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Abstract

Recent advancements in integrated small scale micro-electromechanical system
technology has created cheap, low power-consuming sensors that can be used in wireless sensor
networks, an increasingly popular technology because of its potentially diverse applications.
However, sensor networks have many constraints, such as limited bandwidth and power, which
have inspired a considerable amount of research for the development of energy efficient
detection and estimation algorithms using quantized observations. Though optimal estimation
algorithms using quantized innovations have been recently developed to tackle this problem,
bounds are not available on the error of the resulting optimal filter. Because tight bounds on the
estimation error are essential in determining the stabilizability of the corresponding closed loop
dynamical system and thus the applicability of a filter to a specific system, this project focuses
on developing error bounds from a close study of the filtering algorithms. Initial attempts were
unable to show that the estimation error of a system using quantized innovations followed a
Ricatti recursion. Thus, a number of different algorithms and coder-estimator pairs were then
analyzed to determine performance and to better understand means of proving stabilizability.
Our primary goal is to have a better understanding of the evolution of the lower and upper
bounds of estimation errors under measurement quantization, so that filters with verifiable
performance specifications can be systematically designed for particular dynamical systems.
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Introduction

Wireless sensor networks (WSNs) are networks of distributed, independent devices that
monitor various environments or objects and wirelessly transmit measurements to a central base
that can evaluate the information. They have become an increasingly popular technology and
active field of interest not only because of the many interdisciplinary advancements that are
making efficient and inexpensive ones possible but also because of their potential applications in
diverse areas. The advancements made in integrated small-scale micro-electromechanical
systems that have low power consumption pave the way for smart environments, "physical
world[s] that [are] richly and invisibly interwoven with sensors, actuators, displays, and
computational elements, embedded seamlessly in the everyday objects of our lives, and
connected through a continuous network."' In particular, WSNs can be used to monitor the
ecosystem of a Redwood tree or monitor material responses to various vibrations and stresses,’
to track a vehicle or survey traffic flow, and even to track chemicals or make medical
diagnostics.

WSNs have many advantages. As the sensors composing a network are usually
distributed in large quantities, there is great robustness to sensor failure because of redundancies.
There are also possible improvements in signal-to-noise ratios because of the network’s ability to
reduce the distance between the sensors and their targets. Finally, the distribution of sensors
across an environment creates the possibility of ‘multi-hopping’ transmissions over multiple
nodes to a central base, which reduces required energy. However, the very benefits of WSNs
create a number of challenges. Not only does the large distribution of sensors create design
challenges because of the necessity of controlling a large number of independent devices, the
small sensors have limited energy and communication capabilities as well as a limited ability to
both process and store data.’

Thus, a great amount of research is currently being conducted to address both the various
complexities and constraints of WSNs. One area of research tackles the particular challenge of
energy and communication costs by considering the specific problem of tracking a noisy
dynamical system (such as the position of a moving object) using discretized measurements from
a number of sensors assuming that, at one measurement step, one sensor transmits only a
constrained number of bits of information.

While the Kalman filter is the optimal estimator for a Gaussian system, constraining the
measurements to a few bits creates nonlinearities that skew the probability distribution of the
system so that the Gaussian assumption can no longer be assumed. Thus, the focus of this
research was to design and analyze new methods of filtering for systems using quantized
measurements. After analyzing an optimal particle filter designed by Sukhavasi ([3]) that uses
the sign-of-innovation as the quantized measurement, various techniques were used to try to
show that a linear dynamic system under sign-of-innovation measurements can be sufficiently
tracked.

To do this, we first attempted to derive a recursive state estimation that used a
probabilistic set-membership description of uncertainty that probabilistically bounds the noises

! Mark Weiser quoted in [1]  D. Cook and S. Das, Smart Environments : Technology, Protocols and
Applications. New York: Wiley-Interscience, 2004.

2 These two applications are discussed in detail in [2] F. Zhao and L. J. Guibas, Wireless Sensor Networks :
An Information Processing Approach. Greensboro: Morgan Kaufmann, 2004.

3 Both advantages and challenges taken from [2] Ibid.



of the system in ellipsoids. We were hoping that this technique would show that the estimation
error under quantized innovations evolved under a Ricatti-like recursion—similar to that of a
Kalman filter. However, as this does not seem to be the case and we were unable to use this
technique to prove estimation error bounds, we then looked to analyze and develop new
techniques for creating coder-estimator pairs and proving specific performance measures. After
studying and simulating algorithms and techniques developed by others, we have begun studying
various notions of stochastic stability to see if we can use the theory of Markov chains to prove
performance specifications for Sukhavasi’s filter.



Discussion and Results

Developing an Estimator for a Wireless Sensor Network

Quantizing the Measurement using the Sign-of-Innovation

The Kalman filter was developed in the 1960s and is a ubiquitous method of state
estimation for a linear dynamic system in which both the noise and the conditional probability
distributions of the states given the measurements are Gaussian. It is a recursive, minimum
mean-square-error estimator that has the form of a linear observer, in which the observer gains
are computed from error covariance matrices that are in turn calculated from a Riccati recursion
equation (a type of difference equation). Kalman filters are popular because, not only are they
optimal for Gaussian systems, they are computationally efficient and easy to implement.
However, the Kalman filter cannot be used to track systems using severely constrained wireless
sensor networks for a number of reasons. For one, under measurement quantization, the required
Gaussian assumption no longer holds. More importantly, because the sensors are distributed,
there is no central observer that has access to all of the full measurements so not even an
observer can calculate the Kalman filter estimate—as has been done in other work on
communication constrained control systems.

However, we can still use some of the principles used to develop the Kalman filter for a
WSN. The Kalman filter is based on what is called the innovations process, which is the process
of the error—the difference between the most current measurement and the controller’s estimate
of what that measurement should have been given all previous measurements. The innovations
process is a white process and can be “regarded as the ‘new information’ or the ‘innovation’ in
the observation after we remove all we can say ... about it from knowledge of past
observations.™ 1In [5], Ribeiro et al. used this concept for WSNis by assuming that all the sensors
can receive the controller’s estimate information (thus, assuming that it requires less energy to
receive than to transmit), so that, in the case of using a communication channel with a one bit
rate, the one bit of information that is transmitted from the sensor is the sign of the innovation
(SOI) from its new measurement.

However, using the SOI, Ribeiro et al. incorrectly assumed that the conditional
probability density function of the state given the quantized measurement approximately follows
a normal distribution and, thus, proceeded to develop a modified Kalman filter (the SOI-KF)
with a corresponding modified Riccati recursion which varies from the original Kalman filter
Riccati only by a 2/m factor in front of the gain term, which accounts for the degree of
quantization of the measurement.

