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ABSTRACT

The problem of describing the electronic excited states of an
atomic or molecular system can be reduced to one of finding a form for

an operator AT(E) such that it satisfies the following equation
- + +
[H, A'(E)] |0> = AE A'(E)|o,

Four approximations to the excitation operator, A+(E), have been con-
sidered: (a) the single transition approximation, corresponding to
excitation into virtual orbitals, (b) the improved single transition
approximation which allows for the self-consistent field adjustment of
the virtual orbital, (c¢) the Tamm-Dancoff approximation, corresponding
to selective configuration interaction in the excited state and (4d)
the random-phase approximation which attempts to take into account
correlation in both ground and excited states.

Analyzing the excitation operator method in terms of the approx-
imations to the excitation operator listed above, we found that the
correlation does not always enter in the ground and excited states in
a particularly balanced manner and that self-consistent field changes
in the core are neglected. 1In addition, the strong "mixing'" of certain
doubly excited configurations into the ground state wavefunction, such

o

as (m®*am*g) in ethylene, is shown to lead to a number of problems in
the random-phase approximation, e.g., an instability in the triplet
equations.

The excitation operator approach is illustrated by ab initio

calculations on a number of valence excited states of the ethylene



molecule. These calculations indicate that the lowest singlét T
state of ethylene is not a valence state as previously assumed, but
that it is significantly more diffuse, e.g., in the improved single
transition approximatibn the <22>> for the m¥-orbital in the singlet
state is 26.3 a.u. compared to 2.8 a.u. in the corresponding triplet
state. This behavior is a consequence of the ionic nature of the
wavefunction of the singlet state and, thus, is expected to be
characteristic of such states in general. We find that o-m correlation,
as included in the above approximations to the excitation operator,
does not play an essential role in the description of the excited
states, although its effect on the charge distribution of the singlet

T>T¥* state is substantial.
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1. INTRODUCTION

When electromagnetic radiation of the appropriate wavelength is
incident upon a molecule, the molecule can absorb energy from the field
and make a transition to a state of higher energy. The specification
of the states of a polyatomic molecule requires the assignment of
rotational (J), vibrational (v) and electronic (n) quantum numbers and,
thus, such transitions involve a change in one or more of the molecular
guantum numbers (n,v,J). If the radiation has a wavelength in the
ultraviolet or visible regions of the spectrum, transitions can be made
to excited electronic states. The methods developed here represent one
attempt to provide a basis for the theoretical interpretation of the
electronic spectra of molecules.

The electronic excited states of atoms and molecules have been of
interest to chemists since the advent of modern electronic spectros-
copy, but their importance in other areas is now slowly being apprec-

iated.l’2

The excited states of a system not only determine its
spectral characteristics but often they are important in the elucida-
tion of its chemistry,1 witness the rapid growth in the general area of
photochemistry. In addition, our understanding of the exciton
structure of molecular crystals is based upon the excited states of

the individual molecules which make up the crystal.3 Thus, an accurate
description of the excited states of molecules is important not only to

further our general understanding of the electronic structure of

molecules, but also to provide a basis for interpreting the interaction



of molecules with their environment.

The excited states of an isolated molecule can be categorized into
two limiting cases: valence states, of which the ground state is one,
and Rydberg states. Valence states are characterized by a compact
charge distribution similar in extent to that of the ground state. In
an orbital description these states are composed of functions with the
same principal quantum numbers as the valence orbitals of the atoms.
Rydberg states, on the other hand, have charge distributions similar
to that of the corresponding ion plus a very diffuse orbital, the
Rydberg orbital. In an orbital description we say that Rydberg states
require functions with higher principal quantum numbers than occur in
atomic valence states.

The excitation energy is composed of two parts: a change in the

Hartree-Fock energy and a change in the correlation energy, i.e.,

- e e mT,
Since electron pairs are being split up in the excitation process, we
might expect the change in the correlation energy to make a significant
contribution to the total energy difference. Besides the variations in
the charge distributions, Rydberg and valence states can be distin-
guished by the role that correlation plays in the description of the
state.

In Rydberg states the correlation is approximately the same 3s i=
the corresponding ion for the Rydberg orbital is spatially quite far

from the core. Thus, in such states correlation can be easily taken



into account just by referencing the excited state to the ion rather

than the neutral molecule. That is, for ionization

ion _ ion ion
AE = BByp * corr
Since for Rydberg states
ex ~ aplon
corr corr
then
stability = AE®* - A"
ex ion
AEHF - AEHF

4,5
That this is indeed true has been verified by a number of workers, ’

although the significance of the result does not always seem to be
appreciated and some authors still quote (uncorrected) excitation
energies for Rydberg transitions.s’7

For valence states no such '"zero" of correlation energy exists.
We do not expect the correlation energy of the excited state to be as
small as that of the ion, which has one less electron, nor do we
expect it to be as large as in the ground state, which has all orbitals
doubly occupied.

Let us now briefly review the possible approaches to the problem
of computing wavefunctions for the excited states of molecules.

The virtual orbital approximation, an approximation which has Leca

8,9,10

widely employed, merely replaces one of the orbitals occupied in

the Hartree-Fock ground state with one of the unoccupied solutions of



the ground state Hartree-Fock Hamiltonian, i.e., the so-called virtual
orbitals. However, the virtual orbitals of the ground state Hamilton-
ian experience a potential field due to all of the electrons whereas
an occupied orbital experiences only the field due to the other N-1
electrons, as it should. Because of this we expect the virtual orbitals
to be far more loosely bound than the variationally correct excited
state orbitals. In fact, if we solved the Hartree-Fock equations
exactly, the virtual orbitals would all be continuum functions except
in those cases in which the molecule has a bound negative ion. In the
latter case some of the virtual orbitals should be bound, but they
would be appropriate for the negative ion, not for the excited state of
the neutral molecule.5

In the frozen core approximationu’5 the excited state wavefunction
is again obtained by replacing one of the occupied ground state orbitals
with an orbital of higher energy. However, this orbital, called an
improved virtual orbital,5 is obtained by solving for the optimum
orbital in the correct N-1 electron potential. Since the remaining
orbitals have been taken from the ground state calculation, this
method is referred to as the frozen core approximation. The frozen
core wavefunction should be considered as the first useful approximation
for the excited state.

11,12 the electrons are

In the open-shell Hartree-Fock method
assigned to a given orbital configuratior and *then thie orbitale w.c

allowed to self-consistently adjust for the change in the charge

distribution. In order to simplify the equations the orbitals are



constrained to be orthogonal. The frozen core approximation can be
considered an approximation to the open-shell Hartree-Fock wavefunction
obtained by restricting the variations to just the (former) virtual
orbital. Although simple conceptually, in practice rather severe
problems arise in handling the orthogonality constraints and this has
prevented all but a limited application of this method to the excited
states of molecules.12 However, recent theoretical work clarifying the
role of orthogonality constraints in self-consistent field equations13
(see also Proposition II) seems promising, so that accurate Hartree-
Fock calculations on open-shell states in many systems of chemical
interest should soon be possible. Excited state calculations can also
be done using the GI method14 which employs the group operators GZ to
insure the correct permutational and spin symmetry for a general
product of orbitals. Besides an appealing conceptual picture of the
excited states of molecules, the GI wavefunctions for open-shell states
satisfy Brillouin's theoremiu and provide upper bounds on the energies
of the state315 neither of which are accomplished in general by open-
shell Hartree-Fock wavefunctions.ie’17

As stated previously, for the valence excited states of molecules
we have no convenient reference point for the correlation energy. The

excitation operator method18,19,20

attempts to deal with this problem
by focusing on energy differences between the ground and excited states.
Thus, this method is concerned only with the description of the two

- N +
states relative to one another. The excitation operator, A (E),

connecting the ground state to the manifold of excited states is defined



by
ATE)0> = [ED
so that it satisfies the following commutator
[H, AT(E)] = aE aT(E)

Unfortunately, the complexity of the atomic and molecular Hamiltonians
“- prevents the excitation operator from being cast into any simple form.
However, it is possible that using chemical intuition we can formulate

a new operator ST(E) which contains all the pertinent physical features
of the true excitation operator. This method and its application to the
ethylene molecule are the topics of the present work.

There are, of course, many ways of going beyond the self-
consistent field and excitation operator methods: configuration
interaction,21 the multi-configuration self-consistent field method22
and perturbation theory in the form of the pair theories proposed by
Brueckner,23 Goldstone,24 Bethe,25 Szasz,26 Sinanoglu27 and Nesbet.28
Of these the most promising at the present time appear to be the
multi-configuration self-consistent field method and the pair theories
put forth in a configuration interaction form by Nesbet and Sinanoglu.
Whereas the multi-configuration self-consistent field method seems best
suited for alleviating orbital restrictions encountered in the Hartree-
Fock method (see Proposition I), the electron pair il.ecries cuci.
amenable to the entire problem. Thus, using the pair method, pair

correlation energies could be calculated for both the ground and



excited states and the importance of changes in any portion of the
correlation energy obtained directly.

As stated above, we are concerned with the application of the

excitation operator method to the problem of the electronic excited
states of molecules. In particular, calculations are presented on a
number of valence excited states of ethylene as well as one (wn¥)
Rydberg state. It is impossible to over-emphasize the importance of
understanding the ethylene molecule quantum mechanically. It is the
simplest m-electron system and a prototype for larger conjugated
molecules, an understanding of which is vital not only in organic
chemistry but also in such fields as electronic spectroscopy and
molecular biology.

The excitation operator method was chosen because it allows us to
concentrate only on energy differences and because it takes into
account the effects of electron correlation on the excitation process.
Further, while the excitation operator method has found widespread
application in the fields of nuclear29 and solid state30 physics, its
use in atomic and molecular systems has been minimal.31 It was also
our intent to investigate the approximations employed in the excitation
operator method as they pertain to molecules and, thus, to assess the
general utility of the excitation operator approach in molecular

quantum mechanics.



2. THE EXCITATION OPERATOR METHOD

This section begins with a brief review of the formalism of
second quantization. The excitation operator "equations of motion" are
then derived and the approximations to the excitation operator
discussed. Next, the operator formalism is used to derive expressions
for the changes in the expectation values of one-electron operators.
Finally, the equivalence of some of the approximations for the
excitation operator and the more familiar methods used in molecular

quantum mechanics is established.

2.1. A brief review of second qpantization32

As we shall see in the developments in the section which follows,
the approximations to the excitation operator are best formulated in
the language of second quantization. Use of this particular formalism
not only provides insight into certain physical aspects of the problem,
but it also provides a straightforward means of correcting the equations
when the approximations which have been employed break down. In
addition, it allows one to make certain approximations more easily than:
in the coordinate representation. Aésuming that a brief review of
second quantization is in order, this section discusses the trans-
formation from the (usual) coordinate representation to the occupation
number representation. We shall only deal with fermion systems.

|

Let us assume that we have a complete set of one-electron

functions, {¢i} (which can be the eigenfunctions of the liartree-Fock



Hamiltonian or any other convenient set) and that they are ordered
according to some convention. A wavefunction for an N-electron system

in the coordinate representation constructed from this set might be

wcoord

= A 2) ... (N
[¢1(1)¢2( ) oo b (N)]

where A is the anti-symmetrizer. In terms of occupation numbers we
could say that in this wavefunction, orbital levels 1,2,...N have an
occupation number of one. Thus, we see that, given a complete set of
one-electron functions, any single configuration wavefunction such as
the above can be completely specified just by listing the occupation

numbers of the various orbitals, e.g.,

[¥> = |1112...1N0N+1...> (1)

To operate on this function in occupation number space, we shall define

the annihilation operator for orbital ¢i by
N )

R S = (- R N 2

ai|11 1ieeer (-1) |11 0;veer (2)

Here 6 is an integer which accounts for phase changes between the N and
N-1 electron wavefunctions as will become clear later. Thus, the
annihilation operator a; de-populates orbital level i. Because of the
orthogonality of the orbitals, the only non-zero matrix elements of a,

dare

<11...oi...Iai|11...1....> = (-1) (3)

1



10

The Hermitian conjugate of Eq.(3) defines the Hermitian conjugate of

the annihilation operator, the creation operator (denoted by a dagger)

+ _ C
<11"°1i"'|ail11'“oi"'> = (-1) (4)
so that
T _ 6
3;l1 .00 > = DL 1D (5)

Thus, the creation operator az populates orbital level i. Using these

~

operators we can define the number operator n, = azai with the

property

- 0 if the orbital is unoccupied
<> o= (6)

1 if the orbital is occupied

To discover the commutation relations for the creation and
- . . . T
annihilation operators, first consider the effect of the product aa;

on the wavefunction |0i0k>>:
Tt ot _t 3
aa; 0.0, > = a [1;0,> = alol1,> = |1,1,> (72
Similarly,
t_T .
a;a[0,0.> = (1,15 (7b)

But, wavefunctions for fermions must be anti-symmetric with respect to

interchange of electrons, so

lli%<> = _|1k1i> (7¢)
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The zcro-electron wavefunction, |0i0k> , as well as the one-electron
wavefunctions, ]110k>> and l1koi>', are of course symmetric. Note that
we have adopted the convention that an annihilation or creation
operator always operates on the first position in the number vector.
Hence, the orbital level being operated on must be moved to this
position by a series of permutations; this is the origin of the phase
factors in Egs.(2), (3), (4) and (5). Combining Eq.(7a) and (7b) and

using Eq.(7c), we find that
ot U
aa, + a,a = 0 (8a)

Thus, because of the anti-symmetry of fermion wavefunctions, the fermion
number operators anti-commute. To distinguish this from the usual

commutator notation, Eq.(8a) will be written

{a;.r_,ai} = 0 (8b)

Likewise, it is easily shown that

i
(@]

{ai, ak} (9

. . e t
Now consider the product of creation and annihilation operators aa;
with 1 # k:

.I.
aa; |10, 0> |1koi> (10a)

t ' b
a;a 1,0, D -12,0.2 (10b)

Therefore, the annihilation and creation operators for different

orbital levels also anti-commute:
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{al,a} = 0 ik (10c)

For the case that 1 = k

T . - N
aiallli/ |1i/ (11a)
a.aT|1.> = 0 (11b)
iTifti
so
{a,, a.} = 1 (11c)
i i

The anti-commutation relations for the fermion number operators can be

summarized as
} = o0 (12a)

tat, a1 = s. (12b)
i k

We must now establish how the usual coordinate operators, such as
the kinetic energy or electron repulsion operators, are expressed in
terms of the creation and annihilation operators.33 If g is an
arbitrary one-electron operator symmetric in the electronic coordinates,

i.e.,
F = ) f, (13)
et
i
then in terms of the complete set of functions

1

Fo, = J<o, I£6,> o (14)
k
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But, simplistically,
= aoa, ¢, (15)

so that Eq.(14) can be written as

F o, = z<¢k|fl¢i>a}tai . (16)
X

1 1

In general then an arbitrary one-electron operator can be expressed as

Fo= 11 <olfle> a]‘:ai (17)
1K

In an analogous manner it can be shown that a general two-electron

operator is represented by

~

= N Tt
6 =1 § L1 <esesleles,Dajaraa, (18)

This is essentially all of the formalism of second quantization
that we shall require. For a more complete treatment of the subject

the reader is referred to Landau and Lifschitz.32

2.2. Derivation of the excitation operator "equations of motion"

The derivation of the excitation operator "equations of motion"
will closely follow that presented in an earlier paper.au More
elegant formulations of the equations are possible, however, and for
this the reader is referred to the articles by Rowe.20

The problem of describing the excited states of a system can be

reduced to one of finding a form for an operator AT(E) such that it



14
satisfies the following equation:

[a, at(®) ] lo> = AE AT(E)|O> (1)

~

where H is the complete electronic Hamiltonian for the molecule under
consideration. The operator AT(E) contains all the physical infor-
mation that we need about the excited state. From Eq.(1) we see that

the operator AT(E) generates an excited state of the Hamiltonian H,

with excitation energy AE, when it operates on the ground state, i.e.,
T =
A'(E)|0D> = |ED (2)

Note that AT(E) describes a vertical excitation. Taking the Hermitian
conjugate of Eq.(1), we can derive a relationship connecting the exact
ground state and the Hermitian conjugate of the excitation operator,

namely,
AE)[0D = 0 (3)

In practice, the complexity of the molecular Hamiltonian prevents AT(E)
from being cast into any convenient form. However, by using chemical
and physical intuition, it is possible that an approximation to the
excitation operator, ST(E), could be formulated which would reproduce
the eigenvalue spectrum of the exact Hamiltonian over some limited

range quite satisfactorily. In this case

[H, s*(B)] AE S'(E) + R (u)

approx

H]

where R 1is hopefully small.
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The electronic Hamiltonian for a molecular system is, in atomic

units,

>

= ~Ly2 _
H J (%2 -12/c.) + %]1] ry; (5a)
i o ij
= ¥ H, + % ) Z Vi (5b)
i ij
In the Hartree-Fock approximation we replace the interaction of
electron i with all other electrons, zj Vij’ by an effective one-
particle potential V(i). The lowest N eigenfunctions of the one-
. . .. 35
particle Hamiltonian
B+ V) |10 = e]ip (6)

are then combined into a Slater determinant to form the Hartree-Fock
‘ ¢
3
wavefunction for the ground state, IHF> . Combining Eqs. (6b) and (7)

the total electronic Hamiltonian can be written as

.=V) e (7)

H =  (Hot V) + zu/zzvij
]

i i
In the notation of second quantization this becomes

a

S + T
H = z eia ajaiak 2

% Nijke
(8)

+
) a;a

- g E g ( Noigk ~ Ygixs

where we have introduced the explicit form of the Hartree-Fock one-



16

particle potentia135

v(i) = ¥ [9J.(1) - K (i)] (9a)
3 J ]

Jj and Kj being the usual coulomb and exchange operators. For the

Hartree-Fock orbitals the first term is diagonal since

il H + V]3> = €;855 (9b)

The integrals xi' are defined by

jk&

Visee = [ [ e5ex) » -1 0 (D4 (2)ax ar, (10)

the ¢'s denote molecular spin orbitals. In the above equations and in
the ones to follow, we denote by the subscripts

single particle states occupied in

a o
85759, the Hartree-Fock ground state (called
hole states when unoccupied)
MyN,DsGyeso single particle states not occupied in
the Hartree-Fock ground state (called
particle states when occupied)
i,3,k,2,... any state.

If we define the Fermi level, e€_, as being the uppermost level

F
occupied in the Hartree-Fock ground state, then for the ground state

in the Hartree-Fock approximation the orbital occupation numbers are

(11)
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These are, of course, just the expectation values of the number oper-

+ .
ators ni = aiai over the Hartree-Fock wavefunction. Let us now

define a particle-hole pair creation operator
.r _ .}.
C'(ma) = aa (12a)
m o
and the corresponding pair annihilation operator
Clma) = aa (12b)

These operators will be the basic building blocks used to construct the

approximations to the excitation operator considered here. Thus,

cT(ma) |[HED = o> (13)

is a Slater determinant derived from the Hartree-Fock ground state by
destroying a particle in an orbital below the Fermi level (in ¢a) and
creating a particle in an orbital above the Fermi level (in ¢m). Such
transitions will be referred to as elementary transitions and are
equivalent to the virtual orbital approximation discussed earlier.
With the above definitions we find that the particle-hole pair
creation and annihilation operators satisfy the following commutation

relations

[cPmo), cT@e)] = [cma), clng)] 0 (14a)

'i‘ _ i _ 1-
[C(ma), c'(nB)] = 8ua®mn = Sag %ndn RN (14b)

The "equations of motion' obeyed by the excitation operator can be



i8
obtained by considering the following equation31
<E| (& - 1)¢" (ma) lo> = o (15)

which after a little manipulation becomes
(E - EO)<E| CT(ma)lO> - <E|lH, cT(ma) ] loy = o0 (16)

Using the property of the excitation operator, Eq.(2), and its

Hermitian conjugate, Eq.(3), the above can be rewritten as

(& - £))<0| [ A(®), cTma) 1 |0
(17)
- <ol [AE), [H, cT(ma)1] 0> = o

Up to this point the derivation has been completely rigorous, relying
only on the definitions and properties of the exact excitation
operator. Note that the excitation energy (E - EO) appears in an
equation in which the elements are the ground state expectation values
of double commutators, which as we shall later see are less sensitive
to the detailed form of the ground state wavefunction.

From Eq.(17) we see that all subsequent derivations will have one
thing in common -- the commutator [ﬁ, C+(ma)] , which is independent
of our approximation to A+(E). Using the second quantized form of

the Hamiltonian, Eq.(8), we find that

5ot - T
[H, ¢c'ma) ] = (e -e +§ o0 ~¥ ) C (ma)
o 5 (v -V ) clne)
vonmp vanfm

(nB)
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o (EB) (xaan - XaBnm) c(nB)
e (18)
where
Q = 1) (Xavmy ~ Navym a:aY ) (Xapmr - “aprm)apar
vy 1]
- X E g L Misim ™ Yigme) aaagazak

(19)

¥ t

- 11 Wgygn ™ Yoyme'®3% ~ L L Wengn = Yonms%n%
B vy B n

+ 1) W - Jala  + Yy Y (v -V )a'a

gy vBaBy XBuYB my g AvBaBn BanB’ m n

This splits the commutator into two groups: the first group contains
all of the single particle-hole terms while the second group, Q,
contains no net single particle-hole terms but rather contains inter-
actions which are described as hole-hole, a:ay, particle -particle,
a;ar, multiple particle-hole, etc. Although it appears that Q does
contain single particle-hole terms, we say that the net amount of such

terms is zero for if the commutators

[cTme), @1 and [C(nB), Q]

are evaluated over the Hartree-Fock ground state, these terms vanish.
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Since we shall confine ourselves to excitation operators which are
linear combinations of pair creation and annihilation operators and to
expectation values over the Hartree-Fock ground state, we will retain

only single particle-hole interactions and '"linearize' the commutator

to
[ ﬁ, CT(ma)] = (g -e_+V -V ) Cf(mu)
m a  Amoom mamo.
+ 1 W 6 = Yangm’ ct(ng) (20)
(HS) oM on pm
+(EB) (Xaan - XaBnm) C(n)

Note that (1) the above derivation has ignored spin, the resulting
equations can be specialized for singlets and triplets in a final
step, and (2) the primes on the summations indicate exclusion of the
term (mo). Egs. (17) and (20) form the working equations for the
approximations to the excitation operator considered here.

In addition to the excitation energy, the transition moment

between the ground and excited state
5 o= <zl 7o) (21)

is also of considerable interest for it relates to the intensity of

the absorption.37 Using Egs. (2) and (3), Eq. (21) can be rewritten as

B = -<o|lam®,rllo> (22)
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In second quantization the dipole moment operator is

[see Eq. (2.1-17)] . To be consistent with the approximations
employed in the derivation of the eigenvalue equations, we neglect
particle-particle and hole-hole terms and retain for the transition

operator only

= 3 7 [T me) + clma) ] (23)
(ma) mo.

For comparison with experiment we also calculate the oscillator

strength of a transition. The oscillator strength, £, is defined by37
£ = %AE 13]2 (24)

where AE is the theoretically calculated excitation energy and AE and
.
D are both in atomic units.

We shall now derive the eigenvalue equations for the

approximations to the excitation operator.

2.2.1. The single transition approximation8

In the single transition approximation (STA), an approximation

8,9,10

commonly used by chemists, the excitation operator is represented

by a single particle-hole creation operator, i.e.,

t oot
Sgra(E) = C'(ma) (25)
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requiring that Eq. (3) be satisfied, we see the corresponding ground
state is just the Hartree-Fock ground state. Thus, we speak of m»u¥,
n>n%, etc. transitions. However, this method is much too rigid; not

only does it constrain the orbitals to their ground state form, but
also the virtual orbital is an eigenfunction of a Hamiltonian which
contains interactions with all N electrons. Thus, we expect all the
virtual orbitals to be quite diffuse and, in the absense of a stable
negative ion of the ground state, to correspond to continuum states.
It should be remembered, however, that the use of expansion techniques
to solve the Hartree-Fock equations constrains the virtual orbitals
to the space described by the chosen set of basis functions. The
extreme nature of this approximation will be demonstrated in Section 4.
Using Egs. (17) and (20) and thé commutators for the pair
creation and annihilation operators, Eq. (14), we find that the

excitation energy is

E-E. = e -¢ +V -V (26)
0 m o LMO.AM umomo

making the excited state wavefunctions eigenfunctions of spin, we

obtain for singlets

+ 2V \
0 m Q. mo.om momo.
(27a)

and for triElets
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E-E. = € -¢€¢ ~J (27b)

which dre just the equations derived by Roothaan in 1951.8 The
Vijk£ are defined in terms of spatial molecular orbitals; the spin
has been integrated out.

Using Egs. (22) and (23) the dipole transition moment is

3
mo

/2 7 (28a)
mo

B -3 (28b)

mo

where the left superscript denotes the spin multiplicity.
In this derivation and the ones to follow, it is assumed that
the molecular orbitals involved are non-degenerate. If this is not

true, the appropriate modifications must be made.

2.2.2. The improved single transition approximation

In the improved single transition approximation (ISTA), the
excitation operator is written as a linear combination of pair
creation operators with the sum restricted to those virtual orbitals

accessible from a given ground state orbital, i.e.,

1.

S1sTA

(E) = ) g(mosE) Cf(ma) (29)

m

By defining a new orbital
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b = ang(ma;E)cbm (30)

we see that the ISTA wavefunction

|E(ISTA)> = ] g(masE) [T D (31)
m

can be written as a single configuration wavefunction. In Section
2.4,2, it is shown that this is equivalent to the frozen core
approximationu’5 and that it allows for the variational adjustment
of the virtual orbital. The new orbital is called an improved
virtual orbital.5 Note that we still classify transitions as
m>%, p>n¥, etc. with the exception now that the functional form of
the orbital ¢ﬁ (7% in the above) depends on the spin multiplicity
of the state as well as the orbital (¢a) that is replaced. This method
should be considered the simplest useful approximation for the excited
state.

Using Egs. (17) and (20) and the commutator relations for the
pair creation and annihilation operators, the equation for the

particle-hole amplitudes, g(ma;E), is

[ m Tt t Xmaam - xmama B (E—EO)] g(ma;E) (32) %
* z (Xanma - Xanaﬁ) g(ng;E) = 0
n

For convenience, hereafter the designation "E" in the particle-hole

amplitudes will be dropped. Specializing the above to describe eigen-
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functions of spin, we get for singlets

[e -¢€ + 2V -y - (Y2 - E) ] glma)
m o moom momo. 0
(33a)
* E (QVanma - Vanam)g(nﬁ) = 0
and for triplets
3 -

- - - - - = 0 33b
[sm €~ Vmoma ("E EO)] g(ma) g Vonam g(nB) ( )

The transition moment in the improved single transition approximation

is

EISTA = -2 E g(ma) o (3u4)

2.2.3. The Tamm-Dancoff agproximation38

In the Tamm-Dancoff approximation38 (TDA) we assume that the
excited state can be adequately represented by some linear combination
of elementary transitions. The net effect of this is to allow, in
some restricted way, for the rearrangement of charge density during
the excitation by means of the residual electronic interaction. On
the basis of chemical experience we would expect that the above
linear combination would often have a major component which defines
the essentials of the excitation. This allows us to retain in a

limited sense the classification of transitions as m+n¥*, etc. The
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effect of the minor components on the excitation energy, transition
moment and charge distribution of the excited state is a matter which
can best be settled by numerical calculation, although it had
previously been assumed small unless near degeneracies were involved.

The Tamm-Dancoff approximation to the excitation operator is

st (E) = )] g(mo;E) CT(ma) (35)
TDA
(ma)
requiring that Eq. (3) be satisfied, we see that the appropriate
ground state is still just the Hartree-Fock ground state. Using Egs.

