5) 220(4) -19(4) -11(4) -111(4)
C(18) 311(5) 159(4) 270(5) 22(4) 8(4) -44(4)
C(19)  200(4) 169(4) 223(4) 7(3) -8(3) 25(3)
C(20) 118(3) 129(3) 162(3) 21(3) 3(3) 13(3)
C(21) 160(4) 211(5) 173(3) 2(3) 4(3) 23(3)
C(2)  212(4) 300(5) 166(4) 17(4) 38(3) 2(4)
C(23) 182(4) 227(4) 272(4) 71(4) 85(3) 11(3)
C(24) 150(4) 170(4) 320(5) -1(4) 37(3) 25(3)

C(25) 160(4) 156(4) 193(4) -15(3) 9(3) 0(3)
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APPENDIX 9

Notebook Cross-Reference

The following notebook cross-reference has been included to facilitate access to the
original spectroscopic data obtained for the compounds presented in this thesis. For each
compound, both hardcopy and electronic characterization folders have been created that
contain copies of the original 'H NMR, “C NMR, *'P NMR, *H NMR, and IR spectra.

All notebooks and spectral data are stored in the Stoltz archives.
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Table A9.1. Notebook cross-reference for compounds of Chapter 3 and Appendix 2

compound '"H NMR 3C NMR IR
178 MRK-XI-101 MRK-XI-101 MRK-XI-101
180 TJ-1II-55a TJ-1II-55a TJ-1II-55a
181 MRK-VI-227b MRK-VI-227b
183 MRK-XII-279
184 MRK-XI-167 MRK-XI-167 MRK-XI-167
185 CEH-I-281 CEH-I-281 CEH-I-281
186 MRK-X-301c
187 MRK-XIII-125b
188 MRK-I1X-227d MRK-I1X-227d MRK-I1X-227d
189 MRK-1X-297 MRK-1X-297 MRK-1X-297
190 MRK-VIII-87aa MRK-VIII-87aa MRK-VIII-87aa
191 MRK-I1X-79-2 MRK-X-127¢ MRK-VIII-123-2
192 MRK-1X-83-3
193 MRK-X-51a MRK-X-51a MRK-X-51a
197 MRK-XIII-155¢ MRK-XIII-155¢ MRK-XIII-155¢
198 MRK-I1X-87-2 MRK-I1X-87-2 MRK-I1X-87-2
200 MRK-X-179-5 MRK-X-179-5 MRK-VIII-173-2
201 MRK-XII-195-1 MRK-X-181-3 MRK-XII-195-1
203 MRK-X-123-1 MRK-X-123-1 MRK-X-123-1
208 MRK-X-255
209 MRK-XI-121c¢ MRK-XI-121c¢ MRK-XI-121c¢
211 MRK-XI-151b MRK-XI-151b MRK-XI-151b
212 MRK-XI-99 MRK-XI-99 MRK-XI-99
213 MRK-XII-53b MRK-XII-53b MRK-XII-53b
214 MRK-XII-123f MRK-XII-123f MRK-XII-123f
215 MRK-XII-117¢ MRK-XII-117¢ MRK-XII-117¢
216 MRK-XII-117a MRK-XII-117a MRK-XII-117a
217 MRK-XII-123c3 MRK-XII-123c3 MRK-XII-123c3
218 MRK-XII-127 MRK-XII-127 MRK-XII-127
220 MRK-XII-213a MRK-XII-213a MRK-XII-213a
221 MRK-XII-199b MRK-XII-199b MRK-XII-199b
222 MRK-XII-227d3 MRK-XII-227d3 MRK-XII-227d3
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223 MRK-XII-209-1 MRK-XII-209-1 MRK-XII-239-3
224 MRK-XIII-99¢ MRK-XIII-99¢ MRK-XIII-99¢
225 TJ-1I1-67 TJ-1I1-67 MRK-VIII-89
227 MRK-VI-277
228 MRK-VI-201b MRK-VI-201b MRK-VII-135b
229 MRK-VII-33b MRK-VII-33b MRK-VII-33b
231 TJ-1II-55b TJ-1II-55b TJ-1II-55b
232 TJ-111-83 TJ-111-83 TJ-11I-83e
233 TJ-1II-135 TJ-1II-135 TJ-1II-135
235 TJ-1-285a TJ-1-285a TJ-1-285a2
236 TJ-1-303a TJ-1-303a TJ-1-303a
237 TJ-111-203 TJ-111-203 TJ-111-203
238 TJ-1-43f TJ-1-43f TJ-1-43f
239 TJ-1II-123 TJ-1II-123 TJ-11-47d
240 TJ-1I1-145 TJ-1I1-145 TJ-1I1-145
241 TJ-IV-39 TJ-IV_39 TJ-1I-115
242 TJ-1II-193a TJ-1II-193a TJ-1II-193a
243 TJ-1II-30 1 major TJ-1II-30 1 major TJ-1II-30 1 major
TJ-I1-30 Iminor TJ-I1-30 Iminor TJ-I1-30 Iminor
245 MRK-XII-293 MRK-XII-293 MRK-XII-233-3
253 MRK-VII-71-4 MRK-VII-71-4 MRK-VII-71-4
254 MRK-IX-71-1 MRK-IX-71-1 MRK-IX-71-1
255 MRK-VI-273
256 MRK-X-53a MRK-X-53a MRK-X-53a

