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ABSTRACT 

The problem of describing the electronic excited states of an 

atomic or molecular system can be reduced to one of finding a form for 

"l-an operator A (E) such that it satisfies the following equation 

= 

Four approximations to the excitation operator, At(E), have been con-

sidered: (a) the single transition approximation, corresponding to 

excitation into virtual orbitals, (b) the improved single transition 

approximation which allows for the self-consistent field adjustment of 

the virtual orbital, (c) the Tamm-Dancoff approximation, corresponding 

to selective configuration interaction in the excited state and (d) 

the random-phase approximation which attempts to take into account 

correlation in both ground and excited states. 

Analyzing the excitation operator method in terms of the approx-

imations to the excitation operator listed above, we found that the 

correlation does not always enter in the ground and excited states in 

a particularly balanced manner and that self-consistent field changes 

in the core are neglected. In addition, the strong "mixing" of certain 

doubly excited configurations into the ground state wavefunction, such 

as (n*an*S) in ethylene, is shown to lead to a number of problems in 

the random-phase approximation, e.g., an instability in the triplet 

equations. 

The excitation operator approach is illustrated by ab initio 

calculations on a number of valence excited states of the ethylene 
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molecule. These calculations indicate that the lowest singlet n~n* 

state of ethylene is not a valence state as previously assumed, but 

that it is significantly more diffuse, e.g., in the improved single 

transition approximation the <z2) for the n*-orbital in the singlet 

state is 26.3 a.u. compared to 2.8 a.u. in the corresponding triplet 

state. This behavior is a consequence of the ionic nature of the 

wavefunction of the singlet state and, thus, is expected to be 

characteristic of such states in general. We find that a-n correlation, 

as included in the above approximations to the excitation operator, 

does not play an essential role in the description of the excited 

states, although its effect on the charge distribution of the singlet 

n~n* state is substantial. 
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1. INTRODUCTION 

When electromagnetic radiation of the appropriate wavelength is 

incident upon a molecule, the molecule can absorb energy from the field 

and make a transition to a state of higher energy. The specification 

of the states of a polyatomic molecule requires the assignment of 

rotational (J), vibrational (u) and electronic (n) quantum numbers and, 

thus, such transitions involve a change in one or more of the molecular 

quantum numbers (n,u,J). If the radiation has a wavelength in the 

ultraviolet or visible regions of the spectrum, transitions can be made 

to excited electronic states. The methods developed here represent one 

attempt to provide a basis for the theoretical interpretation of the 

electronic spectra of molecules. 

The electronic excited states of atoms and molecules have been of 

interest to chemists since the advent of modern electronic spectros-

copy, but their importance in other areas is now slowly being apprec-

. t d 1,2 la e . The excited states of a system not only determine its 

spectral characteristics but often they are important in the elucida­

tion of its chemistry,1 witness the rapid growth in the general area of 

photochemistry. In addition, our understanding of the exciton 

structure of molecular crystals is based upon the excited states of 

3 the individual molecules which make up the crystal. Thus, an accurate 

description of the excited states of molecules is important not only to 

further our general understanding of the electronic structure of 

molecules, but also to provide a basis for interpreting the interaction 
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of molecules with their environment. 

The excited states of an isolated molecule can be categorized into 

two limiting cases: valence states, of which the ground state is one, 

dnd Rydberg states. Valence states are characterized by a compact 

charge distribution similar in extent to that of the ground state. In 

an orbital description these states are composed of functions with the 

same principal quantum numbers as the valence orbitals of the atoms. 

Rydberg states, on the other hand, have charge distributions similar 

to that of the corresponding ion plus a very diffuse orbital, the 

Rydberg orbital. In an orbital description we say that Rydberg states 

require functions with higher principal quantum numbers than occur in 

atomic valence states. 

The excitation energy is composed of two parts: a change in the 

Hartree-Fock energy and a change in the correlation energy, i.e., 

= 

Since electron pairs are being split up in the excitation process, we 

might expect the change in the correlation energy to make a significant 

contribution to the total energy difference. Besides the variations in 

the charge distributions, Rydberg and valence states can be distin-

guished by the role that correlation plays in the description of the 

state. 

In Rydberg states the correlation is approximatoly the s~m~ qS ,~ 

the corresponding ion for the Rydberg orbital is spatially quite far 

from the core. Thus, in such states correlation can be easily taken 
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into account just by referencing the excited state to the ion rather 

than the neutral molecule. That is, for ionization 

= t:.E ion 
+ t:.E ion 

corr 

Since for Rydberg states 

then 

t:.E ion 
corr 

stability = t:.Eex 

lIE
ex 
HF 

. . . 4,5 
That th1S 1S indeed true has been verif1ed by a number of workers, 

although the significance of the result does not always seem to be 

appreciated and some authors still quote (uncorrected) excitation 

. f R db .. 6,7 energ1es or y erg trans1t1ons. 

For valence states no such "zero" of correlation energy exists. 

We do not expect the correlation energy of the excited state to be as 

small as that of the ion, which has one less electron, nor do we 

expect it to be as large as in the ground state, which has all orbitals 

doubly occupied. 

Let us now briefly review the possible approaches to the problem 

of computing wavefunctions for the excited states of molecules. 

The virtual orbital approximation, an approxin.ution which has L6-.;,. 