Though Ribeiro et al. presented simulations of a couple of systems in which the SOI-KF
seems to work, later work done by Sukhavasi has shown that their filter fails and has diverging
error performance under many different systems.

*From [4] T.Kailath, et al., Linear Estimation. Upper Saddle River, NJ: Prentice Hall, 2000.

> Sukhavasi did this using a general particle filter as explained in his paper [6] R. T. Sukhavasi and B. Hassibi,
"Particle filtering for Quantized Innovations," presented at the Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2009.
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The Kalman-Like Particle Filter

As a result, Sukhavasi developed another filter presented in [3], called the Kalman-Like
Particle Filter (KLPF). The particle filter is used when the assumptions of the Kalman filter
cannot be met. Instead of assuming a normal distribution, the particle filter represents a belief of
a state in a nonparametric form by a set of randomly selected state samples. Each sample is
called a particle and is essentially a single hypothesis about what the true state may be. An
‘importance factor’ gives a particular weight to each sample, representing using Bayes’ rule the
probability of the state given the measurements. The weights are then used in a resampling
process that has a greater probability of keeping particles with more weight.

Though optimal in the case of non-linear and non-Gaussian systems, particle filters can
be very computationally expensive because they can require a huge number of particles.
However, Sukhavasi developed a variant of the particle filter that greatly reduced the number of
particles needed to optimally run the filter by breaking the probability model of the system into
two parts—one that could be described as a Gaussian distribution and the other which had to be
evolved using a particle filter. He noted that the original state-space model (without the
measurement quantization) follows the Gaussian assumptions necessary to use a Kalman filter,
while the one-bit quantization of the measurements creates nonlinearities that must be addressed
by other estimation techniques. Thus, each particle addresses the skewed probability of the
original measurement given its quantization, and the Kalman filter evolves the state estimate
using the various guesses of the original (un-quantized) measurement. Therefore, this filter
effectively runs a Kalman filter on each particle, where each particle represents a possible value
of the original measurement based on the quantized measurement that is received.

Simulating the KLPF with the SOI-KF

The KLPF has much better error performance than the SOI-KF developed in [5], but,
oddly enough, in a number of simulations, the error performance of the KLPF seemed to track
the Riccati recursion developed for the SOI-KF. Thus, we performed a large number of
simulations on the KLPF, which varied the dynamics of the systems being analyzed, the number
of particles, etc., to see how the error evolves in relation to the Ricatti recursion used in [5]. It
provided great insight on the effects of quantization on the estimation of the system. For
example, one simulation showed that the error of the system is dependent on the bit sequence of
measurements received; the plot below shows that the error is larger when the system continually
overestimates or underestimates the state, thus returning more of one bit than the other. Finally,
a number of other simulations (two are shown in KLPF Simulations, 21) were used to determine
that the SOI-KF Riccati recursion did not in fact characterize the performance of the optimal
filter in any way and could not serve as any kind of bound for the error of the KLPF.
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Figure 1: KLPF Simulation Plot. Plot of the evolution of the error of a particular dynamical system
averaged over 50,000 iterations, each using a particle filter with 1000 particles

The Probabilistic Set-Membership Description

With the realization that there was no meaningful relationship between the SOI-KF
Riccati and the evolution of the error of the KLPF, work shifted to trying to prove performance
through a careful analysis of the original equations that described the system dynamics and
quantized measurement updates. The performance of the KLPF could be verified if it could be
shown that a marginally unstable system could be tracked with sufficiently bounded error when
using only a sequence of bits, each representing the sign of the innovation.

To do this, an approach was tried that was inspired by work done by Schweppe and then
Bertsekas in the late 60s ([7], [8]). Schweppe and Bertsekas derived recursive state estimations
under a ‘set-membership description of uncertainty.” The set-membership describes “input
disturbances and observation errors [when they] are unknown except for the fact that they belong
to given bounded sets.” [8] The sets they used were ellipsoids. They showed that intersecting
ellipsoids, representing the bounds on the state both from the understanding of the state’s initial
position and state evolution as well as from the measurement update, will result in an ellipsoid
bounding the current state. This recursive process is not the best filter because the center of the
resulting ellipsoid cannot be shown to be the optimal estimate of the state. However, if the
ellipsoids remain bounded, it equivalently bounds the error in the estimate of the state of the
system.

However, the difference with the system at hand and the one used by Schweppe and
Berteskas is that, here, the uncertainties are not bounded but are instead Gaussian. This created
new difficulties because, unlike in the set-membership approach, the system can be ‘unlucky’
and get hit with large values of noise, though this, of course, happens with low probability.
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Thus, in this system, the noise could only be bounded probabilistically within ellipsoids, which
is equivalent to defining the variance of the noise using Gaussian confidence intervals.

Using Chernoff bounding techniques, a very similar recursive estimation process was
developed for the probabilistic ellipsoids (shown in The Probabilistic Set-Membership Description,
22). With a recursion process at-hand, the goal became to show that, at each time step, an
exponentially decaying probability bound held for the error measurement, which would then
prove that the error covariance matrix remained bounded for all time. Using the state-dynamics
equations, the probability bounds were evolved using the set-membership techniques to sum and
intersect ellipsoids. Another main difference was that, instead of intersecting two ellipsoids to
combine the bounds on the state based on its possible evolution from its initial position as well as
from its measurement, in this case, the state-evolution ellipsoid could only be intersected with a
half-plane that corresponded to the measurement bit received.

While this approach did give a method for evolving the probability bounds through time,
the probability bound obtained at the end of a single recursion step was not tight enough to prove
bounded error. Instead it had a very counterintuitive result, showing that the best estimate was
obtained simply by evolving the mean estimate of the initial state and never using any of the
quantized measurements. Thus, while simulations showed that the KLPF had bounded error, this
technique could not verify it.

Literature Review

Because the probabilistic set-membership approach cannot be used to develop a tight
recursion for the system, it has neither shown that the KLPF can be used to track a system nor
that it cannot be used.  Therefore, still needing to develop techniques to prove performance for
the KPLF, we analyzed previous research that had instead created various coder-estimator pairs
to prove stabilizability for closed-loop control systems under communication constraints. One
result in this area of work on networked control systems that is especially applicable to our
system 1is called the data-rate theorem and is inspired by Shannon’s source coding theorem. It
states that, to stabilize a scalar system, the rate of the communication channel must be greater
than the intrinsic entropy rate of the system, which is the logarithm of the magnitude of its
unstable pole:

R > log, ||
Quite simply, this means that, to keep a bound on the estimation of the state, the rate used to
communicate measurements for the estimation must be larger than the rate at which the system is
growing.