(17) and (20) and the commutators, Eqs. (14), the eigenvalue

equations for the Tamm-Dancoff approximation to the excited states are

[em - ea M Xmaam - Xmama - (B - EO)] g(ma) (36)
:ng) (Xant - Xaan) g(ng) = 0
and specializing for spin states, we obtain for singlets
[e - + 2v -V —(1B—E)]g(ma)
m o maam mamo 0
. (37a)
tng)(zvanms - Vaan)g(nB) =0

and for triplets

3 - -
[em - e, - Vmama - (e - Eo)] g(ma) an)Vaan g(nR) = 0O

X . 39
These are the equations used by Herzemberg, Sherrington and Siiveges
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in their semi-empirical treatment of ethylene. The transition

moment in the Tamm-Dancoff approximation is

Bops = -v? I g(ma) 7 (38)
mo)

As shown in Section 2.3.2. these equations could also have been

obtained by a configuration interaction approach. If we represent the
excited state by

> = ] g(ma)|'2> (39)

(ma)

and apply the variational principle to determine the coefficients in
the configuration interaction expansion, g(mo), Egs. (37) would

result.

2.2.4. The Random-Phase approximation18’19’20

In the language of configuration interaction the ground state

wavefunction is better represented by the expansion

o> = cylHF> + T T cog lap (40)
(mo) (nB)
where
128> = Mmooy cT(ng) |uED>

is a double excitation from the orbitals occupied in the ground state
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(¢a,¢é) to the virtual orbitals (¢m,¢n). In fact, such configurations
are expected to account for most of the correlation in the ground

27 . . .
state. If we were still to represent the excited state as a linear

combination of elementary transitions, we see that we could obtain
such a transition in two ways: (1) by exciting from the Hartree-Fock

ground state
7> = cMma) |uED

or (2) by de-exciting one of the doubly excited components of the

true ground state
mN mn
= C
% (ng) | >

In view of this we would expect a better approximation to the

excitation operator to be

st (E) = ¥ [ g(me;E) ¢ (ma) - h(ma;E)C(ma) ] (41)
RPA

(ma)
where the minus sign has been chosen for convenience. This is the
excitation operator for the Random-phase approximation (RPA) to the
excited state. Operating on the ground state wavefunction, Eq.(40),

with the RPA excitation operator we see that the excited state wave-

function contains, for example,
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[IE> = ¥ [g(ma) - } h(ng) ng ] |:>
(ma) (nB)

(42)
mnp>

n
+ Z 2 Z g(ma) 065 |Q3Y

(ma)(nB)(pY)
In general, the true ground state, |O>’, could contain all evenly
excited configurations and Eq.(3) could still be satisfied. Then,
the excited state wavefunction would contain all oddly excited

configurations. In fact, it should be noted that the condition
A(E)|0o) = o

cannot be satisfied exactly unless all such evenly excited configura-
tions are included in the ground state, although the error becomes
negligibly small as more and more terms are included (it is of the
order of the neglected coefficients).

Using Eqs.(17) and (20) and the analogous equations involving
C(ma) with the commutator rules for the pair operators, we obtain the
set of coupled equations which describe the random-phase approxiﬁa—

tion to the excited state:

[Em - sa * Xmaam _Xmama - (E-BO)] g(ma)
(43a)

-

¥ (ng)(xanms_xansm

)g(nB) + ) (¥ )h(nB) = 0

-V
(ng) Avofmn vofnm

and
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- - o-E ) ]
[em Ea * xmaam Xmama + (& EO) h(ma)

(u43b)

-

+ ) (v

-V
(ng) vonmB vonfm

)h(ng) + )} (V

(nf) AoBmn xaBnm

Jg(nB) = O

Specializing these equations for singlet and triplets in the usual

way leads to the following equations for singlets

1
[em - Ea * 2Vmaam - Vmama - ( E_EO) } g(ma)
(u4a)
+ ) (2V eV angn 8(18) + ) (VoY apn)P(R ) = 0
(n6) (ng) CF™ B
and
[em - g, + 2Vmaum - Vmuma + (1E—BO)] h(ma)
(uub)
+(n§) (Qvant-Vaan)h(nB) an) (zvaan—VaBnm)g(nB) =0
and for triglets
3
[em S eyt Vmama - ( E—EO)] g{mo)
(45a)
) (gs) Yangm £(7) 7 (EB)Vasnm Rne) = O
and
3
ley = ™ Vooma ( E—Eo) ] h(ma)
(u5b)
- Vongn(8) = I v . g(ng) = 0

(ng) (ng) o6M
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These equations can be written in matrix notation as

A B e é
n, n,
L~ | = BE | | (u6)
-3 -A H H

where, for example, for the singlet state

A = € =-§g +t+ 2V -V

A(ma ,mo) m o moom mamo,

Q(ma,nB) = 2Vanm6 B Vaan u7)
E(ma,nB) = 2Vaan - VaBnm

In the random-phase approximation the transition moment to the excited

state is

1BRPA = -/2 (Z:m)[ g(ma) + h(ma) ] ;ma (u8)
Comparing the above equations to those derived in the previous
sections, we note that the TDA involves only the é matrix, the ISTA
a sub-block of & and the STA only the diagonal elements of A. It is
the B matrix which allows for the effect of the doubly excited
components of the true ground state on the excited state.
From Eq.(46) we see that the RPA excitation energies are the
eigenvalues of a non-Hermitian matrix. Because of this the eigen-
values and eigenvectors have some peculiar properties which we will now

discuss.19 The matrix form of the RPA equations indicates that

negative eigenvalues will occur with the same magnitude as the positive
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eigenvalues. To see this, let

¢ = H- and H = &
to obtain
+‘ +J
Q E H H
= AE
> >
or
= -AE (49)
+‘ +I
—% —Q H H
> > - . . .
Therefore, (af,H’) = (H,G) are solutions of the RPA equations with

energy -AE, so that the eigenvectors of the negative eigenvalues are
identical to those for the positive eigenvalues with the roles of ¢

>
and H interchanged. The requirement that the states be orthonormal

<EJE") = - (50a)
leads to
<ol [A(E), aTe) 1oy = Sp - (50b)
or in the random-phase approximation
Z [ g(mo;E)g(ma;E”) - h(ma;E)h(ma;E°)] = 6 (50c)

EE”
(ma)

The particle-hole amplitudes are said to be normalized to an indefinite
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metric. Last, we note that the excitation energies could be complex
in which case the RPA equations are salid to be "unstable." However,
because of the physical interpretation of these eigenvalues, we are
only concerned with those which have Im(AE) = 0.

The above is the random-phase approximation in the form that it

is usually presented in the literature.lg’31

We should now pause and
elaborate on the derivation of the RPA equations. In this way the
origin of the non-Hermiticity of the matrix will become apparent. In
deriving the RPA equations the excitation operator was formulated for
a ground state such as

o> = cyluE> + § ] c’:fB‘ lg‘g

(ma)(nB)

However, in evaluating the commutators which occur in Egs.(17) and

(20}, and (50) we have assumed that

mn
= 51
co ‘1 CaB << cO (51)

and thereby used only the Hartree-Fock component. This is the
justification of our neglect of Q in the commutator in Eq.(19).

This approximation is sometimes called the ground state approximation31
while other authors refer to it as the quasi-boson approximation.

The term quasi-boson approximation arises from the fact that using the

true ground state and Eq.(17) the RPA equations can be derived by

assuming that
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.i.
[C(ma), C (nB)] = 8 nSas (52)

Thus, the pair creation and annihilation operators commute just as
do the boson creation and annihilation operators and, thus, the
particle-hole pairs could be termed quasi-bosons. This approximation

is directly related to the ground state approximation in that

R’

{HE| [ C¢(ma), C+(nB)] HF )

t t
<HF|s_ 6 ,-aa s .-a acs  [HF)

<o} [ ctma), cT(ng) 1 |0

R

6aBGmn (53)

The important point to be noted here is that either of these
approximations eliminates any need for the ground state correlation
coefficients, sz, the calculation of which would be quite time con-
suming. The price that must be paid is that a non-Hermitian matrix
whose order is twice that encountered in the TDA must be dealt with.
In addition, only if the Hartree-Fock ground state is a good approxi-
mation to the true ground state can we expect the RPA results to be
valid. The correction of this defect is, of course, quite straight-
forward: one need only evaluate the commutators using the ground
state wavefunction given in Eq.(40) and retain the appropriate terms

in Q, i.e., those for which

<ol [A(E),QT]o> # o

This approach will be discussed in more detail in Section 3.3.
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Although it appears from Eq.(46) that one must diagonalize an
unsymmetric matrix in the RPA, this in fact is not the case. If we

multiply Eq.(46) by

AR

we obtain

A B e [
2 SRR
54 le s ) U R EAL
g
= aE? | (54)
H
But
2 2 2
A B )7 [ &R MR e
- 22
B -A “BATAR =R R

is a symmetric matrix of the same order as the original matrix with
the same eigenvectors as the RPA matrix but with eigenvalues which
are the squares of the RPA eigenvalues. Note that because of Eq.(49)
the eigenvalues of the new matrix will be doubly degenerate. Thus,
any complex eigenvalues which occur in the solution of the RPA
equations must be pure imaginary and the eigenvectors real. So now,

Wwe only need solve



8°-8° m-me) (¢ , [ €

= AE (56)

AB - BA gt - 3% LB ]

However, the problem can be simplified even further than this.

Writing out the above equations as

Ae? 8

(A% - 8 + (ap - o
g - pE (7 - B = aE’ R

we see that addition of the two equations leads to

B-pR+pE+H = @G+ B (57a)
while subtraction leads to
(a+pra-p@E-H = a* @ -1 (57b)

Note, however that neither (é - @)(é + %) nor (é + %)(Q - Q) is
symmetric, although their eigenvalues and eigenvectors are insured to
be real. Thus, by exploiting the symmétry of the RPA equations we
have reduced the problem from one of diagonalizing an un-symmetric
matrix of order N to one of diagonalizing a symmetric matrix of the
same order or two un-symmetric matrices of order N/2.

It is instructive to note that the RPA equations cannot be derived
directly from Eq.(16) if the ground state approximation is employed.

To see this note that
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SppalE) [Hy C (ma) ] = ) AnB’ng(pY)C(pY)C‘}'(nB)

h(py)C' (py)C(nB)

+ )

B
ng,py

(we need not consider the terms involving two creation or annihilation

operators) and

.‘-
HF| C o |HF = 8§
<{HF| ¢c(py)C'(nB) |HF)D onay
as required, but
<ur| cTpy)ctng) [HED = o
since neither orbitals ¢n or ¢p are occupied in |HF> . Thus, only the

TDA is obtained, i.e., the % matrix and the B vector can never contrib-
ute. Using Eq.(17) which involves the expectation values of double
commutators, however, we find that these terms do contribute even if the
ground state approximation is used. This is one illustration of the
fact that commutators of operators require less information content than
do products.QO
Before closing this section we should point out that the RPA
equations can also be derived via time-dependent Hartree-Fock theor‘y.q1
However, the interpretation of the resulting wavefunctions from that
viewpoint is not at all clear.42 Also, the remedy of the breakdown in

the theory, corresponding to the instability discussed here, cannot be

implemented as easily as in the present approach.
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2.3. The calculation of one-electron properties

Now that we have derived the eigenvalue equations for the
approximations to the excitation operator to be considered here, we
shall turn to the problem of calculating the changes in the expectation
values of one-electron operators, such as dipole moment, forces, etc.

The expectation value of a one-electron operator

P o= Y ) f.. ala, (1)
{3

over an excited state wavefunction can be written as
<E|FIED = <O|A(E)PA+(E)|O> (2)
using Eq.(2.2-2). Now,
i) = [raT@] +aT@r (3)
substituting Eq.(3) into (2) yields
CElFlEY = <ola®)[F,aTE) 10> + <o|F|o> (4)
where we have used the relation
AGE)AT(E)[0D> = o (5)

Using Eq.(2.2-3) the above expression can be cast into the

convenient form

CEIFIEY - <o|Fjo> = <o|[aw,[Fat® 110> (6)
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This equation enables one to easily compute the changes in the
expectation values of a one-electron operator. Again, the equation
has been cast into the convenient form of expectation values of double
commutators (see the discussion at the end of Section 2.2.u4).

Before evaluating the right hand side of Eq.(6) for the
various approximations to the excitation operator, we note that E can
be decomposed into

F o= ) £ [ ¢ (ma) + C(ma) 1 + ) f ala + )£ alav
(mo) ™ (o) P3P 4y T
To evaluate the transition moment between the ground and excited state
we retained only the particle-hole terms

) fma[ CT(mu) + C(ma) ]
(ma)

A

in F. However, for the types of wavefunctions considered here such
terms will make no contribution to the expectation value. Thus, we
need only consider the reduced operator

oz 2 £ apa + V£ (7)

YV yv y a4

We shall begin by deriving the equation for the most general
operator which we have considered: the RPA excitation operator. The
formulas for the remaining operators can then be obtained just by
dropping the appropriate terms. The RPA excitation operator is,

Eq.(2.2-41),



Lo

stoa(E) = I [gma)c’(ma) - h(ma)c(ma)]
(mo)

Using this and the anti-commutation relations for the annihilation

and creation operators, Eqs.(2.1-12), we find that

= ¥ glma) {J fme+(pa) ) faycf(my)}
(ma) P Y

(8)
+ Y hi(ma) {} £ C(pa) - ) fyaC(mY)}
p P Y

(ma)
An important point to remember in deriving this expression is that the
quasi-boson approximation cannot be used. As explained in the last
section, this approximation is appropriate only in the context of an
expectation value over the ground state wavefunction. Since we are
not evaluating the above commutator over the ground state wavefunction,
the quasi-~boson approximation must not be used. Evaluating the

complete double commutator in Eq.(6) we find that

= ¥ Y)Y [ g(ma)g(m“a) - h(ma)h(m’a) ] £
o mm”

- Y )Y [g(ma)g(ma®) - h(ma)h(ma”) ] £ oo (9)

m ao”
In deriving the final expression we have made use of the ground state
or quasi-boson approximation. Combining Egs.(6) and (9), we find for

the changes in a one-electron property on going from the ground to an
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excited state that in the random-phase approximation

<elrey - <ol 1 Jov

= Y XY [ glma)g(m”a) - h(ma)h(m’a) ]fmm,
o mm”

- g gg’[ g(ma)g(mo”) - h(ma)h(ma”) ] faa' (10a)

in the Tamm-Dancoff approximation

<{E| F |lE> - <ol F o> = Y1) e(ma)g(n’a) £

-
O mm

- z Ez g{ma)g(ma™) faa‘ (10b)
m oo’

in the improved single transition approximation

{E| F|E) -<o| Floy = %g’ glm)g(m’a) £ . - £ . (10c)

and, finally, in the single transition approximation

CeE|FlEy -<o|Floy = £ - £ (10d)

Examining these formulae, we note that since

A(ma) ~ (ma)

ERp Erpa

and

h._ (ma) << (ma)

RPA Erpa
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the expectation values of a one-electron operator over the RPA
wavefunction should be approximately equal to those for the TDA
wavefunction. This is as it should be for, if the ground and excited
states are of different symmetry, the two wavefunctions are completely
independent. Since the RPA differs from the TDA primarily in consider-
ing a more general form for the ground state wavefunction, the two
expectation values should be nearly equal. That any effect at all
exists is probably due to the approximations used in the RPA which
couple the ground and excited states together, although the presence
of the triple excitations in the RPA excited state should be
remembered. However, the triple excitations will make no first order
contributions to a one-electron pr'oper*‘cy.L+3 In addition, we did

assume that Czn << 1.

B

2.4. Relationship of the excitation operator methods to more common

approximations

2.4.1. Equivalence of the ISTA and TDA and single excitation

configuration interaction

The ISTA and TDA wavefunctions for an excited state have the

general form

> = ] gma) |70 (1)

(ma)

In this section we shall show that were the excited states
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represented by the above expansion, application of the variational
principle leads to just the ISTA and TDA eigenvalue equations.

The energy of the above wavefunction is

B = <E || B (2)
{E|E)

where we have explicitly noted the fact that the energy is a function
of the expansion coefficients in Eq.(1). Minimizing the energy with
respect to variations in these coefficients leads to the configuration
. . . 4y
interaction equations

m;~m S ompn

(<Mu|™> - B)gma) + ¥ <MH|DDgng) = o (3)
a' la a'"'B
(nB)

Evaluating the matrix elements of the total Hamiltonian, with the

singlet state as an example, we find

my S m
= - - y
<‘alH|a:> EO * Em Ea * vaaam Vmama (4a)
m’ > n
= - b
< aIHlB:> 2VnaBm vnamB (4b)

Combining these expressions with Eq.(3) we obtain

1
[em - e, t 2Vmaam - Vmama - ("E - EO) 1 g(ma)
. (5)
+(ng) (QvnaBm - VnamB)g(HS) =0

which are just the equations satisfied by the expansion coefficients of
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the excitation operator in the ISTA and TDA, Eqs.(2.2-33a) and
(2.2-37a). Thus, the ISTA and TDA are equivalent to a configuration

interaction calculation which includes the appropriate singly excited

configurations.

2.4.2. Equivalence of the improved single transition and frozen

. . 16
core approximations

In the improved single transition approximation the excited state

wavefunction 1is

|EC(ISTA)) = Zg(ma)l‘;> (6)
m

As shown in the last section, the coefficients g(ma) are obtained by
diagonalizing the Hamiltonian in this representation, i.e., by

requiring that

<e [H] E°) = Eb. (7)

It is easily seen that the ISTA wavefunctions can be written as single

configuration wavefunctions by defining a new orbital

<
=
1

) g(ma)¢ (8)

m

The excited state then can be represented as

lE(1sTA)> = "> (9)

o}



Thus, the condition satisfied by the ISTA wavefunctions, Eq.(7), can

be written

or

and

Using the rules for evaluating the matrix elements between

determinantal functions, Eq.{(10c) becomes

<L¢5| h+2J -K, +J % Ka]¢

(10a)

(10b)

(10c)

(11)

where Jc and Kc are the total Coulomb and exchange operators for the

core, i.e.,

and the plus (+) sign refers to the singlet wavefunction and the

minus (-) sign to the triplet. Eq.(11) is satisfied only if

(h + 2J - K +J +K) o= = e-d-

+
m m

(12)

But, Eq.(12) is just the SCF equation that would be obtained if ¢-



ue

were functionally optimized for the excited state configuration
while restricting the remaining orbitals to their ground state forms.
Thus, the ISTA allows for changes in the virtual orbital due to the
change in the molecular potential upon removing an electron below the
Fermi level and placing it above with the correct spin coupling. As
only SCF adjustment of the virtual orbital is permitted, this method
is commonly called the frozen core appr*oxima‘cion.‘1L Since it is
expected that the largest correction should be associated with the
virtual orbital, it is possible that this method corrects for the
major SCF changes in the excited state.

Note that the functional form of ¢ﬁ depends on whether the
excited state is a singlet or triplet as well as on which orbital was
excited. This will lead to differences in the properties of the
singlet and triplet states arising from a given configurétion and may
account for the major differences arising from a complete SCF
treatment of the two multiplicities.

A more complete discussion of the frozen core approximation has

been given by Hunt and Goddard.5
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3. A CRITICAL EXAMINATION OF THE EXCITATION OPERATOR METHOD

3.1. Analysis of the RPA treatment of a simple two electron, two

orbital problem

From the arguments given in Section 2. it is obvious that the
conceptual basis for the excitation operator method is just
configuration interaction. Thus, the ISTA, TDA and RPA should be
considered as approximate methods of doing the corresponding con-
figuration interaction calculations. In this regard the ISTA and
TDA are quite straightforward, being just limited configuration
interaction as shéwn in Section 2.4. The RPA, on the other hand,
deviates from a pure CI treatment by invoking a number of reasonable
approximations which, however, have never been tested in atomic and
molecular systems. In this section we will analyze a simple two
electron, two orbital problem in order to gain some insight into the
RPA. As an example, we will consider the m-electron system of
ethylene formed from a minimum basis set of Slater orbitalsI+
(whether this provides an adequate representation of the states need
not concern us here). The information needed for the calculations is
given in Table I. .

Let us begin by solving the problem exactly and then we shall
solve the RPA equations. Only the singlet state will be considered.
From the m and m orbitals two configurations of A1g symmetry can be

constructed. Diagonalizing the Hamiltonian matrix in this representa-
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tion, we obtain for the ground state

[0> = 0.9688 |mamB) - 0.2u78|w%an%g )
(1)

EO = -0.0405 a.u.

where all energies are given relative to the Hartree-Fock energy of

the ground state. Since there are only two orbitals, the
exact excited singlet state is simply

1 o\ 8

] S> = |Trom‘~8/ + [n"omB>

(2)

BS =  0.4404 a.u.

Thus, the excitation energy and transition moment for the excitation
from the ground to the excited singlet state are, for the exact

wavefunctions,

i

0.4404 - (-0.0405)
exact

0.4809 a.u.

exact -v2 (0.9688 - 0.2478) x__,

- 1.35 a.u.

Let us now turn to the excitation operator calculations. In the
TDA, which in this special case is also the STA, the excitation energy
and transition moment are measured with respect to the Hartree-Fock

ground state, so we find that
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AETDA = 0.4404 a.u.
w)
X = -
DTDA = 1.87 a.u.

Comparing the results with the exact results, Eq.(3), we see that the
effect of the doubly excited configuration in the exact ground state
is to increase the excitation energy and decrease the transition
moment.

The RPA attempts to take into account the effect of the doubly

excited configuration in the exact ground state. The RPA excitation

operator is
st = g(memc (m¥n) - n(rFm)c(n%n) (5)

and the RPA "Hamiltonian" matrix for this particular problem has

the form, see Eq.(2.2-46),

AEpa ~ AEgea K g
=0 (6)
K “AErpp ~ PERpa b
The solutions to this equation are
AE = 0.4109 a.u. (7a)
and the coefficients for the positive energy solution are
g(m*w) = 1.0178
(8)
h(m¥®y) = -0.1894
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Using Eq.(2.2-48) the transition moment is seen to be
D = -1.54 a.u. (7b)

Therefore, while the RPA has decreased the transition moment as it
should, it has also decreased the excitation energy. In fact, the
difference between the exact and RPA excitation energies is 1.90 ev.
This is an indication that the decreases in the excitation energies
upon going from the TDA to the RPA may be somewhat exaggerated
because of the approximations made in deriving the RPA equations. 1In
more general systems the presence of the triply excited components in
the RPA excited state, see Eq.(2.2-42), should also lead to a decrease
in the excitation energy. The decrease in the transition moment, on
the other hand, is consistent with the exact calculations, although it
is significantly less.

It should be noted that as the exchange integral Kﬂﬂ* approaches
zero, the true wavefunction also approaches the Hartree-Fock wave-
function since this integral is just the off-diagonal element in the
Cl matrix which mixes the two configurations. In the limit that the
Hartree-Fock wavefunction closely approximates the exact wavefunction,
we see from Eq.(6) that the RPA results approach tnose of the TDA as
do the exact (but from opposite directions). It is the strong mixing
of the |ﬂ*an*8>> component into the ground state which is responsible

for the unusually large deviation between the RPA and exact excitation

energies. This cautions against too literal an interpretation of the
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results when applying the RPA to states in which one of the

n
B

Note that the condition

corresponding CE is large in the ground state.

Sgpa 107 = 0 (9)

provides a means of computing the correlation coefficient in the
ground state (for a more general discussion see Section 3.3). This

requirement leads to

~h(n%n) ¢+ g(n®n) C_, , = 0O
Tr"T 'n'li’n’l\
or
C 4 h(w#m)
o= = -0.1861
Cor g(m¥®m)

Since the exact ratio of the two coefficients is -0.2558, the RPA
consistency condition, Eq.(9), underestimates the amount of correlation
in the ground state, although it does significantly better than first
order perturbation theory which yields -0.1298.

If we apply the RPA to the triplet state we find that the
excitation energy is imaginary and, thus, the RPA solution is un-
stable. Like the large deviation between the exact and RPA excitation
energies for the singlet case, this behavior is a direct result of the
large Cziﬂ* coefficient in the exact ground state. Methods of

correcting the defects in the random-phase approximation while
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retaining its conceptual simplicity will be discussed in Section 3.3,

3.2. Correlation energy differences and the excitation operator

method

For either the exact wavefunction to all orders in the energy or
the first order wavefunction to second order in the energy, the total
electronic energy of a closed shell atom or molecule can be written

27
as

E. = E _+ )e (1)
0 HE GZB ap

where the e , are pair correlation energies for electrons in orbitals

aB
¢a and ¢B. The wavefunction for such states are well approximated
by27
o> = a23...0) [1+ | u /(as) ] (2)
o>B

~

where A(123...N) represents a Slater determinant and u, is the pair

B8
function describing the correlation of two electrons in the orbitals
¢a and ¢B. In open-shell states, however, correlation effects arise
which do not occur if all the shells are completely filled.

Sinanoglu and his co—workers27 have identified these effects as (1)
internal correlations which arise from a near degeneracy of zero-
order configurations, (2) semi-internal correlations which arise when

two electrons are excited, one going into an unoccupied orbital within

the Hartree-Fock '"sea," (3) orbital corrections which result from
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the non-symmetric (both spin and space) nature of the open-shell
potential as well as (4) the all-external pair correlations which
also occur in closed shell systems. If we limit ourselves to the
excited singlet and triplet states of molecules which arise from
transitions among non-degenerate orbitals, then internal and semi-
internal correlations are completely absent. To the extent that many
(23) body effects are negligible, the wavefunction of an excited

. . . . . . . 27
state obtained by replacing orbital ¢a with orbital ¢m is then just

¥, = A(12...om) [1 + ; £2/(1) + §>§ u 4 ] (3)
where the fg's incorporate the effect of symmetry and spin polariza-
tions. If the Hartree-Fock wavefunction contains two or more
components, as it does for the excited singlet states, then a term such
as Eq.(3) is obtained for each component. Neglecting the cross terms

~

between the fi and u the energy of the above wavefunction is

k&2

Eex

E = p
ex ue ¥ Z 7
1

g e. + z (eaB + emB) te (4)
a

The effect of neglecting the troublesome cross terms has yet to be
determined,?7 although it should be noted that to second order they

do not contribute at all. The e? correspond to one-electron energy
increments resulting from symmetry and spin polarizations of orbital
¢i. If the frozen core approximation is used, the Hartree-Fock energy

of the excited state becomes



e (5)

S . . o .
where the eiCF refer to energy increments gained upon SCF relaxation
. . ~SCF
of the orbitals. The corresponding fi turns the frozen core
orbital ¢i into the corresponding Hartree-Fock orbital.

Subtracting the ground state energy, Eq.(1), from the energy

of the excited state, Eq.(4), we obtain for the excitation energy

_ . ex ex _ _gd ex _gd
AE = ALHF + Z e, + z z (eBY eBY) + z [(eBa eBa)
1 By B (6)
ex _gd ex _gd
+ (eBm eBa)] te T

In deriving this expression we have made use of the fact that the
orbital ¢a is doubly occupied in the ground state. This expression
isclates in a very effective manner the various components of the
correlation energy difference between the ground and excited state.
For true valence excited states, we might expect that the
orbitals change only slightly on going from the ground to the excited
state (excluding, of course, the virtual orbital for which the frozen
core approximation is assumed). Thus, for such states it is probable

that

. pexX .gd
AE,. = Ep, - Eyp (7a)

and
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ex gd ex gd 7b
eBY Cay ®ia Za (7b)

The expression for the excitation energy then simply reduces to

- ex ex _ _gd ex _ _gd
AE AE o + g e, * g (eBm eBa) e T € (8)
We also expect
€851 >> leg] (9a)
oo om

gd

since e,q represents the correlation of two electrons of opposite spin

in the same spatial orbital. It is also reasonable that

d
legnl 5 o5 (9b)

The ei's are, of course, always negative but in many cases they
should be small, e.g., in the carbon atom, Nesbet28 reports the sum
of the ei's to be -0.002 a.u. which is also approximately the energy
difference between the unrestricted and restricted Hartree-Fock
energies.46 In molecules, the ei's could be more important although
in most cases we would not expect their sum to exceed -0.01 a.u.
(-0.3 ev). Combining Eqs.(9) with Eq.(8) we predict that the Hartree-
Fock excitation energy should always be below the exact excitation
energy. As a guideline, then, any theory which attempts to include
the effects of correlation upon the description of valence excited
states should (1) allow for SCF adjustment of at least the virtual

orbital, (2) compute the differences between the way in which orbital



56

¢m in the excited state and orbital ¢a in the ground state correlate
with the core and (3) compute the difference between the way in
which orbital ¢m correlates with ¢a in the excited state and the way
in which orbital ¢a (spin up) correlates with ¢a (spin down) in the
ground state and (4) calculate the effects of spin and symmetry
polarizations of the orbitals although as argued above this may be
relatively unimportant.