8 9 10 widely employed, " merely replaces one of the orbitals occupied in 

the Hartree-Fock ground state with one of the unoccupied solutions of 
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the ground state Hartree-Fock Hamiltonian, i.e., the so-called virtual 

orbitals. However, the virtual orbitals of the ground state Hamilton-

ian experience a potential field due to all of the electrons whereas 

an occupied orbital experiences only the field due to the other N-l 

electrons, as it should. Because of this we expect the virtual orbitals 

to be far more loosely bound than the variationally correct excited 

state orbitals. In fact, if we solved the Hartree-Fock equations 

exactly, the virtual orbitals would all be continuum functions except 

in those cases in which the molecule has a bound negative ion. In the 

latter case some of the virtual orbitals should be bound, but they 

would be appropriate for the negative ion, not for the excited state of 

the neutral molecule. S 

I h f . . 4,S h . d ft' n t e rozen core approx~mat~on t e exc~te state wave unc ~on 

is again obtained by replacing one of the occupied ground state orbitals 

with an orbital of higher energy. However, this orbital, called an 

improved virtual orbital,S is obtained by solving for the optimum 

orbital in the correct N-1 electron potential. Since the remaining 

orbitals have been taken from the ground state calculation, this 

method is referred to as the frozen core approximation. The frozen 

core wavefunction should be considered as the first useful approximation 

for the excited state. 

11 12 In the open-shell Hartree-Fock method ' the electrons are 

assigned to a given orbital configuratior: and then t:le orbi::~l.::: ~.'-

allowed to self-consistently adjust for the change in the charge 

distribution. In order to simplify the equations the orbitals are 
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constrained to be orthogonal. The frozen core approximation can be 

considered an approximation to the open-shell Hartree-Fock wavefunction 

obtained by restricting the variations to just the (former) virtual 

orbital. Although simple conceptually, in practice rather severe 

problems arise in handling the orthogonality constraints and this has 

prevented all but a limited application of this method to the excited 

12 states of molecules. However, recent theoretical work clarifying the 

role of orthogonality constraints in self-consistent field equations
13 

(see also Proposition II) seems promising, so that accurate Hartree-

Fock calculations on open-shell states in many systems of chemical 

interest should soon be possible. Excited state calculations can also 

be done using the GI method14 which employs the group operators G: to 
1 

insure the correct permutational and spin symmetry for a general 

product of orbitals. Besides an appealing conceptual picture of the 

excited states of molecules, the GI wavefunctions for open-shell states 

satisfy Brillouin's theorem14 and provide upper bounds on the energies 

of the states
15 

neither of which are accomplished in general by open­

shell Hartree-Fock wavefunctions. 16 ,17 

As stated previously, for the valence excited states of molecules 

we have no convenient reference point for the correlation energy. The 

18 19 20 excitation operator method ' , attempts to deal with this problem 

by focusing on energy differences between the ground and excited states. 

Thus, this method is concerned only with the description of the two 

states relative to one another. The excitation operator, At(E), 

connecting the ground state to the manifold of excited states is defined 
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by 

so that it satisfies the following commutator 

= 

Unfortunately, the complexity of the atomic and molecular Hamiltonians 

-- prevents the excitation operator from being cast into any simple form. 

However, it is possible that using chemical intuition we can formulate 

a new operator St(E) which contains all the pertinent physical features 

of the true excitation operator. This method and its application to the 

ethylene molecule are the topics of the present work. 

There are, of course, many ways of going beyond the self-

consistent field and excitation operator methods: configuration 

interaction,21 the multi-configuration self-consistent field method22 

and perturbation theory in the form of the pair theories proposed by 

23 24 25 26. 27 28 Brueckner, Goldstone, Bethe, Szasz, S1nanoglu and Nesbet. 

Of these the most promising at the present time appear to be the 

multi-configuration self-consistent field method and the pair theories 

put forth in a configuration interaction form by Nesbet and Sinanoglu. 

Whereas the multi-configuration self-consistent field method seems best 

suited for alleviating orbital restrictions encountered in the Hartree-

Fock method ( see Proposition I), the els::"'::ron pair o~:.eorieG G,,(;; .. 

amenable to the entire problem. Thus, using the pair method, pair 

correlation energies could be calculated for both the ground and 
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excited states and the importance of changes in dny portion of the 

correlation energy obtained directly. 

As stated above, we are concerned with the application of the 

excitation operator method to the problem of the electronic excited 

states of molecules. In particular, calculations are presented on a 

number of valence excited states of ethylene as well as one (~~*) 

Rydberg state. It is impossible to over-emphasize the importance of 

understanding the ethylene molecule quantum mechanically. It is the 

simplest ~-electron system and a prototype for larger conjugated 

molecules, an understanding of which is vital not only in organic 

chemistry but also in such fields as electronic spectroscopy and 

molecular biology. 

The excitation operator method was chosen because it allows us to 

concentrate only on energy differences and because it takes into 

account the effects of electron correlation on the excitation process. 

Further, while the excitation operator method has found widespread 

application in the fields of nuclear29 and solid state
30 

physics, its 

. t' d h b .. 1 31 use 1n a om1C an molecular systems as een m1n1ma . It was also 

our intent to investigate the approximations employed in the excitation 

operator method as they pertain to molecules and, thus, to assess the 

general utility of the excitation operator approach in molecular 

quantum mechanics. 



8 

2. THE EXCITATION OPERATOR METHOD 

This section begins with a brief review of the formalism of 

second quantization. The excitation operator "equations of motion" are 

then derived and the approximations to the excitation operator 

discussed. Next, the operator formalism is used to derive expressions 

for the changes in the expectation values of one-electron operators. 

Finally, the equivalence of some of the approximations for the 

excitation operator and the more familiar methods used in molecular 

quantum mechanics is established. 

2 1 A b . f . f d .. 32 .. r~e rev~ew 0 secon quant~zat~on 

As we shall see in the developments in the section which follows, 

the approximations to the excitation operator are best formulated in 

the language of secood quantization. Use of this particular formalism 

not only provides insight into certain physical aspects of the problem, 

but it also provides a straightforward means of correcting the equations 

when the approximations which have been employed break down. In 

addition, it allows one to make certain approximations more easily than 

in the coordinate representation. Assuming that a brief review of 

second quantization is in order, this section discusses the trans-

formation from the (usual) coordinate representation to the occupation 

number representation. We shall only deal with fermion systems. 

