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Abstract 

 
Recent advancements in integrated small scale micro-electromechanical system 

technology has created cheap, low power-consuming sensors that can be used in wireless sensor 
networks, an increasingly popular technology because of its potentially diverse applications. 
However, sensor networks have many constraints, such as limited bandwidth and power, which 
have inspired a considerable amount of research for the development of energy efficient 
detection and estimation algorithms using quantized observations. Though optimal estimation 
algorithms using quantized innovations have been recently developed to tackle this problem, 
bounds are not available on the error of the resulting optimal filter. Because tight bounds on the 
estimation error are essential in determining the stabilizability of the corresponding closed loop 
dynamical system and thus the applicability of a filter to a specific system, this project focuses 
on developing error bounds from a close study of the filtering algorithms.  Initial attempts were 
unable to show that the estimation error of a system using quantized innovations followed a 
Ricatti recursion. Thus, a number of different algorithms and coder-estimator pairs were then 
analyzed to determine performance and to better understand means of proving stabilizability.  
Our primary goal is to have a better understanding of the evolution of the lower and upper 
bounds of estimation errors under measurement quantization, so that filters with verifiable 
performance specifications can be systematically designed for particular dynamical systems. 
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Introduction 

 
Wireless sensor networks (WSNs) are networks of distributed, independent devices that 

monitor various environments or objects and wirelessly transmit measurements to a central base 
that can evaluate the information.  They have become an increasingly popular technology and 
active field of interest not only because of the many interdisciplinary advancements that are 
making efficient and inexpensive ones possible but also because of their potential applications in 
diverse areas.  The advancements made in integrated small-scale micro-electromechanical 
systems that have low power consumption pave the way for smart environments, "physical 
world[s] that [are] richly and invisibly interwoven with sensors, actuators, displays, and 
computational elements, embedded seamlessly in the everyday objects of our lives, and 
connected through a continuous network."1  In particular, WSNs can be used to monitor the 
ecosystem of a Redwood tree or monitor material responses to various vibrations and stresses,2 
to track a vehicle or survey traffic flow, and even to track chemicals or make medical 
diagnostics. 

 WSNs have many advantages.  As the sensors composing a network are usually 
distributed in large quantities, there is great robustness to sensor failure because of redundancies.  
There are also possible improvements in signal-to-noise ratios because of the network’s ability to 
reduce the distance between the sensors and their targets.  Finally, the distribution of sensors 
across an environment creates the possibility of ‘multi-hopping’ transmissions over multiple 
nodes to a central base, which reduces required energy. However, the very benefits of WSNs 
create a number of challenges.  Not only does the large distribution of sensors create design 
challenges because of the necessity of controlling a large number of independent devices, the 
small sensors have limited energy and communication capabilities as well as a limited ability to 
both process and store data.3 

 Thus, a great amount of research is currently being conducted to address both the various 
complexities and constraints of WSNs.   One area of research tackles the particular challenge of 
energy and communication costs by considering the specific problem of tracking a noisy 
dynamical system (such as the position of a moving object) using discretized measurements from 
a number of sensors assuming that, at one measurement step, one sensor transmits only a 
constrained number of bits of information.  

 While the Kalman filter is the optimal estimator for a Gaussian system, constraining the 
measurements to a few bits creates nonlinearities that skew the probability distribution of the 
system so that the Gaussian assumption can no longer be assumed.  Thus, the focus of this 
research was to design and analyze new methods of filtering for systems using quantized 
measurements.  After analyzing an optimal particle filter designed by Sukhavasi ([3]) that uses 
the sign-of-innovation as the quantized measurement, various techniques were used to try to 
show that a linear dynamic system under sign-of-innovation measurements can be sufficiently 
tracked.   

To do this, we first attempted to derive a recursive state estimation that used a 
probabilistic set-membership description of uncertainty that probabilistically bounds the noises 

                                                      
1 Mark Weiser quoted in [1] D. Cook and S. Das, Smart Environments : Technology, Protocols and 

Applications. New York: Wiley-Interscience, 2004. 
2 These two applications are discussed in detail in [2] F. Zhao and L. J. Guibas, Wireless Sensor Networks : 

An Information Processing Approach. Greensboro: Morgan Kaufmann, 2004. 
3 Both advantages and challenges taken from [2] Ibid. 
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of the system in ellipsoids.  We were hoping that this technique would show that the estimation 
error under quantized innovations evolved under a Ricatti-like recursion—similar to that of a 
Kalman filter.  However, as this does not seem to be the case and we were unable to use this 
technique to prove estimation error bounds, we then looked to analyze and develop new 
techniques for creating coder-estimator pairs and proving specific performance measures.  After 
studying and simulating algorithms and techniques developed by others, we have begun studying 
various notions of stochastic stability to see if we can use the theory of Markov chains to prove 
performance specifications for Sukhavasi’s filter. 
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Discussion and Results 

 

Developing an Estimator for a Wireless Sensor Network 

 

Quantizing the Measurement using the Sign-of-Innovation 

 
 The Kalman filter was developed in the 1960s and is a ubiquitous method of state 

estimation for a linear dynamic system in which both the noise and the conditional probability 
distributions of the states given the measurements are Gaussian.  It is a recursive, minimum 
mean-square-error estimator that has the form of a linear observer, in which the observer gains 
are computed from error covariance matrices that are in turn calculated from a Riccati recursion 
equation (a type of difference equation).  Kalman filters are popular because, not only are they 
optimal for Gaussian systems, they are computationally efficient and easy to implement.  
However, the Kalman filter cannot be used to track systems using severely constrained wireless 
sensor networks for a number of reasons.  For one, under measurement quantization, the required 
Gaussian assumption no longer holds.  More importantly, because the sensors are distributed, 
there is no central observer that has access to all of the full measurements so not even an 
observer can calculate the Kalman filter estimate—as has been done in other work on 
communication constrained control systems. 

However, we can still use some of the principles used to develop the Kalman filter for a 
WSN.  The Kalman filter is based on what is called the innovations process, which is the process 
of the error—the difference between the most current measurement and the controller’s estimate 
of what that measurement should have been given all previous measurements.  The innovations 
process is a white process and can be “regarded as the ‘new information’ or the ‘innovation’ in 
the observation after we remove all we can say … about it from knowledge of past 
observations.”4  In [5], Ribeiro et al. used this concept for WSNs by assuming that all the sensors 
can receive the controller’s estimate information (thus, assuming that it requires less energy to 
receive than to transmit), so that, in the case of using a communication channel with a one bit 
rate, the one bit of information that is transmitted from the sensor is the sign of the innovation 
(SOI) from its new measurement. 

However, using the SOI, Ribeiro et al. incorrectly assumed that the conditional 
probability density function of the state given the quantized measurement approximately follows 
a normal distribution and, thus, proceeded to develop a modified Kalman filter (the SOI-KF) 
with a corresponding modified Riccati recursion which varies from the original Kalman filter 
Riccati only by a 2/π factor in front of the gain term, which accounts for the degree of 
quantization of the measurement.   

