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Abstract

Nanophotonics has greatly benefited from the unique ability of surface plasmons to

confine optical modes to volumes well below the diffraction limit of light. Plasmonics

is an emerging area of research that opens the path for controlling light–matter inter-

actions on the subwavelength scale, enabling truly nanophotonic technologies that are

unattainable with conventional diffraction-limited optical components. Novel surface

plasmon devices exploit electromagnetic waves confined to the interface between a

metal and a dielectric, and permit the researcher to shrink light to dimensions previ-

ously inaccessible with optics. The extremely high and localized fields in plasmonic

nanocavities are finding applications in research areas such as single-molecule sensing,

nano-lasers, and photothermal tumor ablation, among others.

This thesis explores, both experimentally and theoretically, light emission in a

number of plasmonic nanostructures. We present cathodoluminescence imaging spec-

troscopy as a new method of characterizing surface plasmons on metal films and

localized in nanocavity resonators, with experimental observations supported by ana-

lytical calculations and electromagnetic simulation. This technique enables extremely

localized surface plasmon excitation, a feature we exploit in both planar metal geome-

tries and plasmonic nanocavities. We also study a specific nanocavity geometry, the

plasmonic core-shell nanowire resonator, investigating both passive and active semi-

conductor core materials. This geometry allows precise control of the local density of

optical states (LDOS), exhibiting the highest LDOS and smallest mode volumes in

structures with dimensions as small as λ/50. Moreover, we discuss the Purcell effect

as it applies to plasmonic nanocavities, and calculate enhancements in the radiative

decay rate of more than 3000× in the smallest structures. These results demon-

strate the promise of plasmonics to enable truly nanophotonic technologies and to

manipulate light at the nanoscale.
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