Let us assume that we have a complete set of one-electron 

functions, {~.} {which can be the eigenfunctions of the llartree-Fock 
~ 
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Hamiltonian or any other convenient set) and that they are ordered 

according to some convention. A wavefunction for an N-electron system 

in the coordinate representation constructed from this set might be 

'l' = coord A [cj> (1) q, (2) ••• cj>N (N )] 
1 2 

where A is the anti-symmetrizer. In terms of occupation numbers we 

could say that in this wavefunction, orbital levels 1,2, ... N have an 

occupation number of one. Thus, we see that, given a complete set of 

one-electron functions, any single configuration wavefunction such as 

the above can be completely specified just by listing the occupation 

numbers of the various orbitals, e.g., 

= 

To operate on this function in occupation number space, we shall define 

the annihilation operator for orbital cp. by 
~ 

a·ll ... 1. ... ) 
~ 1 ~ 

= 

Here e is an integer which accounts for phase changes between the Nand 

N-l electron wavefunctions as will become clear later. Thus, the 

annihi-lation operator a. de-populates orbital level i. Because of the 
~ 

orthogonality of the orbitals, the only non-zero matrix elements of a. 
~ 

are 

<1 ... a .... la.ll ... 1. ... ) 
1 ~ ~ 1 ~ 

= (3) 
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The Hermitian conjugate of Eq.(3) defines the Hermitian conjugate of 

the annihilation operator, the creation operator (denoted by a dagger) 

t <1 ... 1. ... la.11 ... 0 •••• ) 
1 1 111 

= (4) 

so that 

a!11 ... 0 •••• ) 
1. 1 1 

= (_1)6 11 ... 1 .... ) 
1 1. 

(5) 

t Thus, the creation operator a. populates orbital level i. Using these 
1 

operators we can define the number operator t n. = a.a. with the 
1. 1 1. 

property 

A o if the orbital is unoccupied 
<n.) = 

1 
1 if the orbital is occupied 

To discover the commutation relations for the creation and 

annihilation operators, first consider the effect of the product 

on the wavefunction 10 i Ok) : 

Similarly, 

(6) 

( 7b) 

But, wavefunctions for fermions must be anti-symmetric with respect to 

interchange of electrons, so 

= (7c) 
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The zero-electron wdvefunction, IOiOk>' as well as the one-electron 

wdvefunctionc;, IliOk > dnd IlkO i > , are of course symmetric. Note that 

we have adopted the convention that an annihilation or creation 

operator always operates on the first position in the number vector. 

Hence, the orbital level being operated on must be moved to this 

position by a series of permutations; this is the origin of the phase 

factors in Eqs.(2), (3), (4) and (5). Combining Eq.(7a) and (7b) and 

using Eq.(7c), we find that 

+ = ° (Sa) 

Thus, because of the anti-symmetry of fermion wavefunctions, the fermion 

number operators anti-commute. To distinguish this from the usual 

commutator notation, Eq.(8a) will be written 

t t {a. , a
k

} = ° ~ 

Likewise, it is easily shown that 

{a. , a
k

} = ° ~ 

Now consider the product of creation and annihilation operators 

with i 1- k: 

Therefore, the annihilation and creation operators for different 

orbital levels also anti-commute: 

(Sb) 

(9) 

(iOa) 

(lOb) 
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i #- k (10c) 

For the case that i = k 

t " 11.) a.a·ll./ = 
~ ~ ~ ~ 

(lla) 

"r a.a·ll.) = 0 
J. J. ]. 

(llb) 

so 

"r {a., a.} = 1 
J. ]. 

(11c) 

The anti-commutation relati~ns for the fermion number operators can be 

summarized as 

i- t {a. , a
k

} {a. , a
k

} = = 0 
]. ]. 

(12a) 

-r a
k

} 
°ik {a. , = ]. 

(12b) 

We must now establish how the usual coordinate operators, such as 

the kinetic energy or electron repulsion operators, are expressed in 

33 terms of the creation and annihilation operators. If F is an 

arbitrary one-electron operator symmetric in the electronic coordinates, 

i.e. , 

F = L f. 
J. 

(13) 

i 

then in terms of the complete set of functions 

rcjl. 
]. 

(14) 
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But, simplistically, 

= (15) 

so that Eq.(14) can be written as 

F 4>. 
l. 

" t = 2 < 4>k 1 f 14> • > aka. 4>. k l. l. l. 
(16 ) 

In general then an arbitrary one-electron operator can be expressed as 

F = " t L L < 4>k 1 f 14> . > aka. 
i k l. l. 

(17) 

In an analogous manner it can be shown that a general two-electron 

operator is represented by 

G (18) 

This is essentially all of the formalism of second quantization 

that we shall require., For a more complete treatment of the subject 

the reader is referred to Landau and Lifschitz. 32 

2.2. Derivation of the excitation operator "equations of motion" 

The derivation of the excitation operator "equations of motion" 

will closely follow that presented in an earlier paper. 34 More 

elegant formulations of the equations are possible, however, and for 

20 this the reader is referred to the articles by Rowe. 