 Though Ribeiro et al. presented simulations of a couple of systems in which the SOI-KF 
seems to work, later work done by Sukhavasi has shown that their filter fails and has diverging 
error performance under many different systems.5   

                                                      
4 From  [4] T. Kailath, et al., Linear Estimation. Upper Saddle River, NJ: Prentice Hall, 2000. 
5 Sukhavasi did this using a general particle filter as explained in his paper  [6]  R. T. Sukhavasi and B. Hassibi, 

"Particle filtering for Quantized Innovations," presented at the Proceedings of the 2009 IEEE International 
Conference on Acoustics, Speech and Signal Processing, 2009. 
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The Kalman-Like Particle Filter  

 
As a result, Sukhavasi developed another filter presented in [3], called the Kalman-Like 

Particle Filter (KLPF).  The particle filter is used when the assumptions of the Kalman filter 
cannot be met.  Instead of assuming a normal distribution, the particle filter represents a belief of 
a state in a nonparametric form by a set of randomly selected state samples. Each sample is 
called a particle and is essentially a single hypothesis about what the true state may be. An 
‘importance factor’ gives a particular weight to each sample, representing using Bayes’ rule the 
probability of the state given the measurements.  The weights are then used in a resampling 
process that has a greater probability of keeping particles with more weight. 

Though optimal in the case of non-linear and non-Gaussian systems, particle filters can 
be very computationally expensive because they can require a huge number of particles.  
However, Sukhavasi developed a variant of the particle filter that greatly reduced the number of 
particles needed to optimally run the filter by breaking the probability model of the system into 
two parts—one that could be described as a Gaussian distribution and the other which had to be 
evolved using a particle filter.  He noted that the original state-space model (without the 
measurement quantization) follows the Gaussian assumptions necessary to use a Kalman filter, 
while the one-bit quantization of the measurements creates nonlinearities that must be addressed 
by other estimation techniques.  Thus, each particle addresses the skewed probability of the 
original measurement given its quantization, and the Kalman filter evolves the state estimate 
using the various guesses of the original (un-quantized) measurement. Therefore, this filter 
effectively runs a Kalman filter on each particle, where each particle represents a possible value 
of the original measurement based on the quantized measurement that is received. 

 

Simulating the KLPF with the SOI-KF 

 
The KLPF has much better error performance than the SOI-KF developed in [5], but, 

oddly enough, in a number of simulations, the error performance of the KLPF seemed to track 
the Riccati recursion developed for the SOI-KF.  Thus, we performed a large number of 
simulations on the KLPF, which varied the dynamics of the systems being analyzed, the number 
of particles, etc., to see how the error evolves in relation to the Ricatti recursion used in [5].   It 
provided great insight on the effects of quantization on the estimation of the system.  For 
example, one simulation showed that the error of the system is dependent on the bit sequence of 
measurements received; the plot below shows that the error is larger when the system continually 
overestimates or underestimates the state, thus returning more of one bit than the other.  Finally, 
a number of other simulations (two are shown in KLPF Simulations, 21) were used to determine 
that the SOI-KF Riccati recursion did not in fact characterize the performance of the optimal 
filter in any way and could not serve as any kind of bound for the error of the KLPF. 
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Figure 1: KLPF Simulation Plot.  Plot of the evolution of the error of a particular dynamical system 

averaged over 50,000 iterations, each using a particle filter with 1000 particles 
 
 

The Probabilistic Set-Membership Description 

 
With the realization that there was no meaningful relationship between the SOI-KF 

Riccati and the evolution of the error of the KLPF, work shifted to trying to prove performance 
through a careful analysis of the original equations that described the system dynamics and 
quantized measurement updates.  The performance of the KLPF could be verified if it could be 
shown that a marginally unstable system could be tracked with sufficiently bounded error when 
using only a sequence of bits, each representing the sign of the innovation. 

To do this, an approach was tried that was inspired by work done by Schweppe and then 
Bertsekas in the late 60s ([7], [8]).  Schweppe and Bertsekas derived recursive state estimations 
under a ‘set-membership description of uncertainty.’  The set-membership describes “input 
disturbances and observation errors [when they] are unknown except for the fact that they belong 
to given bounded sets.” [8]  The sets they used were ellipsoids.  They showed that intersecting 
ellipsoids, representing the bounds on the state both from the understanding of the state’s initial 
position and state evolution as well as from the measurement update, will result in an ellipsoid 
bounding the current state.  This recursive process is not the best filter because the center of the 
resulting ellipsoid cannot be shown to be the optimal estimate of the state.  However, if the 
ellipsoids remain bounded, it equivalently bounds the error in the estimate of the state of the 
system. 

However, the difference with the system at hand and the one used by Schweppe and 
Berteskas is that, here, the uncertainties are not bounded but are instead Gaussian.  This created 
new difficulties because, unlike in the set-membership approach, the system can be ‘unlucky’ 
and get hit with large values of noise, though this, of course, happens with low probability.  
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Thus, in this system, the noise could only be bounded probabilistically within ellipsoids, which 
is equivalent to defining the variance of the noise using Gaussian confidence intervals. 

 Using Chernoff bounding techniques, a very similar recursive estimation process was 
developed for the probabilistic ellipsoids (shown in The Probabilistic Set-Membership Description, 
22).  With a recursion process at-hand, the goal became to show that, at each time step, an 
exponentially decaying probability bound held for the error measurement, which would then 
prove that the error covariance matrix remained bounded for all time.  Using the state-dynamics 
equations, the probability bounds were evolved using the set-membership techniques to sum and 
intersect ellipsoids.  Another main difference was that, instead of intersecting two ellipsoids to 
combine the bounds on the state based on its possible evolution from its initial position as well as 
from its measurement, in this case, the state-evolution ellipsoid could only be intersected with a 
half-plane that corresponded to the measurement bit received. 

While this approach did give a method for evolving the probability bounds through time, 
the probability bound obtained at the end of a single recursion step was not tight enough to prove 
bounded error.  Instead it had a very counterintuitive result, showing that the best estimate was 
obtained simply by evolving the mean estimate of the initial state and never using any of the 
quantized measurements.  Thus, while simulations showed that the KLPF had bounded error, this 
technique could not verify it. 

 

Literature Review 

  
Because the probabilistic set-membership approach cannot be used to develop a tight 

recursion for the system, it has neither shown that the KLPF can be used to track a system nor 
that it cannot be used.    Therefore, still needing to develop techniques to prove performance for 
the KPLF, we analyzed previous research that had instead created various coder-estimator pairs 
to prove stabilizability for closed-loop control systems under communication constraints.  One 
result in this area of work on networked control systems that is especially applicable to our 
system is called the data-rate theorem and is inspired by Shannon’s source coding theorem.  It 
states that, to stabilize a scalar system, the rate of the communication channel must be greater 
than the intrinsic entropy rate of the system, which is the logarithm of the magnitude of its 
unstable pole: 

ܴ ൐  |ߣ|ଶ݃݋݈
Quite simply, this means that, to keep a bound on the estimation of the state, the rate used to 
communicate measurements for the estimation must be larger than the rate at which the system is 
growing. 

We decided to analyze more closely two very different papers, each of which derives a 
specific data-rate theorem result for a particular system and communication channel.  One is 
Minero’s “Data Rate Theorem for Stabilization over Time-Varying Feedback Channels.”[9]  The 
other is Yuksel’s “A Random Time Stochastic Drift Result and Application to Stochastic 
Stabilization over Noisy Channels.”[10]   The systems analyzed in these papers are very different 
from our system because their goal is not only to estimate the state but also to control it.  The 
assumption these papers make that allows them to close the loop of the system with a controller 
is that the information pattern—the observer’s available inputs—of the system includes all full 
(un-quantized) measurements.  While this is unlike the KLPF’s observer, which only has access 
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He also relies on the ability to use multiple time steps to transmit information about a single 
measurement so that the decoder’s information about the measurement can be refined as much as 
necessary.  This is done by using a fixed value  number of channel blocks (each with n channel 
uses in which the rate R remains constant) to send information about one measurement.  
Therefore, every n steps (denoted by iterator j), the decoder receives the measurement update 
and updates the estimator using vj bits, where 

௝ݒ ൌ׷  ݊ ௝ܴఛ ൅ ݊ ௝ܴఛାଵ ൅ ڮ ൅ ܴ݊ሺ௝ାଵሻఛିଵ 
Hence, there is a tradeoff in selecting :  the smaller  is, the more measurements are transmitted 
to the decoder with less delay, and the greater  is, the more the decoder can refine the value of a 
single measurement. 
 