We decided to analyze more closely two very different papers, each of which derives a
specific data-rate theorem result for a particular system and communication channel. One is
Minero’s “Data Rate Theorem for Stabilization over Time-Varying Feedback Channels.”[9] The
other is Yuksel’s “A Random Time Stochastic Drift Result and Application to Stochastic
Stabilization over Noisy Channels.”[10] The systems analyzed in these papers are very different
from our system because their goal is not only to estimate the state but also to control it. The
assumption these papers make that allows them to close the loop of the system with a controller
is that the information pattern—the observer’s available inputs—of the system includes all full
(un-quantized) measurements. While this is unlike the KLPF’s observer, which only has access
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to the current measurement and the estimate from all passed quantized measurements, we hoped
that the techniques presented would also be applicable to the KLPF.

Minero’s Data-Rate Theorem

Minero’s formulation is for a system with Gaussian disturbances and uncertainties under
a time-varying feedback channel. While Minero assumes that all bits sent over the channel are
correctly received by the decoder without error, the rate at which the channel sends information
changes randomly over time. However, because we might expect some correlation between the
rates of consecutive time steps, Minero proposes a scenario in which the rate “remains constant
in blocks of n consecutive channel uses and then varies according to an independent and
identically distributed process across blocks.” [9]

His result is that, for this particular system, the necessary and sufficient condition for

stabilizability is that
22\"
£|(3=)

where n is again the length of the channel block in which the rate remains constant, R is the
random variable rate, and A is the eigenvalue (assumed to be unstable) of the scalar system.

The main differences with this result and the data-rate theorem for the scalar fixed-rate,
non-erasure system are that now an expectation must be taken because R is a random variable.
And, most importantly, that stabilizability depends on n. As the function f(x) = x™ is convex
forn > 1, by Jensen’s inequality ([11], Theorem 2.6.2)

(o< | 4]

This means that, with n > 1, the necessary condition for stabilizability becomes harder to ensure.
This makes intuitive sense if we consider the scenario in which n = 1000 and there is a non-zero
probability of having a rate of zero over a channel block.

Minero proves the necessity of this condition using an entropy-power inequality, which is
a standard property used in information theory (See [11], Theorem 17.7.3). However, we were
most interested in the paper’s technique of proving sufficiency, which is an explicit construction
of a quantizer and coder-decoder pair. To prove sufficiency, Minero relies on the property of an
adaptive, exponential quantizer that has average quantization error that diminishes like the
inverse square of the number of levels, 2%', where v is the number of bits that can be used to
partition the region.

<1

| 2-bit quantizer
-1 0 1
| | | 3-bit quantizer
=T —1 0 1 p
| | | | | | | | | 4-bit quantizer

Figure 2: Minero’s quantizer is an adaptive, exponential quantizer. Picture taken from [12].
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He also relies on the ability to use multiple time steps to transmit information about a single
measurement so that the decoder’s information about the measurement can be refined as much as
necessary. This is done by using a fixed value T number of channel blocks (each with n channel
uses in which the rate R remains constant) to send information about one measurement.
Therefore, every nt steps (denoted by iterator j), the decoder receives the measurement update
and updates the estimator using V; bits, where
V= R + nRjryq + -+ MR y1)r-1

Hence, there is a tradeoff in selecting t: the smaller 7 is, the more measurements are transmitted
to the decoder with less delay, and the greater 1 is, the more the decoder can refine the value of a
single measurement.

Simulations of Minero’s Algorithm

While Minero’s results did prove stabilizability for the system, we wanted to better
understand the performance of the quantizer and encoder-decoder pair, so we simulated their
algorithm on a number of various systems.

These simulations show the weakness of the algorithm’s sufficiency proof in its reliance
that 7 be “sufficiently large.” As seen in the simulation below, because increasing T increases
the delay, the errors increase in choosing t larger than absolutely necessary. Note, that in all
simulations we have chosen Prob(R; = 3) = 1, so that the rate is not actually time-varying. (More
simulations of Minero’s algorithms are found in Minero and Yuksel Simulations, 23.)
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Minero Sim: Rate =3, prob =1, a =2.5, # of iterations =1
4 T T T T T T T T T

>

25F

Magnitude of Error
N
T

0.5F

0 1 L 1 1 L 1 L 1 1
0 10 20 30 40 50 60 70 80 90 100

Time step

Minero Sim: Rate =3, prob =1, a =2.5, # of iterations =1
4000 > T T T T T T T T

3500 - -

3000

2500

2000

1500

Magnitude of Error

1000

500

0 10 20 30 40 50 60 70 80 90 100
Time step

Figure 3: Minero Simulations. In the top simulation, T = 1. In the bottom simulation, T =5.



Yuksel's Stochastic Drift Result

Because Minero’s approaches used rather standard control-theoretic and information-
theoretic techniques and also did not account for any possible channel erasures, we also analyzed
Yuksel’s result in [10] for a stochastic communication channel that uses newer and what seem to
be very powerful results from the theory of Markov chains on general spaces. Using notions of
stochastic stability for Markov chains, Yuksel constructs a quantizer and encoder-decoder pair
for estimating a state with measurements from a rate-constrained erasure channel and proves the
filter’s stabilizability.

Like Minero’s work, Yuksel’s formulation is for a scalar dynamical system with unstable
mode a, Gaussian noise disturbance, and Gaussian initial condition. While constraining the data
rate to R, Yuksel also allows for erasures of the form:

Plpe=1 =p
where 0 <p <1 and p; =1 is the event that there is no erasure and that the signal is
transmitted with no error at time step t.
Yuksel’s main result is that the necessary and sufficient condition for stabilizability of the
plant is that
2 p
a <1 - p + m) <1
Notice that the result again follows the data-rate theorem: for p = 1, it reduces to the theorem
and, for p = 0, the eigenvalue a must be stable.

To prove the sufficiency of this condition, Yuksel uses the language and techniques of
Meyn and Tweedie [13]. (An overview of Markov chains and these techniques is presented
below in Markov Chains and Various Notions of Stochastic Stability, 17.) The central feature of
the algorithm that Yuksel develops is a random, adaptive quantizer that allows Yuksel to use
Markov chain theory to show that the error will continually return to a bounded region (thus, that
the bounded region is a recurrent set of the Markov chain describing the evolution of the
estimation error). Yuksel’s quantizer is actually incredibly simple: he uses a uniform quantizer
with a bin size that is updated at each time step. Yet, it is this update that is the key to ensuring
stabilizability; the update algorithm is chosen to ensure that the joint Markov process is recurrent
with a unique invariant distribution.
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Simulation of Yuksel’'s Algorithm

While Yuksel does prove stabilizability of his system, the biggest problem with it is that
it does no more than that. Thus, even systems with values that well satisfy the sufficiency
condition can produce very large estimation errors at particular time steps. An example
simulation is shown below. (For more simulations, look at Minero and Yuksel Simulations, 23.)