The problem of describing the excited states of a system can be 

reduced to one of finding a form for an operator At(E) such that it 
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satisfies the following equation: 

= (1) 

where H is the complete electronic Hamiltonian for the molecule under 

consideration. The operator At(E) contains all the physical infor-

mation that we need about the excited state. From Eq.(l) we see that 

the operator A"r (E) generates an excited s tate of the Hamiltonian Ii , 

with excitation energy ~E, when it operates on the ground state, i.e., 

(2) 

Note that At(E) describes a vertical excitation. Taking the Hermitian 

conjugate of Eq.(l), we can derive a relationship connecting the exact 

ground state and the Hermitian conjugate of the excitation operator, 

namely, 

A(E)lo) = 0 (3) 

In practice, the complexity of the molecular Hamiltonian prevents At(E) 

from being cast into any convenient form. However, by using chemical 

and physical intuition, it is possible that an approximation to the 

excitation operator, St(E), could be formulated which would reproduce 

the eigenvalue spectrum of the exact Hamiltonian over some limited 

range quite satisfactorily. In this case 

= + R (4) 

where R is hopefully small. 
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The electronic Hamiltonian for a molecular system is, in atomic 

units, 

H = L (-~v? - L Z /r . ) + ~ L L l/r .. 
1 a al lJ i a i j 

= L H. + ~ L L v .. 
i 

1 i j lJ 

In the Hartree-Fock approximation we replace the interaction of 

electron i with all other electrons, L. v .. , by an effective one­
J lJ 

particle potential V(i). The lowest N eigenfunctions of the one-

t · 1 H '1 . 35 par lC e aml tonlan 

(H + V) I i) = 

(Sa) 

( 5b) 

(6) 

are then combined into a Slater determinant to form the Hartree-Fock 
c v 

wavefunction for the ground state, IHF). Combining Eqs. (6b) and (7) 

the total electronic Hamiltonian can be written as 

H = L (H + V) + 
i 

L (~ L v .. -V) 
i j lJ 

In the notation of second quantization this becomes 

H = L E.a!a. + ~ 
i l. 1 l. 

- L L L ( ':tal.' I.!k 
i k 13 .., '"' 

I I 

where we have introduced the explicit form of the Hartree-Fock one-

(7) 

( 8) 
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. 1 . 1 35 part1c e potent1a 

V(i) = L [J.(i) - K.(i) 
j ] ] 

J. and K. being the usual coulomb and exchange operators. For the 
] J 

Hartree-Fock orbitals the first term is diagonal since 

The integrals V. 'k n are defined by '\.o1J Yo. 

= 

= e:. <5 •• 
1 1J 

(ga) 

(9b) 

(10) 

the ~'s denote molecular spin orbitals. In the above equations and in 

the ones to follow, we denote by the subscripts 

0'.,i3,y,6~ • •• 

m,n,p,q, .•. 

i,j,k,t,oo . 

single particle states occupied in 
the Hartree-Fock ground state (called 
hole states when unoccupied) 

single particle states not occupied in 
the Hartree-Fock ground state (called 
particle states when occupied) 

any state. 

If we define the Fermi level, e
F

, as being the uppermost level 

occupied in the Hartree-Fock ground state, then for the ground state 

in the Hartree-Fock approximation the orbital occupation numbers are 

n. = 
1 

n. = 1 

1 

a 

e. < 
1 

e. > 
1 

(11) 
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These are, of course, just the expectation values of the number oper-

ators -r n. = a.il. 
111 

over the Hartree-Fock wavefunction. 

define d particle-hole pair creation operator 

"l-e (rna.) "I-= a a m a. 

and the corresponding pair annihilation operator 

e(ma.) t = a a a. m 

Let us now 

(12a) 

(12b) 

These operators will be the basic building blocks used to construct the 

approximations to the excitation operator considered here. Thus, 

(13) 

is a Slater determinant derived from the Hartree-Fock ground state by 

destroying a particle in an orbital below the Fermi level (in ~ ) and 
a 

creating a particle in an orbital above the Fermi level (in ~). Such 
m 

transitions will be referred to as elementary transitions and are 

equivalent to the virtual orbital approximation discussed earlier. 

With the above definitions we find that the particle-hole pair 

creation and annihilation operators satisfy the following commutation 

relations 

t t 
[e (ma.), e (nS) ] = 

= 15 15 as mn 

[ e ( rna), e ( n S) ] = 0 

t 
Qmn aaaS 

(14a) 

(14b) 

The "equations of motion" obeyed by the excitation operator can be 
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obtained by considering the following equation31 

(15) 

which after a little manipulation becomes 

(16) 

Using the property of the excitation operator, Eq.(2), and its 

Hermitian conjugate, Eq.(3), the above can be rewritten as 

(17) 

< 0 I [A( E ) , [H, C t ( rna) ] ] I 0 > = 0 

Up to this point the derivation has been completely rigorous, relying 

only on the definitions and properties of the exact excitation 

operator. Note that the excitation energy (E - Eo) appears in an 

equation in which the elements are the ground state expectation values 

of double commutators, which as we shall later see are less sensitive 

to the detailed form of the ground state wavefunction. 

From Eq.(17) we see that all subsequent derivations will have one 

thing in common -- the commutator [Ii, c t (rna)] , which is independent 

of our approximation to A"I- (E). Using the second quantized form of 

the Hamiltonian, Eq.(8), we find that 

~ t 
[ H, C (rna)] 

+ 
"l" "\... (V V Q ) C (nS) 

L "'anmS - "'an..,m 
(nS) 



where 

Q = 

+ 

- I I 
13 y 

19 

+ L (~Q - ~ Q ) C(nS) 
(nt3) a~mn a~nm 

+ Q 

L L (V - V )ata 
~pmr ~aprm p r 

p r 

~ L I I (';t, 'k - ';t .. k) a a:a:ak i j k ~J m ~Jm a ] ~ 

+ 

(18) 

(19) 

This splits the commutator into two groups: the first group contains 

all of the single particle-hole terms while the second group, Q, 

contains no ~ single particle-hole terms but rather contains inter­

actions which are described as hole-hole, ata , particle-particle, 
\) y 

t 1 ' 'h a a , mu t~ple part~cle- ole, etc, 
p r 

Although it appears that Q does 

contain single particle-hole terms, we say that the net amount of such 

terms is zero for if the commutators 

[Ct (nl3), Q] and [C(nt3), Q] 

1 . h 36 are eva uated over the Hartree-Fock ground state, these terms van~s , 
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Since we shall confine ourselves to excitation operators which are 

linear combinations of pair creation and annihilation operators and to 

expectation values over the Hartree-Fock ground state, we will retain 

only single particle-hole interactions and "linearize" the commutator 

to 

t H, C (ma) ] (e: - e: + V 
m ex "'maam 

V ) 
"'mama 

t 
C (ma) 

(20) 

+ L (V Q - V Q ) C(nS) 
(nS) "'a~mn "'a~nm 

Note that (1) the above derivation has ignored spin, the resulting 

equations can be specialized for singlets and triplets in a final 

step, and (2) the primes on the summations indicate exclusion of the 

term (ma). Eqs. (17) and (20) form the working equations for the 

approximations to the excitation operator considered here. 