Simulations of Minero’s Algorithm 

 
  While Minero’s results did prove stabilizability for the system, we wanted to better 
understand the performance of the quantizer and encoder-decoder pair, so we simulated their 
algorithm on a number of various systems. 

 These simulations show the weakness of the algorithm’s sufficiency proof in its reliance 
that   be “sufficiently large.”  As seen in the simulation below, because increasing  increases 
the delay, the errors increase in choosing  larger than absolutely necessary.  Note, that in all 
simulations we have chosen Prob(Ri = 3) = 1, so that the rate is not actually time-varying.  (More 
simulations of Minero’s algorithms are found in Minero and Yuksel Simulations, 23.) 
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Figure 3: Minero Simulations.  In the top simulation,  = 1. In the bottom simulation,  = 5. 
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Yuksel’s Stochastic Drift Result 

  
 Because Minero’s approaches used rather standard control-theoretic and information-

theoretic techniques and also did not account for any possible channel erasures, we also analyzed 
Yuksel’s result in [10] for a stochastic communication channel that uses newer and what seem to 
be very powerful results from the theory of Markov chains on general spaces.  Using notions of 
stochastic stability for Markov chains, Yuksel constructs a quantizer and encoder-decoder pair 
for estimating a state with measurements from a rate-constrained erasure channel and proves the 
filter’s stabilizability. 

 Like Minero’s work, Yuksel’s formulation is for a scalar dynamical system with unstable 
mode a, Gaussian noise disturbance, and Gaussian initial condition.  While constraining the data 
rate to R, Yuksel also allows for erasures of the form: 

ܲሺ݌௧ ൌ 1ሻ ൌ  ݌
where 0 ൏ ݌ ൑ 1  and ݌௧ ൌ 1  is the event that there is no erasure and that the signal is 
transmitted with no error at time step t. 

Yuksel’s main result is that the necessary and sufficient condition for stabilizability of the 
plant is that  

ܽଶ ൬1 െ ݌ ൅
݌

ሺ2ோ െ 1ሻଶ൰ ൏  1 

Notice that the result again follows the data-rate theorem: for p = 1, it reduces to the theorem 
and, for p = 0, the eigenvalue a must be stable. 
 To prove the sufficiency of this condition, Yuksel uses the language and techniques of 
Meyn and Tweedie [13].  (An overview of Markov chains and these techniques is presented 
below in Markov Chains and Various Notions of Stochastic Stability, 17.)  The central feature of 
the algorithm that Yuksel develops is a random, adaptive quantizer that allows Yuksel to use 
Markov chain theory to show that the error will continually return to a bounded region (thus, that 
the bounded region is a recurrent set of the Markov chain describing the evolution of the 
estimation error).  Yuksel’s quantizer is actually incredibly simple:  he uses a uniform quantizer 
with a bin size that is updated at each time step.  Yet, it is this update that is the key to ensuring 
stabilizability; the update algorithm is chosen to ensure that the joint Markov process is recurrent 
with a unique invariant distribution.   
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Simulation of Yuksel’s Algorithm 

 
 While Yuksel does prove stabilizability of his system, the biggest problem with it is that 

it does no more than that.  Thus, even systems with values that well satisfy the sufficiency 
condition can produce very large estimation errors at particular time steps.  An example 
simulation is shown below. (For more simulations, look at Minero and Yuksel Simulations, 23.) 

 

 
Figure 4: Yuksel Simulation.  Although the unstable mode only has a value of 1.5 and there is only a 0.1 probability 

of erasure, because the rate has been constrained to two bits, there are particular time instances with high estimation 
error. 

 
However, although the algorithm is not of practical use, Yuksel’s result remains very 

important because it suggests new techniques for approaching the problem.  Yuksel’s work 
shows that the general theory of Markov chains can be used as a powerful tool for understanding 
and deriving stochastic control systems. 
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Markov Chains and Various Notions of Stochastic Stability 

  
 The last portion of our work has focused on better understanding the techniques used by 
Yuksel in [10] that are presented in Meyn and Tweedie [13].  Here is given a very brief 
introduction to Markov chains and some of the results and ideas presented in [13] that are most 
important to our current research. 
 First of all, a homogenous Markov chain is a particular type of random process that obeys 
the following very ‘nice,’ useful properties: 

(1) Memoryless (Markov) property:  The future state of the chain depends only 
on the current state of the chain and not on all its past states.  Or more 
formally, the “conditional distribution of Xn+1 given (X0, …, Xn) depends only 
on Xn.”  ([14]) 

(2) Time homogeneity:  The conditional probability of a state given a particular 
value for the current state is the same for all time. 

Examples of Markov chains include a random walk, a queuing system, and, of course, the state-
space dynamical system that we have been analyzing.  While the theory of Markov chains has 
existed since Markov’s pioneering work in the early 1900s, most of the work has focused on 
chains in countable spaces, that is, under the assumption that the state X can only take values 
from a countable set.  Yet, this is clearly not the case for the Markov chain of the estimation 
error in our system.  However, beginning in the 1950s with theories derived by Harris, it was 
shown that similar results could also be developed for chains on more general spaces.  The 
theory of Markov chains on general spaces relies primarily on measure theory; instead of 
analyzing a collection of particular values of a countable set, we analyze sets of nonzero 
measure.    

     A Markov chain for a general space is defined by its transition probability kernel P(x, A), 
where, as defined by Meyn & Tweedie, 

(i) For each A א  P(·,A) is a non-negative measurable function on X ,(X)ܤ
and 

(ii) For each x א X, P(x, ·) is a probability measure on B(X)  
where B(X) is a “countably generated” sigma field on X.   A time-homogenous Markov chain Ф 
then satisfies the following equation for each n: 

ఓܲሺФ଴ א ,଴ܣ Фଵ א ,ଵܣ … , Ф௡ א ௡ሻܣ ൌ  න …
௬బא஺బ

න ,௢ݕ଴ሻܲሺݕሺ݀ߤ ଵሻݕ݀ … ܲሺݕ௡ିଵ, ௡ሻܣ
௬೙షభא஺೙షభ

 

where  is the initial distribution of the chain.  (From [13], pages 59-61) 
 Meyn and Tweedie’s rigorous presentation of Markov chains is based on developing 
notions of stochastic stability.  They write, “We will systematically develop a series of 
increasingly strong levels of communication and recurrence behavior within the state space of a 
Markov chain, which provide one unified framework within which we can discuss stability.”  
([13], page 14)  This communication that they refer to is the ability for the chain to reach, at 
some point in time, a set A of nonzero measure.  This communication is described by requiring 
that the hitting time of set A is less than infinity: 