Yuksel Sim: Rate =2, Prob =0.9, a =1.5, # of iterations =1
800 T T o T T T T T T T

700

600

500

400

Magnitude of Error

300

200

100

0 10 20 30 40 50 60 70 80 90 100
Time step

Figure 4: Yuksel Simulation. Although the unstable mode only has a value of 1.5 and there is only a 0.1 probability
of erasure, because the rate has been constrained to two bits, there are particular time instances with high estimation
error.

However, although the algorithm is not of practical use, Yuksel’s result remains very
important because it suggests new techniques for approaching the problem. Yuksel’s work
shows that the general theory of Markov chains can be used as a powerful tool for understanding
and deriving stochastic control systems.
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Markov Chains and Various Notions of Stochastic Stability

The last portion of our work has focused on better understanding the techniques used by
Yuksel in [10] that are presented in Meyn and Tweedie [13]. Here is given a very brief
introduction to Markov chains and some of the results and ideas presented in [13] that are most
important to our current research.

First of all, a homogenous Markov chain is a particular type of random process that obeys
the following very ‘nice,” useful properties:

(1) Memoryless (Markov) property: The future state of the chain depends only
on the current state of the chain and not on all its past states. Or more
formally, the “conditional distribution of X,,+; given (X, ..., X;) depends only
on X,.” ([14])

(2) Time homogeneity: The conditional probability of a state given a particular
value for the current state is the same for all time.

Examples of Markov chains include a random walk, a queuing system, and, of course, the state-
space dynamical system that we have been analyzing. While the theory of Markov chains has
existed since Markov’s pioneering work in the early 1900s, most of the work has focused on
chains in countable spaces, that is, under the assumption that the state X can only take values
from a countable set. Yet, this is clearly not the case for the Markov chain of the estimation
error in our system. However, beginning in the 1950s with theories derived by Harris, it was
shown that similar results could also be developed for chains on more general spaces. The
theory of Markov chains on general spaces relies primarily on measure theory; instead of
analyzing a collection of particular values of a countable set, we analyze sets of nonzero
measure.

A Markov chain for a general space is defined by its transition probability kernel P(x, A),
where, as defined by Meyn & Tweedie,

(1) For each A € B(X), P(-,A) is a non-negative measurable function on X

and

(i1) For each x € X, P(x, -) is a probability measure on B(X)

where B(X) is a “countably generated” sigma field on X. A time-homogenous Markov chain @
then satisfies the following equation for each n:

P, (Py € Ay, @1 EAy, ..., Dy EAY) = f 1w(dyo)P (Yo, dy,) .. P(Yn-1,Arn)
Yo€Ag Yn-1€4An—1
where L is the initial distribution of the chain. (From [13], pages 59-61)

Meyn and Tweedie’s rigorous presentation of Markov chains is based on developing
notions of stochastic stability. They write, “We will systematically develop a series of
increasingly strong levels of communication and recurrence behavior within the state space of a
Markov chain, which provide one unified framework within which we can discuss stability.”
([13], page 14) This communication that they refer to is the ability for the chain to reach, at
some point in time, a set A of nonzero measure. This communication is described by requiring
that the hitting time of set A is less than infinity:

7 i=inf(n >1: &, € 4)
chain communicates with A: 7, < o0

In this framework, the goal of a controller is to ensure that the set A, in which the

estimation error is bounded, is continually visited by the Markov chain that describes the
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process. The weakest notion of stability in Meyn and Tweedie’s approach is thus that of -
irreducibility, which is the property that sets of nonzero measure (as measured by the function y)
can be reached by the chain from every possible starting point:
Vx€eEX,Y(A)>0 > P(14< ©)> 0

But, we want to ensure that not only is the set A visited, but that it is visited infinitely
often, which is the property of recurrence and, because of the property of irreducible Markov
chains, is equivalent to requiring that the set A is reached in finite time:

Vx EX,P(A) >0 - E fr4] < o

The strongest notion of stability that Meyn and Tweedie develop is ergodicity, which
requires that the chain have “nice” limiting behavior in which its distribution converges to a
limiting invariant distribution:

m(A) = fn(dx)P(x,A)

Using these notions of stability, the goal of our work is then to show that the Markov
chain described by the estimation error of the KLPF is recurrent with some invariant probability
distribution. If we can show this, we will have equivalently shown that the set in which the
estimation error remains small is continually visited and, therefore, that the KLPF can
successfully track a given state under specified conditions.
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Conclusions

Although the Kalman-like Particle Filter (KLPF) exploits both the tractability of the
Kalman filter and the optimality of particle filters and simulations have also shown good
performance, we have still been unable to rigorously prove that it follows any performance
specifications. However, in our attempts to prove stabilizability and other performance measures
for the KLPF, we have determined that the optimal estimation error of a state under quantized
measurements does not follow a Riccati-like recursion. We have also studied a number of results
for control under communication constraints that have given us a toolbox of techniques and
algorithms for approaching these problems.

While many of these techniques are founded on combining and modifying ideas and
results from traditional information and control theories, Yuksel’s approach using Markov chains
in [10] relies primarily on analyzing the probabilistic nature of the control system. This very
general technique that uses the theory of stochastic stability offers great potential, and further
work needs to be done to use these types of techniques to prove the performance of the KLPF.

As theoretical work progresses and derives algorithms which provably satisfy stricter
error bounds, out hope is that filters with verifiable performance specifications can be
systematically designed for particular wireless sensors networks. This will allow us to develop
energy-efficient networks that can monitor large multi-agent systems with possibly vast spatial
distributions.
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Methods

Problem Formulation and Sign of Innovations

The state-space system being measured can be summarized mathematically as
x(n+1) =Ax(n) + w(n)
y(n) = Hx(n) + v(n)
where x(n) is the state evolving under a constant matrix A with additive Gaussian noise
w(n)~N(0,Q) and y(n) is the measurement of the state also under additive Gaussian noise,
v(n)~N(0,R). While the original Kalman filter optimally estimates the filter by recursively
using the measurements y;., , the goal of this research is to show that the system can be tracked
under much harsher conditions—when the estimator only receives a bit sequence b;., from the
sensors, where
b(n) = sign[y(n) — y(n|n —1)]

the sign of the innovation of the measurement (the difference in the measurement and the
estimate of the measurement given all previous measurements).