In addition to the excitation energy, the transition moment 

between the ground and excited state 

= -<EI:; 1 0) (21) 

is also of considerable interest for it relates to the intensity of 

th ab . 37 e sorptl.on. Using Eqs. (2) and (3), Eq. (21) can be rewritten as 

= - <01 [A(E), :;] 10) (22) 
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In second quantization the dipole moment operator is 

-+ 
r = L 

i,j 

-+ t r .. a.a. 
~] ~ ] 

[see Eq. (2.1-17)]. To be consistent with the approximations 

employed in the derivation of the eigenvalue equations, we neglect 

particle-particle and hole-hole terms and retain for the transition 

operator only 

-+ 
r r 

(rna) 

-+ 
r 

rna 
t ] [ C (rna) + C(ma) (23) 

For comparison with experiment we also calculate the oscillator 

strength of a transition. The oscillator strength, f, is defined by37 

f = (24) 

where ~E is the theoretically calculated excitation energy and ~E and 

-+ 
D are both in atomic units. 

We shall now derive the eigenvalue equations for the 

approximations to the excitation operator. 

2.2.1. The single transition approximation8 

In the single transition approximation (STA), an approximation 

. 8 9 10 commonly used by chem~sts, " the excitation operator is represented 

by a single particle-hole creation operator, i.e., 

= (25) 
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requiring that Eq. (3) be satisfied, we see the corresponding ground 

state is just the Hartree-Fock ground state. Thus, we speak of n~n*, 

n~n*, etc. transitions. However, this method is much too rigid; not 

only does it constrain the orbitals to their ground state form, but 

also the virtual orbital is an eigenfunction of a HamiltQnian which 

contains interactions with all N electrons. Thus, we expect all the 

virtual orbitals to be quite diffuse and, in the absense of a stable 

negative ion of the ground state, to correspond to continuum states. 

It should be remembered, however, that the use of expansion techniques 

to solve the Hartree-Fock equations constrains the virtual orbitals 

to the space described by the chosen set of basis functions. The 

extreme nature of this approximation will be demonstrated in Section 4. 

Using Eqs. (17) and (20) and the commutators for the pair 

creation and annihilation operators, Eq. (14), we find that the 

excitation energy is 

= £ m 
£ + V a ~maam 

V 
~mama 

making the excited state wavefunctions eigenfunctions of spin, we 

obtain for singlets 

lE - E = £ - £ + 2V o m a maam V mama 

= £ - £ + 2K J mama rna 

and for triplets 

(26) 

(27a) 



= £ 
m 
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£ a J 
ma 

which dre -just the equations derived by Roothaan in 1951. 8 The 

(27b) 

Vijk £ are defined in terms of spatial molecular orbitals; the spin 

has been integrated out. 

Using Eqs. (22) and (23) the dipole transition moment is 

1-+ 
D 

ma 
= 

= 

-12 -+ 
r 

rna 

where the left superscript denotes the spin multiplicity. 

(28a) 

(28b) 

In this derivation and the ones to follow, it is assumed that 

the molecular orbitals involved are non-degenerate. If this is not 

true, the appropriate modifications must be made. 

2 2 2 Th 
. . . . ., 4,5 

. .. e lmproved slngle transltlon approxlmatlon 

In the improved single transition approximation (ISTA), the 

excitation operator is written as a linear combination of pair 

creation operators with the sum restricted to those virtual orbitals 

accessible from a given ground state orbital, i.e., 

t = I g(ma;E) C (rna) (29 ) 

m 

By defining a new orbital 
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= 

we see that the ISTA wavefunction 

I E(ISTA) > = 

can be written as a single configuration wavefunction. In Section 

2.4.2. it is shown that this is equivalent to the frozen core 

° ° 4,5 d h ° 1 f h ° ° I dO t approx~mat1on an t at 1t a lows or t e var1at1ona a Justmen 

of the virtual orbital. The new orbital is called an improved 

virtualorbital. S Note that we still classify transitions as 

(30) 

(31) 

n~n*, n+~*, etc. with the exception now that the functional form of 

the orbital ~- (n* in the above) depends on the spin multiplicity 
m 

of the state as well as the orbital ($ ) that is replaced. This method 
a 

should be considered the simplest useful approximation for the excited 

state. 