߬஺ ൌ׷ infሺ݊ ൒ 1 ׷  Ф௡ א  ሻܣ
chain communicates with A: ߬஺ ൏  ∞ 

 In this framework, the goal of a controller is to ensure that the set A, in which the 
estimation error is bounded, is continually visited by the Markov chain that describes the 
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process.  The weakest notion of stability in Meyn and Tweedie’s approach is thus that of ψ-
irreducibility, which is the property that sets of nonzero measure (as measured by the function ψ) 
can be reached by the chain from every possible starting point: 

ݔ ׊ א ܺ, ߰ሺܣሻ ൐ 0 ՜ ௫ܲሺ߬஺ ൏  ∞ሻ ൐  0 
 But, we want to ensure that not only is the set A visited, but that it is visited infinitely 
often, which is the property of recurrence and, because of the property of irreducible Markov 
chains, is equivalent to requiring that the set A is reached in finite time: 

א ݔ ׊ ܺ, ߰ሺܣሻ ൐ 0 ՜ ௫ሾ߬஺ሿܧ ൏  ∞ 
 The strongest notion of stability that Meyn and Tweedie develop is ergodicity, which 
requires that the chain have “nice” limiting behavior in which its distribution converges to a 
limiting invariant distribution: 

ሻܣሺߨ ൌ  න ,ݔሻܲሺݔሺ݀ߨ  ሻܣ

 Using these notions of stability, the goal of our work is then to show that the Markov 
chain described by the estimation error of the KLPF is recurrent with some invariant probability 
distribution.  If we can show this, we will have equivalently shown that the set in which the 
estimation error remains small is continually visited and, therefore, that the KLPF can 
successfully track a given state under specified conditions.      
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Conclusions 

 
 Although the Kalman-like Particle Filter (KLPF) exploits both the tractability of the 

Kalman filter and the optimality of particle filters and simulations have also shown good 
performance, we have still been unable to rigorously prove that it follows any performance 
specifications.  However, in our attempts to prove stabilizability and other performance measures 
for the KLPF, we have determined that the optimal estimation error of a state under quantized 
measurements does not follow a Riccati-like recursion.  We have also studied a number of results 
for control under communication constraints that have given us a toolbox of techniques and 
algorithms for approaching these problems. 

 While many of these techniques are founded on combining and modifying ideas and 
results from traditional information and control theories, Yuksel’s approach using Markov chains 
in [10] relies primarily on analyzing the probabilistic nature of the control system.  This very 
general technique that uses the theory of stochastic stability offers great potential, and further 
work needs to be done to use these types of techniques to prove the performance of the KLPF.   

 As theoretical work progresses and derives algorithms which provably satisfy stricter 
error bounds, out hope is that filters with verifiable performance specifications can be 
systematically designed for particular wireless sensors networks.  This will allow us to develop 
energy-efficient networks that can monitor large multi-agent systems with possibly vast spatial 
distributions.  
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Thus, in the KLPF, the truncated normal distribution of y1:n | b1:n  is estimated using a 
particle filter, while a Kalman filter evolves x(n)| y1:n for each particle {yi

1:n }i=1, ..., N.  
 

KLPF Simulations 

 
 Using Monte Carlo simulations of the KLPF with 50,000 iterations each with 3,000 

particles, systems were found in which the KLPF Riccati was above and below the SOI-KF 
Riccati.  Therefore, it was concluded that the SOI-KF Riccati has no significance and does not 
characterize or bound the error of the optimal filter.  (For more detailed descriptions of the KLPF 
and the SOI-KF refer to [3] and [5], respectively.): 

  
 
 System 5:   In system 5, the KLPF error is higher than that assumed by the SOI-KF 

Riccati. 

ܴ ൌ 10;  ߬ ൌ 0.1; ܣ ൌ  ቂ1.1 45
0 1

ቃ ; ܳ ൌ  

ۏ
ێ
ێ
ۍ
߬ସ

4
߬ଷ

2
߬ଷ

2
߬ଶ

ے
ۑ
ۑ
ې

; ܪ ൌ ሾ1 0ሿ; ଴ܲ ൌ  ቀ. 01 0
0 . 01

ቁ 

Figure 6: Simulation of KLPF in which error is higher than the SOI-KF Ricatti. 
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 System 12:  However, in system 12, the KLPF has lower error than the SOI-KF. 
 

ܴ ൌ 2.5; ܣ  ൌ

ۏ
ێ
ێ
ێ
ۍ
0.95 1 1 0   0
 0 0.9 7 1   0
0
0
0

 
  0

  0
0
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0
0

2   0
0.7 0.8
0 0.5 ے

ۑ
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ۑ
ې

; ܳ ൌ 2 כ ; ܫ ܪ ൌ ሾ1 0 1 0 2ሿ; ଴ܲ ൌ  ܫ01. 

Figure 7: Simulation of KLPF in which error is lower than the SOI-KF Ricatti 
  

 

The Probabilistic Set-Membership Description 

 
If, for a multidimensional random variable X, 

ܲሺ்ܺܳିଵܺ ൒ ݉ሻ ൑ ௠ି݁ߙ 
ଶ  

then its covariance matrix is finite (Appendix A.1).  Thus, we want to recursively show that, at 
each time step, this exponentially decaying probability bound held for ܺ ൌ ሺ݊ሻݔ െ  .ොሺ݊|݊ሻݔ

 The recursion evolved with the following initial conditions, which were proven using 
Chernoff bounding techniques on the original Gaussian noise assumptions: 

ܲሾ்ݔሺ0ሻݔሺ0ሻ ൒ ݉ሿ ൑ ሺ
݉݁
݇

ሻ
௞
ଶ݁ି௠

ଶ  

ܲሾݒଶ  ൒ ௩ߪ݊
ଶሿ ൑ 2݁ି௡

ଶ 

ܲሾݓ்ݓ ൒ ሿݍ ൑ ሺ
݁ݍ
݇

ሻ
௞
ଶ݁ି௤

ଶ 
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where now, without loss of generality, x(0) ~ N(0, I) is the initial position of the k-dimensional 
state, v ~ N(0, σv

2) is the measurement noise, and w ~ N(0,I) is the state evolution noise.  Using 
the state-dynamics equations, the probability bounds on the state were evolved using the set-
membership techniques to sum and intersect ellipsoids.  The main difference is that instead of 
intersecting two ellipsoids to combine the bounds on the state based on its possible evolution 
from its initial position as well as from its measurement, the state-evolution ellipsoid was 
intersected with a half-plane that corresponded to the measurement bit, b(n), received. 

 In this manner (Appendix A.2), starting with a probability bound 

ܲൣ൫ݔሺݐሻ െ ݐ|ݐොሺݔ െ 1ሻሻ்ܲିଵሺݐሻ൯൫ݔሺݐሻ െ ݐ|ݐොሺݔ െ 1ሻ൯ ൒ ݉൧ ൑ ݉ߙ 
௞
ଶ݁ି௠

ଶ  
after one step of the measurement update recursion the probability bound was  

ܲሾ൫ܺ െ ሻ்݊√ݖܾ ෨ܲିଵሺݐሻ൫ܺ െ ൯݊√ݖܾ ൒ ݊൧ ൑ 1 െ ሺ1 െ ݉ߙ
௞
ଶ݁ି௠

ଶ ሻሺ1 െ 2݁ି௡
ଶሻ 

where 
ܺ ൌ ሻݐሺݔ െ ݐ|ݐොሺݔ െ 1ሻ 

ݖ ൌ ܴ√ߩ 
ሺߠ௣ െ 1ሻ

2 ௣்ܲܪ 

௣ܲ ൌ ܲ െ
ܲܪ்ܪܲ

ଵିߩ ൅  ்ܪܲܪ

෨ܲ ൌ ௣ܲ ቆߠ ൅ ௣ߠܴߩ  ൅ ଶܴߩ
ሺߠ௣ െ 1ሻଶ

4
ܪ ௣்ܲܪቇ 

௣ߠ ൌ  ඨ
்ܪܲܪ

்ܪܳܪ , ݉ ൌ  ߠ݊

But here there are some problems.  The ellipsoidal bound on the state ݔሺݐ|ݐሻ has a 
moving center; the center depends on n, which is simply the free variable that describes the 
probabilistically decaying bound.  To prove a finite covariance, the center of the ellipsoid must 
be fixed.  However, when trying to fix the center by any arbitrary shift corresponding to the bit 
received, the resulting covariance matrix is no smaller than if the estimate had not been updated 
based on the new measurement and was simply kept at the center at ݔොሺݐ|ݐ െ 1ሻ.  Thus, this 
recursion does not track the system. Thus, this current analysis cannot be used to prove bounded 
estimation error because the bounds it creates are not tight enough to show that the error 
covariance remains finite. 