Our primary goal is to devise a filter under these conditions which ensures that the error
of the system remains bounded for all time, or that

suprey E [(x(k) - f(k))z] <

where C is some constant.

The KLPF

In [3], Sukhavasi shows that the probability distribution of the system is as follows:

Probability distribution of state conditioned on quantized measurement

2(n)[(Bin = biin) ~ N(0, Ra) + Ry (n)(Ry(0)) 7! (Vi | Bri = b1.0))
I l |

Meotmal distribution Truncated normal distribution

Ry(n) = [ly(n)|[*
Ray(n) =< z(n),y(n) >

Ra = Ra(n) — Ruy(n)(Ry(n)) ™' Rya(n)

Figure 5: Probability distribution of state for KI.PF
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Thus, in the KLPF, the truncated normal distribution of yy., | by.y is estimated using a
particle filter, while a Kalman filter evolves x(n)| yi., for each particle {y'.; }i=1, .. N

KLPF Simulations

Using Monte Carlo simulations of the KLPF with 50,000 iterations each with 3,000
particles, systems were found in which the KLPF Riccati was above and below the SOI-KF
Riccati. Therefore, it was concluded that the SOI-KF Riccati has no significance and does not
characterize or bound the error of the optimal filter. (For more detailed descriptions of the KLPF
and the SOI-KF refer to [3] and [5], respectively.):

e System 5: In system 5, the KLPF error is higher than that assumed by the SOI-KF

Riccati.
™ 13
11 45 4 2 01 0
R=10r=014= [ *|;0= sH=[10];P = ( )
0 1197 [ , [101; Py 0 .01
- T
2
2 Levels of Guantization, 50000 iterations (KLPF)
10 T T
95
—*— Full info Kalman
—=— 2 level-Riccati
—"— 3000 Particles (KLPF)
' —*— State norm _
“ T GAUSEIAN
B
55|

asf T =

7 | | | | | | | |
3 10 13 20 23 30 33 40 43 3

Time Btep

Figure 6: Simulation of KLPF in which error is higher than the SOI-KF Ricatti.
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System 12: However, in system 12, the KLPF has lower error than the SOI-KF.

®
(095 1 1 0 07
| 0 09 7 1 0 |
R=25A4=l0 0 06 2 0 ;Q=2xI;H=[10102];P,= .01I
[o 0 0 07 0.8J
0 O 0 0 05
& Levels of Quantization, 50000 iterations (KLPF)
!

240 |

Error

—*—Full info Kalman

—*— 2 level-Riccati
. S R T T R PRTPN . 273000 Particles (KLPF)
f : : : : —+— State narm

210
T GAUSSIAN W
B P
s | | | | | |
14 20 25 an 30 40 45

Time Step
Figure 7: Simulation of KLPF in which error is lower than the SOI-KF Ricatti

The Probabilistic Set-Membership Description

If, for a multidimensional random variable X,

m
PXTQ™'X >m) < ae 2
then its covariance matrix is finite (Appendix A.1). Thus, we want to recursively show that, at
each time step, this exponentially decaying probability bound held for X = x(n) — x(n|n).
The recursion evolved with the following initial conditions, which were proven using

Chernoff bounding techniques on the original Gaussian noise assumptions:
me k _m
P[xT(0)x(0) = m] < (T)fe_T
n
P[v? >no?] <2e2

ek _gq
Pww 2 q] < ()2e 2
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where now, without loss of generality, x(0) ~ N(O, I) is the initial position of the k-dimensional
state, v ~ N(0, o,°) is the measurement noise, and w ~ N(0,]) is the state evolution noise. Using
the state-dynamics equations, the probability bounds on the state were evolved using the set-
membership techniques to sum and intersect ellipsoids. The main difference is that instead of
intersecting two ellipsoids to combine the bounds on the state based on its possible evolution
from its initial position as well as from its measurement, the state-evolution ellipsoid was
intersected with a half-plane that corresponded to the measurement bit, b(n), received.
In this manner (Appendix A.2), starting with a probability bound

m

K
P[(x(t) = 2Ctlt — )TP1(®)(x(®) — 2(tIt — 1)) = m] < am2e™Z
after one step of the measurement update recursion the probability bound was
~ k m n
PI(X — bzvn)TP~Y()(X — bzvn) = n] <1 — (1 — amze 2)(1 — 27 2)
where
X=x(t)—x(t|t—1)

6, — 1
z=px/§—(” )PpHT

2
p _p__ PHTHP
P~ p 14+ HPHT
_ 6, — 1)
P=p, (9 + pRO, + pZR%HPpHT>
HPHT
= mouT ™ ="

But here there are some problems. The ellipsoidal bound on the state x(t|t) has a
moving center; the center depends on n, which is simply the free variable that describes the
probabilistically decaying bound. To prove a finite covariance, the center of the ellipsoid must
be fixed. However, when trying to fix the center by any arbitrary shift corresponding to the bit
received, the resulting covariance matrix is no smaller than if the estimate had not been updated
based on the new measurement and was simply kept at the center at X(t|t — 1). Thus, this
recursion does not track the system. Thus, this current analysis cannot be used to prove bounded
estimation error because the bounds it creates are not tight enough to show that the error
covariance remains finite.

Minero and Yuksel Simulations

Presented below are results from a few simulations of both Minero’s and Yuksel’s
algorithms. The code used to run the simulations is presented in Appendix C: Minero Simulation
Code, 30 and Appendix D: Yuksel Simulation Code, 35.

To compare the algorithms, the same parameter values have been used for both.
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Comparison of Minero’s and Yuksel’s Algorithm with no Erasures
Here results are averaged over 1000 iterations.

Minero Sim: Rate =3, a =2.5, # of iterations =1000
18 T T T T T T T

16 - -

14+ .

12 - -

oo .,‘0’00 o 6000099799 R R o9 ° oo
o

Magnitude of Average Error

< 0900606004099 000469090000 306000000008 000400%0669005%

0 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Time step

Yuksel Sim: Rate =3, Prob =1, a =2.5, # of iterations =1000
300 [~ 1 1 1 1 1 1 1 1 1 ]

250

200

150

100

Magnitude of Average Error

50

Time Step

Figure 8: Comparison of Minero and Yuksel with no Erasures. In the top simulation of Minero’s algorithm, the
minimum sufficient T of value two is used.
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Comparision of Yuksel’s and Minero’s Algorithm with no Erasures: No Averaging

In the graphs below, only a single random iteration of the simulation was run. Thus, the
averaging of Minero’s errors much more clearly shows when each measurement update was
made (at every other time step, because of the choice of T = 2). For Yuksel’s simulation, notice
that times of high estimation error occur infrequently over a single iteration.