Using Eqs. (17) and (20) and the commutator relations for the 

pair creation and annihilation operators, the equation for the 

particle-hole amplitudes, g(ma;E), is 

[I: - e: + V - V - (E-E )] g(ma;E) m a ~maam ~mama 0 ( 32)· 

+'(V -V ·)g(nS;E)=0 
l ~anma ~anam 
n 

For convenience, hereafter the designation "E" in the particle-hole 

amplitudes will be dropped. Specializing the above to describe eigen-
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functions of spin, we get for singlets 

[£ - £ + 2V - V - (lE - Eo)]g(ma) 
In a maam mama 

(33a) 

+ L (2V - V )g(n~) = 0 anma anam 
n 

and for triplets 

£ - £ 
m a 

V - (3E - EO) ] g(ma) - L V genS) = 0 
mama anam 

(33b) 
n 

The transition moment in the improved single transition approximation 

is 

= -12 L g(ma) 
m 

2.2.3. The Tamm-Dancoff approximation38 

-+ 
r 

rna 

In the Tamm-Dancoff approximation 38 (TDA) we assume that the 

(34) 

excited state can be adequately represented by some linear combination 

of elementary transitions. The net effect of this is to allow, in 

some restricted way, for the rearrangement of charge density during 

the excitation by means of the residual electronic interaction. On 

the basis of chemical experience we would expect that the above 

linear combination would often have a major component which defines 

the essentials of the excitation. This allows us to retain in a 

limited sense the classification of transitions as n-+n*, etc. The 
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effect of the minor components on the excitation energy, transition 

moment and charge distribution of the excited state is a matter which 

can best be settled by numerical calculation, although it had 

previously been assumed small unless near degeneracies were involved. 

The Tamm-Dancoff approximation to the excitation operator is 

t 
STDA (E) = I 

(rna) 

t g(ma;E) C (rna) 

requiring that Eq. (3) be satisfied, we see that the appropriate 

(35) 

ground state is still just the Hartree-Fock ground state. Using Eqs. 

(17) and (20) and the commutators, Eqs. (14), the eigenvalue 

equations for the Tamm-Dancoff approximation to the excited states are 

[Em - Ea + ~maam - ~mama - (E - EO) ] g(ma) 

+ I (V D - V D) g( nS) = 0 
(nS) ~anm~ ~an~m 

and specializing for spin states, we obtain for singlets 

[E - E + 2V - V 
m a maam mama 

1 - ( E - EO) ] g ( rna ) 

and for triplets 

[E - E m a V mama 

~ 

+ t (2V - V D )g(nS) = 0 
(nS) anmS an~m 

= 

(36) 

(37a) 

o 

Th . d SU 39 ese are the equations used by Herzenberg, Sherrlngton an veges 
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in their semi-empirical treatment of ethylene. The transition 

moment in the Tamm-Dancoff approximation is 

= -12 L g(ma) 
(rna) 

~ 

r rna (38) 

As shown in Section 2.3.2. these equations could also have been 

obtained by a configuration interaction approach. If we represent the 

excited state by 

IE) = L g(ma)I~) 
(rna) 

(39 ) 

and apply the variational principle to determine the coefficients in 

the configuration interaction expansion, g(ma), Eqs. (37) would 

result. 

2 2 4 Th R d Ph 
.. 18,19,20 . .. e an om- ase approxlmatl0n 

In the language of configuration interaction the ground state 

wavefunction is better represented by the expansion 

(40) 

where 

I~s) = ttl '-. C (rna) C (nS) HF/ 

is a double excitation from the orbitals occupied in the ground state 
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(<p' ,<p~) to the virtual orbitals (<p ,cp ). In fact, such configurations a ~ m n 

are expected to account for most of the correlation in the ground 

27 state. If we were still to represent the excited state as a linear 

combination of elementary transitions, we see that we could obtain 

such a transition in two ways: (1) by exciting from the Hartree-Fock 

ground state 

= 

or (2) by de-exciting one of the doubly excited components of the 

true ground state 

In view of this we would expect a better approximation to the 

excitation operator to be 

= I [g(ma;E) Cj-(ma) - h(ma;E)C(ma) ] 
(rna) 

where the minus sign has been chosen for convenience. This is the 

(41) 

excitation operator for the Random-phase approximation (RPA) to the 

excited state. Operating on the ground state wavefunction, Eq.(40), 

with the RPA excitation operator we see that the excited state wave-

function contains, for example, 
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IE) I [g(ma) I h(na) 
mn ] 1m) = Caa 

(rna) (na) 
a 

(42) 

L L I g(ma) 
np 

I
mnp

) + Cay 
(ma)( na)( py) 

aay 

In general, the true ground state, 10), could contain all evenly 

excited configurations and Eq.(3) could still be satisfied. Then, 

the excited state wavefunction would contain all oddly excited 

configurations. In fact, it should be noted that the condition 

A(E) 10) = 0 

cannot be satisfied exactly unless all such evenly excited configura-

tions are included in the ground state, although the error becomes 

negligibly small as more and more terms are included (it is of the 

order of the neglected coefficients). 

Using Eqs.(17) and (20) and the analogous equations involving 

C(ma) with the commutator rules for the pair operators, we obtain the 

set of,coupled equations which describe the random-phase approxima-

tion to the excited state: 

(43a) 

= 0 

and 
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[£ - £ + V - V + (E-E
O
)] h(ma.) 

rn a 'Vmaam '''mama 

(43b) 

+ I (V (3-V D )h(n(3) + I (V D - V D )g(nS) = 0 
(nS) 'Vanm 'Van~m (nS) 'Va~mn 'Va~nm 

Specializing these equations for singlet and triplets in the usual 

way leads to the following equations for singlets 

[£ - £ + 2V - V - (1E_E ) ] g(ma) 
m a maam mama 0 

+ I (2V a-V (3 )g(nS) + I (2V -v )h(n = 0 
(nS) anm~ an m (nS) asmn asnm 

and 

[£ - £ + 2V - V + (1E-EO)] h(ma) 
m a maam mama 

+ I (2V a-V D )h(nS) + I 
(nS) anm~ an~m (nS) 

and for triplets 

(2V D -v D )g(nS) 
a~mn a~nm 

[£ - £ - V - (3E_Eo )] g(ma) 
m a mama 

= 0 

I V D genS) - I V h(n(3) = 0 
(nS) an~m (nS) a(3nm 

and 

I V D hens) 
(ns) an~m 

I V D gens) 
(ns) a~mn 

= 0 

(44a) 

(44b) 

(45a) 
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These equations can be written in matrix notation as 

AE [: 1 (46) 

where, for example, for the singlet state 

A = £ - £ + 2V V ""(ma,ma) m a rna am mama 

~(ma,nS) = 2V V anmS anSm (47) 

~(ma,ns) = 2V - V 
aSmn aSnm 

In the random-phase approximation the transition moment to the excited 

state is 

1-+ 
DRPA = -12 I [g(ma) + h(ma)] -; 

(rna) rna 
(48) 

Comparing the above equations to those derived in the previous 

sections, we note that the TDA involves only the ~ matrix, the ISTA 

a sub-block of ~ and the STA only the diagonal elements of~. It is 

the ~ matrix which allows for the effect of the doubly excited 

components of the true ground state on the excited state. 