 

Minero and Yuksel Simulations 

  
Presented below are results from a few simulations of both Minero’s and Yuksel’s 

algorithms.  The code used to run the simulations is presented in Appendix C: Minero Simulation 
Code, 30 and Appendix D: Yuksel Simulation Code, 35. 
 To compare the algorithms, the same parameter values have been used for both. 
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Comparison of Minero’s and Yuksel’s Algorithm with no Erasures 
Here results are averaged over 1000 iterations. 

 

 
Figure 8: Comparison of Minero and Yuksel with no Erasures.   In the top simulation of Minero’s algorithm, the 

minimum sufficient  of value two is used. 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
Minero Sim: Rate =3 , a =2.5 , # of iterations =1000

Time step

M
ag

ni
tu

de
 o

f 
A

ve
ra

ge
 E

rr
or

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300
Yuksel Sim: Rate =3, Prob =1, a =2.5, # of iterations =1000

Time Step

M
ag

ni
tu

de
 o

f 
A

ve
ra

ge
 E

rr
or



25 
 

Comparision of Yuksel’s and Minero’s Algorithm with no Erasures: No Averaging 
In the graphs below, only a single random iteration of the simulation was run.  Thus, the 
averaging of Minero’s errors much more clearly shows when each measurement update was 
made (at every other time step, because of the choice of  = 2).  For Yuksel’s simulation, notice 
that times of high estimation error occur infrequently over a single iteration. 
 

 

 
Figure 9: Comparison of Minero and Yuksel with no Erasures with no averaging.   In the top simulation of Minero’s 

algorithm, the minimum sufficient  of value two is used. 
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Comparing the effects of erasures on Yuksel’s simulation 
Below are two graphs showing results from simulating Yuksel with a 0.2 probability of erasure.  The first 
graph averages over 1000 iterations, while the second graph shows the outcome of a single iteration. 
 

 

 
Figure 10: Yuksel simulation with 0.2 probability of erasure.   
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Appendices 

 

Appendix A: Probabilistic Set-Membership Description Approach Lemma  

 
If, for a multidimensional random variable X, 

ܲሺି்ܳݔଵܺ ൒ ܽሻ ൑  ௔ି݁ܥ
then its covariance matrix is finite.   

This can be shown by writing Q-1 as a diagonal matrix:  Since Q-1 is a real, symmetric 
matrix, it can be diagonalized by an orthogonal matrix A (ATA = AAT= I). 

ܣଵି்ܳܣ ൌ ,ܦ  ݔ݅ݎݐܽ݉ ݈ܽ݊݋݃ܽ݅݀ ܽ ݏ݅ ܦ ݁ݎ݄݁ݓ
ܳିଵ ൌ ൌ ܫଵିܳܫ ሺ்ܣܣሻܳሺ்ܣܣሻ ൌ  ்ܣܦܣ 

                ՜ ܲሺݔ்ܣܦܣ்ݔ ൒ ܽሻ ൑  ௔ି݁ܥ
ݕ    ൌ  ݔ்ܣ 

    ՜ ܲሺݕܦ்ݕ ൒ ܽሻ ൑ ௔ି݁ܥ  

 Since D is the diagonalization of a positive definite matrix, its eigenvalues are positive.  
Thus, for i = 1, ..., n,    

    ܲሺܿ௜ݕ௜ ൒ ܽሻ  ൑   ௔ି݁ܥ

We have thus reduced the problem to proving this for the one-dimensional case---that the 
variance of each yi is finite, as  

ሻ்ݔݔሺܧ    ൌ  ሻ்்ܳݕݕሺܧܳ 
For the one-dimensional case, we have: 

  ܲ ቀ
ሺ௫ିఓሻమ

ఙమ  ൒ ଶቁݎ  ൑ ௥మି݁ܥ
 

ൌ ܲሺݔ െ ൒ ߤ ሻݎߪ  ൅  ܲሺݔ െ ൑ ߤ  െݎߪሻ 
՜ ߤ௫ሺܨ െ ሻݎߪ ൅  1 െ ߤ௫ሺܨ ൅ ሻݎߪ ൑ ௥మି݁ܥ

 
Using this, we can easily show that ׬ሺݔ െ  ז .is bounded ݔሻ݀ݔሺ݌ሻଶߤ
 
 

Appendix B: Proabilistic Set-Membership Description Approach Recursion Attempt 

 
Optimizing measurement update ellipsoid when y is scalar. 
Initial conditions: 

ܲሾሺݔሺݐሻ െ ሻݐሺݔሻ൫ݐሻሻ்ܲିଵሺݐොሺݔ െ ሻ൯ݐොሺݔ ൒ ݉ሿ  ൑ ܽ݁ି௠
ଶ  

ሻݐሺݕ           ൌ ሻݐሺݔܪ  ൅  ሻݐሺݒ 

|ݒ|ൣܲ             ൒ √ܴ݊൧ ൑ ݊݁ି೙
మ  

Thus, 

ܲሾሺݔܪሺݐሻ െ ሻݐሺݔܪሻିଵሺ்ܪሻݐሺܲܪሻሻ்ሺݐොሺݔܪ െ ሻݐොሺݔܪ ൒  ݉ሿ ൑ ܽ݁ି௠
ଶ  

(1) scalar: 

ܲ ൥
൫ݔܪሺݐሻ െ ሻ൯ݐොሺݔܪ

ଶ

்ܪሻݐሺܲܪ  ൑ ݉൩ ൒ 1 െ ܽ݁ି௠
ଶ  
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Measurement: 
 b=1: 

ሻݐሺݕ ൐ ሻݐොሺݕ  ՜ ሻݐሺݔܪ ൐ ሻݐොሺݕ  െ  ሻݐሺݒ
ܲሾݔܪሺݐሻ െ ሻݐොሺݕ ൐ െݒሺݐሻሿ ൌ 1 

|ݒ|ൣܲ ൒  √ܴ݊൧ ൑ ݊݁ି௡
ଶ 

ܲൣെ√ܴ݊ ൑ ൑ ݒ  √ܴ݊൧ ൒ 1 െ ݊݁ି௡
ଶ 

ଵܣ ת ଶܣ ՜ ଷ ՜՜ܣ  ܲሺܣଷ ሻ ൒ ܲሺܣଵ ת  ଶሻܣ
൐ ݖ  െݒሺݐሻ & െ √ܴ݊ ൑ ݒ ൑  :ݐ݄ܽݐ ݏ݈݁݅݌݉݅ ܴ݊√