Minero Sim: Rate =3, prob =1, a =2.5, # of iterations =1
25 T T T T T T T T T

20+ :

15+ B

Magnitute of Error

O 1 L L 1 1 L 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time step

Yuksel Sim: Rate =3, Prob =1, a =2.5, # of iterations =1
12 T T T T T T T T T

Magnitude of Error

Time step

Figure 9: Comparison of Minero and Yuksel with no Erasures with no averaging. In the top simulation of Minero’s
algorithm, the minimum sufficient 7 of value two is used.
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Comparing the effects of erasures on Yuksel’s simulation
Below are two graphs showing results from simulating Yuksel with a 0.2 probability of erasure. The first
graph averages over 1000 iterations, while the second graph shows the outcome of a single iteration.

Yuksel Sim: Rate =3, Prob =0.8, a =2.5, # of iterations =1000
700 T T T T T T T T T

600

500

400

300

Magnitude of Average Error

200

100

Time step

Yuksel Sim: Rate =3, Prob =0.8, a =2.5, # of iterations =1
8 T T T T T T T T T

o

Average Error
N
T
L

0 10 20 30 40 50 60 70 80 90 100
Time step

Figure 10: Yuksel simulation with 0.2 probability of erasure.
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Appendices

Appendix A: Probabilistic Set-Membership Description Approach Lemma

If, for a multidimensional random variable X,
P(xTQ™'X >a) < Ce™@
then its covariance matrix is finite.
This can be shown by writing Q"' as a diagonal matrix: Since Q™' is a real, symmetric
matrix, it can be diagonalized by an orthogonal matrix A (ATA = AA™=1).
ATQ™'A = D,where D is a diagonal matrix
Q71 =107 = (AAT)Q(AAT) = ADAT
- P(xTADATx > a) < Ce™@
y= ATx
- P(yTDy = a) < Ce™®@
Since D is the diagonalization of a positive definite matrix, its eigenvalues are positive.
Thus, fori=1, ..., n,
P(Ciyi = a) < Ce ¢
We have thus reduced the problem to proving this for the one-dimensional case---that the
variance of each yj is finite, as
E(xx™) = QE(yy")Q"
For the one-dimensional case, we have:
P(EE > r2) < ce
=P(x—u = or)+ Plx—u < —or)
—>F,(u—or)+ 1—F(u+or)<Ce™
Using this, we can easily show that [(x — u)?p(x)dx is bounded. m

Appendix B: Proabilistic Set-Membership Description Approach Recursion Attempt

Optimizing measurement update ellipsoid when y is scalar.
Initial conditions:
m
P[(x(t) = ()P~ () (x(t) — 2(t)) = m] <ae”2
y() = Hx(t) + v(t)
P[Ivl > \/nR] <ne z
Thus,
m
P[(Hx(t) — HR()T(HP(t)HT) Y (Hx(t) — HX(t) = m] < ae™ 2
(1) scalar:
2
(Hx(t) — HZ(1)) m
>1-— 2
ROl
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Measurement:
= b=1:
y() > 9(t) - Hx(t) > 9(t) — v(b)
P[Hx(t) —y(t) > -v(t)] =1
P[|U| > \/ﬁ] < ne_%

n
P[—VnR <v < VnR] >1—ne 2
A;NA, » A3 »— P(A3) =2 P(A; N Ay)
z > —v(t) & —VnR < v < VnR implies that:
z > —VnR
n
P[Hx(t) > y(t) — \/nR] >1—ne 2
= b=-1:
y(©) < (@) - Hx(t) < §(¢) —v(t)
P[Hx(t) —y(t) < —v(®)] =1
Similarly,we can conclude for b = —1:
_n
P[Hx(t) < y() + VnR] >1—ne 2
Thus, the general observation is:
(2) P[bHx(t) > by(t) — VnR| =1 —ne™2
Combining (1) and (2):
(1) —MHP(t)Ht < bHx(t) — bHX(t) < MHP(t)H*
(2) by(t) — bHX(t) — VnR < bHx(t) — bHX(t)
Measurement is useful if:
by(t) — bHx(t) —VnR > —/mHP(t)H!
Assume that we are filtering: y(t) = HX(t)
Thus, the measurement is useful if: VvnR < ymHP(t)HT
m R
2%~ HPOHT
Since P(t|t — 1) = a(AP(t — 1|t — 1)AT + Q) > Q, choose
3) m R S R
n  HQHT = HP(t)HT

Finally, we have:

—VnR < bHx(t) — by(t) < /mHP(t)HT

Thus, the new ellipse is:
Radius:

JmHP(®OHT + VnR
2

Mean:

b(yymHP()HT — VnR)
2

n
Assume that m>n so that ne” z is the dominant term.
Define:
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R
HQHT

o = HPHT
p HQHT
This gives our new ellipsoidal bound:

b 1
(Hx =9 =5 VnR(8, = 1))* < 7nR(6, + 1)*

We now need to intersect the original bound for x with the new bound from the measurement
using a linear combination of the two bounds
1 X(x—2)TP 1 (x—%)<m

@-»" n (" () sm

m=n0; 0 =

b 1
p X (Hx — 9(t) — E\/nR(Hp -1))? < 2R, + 1)?
b
H'H —5VrR(6, —)H"\ v _ 2\ nR(8, + 1)?
< _—

px(x-0" D e (1) =—=%
—5VnR(6, - 1)H (8, 1)°

Adding together:
b
P~'+ pHTH —%\/nR(ep —1)HT ¢

X —X
pb pnR 2 ( 1 >
> VnR(6, - 1)H  ——(6, - 1)
R(6, + 1)*
<4 PPRG, 17

4
Giving, after some algebraic manipulation:

((x—-" 1)

b T
(x —%— p?\/nR(Hp —1)(Pt+ pHTH)—lHT> (P~*+ pH"H)(...)
2nR
<m+ pnRO, + 5= (8, = 1) H(P™ + pHH) ' H"
The bound can be rewritten as :
m 2R
n(—+ pR, + pT(ep — 1) H(P~ + pHTH)~'HT)
This gives us finally a bound of the form:
T _m _n
P|(x = 2(tI)) P (I)(.) <n| 2 (1—me™Z) (1 -ne™2)
with
pb(t)
2

2
R
P(t|t) = (P"*+ pH"H)"*(6 + pRO, + pT(ep — 1)2H(P—1 +pHTH)'H™)m

() = 2(t|t—1) + VnR(6, — 1)(P~t + pHTH)'HT
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Appendix C: Minero Simulation Code

