
AN EVANESCENT PERSPECTIVE ON 

CELLS 

 

Thesis by 

Lawrence A. Wade 

 

In Partial Fulfillment of the Requirements for the 

degree of 

Doctor of Philosophy in Molecular Biology and 

Biochemistry 

CALIFORNIA INSTITUTE OF TECHNOLOGY 

Pasadena, California 

2011 

(Defended August 26, 2010)



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2011 

Lawrence A. Wade 

All Rights Reserved



 
iii

ACKNOWLEDGEMENTS 

Graduate school at Caltech has been a wonderful experience. My thanks to Kai Zinn and 

the rest of the Biology Division admissions committee for being willing to risk admission 

of a 47 year-old student into one of the world's finest universities. My thanks also to thesis 

committee members Pamela Bjorkman and Grant Jensen who took this responsibility very 

seriously and thereby helped enormously. Towards the end of my studies the Dean of 

Graduate Studies, Joe Shepherd, worked with real determination to make it possible for me 

to focus solely on my research and to thereby complete this thesis. It speaks volumes about 

Caltech that I was not only given an opportunity, but was also provided the tools necessary 

for success. My supervisors at JPL, Andre Yavrouian and Tim O'Donnell, fought valiantly 

to help JPL's bureaucracy do the right thing. I am very grateful for all of your efforts. 

Much of the richness of life comes from the people you've had an opportunity to work 

with. I've had the great pleasure and honor to be a friend and colleague of Emil Kartalov 

throughout my studies. In particular I am very grateful to Rahul Srinivasan for teaching me 

how to be a hands-on biologist and to Steve Quake for bringing me to Caltech. The Fraser 

and Lester groups have proven to be collegial, fun, and intellectually adventurous. There 

are many people whose creativity, warmth and friendship have helped enormously along 

the way including Chris Richards, Kristy Hilands, Eloisa Imel, officemates Mat Barnet and 

Cambrian Liu, Mike Roy, Steve Olson, Mary Flowers, Gary Belford, Pat Collier, Jordan 

Gerton, Rob Sharrow, Jian Li, Guillaume Lessard, Eyal Shafran, Ian Shapiro, Cagdas Son, 

Fraser Moss, Dan Lo, Le Trinh, Jennifer Yang, David Koos, Carol Readhead, David 

Kremmers, Christie Canaria, Carole Lu, Luca Caneparo, Sean Megason, Seung-Yong Jung, 

Maria Esplandiu, Ziyang Ma, Alana Dixon, Arian Forouhar, Mike Tyszka, Rigo Pantoja, 

Princess Imoukhuede and many, many other wonderful people.  

It was my great fortune to have Scott Fraser as my advisor throughout my studies. His 

unflagging support and keen perception has been crucial.  

The last several years of my graduate studies have been spent working with Henry Lester 

as part of the Lester group. Henry is a scholar and a gentleman. He has continually pushed 



 
iv

me to think deeper and harder. My maturation as a scientist has greatly benefited from his 

example and teachings.  

 

Of course in the end it all comes down to family. The greatest thanks Arnis and Valda 

Richters for helping me to realize the importance of gaining a deeper and broader 

understanding of biology if I wanted to ever work in the field. To my mom, Barbara Siegel, 

and sister, Janice Otters, your love and enthusiasm has meant everything to me. Finally,  

Evi, Thea, and Alec are the best ever. 



 
v

ABSTRACT 

We have optically sectioned living cells to a maximum depth of ~250 nm using a Variable 

Angle-Total Internal Reflection Fluorescence Microscope (VA-TIRFM). This yields 3D 

images of cell membranes and nearby organelles similar to that gained by confocal 

microscopes but with at least an order-of-magnitude greater depth resolution. It also 

enables cellular membranes to be imaged in near isolation from cell organelles. Key to 

achieving this resolution was integration of a controllable excitation laser micropositioner 

into a standard through-the-lens TIRF illuminator and development of a custom culture 

dish for re-use of expensive high index of refraction cover slips. Images are acquired at 

several penetration depths by varying the excitation laser illumination angles. At the 

shallowest penetration depth (~46 nm) just the membrane and a few internal puncta are 

imaged. As the penetration depth is increased up to 250 nm organelles near the membrane, 

such as the ER, are imaged as well. The sequence of images from shallow deep is 

processed to yield a z-stack of images of approximately constant thickness at increasing 

distance from the coverslip. We employ this method to distinguish membrane-localized 

fluorophores ( 4 GFP 2 nicotinic acetylcholine receptors and pCS2:lyn-mCherry) at the 

plasma membrane (PM) from those in near-PM endoplasmic reticulum (ERTracker green, 

4 GFP 2 nicotinic acetylcholine receptors), on a z-axis distance scale of ~45 to ~250 nm 

in N2a cells. In doing so we observe occasional smooth ER structures that cannot be 

resolved as being distinct from the membrane. 