൐ ݖ  െ√ܴ݊ 

ሻݐሺݔܪൣܲ ൐ ሻݐොሺݕ   െ √ܴ݊൧ ൒ 1 െ ݊݁ି௡
ଶ 

 b=-1: 
ሻݐሺݕ ൏ ሻݐොሺݕ  ՜ ሻݐሺݔܪ ൏ ሻݐොሺݕ  െ  ሻݐሺݒ

ܲሾݔܪሺݐሻ െ ሻݐොሺݕ ൏  െݒሺݐሻሿ ൌ  1 
,ݕ݈ݎ݈ܽ݅݉݅ܵ ܾ ݎ݋݂ ݁݀ݑ݈ܿ݊݋ܿ ݊ܽܿ ݁ݓ ൌ െ1: 

ሻݐሺݔܪൣܲ         ൏ ሻݐොሺݕ  ൅  √ܴ݊ ൧ ൒ 1 െ ݊݁ି௡
ଶ 

Thus, the general observation is: 

ሻݐሺݔܪܾൣܲ (2) ൐ ሻݐොሺݕܾ  െ √ܴ݊൧ ൒ 1 െ ݊݁ି೙
మ  

Combining (1) and (2): 

               ሺ1ሻ െ ඥܲܪܯሺݐሻܪ௧ ൏ ሻݐሺݔܪܾ െ ሻݐොሺݔܪܾ  ൏  ඥܲܪܯሺݐሻܪ௧ 
ሺ2ሻ ܾݕොሺݐሻ െ ሻݐොሺݔܪܾ  െ √ܴ݊ ൏ ሻݐሺݔܪܾ െ  ሻݐොሺݔܪܾ

Measurement is useful if: 

ሻݐොሺݕܾ െ ሻݐොሺݔܪܾ െ √ܴ݊ ൐  െඥ݉ܲܪሺݐሻܪ௧ 
Assume that we are filtering:  ݕොሺݐሻ ൌ  ሻݐොሺݔܪ 

Thus, the measurement is useful if:  √ܴ݊ ൏  ඥ݉ܲܪሺݐሻ்ܪ 

՜
݉
݊

൐  
ܴ

 ்ܪሻݐሺܲܪ

Since ܲሺݐ|ݐ െ 1ሻ ൌ ݐሺܲܣሺߙ  െ ݐ|1 െ 1ሻ்ܣ ൅  ܳሻ ൐  ܳ, choose 

ሺ3ሻ 
݉
݊

ൌ
ܴ

்ܪܳܪ ൐  
ܴ

    ்ܪሻݐሺܲܪ

Finally, we have: 

െ√ܴ݊ ൏ ሻݐሺݔܪܾ െ ሻݐොሺݕܾ ൏ ඥ݉ܲܪሺݐሻ்ܪ 
Thus, the new ellipse is: 
   Radius: 

 
ඥ݉ܲܪሺݐሻ்ܪ ൅  √ܴ݊

2
 

   Mean: 

ܾሺඥ݉ܲܪሺݐሻ்ܪ െ √ܴ݊ሻ
2

 

Assume that m>n so that ݊݁ି೙
మ is the dominant term. 

Define:  
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݉ ൌ ;ߠ݊ ߠ  ൌ
ܴ

 ்ܪܳܪ

௣ߠ ൌ  ඨ
்ܪܲܪ

 ்ܪܳܪ

This gives our new ellipsoidal bound: 

ሺݔܪ െ ොݕ െ
ܾ
2

√ܴ݊ሺߠ௣ െ 1ሻሻଶ ൑  
1
4

ܴ݊൫ߠ௣ ൅ 1൯
ଶ
 

We now need to intersect the original bound for x with the new bound from the measurement 
using a linear combination of the two bounds 
1 ൈ ሺݔ െ ݔොሻ்ܲିଵሺݔ െ ොሻݔ ൑ ݉ 

      

ሺሺݔ െ ොሻ்ݔ 1ሻ ቀܲିଵ 0
0 0

ቁ ൬
ݔ െ ොݔ

1
൰   ൑ ݉ 

 

ߩ ൈ ሺݔܪ െ ሻݐොሺݕ െ
ܾ
2

√ܴ݊൫ߠ௣ െ 1൯ሻଶ  ൑  
1
4

ܴ݊ሺߠ௣ ൅ 1ሻଶ 

ൈ ߩ ሺሺݔ െ ොሻ்ݔ 1ሻ ൮
ܪ்ܪ െ

ܾ
2

√ܴ݊൫ߠ௣ െ 1൯்ܪ

െ
ܾ
2

√ܴ݊൫ߠ௣ െ 1൯ܪ
ܴ݊
4

൫ߠ௣ െ 1൯
ଶ

൲ ൬
ݔ െ ොݔ

1
൰   ൑

ܴ݊ሺߠ௣ ൅ 1ሻଶ

4
 

 
Adding together: 

ሺሺݔ െ ොሻ்ݔ 1ሻ ൮
ܲିଵ ൅ ܪ்ܪߩ  െ

ܾߩ
2

√ܴ݊൫ߠ௣ െ 1൯்ܪ

െ
ܾߩ
2

√ܴ݊൫ߠ௣ െ 1൯ܪ
ܴ݊ߩ

4
൫ߠ௣ െ 1൯

ଶ
൲ ൬

ݔ െ ොݔ
1

൰

൑ ݉ ൅  
௣ߠሺܴ݊ߩ ൅ 1ሻଶ

4
 

Giving, after some algebraic manipulation: 

൬ݔ െ ොݔ െ
ܾߩ
2

√ܴ݊൫ߠ௣ െ 1൯ሺܲିଵ ൅ ൰்ܪሻିଵܪ்ܪߩ
்

ሺܲିଵ ൅ …ሻሺܪ்ܪߩ ሻ  

൑ ݉ ൅ ௣ߠܴ݊ߩ  ൅
ଶܴ݊ߩ

4
൫ߠ௣ െ 1൯

ଶ
ሺܲିଵܪ ൅  ்ܪሻିଵܪ்ܪߩ

The bound can be rewritten as : 

݊ሺ
݉
݊

൅ ௣ߠܴߩ  ൅
ଶܴߩ

4
൫ߠ௣ െ 1൯

ଶ
ሺܲିଵܪ ൅  ሻ்ܪሻିଵܪ்ܪߩ

This gives us finally a bound of the form: 

ܲ ቂ൫ݔ െ ሻ൯ݐ|ݐොሺݔ
்

ܲିଵሺݐ|ݐሻሺ… ሻ ൑ ݊ቃ ൒ ቀ1 െ ݉݁ି௠
ଶ ቁ ሺ1 െ ݊݁ି௡

ଶሻ 

with 

ሻݐ|ݐොሺݔ ൌ ݐ|ݐොሺݔ  െ 1ሻ ൅
ሻݐሺܾߩ

2
√ܴ݊൫ߠ௣ െ 1൯ሺܲିଵ ൅  ்ܪሻିଵܪ்ܪߩ

ܲሺݐ|ݐሻ ൌ ሺܲିଵ ൅ ߠሻିଵሺܪ்ܪߩ ൅ ௣ߠܴߩ  ൅
ଶܴߩ

4
൫ߠ௣ െ 1൯

ଶ
ሺܲିଵܪ ൅  זሻ்ܪሻିଵܪ்ܪߩ
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Appendix C: Minero Simulation Code 