MineroSim.m

%Noelle Norris

%Created: February 13, 2010

%Last Modified: April 29, 2010

%Simulate Coder-Decoder scheme in Minero®s '"Data Rate Theorem for
%Stabilization Over Time-Varying Feedback Channels™

%Currently:only implementing for fixed rate; can only use with scalar
%system though coding for vector system

%Also look at Nair®s "'Stabilizability of Stochastic Linear Systems with
%Finite Feedback Data Rates™

%inputs to function:
% R : fixed rate

% tau : number of channel uses for single measurement
% p - rate of adaptive quantizer

% T : number of time steps

% montecarlo : # of iterations

R = 3;

tau = 5;

p = 2;

T = 100;

montecarlo = 1;

%System dynamics parameters

%Scalar system: x k+1 = lam*x k + u k + v. k; yv k = x k + w_k

%unstable system: |lambda] >= 1

% A - system dynamics matrix

% Q : system disturbance covariance

% H : measurement matrix

% sigv2 : measurement noise covariance

% P_orig : covariance of initial state x 0O
[A, Q, H, sigv2, P_orig] = System_params();
sigv2 = diag(sigv2);
sigv = sqrt(sigv2);

%Result: Mean square error
error_norm = zeros(1l, T+1);
error_norm_kf = zeros(l, T+1);
state_norm = zeros(1, T+1);

%Kalman Riccati to be used in Kalman filter iIn coder
%Computes estimate covariance P(k]k) and Kalman gain

HP_kalH = zeros(l, T+1);
Kal_gain = zeros(1, T+1);

P_kal = P_orig;
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for 1=1:T+1
%HP_kalH_quant(i) = diag(H*P_kal*H");

HP_kalH(i) = H""2*P_kal;

Kal_gain(i) = P_kal*H/(HP_kalH(i) + sigv2);

%P_kal - P_kal*H({,:)"*H(,:)*P_kal/(HP_kalH(j, i) + sigv2());
P_kal = (1 - Kal_gain(i)*H)*P_kal;

P_kal = AN2*P_kal + Q; %WP(k+1]k) = AP(K|KANT + W(k)
end

%ITERATION
for iter = 1l:montecarlo

iter

P = P_orig;
%measurement noise
V = normrnd(0, sigv, 1, T+1);

initialize realization of state

X = zeros(1, T+1);

mu_Xo = 0;

X(1) = mvnrnd(mu_Xo, P)"; %Initializing state; X0 ~ N(O, P)

zeros(l, T+1);
zeros(1l, T+1); %corresponding Innovations
(D = B*X@) + V(D);

Winitialize realization of measurement

Y
z
Y
%initialize coder predictions (results of Kalman filter)

Xkal_hat = zeros(l, T+1); %coder®s prediction of state hat{x}(k|k-1)
Xkal _updated = zeros(l, T+1); %coder®s estimate of state hat{x}(k]k)

X_hat = zeros(1l, T+1); %decoder®s prediction of state
1 = zeros(1, T+1); %scaling factor
1(1) = A~tau; %initialization of scaling factor

for t = 1:T+1

%time update: realization of state and measurement with coder®s
%Kalman Filtering update
ift==
Xkal _hat(t) = 0;
X_hat(t) = 0;
else
u = -A*X_hat(t-1); %control input w/o quantization
Xkal_hat(t) = A*Xkal_updated(t-1) + u;
X(t) = A*X(t-1)+u + mvnrnd(0, Q)";
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Y(B) = H*X(E) + V(B);

%decoder"s estimate

if mod(t-1, tau) ==
%QUANTIZATION MEASUREMENT UPDATE
z = Xkal _updated(t-tau)-X_hat(t-tau);
[k,q] = Quantizer(R*tau, p, z/1(t+l1-tau));
X_hat(t) = pro(t)*A™(tau)*1(t+1-tau)*q;
1(t+1) = max(1(1), k*I(t)*abs(A)"tau);

else
1(D);
= 0; %choose control input to bring state to zero

1(t+1) =
X_hat(t)
end
end

%measurement update
%calculate innovation
Z(t) = Y(©) -H*Xkal_hat(t);
Xkal_updated(t) = Xkal_hat(t) + Kal_gain(t)*Z(t);
end

error_norm = error_norm + sum((X - X_hat).”2, 1);
error_norm_kf = error_norm_kf + sum((X-Xkal updated).”2,1);
state _norm = state norm + sum(X.”2, 1);

end

error_norm = sqrt(error_norm/montecarlo);
error_norm_kf = sqgrt(error_norm_kf/montecarlo);
state norm = sqrt(state_norm/montecarlo);

time = 1:T;

figure;

plot(time, error_norm(1:T), "-kd",*MarkerFaceColor®, "g", “MarkerSize®, 4);
title(strcat("Rate = °, num2str(R), ° , prob =", num2str(prob), " , a = " ,

num2str(A) , " , # of iterations = " , num2str(montecarlo)));

Quantizer.m

%Noele Norris

%Created: February 13, 2010

%Last Modified: April 29, 2010

%Simulate Coder-Decoder scheme in Minero®s '‘Data Rate Theorem for
%Stabilization Over Time-Varying Feedback Channels™

%Currently:only implementing for fixed rate; can only use with scalar
%system though coding for vector system

%Also look at Nair"s "'Stabilizability of Stochastic Linear Systems with
%Finite Feedback Data Rates"
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%inputs to function:

% R : fixed rate

% tau : number of channel uses for single measurement
% p - rate of adaptive quantizer

% T : number of time steps

% montecarlo : # of iterations

R = 3;

tau = 5;

p=2;

T = 100;

montecarlo = 1;

%System dynamics parameters

%Scalar system: x k+1 = lam*x k + u k + v. k; y k = x k + w_k

%unstable system: |lambda] >= 1

% A - system dynamics matrix
% Q : system disturbance covariance
% H : measurement matrix

% sigv2 : measurement noise covariance
% P_orig : covariance of initial state x 0
[A, Q, H, sigv2, P_orig] = System params();

sigv2 = diag(sigv2);
sigv = sqgrt(sigv2);

%Result: Mean square error
error_norm = zeros(l, T+1);
error_norm_kf = zeros(l, T+1);
state norm = zeros(l, T+1);

%Kalman Riccati to be used

in Kalman filter in coder

%Computes estimate covariance P(k]k) and Kalman gain

HP_kalH = zeros(1, T+1);
Kal_gain = zeros(1, T+1);