Table A9.2. Notebook cross-reference for compounds of Chapter 4 and Appendix 4

compound '"H NMR 3C NMR IR

275 MRK-XI-207b MRK-XI-207b MRK-XI-207b
276 SRL-I-51 SRL-I-51 SRL-I-113
277 KVP-1-179 KVP-1-179 KVP-1-179
278 KVP-1-199 KVP-1-199 KVP-1-199
279 MRK-XII-33-1 MRK-XII-33-1 MRK-XII-33-1
287 SRL-1-47-3

288 SRL-1-287 SRL-1-287 SRL-1-287

526



Appendix 9—Notebook Cross-Reference

289 SRL-I-269

290 SRL-II-31 SRL-II-31 SRL-II-31
292 SRL-II-39 SRL-II-39 SRL-II-39
293 MRK-XI-261 MRK-XI-261 MRK-XI-261
294 SRL-II-55-1a SRL-II-55-1a SRL-II-55-1a
295 MRK-XI-303 MRK-XI-303 MRK-XI-303
304 SRL-I-47-1 SRL-I-47-1 SRL-I-47-1
307 MRK-XII-47

308 MRK-XII-49B

309 MRK-XI-257-1 MRK-XI-257-1 MRK-XI-253b

Table A9.3. Notebook cross-reference for compounds of Chapter 5 and Appendix 5

compound '"H NMR 3C NMR IR ’H
333 MRK-VII-303 MRK-VII-303
334 MRK-VIII-31 MRK-VIII-31
335 MRK-VIII-55 MRK-VIII-55
339 MRK-VII-253 MRK-VII-253
340 MRK-VII-261d | MRK-VII-261d
341 MRK-VIII-49 MRK-VII-49
344 MRK-VII-283b | MRK-VII-283b MRK-VII-283b
345 MRK-VIII-51¢c | MRK-VIII-51c MRK-VIII-51c
363 MRK-VII-179 MRK-VII-179 MRK-VII-179
364 MRK-VII-233b | MRK-VII-233b | MRK-VII-233b
365 MRK-VIII-71 MRK-VIII-71 MRK-VIII-71
366 MRK-VII-293 MRK-VII-293 MRK-VII-293
368 MRK-VIII-35 MRK-VIII-35
369 MRK-VIII-59 MRK-VIII-59
370 MRK-VIII-57b | MRK-VIII-57b MRK-VIII-57b
371 MRK-VIII-63 MRK-VIII-63 MRK-VIII-63
372 MRK-VIII-69 MRK-VIII-69 MRK-VIII-69
373 MRK-VIII-47 MRK-VIII-47 MRK-VIII-47
374 MRK-VIII-53 MRK-VIII-53 MRK-VIII-53

527



Appendix 9—Notebook Cross-Reference

Table A9.4. Notebook cross-reference for compounds of Appendix 6 and Appendix 7

compound

'"H NMR

BC NMR

31P

55

MRK-X-229

MRK-X-151

MRK-X-229
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