In a second project substantial progress has been made towards developing a Tip Enhanced 

Fluorescence Microscope (TEFM) capable of imaging wet biological samples with ~10 nm 

resolution. A TEFM combines a TIRFM with an Atomic Force Microscope (AFM) to 

modulate sample fluorescence through near-field dipole-dipole coupling.  

In the third project the capability to consistently produce high quality nanotube AFM 

probes was developed and a technique for chemically functionalizing the tip of a nanotube 

AFM probe was invented. 
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C h a p t e r  1  

INTRODUCTION 

Over the course of my studies at the California Institute of Technology I've had the 

opportunity to work on three lines of research.  All of these efforts employed novel 

imaging techniques to query the organization and composition of surface proteins involved 

in intercellular signaling. Most of this work was focused on nicotinic acetylcholine 

receptors (nAChRs).  

Neuronal signals are transmitted across a synapse via transmitter-gated ion channels to 

either skeletal muscle cells or to neuronal cells. Nicotinic acetylcholine receptors are found 

in many central nervous system and nerve-skeletal muscle postsynaptic membranes. The 

nAChR has a (pseudo)symmetric pentameric structure comprised of  homologous subunits. 

A wide variety of nAChR stochiometries are possible as the  subunits exist in at least ten 

different subtypes ( 1 through 10) and the  subunits exist in at least four subtypes ( 1 

through 4).
1
 nAChRs can be activated by both acetylcholine and nicotine. Chronic 

exposure to nicotine has been found to cause upregulation of functional nAChRs with a 

preferred ( 4)2( 2)3 stoichiometry.
2, 3, 4, 5, 6, 7

 

The capability to image the distribution and composition of nAChRs pre-and post- 

synaptically in pulse-chase experiments would be very helpful to attempts to untangle the 

regulatory mechanisms behind nicotine induced upregulation.
8
 It would be particularly 

useful to do so if the functional nAChR composition and distribution (in the membrane) 

could be resolved or isolated from the composition and distribution of nAChRs sequestered 

in nearby organelles of living cells.
9
 From a larger perspective this is capability would be 

useful for conducting pulse-chase experiments to illuminate trafficking and regulatory 

mechanisms of many types of functional surface receptors. 

So motivated, I collaborated with the Henry Lester group, to extend Total Internal 

Reflection Microscopy (TIRFM) to achieve z-axis resolution sufficient to discriminate 

cellular membranes from nearby organelles via Variable Angle Internal Reflection 
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Microscopy (VA-TIRFM). We also took initial steps towards using the information 

acquired while VA-TRIFM imaging to construct three-dimensional images of cell 

membranes and nearby cellular organelles. We then successfully utilized this technique to 

image murine neuroblastoma cells (N2a) that had been transfected with fluorescently 

labeled nAChRs. This technique and our results are described in Chapter 2. 

In the second project, we developed a Tip-Enhanced Fluorescence Microscope (TEFM) 

with the capability to resolve single molecules with <10 nm separation in collaboration 

with the Quake group.
10,11

 Later I attempted to use this technique to image surface proteins 

in a biological environment (warm and wet) as part of the Scott Fraser group. This effort 

and its results are described in some detail in Chapter 3. 

In the third project, conducted primarily in collaboration with the Pat Collier group, we 

developed the capability to fabricate nanotube Atomic Force Microscope (AFM) probes.
12

 

The mechanisms behind nanotube adhesion, and the surprisingly high AFM imaging 

resolution achieved with nanotube AFM probes, was illuminated through atomistic 

modeling.
13

 Finally we explored utilization of such probes for molecular patterning.
14,15

 To 

enable substrate patterning we invented a novel technique for uniquely functionalizing the 

end of a nanotube probe. This work is described in Chapter 4. 
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