P_kal = P_orig;

for 1=1:T+1

%HP_kalH_quant(i) = diag(H*P_kal*H");

HP_kalH(i) = H"2*P_kal;

Kal_gain(i) = P_kal*H/(HP_kalH(i) + sigv2);

%P_kal - P_kal*H((,:)"*H({,:)*P_kal/(HP_kalH(],

i) + sigv2());

P _kal = (1 - Kal_gain(i)*H)*P_kal;

P_kal = AM2*P_kal + Q;
end

%ITERATION
for iter = l:montecarlo

%WP(k+1]K) = AP(K[KAAT + W(K)
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iter

P = P_orig;
%measurement noise
V = normrnd(0, sigv, 1, T+1);

%initialize realization of state

= zeros(1, T+1);

mu_Xo = 0;

X(1) = mvnrnd(mu_Xo, P)"; %Initializing state; X0 ~ N(O, P)

zeros(l, T+1);
zeros(1l, T+1); %corresponding Innovations
(1) = H*X@) + V(D);

%initialize realization of measurement

%initialize coder predictions (results of Kalman filter)

Xkal_hat = zeros(1, T+1); %coder®s prediction of state hat{x}(k|]k-1)
Xkal _updated = zeros(l, T+1); %coder”s estimate of state hat{x}(k|k)

X_hat = zeros(l, T+1); %decoder®s prediction of state
1 = zeros(1, T+1); %scaling factor
1(1) = A~tau; %initialization of scaling factor

for t = 1:T+1

%time update: realization of state and measurement with coder®s
%Kalman filtering update
ift==
Xkal_hat(t) =
X_hat(t) = 0;
else
u = -A*X_hat(t-1); %control input w/o quantization
Xkal_hat(t) = A*Xkal _updated(t-1) + uj;
X(t) = A*X(t-1)+u + mvnrnd(0, Q)";
Y(b) H*X(t) + V(b);

0;

%decoder®s estimate

if mod(t-1, tau) ==
%QUANT IZATION MEASUREMENT UPDATE
z = Xkal _updated(t-tau)-X_hat(t-tau);
[k,q] = Quantizer(R*tau, p, z/1(t+l1-tau));
X_hat(t) = pro(t)*Ar(tau)*1(t+1-tau)*q;
1(t+1) = max(1(1), k*I(t)*abs(A)"tau);

else
1(t+1) = 1(Y);

X_hat(t) = 0; %choose control input to bring state to zero
end

end

Y%measurement update
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%calculate innovation

Z(t) = Y(©) -H*Xkal_hat(t);

Xkal_updated(t) = Xkal_hat(t) + Kal_gain(t)*Z(t);
end

error_norm = error_norm + sum((X - X_hat).”2, 1);
error_norm_kf = error_norm_kf + sum((X-Xkal updated).”2,1);
state_norm = state_norm + sum(X."2, 1);

end

error_norm = sgrt(error_norm/montecarlo);
error_norm_kf = sqrt(error_norm_kf/montecarlo);
state_norm = sqgrt(state_norm/montecarlo);

time = 1:T;

figure;

plot(time, error_norm(1:T), "-kd","MarkerFaceColor®, "g", “MarkerSize®, 4);
title(strcat("Rate = °, num2str(R), ° , prob =", num2str(prob), * , a = " ,

num2str(A) , * , # of iterations = ° , num2str(montecarlo)));

Appendix D: Yuksel Simulation Code

YukselSim.m

%Noele Norris

%Created: February 23, 2010

%Modified: April 29, 2010

%Simulation of Yuksel"s update rules in "A Random Time Stochastic Drift
%Result and Application to Stochastic Stabilization over Noisy Channels

%inputs to function:

% T - number of time steps

% montecarlo : # of iterations

% p : probability that signal is transmitted with no error over 1
% channel use

% R: rate

T = 100;

montecarlo = 1;

count = 0; %number of instances error exceeds choosen value

%System dynamics parameters

%Scalar system: X t+1 = a*x t + u t + d t
%unstable system: |a] >= 1

%Gaussian noise:

a=2.5;

R = 3; %rate of transmission

prob = 0.8; %1l - prob = probability of erasure
Q =1; %variance of d_t
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P orig = 1; %variance of x_ O

= 2"R;
_p = log2(K-1);
%Values for determining quantizer bin size (look at Thm 3.2)

d = 0.05*abs(a);
eta = 0.05%(K-1);

%%%
L=(K -1 - eta)/abs(a); %threshold = "L" in the paper
Lp=1;

%Result: Mean square error
error_norm = zeros(1, T);

for iter = 1l:montecarlo

iter
initialize realization of state
X = zeros(1, T);

%vector of erasures
p = binornd(1, prob, [1 T]);

%initalization

del = zeros(l, T); Y%step size of adaptive quantizer
del (1) = 1;

X_hat = zeros(1l, T); %decoder®s prediction of state
X(1) = normrnd(0, P_orig);

for t = 2:T

Q_output = Quantizer(K-1, del(t-1), X(t-1));

if abs(abs(Q_output)-(K-1)*del(t-1)/2) < .0005
overflow = 1;
X_hat(t-1) = 0;

else
overflow

= 0;
X_hat(t-1) =

p(t-1)*Q _output;
end

X(t) = a*(X(t-1)-X_hat(t-1)) + mvnrnd(0, Q); %state update,
with control input driving state to zero

%determine change in step size
if (p(t-1)== 0 || overflow == 1)
delMult = abs(a) + d;
elseif del(t-1) > L
delMult = abs(a)/(2"R_p - eta);
else
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delMult = 1;
end
del(t) = del(t-1)*delMult;
end

error_norm = error_norm + sum((X - X_hat)."2, 1);
if(max(X) >= 10M"5)

count = count + 1;
end

end
error_norm = sqgrt(error_norm/montecarlo);
time = 1:T;

count

figure;

plot(time, error_norm(1:T), "-kd","MarkerFaceColor®, "g", °"MarkerSize®, 4);
title(strcat("Rate = *, num2str(R), °“, Prob = " , num2str(prob), ", a = " ,
num2str(a), ", # of iterations = " , num2str(montecarlo)));

Quantizer.m

function y = Quantizer(K, delta, x)
%is written only for odd K

it mod(K,2) ==
error("K should be an odd positive integer®);
end

y = zeros(size(X));

for 1 = 1:length(x)
it abs(x(i)) >= K*deltas/2
y(1) = sign(x(i))*(K)*deltas2;
else
index = floor(2*abs(x(i))/delta);
index_v2 = ceil(index/2);

y(1) = sign(x(i))*index_v2*delta;

end
end
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