Let us now see what correlation effects are contained in the
TDA and RPA wavefunctions. Given any wavefunction, S:'LnanogluL+7 has
presented a method of analyzing this wavefunction for the orbital
corrections, %i’ which turn the orbitals of a given reference con-
figuration into the appropriate Hartree-Fock orbitals, the pair
functions Gij and so on. The procedure to be used has been discussed

in more detail by Hudson and McKoy.Ll8 To begin, we first split the

wavefunction into a reference configuration and a remainder

[E> = B>+ I s@e)g> (10)
@ (nB)
leg, + [x>

where we have chosen the normalization

CEIM™> = 1 (11a)

o

and
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g(ng) = g(nB)/g(ma) (11b)
The orbital corrections are given by

fi<§1) = <x| [123...(i-1)(i*+1)...om ] % (12)

. . . >
where the integration does not extend over coordinate x Thus, for

1
the TDA wavefunction we see that the fi will be non-zero only when

(1) orbital ¢, is also singly occupied in one of the terms in x> s

if we represent this class of terms as

Y g(na) |2:>
joe}
then
%m = g é(na)d:n (13)

or (2) orbital ¢ is singly occupied in one of the terms in |x); then,

as above

~

fB = —g(m8)¢ot (14)

Note that there will never be an orbital correction for ¢a' In the
TDA (and RPA) all virtual levels accessible from a given orbital are
used so that the correction for orbital ¢m is always included.
However, only if no symmetry whatsoever is present will all of the

-~

other orbital corrections be included. Even in this case, the f

B
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for the core orbitals will contain no virtual orbital contributions,
only ¢a' In general, depending on the total symmetry of the
molecule, some core orbital corrections may be included and others

not at all.

~

To obtain the pair functions, one first removes the fi from
|x>> to obtain ]x'> . The pair function is then obtained by deleting
two orbitals from ]¢O>> and integrating out all coordinates in the
integral <:x'|¢0/(ij):> except those depending on two electrons to
obtain

uij(§1,§2) =7_;_<x'l [123...(i—1)(i+1)...(j—1)(j+1)...mnJ>;;1;2

(15)
Using Eq.(10) we see that only the pair functions in which i=m and
and j=B8 (B#a) will be non-zero and that

S

o1
Bog © @g g(pB) 9.0,

~

The swiggle under u is a reminder that this is only a portion of

mB

the pair function, although there is some reason to expect that it may

~

Le a sizeable portion of g
In summary, the TDA wavefunction with ,2:> as the reference

configuration contains (1) an orbital correction for the virtual

orbital ¢m and essentially none for the core orbitals and ¢a and (2)

portions of the pair functions describing the correlation of electrons

in ¢m(1)¢8(2) (B#a), i.e., correlation between the open-shell orbital
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¢m and the doubly occupied core orbitals ¢B (B#a). Thus, the energy

of the TDA wavefunction is approximately

SCF

E =k + e + ) e
" B

am (17)

The tilde over the pair energy e mzdenotes that only a portion of the

B

- total pair energy is obtained. Comparing this expression with Eq.(8)
we see that although the TDA satisfies criterion (1), it contains

only a portion of the pair correlations e and completely neglects

Am

€ SO that criterion (2) is only partially satisfied. Criteria (3)
and (4) are neglected entirely. Since the TDA contains only a

portion of e, , it is possible, but not very probable, that

8m

N

g (eBm - eBa) - g eBm
Confirmation of this appears to be very difficult. It is obvious
from this discussion that the fault with the TDA is that it puts all
of the correlation into the excited state and none into the ground
state.

The RPA attempts to remedy the unbalanced description of ground
and excited states by eonsidering the ground state wavefunction

o> = c,luFy + § § cRP|TP>
0 (nB) (py) °Y BY

Proceeding with the analysis as before we find that the RPA ground

~

state contains portions of the pair functions u Thus, for the

af’
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above ground state, the energy is

gd _ pe&d ved |
Eppa = Epp t 1 oy 3 (18)
By
again ng is just a portion of eBY. While this contains the terms
©La and zBeaB needed to formally balance the energy difference between

the ground and excited state, see Eq.(8), it also contains terms such
as zBeBB and XBzYeBY which do not occur in an excited state wave-
function represented as a linear combination of single excitations.
However, the RPA excited state wavefunction has the more complicated
form given by Eq.(2.2-42) which does include such terms. Quantita-
tively, it has yet to be shown that these correlations enter in a
balanced manner, although intuitive arguments suggest this
possibility. Comparing the results of the RPA with Eq.(8) we see
that the first three criteria are at least partially satisfied. 1In
addition, it should be noted that the RPA includes such terms as

gBY (B,y # a), changes in which are expected to contribute little to

the excitation energy. Finally, in reference to the discussion in

Section 3.1., it should be remembered that approximations are involved

n

8 's are small.

in deriving the RPA equations which assume that the CZ

3.3. The extended random-phase approximation

As we have seen in previous sections, the random-phase approxi-
mation is a good approximation only when the Hartree-Fock wavefunction

is an adequate representation of the exact wavefunction. We shall now
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consider a scheme which permits the RPA to be used even if the above
criterion is not satisfied.

The basic error in the RPA stems from the use of the ground state
approximation in deriving the eigenvalue equation. Thus, we should

evaluate all of the commutators over the ground state wavefunction

o> = c lur> + § 7 ">
0 (ma) (ng) ©°B @B

In addition, some of the terms in Q, Eq.(2.2-19), must also be retained

for while

CHE| [A(E), Q]|HF> = o

this need not be true for the above wavefunction. In general, the

. . . . mn .
calculation of the correlation coefficients, CaB’ would be a very time-
consuming chore. However, an additional constraint was imposed in

deriving Eq.(2.2-17), namely,
S(E) o) = o0 (1)

which will not be satisfied unless there is some relation between the
3 s 2 . . > >
correlation coefficients and the particle-hole amplitudes, G and H.

Thus, if

S(E)

Yy [ g(ma)C(ma) - h(ma)CT(ma) ] (2)
(ma)

the consistency condition, Eq.(1), is satisfied only if
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(Z )[ (Z ) g(nB)CZS - Coh(ma)] |2:> = 0 (3)
mo ng

Or, in matrix notationug

¢ o= RS ()

where, for example,

_.mn
(R = C4a/%

Using this approach an iterative solution of the RPA equations could be
adopted: (1) use the ground state approximation to compute an initial
set of particle-hole amplitudes, %(0) and Q(O), (2) calculate CZE
from Eé.(S), (3) use these correlation coefficients to calculate the
required expectation values over the ground state, (4) solve the

(1)

modified RPA equations for a new set of particle-hole amplitudes, %
and 5(1), and (5) re-cycle steps (2)-(4) until the correlation
coefficients and particle-hole amplitudes converge. Since the coef-
ficients, ng, are small, the iterative process can be expected to
converge rapidly. In fact, from the calculation on ethylene in
Section 3.1, we see that even the first iteration should yield quite
satisfactory values for the correlation coefficients. Schemes such as
this which treat the ground state in a more consistent fashion are
called the extended random-phase approximation.SO Work in this area 1is
in progress.

An alternate scheme for evaluating the corrvelation coelticients

L

has been suggested by Sanderson.52 Using the RPA cquations and the



63

fact that the A matrix is diagonalized by the TDA solutions, he obtains
an expression for the correlation coefficients which must also be
solved iteratively.

To go beyond the extended RPA, we could formulate a succession of
more complex excitation operators.53 Unfortunately, such higher
approximationsrto the excitation operator lead to eigenvalue equations
which rapidly become unwieldy and computationally expensive to solve.
Should accuracy beyond that obtainable by the extended RPA be required,

it would undoubtedly be best to use a pair theory approach.27’28
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4. CALCULATIONS ON THE EXCITED STATES OF ETHYLENE

4.1. The (nr*) states of ethylene

Because of the fundamental importance of conjugated and aromatic
molecules in organic chemistry, an accurate theoretical description
of such molecules has been a major goal of gquantum chemistry since
Goeppert-Mayer and Sklar54 first considered benzene in 1936. In their
treatment of benzene, Goeppert-Mayer and Sklar formulated in mathemat-
ical terms what is now called the m-electron approximation.55 The
crucial assumption in the m-electron approximation is that the wave-
function describing the o-core is the same for all of the different
m-electron configurations. One by-product of our work will be a
rather critical examination of the validity of this assumption.

The ethylene molecule is the simplest unsaturated organic
molecule and, thus, it can be considered a prototype for the larger
molecules such as butadiene and benzene. Ethylene has the distinct
advantage that, because of its small size, rigorous calculations can be
done for this molecule which would not be economically feasible for
larger molecules. Thus, we can carefully test any approximations
before applying them to more complicated systems. Although ethylene
is in some respects atypical of larger conjugated systems, it would
appear that a method which fails to satisfactorily explain the excited
states of such a simple m-electron system as ethylene is unlikely to do
well for more complex systems. |

The excited states of ethylene which are of most interest both
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experimentally and theoretically are the singlet and triplet states
arising from the (wm¥*) configuration. If the molecule lies in the

xy-plane with x along the CC bond axis as shown in Figure 1.,3‘+ these

states are of B, symmetry and have been designated V(1B3u) and

v 6
T(SBBu) by Mulliken. ® The (1r)2 ground state is denoted by N(lAlg).5

The experimental results have been interpreted as involving a
vertical excitation energy of 4.6 ev for the T(3B3u) state57 and
7.6 ev°C for the V(lBSu) state. The oscillator strength for the
transition to the singlet state is %0.3.58
First, a brief review of three of the more significant m-electron
calculations on ethylene is in order. The first non-empirical m-
electron calculation on ethylene was by Parr and Crawford.59 They
used a minimum basis set of Slater orbitals with the exponent
restricted to be the same in all states and approximately equal to
the exponent obtained in atomic calculations. Their results, which
are presented in Table II, are typical of such non-empirical m-
electron calculations: the location of the triplet state being in
reasonable agreement with experiment while the singlet state energy
is too high by as much as 3-4 ev. Still within the m-electron
approximation, MuraiGO relaxed some of the constraints on the 7
molecular orbitals by optimizing the orbital exponents of the Slater
basis functions for each state. As is evident from Table II, the
location of the triplet state is now in much better agreement with

experiment, but the excitation energy for the excited singlet state,
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which was in much need of improvement, has changed hardly at all.
Finally, Huzinaga61 further relaxed the orbital restrictions by
permitting the basis functions in the m- and w¥®-orbitals to have
different exponents and optimizing both exponents for each state of
the system. As is illustrated in Table II, the calculated excitation
energies now agree very well with experiment. However, a number of
troubling facts arose from Huzinaga's calculations. TFirst, the
optimum orbital exponent for the w%-orbital in the V state was quite
small, C"* < 0.4, and, in fact, Huzinaga notes that the energy was
even lower for an exponent of ¢ , = 0.2. However, for ¢ 4 = 0.2 it
appeared that the integrals were inaccurate, so that he discounted
this point. In addition to the inexplicably small orbital exponent
- which we shall discuss later, Huzinaga also obtained an ionization
potential far (n2.0 ev) below the experimentally observed value.
Since 1965 the ethylene molecule has been the subject of
numerous all-electron calculations. In that year Moskowitz and
Harrison ~ published a series of calculations on the ground state of
ethylene with a number of uncontracted Gaussian basis sets. Using
the (5s3p/2s) set,63 which gave an energy of -77.5266 a.u. for the

ground state,6u

and the virtual orbital approximation, they obtained
excitation energies of %4.32 ev for the T(3B3u) state and 10.43 ev for
the V(1B3u) state. While it might have been expected that the spectra

of ethylene would be resolved once the o-core potential was adequately

defined, we find that this is not the case. The all-electron
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calculation gives results no better than those obtainable in the m-
electron treatments. In 1967, Schulman, Moskowitz and Hollister65
published calculations with a very iarge uncontracted Gaussian basis
set, (985p/3s),63 which gave an energy of -78.0062 a.u. for the
ground state,64 and obtained excitation energies only slightly better
than before. Again the virtual orbital approximation had been em-
ployed for the excited states. In addition, Schulman, Moskowitz and
Hollister65 reported that preliminary open-shell calculations on the
singlet and triplet states with the same basis set used for the
ground state led to excitation energies essentially the same as those
obtained in the virtual orbital approximation. Evidently, the
problem is not the neglect of SCF changes in the core. Additional
Hartree-Fock calculations have been carried out by Kaldor and Shavitt66
and Robin et al.67 with results differing little from those mentioned
above. These calculations are summarized in Table III. On the basis
of these calculations it would appear that the discrepancy between
theory and experiment could only be due to o-m correlation effects
which are neglected in both the m-electron and all-electron SCF
calculations.

Working on this assumption, Dunning and McKoy3L+ applied the
excitation operator method, which is designed to take into account
such correlation effects, to ethylene. While the results were far
from being quantitatively correct, these calculations indicated that

o-m correlation could account for the observed discrepancies in the
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exclitation energy and oscillator strength for the singlet state. Since
this calculation employed only a minimum basis set of Slater orbitals,
calculations with more accurate basis sets were deemed necessary.

Because of the low m¥-orbital exponent which Huzinaga found in
his m-electron calcula'tions61 and because of open-shell Hartree-Fock
calculations which became available since this research began68 (to be
discussed later), it was decided to do the excitation operator calcu-
lations with two different basis sets: a valence basis set adequate
for the ground state and an extended set containing diffuse basis
functions in addition to those in the valence set. The valence basis
sets for the atoms are the carbon (9s5p) and hydrogen (4s), ¢ = 1.2,
primitive Gaussian sets of Huzinaga69 optimally contracted to double
zeta size, [432p] for carbon and [ 2s ] for hydrogen.70 This basis
set will be denoted as [ 4s2p/2s] for the molecule.63 The expanded
basis set was obtained by adding to the valence set three low
exponent 2pTr basis functions on each carbon. The additional functions
were left uncontracted. This basis set will be denoted as [ 4s2p/2s ]
+ R(3po) for the molecule.63 The exponents and contraction
coefficients for these basis sets are listed in Table IV.

For the above basis sets the matrix Hartree-Fock equations were
solved for the ground state configuration of ethylene which in the

present coordinate system is

2 2 2 2 2 2 2 2
(1a1g) (1b3u) (2a1g) (2b3u) (1b2u) (3ag) (1b1g) (1b1u,n)
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The integrals over the Gaussian basis functions were calculated with
a program (MOSES) written by M. Geller of the Jet Propulsion Labora-
tories71 and modified by N. Winter and the author. The SCP cycling
was performed with a set of routines adapted by W. Hunt for the MOSES
integral package. The electronic, total and orbital energies obtained
from the ground state calculations are presented in Table V. As
expected, the diffuse basis functions had little effect on the ground
state calculation, lowering the total energy by less than 0.0001 a.u.
and the energies of the occupied orbitals by 0.0010 to 0.0005 a.u.
bxcept for the w- and rn¥®-orbitals, the virtual orbitals were also
little affected by the additional 2p1T basis functions. The most
accurate calculation on the ground state of ethylene to date is that
of Schulman, Moskowitz and Hollister.65 However, their ground state
energy of -78.0062 a.u. is higher than that of the valence basis set
which has considerably fewer basis functions (28 vs. 60). This
reinforces our conviction that the contraction schemes used here are
close to optimum for the atoms considered.70 0Of course, the quality
of a wavefunction should not be judged solely on the energy obtained.
A much more sensitive measure of the accuracy of the wavefunction is
the expectation values of one-electron operators. In Table VI. we

list the expectation values of the following one-electron operators

Second moments ri
2
- 1 -
Quadrupole moments OaB = /5(3rarB GaBr )
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Potentials 1/r
Electric fields fa = ra/r3
. _ 2.,.5
Electric field gradients dyg = (3rarB éaBr )/r
. ->
Densities 8(r)

for the two basis sets to be used in the present calculations as well
as a more accurate set which is known to yield results very close to
those obtainable with a completely uncontracted set.72 A discussion
of these properties can be found elsewhere.73 The computer program for
calculating the one-electron integrals over the Gaussian basis
- functions is a revised version of a program originally written by D.
Neumann and J. Moskowitz at New York University.7L+ First, it should
be noted that the addition of the diffuse basis functions to the
valence set has a negligible effect on all of the properties except
those related to the second moments. It is the second moments which
are, of course, most sensitive to the detailed form of the wave-
function at large distances. Comparing the expectation values for
the [ 4s2p/2s ] basis set with those of the larger [us3p/2s] set,
we note large changes only in the carbon field gradients. This is in
agreement with calculations on other molecules which also indicated
that more flexibility is needed in the p basis set of first row atoms
than is available in the contracted [ 2p] set, 0

From the energies and properties quoted above we can safely con-
clude that the valence basis set should be adequate for describing

those excited states of ethylene which arise from the atoms in their
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ground states. The expanded basis set should then not only be able
to describe the valence excited states of ethylene but possibly one
or two (wn¥*) Rydberg states as well.

To carry out the excitation operator calculations, a computer
program for Caltech's IBM 7040-7094 was written. Starting with the
output from the LCAO-MO SCF calculation on the ground state and a list
of the coupled elementary transitions, the program assembles the
necessary two electron integrals, solves the excitator operator
eigenvalue equations and computes the transition moments and
oscillator strengths. The program for diagonalizing the unsymmetric
RPA matrix was written by S. F. Persselin of the Rocketdyne Division
of the North American Aviation Company. An important point which
should be mentioned is that the use of symmetry was extremely im-
portant in efficiently assembling the two-electron molecular integrals.
To make optimum use of symmetry it is necessary to first transform
the integrals over the atomic basis functions to integrals over
symmetry adapted functions.

Calculations in the ISTA, TDA and RPA were first carried out on
the (wn*) states of ethylene using just the valence basis set,

[4s2p/2s] . The excitation energies, transition moments and oscilla-
tor strengths for the lowest singlet and triplet states are listed in
Table IX. As with the minimum basis set calculation reported
previously, the triplet state in the RPA is unstable, i.e., AE is

pure imaginary (see reference 34).
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A number of important features are evident in this Table. First,
these results support the conclusion drawn from the minimum basis set
calculation,3l+ namely, that o-m correlation as included in the excita-
tion operator method has a significant effect on both the excitation

o

energy and transition moment for the lowest (wm#) excited singlet
state. As was also found previously, the effect on the triplet state
is minimal. Thus, the overall picture which emerges from the accurate
valence basis set calculation is unchanged from that drawn from the
minimum basis set calculation. The numerical values are, of course,
in much better agreement with experiment. However, it should be
"noted that upon increasing the flexibility of the basis set the
excitation energy of the singlet state was lowered by over 2.5 ev in
the ISTA. This is due solely to the SCF improvement in the m¥#-orbital.
With the same change in the basis set the triplet state excitation
energies differ by only 0.1 ev. The large decrease in the singlet
state excitation energy indicates a marked sensitivity to the function-
al form of the m*-orbital and leads one to question whether this
orbital is adequately described even in the large valence basis set
used here. In the past it has been assumed, either implicitly or
explicitly, that the V state is a valence state and, therefore, that

56

a valence basis set should be adequate. As we shall see, this

interpretation of the V(1B u) state is inappropriate and more diffuse

3

~basis functions than those which occur in the valence set are

essential for a correct description of the state.
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Tables X and XI contain the results of the excitation operator
calculations on the lowest (mn®) singlet and triplet states of
ethylene with the expanded basis set, [us2p/2s] + R(3pZC). Compar-
ing these results with those obtained with just the valence set, the
most striking change is the marked improvement in the ISTA description
of the excited singlet state: the excitation energy is lowered by
nearly 1 ev and the oscillator strength by a factor of over 2. The
excitation energy is now only 0.7 ev above the experimental vertical
excitation energy58 and the calculated oscillator strength of 0.41
is in reasonably good agreement with the experimental value of ’\40.3.58
Although it is not obvious from the particle-hole amplitudes, an
examination of Table XII which contains the orbital expansion
coefficients for the improved virtual m¥-orbital reveals that this
basis set spans the space of the w¥%-orbital quite adequately. Again,
these changes result strictly from an SCF improvement in the n¥*-
orbital. TFrom these results it is obvious that a major defect in all
of the previous calculations on the singlet state (except for
Huzinaga'sGl) was the use of an inadequate basis set for the m%-
orbital.

The triplet state, T(3B3u)’ on the other hand, was little
affected by the addition of the diffuse basis functions, so we can
| conclude that such functions are not essential to the description of
the triplet m¥*-orbital. An examination of Table XII verifies this

conclusion,
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To further illustrate the differences in the w¥-orbitals, Table
XIII compares the charge distribution of the singlet and triplet
n%-orbitals with that of the ground state m-orbital as revealed by the
cecond moments and the <;1/rc> . As can be seen, the spatial extent
of the triplet w%-orbital is comparable to that of the m-orbital in
the ground state, being significantly more diffuse only along the CC
bond axis as expected from its nodal structure. This is a reflection
of the basic similarities in the electronic structure of the lowest
(ground) singlet and triplet states as discussed below. In the
excited singlet state, on the other hand, the w#%-orbital is quite
diffuse <:22> = 26.2889 a.u. and is bound by only 1.7 ev. These
results reveal a basic dissimilarity between the ground and first
excited singlet states. As is shown below, the planar V(1B3u) state
is just not a '"true" valence state but rather it is an ionic state.

To better understand the relationship between the N, T and V
states, let us examine the orbital representations of the excited
states. First, consider a minimum basis set representation of the
m- and w¥*-orbitals. Then, in terms of the atomic basis set
{2pa, 2pb}, we obtain for the spatial part of the m-electron wave-

functions (neglecting normalization)

3 .
T("By,) ¢ 2pa(1)2pb(2) - 2p, (2)2p_(1)

1
VB, ) ¢ 2p_(1)2p_(2) - 2p, (1)2p, (2)

Thus, we see that the triplet state is just the anti-bonding state



75

corresponding to the valence bond ground state. Hence, its charge
distribution should be somewhat similar to that of the ground state,
in agreement with the above calculations. The excited singlet state,
on the other hand, is an lonic state and as such would be poorly
represented by the above wavefunction; we clearly must allow the
orbital exponents of the basis functions in the w- and m¥*-orbitals to
be different. If C"* # C", then the wavefunction for the singlet

state is a sum of two terms:

v(1B3u)

{[QPa(l)Qpé(Q) + 2pé(1)2pa(2)] - [2pb(1)2pl')(2) + 2p];(1)2pb(2)] }
+ { [2pa(1)2pg(2) + 2pg(1)2pa(2)] - [2pb(1)2pé(2) + 2pé(1)2pb(2)]}
where

T v 2pa + 2pb
oo - %)

The first term (enclosed in the first set of braces) is a split-shell
ionic component analogous to the previous singlet state wavefunction.
The second term is a covalent component which did not appear in the
minimum basis set representation of the state. The ionic component
will clearly tend to have T << Ty in order to minimize the electron
repulsion with a static in-out correlation. In additiocn, upon

dissociation the functions in the covalent term asymptotically
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2p_ > 2p, (atom)

2p; ~ 3p, (atom)

and likewise for the terms on atom b. The excited singlet state
wavefunction cannot dissociate to two carbon 2p-orbitals for at

infinity the only available states are
2pa(1)2pb(2) + 2pb(1)2pa(2)

to which the ground and first excited triplet state dissociate. Thus,

we expect the covalent terms to also favor Cn* << ;“.

Since the diffuse nature of the V(1B3u) state of ethylene is a

consequence of the basic nature of the wavefunction, such behavior is

~expected to be general. In fact, calculations by Phillipson and

1,3 states of H. first indicated this

Mulliken75 on the lowest 5

>:"i'
u

trend of T and V states over a decade ago. The Hartree-Fock con-

1,3.4

figuration for the L, States is (cuog). Phillipson and Mulliken

took

and separately optimized the exponents in the Og and o orbitals for
each state. At the equilibrium internuclear distance for the ground

J.t
state they found that Cg = 1,325 and &, = 0.%75 for the T( lu) state
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and Cg = 1.450 and cu = 0.275 for the v(iz:) state in agreement with
the results for the analogous states in ethylene. In addition, while
relaxing the restriction Cu = Cg lowered the triplet state by 6.6 ev,
it lowered the singlet state by 8.8 ev. Referenced to the Hartree-
Fock ground state Phillipson and Mulliken obtained an excitation
energy and oscillator strength for the singlet-singlet transition of
12.38 ev and 0.275 which are in good agreement with the experimental

76).

values (12.27 ev for the excitation energy The calculated inter-

. + . . .
nuclear distance for the V(lxu) is 1.15 A° which is longer than that

77

for a Rydberg state, R wl.OSAO, but shorter than the experimentally
e

observed internuclear distance for the V state, Re = 1.2927 A9.77
While the results obtained by these authors are admittedly rather
crude approximations to the exact Hartree-Fock results, the different
behavior of the singlet and triplet states is expected to persist at
the Hartree-Fock limit. The significance of this calculation had,
until the present, been completely overlooked.

As stated previously, in calculations invoking the m-electron
approximation, Huzinaga61 also obtained a diffuse m%-orbital,
Cn* <0.4, for the v(1B3u) state of éthylene. However, he also found
that the energy was lower still for Cﬂ* = 0.2, which leads to an
orbital significantly more diffuse than that found here. To understand
these results we recall that Huzinaga used a Goeppert-Mayer-Sklar

potential to represent the interaction with the g-core. Thus, the

m%-orbital which he obtained was an eigenfunction of the Hamiltonian
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HGMS = h+2J +J_ + K
c m m

whereas the correct SCF Hamiltonian is

HSCF = h+2J -K +J_ +K
c c Ul i

The two Hamiltonians differ by the exchange interaction with the core
which is an attractive, and therefore binding, potential. Were the
orbital to be loosely bound, as it is in the V(lBsu) state, the neglect
of such an interaction could cause the orbital to be unbound, in which
case the optimum orbital exponent would be zero. In any event, neglect
of the core exchange potential would cause the diffuse character of the
state to be exaggerated. This character of the excited singlet state
casts considerable doubt on the pseudo-potentials chosen in previous
m-electron calculations to represent the o—core.S5

Robin, Hart and Kueblerio’have also suggested that diffuse basis
functions might be required in calculations on excited states.
However, they based their analysis on the virtual orbital approximation.
As emphasized earlier, such a representation of the excited state
wavefunction is completely inadequate.5 For example, in the present
case the 1m%*-orbital from the ground state calculation with the expand-
ed basis set has e(1m%®) = +0.0122 a.u. and <122>> = 224.43 a.u. and
leads to excitation energies of 9.1877 ev and 9.1874 ev for the V(lB3u)
and T(3B3u) states respectively.

The all-electron calculations on ethylene by both Schulman,
Moskowitz and Hollister65 and Kaldor and Shavitt66 used only a valence

)

. . 1
basis set and, thus, they obtained excitation energies for the V( BBu
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6,67 in an

state which are far too high. Basch, Robin and Kuebler,
attempt to circumvent the use of virtual orbitals, proposed that the
restricted Hartree-Fock equations be solved for the triplet state and
the set of orbitals so obtained used to construct the corresponding
singlet wavefunction. This has the advantage that both open-shell
orbitals in the triplet state are the eigenfunctions of a single
Hamiltonian and, so, the orthogonality of the orbitals is trivially
guaranteed and the calculations considerably simplified. However, as
we have seen, the spatial distribution of the w¥*-orbitals in the sing-
let and triplet states is markedly different. To see why this is so,

we note that the Hartree-Fock Hamiltonians for the w®-orbital in the

T and V states are

T(SB ) h .. h+2J - K +J - K
3u c ] T m

1
v(TB, )

=g
i

h+2J -K +J +K
C [¢] m kil

Thus, the singlet and triplet 7% Hamiltonians differ by QKN. I1f this
exchange interaction is large, as it is in the lowest (nn¥*) states, we
expect the singlet orbital to be considerably more diffuse than the
triplet orbital since this interaction is repulsive in the singlet
Hamiltonian. On the other hand, for some states such as Rydberg
states, as well as some valence states, the exchange interaction is
quite small and it is a better approximation to assume that the
singlet and triplet orbitals are the same.