MineroSim.m 
 
%Noele Norris 
%Created: February 13, 2010 
%Last Modified: April 29, 2010 
%Simulate Coder-Decoder scheme in Minero's "Data Rate Theorem for 
%Stabilization Over Time-Varying Feedback Channels" 
  
%Currently:only implementing for fixed rate;  can only use with scalar 
%system though coding for vector system 
%Also look at Nair's "Stabilizability of Stochastic Linear Systems with 
%Finite Feedback Data Rates" 
  
  
%inputs to function: 
%    R : fixed rate 
%    tau : number of channel uses for single measurement 
%    p : rate of adaptive quantizer 
%    T : number of time steps 
%    montecarlo : # of iterations 
  
R = 3; 
tau = 5; 
p = 2; 
T = 100; 
montecarlo = 1; 
  
  
%System dynamics parameters 
%Scalar system: x_k+1 = lam*x_k + u_k + v_k; y_k = x_k + w_k 
%unstable system: |lambda| >= 1 
%   A : system dynamics matrix 
%   Q : system disturbance covariance 
%   H : measurement matrix 
%   sigv2 : measurement noise covariance 
%   P_orig : covariance of initial state x_0 
    [A, Q, H, sigv2, P_orig] = System_params(); 
    sigv2 = diag(sigv2); 
    sigv = sqrt(sigv2); 
     
%Result: Mean square error 
    error_norm = zeros(1, T+1); 
    error_norm_kf = zeros(1, T+1); 
    state_norm = zeros(1, T+1); 
  
%Kalman Riccati to be used in Kalman filter in coder 
%Computes estimate covariance P(k|k) and Kalman gain 
  
    HP_kalH = zeros(1, T+1); 
    Kal_gain = zeros(1, T+1); 
  
    P_kal = P_orig; 
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    for i=1:T+1 
        %HP_kalH_quant(i) = diag(H*P_kal*H'); 
         
        HP_kalH(i) = H^2*P_kal; 
        Kal_gain(i) = P_kal*H/(HP_kalH(i) + sigv2); 
        %P_kal - P_kal*H(j,:)'*H(j,:)*P_kal/(HP_kalH(j, i) + sigv2(j)); 
        P_kal = (1 - Kal_gain(i)*H)*P_kal; 
        
        P_kal = A^2*P_kal + Q;    %P(k+1|k) = AP(k|k)A^T + W(k) 
    end                                                                                   
     
     
%ITERATION 
for iter = 1:montecarlo 
     
    iter 
     
    P = P_orig; 
    %measurement noise 
    V = normrnd(0, sigv, 1, T+1); 
       
     
    %initialize realization of state 
    X = zeros(1, T+1); 
    mu_Xo = 0; 
    X(1) = mvnrnd(mu_Xo, P)'; %Initializing state; X0 ~ N(0, P) 
     
    %initialize realization of measurement 
    Y = zeros(1, T+1); 
    Z = zeros(1, T+1); %corresponding innovations 
    Y(1) = H*X(1) + V(1); 
     
    %initialize coder predictions (results of Kalman filter) 
     
    Xkal_hat = zeros(1, T+1); %coder's prediction of state hat{x}(k|k-1) 
    Xkal_updated = zeros(1, T+1); %coder's estimate of state hat{x}(k|k) 
     
    X_hat = zeros(1, T+1); %decoder's prediction of state 
    l = zeros(1, T+1); %scaling factor 
    l(1) = A^tau;  %initialization of scaling factor 
     
   
    for t = 1:T+1 
         
        %time update: realization of state and measurement with coder's 
        %Kalman filtering update 
        if t == 1 
            Xkal_hat(t) = 0; 
            X_hat(t) = 0; 
        else 
            u = -A*X_hat(t-1);   %control input w/o quantization 
            Xkal_hat(t) = A*Xkal_updated(t-1) + u; 
            X(t) = A*X(t-1)+u + mvnrnd(0, Q)'; 
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            Y(t) = H*X(t) + V(t); 
         
            %decoder's estimate 
            if mod(t-1, tau) == 0 
                %QUANTIZATION MEASUREMENT UPDATE 
                z = Xkal_updated(t-tau)-X_hat(t-tau); 
                [k,q] = Quantizer(R*tau, p, z/l(t+1-tau)); 
                X_hat(t) = pro(t)*A^(tau)*l(t+1-tau)*q; 
                l(t+1) =  max(l(1), k*l(t)*abs(A)^tau); 
            else 
                l(t+1) = l(t); 
                X_hat(t) = 0;  %choose control input to bring state to zero 
            end 
        end 
          
        %measurement update 
            %calculate innovation 
            Z(t) = Y(t) -H*Xkal_hat(t); 
            Xkal_updated(t) = Xkal_hat(t) + Kal_gain(t)*Z(t);  
    end 
     
     
     
    error_norm = error_norm + sum((X - X_hat).^2, 1); 
    error_norm_kf = error_norm_kf + sum((X-Xkal_updated).^2,1); 
    state_norm = state_norm + sum(X.^2, 1); 
end 
  
error_norm = sqrt(error_norm/montecarlo); 
error_norm_kf = sqrt(error_norm_kf/montecarlo); 
state_norm = sqrt(state_norm/montecarlo); 
  
time = 1:T; 
  
figure; 
plot(time, error_norm(1:T), '-kd','MarkerFaceColor', 'g', 'MarkerSize', 4); 
title(strcat('Rate = ', num2str(R), ' , prob =', num2str(prob), ' , a = ' , 
num2str(A) , ' , # of iterations = ' , num2str(montecarlo)));  
         

Quantizer.m 
 
%Noele Norris 
%Created: February 13, 2010 
%Last Modified: April 29, 2010 
%Simulate Coder-Decoder scheme in Minero's "Data Rate Theorem for 
%Stabilization Over Time-Varying Feedback Channels" 
  
%Currently:only implementing for fixed rate;  can only use with scalar 
%system though coding for vector system 
%Also look at Nair's "Stabilizability of Stochastic Linear Systems with 
%Finite Feedback Data Rates" 
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%inputs to function: 
%    R : fixed rate 
%    tau : number of channel uses for single measurement 
%    p : rate of adaptive quantizer 
%    T : number of time steps 
%    montecarlo : # of iterations 
  
R = 3; 
tau = 5; 
p = 2; 
T = 100; 
montecarlo = 1; 
  
  
%System dynamics parameters 
%Scalar system: x_k+1 = lam*x_k + u_k + v_k; y_k = x_k + w_k 
%unstable system: |lambda| >= 1 
%   A : system dynamics matrix 
%   Q : system disturbance covariance 
%   H : measurement matrix 
%   sigv2 : measurement noise covariance 
%   P_orig : covariance of initial state x_0 
    [A, Q, H, sigv2, P_orig] = System_params(); 
    sigv2 = diag(sigv2); 
    sigv = sqrt(sigv2); 
     
%Result: Mean square error 
    error_norm = zeros(1, T+1); 
    error_norm_kf = zeros(1, T+1); 
    state_norm = zeros(1, T+1); 
  
%Kalman Riccati to be used in Kalman filter in coder 
%Computes estimate covariance P(k|k) and Kalman gain 
  
    HP_kalH = zeros(1, T+1); 
    Kal_gain = zeros(1, T+1); 
  
    P_kal = P_orig; 
     
    for i=1:T+1 
        %HP_kalH_quant(i) = diag(H*P_kal*H'); 
         