From Eq.(46) we see that the RPA excitation energies are the 

eigenvalues of a non-Hermitian matrix. Because of this the eigen-

values and eigenvectors have some peculiar properties which we will now 

d
. 19 
lSCUSS. The matrix form of the RPA equations indicates that 

negative eigenvalues will occur with the same magnitude as the positive 
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eigenvalues. To see this, let 

+ + + + G = H" and H = G" 

to obtain 

[ ~ ~ 
][ :: 1 [ 

it .. 

1 
= llE 

+ 
-~ -~ G" 

or 

[ ][ 
+ 

1 [ 
+ 

1 
~ ~ G" G" 

= -llE (49) 
+ it .. -~ -~ H" 

Therefore, (G",it .. ) = + -r 
(H,G) are solutions of the RPA equations with 

energy -!lE, so that the eigenvectors of the negative eigenvalues are 

identical to those for the positive eigenvalues with the roles of G 
+ 

and H interchanged. The requirement that the states be orthonormal 

leads to 

= 

or in the random-phase approximation 

L [g(ma;E)g(ma;E") - h(ma;E)h(ma;E")] 
(rna) 

(50a) 

( SOb) 

= (SOc) 

The particle-hole amplitudes are said to be normalized to an indefinite 
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metric. Last, we note that the excitation energies could be complex 

in which case the RPA equations are said to be "unstable. 1I However, 

because of the physical interpretation of these eigenvalues, we are 

only concerned with those which have Im(6E) = O. 

The above is the random-phase approximation in the form that it 

. 19 31 is usually presented in the l1terature.' We should now pause and 

elaborate on the derivation of the RPA equations. In this way the 

origin of the non-Hermiticity of the matrix will become apparent. In 

deriving the RPA equations the excitation operator was formulated for 

a ground state such as 

10) = + L L 
(ma)( nS) 

However, in evaluating the commutato.rs which occur in Eqs.(17) and 

(20), and (50) we have assumed that 

c 
o 

1 « 

and thereby used only the Hartree-Fock component. This is the 

justification of our neglect of Q in the commutator in Eq.(19). 

(51) 

This approximation is sometimes called the ground state approximation 31 

h ' . , 40 
w 1le other authors refer to it as the quasi-boson approx1mat10n. 

The term quasi-boson approximation arises from the fact that using the 

true ground state and Eq.(17) the RPA equations can be derived by 

assuming that 
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[ C(ma), C (ne) ] 
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= 0 0 mn as (52) 

Thus, the pair creation and annihilation operators commute just as 

do the boson creation and annihilation operators and, thus, the 

particle-hole pairs could be termed quasi-bosons. This approximation 

is directly related to the ground state approximation in that 

< 01 [C(ma), Ct(ne) ] 10) "" < HFI [C(ma), Ct(nS)] HF) 

< HF I 0 0 Q _at a 0 Q -a a! 0 1 HF ) mn a~ m n a~ a ~ mn 

o 0 as mn 

The important point to be noted here is that either of these 

(53) 

approximations eliminates any need for the ground state correlation 

coefficients, c:~, the calculation of which would be quite time con­

suming. The price that must be paid is that a non-Hermitian matrix 

whose order is twice that encountered in the TDA must be dealt with. 

In addition, only if the Hartree-Fock ground state is a good approxi-

mation to the true ground state can we expect the RPA results to be 

valid. The correction of this defect is, of course, quite straight-

forward: one need only evaluate the commutators using the ground 

state wavefunction given in Eq.(40) and retain the appropriate terms 

in Q, i.e., those for which 

<ol[A(E),Q]lo) t 0 

This approach will be discussed in more detail in Section 3.3. 



35 

Although it appears from Eq.(46) that one must diagonalize an 

unsymmetric matrix in the RPA, this in fact is not the case. If we 

multiply Eq.(46) by 

we obtain 

[ ~ -B 
'V 

But 

B 
'V 

-A 
'V 

B 
'V 

-A 
'V 

1 [: 1 

1 

(54) 

(55) 

is a symmetric matrix of the same order as the original matrix with 

the same eigenvectors as the RPA matrix but with eigenvalues which 

are the squares of the RPA eigenvalues. Note that because of Eq.(49) 

the eigenvalues of the new matrix will be doubly degenerate. Thus, 

any complex eigenvalues which occur in the solution of the RPA 

equations must be pure imaginary and the eigenvectors real. So now, 

we only need solve 
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( 56) 

However, the problem can be simplified even further than this. 

Writing out the above equations as 

-+ 
;iM)H = 

we see that addition of the two equations leads to 

-+ -+ 
(~ - ~)(~ + ~)(G + H) = (57a) 

while subtraction leads to 

(57b) 

Note, however that neither (~ - ~)(~ + ~) nor (~ + ~)(~ - ~) is 

symmetric, although their eigenvalues and eigenvectors are insured to 

be real. Thus, by exploiting the symmetry of the RPA equations we 

have reduced the problem from one of diagonalizing an un-symmetric 

matrix of order N to one of diagonalizing a symmetric matrix of the 

same order or two un-symmetric matrices of order N/2. 