In summary, we find that a more flexible basis set leads to a
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much improved orbital description of the lowest (7mn¥*) singlet state.
Let us now see how correlation affects this orbital description.
Using the results derived in Section 3.2., we see that the TDA
wavefunction contains (1) an orbital correction for the m#-orbital,
f“*, which turns the reference m¥*-orbital into the appropriate SCF
orbital and (2) portions of the pair functions which describe the
correlation of the m#*-orbital with all the valence c-orbitals, ﬁcﬂ*.

Comparing the difference between the ISTA and TDA for the valence
and expanded basis sets, we find that the decrease in the excitation
energy for the expanded set is less than half of what it is for the
valence set (0.52 vs. 1.10 ev). Furthermore, in the expanded basis we
find that the addition of o-7m% correlation actually increases the
oscillator strength by v25% whereas in the valence set it decreased>it
by more than 30%. Thus, the role played by o-u% correlation in the
description of the excited state in the TDA is significantly different
in the two basis sets. Energetically, we find that o-m* correlation
is much less dominant, although it is far from being negligible
(0.52 ev).

Although o-m correlation plays a reduced role in the description
of the energetics of the excitation process, an equally important
question is how it affects the charge distribution of the excited
state. From calculations on atomic negative ions, we know that split-
shell wavefunctions tend to exaggerate the diffuse nature of the

loosely bound orbital. In the atomic case angular correlation must be
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included for an accurate charge distribution e.g., in the hydride

78,79

ion, H , angular correlation decreases <:r2>> by nearly u40%. How

~ ~

then do the correlations described by U and U affect the spatial
distribution of the w¥%-orbital? From m-electron configuration inter-
action calculations68 we know that one dominant type of correlation in
molecules, that of left-right correlation along a bond, has little
effect on the charge distribution. This is a portion of G"n*, i.e., it
is strictly a m-electron effect. In analogy to the atomic case it is
possible, perhaps even probable, that the '"angular" correlation of
the m-electrons around the carbon-carbon bond, which is the remainder
of Gnﬂ*, would lead to a significant contraction in the w¥-orbital.
Of course, in molecules correlations other than just those between the
two open-shell orbitals can occur. Thus, we have yet to consider g-m%
correlation effects such as the TDA wavefunction contains.

In Tables XIV and XV the results of the natural orbital analysis
of the TDA wavefunctions for the lowest singlet and triplet (mm#)
states are presented. Note the compact fo;ﬁ of the natural orbital
wavefunction; only the six "virtual' orbitals in addition to the eight
orbitals occupied in the ground state need be considered. Thus, the
original twenty-five configuration wavefunction in terms of the regular
virtual orbitals has been reduced to just a six term expansion in the
natural orbitals.

Comparing the 7% natural orbital from the TDA wavefunction with

the frozen core w¥*-orbital, see Table XVI, we immediately note a marked
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contraction of the orbital. Thus, the effect of including the o-m%
correlation accounted for by the TDA has been to shrink the size of
the molecule. While it is reasonable that correlations of this type
would cause a contraction in the n¥-orbital, the magnitude of the
contraction seems unusually large. Perhaps it is a consequence of the
ionic nature of the wavefunction. On the other hand, the basis set
could be inadequate for describing the correlation effects in such a
diffuse state, e.g., there are no diffuse basis functions other than
in the w- and w%-orbitals, so that all o% virtual orbitals are
necessarily spatially contracted. An examination of the o% natural
orbitals reinforces this idea. However, there is insufficient infor-
mation at this point to draw a sound conclusion.

Before proceeding we should reconsider the results of the TDA
calculation on the lowest (wn¥®) singlet state with the valence basis
set. Knowing only the result of this calculation we might have thought
that the description of the excited state was quite adequate: both
the excitation energy and oscillator strength were greatly improved
over their ISTA values and were in reasonable agreement with experi-
ment. The calculations with the expanded basis set show otherwise,
however. It is obvious then that some care must be taken in doing
configuration interaction calculations especially if the character of
the state of interest is unknown. It is possible, as actually occurs
in the present case, that use of an inadequate basis set could
increase some portion of the correlation energy and, thereby,

obscure any need for a more flexible basis set. It must be
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realized that no minimum principle exists for any of the components

of the correlation energy and, thus, the pair energies calculated with
a given basis set are not necessarily an upper bound on the exact pair
energies. Before attempting to include correlation effects, it would
be best to obtain an accurate orbital description of the excited state
if for no other reason than to set some limits on the problem. It
should also be noted that such calculations are decidedly less expen-
sive than correlation energy calculations of even the limited type
considered here. A natural orbital analysis of the CI wavefunction

is also a useful means of monitoring the convergence of the wave-
function, for an examination of the natural orbitals will often
indicate any deficiencies in the basis set.

Finally, considering the RPA results for the singlet state given
in Table X, we see that, as before, the RPA leads to a significant
decrease in both the excitation energy and the oscillator strength,
although interestingly enough the oscillator strength is still above
that obtained in the ISTA. As was shown in Section 3.1., these
changes are due to the strong mixing of the (m#*an*B) configuration into

the Hartree-Fock ground state; for a basis set such as the one con-

sidered here CQ;W"NO.3. Thus, again the condition for the applica-

bility of the RPA, namely, that

mn
Cas v

is not satisfied. Using the previous calculation on ethylene as a
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puideline, we expect the neglect of the correlation coefficients to
increase the transition moment slightly and to decrease the excitation
energies appreciably. To estimate the correction to the RPA excitation
energy we must first determine the lowering due to the use of the
ground state approximation as separate from any which could be due to
the inclusion of triple excitations in the excited state and then we
need to correct the ground state energy for the mixing of the (m¥an®g)
configurations into the ground state Hartree-Fock wavefunction. From

m-electron CI calculations68 we find that the lowering due to the

inclusion of the (w*amw*B) configurations in the ground state is

ALO

i

-0.0322 a.u.

-0.88 ev

Determining the lowering of the RPA excitation energy due to the use
of the ground state approximation is unfortunately not gquite so
straightforward. It seems reasonable to assume, however, that the
lowering observed in an RPA calculation involving only the (ﬂﬂ?),
i=1, Oogs configurations is an approximation for the decrease in the
RPA excitation energy due to the neglect of the correlation
coefficients, since we are again dealing with a two particle system.
The difference between the RPA and the TDA in this case is 0.17 ev.
Thus, the corrected RPA excitation energy referenced to the RPA ground

state, Eq.(2.2-40), is

A (V) = 8.51 ev

Erpa
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This should be a good approximation for the excitation energy which
would be obtained upon solving the extended RPA equations. Referenc-

ing the TDA result for the triplet state to the same ground state, we

obtain

AERPA(T) = 4.25 ev,

The experimental values are 7.6 ev and 4.6 ev for the V and T states
respectively.

There is one major effect which still has not been included in
the RPA -- SCF relaxation of the o-core. Open-shell calculaticns on
. the V(lBSu) and T(aBau) states68 have shown that, while core changes
are of negligible importance in the triplet state, they lower the
energy of the singlet state by 0.6 ev. This is as expected since it
is the m%-orbital in the singlet state which differs significantly in
spatial extent from the m-orbital in the ground state. Inclusion of
the SCF changes will bring the calculated excitation energy into
better agreement with experiment.

In Table XVII we list the one-electron properties of ethylene in
' the lowest (mwn®) singlet and triplet states and the ground state.
.Because the triplet state has a charge distribution similar to that of
the ground state, we note a marked similarity in the expectation
values of the one-electron operators. Any differences are primarily
a result of the different "shapes'" of the m- and m*-orbitals. Quite

large changes in the one-electron properties are obtained upon
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(vertical) excitation to the lowest (mm#%) singlet state. The differ-
ences between the m¥®-orbital in the ISTA and TDA are clearly reflected
in the one-electron properties. For the triplet state the difference
between the properties in the ISTA and TDA are small and of little
importance. Because the ground state approximation is of limited
validity in ethylene, the differences in the properties between the

TDA and the RPA are exaggerated. For this reason the RPA results

have been omitted from the table (see the discussion at the end of
Section 2.3.). These expectation values unfortunately have essentially
no experimental value for the equilibrium geometry of both the T and V
states has the two CH2 groups rotated 90° relative to each other.56’58
They do, however, provide a means of displaying the changes in the
charge density which occur upon (vertical) excitation.

It has been suggested that changes in the forces on the nuclei
upon excitation should correlate with observed changes in the
equilibrium geometry. Examining the electric fields given in Table
XVII we predict that in both singlet and triplet states the CC bond
distance will be lengthened considerably and the HEH bond angle com-
pressed slightly. 1In addition, in the singlet state the CH bond
distance is predicted to be somewhat longer. While it is obvious that
the CC bond should be longer in the excited states, the predicted
changes in the hydrogen positions are probably completely unreliable

since they should be strongly coupled to the larger change in the CC

bond length. Finally, we note that forces can provide no information
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whatsoever about the much more interesting rotations around the CC
bond, since the components of the forces in this direction vanish by
symmetry.

. my 3
Accurate open-shell Hartree-Fock calculations on the T("B, ) and

3u
1 . 68
V( BSu) states of ethylene have recently been carried out and the
results are given in Table XVIII. The basis set is essentially the
‘expanded set employed here (the valence set is a [ 4s3p/2s] basis
formed from the primitive (9s5p/4s) set and the diffuse functions are
identical). We see that the excitation energy is in quite good
agreement with experiment although the oscillator strength is too

small by a factor of two. It should also be noted that the Hartree-

Fock excitation energy is now below the experimental value in distinct

contrast to the previous calculations.Gb’67

This is in agreement with
conclusions drawn in Section 3.3. where it was argued that open-shell

states such as the (wn¥*) states of ethylene should inherently have

a smaller correlation energy than the ground state so that

AEHF < ABexp

Since the excitation energy is the sum of the differences of the

Hartree-Fock and correlation energies, the SCF calculations indicate

that

g% _ Egd
corr corr

=~ 0.23 ev

Considering the diffuse nature of the w¥%-orbital, a difference this
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small is somewhat puzzling. This could be due to other changes which
accompany excitation, e.g., the contraction of the o- and w-orbitals.
Since this same phenomena occurs in hydrogen, however, it is likely
that this is an intrinsic property of such "ionic" states, ~»81

We see that the open-shell Hartree-Fock calculations also give
a diffuse m¥%-orbital. In fact, we see that the m®-orbital in the SCF
approximation is significantly more diffuse than the frozen core m#-
orbital, e.g., <n*]22|n*:> = 42.1 a.u. vs. 26.3 a.u. This is caused
by the relaxation of the core orbitals (both ¢ and m) which upon self-
consistency become more contracted than in the ground state. Combining
this observation with the fact that SCF relaxation of the core also
lowers the energy of the V(1B3u) state by 0.6 ev, it is obvious that
an accurate description of the V(1B3u) state of ethylene cannot be
obtained if such self-consistency is neglected. However, we do find
that the essential physical characteristics of the excited state are
contained in the frozen core, TDA and RPA wavefunctions.

For the triplet state, self-consistency has a much smaller effect
on the charge distribution and, thus, the frozen core approximation
is more reliable. In fact, one might expect this to be the general
trend in most "true" valence states.

As was noted previously, the o-m% correlation effects contained in
the TDA causes a significant contraction in the m%-orbital, e.g., in
the TDA <:n*|22]n*:> = 10.7 a.u. Judging from the open-shell Hartree-

Fock calculations, the charge distribution in the TDA is too con-
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tracted spatially, since the TDA does not include any SCPF relaxation
ot the core.

Both the excitation operator and open-shell Hartree-fock calcu-
lations lead to a V(1B3u) state which is considerably more ditfuse
than a valence state. Since this conclusion is at odds with the
interpretation of the experimental results as well as with previous
theoretical discussions about the nature of this state, it would seem
necessary to briefly discuss the experimental facts known about the
V(lBSu) state of ethylene.82

The m>n¥* (N>V) electronic transition of ethylene58 consists of
a single, slightly irregular progression of diffuse bands of rapidly
increasing intensity. The origin of the bands (0+0 transition) is
thought to be near 2650 A’ with absorption beginning in the gas phase
at %2100 A° and merging into a continuum at 1750 A° which reaches a
flat maximum at 1620 A”. The maximum in the absorption curve is thus
at 7.65 ev which according to the Franck-Condon principle corresponds
to a vertical excitation. Since the excited state has three bonding cC
orbitals (OQF) and one anti-bonding orbital (m®), excitation of the
carbon-carbon stretching vibration is expected to occur. On this
basis Wilkinson and Mulliken58 assigned the observed bands as pro-
gressions in the upper state carbon-carbon stretching vibration,

. . 58
1 Although Wilkinson and Mulliken

obtaining a frequency of 852 cm
"recognized that the equilibrium geometry of the V(1B3u) state had the

two CH2 groups rotated at 90° relative to each other,56 they neglected
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any effect torsional oscillation might have on the spectrum. Later,
McDiarmid and Charney83 re-interpreted the spectrum as progressions
in the V state twisting vibration, obtaining a frequency of 807 cm_1
compared to 1027 cm_1 in the ground state, and Ogilvieau has even
attributed them to the CH2 wagging vibration. Finally, in 1969
Merer and Mulliken85 put forth the argument that both stretching and
‘ twisting vibrations must be taken into account and claim that reason-
able agreement between the calculated and observed band structure
can be obtained in this way. However, pending further work, they did
not give the stretching and twisting frequencies so obtained. At this
time then, reliable estimates of the vibrational frequencies of any
of the modes in the V state are not available.

If the planar V(1B3u) state of ethylene is actually as diffuse as
the calculations predict, it might be expected that the stretching
1

58

frequency would be nearly that of a Rydberg state, 1300 cm_

. 58 . .
Mulliken -85 has estimated the carbon-carbon bond length in the

v(?

B3u) state to be 1.70-1.80 A® (in analogy with the "corresponding"
states in the oxygen molecule77) whereas the equilibrium bond length
for the first Rydberg state is ~1.45 A°, Clearly, however, these
simple deductions are complicated by the fact that, unlike Rydberg
states, the V(lBsu) state has an equilibrium geometry with the planes
of the two CH2 groups at right angles. In addition, although the m#%-

orbital is considerably more diffuse than a valence orbital, it is

not as diffuse as a typical Rydberg orbital, e.g., the first Rydberg
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m*-orbital in the triplet series has an <:z2>> = 69.6 a.u. vs.
26.3 a.u. for the m%-orbital in the V state. Unlike Rydberg states

we also might expect the ionic component of the wavefunction, which
in a minimum basis set description was the only component, to be an
integral part in the description of the state. Thus, although a
formal analogy exists between the Rydberg states and the V(1B3u)
state because of the diffuse nature of the w®-orbital, one should be
cautioned against any broad generalities until a more thorough
investigation has been completed.

Information on the spatial extent of a state can also be obtained
from the spectrum of the molecule in either the solid phase, in a
matrix or under extremely high pressure. In such a situation the
diffuse orbital is strongly perturbed by the neighboring atoms or
molecules resulting in a marked change in the spectra. Lubezky and
Kopelman86 obtained the spectrum of a molecular crystal of ethylene
1-mm thick. The only "positive" results which they obtained were two
weak and relatively sharp transitions at 20uu A°and 2079 A° which they
assigned to the N+V transition. Because of the lack of data this
assignment must be considered tenative. Robin et al§7 report the
spectra of ethylene in both a Krypton matrix and in the gas phase
yith 2200 psi of N2 added. Although they were interested in the first
Rydberg transition, and therefore the spectra is somewhat incomplete
as concerns the V(1B3u) state, the underlying vibrational structure

which is attributed to the V state does not differ radically from



92

that in the gas phase. In summary, the experimental data on the

physical characteristics of the V(lB u) state are quite incomplete

3
and attest to the difficulty in interpreting the spectra of a molecule
even as simple as ethylene. Of all of the experimental work done on
ethylene only that of Robin et al?7 has provided any information on
the extent of the excited state charge distribution and even there the
data at present are quite incomplete. The basic question, of course,
is not whether the state is perturbed on going to the solid phase but
is how diffuse a state has to be before it is perturbed significantly
by the neighboring atoms and molecules and how does the perturbation
depend on the angular characteristics of the diffuse orbital, the
composition of the matrix, e’cc.,a'7 although certainly the disappear-
ance of the first Rydberg state of ethylene sets some limits.67

Of course, the spatial extent of the V state in its equilibrium
configuration with the two groups rotated 90° relative to each other
need not be as diffuse as it is for the planar configuration.

In addition to the lowest singlet and triplet (uwn®) states of
ethylene, the expanded basis set is sufficiently flexible so as to
adequately describe the first (ww®*) Rydberg state. The excitation
energies, transition moments, oscillator strengths and particle-hole
amplitudes for these states are given in Tables IXX and XX.

In the frozen core approximation the excitation energy for the
Rydberg singlet state is 9.12 ev. Since the Koopmans's theorem

ionization potential for this basis set is 10.15 ev, the stability of
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the Rydberg state 1s -1.03 ev. Correcting the excitation energy for
the difference between the Koopmans's theorem88 and experimental
ionization potentials (0.37 ev), we predict a singlet (mn®*) Rydberg
state at 9.49 ev and the corresponding triplet state at 9.14 ev.
Since the oscillator strength is predicted to be rather large,
f v 0.16-0.05, this transition should be observable in the optical
spectra.

wilkinson89 has observed four Rydberg series in the ultraviolet
spectra of ethylene. Of these, three have their first members in the
region of the strong N+V transition, so that they cannot be attributed
to mnm* excitations. The fourth Rydberg series has its origin at
3.05 ev and Wilkinson has tenatively assigned this as a w»n¥* transition
with n = 4 and a quantum defect of 0.95. The theoretical calculations
presented here locate the first Rydberg (mn®*) state of ethylene at
9.5 ev. As was discussed previously, the lowest singlet (mm®) state
dissociates to atoms in a (2p,3p) configuration, so the appropriate
quantum number for the first Rydberg level should be n = 4 in agree-
ment with Wilkinson. The calculated quantum defect is 0.47. The fact
that the 2m% orbital has an effective quantum number of four can
also be understood by noting that the 1w* orbital is nominally a 3d-
orbital of the positive ion and, thus, the 2n% orbital will be the
4d-orbital. Because of the nature of the lower (1mln®) state, we
expect the (1n27%) state to be somewhat perturbed from an atomic-like

structure. This iIs reflected in the quantum detect; d-orbitals
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usually have § ~ 0.

Examining these tables in more detail we see that the difference
in the ISTA and TDA excitation energies are considerably smaller for
the second (wn*) state than for the first: 0.18 ev vs. 0.52 ev for
the singlet state and 0.01 ev vs. 0.11 ev for the triplet state.
Since the TDA wavefunction is primarily accounting for o-m#% correla-
tion, this is direct evidence for the decreased importance of such
effects in Rydberg states. As a result, the correlation energy of a
lydberg state is similép to that of the positive ion as was discussed
in the Introduction. The decrease in the oscillator strength by a
factor of more than three is indicative of significant changes in the

.electronic structure of the excited state which are not, however,
‘reflected in the energy changes.

The difference between the description of the state in the TDA
and in the RPA is much smaller than for the lowest (ﬂn*)‘state and
the triplet state is now stable. The decrease in the oscillator
strength for the singlet state is again more than might have been
expected. The smaller effect of the RPA on the excitation energies
i3 not an indication of a smaller effect of the (w%aw®B) configura-
tions on the ground state, that is a constant which is independent of
the excited state under consideration, but reflects a decreased
sensitivity of the equations to the ground state approximation.

The orbital expansion coefficients for the w¥-orbitals from both

the ISTA and TDA wavefunctions are given in Table XXI. A reasonably
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accurate description of the singlet or triplet excited state can be
obtained just by combining the appropriate frozen core (ISTA) m¥-
orbital with the remaining ground state orbitals. The effect of the
TDA upon the (singlet) m¥*-orbital is evident both in this Table and

in Table XXII, which contains expectation values of the second moments

" and 1/r

o Just as in the lowest (7mw®) state the additional con-

figurations in the TDA has caused a substantial contraction in the
2m%-orbital. In fact, if the overlaps of the ISTA and TDA orbitals
are any criterion, the differences are even greater in this case than
in the lowest (nn®) state. This result is at present inexplicable,
although it could be an indication that the basis set in not suffi-
ciently flexible to describe the correlations in such a diffuse
Rydberg state.

Open-shell Hartree-Fock calculations have also been carried out
on the second (ma®) state.68 These calculations predict the second
Rydberg state to be at 9.61 ev with an oscillator strength of 0.06,
in good agreement with the excitation operator calculations. As for
the lowest (mw®) state the SCF 7n¥%-orbital is considerably more diffuse
than the frozen core orbital (186.7 a.u. vs. 137.7 a.u.).

In summary, both the excitation operator and open-shell Hartree-
Fock calculations predict a Rydberg (nn®*) state at Vv9.5 ev with an
oscillator strength in the range 0.16 - 0.02. Tentatively, this is
correlated with the R''' state observed by Wilkinson in the optical

Spectra.
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4.2. Other valence excited states of ethylene

Excitation operator calculations were also carried out on a
number of other singly excited states of ethylene. Only those tran-
sitions terminating in the m¥%-orbital were found to be valence

"states. Because these states are true valence states, the [MSQP/QS]
set was found to be adequate and the results reported here are for
that set. All other excited states involved Rydberg o*-orbitals which

‘ cannot be adequately described by our basis set (the expanded set

contains only diffuse 7 and m%-orbitals).

The lowest (orm*) states arise from the transitions

. 1,3
1b1g > w B3g

3a > o 1’3B
ag 2g

Neither of these transitions is dipole allowed and, hence, they will
appear only weakly in the optical spectrum if at all. In fact, no
such states have even been reported, all of the observed lines in the

spectra above the V(lB3u) state being attributed to Rydberg

89

‘transitions. It is possible that such states could be detected in

. 90,91
electron impact work™~? where the usual selection rules are no longer

valid and where the intensity of forbidden transitions has identifiable
characteristics.
Tables XXIII, XXIV, XXV and XXVI list the excitation energies and

particle-hole amplitudes for the singlet and triplet ng and B2g
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states. The effect of ¢g-w* correlation as contained in the TDA and
RPA is seen to be of minor importance in all four states. Even though
the (w®an®B) configurations are quite important in the exact ground
state wavefunction, they have no effect on these excited states since
they do not occur in the corresponding RPA ground states. See

. £q.(2.2-40) and (3.3-3).

In 1963 Berryg2 suggested that o+7m* transitions could have low
excitation energies in ethylene in analogy to the n>m* transition in
formaldehyde. He chose the 1b1g+n* transition as a most likely can-
didate on the basis that the 1b1g—orbital most closely resembles the
n-orbital of formaldehyde (it is also highest in energy of the u-
orbitals). Since the excitation energy for the singlet n»u® tran-
sition in formaldehyde is "4 ev, we see that the analogy is far from
complete. This result is due to the lower energy of the 1b1g—orbital
(2 ev) and the reduced Coulombic interaction between the 1b1g— and
m*-orbitals (4 ev); it should be remembered that the n- and n¥®-

orbitals in formaldehyde are both predominantly on the oxygen. At

the time this explanation was put forth to explain the so-called

93 90,91 ,94

“"mystery band" of ethylene. However, recent experimental work
has failed to confirm the existence of this transition, although Ross
and Lassettreg1 have attributed small irregularities in their
~electron impact spectra of ethylene in the region around 7 ev to a

quadrupole transition.

In Table XVII we list the orbital expansion coefficients for the
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n%-orbital in the singlet and triplet B3g and B2g states from the ISTA
or frozen core wavefunctions. Because of the small changes associated
with higher approximations to the excitation operator, these improved
virtual orbitals when combined with the appropriate ground state
orbitals (see Table V) should provide a reasonable approximation to
the excited state wavefunctions. Note that the expansion coefficients
illustrate quite effectively the valence-like nature of the wm¥-orbitals
(compare with the coefficients in the expansion of the n¥®-orbital in
the V state, Table XII).

Just for the sake of completeness, a number of one-electron
properties of the o»>7® excited states are given in Table XVIII. The
second moments indicate that both states involve the removal of a
predominantly carbon-hydrogen bond orbital from the o-core. Examina-
tion of the expansion coefficients of the 1b1g— and 3a1g—orbitals
given in Table V support this conclusion. If the forces are any
indication of the equilibrium geometry, we would predict that the
carbon-carbon bond length will be smaller than the ground state in the
1,3 1,3

B states. In addition, in all

B3g states and longer in the 26

four excited states the HéH bond angle is predicted to be significantly
cmaller and the CII bond length longer than in the ground state. The
larger changes in the forces associated with the hydrogens again
indicate carbon-hydrogen character in the o orbital. Note the small
differences between the charge distributions in the singlet and triplet

states of the same orbital configuration.
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5. CONCLUSIONS

Although the Tamm-Dancoff and random-phase approximations have
been actively discussed for many years, especially in reference to
s0lid state18’30 19,20,29

and nuclear physics, the use of these methods

in atomic and molecular systems has been suggested only recent-

1y.31’3”’39

Because of the indeterminate form of the interaction
potential in solids and nuclei, the work in these areas tested the
ability of the TDA and RPA to provide a semi-empirical framework for
the interpretation of experimental results more than their effective-
-ness as ab initio methods. In addition, the phenomena which occur in
the infinite electron gas and in infinite nuclear matter are inherently
different in nature from those which occur in atoms and molecules,
e.g., the states of interest often correspond to collective modes.30
Because of the known interaction potential (1/rij) in atomic and
molecular systems and because it is now possible to carry out rigorous
calculations on molecules as large as ethylene, we were able to care-
fully examine some of the approximations involved as they pertain to
atoms and molecules.

Unfortunately, the analysis of the TDA and RPA was complicated
by the discovery that the (wn¥®) excited singlet state of ethylene has
a much different character than had been expected. Thus, it is likely
that ethylene is too stiff a test case and that the TDA and RPA could

lead to more consistent results for larger systems where the basic

approximations may be more valid.
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For ethylene the TDA and RPA lead to reasonable values for the
excitation energies and oscillator strengths. ilowever, we found that
the correlation introduced by these methods does not always enter in
the ground and excited states in a particularly balanced manner and
that SCPF changes in the core are neglected. In addition, the strong
mixing of the (m*un®B) components into the ground state of ethylene
led to a number of problems in the RPA, e.g., instability of the
triplet, T(3B3u), equations and too low an excitation energy for the
V(1B3u) state. Comparing the results of calculations with a valence
and an extended basis set we found that the role of o-m* correlation
varied considerably. In the valence set such correlation was an
essential part of the description of the excited state. In the more
flexible set, however, o-m* correlation was reduced to the auxiliary
role of modifying a much improved orbital representation of the state.
While causing small changes in the excitation energy and oscillator
strength for fhe V state, the o-w* correlation effects caused a
csubstantial contraction in the spatial extent of the charge distribu-
tion of the excited state. While this could be due to basis set
limitations, it is also possible that it is an intrinsic property of
such "ionic" wavefunctions.

It is not expected that the diffuse character of the V state is
limited to ethylene, but rather such states should also be present in

such molecules as butadiene, benzene and napthalene. In the larger

systems it is expected that some m»>m® singlet transitions will involve
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valence m¥~orbitals while others will make use of expanded orbitals as
in ethylene.