        HP_kalH(i) = H^2*P_kal; 
        Kal_gain(i) = P_kal*H/(HP_kalH(i) + sigv2); 
        %P_kal - P_kal*H(j,:)'*H(j,:)*P_kal/(HP_kalH(j, i) + sigv2(j)); 
        P_kal = (1 - Kal_gain(i)*H)*P_kal; 
        
        P_kal = A^2*P_kal + Q;    %P(k+1|k) = AP(k|k)A^T + W(k) 
    end                                                                                   
     
     
%ITERATION 
for iter = 1:montecarlo 
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    iter 
     
    P = P_orig; 
    %measurement noise 
    V = normrnd(0, sigv, 1, T+1); 
       
     
    %initialize realization of state 
    X = zeros(1, T+1); 
    mu_Xo = 0; 
    X(1) = mvnrnd(mu_Xo, P)'; %Initializing state; X0 ~ N(0, P) 
     
    %initialize realization of measurement 
    Y = zeros(1, T+1); 
    Z = zeros(1, T+1); %corresponding innovations 
    Y(1) = H*X(1) + V(1); 
     
    %initialize coder predictions (results of Kalman filter) 
     
    Xkal_hat = zeros(1, T+1); %coder's prediction of state hat{x}(k|k-1) 
    Xkal_updated = zeros(1, T+1); %coder's estimate of state hat{x}(k|k) 
     
    X_hat = zeros(1, T+1); %decoder's prediction of state 
    l = zeros(1, T+1); %scaling factor 
    l(1) = A^tau;  %initialization of scaling factor 
     
   
    for t = 1:T+1 
         
        %time update: realization of state and measurement with coder's 
        %Kalman filtering update 
        if t == 1 
            Xkal_hat(t) = 0; 
            X_hat(t) = 0; 
        else 
            u = -A*X_hat(t-1);   %control input w/o quantization 
            Xkal_hat(t) = A*Xkal_updated(t-1) + u; 
            X(t) = A*X(t-1)+u + mvnrnd(0, Q)'; 
            Y(t) = H*X(t) + V(t); 
         
            %decoder's estimate 
            if mod(t-1, tau) == 0 
                %QUANTIZATION MEASUREMENT UPDATE 
                z = Xkal_updated(t-tau)-X_hat(t-tau); 
                [k,q] = Quantizer(R*tau, p, z/l(t+1-tau)); 
                X_hat(t) = pro(t)*A^(tau)*l(t+1-tau)*q; 
                l(t+1) =  max(l(1), k*l(t)*abs(A)^tau); 
            else 
                l(t+1) = l(t); 
                X_hat(t) = 0;  %choose control input to bring state to zero 
            end 
        end 
          
        %measurement update 
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            %calculate innovation 
            Z(t) = Y(t) -H*Xkal_hat(t); 
            Xkal_updated(t) = Xkal_hat(t) + Kal_gain(t)*Z(t);  
    end 
     
     
     
    error_norm = error_norm + sum((X - X_hat).^2, 1); 
    error_norm_kf = error_norm_kf + sum((X-Xkal_updated).^2,1); 
    state_norm = state_norm + sum(X.^2, 1); 
end 
  
error_norm = sqrt(error_norm/montecarlo); 
error_norm_kf = sqrt(error_norm_kf/montecarlo); 
state_norm = sqrt(state_norm/montecarlo); 
  
time = 1:T; 
  
figure; 
plot(time, error_norm(1:T), '-kd','MarkerFaceColor', 'g', 'MarkerSize', 4); 
title(strcat('Rate = ', num2str(R), ' , prob =', num2str(prob), ' , a = ' , 
num2str(A) , ' , # of iterations = ' , num2str(montecarlo)));  
         
            

Appendix D: Yuksel Simulation Code 

YukselSim.m 
 
%Noele Norris 
%Created: February 23, 2010 
%Modified: April 29, 2010 
%Simulation of Yuksel's update rules in "A Random Time Stochastic Drift 
%Result and Application to Stochastic Stabilization over Noisy Channels" 
  
  
%inputs to function: 
%    T : number of time steps 
%    montecarlo : # of iterations 
%    p : probability that signal is transmitted with no error over 1 
%       channel use 
%    R: rate 
T = 100; 
montecarlo = 1; 
count = 0;    %number of instances error exceeds choosen value 
  
%System dynamics parameters 
%Scalar system: x_t+1 = a*x_t + u_t + d_t 
%unstable system: |a| >= 1 
%Gaussian noise: 
   a = 2.5;           
   R = 3;              %rate of transmission 
   prob = 0.8;          %1 - prob = probability of erasure 
   Q = 1;              %variance of d_t 
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   P_orig = 1;         %variance of x_0   
   
   K = 2^R; 
   R_p = log2(K-1); 
    
    
  %Values for determining quantizer bin size (look at Thm 3.2) 
 d = 0.05*abs(a); 
 eta = 0.05*(K-1); 
  
%%% 
L = (K - 1 - eta)/abs(a); %threshold = 'L' in the paper 
L_p = 1; 
  
%Result: Mean square error 
    error_norm = zeros(1, T); 
     
    for iter = 1:montecarlo 
     
        iter 
         
        %initialize realization of state 
        X = zeros(1, T); 
         
        %vector of erasures 
        p = binornd(1, prob, [1 T]); 
         
        %initalization 
        del = zeros(1, T); %step size of adaptive quantizer 
        del(1) = 1;     
        X_hat = zeros(1, T); %decoder's prediction of state 
        X(1) = normrnd(0, P_orig); 
         
        for t = 2:T 
             
                Q_output = Quantizer(K-1, del(t-1), X(t-1)); 
                if abs(abs(Q_output)-(K-1)*del(t-1)/2) < .0005 
                    overflow = 1; 
                    X_hat(t-1) = 0; 
                else 
                    overflow = 0; 
                    X_hat(t-1) = p(t-1)*Q_output; 
                end          
                 
               
                X(t) = a*(X(t-1)-X_hat(t-1)) + mvnrnd(0, Q);  %state update, 
with control input driving state to zero 
                                 
                %determine change in step size 
                if (p(t-1)== 0 || overflow == 1) 
                   delMult = abs(a) + d; 
                elseif del(t-1) > L 
                    delMult = abs(a)/(2^R_p - eta); 
                else 
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                    delMult = 1; 
                end 
                del(t) = del(t-1)*delMult; 
        end 
         
        error_norm = error_norm + sum((X - X_hat).^2, 1); 
        if(max(X) >= 10^5) 
            count = count + 1; 
        end 
                
    end 
  
error_norm = sqrt(error_norm/montecarlo); 
  
time = 1:T; 
  
count 
figure; 
plot(time, error_norm(1:T), '-kd','MarkerFaceColor', 'g', 'MarkerSize', 4); 
title(strcat('Rate = ', num2str(R), ', Prob = ' , num2str(prob), ', a = ' , 
num2str(a), ', # of iterations = ' , num2str(montecarlo)));  
     
     

Quantizer.m 
 
function y = Quantizer(K, delta, x) 
  
%is written only for odd K 
  
if mod(K,2) == 0 
    error('K should be an odd positive integer'); 
end 
  
y = zeros(size(x)); 
  
for i = 1:length(x) 
    if abs(x(i)) >= K*delta/2 
        y(i) = sign(x(i))*(K)*delta/2; 
    else 
        index = floor(2*abs(x(i))/delta); 
        index_v2 = ceil(index/2); 
         
        y(i) = sign(x(i))*index_v2*delta; 
    end     
end 
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