The diffuse nature of the V states has extensive implications in

many areas of chemistry. Thus, because of the extended size of the
molecule and the low binding energy of the n®-orbital, ethylene in its
V(lBsu) state might be expected to be rather reactive, especially in
reactions which involve electron transfer. In addition, the exciton
structure of a molecular crystal of ethylene would be decidedly
different than would be expected for a valence state. Although there
has been little experimental interest in crystalline ethylene, as
mentioned above such diffuse states are also expected to occur in
molecules such as benzene and naphthalene which are more accessible

experimentally.
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Nonempirical Calculations on Excited States: The Ethylene Molecule

TroM. H. DunNiNG* AND VincenT McKov
Gates and Crellin Laboratories of Chemistry,t California Institule of Technology, Pasadena, California
(Received 2 March 1967)

A series of nonempirical calculations are reported on the excited states of the ethylene molecule using a
recent minimum basis set LCAO MO SCF wavefunction. For the lowest excited singlet state of ethylene
(*B;.) the coupling between the » electrons and ¢ electrons is significant: the excitation energy being de-
creased from 11.98 to 10.17 ¢V and the oscillator strength from 1.03 to 0.73. This coupling has little effect
on the triplet state. In the next higher approximation (the random-phase approximation) the excitation
encrgy is further decreased to 9.44 eV and the transition moment to 0.51. With the use of accurate LCAO
MO SCF wavefunctions, it is felt that the methods presented here will provide a basis for the theoretical

interpretation of electronic spectra,

1. INTRODUCTION
A. General

Now that the application of the Hartree-Fock-
Roothaan treatment of the electronic structure of
molecules is practical for many molecules of chemical
interest,”® one of the more important problems in
molecular quantum mechanics is assessing the effect
of electronic correlation particularly for observables
other than the total energy. To obtain even a simple
approximate Hartree-Fock wavefunction for a rela-
tively small molecule requires a fair amount of effort
and computer time. Very accurate Hartree-Fock wave-
functions for the ground state would demand a prohibi-
tively large investment. If one is interested in properties
related to two states, the problem becomes even more
formidable, and correlation effects have still not been
included. What we show in this paper is that correlation
cffects are significant in locating an important excited
state of ethylene (for both excitation energy and
oscillator strength for the singlet state located at 7.6 ¢V
experimentally), but that it can be described quite
economically from a simple ground-state Hartree-Fock
calculation by applying, among others, the theory of
the random-phase approximation (RPA) for electronic
correlation. We chose the methods for their conceptual
usefulness and potential for future applications, but
they arc certainly not the only ones which would
yield these results.

The methods to be employed have been widely used
both in nuclear and solid-state physics*? and more
recently in the study of electronic correlation in atoms®

* Woodrow Wilson Foundation Predoctoral Fellow 1965-1966.

t Contribution No. 3527.

'L. C. Allen and A. M. Karo, Rev. Mod. Phys 32, 275 (1960).

? B. J. Ransil, Rev. Mod. Phys. 32, 245 (1960).

3R. M. Pitzer and W. N. Lipscomb, J. Chem. Phys. 39, 1995
(1963); W. E. Palke and W. N. Lipscomb, J. Am. Chem. Soc. 88,
2384 (1966).

¢]. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A242, 57 (1957).

5 D. J. Thouless, Nucl. Phys. 22, 78 (1961).

¢ P. W. Anderson, Phys. Rev. 112, 1900 (1958).

?H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961).

#P. L. Altick and A. E. Glassgold, Phys Rev. 133, 632 (1964).

and molecules.® The theory as applied here is not very
difficult and the physical concepts are simple. In keep-
ing with the usual procedure in these fields, we derive
the equations using the formalism of second quantiza-
tion. In this representation we can make reasonable
approximations which are difficult to formulate in the
coordinate representation. All of the equations derived
in this paper are obtainable from appropriate varia-
tional procedures, but the method employed here has
the advantage that the approximations are explicitly
displayed and the removal of any difficulties is a con-
ceptually straightforward matter.

We chose ethylene as our example as its spectrum is
of considerable interest. It is not necessary to stress the
importance of understanding the ethylene molecule
quantum mechanically. Tt is the simplest w-electron
system and a prototype for larger w-electron molecules.
If we want to know the properties of some of its excited
states, we need to have some physical idea as to how
“to get” this state from the ground state. The problem
is one of finding a form for an operator A*(F) such
that it satisfies the following equation:

(3¢, A*(£)] | 0)=ALAY(E) | 0), (1

where JC is the complete electronic Hamiltonian for the
molecular system under consideration. The operator
A*(FE) contains whatever physical information we have
about the excited state of the system. We see that the
operator A*(I)) generates an excited state of the
Hamiltonian 3C, with excitation energy AE, when it
operates on the ground state;i.e.,

A+(E) |0)= | E). (2)

Note that the above describes a vertical excitation. In
practice, because of electronic interaction, A*(E) can-
not be determined such that the above equation is
exactly satisfied, but rather we have

[s¢, S*(E)J=AES*(E)+R (3a)
~ALESH(E), (3b)

? A. Herzenberg, D. Sherrington, and M. Suveges, Proc. Phys,
Soc. (London) 84, 465 (1964).
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He H3

H2 H4
F16. 1. The geometry of ethylene.

where R represents all the terms which cannot be
reduced into a form consistent with S*(E). The
operator S*(E) generates an approximate excited
state of the system when it acts on the ground state.
It is one of the variables of the problem in whose
formulation we may utilize our chemical intuition.

In this paper we consider the following three approxi-
mations for the excited states created by the excitation
operator St(E),

(1) The single-transition approximation (STA)® is
the approximation most frequently used by chemists.
It assumes that the excited state can be represented by
a single particle above the set of levels occupied in the
ground state coupled with a hole within that set, e.g.,
the 'B;.4—14,, transition in ethylene would correspond
to an electron going from a =-bonding to a m-anti-
bonding orbital.

(2) In the Tamm-Dancoff approximation (TDA)49
the excited state is represented as a linear combination
of single-particle transitions. This method is encoun-
tered quite frequently in molecular quantum mechanics,
e.g., in the study of the spectra of aromatic molecules by
Pople. Again, with ethylene as an example, we now
include in the excited-state wavefunction configurations
corresponding to moving an electron from the “¢” and
“CH” bonding orbitals (the ¢ core) into antibonding
levels.

(3) In the random-phase approximation (RPA)%#
the excited state is still represented by a linear combi-
nation of single-particle transitions except that now we
allow the ground state to include configurations other
than just the Hartree-Fock (HF) component, i.e., the
effects of configuration interaction (CI) are, to some
extent, taken into account. We still solve an eigenvalue
equation for AL directly. This, as expected, is an im-
provement on Method (2).

In the above a “hole” state corresponds to an
unoccupied level within the normal HF ground state
while a ‘“particle” state denotes an occupied virtual
orbital. Excitation of the type considered here creates

2 C, C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
1]J. A, Pople, Proc. Phys. Soc. (London) A68, 81 (1935).
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“particle-hole” pairs, each such pair having its own
frequency (cxcitation energy). By diagonalizing the
Hamiltonian matrix within this set we find the normal
modes of the assembly of coupled oscillators. Surpris-
ingly, such coupling is not negligible in ethylene as it
reduces the oscillator strength given by the STA by a
factor of 2.

B. The Ethylene Molecule

To provide a concrete foundation for the above
approximations, we have done the complete set of
calculations on the ethylene molecule utilizing the
recent minimum basis set LCAO MO SCF calculation
by Palke and Lipscomb.!? The excited state in which
we are most interested is the one which arises from the
so-called r—#* transitions which, if we define the
coordinate system as shown in Fig. 1, is of symmetry
B;, with the emitted radiation polarized along the
x axis. Since some new concepts have arisen from this
work, especially in regard to the r-electron approxima-
tion, we briefly review three of the more significant
m-electron calculations on cthylene in order to gain the
proper perspective.

The first nonempirical m-electron calculation on
ethylene was by Parr and Crawford® using the formal-
ism developed by Goeppert-Mayer and Sklar." Their
results are typical of nonempirical r-electron calcula-
tions: the predicted spectra being in qualitative, but
not quantitative, agreement with experiment. The
results of this calculation, as well as the following two,
are listed in Table I along with the experimentally
observed excitation energies and oscillator strengths.
Still within the m-electron approximation, Murai'
relaxed the constraints on the w-molecular orbitals by
allowing the orbital exponents of the atomic Slater
orbitals to be a function of the state of the system. As
is evident from Table I, the triplet state is now in
better agreement with experiment while the singlet

TapLe I. w-Electron calculations on the excited Biy state of
ethylene: excitation encrgies (in electron volts), oscillator
strengths, and ionization potential.*

Parr and

Crawford Murai  Huzinaga  Exptl
3B, (T) 3.10 4.60 4.45 4.6
1By, (V) 11.50 11.20 7.28 7.5
S(By,) ~0.3b
LP. 11.90 8.80 8.52 10.52

8 Except as noted, see text Ref. 28.
b M. Zelikoff and K. Watanabe, J. Opt. Soc. Am. 43, 756 (1953).

2W, T, Palke and W. N. Lipscoml (private communication),
BR, G. Parr and B. L. Crawlord, J. Chem. Phys. 16, 526
(1948). . )
4 M. Goeppert-Mayer and A, L. Sklar, J. Chem. Phys. 6, 645
(1938). ! ;
18T, Murai, Progr, Theoret. Phys. (Kyoto), 7, 345 (1952),
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state, which was in much need of improvement, has
hardly changed. Iinally, Huzinaga'® carried the =-
electron approximation to its fullest by permitting the
bonding and antibonding m-molecular orbitals to have
different exponents as well as allowing the exponents
to vary with the state. The predicted spectra now agree
very well with experiment. However, the calculated
ionization potential is far below the experimental.

The m-electron treatment of ethylene has attained a
refinement which cannot be approached in larger -
electron systems and still all the experimental facts
cannot be adequately explained. An improvement in
the theoretically calculated value of one observable is
attained only at the expense of poor values for other
observables, We feel that the calculations presented in
this paper go a long way towards resolving these diffi-
culties. We can sce the role played by electronic
correlation in the excitation process and discuss a
simple method of taking it into account.

One may have expected that the problem of the
spectra of cthylene would be resolved once an accurate
16-electron Hartree-Fock treatment of the molecule
was available, for then the core potential would be
adequately defined. However, the locations of the ex-
cited states obtained from Palke and Lipscomb’s LCAO
MO SCF wavefunction are comparable to those ob-
tained by w-electron theory (compare the STA results
in Tables V and VI with those for the Parr and
Crawford calculation given in Table I) and therefore
the trouble with predicting the spectra does not arise
completely from the m-electron approximation for the
ground-state calculation.

The source of the trouble is the neglect of the change
in the ¢ core upon excitation; the = electrons being
coupled by the residual electronic interaction to the ¢
electrons. In fact, this coupling is sufficiently strong to
cause a decrease of about 2 eV in the excitation energy
and a decrease of 309, in the oscillator strength for the
B4, transition compared to the 7—=* approxima-
tion. As cxpected, the RPA further decreases the exci-
tation energy to 9.44 eV and the oscillator strength to
0.51.

A word of caution is appropriate at this point. Our
calculations arc based on a minimum basis set LCAO
MO SCI calculation and as such we have not reached
the Hartree-Fock molecular-orbital limit. As a remedy
for this we could enlarge the basis set, for example, sce
the results of Moskowitz and Harrison" using a large
set of Gaussian orbitals which predict values for the
excitation energies using the zw—n* approximation
which are almost as good as ours using the RPA.

The methods discussed here arc not the only ones
relevant to the problem. One could use the LCAO MO
SCF results as a basis for an extensive configuration-

18 S. Huzinaga, J. Chem. Phys. 36, 453 (1962).

7J. W. Moskowitz and M. C. Harrison, J. Chem. Phys. 42,
1726 (1965); J. S. Schulman, J. W. Moskowitz, and C. Hollister,
J. Chem. Phys. 46, 2759 (1967).
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interaction calculation on both the ground state and
excited states. Besides being uneconomical (for a large
number of molecular integrals must be assembled), the
following consideration must be taken into account. In
the usual Cl calculation one mixes in components
corresponding to double excitations from electrons in
the same spatial orbital. These are usually the most
important. However, the lowering that we observe
while essentially being a correlation effect is due to
correlations between electrons in orbitals that are quite
different spatially, i.e., as Herzenberg et al? state
“correlations extending from bond to bond.”

Alternately, one could do an open-shell LCAO MO
SCF calculation on the excited states with the hope
that correlation effects would cancel. This method
would allow for some relaxation of the ¢ electrons and
should give an excitation energy lower than the STA.
However, preliminary open-shell calculations in this
Laboratory and others (e.g., see Ref. 17) indicate that
the relaxation of the core electrons has a small effect
on the excitation energy and the oscillator strength.
These results emphasize that the important coupling
is due to the residual o—r interaction, i.e., it is a correla-
tion effect. )

As a brief outline of the remainder of the paper, in
Sec. IT we discuss the main ideas of second quantization
and then derive the equations related to the various
approximations to A*(£). In Sec. III the results of
the calculations on ethylene are presented in detail.
In Sec. IV we discuss the results and comment on
their interpretation.

II. THEORY

The electronic Hamiltonian for the molecular system
is, in atomic units,

= Z['—%Viz—( Zza/fai) 1+3 Z Zﬂj"l (4a)
= lea+% 2 Zv;j-

(4b)
1

In the Hartree-Fock approximation we replace the

electronic interaction term, } D, by an effective

one-particle potential, V. The lowest NV eigenfunctions

of the new Hamiltonian

(H+V) | i)=e]1%) (5)

are then combined into a Slater determinant in order
to form the Hartrec-Fock molecular wavefunction,
| HF).

For molecular systems explicit numerical solution of
the Hartree-Fock equations is intractable and an addi-
tional approximation is required; namely, that the
molecular orbital, | 7), can be satisfactorily approxi-
mated by a linear combination of atomic orbitals
centered on the various nuclei (the LOCAQ approxi-
mation). The Hartree-Fock, or molecular-orbital,
limit can, thus, be achieved only through the use of
large basis sets.
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Combining Egs. (4b) and (5) the complete electronic
Hamiltonian can be written as

ge= 2 (Hi+V)+ 23 vi—Va). (6)
i v 3
The last two terms comprise the residual interaction
and give rise to electronic correlation.
In the notation of second quantization'® the Hamil-
tonian is

= Zﬂa.’*aﬂ'é Zvn‘jklaj+ai+akal
T ryoet
- %(vﬂiﬂk—vﬂ)‘kﬁ) aitar, (7)

where we have introduced the explicit form of the
Hartree-Fock one-particle potential, V. The operators
a;t and a; are the creation and annihilation operators.
The operator a;* acting on a state puts an electron into
level ¢ while a; does just the reverse. The usefulness of
this “occupation number” representation is in part due
to the fact that in this new representation we can make
reasonable approximations which are very difficult to
formulate in the coordinate representation.
The integrals V;;,; are defined by

Vo= [[62)8,4 Drrt6u(1)(2) dudy

the ¢,’s denoting the molecular spin orbitals. In this
equation and the ones to follow, we denote by the
subscripts

a, B3, 7,8, «+ - single-particle states occupied in the
Hartree-Fock ground state (i.e., hole
states),

m,n, p, g, + - single-particle states unoccupied in
the Hartree-Fock ground state (i.e.,
particle states),

1,7, k, 1, »++ any state (either particle or hole).

If we define the Fermi level, ¢ (we use it just for
vocabulary purposes), as being the uppermost level
which is occupied in the Hartree-Fock ground state,
then in the Hartree-Fock approximation the orbital
occupation numbers are given by

ﬂ.’—"—‘l, C;SEp;

n;=0, € > €p.

These are just the expectation values of the number
operators fi;=a;*a; over the HF ground state. A
transition will then be defined as removing an electron
from below the Fermi level and placing it above.

We now need the precise form of the excitation
operator, S*(E), in second quantization. But, before
doing this we require a further property of the exact

% A concise discussion of the formalism of second quantization
may be found in L. D. Landau and E. M. Lifshitz, Quantum
Mechanics, Non-Relativistic Theory (Pergamon Press Ltd.,
London, 1958), pp. 215-223.

106

DUNNING AND V. McKOY

excitation opcrator. Denoting the eigenstates of the
Hamiltonian I by | 0), | E), etc., the equations defining
the excitation operator A*(E) are just Eqs. (1a) and
(1b). Taking the Hermitian conjugate of Eq. (1), we
can derive a relationship connecting the true ground
state and the Hermitian conjugate of the excitation
operator, namely,

A(E) | 0)=0. (8)

This property of A(E) will be used frequently and
places restrictions on the choice of the approximate
excitation operator, St(L); i.e., given an approximate
[0), S*(E) must be such that its Hermitian conjugate
satisfies the above equation and vice versa.

Let us now define a particle-hole creation operator

C+(ma) =an*a, (9a)
and the corresponding destruction operator
C(ma) =a,tam. (9b)

These operators will be the basic building blocks used
to construct the various approximations to the excited-

state operator; for example,
m
> ’
[43

a Slater determinant derived from the HF ground state
by replacing the orbital | @) by the virtual orbital | m).
With these definitions, the particle-hole creation and
destruction operators satisfy the following commuta-
tion relations:

[CH(ma), C*(nB) ]=[C(ma), C(np)]=0, (10a)
[C("m) ’ C+ (nﬁ) ] =8m55aﬂ'—6aﬂan+am'— 6,,.,.ag+a.,,, ( 10b)

Ct(ma) | HF)=

whereas the operators ¢;t and a; satisfy the anti-
commutation relation

{ait, aj*} ={ai, a;} =0, (11a)

(11b)

{ait, a;} =8,

The eigenvalue equations for the various forms of
S*T(E) can all be derived from a consideration of the
equation®

(E| (E=3)C*(ma) | 0)=0, (12)

which after a little manipulation becomes
(E—E)(E| Ct(ma) | 0)—(E | [3¢, C+(ma) ] | 0)=0.
(13)

Using the property of the excitation operator, Fq. (1),
and its Hermitian conjugate, Fe. (8), the above can

1 The derivation given here follows closely that of Altick and
Glassgold, Ref. 8.
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be rewritten as
(Fe—10) (O | [A(£), CH(ma)] | 0)
—{0 ] {A(£), [3¢, CH(ma)]} | 0)=0. (14)

Note the way in which the pertinent eigenvalues appear,
as AK = Ii— Iip. One need only postulate an approximate
excitation operator and a consistent ground state; the
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above then provides the necessary equations for calcu-
lating the wavefunction and excitation energy of the
excited state.

From Eq. (14) we sce that all of the subsequent
derivations will have one thing in common-—the com-
mutator [J¢, C+(ma)], which is independent of our
choice of S*(I). Using the second quantized form of
the Hamiltonian, we find that

[Jc; C+(ma) ] = (em—5a+vmum—vmama)c+(m) + ('%;l(vamnﬂ_vanﬂm) C+(nﬂ) + Z (vaﬂmn_vaﬂnm)c(nﬁ) +Q} (15)

where??

(nB)

Q=2 (Vatmy—Vatym) C* (87) + 2 (Vapmr— Vaprm) C* (1)

@)

(p.)

=1 3" (Visim—Vigme) @atitat s+ D (Vajor— Vi) am* ot

ik

skl

— 2~ (Vaspm—Vtms) C*+{(60r) — ({‘T; (Vsngm— Vgamp) C*(na)

(8%)

+ % (Vigags—Vgaas) Ct (md) + ‘; (Vsagn— Vpans) Ct(mn) .

This splits the commutator into two groups: the first
group contains all the single particle-hole terms while
Q contains no net single particle-hole terms but con-
tains interactions which might be described as hole-hole
[C*+(8vy)], particle-particle [C+(pr) ], multiple particle-
hole [C*(nB)C+(py)], etc. In this paper we are only
interested in excited states which can adequately be
represented by an elementary transition or a linear
combination of elementary transitions. Thus, in the
above commutator only single particle-hole interactions
are retained. We may now neglect Q and linearize the
commutator to

3¢, C*{(ma) J= (em— €at Vmaam — Vmama) CH (mar)
+ Z,(vtmmﬂ—vanﬁm)w(nﬁ)

(nf)
+E,(V¢lﬁmn— aﬂmn) C(”ﬂ) .

(nf)

(17

Note that (1) the above derivation has ignored spin,
the resulting equations can be specialized for singlets
and triplets in a final step and (2) the prime on the
summations indicate exclusion of the term (ma).

In second quantization the dipole moment operator is

1= 2 d,a*a,
1,7

where

dyj=(|r|j5) =/¢>.~*r¢,~dv.

® As given, it appears that (Q contains single particle-hole
interactions. However, when the commutator [A(E),Q] is
evaluated over the HF ground state, these particle-hole inter-
actions are canceled by corresponding onesin the third and
fourth terms of Eq. (16). Equation (16) was retained in its pres-
ent form for convenience.

(16)

Again, retaining only the particle-hole interactions,
this reduces to

12 D Ao CH(ma) +C(ma)].

(ma)
The dipole transition moment is defined as
D=—(E|r|0)
or, using Eqgs. (2) and (8),
— (0| [A(£),r]]0). (18)

We are now in a position to derive the equations
relating to the various approximations to the excited-
state operator.

A. The Single-Transition Approximation'

In this approximation, the one most commonly used
by chemists, the excited-state operator is represented
by a single particle-hole creation operator, 1.¢.,

SH(k) =C*(ma). (19)

Thus, we speak of w—sr* transitions, n—r* transitions,
etc. However, this method, frequently called the frozen
core approximation is too rigid; it constrains the orbitals
to retain their ground-state form. It is bardly likely
that the molecular orbitals which are consistent for the
excited state are the same as those for the ground
state.?

Using Eq. (17) and the commutators Egs. (10a) and
(10b), we find that Eq. (14) becomes

E"‘Eo=€m"‘5a+vmacm—vmama- (20)

u S R. LaPaglia and O. Sinanoglu, J. Chem. Phys. 44, 1888
(1966).
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Making the excited states eigenfunctions of spin, we
get for singlets
1E—Fy=tm—€a+2Vmaam— Vmama
=en—€at2Kma—Tmas (21a)
and for triplets
(21b)

o—ly=€m— €a—

jmu,

which are the cquations derived by Roothaan in 1951.10
Note that the V., are defined in terms of molecular
orbitals.

Using Egs. (18) and (19) the dipole transition
moment is

lea = —'\/2<m | T l a> = —\/fdma,
3Dmazo,

(22a)
(22b)

where the superscript denotes the spin multiplicity.

In the derivation of the excitation energies and
transition moments for the singlet and triplet states,
we have assumed that the molecular orbitals involved
are nondegenerate, which is the case for ethylene. If
this is not true, say for acetylene, then the appropriate
modifications must be made. In any case Eq. (19) is
the starting point.

B. The Tamm-Dancoff Approximation':?

In this approximation we assume that the excited
state can be adequately represented by some linear
combination of single-particle excitations of the appro-
priate symmetry. The net effect of this is to allow, in
some restricted way, for the rearrangement of the total
charge density during the excitation. On the basis of
chemical intuition we would expcct that the above
linear combination would have a major component
which defines the essentials of the excitation. This
allows us to retain in a limited sense the classification
of transitions as being =—=* etc., but this is certainly
not required. The effect of the minor components on
the excitation energy and transition moment is a matter
which can best be settled by numerical calculation,
although they had previously been assumed small
unless degeneracy was involved. Certainly on the basis
of the one-electron levels one might not have expected
these minor components to have the effect we soon find.
It is the coupling together of many of these excitations
that leads to a modification of the lowest-lying state of
ethylene.

The excitation operator is

SH(E) = 2_g(ma; E)C*(ma).

(ma)

(23)

Use of Egs. (17) and (14) and the commutator rela-
tions fpr the particle-hole operators gives the eigenvalue
equation to be satisfied by the particle-hole amplitudes,
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g(ma; E),
[fm—fa"l"vmaam‘*‘vmma_ (E"' :0) ]g(m; E)
+ 2 (Venns—Vensn) 8(nf; E) =0. (24)
¢
For convenience the designation “E” in the particle-

hole amplitudes is dropped. Specializing the above to
describe eigenfunctions of spin as before, we get

Jor singlels:
[ém — 6a+ 2 Vmaum - Vmama - (IE - I-':O) ]g (ma)

+§(2V,,.m,—va,.,m)g(nﬂ)=o (25a)

and for triplets:
[:em"’fa - Vmama_ (3E—l£0) ]g(ma)
- Z,( Veangm) g(nB8) =0.  (25b)

(nB)
These are just the equations derived by Herzenberg
el al? in their semiempirical calculation, including the
o electrons, on the spectra of ethylene.

The transition moment in this approximation is

lDTDA =V2 Eg(ma) dm,,.

(ma)

(26)

These results could also have been obtained by a
linear variational procedure. If we represent the excited

state by
E)y= Y g(ma) |;”>

(ma)

(27)

and apply the variational principle to determine the
amplitudes g(ma), Eq. (24) would result.

C. The Random-Phase Approximation®?®

Using the language of CI, the ground-state wave-
function to first order is represented by the expansion
mn ' mn

|0y=Co | HF)+ 2 2 C | ,

(ma) (np) @B af

mn>

af

is a double excitation from the orbitals occupied in the
HF ground state (aB) to the virtual orbitals (mn). We
still represent the excited state as being a linear com-
bination of single-particle transitions except that now,
using the above ground state, a single-particle transi-
tion may be “‘obtained” in two ways: (1) by exciting
from the HF ground state [the associated operator
being C*+(ma)] or (2) by de-exciting from one of the
doubly excited components of the true ground state
[the associated operator being C(n8)]. In view of this

(28)

where
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we would expect that a better approximation to the
excitation operator would be

SH(E) = Y _[g(ma; E)CH(ma) —h(ma; £)C(ma)].

(ma)
(29)

Examination of the commutators in Egs. (3a) and (17)

[Gm—éa""vmaam—vmma_ (E_EO) ]g(ma) +(§,(Vamnﬂ— anBrn) g("ﬁ) +(§(V¢, n—vapnm)h("ﬂ) =0;

‘ [em"_ea+vmaam_ vmama+ (E_ Eo) ]h (moz) + (%I (Vammﬂ_' Vanﬂm) h ("B) + Z (vaﬂmn_vaﬂnm) g("ﬂ) =0,
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shows that this approximation takes into account all of
the single particle -hole terms. Tn this case, also, there
will be an cquation analogous to Eq. (14) involving
C(ma).

Using the resulting Eqs. (14) and the commutators
for the particle-hole opcrators, we get the set of coupled
equations

Specializing these equations for singlets and triplets in the usual way leads to

Sor singlets:

[Gm_ €at2Vmaam— Vmama— (1E_E0) ]g(m) + gﬂ:' (2 Vamnﬂ—' Vanﬂm) g(nﬂ) + Z ( 2V apmn— Vuﬂmn) h (nﬁ) = 0’
)

[Gm'—ea+2 Vmaam_ Vmama+ (lE_EO) ]h(m) + Z,(zvanmﬂ-‘ VamBm) h(nﬁ) + Z (2 Vaﬂmn_ Vaﬂnm) g("ﬂ) =0:

(nf)
and for triplets:

[en—€a— Vmama— (RE— Eq) Jg(me) — (%’ Vansmg(nf3) — (%Vaﬁumh(nﬁ) =0,

[em_ea— mama (IE“EO) ]h (ma) - Zl Vomﬂmh (”ﬂ) - Z Vaﬁnmg(”ﬂ) =0,
(nB) (nf)

These equations can be written in matrix notation as

(o )6 e

where for the singlet state

A(ma: ma) =em—€at2V naam— Vmamas (3351)
A{moa, n8) =2V enma— Vansm, (33hb)
B(mt nﬁ) =2Vaﬂmn"’ Vaﬁum; (33‘3)

and a corresponding set for the triplet.

Comparing the above equations to those derived in
the previous section, we note that the TDA involves
only the matrix A, and the STA only the diagonal
elements of 4. The B matrix allows for the effect of the
doubly excited components of the true ground state on
the singly excited state.

From Eq. (32) we see that the excitation energies
are the eigenvalues of a non-Hermitian matrix. Because
of this the eigenvalues and eigenvectors have some
peculiar properties which we now discuss.

The matrix form of the RPA equations indicates that
negative eigenvalues occur with the same magnitude
as the positive eigenvalues. To see this, take the
Hermitian conjugate of Eq. (32) to get

(2 O -e() o

(30a)
(30b)
(nB)

(31a)
(nf)

(31b)
(>

(31¢)

(31d)

Thus, the eigenvectors for the negative eigenvalues
are identical to those of the positive eigenvalues with
the roles of H and G interchanged. The requirement
that the excited states be orthonormal

(E|E')=bgz (35a)
leads to
(0|[A(E), A*(E")]|0)=8gx (35b)
or
2 Lg(ma; I) g(ma; E') —h(ma; E)h(mee; E') 1 =bgg..
(35¢)

The particle-hole amplitudes are, thus, normalized to
an indefinite metric. Last, we note that the excitation
energies could be complex. However, because of the
physical interpretation of these eigenvalues we are only
concerned with those which have Im(AE) =0.

The above is the random-phase approximation as it
usually is presented in the literature.®®® We would now
like to pause and claborate on the derivation of the
RPA equations. The origin of the non-Hermiticity of
the matrix then becomes apparent.

In deriving the RPA equations we have assumed for
the ground state to first order

|0)=Co | HF)+ 3 Ca| d),

Cox1,

(36a)
that

Ca1. (36b)

This allows us to use the ground-state approximation,
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TasLe II. Wavefunction of ethylenc.
Coeflicients
Orbital Hi H2 H3 H4 15sC1 25C1 2p.C1
MOY energy 24.C1 2¢,C1 1sC2 2sC2 2p,C2 2p,C2 2p,C2
lo,;(la,,) —11.3391 —0.004420 —0.004420 —0.004420 —0.004420 0.703982 0.014810 —0.002067
0. 0. 0.703982 0.014810 0.002067 0. 0.
1hu(1by4) —11.3384 —0.004461 —0.004461 0.004461 0.004461 0.703805 0.023659 0.003673
0. 0. —0.703805 —0.023659 0.003673 0. 0.
2a,(2a,) — 1.0419 0.080301 0.080301 0.080301 0.080301 —0.161837 0.479569 0.110549
0. 0. —0.161837 0.479569 -—0.110549 0. 0.
2b14,(2b44) — 0.8023 0.206081 0.206081 —0.200081 —0.206081 —0.126147 0.431860 —0.203934
0. 0. 0.126147 —0.431860 -—0.203934 0. .
13, (1b24) — 0.6661 0.251413 —0.251413 0.251413 —0.251413 0. 0. 0.
0.399054 0. 0. 0. 0. 0.399054 0.
3a,(3a,) — 0.5908 —0.207729 -0.207729 —0.207729 —0.207729 —0.011250 0.025045 0.512543
0. 0. —0.011250 0.025045 —0.512543 0. 0.
1bge(1b10) — 0.5292 0.367882 ~—0.367882 —0.367882 0.367882 0. 0. 0.
0.408586 0. 0. 0. 0. —0.408586 0.
1byu (1b14) — 0.4047 0. 0. 0. 0. 0. 0. 0.
0 0.628564 0. 0. 0. 0. 0.628564
1bag (162} 0.2056 0. 0. 0. 0. 0. 0. 0.
0 0.825081 0. 0. 0. 0. —0.825081
4a,(4a,) 0.4344 —0.669375 —0.669375 —0.669375 —0.669375 —0.101083 0.995990 —0.515356
0. 0. —0.101083 0.955990 0.515356 0. 0.
2b3u{2bs4) 0.4409 0.711080 —0.711080 0.711080 —-0.711080 0. 0. 0.
-0.756979 0. 0. 0. 0. —-0.756979 0.
3biu(3bsu) 0.4711 0.725739 0.725739 —0.725739 —0.725739 0.132831 —~1.153837 0.270117
0. 0. —0.132831 1.153837 0.270117 0. 0.
2b2,(2b1,) 0.7179 0.727053 —0.727053 —0.727053 0.727053 0. 0. 0.
—1.019986 0. 0. 0. 0. 1.019986 0.
4byy(4bs.) 0.8037 0.105834 0.105834 —0.105834 —0.105834 —0.094518 0.992343 1.210833
0. 0. 0.094518 1.210833 0. 0.

-0.992343

® This table {8 from unpublished calculations by W. E. Palke and W. N.
Lipscomb. To facilitate comparison with their previously published re-
sults, Ref. 3, the molecule here lies in the xz plane, For the remainder of
this work the molecule has been rotated into the xy plane to agree with the
usual apectroscopic notation,

i.e., ignore products of the C4’s while retaining the
terms linear in C,;. To evaluate the commutators in
Eq. (14) over the state | 0), we can then effectively use
the Hartree-Fock ground state. Thus, only if the HF
ground state closely represents the true ground state
can we expect the RPA results to be valid.

From the form of the singlet and triplet RPA equa-
tions, we can see that the RPA is more likely to fail in
locating a triplet than a singlet excited state. Specifi-
cally, for molecular calculations the appearance of this
“instability” will depend on how closely the LCAO
expansion approaches the HF limit; although in some
pathological cases of strong mixing of the ground state
with a doubly excited configuration, it may never
disappear. Fortunately, the correction of this defect is
straightforward: one need merely evaluate the com-
mutators using the ground-state wavefunction to first
order. This, however, assumes that the correlation
coefficients, Cy, are known—just the difficulty that we

b The symmetry of the orbitals for the molecule rotated Into the xy plane
are enclosed in parentheses. Note that in Ref. 3, the b, orbitals were jncor-
rectly lubeled as a 1, (private communication from W. E, Palke).

were trying to bypass when we used the ground-state
approximation. There is another, and more interesting,
approach to the problem. From the definition of the
excitation operator, we find that there is a mutual
constraint which this operator and the ground-state
wavefunction must satisfy, namely,

A(E) [0)=0. (8)

Given the form of the excitation operator, we merely
look for a ground state which satisfies the above
relation. For the RPA excitation operator the ground
state is as given in Eq. (28) and equations can be
derived which permit the calculation of the correlation
coeflicients, Cog™.2 In nuclear physics this is known as
the extended RPA.® Its applicability to molecular
systems is presently under study.

2 K. A. Sanderson, Phys. Letters 19, 141 (1965).
23 K. Hara, Progr. Theoret. Phys. Kyoto 32, 88 (1964); K. Ikeda,
T. Udagawa, and H. Yamaura, ibid. 33, 22 (1965).
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Tasrr II1. The molecular integrals, Vi, required for the treatment of the Bs, state of ethylene.»

i 7 k ! Vi

9 9 8 8 0.486677
11 9 8 7 -0.006293
12 9 8 6 -0.000596
14 9 8 0 0.018200
10 9 8 4 0.024901
13 9 8 5 —0.011451
12 9 8 3 —0.046558
14 9 8 3 0.043314
11 1 7 7 0.358632
12 11 7 6 —0.034885
14 11 7 6 —0.002028
11 10 7 4 —0.055069
13 11 7 5 0.117438
12 11 7 3 0.037165
14 11 7 3 ~0.014081
12 12 6 6 0.360222
14 12 6 6 —0.015710
12 10 6 4 0.109642
13 12 6 S —0.027352
12 12 6 3 0.000487
14 12 6 3 —0.035274
14 13 6 5 —0.007745
14 12 6 3 —0.035274
14 14 6 3 0.111471
10 10 4 4 0.359020
13 10 5 4 —0.039745
12 10 4 3 —0.094796
14 10 4 3 —0.036816
13 13 5 5 0.391534
13 12 5 3 0.055546
14 13 5 3 —0.033708
12 12 3 3 0.359503
14 12 3 3 —0.040165
14 14 3 3 0.537546

9 8 9 8 0.158394
11 7 9 8 —0.014897
12 6 9 8 0.009200
14 6 9 8 0.092648
10 4 9 8 0.056091
13 5 9 8 —0.050457
12 3 9 8 —0.055192
14 3 9 8 0.060550
14 14 6 6 0.499948
14, 10 6 4 0.048800
14 6 11 7 —0.014189
1 7 10 4 —0.027126
13 5 11 7 0.039152
12 3 11 7 0.023518
14 3 11 7 —0.019405
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H i k l Vi
12 6 12 6 0.025382
14 6 12 6 0.010080
12 6 10 4 0.029903
13 5 12 6 ~0.016009
12 6 12 3 —0.014651
14 3 12 6 —0.009848
14 6 14 6 0.089809
14 6 10 4 0.045175
14 6 13 5 —0.039177
14 6 12 3 —0.039565
14 6 14 3 0.047390
10 4 10 4 0.050754
13 5 10 4 ~0.034288
12 3 10 4 —0.033584
14 3 10 4 0.009595
13 5 13 5 0.048769
11 7 1 7 0.044318
12 6 11 7 —0.020512
11 8 9 7 —0.007751
12 8 9 6 0.006714
14 8 9 6 0.008209
10 8 9 4 0.027503
13 8 9 S —0.000673
12 8 9 3 —0.030172
14 8 9 3 0.024716
12 7 11 6 —0.023760
14 7 11 6 —0.017414
11 4 10 7 —0.022275
13 7 11 5 0.061154
12 7 1t 3 0.015003
14 7 11 3 ~0.018506
12 4 10 6 0.042439
13 6 12 5 —0.013004
12 6 12 3 —0.014651
14 6 12 3 —0.039565
14 4 10 6 0.016506
14 5 13 6 —0.009401
14 3 12 6 —0.009848
14 6 14 3 0.047390
13 5 12 3 0.032140
14 3 13 5 —0.034339
12 3 12 3 0.020072
14 3 12 3 —0.025136
14 3 14 3 0.000354
13 4 10 5 —0.016829
12 4 10 3 —0.030548
14 4 10 3 —0.009334
13 3 12 5 0.014030
14 5 13 3 —0.015973

2 In this table,

Viskt =//¢-'"‘(1)¢:’(l)m”¢k‘(2)¢|(2)dmdvn.

This arrangement was chosen to coincide with that of the atomic integrals
obtained from the LCAO MO SF calculation. The integrals are in atomic

units.

For the RPA, the transition moment is

'Drpa = —\/Z(Z)[g(ma) +h(ma) ]dne. (37)

For comparison with experiment we also calculate
the oscillator strength of a transition. The oscillator
strength, f, is defined by

f=3AL|D |, (38)

where AZ is the theoretically calculated excitation
energy, and AE and D are both in atomic units.

Before closing this section we should point out that
the RPA equations can be derived via time-dependent
Hartree-Fock theory (TDHI) 2% However, the inter-
pretation of the resulting wavefunctions from that
viewpoint is not at all clear.® Also, the remedy of a
breakdown in the theory, corresponding to the insta-
bility discussed here, cannot be implemented so easily
as in the present approach.

u M.—:/\. Ball and A. D. McLachlan, Mol. Phys. 7, 501 (1964),
% A. D). McLachlan, Rev. Mod. Phys. 36, 844 (1964).
% D. J. Rowe, Nucl. Phys. 80, 209 (1966).
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’IAmr IV. The single-particle transitions coupled to form the
excued Bs, states nf elhylenc

T'ransition® Singlet
e e - - -~ Approximate transition

Symmctry N umencal dcscnptwn" energy®
Un..—»lbz, 8 -9 ot 11.98
1hyy-2hoy 7-»11 CH—CH* 19.05
3a, 23y 6-+12 CH(o)—CH*(o*) 20.47
3a, »4bs, 614 CH (o) —>0a* 29.23
2y 44, 4410 CH (o*)—CH* (o) 26.65
Yhoy—22byg 5-+13 CH-—-»CH* 29.66
2a, —3bay 3--12 a—CH* (") 32.97
2a,-+4bs, 3214 oot 38.88

® The symmetry designation is that with the molecule in the xy plane.
The numerical designation is used in the following table to identify the
two-electron integrals,

b Except for the first transition, these descriptions are only qualitative
since the orbitals are delocalized. The designation enclosed in parentheses
refers to the minor component of the orbital,

°® Calculated with Eq. (21a) of the text. The excitation energies are in
electron volts,

III. RESULTS

To provide a concrete foundation for the theories
discussed in this paper, we have carried out the full
set of calculations on the ethylene molecule using the
recent LCAO MO SCF wavefunction of Palke and
Lipscomb (unpublished results, see Table II). The
purposes of the calculation are: (1) to check the
relevance of these theories for the calculation of the
electronic spectra of molecular systems and (2) to
rigorously investigate the proposal of Herzenberg et al.?
that the coupling between the ¢ and r electrons in
ethylene could have a profound effect on the lowest-
lying excited states of that molecule. Their results were
obtained in the TDA with a dipole~dipole approxima-
tion for 1/r» and a semiempirical evaluation of the
integrals which caused some skepticism about the
strength of the observed coupling.

In Table IT the wavefunction obtained by Palke and
Lipscomb? for ethylene is given. The basis functions
are Slater orbitals with orbitals exponents chosen by
Slater’s rules; this is in contrast to their published work?
in which a hydrogen exponent of 1.2 was used. Table
1IT lists the two-electron molecular integrals, Vi,
required for the calculation on the By, state. The atomic
integrals are available upon request.

In Table IV are listed the eight excitations which
are coupled together to form the excited Bj. states of
ethylene. We have ignored any excitation of the 1s
electrons as being energetically unfavorable; calcula-
tions on the other states showed that the contribution
from the 1s electrons was indeed negligible.

Tables V and VI give the results of the calculations
on the singlet and triplet states of symmetry B
Excitation energies, transition moments, oscillator
strengths, and wavefunctions (particle~hole amplitudes)
for the STA, TDA, and RPA are given.
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The STA values are comparable to those presented
earlier for the w-electron calculations for the same
assumptions are inherent in both, namely, a neglect of
the effect of the excitation of a = electron on the
remaining electrons in the molecule (the ¢ electrons in
this case). The only difference is that in the LCAO MO
SCF calculation the core potential is generated exactly
{within the limited basis set used) in the ground-state
calculation.

From the TDA results we immediately note the
profound effect that the inclusion of the o electrons has
on both the excitation energy and the oscillator
strength. It is just not possible to ignore the rearrange-
ment of the o core as is done in w-electron theory. It is
quite polarizable. From the wavefunctions we can see
why this interaction was not detected earlier. In the
previous calculations which attempted to answer the
question of o-r separability,” the o electrons which
were considered were those of the carbon—-carbon bond.
Clearly, the electrons to be considered are those in the
CH bonds for these are the ones most strongly coupled
to the m—=* transition.

As expected, the RPA results are merely a refinement
of those of the TDA, bringing the calculated excitation

TaBLE V. The lowest singlet state of ethylene of symmetry
By,: excitation energies (in electron volts), transition moments,
oscillator strengths, and wavefunctions for the various approxi-
mations to the excited state.

STA» TDAb RPA°

AE 11.98 10.17 9.44

D4 1.87 1.7 1.49

f 1.03 0.73 0.51

Wavefunctions
(m, a) g(ma) g(ma) g(ma)e
(9,8) 1.000000 0.960329 0.966983
(11, 7) 0.056820 0.036436
(12, 6) —0.033354  —0.023823
(14, 6) —0.206246  —0.160605
(10, 4) ~0.119678  —0.087569
(13, 5) 0.093880 0.067878
(12, 3) 0.062356 0.041913
(14, 3) —0.062177  —0.045988
h(ma)

(9,8) —0.098574
(11, 7) 0.006566
(12, 6) 0.000955
(14, 6) —0.083727
(10, 4) —0.032685
(13, 5) 0.032538
(12, 3) 0.029633
(14, 3) —0.036484

® From Eqs. (21a), (22a). and (38) of the text.

b From Eqs. (25a), (26), and (38) of the text.

° From Eqs. (3ta), (31b), (37), and (38) of the text.

4 In atomic units. The dipole matrix elements were computed using the
dipole-moment program of M. D. Newton and F. P. Boer as modified by
R. Frank.

® Unnormalized, Z [g(ma) —ht(ma)] =0.957 785; see Eq. (35¢) of the
text.

¥ C. M. Moser, Trans. Faraday Soc. 49, 1239 (1953).
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encrgy and oscillator strength into better agreement
with experiment.
Because of the large

m

component in the ground state, see Table VII, the
conditions for the application of the RPA were not
strictly satisfied and, as a result, the excitation energy
of the triplet state became pure imaginary. The remedy
of this situation, if it is worthwhile since the properties
of triplet states are relatively easy to predict with just
the STA, has been discussed previously and is not
commented on further here. It is instructive to note,
however, that the wavefunction of Moskowitz and
Harrison,” which they believe approaches the (sp)
limit, does not exhibit this instability.

™

TaBLE VI. The lowest triplet state of ethylenc of symmetry
Bs.: excitation encrgies (m electron volts) and wavefunctions
for the various approximations to the excited state.

STA» TDAb
AE 3.36 3.19
Wavefunctions
(m, a) glma) g(ma)

. (98 1.000000 0.995423
1,7 —0.029092
(12, 6) 0.005806
(14, 6) 0.034536
(10, 4) 0.043743
(13, 5) —~0.024380
(12, 3) -0.053773
(14, 3) 0.040760

® From Eq. (21b) of the text.
b From Eq. (25b) of the text.

In these calculations we did not make the assump-
tions and approximations that Herzenberg ef al.? did.
But, our results indicate that their conclusions are
essentially correct. As a further test of their suggestion®
that the cffect of the particle-hole scattering terms is
negligible, the calculation for the Bj, state was done
neglecting those terms. The results were essentially the
same as those obtained previously: the contribution
from the o core being appreciable.

The effect obtained for the transition moments is
particularly striking. It has long been known that
transition moments calculated by the simple MO
method (STA) are off by a factor of 2 or so—the
explanation being electronic correlation. As evidenced
by this calculation, the inclusion of all particle-hole
terms provides an adequate explanation of the above
phenomena. The discrepancy is a result of neglecting
the “unexcited” electrons in the molecule, e.g., the ¢
electrons in ethylene during a r-electron transition.
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TasLe VII. Configuration interaction: inclusion of the
=™ T*
(r T )
component in the ground state of ethylene.

Required integrals (in a.u.)

o =—0.4047 =0, 2056
Jer=0.487271
Je%*=0.500717
Jae*=0.486677 R,.*=0.158394
Results
E—Eup= —0.040518 a.u.
Coefficients
Co 0.968805
™ T*
C(1r T ) —0.247825

The program for diagonalizing the unsymmetric
RPA matrix was provided by S. F. Perssclin of Rocket-
dyne Division of the North American Aviation
Company. With this program we were able to repro-
duce the required symmetry of the eigenvectors to
eight significant figures by suitable adjustment of the
optimization parameters and, hence, we feel that the
performance of the program is satisfactory.

Finally, in Table VIII the lowest excitation energies
for states of various symmetries are listed. Of particular
interest are the two low-lying states of symmetry By,
and Bs, which are also in the same region of the spec-
trum as the singlet B, state.

IV. DISCUSSION AND CONCLUSIONS

These results indicate that most of the essential
features of an excitation are contained in the TDA with
the RPA merely altering these values by small, but far
from negligible, amounts. Within the scope of the TDA

TasLe VIII. Excitation ener;éus for other low-lying excited

statcs elhylcnc.

luxcmmon energies

(me )
State ST A‘ TDA" RPAe
3By 9.99 9 73 9. 43
By, 10.76 10.47 10.32
B3 9.82 9.81 9.79
'Bs, 10.46 10.44 10.44
*Blu 13.23 13.10 12.96
"By 14.24 1411 14.10
SBay 17.78 14,54 14.22
'By, 18.69 18.67

19.58

* From Iqy. (21a) and (21b) in the text.
b From ligs. (25a) and (25b) in the text.
S Krom kqs. (3la), (31b), (32a), (32D) in the teat.
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we may draw an analogy between the excited molecule
and a set of interacting oscillators. Calculation of the
lowest excitation energy of a given symmetry then
corresponds to a search for the lowest mode of the sct
of coupled oscillators, which, as cxpected on classical
grounds, occurs at a lower frequency than that of any
one of the oscillators.

As Herzenbery et al® pointed out, the coupling to-
gether of many particle-hole excitations leads to a
significant modification of the low-lying excited states
of ethylene which can be interpreted in terms of a
reduction in the effective interaction between the =
electrons by the dynamic polarization of the other
electrons. This reduction is primarily a result of long-
range, interbond, correlations as is evidenced by the
fact that the dipole approximation for the Coulomb
potential was sufficient to reproduce the significant
features of this effect. They also estimated that there
may be a collective state of ethylene at about 50 eV.
No indication of such a state was found in this calcu-
lation (one excitation corresponding to an excitation
energy of 32 eV did have a heavy weighting in several
elementary transitions; however, the oscillator strength
was only 0.25).

On the basis of chemical intuition we would expect
that many excitations would have a major component
which essentially defines the excitation, thus allowing
us to retain, in a limited sense, the classifications of
excitations as being m—r* etc. This is indeed the case
for the lowest state of symmetry By, in ethylene, the
m—7* component comprising about 929, of the total
wavefunction. However, the effect of the minor com-
ponents of the excitation are far from being insig-
nificant.

One of the assumptions of m-electron theory is that
the ¢ core is invariant to the disposition of the =
electrons, i.e., the o electrons are little affected by
the precise form of the =-electron wave-function.
However, the = electrons are strongly coupled to
the ¢ electrons such that a rearrangement of one
causes a corresponding rearrangement of the other.
Allowing in some crude fashion for the polarization of
the o core decreases the excitation energy by ~159,
and the oscillator strength by ~309%. At the same
time the TDA results provide a theoretical justification
for the success of the Pariser-Parr-Pople method.?
The net effect of the coupling between the particle~
hole pairs is to decrease the interaction between the
= electrons and justifies the use of empirical values for
the matrix elements of 7-electron theory smaller than
the theoretical ones. By lowering the value of a certain
integral, v,,, using spectroscopic arguments, Pariser®
achieved this required decrease in the electronic inter-
action. Thus, the downgrading of certain integrals is
justified by molecular considerations as well as the

3 R. G. Parr, Quantum Theory of Molecular Electronic Structure
(W. A. Benjamin, Inc., New York, 1963), Chap. 3.
® R. Pariser, J. Chem. Phys. 21, 568 (1953).
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proposed atomic considerations.® From the above we
note that in a molecule, the r electrons may be pictured
as being immersed in a polarizable medium correspond-
ing to the o-electron density.® It might thus be possible
to describe the effect of this polarizable medium on the
7 electrons by means of a microscopic dielectric con-
stant. Herzenberg ef al? showed that within the set
of approximations adopted by them, i.c., a dipole-dipole
approximation for the Coulombic potential, that this
indeed was the case—both the decrease in the excita-
tion energy and the transition moment being explicable
in terms of such a concept. This model can be rigorously
justified by a selective summation of Feynman dia-
grams® or by a series of appropriate transformations
on the Hamiltonian.® Investigation of the feasibility of
this approach for the study of the spectra of larger
w-electron systems is presently under way.

In contrast to the m-electron calculations, we note
that the methods presented here have no effect on the
calculated ionization potential. The calculated value of
10.82 eV is in excellent agreement with experiment
(see Table I).

Also, of considerable interest is the application of
the techniques presented here for the study of other
molecules, e.g., acetylene, numerous diatomics,* etc.
At the present time, the set of calculations presented
herein is being rerun using the Gaussian wavefunction
for ethylene which was calculated by Moskowitz and
Harrison.” This will provide information on the sensi-
tivity of the method to the accuracy of the ground-state
wavefunction and, if the effects which have been shown
to be operative here persist in the more detailed wave-
function, the results should provide a limit for the
theoretical excitation energy and oscillator strength.

From a study of Table VIII in the last section, we
see that in the STA four states lie below the !B, state
while in the RPA no singlet state lies below it.** This

# M. Orloff and O. Sinanoglu, J. Chem. Phys. 43, 49 (1965).

3 Contrary to the traditional viewpoint, the = electrons are
deeply immersed in the o-electron density. See, for example, C. A.
Coulson, N. H. March, and S. Altmann, Proc. Natl. Acad. Sci.
(U.S.) 38, 372 (1952); M. D. Newton, F. P. Boer, and W. N.
Lipscomb, J. Am. Chem. Soc., 88, 2367 (1966); A. C. Wahl,
“Pictorial Studies of Molecules,” Argonne National Lab. Tech.
Rept. July, 1965. In these works it is shown that the o-electron
density exceeds that of the r electrons throughout most of the
bonding region, including the region in which the =-electron
density is greatest.

# 1), Falkoff, in Lecture Notes on the Many-Body Problem from
the First Bergen International School of Physics—1961 (W. A.
Benjamin, Inc., New York, 1962).

3 R, Harris (private communication).

¥ For application of the STA see C. W. Sherr, J. Chem. Phys.
23, 569 (1955); Ni; J. W. Richardson, ibid. 35, 1829 (1961}, Ni;
H. Brion and C. Moser, 7bid. 32, 1194 (1960); CO; B. J. Ransil,
ibid. 35, 669 (1961); F, HF, Lis, LiH, N, and others; and R. K.
Neshet, ibid. 43, 4403 (1966); N3, CO, BF. For applications of
the TDA see H. Lefebvre-Brion, C. Moser, and R. K. Nesbet,
ibid. 35, 1702 (1961); CO.

% Note that this is in disagreement with the CI results of R.
Polak and J. Paldus, Theoret. Chim. Acta 5, 422 (1966), who
obtained a reversal of the energy levels and found an excited
singlet state (*B,,) much below 1By,. However, their use of the
Mulliken approximation to evaluate the multicenter integrals
negates much of the quantitative significance of the calculation,
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is in contrast to the results of Robin et al.%® who, with
a set of Guassians augmented with expanded orbital
cxponents, find two states below B, namely, By,
and *8,. In our calculations the four states lying
closest to the 'B;, state are of symmetry Bj, and By,
the former corresponding to the Berry¥ assignment of
the mystery band of ethylene. The state proposed by
Robin et al. for the mystery band, By, is found to lie
at rather high energies, ~14 €V, cven in the RPA.
‘Thus, our calculations cannot account for a mystery
band lying below the 1Bj, state. To prevent misinter-

# M. B. Robin, R. R. Hart, and N. A. Kuebler, J. Chem. Phys.
44, 1803 (1966).
# R, S. Berry, J. Chem. Phys. 38, 1934 (1963).
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pretation, however, it should be pointed out that
because of the nature of the ground-state calculation
(i.e., the usc of a minimum basis set), the above results
cannot provide a definitive answer to the question of
the mystery band of ethylene.
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Nonempirical Calculations on Excited States: The Formaldehyde Molecule

Tromas H. DunNING, JR.,* AND VINCENT McKoy
Gales and Crellin Laboratories of Chemistry,t California Institute of Technology, Pasadena, California
(Received 1 November 1967)

A series of calculations on the excited states of formaldehyde using excitation operator techniques are
presented. As in ethylene, the effect of o~ interaction on the “w—=x*”(14;) excitation is rather large,
decreasing the calculated excitation energy from 14.89 to 12.03 eV and the oscillator strength from 1.01 to
0.30. The coupling has little effect on the corresponding triplet state (34:). The next higher approximation
reduces the excitation energy to 11.22 eV and the oscillator strength to 0.21. The effect of the coupling on
the “n—m*”(134;) excitations is not as large as that for the 14, state, lowering the excitation energies for
both the singlet and triplet by ~0.5 eV. Similar results were obtained for the “oc—=*"(}2B,) excitations.
Trends are observed in calculations on corresponding states in ethylene and formaldehyde. Numerous
one-electron properties are calculated for the excited states. The results are in moderate agreement with
experiment; a major source of error probably arises from the use of an unoptimized, minimum basis set

LCAO(STO)-MO-SCF wavefunction.

I. INTRODUCTION

The electronic excited state of molecules are of inter-
est to chemists as a means of interpreting spectra, as
reaction intermediates and for numerous other reasons.
Unfortunately, a Hartree-Fock treatment of open-shell
systems is more complicated than for closed shells and
it has only been recently that theoretical work has been
started on a Hartree-Fock theory of the excited states
of molecules! and calculations begun on simple diatomic
molecules.? This article applies to formaldehyde an
alternate approach to problem, based on excitation

* National Science Foundation Predoctoral Fellow 1966-1968.

+ Contribution No. 3593,

1C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960); S.
Huzinaga, Phys. Rev. 120, 866 (1960); S. Huzinaga, Phys.
Rev. 122,_ 131 (1961); and C. C. J. Roothaan and P. S. Bagus,
Methods in Computational Physics (Academic Press Inc., New
York, 1963), Vol. 2, pp. 49-54.

2 CO: W. M. Huo, J. Chem. Phys. 45, 1554 (1966); BeO: G.
Verhaegeq and W. G. Richards, ibid. 45, 1828 (1966), and W. M.
Huo, K. F. Freed, and W. Klemperer, ibid. 46, 3556 (1967).

operator techniques, which was discussed in a previous
article and applied there to ethylene.?

An excitation operator approach has advantages over
a Hartree-Fock theory in that only the ground-state
wavefunction, including the virtual orbitals, need be
known (thus, eliminating the reoptimization of numer-
ous nonlinear parameters), electronic correlation is put
into the ground and excited states in a balanced manner,
and energy differences are solved for directly. Also, the
problem of nonorthogonal molecular orbitals encoun-
tered in a Hartree-Fock theory is avoided by con-
structing both states out of a set of mutually orthogonal
orbitals. This is of particular importance when cal-
culating quantities connecting the two states, such as
the transition moment. However, such a method has
the disadvantage that only vertical excitations can be
described, although in the interpretation of spectra it
is just this tyvpe of excitation which is of most interest.

3 T. H. Dunning and V. McKoy, J. Chem. Phys. 47, 1735
(1967).
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I16. 1. The geometry of formaldehyde.

Formaldehyde (for the geometry see Iig. 1) was
chosen for the present study because of its special
interest to spectroscopists and because a theoretical
description of its excited states has not been attempted,
even at a level comparable to the pi-electron calculations
on ethylene,* except by semiempirical schemes.’ Also,
although the formaldehyde molecule has been the sub-
ject of numerous experimental investigations? some
confusion still exists over the assignment of the excited
state giving rise to the absorption band at ~8.0 eV:
the two alternatives being that the excited state results

Tasrr 1. Experimental vertical excitation energies, oscillator
strengths, and dipole moments for the various states of the
formaldehyde molecule.

Electronic  STA Energy Oscillator Dipole
state  Assignments (eV)b strength, f* moment (D)
A, 0.0 2.3440.02¢
34, n—r* 3.2 very weak
14, n—or* 4.3 ~10~¢ 1.564:0.074
3Bl o—n* ves eon cen
1B, o—or* 7.1 ~0.02 ‘oo
3Al 7|—~<)7r* e sss e
4, ror* 8.0 ~0.1
B, n—sa*
1B, n—g* 10?

8 See text.
b See Ref. 6.

¢ J. N. Shoolery and A. H. Sharbaugh, Phys. Rev. 82, 95 (1951).
d See Ref. 17.

+R. G..Parr and B. L. Crawford, J. Chem. Phys, 16, 526 (1948);
T. Murai, Progr. Theoret. Phys. (Kyoto) 7, 345 (1952); and S.
Huzinaga, J. Chem. Phys. 36, 453 (1962).

°T. Anno and A. Sad6, J. Chem. Phys. 26, 1759 (1957); J W,
Sidman, J. Chem. Phys. 27, 429 (1957); J. A. Pople and J. W.
S1dman,‘zbzd. 27, 1270 (1957); R. D. Brown and M. L. Heffernan,
Trans. Faraday Soc. 54, 757 (1958) ; J. M« Parks and R. G. Parr,
J. Chem. Phys. 32, 1657 (1960); F. L. Pilar, ibid. 47, 884 (1967).

S H. Ley‘and B. Arends, Z. Physik. Chem. 12, 132 (1931); W. C.
I"nce, J. Chem, Phys. 3, 156 (1935); J. C. D. Brand, J. Chem.
Soc. 1956, 858; G. W. Robinson and V. E. DiGiorgio, Can. J.
Chem. 36, 31 (1958); J. R. Henderson, J. Chem. Phys. 44, 3496
(1966), and many others.
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from (a) a m—#* transition and (b) a Rydberg transi-
tion.?

Further, many properties of formaldehyde have been
measured experimentally, thus providing a stringent
test for any theory. When these experimental values are
compared with the theoretical values calculated with a
recent minimum basis set LCAO -MO-SCF wavefunc-
tion, which also provides a basis for the calculations to
be presented here, the agreement is rather poor® But,
even though we cannot expect any more from the
excited state calculations, we can still use the calculated
values of these properties to get an idea of the differ-
ences in the electronic distributions between the various
states. Most important, by comparing the results of
the single transition approximation with those of the
Tamm-Dancoff approximation (see the following sec-
tion), we can assess the significance of “‘core relaxation,”

TasLE I1. The elementary transitions coupled to form the excited
states of formaldehyde of symmetry A;.

Transitions Common Singlet energy
Numerical Symmetry designation® STA®
79 1 61—9261 1r—'1r* 14.89 eV
811 2by-->3bs n(yy) —CH* 22.98
6—10 Sa;—6a, o—CH* 24.09
612 Sa;—Ta g—a* 27.46
5-11 1b,—3b, CH—-CH* 30.07
4—10 4a,—6a, CH—CH* 30.78
412 4a,—7a; CH—0o* 34.47
310 3a,—6a, 05— CH* 45.15
3—12 3a,—7a, Oy—0* 46.88

® The symmetry designation is that with the molecule in the ys plane
(see Fig. 1). The numerical designation is used in the following table to
denote the transitions (m, a). Note that the numbera refer to the orbitals
in order of increasing orbital energy and not as given in S, Aung, R. M.
Pitzer, and S. 1. Chan, J. Chem. Phys. 45, 3547 (1966).

b fixcept for the first transition, these descriptions are only approximate
since the orbitaly are delocalized. The major component of the MO is
written without the parenthesis, any minor component within.

°® Calculated from Eq. (3) of the text. The excitation energies are in
electron volts.

i.e., a rearrangement of the electronic density of those
electrons not usually associated with a given transition
(e.g., the ¢ clectrons in a “r-electron excitation”).

In Table 1, the experimental results on formaldehyde
are listed. Note that an 4, state has been given at
~8.0 €V although this assignment at present is ques-
tionable.?

II. THEORY

The purpose of this section is to give a brief review of
the method and to present the necessary formulas. For

7 See, for example, G. W. Robinson in Methods of Experimental
Physics: Molecular Physics (Academic Press Inc., New York,
1962), Vol, 3, pp. 155-261,

8 W. H. Flygare, J. M. Pochan, G. I. Kerley, T. Caves, M. Kar-
plus, S. Aung, R. M. Pitzer, and S, 1. Chan, J. Chem. Phys. 45,
2793 (1966); and S. Aung, R, M. Dlitzer, and S. 1. Chan, {bid. 45,
3457 (1966). ‘T'he last article contains the wavefunction used in the
calculations presented here.




CALCULATIONS ON EXCITED STATES:

a more detailed treatment the reader is referred to our
previous paper? and the references contained therein,

We start by postulating an excitation operator,
S*( 1), which we hope will represent the excited states
of the system reasonably well. We then examine those
terms which are neglected upon forcing the commutator
relationship to be satisfied:

[ac, S+(1) )= (Ji— 1) S*(L). (1

JC is the total electronic Hamiltonian of the system,
L is the energy of the excited state, and Fo is the ground
state energy. From Eq. (1) we can see that when the
excitation operator, S*(L), acts on the ground state,
{ 0), it produces an excited state of the Hamiltonian 3C.
The terms which are discarded in Eq. (1) represent the
error which arises from the use of such an operator to
describe the excited state. In this way we arrive at a
set of operators which more or less correspond to the
true excited states of the system.

The present technique utilizes excitation operators
which give rise to wavefunctions which can be inter-
preted in terms of configuration interaction. Specifically
the operators are chosen to represent excited states
which result from single-particle transitions. If this is
not the case, then St(K) must be generalized to in-
clude double-particle transitions, etc.

TasLE III, The lowest excited singlet state of formaldehyde
of symmetiry A, (the “r—x*" transition): excitation energies
(in electron volts), transition moments, oscillator strengths and
wavefunctions for the various approximations to the excited
state.

STA= TDAY RPA-

AE 14.89 12.03 11.22

D, —1.67 —1.02 —0.88

f 1.01 0.30 0.21

Wavefunctions:

(m, o) g(ma) g{mas) 2 (ma)
(9, 7) 1.000000 0.930110 0.966104
(11, 8) 0.161225 0.126608
(10, 6) 0.044100 0.035271
(12, 6) 0.298489 0.243681
(11, 5) —0.087123 —0.068162
(10, 4) 0.059452 0.045562
(12, 4) —0.004821 —0.005282
(10, 3) —0.020318 —0.014553
(12, 3) —0.079374 —0.063840

h{ma)
9,7 —0.081276
(11, 8) 0.041397
(10, 6) 0.011469
(12, 6) 0.004228
(11, 5) —0.030992
(10, 4) 0.017562
(12, 4) —0.007204
(10, 3) —0.014135
(12, 3) —0.046865

% From Eqs., (3), (4), and (12) of the text.

b From Egs. (6), (7), and (12) of the text.

¢ From KEqs. (10)-(12) of the text. The wavefunction as given is nor-
malized with 2 {g(ma)*—h (mce)3] = 1.000000, sce Kq. (35¢) of Ref. 3.
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TanLe IV. The lowest triplet state of formaldehyde of sym-
metry A, (the “x--x*’ transition) : excitation energies and wave-
functions for the various approximations to the excited state.

STA= TDAb
Al 3.99 3.88
Wavefunctions:
(m, @) g(ma) g(ma)
9,7) 1.000000 0.997776
(11, 8) 0.001237
(10, 6) 0.000653
(12, 6) —0.025463
(11, 5) 0.021884
(10, 4) —0.0306564
(12, 4) —0.004753
(10, 3) 0.021475
(12, 3) 0.038648

& From Egs. (3) and (4) of the text.
b From Eqs. (6) and (7) of the text.

It is obvious that if the excitation operator is made
completely general by the inclusion of all types of
multiple transitions, then the true excited states of the
molecule will result. How many terms must be retained
in the expansion depends on the single-particle energy
level schemes and the symmetry of the states arising
from such single, double, etc. excitations. The question
of interest is whether the series converges fast enough
to be useful. Allowing for the relatively incomplete
ground-state wavefunctions, the results of the calcula-
tions on ethylene and formaldchyde are encouraging.

In this paper (and the previous one’) we choose three
approximations to the excitation operator S*(Z). In
the single transition approximation (STA) the excited
state is derived from the Hartrec-Fock ground state
by removing an electron from an occupied orbital and
placing it in a virtual orbital. This approximation
assumes that the orbitals for the excited states are the
same as those for the ground state, i.e., relaxation is not
allowed to occur. In the STA for the excitation a—m

Ssrat(£) =C*(ma), (2)
ALgra(ma) = Agna,ma), (3)
and
Dsra(ma) =—Vpm | 1| da)=—V2dms,  (4)
where

Ct(ma) =antda,

and a,,* and a, are the creation and annthilation opera-
tors for electrons in molecular orbitals ¢, a virtual
orbital, and ¢,, an orbital occupied in the Hartree-Fock
ground state. The matrix A is defined by its elements

lA(ma.nB) = (em_£a>6m¢.n8+ (2 Vanmﬂ_ Vamﬁm)
for singlet states and

A (ma.nth = (€&n—€a ) 5mu.m‘i - Vau:hn
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TaBLE V. The elementary transitions coupled to form the excited
states of formaldehyde of symmetry 4..»

Transition Singlet
Common energy
Numerical Symmetry designation STA
89 2by—2b, 7n(yo) —r* 4.03 eV
5—9 132 CH—-#* 13.40
711 —CH* 21.97

1(:.-*31;.

& See comments helow Table 11,

for triplet states. The e denote orbital energies and

Vaur=[[6 (16 @ 64(1)$1(2) dridrs

D is the transition moment from the ground to the
excited state.

In the Tamm-Dancoff approximation (TDA) the
excited state is represented as a linear combination of
single particle transitions. This allows for electronic
relaxation upon excitation through the residual Cou-
lomb interaction. In this case

Srpat(E) = (Z) g(ma; E)CH(ma), (5)

the expansion coefficients being solutions of the matrix
equation
: AG=AErma\G (6)
with
(G) may=g(ma; E).

The transition moment is given by

DTDA(E)=—VZ(I:)K(W; E)dn.. (7

In the random-phase approximation (RPA) the ex-
cited state is still written as a linear combination of
single-particle transitions (plus minor contributions
from higher order odd excitations, i.e., triplet, etc.), but
now we make implicit recognition of the fact that the
true ground state contains, in addition to the Hartree—
Fock wavefunction | HF ), components corresponding to
excitations (mainly double) from the Hartree-Fock
ground state, [ o™}, i.€., the true ground state is better
represented by

[0)=Co | HF)+ 2 2 Cug™ | og™)
(ma) (nf)
-+ (higher order excitations). (8)
The RPA then assumes that the Cos™ are sufficiently

small so only terms linear in them need be retained,
products being neglected. In this approximation

Seeat(E) = 3 [gima; 1)C*(ma) — h(ma; E)C(ma)]

(ma)

(9)
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the expansion coefficients being solutions of

A B\/G G

=Alirpa (10)

—-B —A/\H
The matrix B is defined by
Bma.nty =2V apmn— Vagnm,
"B (mant) = — Vapam,
for the singlet and triplet states, respectively. The
transition moment now is

Dgpa(E) =—V2 Z [g(ma; E)+h(ma; 1) Jdma.

(ma)

(11)

The energy lowering observed in the RPA is somewhat
overestimated and arises from the neglect of products
of ground-state correlation coefticients; this can be
corrected through the extended RPA.? One of the
principal successes of the RPA is the effect on the transi-
tion moment through the h{(ma) coefficients [sce Eq.
(11)7; this effect is linear in the correlation coeflicients
and, accordingly, is reasonably well approximated by
the RPA. Because of the assumptions about the ground-
state correlation coefficients, Cqs™", the RPA becomes
unstable (i.e., yields imaginary eigenvalues and eigen-
vectors) when these become large, as they are for
C..™** in both ethylene and formaldehyde.

The oscillator strength, f, which is an experimentally
measured quantity, is related to the transition moment
and excitation energy by

J(EY=3AE|DJ,

all quantities being given in atomic units.

The above formulas describe transitions among non-
degenerate molecular orbitals. If degeneracies exist then
the equations must be modified accordingly.

(12)

TaBLE VI. The lowest singlet state of formaldehyde of sym-
metry A; (the “a—x*" transition): excitation energies (in elec-
tron volts) and wavefunctions for the various approximations to
the excited state.

STAs TDA® RPA°
AE 4.03 3.60 3.47
Wavefunctions:

(m, a) g{ma) g(ma) 2(ma)
(9, 8) 1.000000 0.978447 0.983127
9,5) —0.206498 —0.211607

anmn 0.000804  0.008716

h(ma)
(9, 8) —0.088050
(9, 9) 0.025684
a7 —0.054595

* From Eqs. (3) and (4) of the text.

® From Eqg. (6) and (7) of the text.

° From Egs. (10) and (11) of the text. The wavefunction is normalized
with T [g2(ma) —h3(ma)] =1.000000, see Eq. (35¢c) of Ref, 3.



CALCULATIONS ON EXCITED STATES:

III. RESULTS AND DISCUSSION

Tables TI-IV give the results of the calculations on
the A, states. Qualitatively, these states are described
as arising from a r—* transition.

The results in these tables indicate that the A4,
states of formaldechyde exhibit the same general be-
havior as the corresponding By, states in ethylene?: the
singlet state is quite affected by the coupling of the
transitions, the triplet state practically unchanged. 1t
is possible that this type of behavior can, in general, be
expected for transitions which have been denoted by
Mulliken? as N—V, T, i.e, transitions from bonding to
the corresponding antibonding orbitals. Should this
prove to be the case, a semiempirical scheme similar to
that used by Herzenberg, Sherrington and Siiveges®
could possibly be developed to treat molecules which
are out of the range of present LCAO-MO-SCF tech-
niques (and will probably remain so for some time to
come).

The effect of the coupling is slightly larger in formal-
dehyde than in ethylene. It is difficult to say whether
this is significant (it probably is not!) except to note
that similar results were obtained for ethylene when
methane optimized exponents!! were used in the mini-
mum basis set: the STA guess was worse, the coupling
larger.1?

TasLe VII. The lowest triplet state of formaldehyde of sym-
metry A; (the “n—=*” transition): excitation energies (in elec-
tron volts) and wavefunctions for the various approximations to
the excited state.

STAs TDAP RPA*
AE 2.88 2.33 2.13
Wavefunctions:

(m, a) g(ma) g(ma) g(ma)
9, 8) 1.000000 0.974376 0.985927
9, 5) —0.224803 —0.236076
11, 7) —0.007391 —0.021384

h{(ma)
(9, 8) 0.147309
(9, 5) —0.043466
11,7) —0.068204

* From Eqs. (3) and (4) of the text.

b From Eqs. (6) and (7) of the text.

¢ From Eqs. (10) and (11) of the text. The wavefunction is normalized
with Z [g?(ma) —h?(ma)] =1.000000, see Eq. (35¢c) of Ref. 3,

® R. S. Mulliken, J. Chem. Phys. 7, 20 (1939).

1% A. Herzenberg, D. Sherrington, and M. Siiveges, Proc. Phys.
Soc. (London) 84, 465 (1964).

1 R. M. Pitzer, J. Chem. Phys. 46, 4871 (1967).

" For ethylene using methane optimized exponents, it was
found that Eio1=—77.8429 a.u, which is a decrease of 0.0086
a.u. over the energy obtained by using Slater exponents with 1.2
on the hydrogen, and that AF =3.13, 2.95 eV for the triplet state
and 'AE=12.88, 10.81, 9.96 eV in the STA, TDA, and RPA,
respectively: from unpublished calculations by W. E. Palke and
T. H. Dunning,
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TaBLE VIII. The elementary transitions coupled to form the
excited states of formaldehyde of symmetry Bi.*

Transition Singlet
Common energy
Numerical Symmetry designation STA

6—9 Sa,—2b, g™ 9.06 cV
49 40,2 CH—nr* 20.38
7—10 16, —6a, r—CH* 20.46
712 10,—7a, r—a* 21.18
3-49 3a,—2b, Oyy—n* 31.14

8 See the comments below Table II.

In formaldehyde the doubly excited | .,™"*) state
lies 19.25 eV above the ground state and is of the
appropriate symmetry to mix with the singly excited
| +**) state (and the ground state). Hence, the question
arises as to whether the excited state of '4; symmetry
is well represented by a single-particle transition (or
some suitable linear combination). To answer this
question we did a configuration—interaction calculation!®
“mixing” the | ,**) and | ,,™*) states and found that
(a) the energy of the first excited state was lowered by
0.02 eV, (b) the transition moment with the Hartree—
Fock ground state changed from —1.67 to —1.66, and
(c) the dipole moment of the excited state decreased
from 0.352 a.u. to 0.096 a.u." From this we can conclude
that for properties connecting the two states, we might
approximate the excited state by a single-particle trunsi-
tion, but for the relatively sensitive expectation values
we definitely cannot! In this paper we are primarily
interested in properties which relate to both the ground-
and excited states (excitation energies and oscillator
strengths), so we will not concern ourselves with the
above except to point it out. However, in the future,
for more accurate calculations, this interaction will
have to be taken into account and the excitation opera-
tor modified accordingly.

If we assume that the difference AFone— AFexp 18
the same for the !4, state of formaldehyde as for the
!By, state of ethylene, which is not unreasonable in
view of the observed trends, then we would predict
an excitation energy of 9.4 eV for the so-called m—r*
transition in formaldehyde. It is thus possible that the
14, state does give rise to the band at ~8.0 eV, In
view of the effect on AFEgra as a result of improvements
in the wavefunction for ethylene® calculations of
formaldehyde employing excitation operator techniques
on analogous wavefunctions should provide a definite
answer to this question.

13 For the form of the matrix elements see: J. Cizek, Theoret.
Chim. Acta 6, 292 (1966).

4 To convert from atomic units to debyes multiply by 2.541603.

B For the excitation energies (STA) for ethylene calculated
from various Gaussian wavefunctions see: J. W. Moskowitz and
M. C. Harrison, J. Chem, Phys. 42, 1726 (1965) and J. M. Schul-
man, J. W. Moskowitz, and C. Hollister, ¢bid. 46, 2759 (1967).
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Tance IX. The lowest singlet state of formaldehyde of sym-
metry B; (the “o—x*” transition): excitation energies (in elec-
tron volts), transition moments (in atomic units), oscillator
strengths, and wavefunctions for the various approximations to
the excited state.

STAs TDAPY RPAe°
AE 9.06 8.85 8.56
D —0.17 -0.22 -0.22
/ 0.006 0.011 0.010
Wavefunctions:

(m, a) g(ma) g (ma) g(ma)
9, 6) 1.000000 0.993979 0.999448
(9, 4) 0.073172 0.072425

(10, 7) —0.002842 0.001395

(12, 7) 0.002421 0.017584
9, 3) —0.081468 —0.081868

h{(me)
(9, 6) ~—0.051212
(9, 4) —0.018942

(10, 7) —0.011221

(12, 7) —0.088920
9, 3) —0.011903

8 From Eqs. (3), (4), and (12) of the text.

b From Eqs. (6), (7), and (12) of the text.

¢ From Eqgs. (10)-(12) of the text. The wavefunction is normalized with
2 [ (mer) —h? (mar) ] =1.000000, see Eq. (35c) of Ref. 3.

The A, states, qualitatively described as arising from
an n—w* transition (or N—Q in Mulliken’s notation!®),
are of much interest since they are prototypes for such
states in larger molecules and because they are out of
the realm of pi-electron theory. In an elementary picture
n is taken as a 2p-lone pair orbital on oxygen. From the
I.CAO-MO-SCF wavefunction,® however, we see that
the corresponding molecular orbital has a significant
amplitude on the hydrogens and carbon. In fact, as
Freeman and Kiemperer” point out, this molecular
orbital has its centroid 0.12 A from the midpoint of
the CO bond rather than at the oxygen as would be
the case if the orbital were pure 2p. Just as a point of
interest, consider the following. If we use the LCAO-
MO-SCF #* orbital and orbital energies for #18 and =*,
but let # be an oxygen 2p, orbital, we find that in the
STA the triplet excitation energy is 1.09 eV and the
singlet 2.33 eV in marked contrast to both the LCAO-
MO-SCF STA calculation (see below) and the experi-
mental results. Thus, just as Freeman and Klemperer”
found that the change in dipole moment upon excitation
was better rationalized by the LCAO-MO-SCF orbital,
we find that the LCAO-MO-SCF results represent the
excited state better than the simpler picture.

Tables V-VII list results of the calculations on the

16 R. S. Mulliken, Phys. Rev. 50, 1017 (1936); H. L. McMurry
and R. S. Mulliken, Proc. Natl. Acad. Sci. U.S. 26, 312 (1940);
and H. L. McMurry, J. Chem. Phys. 9, 231 (1941).

(1:)76D)' E. Freeman and W. Klemperer, J. Chem. Phys. 45, 52
6) .

18 The SCF orbital energy is 10.49 eV, which compares quite well
with the ionization potential of the “lone pair” oxygen electrons in
formaldehyde, 10.83 eV [W. C. Price, Phys. Rev. 46, 529 (1934) ].
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A, states. When compared to the previous N—V, T
results, we see that the magnitude of the effect is not
as large as that observed in the N—V case but larger
than for the N—T case. Also, the effect of the coupling
is slightly larger for the triplet state than for the singlet.
Such behavior may be indicative of n—* transitions.
Since the transition to the A, state is magnetic dipole®
rather than electric dipole allowed, no transition mo-
ment has been calculated.

The results for the B, states are given in Tables
VIII-X. The transition to this state is electric dipole
allowed, polarized in the x direction, and can qualita-
tively be described as arising from a o—n* transition.
The coupling has an effect similar to that for the corre-
sponding transitions in ethylene (B or By,). In fact,
in all cases investigated, the effect of the coupling is
nearly the same for corresponding transitions in
ethylene® and formaldehyde. In this case the coupling
increases the transition moment, which is toward better
agreement with experiment.

The excitation energies for the B, states are found to
be rather high (15-18 eV), so we will not discuss them
anymore at present. We will mention that the coupling
is much larger in the triplet, decreasing the energy by
2.4 eV, than in the singlet, decreasing the energy by
only 0.4 eV; this is similar to that for the corresponding
By, state of ethylene.

In the STA the charge distribution in singlet and
triplet states derived from the same orbital configura-
tion is identically the same. However, in the TDA,
as in Hartree-Fock theories, this is not so. Thus, by
computing the expectation values of various one-elec-
tron operators, we can compare not only the changes
in the electronic density from one state to the next,

TanLr X. The lowest triplet state of formaldehyde of sym-
metry By (the “o—=*” transition): excitation energies (in elec-
tron volts) and wavefunctions for the various approximations to
the excited state.

STA» TDA?P RPAe
AE 7.28 6.99 6.53
Wavefunctions:

(m, a) g (ma) g (ma) g (ma)
9, 6) 1.000000 0.986418 0.995786
9, 4) 0.159971 0.164044

(10, 7) —0.015612 —0.020983

(12, 7) —0.030052 —0.056657
9, 3) —0.015582 —0.027327

h(ma)
9, 6) 0.086910
9, 4) 0.035876

(10, 7) —0.024582

(12, 7) —0.116694
9, 3) 0.011093

8 From Eqs. (3) and (4) of the text.

b From Eqs. (6) and (7) of the text.

¢ From Eqs. (10) and (11) of the text. The wavefunction is normalized
with Z [g2(mor) —h? (ma)] =1.000000, see Eq. (35¢) of Ref. 3.
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TanLe XI. One-electron properties of formaldehyde in various states (in atomic units).
Ground Excited states®
state
Property* 14,0 34, 14, 34, 14, 3B, 1B,
STA 1.1545 0.5832 3.4569
¢ (0) 0.8365
TDA 1.1502  1.0489 0.6298  0.6225 3.4115  3.4386
STA —2.6556 0.4286 —2.7966
2w (0) —2.9294
TDA —2.6553 —2.6182 0.3390  0.3532 —2.7767 —2.7875
STA 0.3520 0.1436 —0.2344
79 COS8p 0.3964
TDA 0.3482  0.2241 0.1964  0.1882 —0.1847 —0.2237
STA . 83.6995 82.8990 84.1396
et 83.3788
TDA 83.7138  83.9258 82.7473  82.7709 83.9680 84.1162
STA —3.1395 —2.4596 —1.0676
£:(0) —2.6481
TDA —3.1355 —2.7861 —2.4949 —2.4894 ~1.1034 —1.0963
STA 0.5333 0.4037 0.6392
£:(C) 0.2507
) TDA 0.5345  0.5265 0.3861  0.3888 0.6036  0.6305
STA —0.1179 —0.0769 —0.0997
L (H) —0.1238
TDA ~0.1182 —0.1189 —0.0813 —0.0806 ~0.1017 —0.1001
STA —0.0079 —0.0160 0.0131
Js(H) —0.0008
TDA —0.0079 —0.0070 —0.0169 —0.0168 0.0142  0.0131
STA 6.5061 6.4399 6.5114
1/ru 6.4983
TDA 6.5066  6.5177 6.4340  6.4349 6.5064  6.5105
STA 0.4452 0.4220 0.4374
Gua (D) 0.4498
TDA 0.4452  0.4411 0.4254  0.4249 0.4388  0.4377
STA 0.0124 0.0174 —0.0113
708(D) 0.0055
TDA 0.0124  0.0104 0.0188  0.0186 —0.0123 —0.0112
STA —0.2135 —0.1834 —0.1852
7s8(D) —0.2204
TDA —0.2136 —0.2132 —0.18350 —0.1847 —0.1860 —0.1853

b S Aung, R. M. Pitzer, and S. I. Chan, J. Chem. Phys. 45, 3457 (1966).
¢ The upper number is the expectation value in the STA, the lower two
the expectation values in the TDA,

® For definitions of the operators see: W, H. Flygare, J. M. Pochan,
G. 1. Kerley, T. Caves, M, Karplus, S. Aung, R. M. Pitzer, and S, I.
Chan, J. Chem. Phys. 45, 2793 (1966) and the text.



5270

but also we can assess the differences between the
electronic density in singlet and triplet states. Further,
by comparing the STA and TDA we can dctermine
the significance of any “core relaxation.” A word of
caution though: this is not the saune relaxation effect
which would be observed in an LCAO-MO- SCF calcu-
Euion on the excited state, for the relaxation observed
here also contiins some of the effects of clectron corre-
ltion. We shall not be concerned with the absolute
magnitudes of the various quantities, since the agree-
ment between ground state expectation values and
experiment was poor, but shall wttach some significance
only to differences. Anyway, the wavefunctions ob-
tained here describe vertical excitations, so care must be
taken when comparing quantities which strongly depend
on the internuclear distance with experiment.

In Table XI we list the values of various one-electron
properties for the ground and excited states. The sym-
bols have the following meaning?®:

qu(o) = (3202~702)/7057
qu(0) = (3yo*—70?) /105,

7o cosflo =zo,

702,

J:(0) =z0/rd?,
f:(C) =z./7s,
Ja(H) =an/ré?,
Ja(H) =Bu/r,
Uru,
(jaa(D) = (3011)2—7'02)/71)5,
Jas(D) =3Bpan/ro’,
gss(D) = (3Bp*—rp?) /ro° (13)

The o axis is along the CH axis and the 8 axis is perpen-
dicular to « in the plane of the molecule.

Examination of the table shows that for the A4, states
the triplet state is well represented in the STA while
the singlet varies considerably. Thus, relaxation is
significant for the 'A; state but negligible for the 3.1,
state, a fact which was predicted earlier from a consider-
ation of the expansion coeflicients, g(ma), alone.

For the A, states the singlet state relaxes less than
the triplet, but in both cases this change is appreciable.
Of special interest is the dipole moment of formaldehyde
in the !4, state for this has recently been measured by
IFreeman and Klemperer.” They found that the dipole
moment changes by 0.7 ID upon excitation. We predict
0.6 and 0.5 D in the STA and TDA, respectively.
Thus, in this case the effect of core relaxation is small
and of no particular importance.

Ior the B states the amount of relaxation is again
larger for the triplet state than for the singlet, but in
both cases it is relatively small and resembles that for
the A4, states
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As in ethylene (*Bj.) the RPA treatment of the 34,
state of formaldehyde is unstable. Again this instability
is ciused by the large | ».***) component in the true
ground state. We shall not discuss this further at present
for it will be treated in luter papers.

IV. CONCLUSIONS

Considering the inadequacy of the wavefunctions
which have been employed, i.c., unoptimized, minimum
basis set LCAO MO SCEF wavelunctions, the results of
the ethylene® and formaldehyde caleulations demon-
strate the utility of an excitation operator approach to
the excited-state problem. To fully assess the capa-
bilitics and limitations of the method, we now need to
do calculations on molecules for which accurate
Hartree-Fock wavefunctions are known, e.g., diatomic*
or simple linear polyatomic molecules.® However, be-
cause of the interest in and importance of cthylene and
formaldehyde, calculations have begun on these mole-
cules using wavefunctions, constructed from large
Gaussian basis sets, which are considered to be near the
(sp) limit.2! These calculations, while not at the
Hartree—Fock level, should provide an adequate repre-
sentation of the low-lying valence excited states of
these molecules.

Examination of the ethylene? and formaldehyde re-
sults shows that transitions denoted as N—V, T have
a definite and predictable behavior: the triplet state is
well represented by the STA while the singlet state,
because of the large relaxation effect, is not. It is quite
possible that N—Q transitions will also follow the
pattern observed here. If such trends persist, this
could provide a means of empiricizing calculations, such
as those presented here, for molecules beyond the reach
of SCF techniques. This possibility argues for calcula-
tions on other large molecules, such as propene and
acetaldchyde.
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W. M. Huo, tbid. 43, 624 (1965); Ny: P. . Cade, K. . Sales, and
A. C. Wahl, ibid. 44, 1973 (1966); the first- and second-row
hydrides, AH: . E. Cade and W. M. Huo, ibid. 47, 614, 049
(1967).

2 A P, McLean and M. Yoshimine, “Tables of Lincar Molecule
Wave Functions,” IBM J. Res. Develop. (to be published, private
distribution).

2 [or the cthylene wavefunction in a (955/3) Gaussian basis
see: J. M. Schulman, J. W. Moskowitz, and C. Hollister, J. Chem.
Thys. 46, 2759 (1967); for formaldchyde see: N. W. Winter, T. H.
Dunning, and J. H. Letcher, “The Formaldehyde Molecule in a
Gaussian Basis,” ibid. (1o be published).
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Table I. A minimum Slater basis set representation of the w-electron
system of ethylene.a The o-core is the LCAO-MO SCF core for the

ground state. All integrals are in atomic units.

Orbitals

T o= O.6286(2pa) + 0.6286(2pb)
T = 0.8251(2pa) - O.8251(?pb)
Required integrals
€ =  =0.4047 €, = 0.2056
T T
J = 0.4873
ikl
J , . = 0.5007
Trl\"ll
. = 0.4867 K , = 0.1584
T T
X % = 1.32
mn*

a_ :
Gee reference 34,



Table II.

states of ethylene.

given in electron volts (evs).

3
E("B, ,T)

1
E("B, »V)

1
£C7B, )
I.P.

a
Reference

o

Reference
c

Reference

Reference

e
Reference

59.
60.
61.
57.
58.

Parr and
Crawford

3.10

11.50

11.90
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Muraib

4.60

11.20

8.80

Pi-electron calculations on the lowest

. c
Huzinaga

4.usd

7.28

1’3B u(mﬁ'-‘) excited

3

Excitation energies and ionization potentials are
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Table VII. Electronic energies, total energies and orbital energies
from the LCAO-MO 3CF calculations on ethylene. All quantities are in

. . a
atomic unitg.

bBasiz set { us2p/2s] + R(3pZC) [ us2p/2s ]
Electronic energy -111.3936 -111.3934
Total energy -78.0111 -78.0109
e(1a1g) -11.2420 -11.2411
e(1b3u) -11.2405 ~-11.2395
e(2a, ) -1.0397 -1.0387 -
1g
e(2b, ) -0.7969 -0.7961
3u
e(1b,. ) -0.6565 -0.6555
2u
e(aalg) -0.5812 -0.5802
e(1b1g) -0.5127 -0.5148
e(1b, ), 1w -0.3731 ~-0.3726
1lu
e(2b1u), 27 0.0088 0.4918
e(1b2g), 1 e 0.0122 0.1440
E(dblu), 37 0.039?2 —
e(2b2g), 2m% 0.0u56 0.6132
e(ab2 ), 3% 0.1141 —
g
e(4b, ), uw 0.1503 ——
1u
e(ub2 ), um=® 0.2124 —
g
e(3b,, ) 0.2607 0.2611
3u
e(u4a, ) 0.2862 0.2868
1g
e(2b, ) 0.3838 0.38u44
2u
e(ub, ) 0.4004 0.4010
3u
e(5a, ) 0.4177 0.4182
ig
e(3b, ) 0.4351 0.4358
2u
(2b
€ 1g) 0.45u5 0.4549
€(5b1u)’ 5n 0.6580 —
e(ablg) 0.7048 0.7053
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Table VII. ‘'continued'

e(5b2g , 5w
s(6a1
e(5b3u
e(6b3u
s(7a1
e(ub2u
s(7b3u

s(4b1

oG
e N S N W N N

g

%1 a.u. of energy = 27.2107 e.v.

0.7150
0.7325
0.8911
1.1294
1.3051
1.4115
1.4406
1.7320

0.7333
0.8922
1.1302
1.3058
1.4122
1.4413
1.7326
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Table VIII. The one-electron properties of ethylene: the ground
state in the [ 4s2p/2s] , [us2p/2s] + R(szC) and [ 4s3p/2s]

Gaussian basis sets. All expectation values are in atomic units.

Basis set [ us2p/2s ] [u4s2p/2s ] + R(3pZC) [ us3p/2s ]
Properties®’
2\
< x 7 M 49.5867 49,6160 49,6435
<:y2)>CM 21.2688 21.2965 21.3057
< z2>CM 12.0636 12.1718 12.0172
< P2>’CM 82.9191 83.0843 82.9664
OXX(CM) 1.3859 1.4246 1.3244
Oyy(CM) 1.6025 1.6435 1.5708
0, (CH) -2.9884 -3.0681 -2.8952
< 1/rH> 6.2531 6.2522 6.2538
< 1/rC> 18.57u4 18.5737 18.5801
E_ (H1) -0.0426 -0.0427 -0.0428
Ey(Hl) 0.0672 0.0672 0.0685
EX(C) ~0.0062 -0.0065 -0.0126
qaa(H) -0.3749 -0.3747 -0.3738
qBB(H) 0.1805 0.1805 0.1791
qZZ(H) 0.1944 0.1942 0.1947
¢ 0°221 0°23" 0°18"
qXX(C) 0.142y 0.1420 0.2359
qyy(c) 0.1u461 0.1u472 0.1293
qZZ(C) -0.2885 -0.2893 -0.3652
< 8(r-H) 0.4274 0.4274 0.4285
< 8(r-C) 119.5868 119.5879 119.5715

a o s
See the text for a definition of the operators.

The following abbreviations have been adopted CM = center of mass,
H1 = hydrogen 1 and C = carbon
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Table IX. The lowest singlet and triplet (wn®) states of ethylene in
the ISTA, TDA and RPA: excitation energies, transition moments and

oscillator strengths.

Basis set: [ 4s2p/2s ]

ISTA TDA RPA
. o1
Singlet state: V("B )
AE(ev) 9.29 8.19 7.71
D (a.u.) -2.03 -1.79 -1.59
f 0.94 0.65 0.48

Triplet state: T(3B3u)

AE(ev) 3.47 3.36 -
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Table X. The lowest singlet (nn®*) state of ethylene, V(lBSu)’ in the
ISTA, TDA and RPA: excitation energies, transition moments, oscillator

strengths and particle-hole amplitudes.

Basis set: [us2p/2s] + R(BpZC)

ISTA TDA RPA

AE(ev) 8.34 7.82 7.46
Dx(a.u.) -1.42 -1.67 -1.55

3 0.41 0.54 0.ub

(m,a)? g(ma) g(ma) g(ma) h(ma)

(10,8) -0.250468 -0.105781 -0.071451 0.000806
(12,8) 0.691152 0.448533 0.364520 -0.008731
(13,8) 0.676696 0.832210 0.856938 -0.051499
(15,8) -0.0239u1 -0.248508 -0.333084 0.04791Y4
(25,8) 0.032926 ~0.011189 -0.036234 0.011959
(18,7) ~0.035701 -0.033288 -0.017173
(21,7) 0.084469 0.068970 0.027848
(30,7) ~-0.006859 -0,006124 -0.004053
(16,6) 0.030111 0.028121 0.016077
(19,6) 0.037379 0.032260 0.009365
(27,6) -0.101015 -0.087859 -0.055767
(28,6) 0.0222u47 0.020329 0.013639
(31,6) 0.0117u44 0.010409 0.0052u48
(22,5) 0.055212 0.044927 0.019576
(24,5) -0.028736 -0.022554 -0.013156
(32,5) -0.004129 -0.003072 -0.002580
(17,4) -0.052889 -0.0442672 -0.017811
(20,4) -0.030509 -0.024493 -0.006061
(26,4) -0.029806 -0.02u4493 -0.021823
(29,4) 0.010178 0.007933 0.005220
(16,3) -0.039046 -0.031772 -0.017716
(19,3) 0.005008 0.001645 0.006630
(27,3) 0.021589 0.017119 0.020281
(28,3) -0.030203 -0.025572 -0.015391
(31,3) -0.007168 -0.007121 -0.002380
a

The numerical designation refers to the

in Table

VII.

position of the orbital
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Table XI. The lowest triplet (mnn¥*) state of ethylene, T(aESu), in the

ISTA and TDA: excitation energies and particle-hole amplitudes.

Basis set: [us2p/2s] + R(BpZC)

a

ISTA TDA
AE(ev) 3.48 3.37
a

(ma) g(ma) g(ma)
(10,8) -0.016665 -0.016326
(12,8) 0.154796 0.152582
(13,8) 0.767107 0.762290
(15,8) -0.601313 -0.602733
(25,8) -0.160405 -0.163701
(18,7) -0.016335
(21,7) -0.010337
(30,7) -0.006439
(16,6) -0.006975
(19,6) -0.011952
(27,6) 0.020961
(28,6) -0.007095
(31,6) -0.006355
(22,5) -0.006861
(24,5) 0.01454y
(32,5) 0.006472
(17,4) 0.027613
(20,4) 0.012879
(26,4) -0.005034
(29,4) -0.012764
(16,3) 0.025164
(19,3) -0.028212
(27,3) -0.032879
(28,3) 0.010230
(31,3) ~0.010327

The numerical designation refers to the position of the orbital

in Table VII.
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Table XII. Orbital expansion coefficients for the w¥*-orbital from

the ISTA or frozen core wavefunctions.
Basis set: [us2p/2s] + R(3pZC)

Orbital 17[5'\' 3113':

. . a
Basis functions

2p C1 0.196536 0.564740
2p'C1 0.317532 0.528518
2p;C1 0.930933 0.066389
2ph'C1 1.608963 0.041982
2pivel 0.042753 -0.026140
2p C2 -0.196536 -0.564740
2!, -0.317532 -0.528518
2pic2 -0.930933 -0.066389
2p"1C2 1.608963 -0.041982
2pive2 0.042753 0.026140

9See Table IV
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Table XIII. A comparison of the singlet and triplet m#-orbitals

from the ISTA or frozen core wavefunction and the ground state m-

orbital.
Basis set: [ us2p/2s ]+ R(3po)
Ground state Excited states
Property? m Sy 1o
<x? >CM 2.1847 3.8852 27.2726 (6.8469)°
<y2>CM 0.9089 0.9265 8.7630 (1.4006)
<z2>CM 2.7268 2.7795 26.2883 (4.2019)
<1/rc> 0.5303 0.5287 0.2164 (0.4355)
€ -0.3731 -0.2u454 -0.0665 (-0.0311)
a

CM refers to the center of mass of ethylene and C refers to
carbon 1.

The values in parentheses are for the valence basis set.
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Table XVI. A comparison of the n*-orbital from the ISTA and TDA

wavefunctions for the lowest (wm¥*) singlet state of ethylene.

Basis set: [us2p/2s] + R(3pZC)

Propertya ISTA TDA
<x2>CM 27.2726 11.7286
{22

V7 om 8.7630 3.5615

2
<z"D oy 26.2889 10.6845
{i/r. 0.2164 0.3499
<'n'§'~' 'n* >
ISTA| TDA 0.9206

a
CM refers to the center of mass of =thylene and C to carbon 1.



Table XVII. The one-electron properties of ethylene in the lowest

(mn%) singlet, V(lBSu)’ and triplet, T(SB ), states.

3u

Basis set: [us2p/2s] + R(3pZC)

Excited States

Ground State V(lB ) T(3B )
a 1 3u 3u
Property A1g ISTA TDA ISTA TDA
<;x2>CM 49.6160 74.7039  58.8365 51.3165  51.2811
2
{y >bm 21.2965 29.1506  23.9287 21.3141  21.3100
2
{z >bM 12.1718 35.7338 19.8973 12.22u45  12.1891
2
{r >bM 83.0843 139.5883 102.6625 84.8551  84.7802
1/r
< HD> 6.2522 6.1135 6.1843 6.2538 6.2544
<_1/rc)> 18.57u4u 18.2598  18.3995 18.5721  18.5741
EX(Hl) - 0.0427 - 0.0928 =~ 0.0766 - 0.0530 - 0.0529
Ez(Hl) 0.0672 0.1144 0.0919 0.0603 0.0603
52(01) - 0.0065 - 0.0714 - 0.0664 - 0.0558 - 0.0557
{s(r-H) > 0.4274 0.4274 0.4263 0.4274 0.4276
<{§(r-0)> 119.5879 119.5879 119.5950 119.5873 119.5865

a < s
For the definition of the operators, see the text. CM refers to the
center of mass of ethylene, Hl to hydrogen 1 and C1 to carbon 1.
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Table XVIII. The results of accurate open-shell Hartree-Fock

1,3

calculations on the Bau(nﬂ*) state of ethylene.a Except as noted,

all quantities are in atomic units.

Basis set: [us3p/2s] + R(3po)

Ground stateb Excited states

1 1 3

T
A1g V( B3u) ( Bau)
E p(a.u.) -78.0140 -77.7415 -77.8917
AE(ev) — 7.u41 3.33
£ —_ ' 0.15 —_—
e(m) -0.3729 -0.5995 -0.5175
e(m¥) — -0.0593 -0.2u19
2 c
<n|xCMln> 2.1540 2.029Y 2.0634
2 c
<rlyoyl™ 0.8809 0.7246 0.7559
2 c .
{alzgyln> 2.6428 2.1739 2.2678
<1T*]xéM]ﬂ*)c — 43.0190 3.8468
ol 2 o C
L[y [ — 14.0272 0.9149
<vr='=]z2 P> © — 42.0815 2.7446
ol L .

4r. H. Dunning, W. J. Hunt and W. A. Goddard, Chem. Phys. Letters

(to be published).
b

T. H. Dunning and V. McKoy, unpublished results.

c
CM refers to the center of mass of ethylene.



Table XIX. The first Rydberg 1Bsu(ﬂﬂ*) state of ethylene in the ISTA,
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TDA and RPA: excitation energies, transition moments, oscillator

strengths and particle-hole amplitudes.

AE(ev)
Dx(a.u.)
f

(ma) @

(10,8)
(12,8)
(13,8)
(15,8)
(25,8)

(18,7)
(21,7)
(30,7)

(16,6)
(19,6)
(27,6)
(28,6)
(31,6)

(22,5)
(24,5)
(32,5)

(17,4)
(20,4)
(26,4)
(29,4)

(16,3)
(19,3)
(27,3)
(28,3)
(31,3)

Basis set: [us2p/2s] + R(3pZC)

ISTA
9.12
-0.85
0.16
g(ma)

-0.838459 -0

0.190221 0.

-0.500052 -0

0.101730 0.

-0.020029 0

0

-0

0

-0

-0

0

-0

-0

-0

0

0

0

0

0

-0

0

-0

-0

0

0

TDA

8.94
-0.49
0.05

g(ma)

.705474
583394
.315662
234586
.015110

.010862
.0L41949
.002365

.011783
.018717
.044911
.008093
.005236

.026218
.014947
.002128

.025406
014194
.012995
.004802

.015191
.003708
.009953
.013244
.003255

-0.
.658043
-0.
. 247937
.023331

RPA
8.89

-0.30
0.02

g(ma)
670474

230962

.006818
.028298
.001521

.008402
.013309
.031028
.006379
.003672

.017393
.010133
.001370

.017325
.009141
.008u25
.003074

.008886
.002141
.006u493
.008823
.002575

The numerical designation refers to the position of the

Table VII.

-0

-0

-0.

h(ma)

.000201
.002245
.013689
.013406

003943

.003529
.009209
.001042

.003795
.003121
.017617
.004109
.001786

.006833
.004903
.001040

.005552
.002785
.006985
.001837

.005930
.002073
.006478
.005248
.000816

orbital in
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Table XX. The first Rydberg 3B3u(nn*) state of cthylene in the ISTA,

TLA and RPA:  excitation energies and particle-hole amplitudes.

Basis set: [U4s2p/2s] + R(SpZC)

ISTA TDA RPA
AE(ev) 8.77 8.76 8.75
(ma)? g(ma) g(ma) g(ma) h(ma)

(10,8) -0.561044 -0.557396 -0.547054 0.000182
(12,8) 0.788200 0.789794 0.796049 -0.002315
(13,8) 0.031565 0.037578 0.0605u49 -0.015910
(15,8) 0.247207 0.24842u 0.247188 -0.017845
(25,8) 0.043169 0.044807 0.047575 -0.010755
(18,7) 0.007u461 0.012612 0.003273
(21,7) 0.005943 0.008635 0.002050
(30,7) 0.001253 0.002319 0.001340
(16,6) -0.003709 -0.00554L5 -0.000694
(19,6) 0.002776 0.005529 0.001903
(27,6) -0.004924 -0.006477 -0.002735
(28,6) 0.000580 0.000310 0.000069
(31,6) 0.001230 0.002073 0.001151
(22,5) 0.005054 0.007103 0.001859
(24,5) -0.003674 -0.005859 -0.002uy2
(32,5) -0.001345 -0.002118 -0.001202
(17,4) -0.005728 -0.008509 -0.003226
(20,4) -0.006426 -0.008639 -0.002575
(26,u4) -0.001685 -0.001717 0.000046
(29,u4) 0.002547 0.0037u46 0.002040
(16,3) -0.009598 -0.011162 -0.002834
(19,3) 0.002979 0.003912 0.002238
(27,3) 0.004067 0.004620 0.002602
(28,3) -0.003507 -0.004597 -0.002096
(31,3) 0.001366 0.001612 0.000845

The numerical designation refers to the position of the orbital in
Table VII.
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Table XXI. The p®-natural orbital from the ISTA and TDA wavefunctions
for the first Rydberg Bau(nn*) state of ethylene.

Basis set: [u4s2p/2s ] + R(3pZC)

ISTA TDA
1ﬂ* 3n* 1ﬂ* 3n*
Basis functions®
2pZC1 -0.152934 -0.086796 ~0.164770 -0.086819
2p£C1 -0.248965 -0.0873u44 -0.233127 -0.084082
2p';C1 -0.661197 0.379847 -0.182901 0.391247
2pé"C1 1.260439 2.833696 2.582962 2.829064
QP%V C1 L.661401 1.276134 2.606347 1.253484
2pZC2 0.152934 0.086796 0.164770 0.086819
2péC2 0.248965 0.087344 0.233127 0.084082
2pé'C2 0.661197 ~-0.379847 0.182901 -0.391247
2p;"C2 ~-1.260u439 -2.833696 -2.582962 -2.829064
QPéV C2 ~-4.661401 -1.276134 -2.606347 ~-1.253u84

3See Table IV.
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Table XXII. The spatial extent of the m¥®-natural orbitals from the

ISTA and TDA wavefunctions for the first Rydberg Bsu(nn*) state of

ethylene.
Basis set: [us2p/2s ] + R(BpZC)
1 oo 3 oo
T[lb ‘n‘tu
ISTA TDA ISTA TDA
2 a
{x“>cM” 138.5613 95.773u 70.4704 69.92u8
2 a
{y“>cem 45.90u43 31.6333 23.1947 23.0127
2\ @
{z“> M 137.7128 94,8998 69.5841 69.0380
<r2> cM® 322.178u 222.3065 163.2492 161.9755
<1/rC> 0.1187 0.1185 0.0998 0.1002
e(w¥) -0.0380 - -0.0510 --
<""ISTA[““TDA> 0.8870 0.9999
a

CM refers to the center of mass of ethylene.
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Table XXIII. The lowest excited 1B m%*) state of ethylene in the

3g e
ISTA, TDA and RPA: excitation energies and particle-hole amplitudes.

Basis set: [us2p/2s ]

ISTA TDA RPA

AE(ev) 9.50 9.45 9.41
(m,a)? g(ma) g(ma) g(ma) h(ma)
(10,7) 0.98909 0.98u487 0.98556 -0.01372
(12,7) -0.14731 -0.15432 -0.15575 0.00509
(18,8) -0.05744 -0.05526 -0.01643
(21,8) 0.00639 0.01060 -0.03494
(30,8) 0.00699 0.00687 0.00555
(9,5) ~-0.05323 -0.05422 0.00344

%ror uniformity the numerical designation of the virtual orbitals
corresponds to that for the expanded set (see Table VII).
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Table XXIV. The lowest excited 3B (o
3g CH

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes.,

%) state of ethylene in the

Basis set: [us2p/2s]

ISTA TDA RPA

AE(ev) 8.92 8.87 8.82
(m,a)® g(ma) g(ma) g(ma) h(ma)
(10,7) 0.98745 0.98357 0.98384 0.01693
(12,7) -0.15796 -0.16750 -0.16955 -0.00640
(18,8) 0.02092 0.02148 -0.00529
(21,8) -0.01817 -0,02418 -0.04035
(30,8) -0.00490 -0.00517 0.00052
(9,5) -0.06241 ~0.06514 -0.00458

For uniformity the numerical designation of the virtual orbitals
corresponds to that for the expanded set (see Table VII).
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Table XXV. The lowest excited 1B2g(0CH7r='~') state of ethylene in the

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes.

Basis set: [us2p/2s]

ISTA TDA RPA
AE(ev) 1022 9.96 g.84

(m,a)® g(ma) g(ma) g(ma) h(ma)
(10,6) 0.97863 0.95652 0.96237 -0.01358
(12,6) ~-0.20561 -0.21145 -0.21697 0.00718
(16,8) 0.14756 0.112u2 ©0.01163
(19,8) -0.06689 -0.06167 0.00746
(27,8) -0.01092 -0.00439 -0.05863
(28,8) 0.00712 0.00396 0.00980
(31,8) -0.00885 -0.00881 0.00460
(9,4) 0.02898 0.03032 -0.00633
(10,3) 0.10088 0.10211 0.00188
(12,3) -0.05328 -0.05374 -0.00072

a. . . . . . . .
For uniformity the numerical designation of the virtual orbitals

corresponds to that for the expanded set (see Table VII).
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Table XXVI. The lowest excited 3B (o
2g " "CH

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes.

%) state of ethylene in the

Basis set: [ 4s2p/2s ]

ISTA TDA RPA

AE(ev) 9.50 9.29 9.05
(m,a)® g(ma) g(ma) g(ma) h(ma)
(10,6) 0.97623 0.94838 0.94301 0.02797
(12,6) -0.21672 -0.22399 -0.23142 -0.01153
(16,8) 0.18318 0.20876 0.02296
(19,8) -0.02187 -0.02903 0.01280
(27,8) -0.0u4830 -0.0618?2 -0.07874
(28,8) 0.02735 0.033u48 0.02203
(31,8) 0.00148 0.00136 0.009uY4
(9,4%) 0.02737 0.02u2y -0.00827
(10,3) 0.09286 0.10463 0.00884
(12,3) -0.06266 -0.07054 -0.01312

a . . . . . . .
For uniformity the numerical designation of the virtual orbitals
corresponds to that for the expanded set (see Table VII).



Table XXVII.
1,3
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The w*®-natural orbitals for the lowest 1

and

3g

? B2g excited states of ethylene from the ISTA (or frozen core)

wavefunctions.

. . a
Basis function

2sz1
1
2po1

2po2
1
2pZC2

aSee Table IV

Basis set:

'n'*

0.51320
0.64359

-0.51320
-0.64359

3g

[ us2p/2s]

Excited states

0.52106
0.62966

-0.52106
-0.62966

0.55566
0.56608

-0.55566
-0.56608

B2g

T

0.56360
0.55087

-0.56360
-0.55097
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Table XXVIII. Selected one-electron properties of ethylene in the

lowest 1’3Bag and 1’3B2g states. All quantities are in atomic units.
Basis set: [u4s2p/2s]
Ground State 3Exc1ted Sta:es ,
Propertya’b 1A1g 1B3g BSg B2g B2g
2
{x /cM 49.5867 49,1994 49.1407 49,0574 48.9989
2
{ly oM 21.2688 19.3266 19.3060 20.9758 20.9552
PN
{z oM 12.0636 14.5373 14.4753 14,2503 14.1886
-2
{r >bM 82.9191 83.0633 82.9220 84.2835 84.1427
<1/PH1> 6.2531 6.1168 6.1179 6.1800 6.1811
<1/rc1> 18.574Y4 18.6185 18.6202 18.5290 18.5339
fx(Hl) -0.0426 -0.0659 -0.0652 ~0.0284 -0.0277
fy(Hl) 0.0672 0.0663 0.0655 0.0966 0.0959
fX(Cl) -0.0062 0.0142 0.0147 -0.0441 -0.0u436
<6(P—H1)> 0.3974 0.3974 0.3974 0.3551 0.3551
<6(P—C1)> 119.5868 119.5868 119.5868 119.5816 119.5816

See the text for the definition of the operators.

The following abbreviations have been adopted: CM = center of
mass, H1 = hydrogen 1 and Cl1 = carbon.