It is instructive to note that the RPA equations cannot be derived 

directly from Eq.(16) if the ground state approximation is employed. 

To see this note that 



S RP A (E) [ H, C (ma.)] = 
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I A Q g(py)C(py)Ct(ns) nlJ,py 

\' t + L B Q h(py)C (py)C(nB) n.."py 

(we need not consider the terms involving two creation or annihilation 

operators) and 

as required, but 

= 0 0 pn By 

since neither orbitals ~ or ~ are occupied in IHF) 
n p 

Thus, only the 

TDA is obtained, i.e., the ~ matrix and the H vector can never contrib-

ute. Using Eq.(17) which involves the expectation values of double 

commutators, however, we find that these terms do contribute even if the 

ground state approximation is used. This is one illustration of the 

fact that commutators of operators require less information content than 

20 do products. 

Before closing this section we should point out that the RPA 

41 
equations can also be derived via time-dependent Hartree-Fock theory. 

However, the interpretation of the resulting wavefunctions from that 

42 viewpoint is not at all clear. Also, the remedy of the breakdown in 

the theory, corresponding to the instability discussed here, cannot be 

implemented as easily as in the present approach. 
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2.3. The calculation of one-electron properties 

Now that we have derived the eigenvalue equations for the 

approximations to the excitation operator to be considered here, we 

shall turn to the problem of calculating the changes in the expectation 

values of one-electron operators, such as dipole moment, forces, etc. 

The expectation value of a one-electron operator 

F = I I 
i j 

f .. 
1J 

t a.a. 
1 J 

over an excited state wavefunction can be written as 

using Eq.(2.2-2). Now, 

= 

substituting Eq.(3) into (2) yields 

= 

where we have used the relation 

Using Eq.(2.2-3) the above expression can be cast into the 

convenient form 

A < ElFIE) - <olflo) = 

(2) 

(3) 

(4) 

( 5) 

(6) 
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This equation enables one to easily compute the changes in the 

expectation values of a one-electron operator. Again, the equation 

has been cast into the convenient form of expectation values of double 

commutators (see the discussion at the end of Section 2.2.4). 

Before evaluating the right hand side of Eq.(6) for the 

various approximations to the excitation operator, we note that F can 

be decomposed into 

F = L f [C t ( rna ) + C (rna) ] 
(rna) rna 

+ L f 
(pq) pq 

t '\ t a a + L. f a av 
p q (yv) yv y 

To evaluate the transition moment between the ground and excited state 

we retained only the particle-hole terms 

In F. However, for the types of wavefunctions considered here such 

terms will make no contribution to the expectation value. Thus, we 

need only consider the reduced operator 

AR t t 
F = L f a a + L f a a pq p q yv y v 

pq yv 

(7) 

We shall begin by deriving the equation for the most general 

operator which we have considered: the RPA excitation operator. The 

formulas for the remaining operators can then be obtained just by 

dropping the appropriate terms. The RPA excitation operator is, 

Eq. (2.2-41) , 
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-r = I [g ( rna) C (rna) - h ( rna) C ( rna) ] 
(rna) 

Using this and the anti-commutation relations for the annihilation 

and creation operators, Eqs.(2.1-12), we find that 

[ rR, -r I g(ma) U t I f Ct(my)} SRPA J = f C (pa) 
(rna) pm ay 

p y 

(8) 

+ I h(ma) U f C( pa) - I fya C(my)} 
(rna) p 

mp y 

An important point to remember in deriving this expression is that the 

quasi-boson approximation cannot be used. As explained in the last 

section, this approximation is appropriate only in the context of an 

expectation value over the ground state wavefunction. Since we are 

not evaluating the above commutator over the ground state wavefunction, 

the quasi-boson approximation must not be used. Evaluating the 

complete double commutator in Eq.(6) we find that 

'" I II [g(ma)g(m'-a) - h(ma)h(m'-a)] f .-
a mm'- mm 

m aa'-
I II [g(ma)g(ma'-) - h(ma)h(ma'-) ] f .-aa 

(9) 

In deriving the final expression we have made use of the ground state 

or quasi-boson approximation. Combining Eqs.(6) and (9), we find for 

the changes in a one-electron property on going from the ground to an 
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excited state that in the random-phase approximatio~ 

I II [g ( rna ) g ( m ... a ) - h ( rna ) h ( m ~ a) ] f ... mm = 
a mm~ 

I H [g ( rna) g ( rna ~ ) - h ( rna ) h ( rna ~) ] f 
aa m aa~ 

in the Tamm-Dancoff approximation 

= IH 
a mm~ 

m aa 

g(ma)g(m~a) f 
mm 

g(ma)g(ma~) f 
aa 

in the improved single transition approximation 

F 10) = H 
mm~ 

g(ma)g(m~a) f 
mm 

and, finally, in the single transition approximation 

<EI FIE) - <01 Flo) = f 
mm 

f 
aa 

Examining these formulae, we note that since 

and 

f aa 

(iOa) 

(10b) 

(iOc) 

(iOd) 
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the expectation values of a one-electron operator over the RPA 

wdvefunction sllOuld be approximately equal to those for the TDA 

wdvefunction. This is as it should be for, if the ground and excited 

states are of different symmetry, the two wavefunctions are completely 

independent. Since the RPA differs from the TDA primarily in consider-

ing a more general form for the ground state wavefunction, the two 

expectation values should be nearly equal. That any effect at all 

exists is probably due to the approximations used in the RPA which 

couple the ground and excited states together, although the presence 

of the triple excitations in the RPA excited state should be 

remembered. However, the triple excitations will make no first order 

43 contributions to a one-electron property. In addition, we did 

assume that Cmn 
« 1 0.(3 • 

2.4. Relationship of the excitation operator methods to ~ common 

approximations 

2.4.1. Equivalence of the ISTA and TDA and single excitation 

configuration interaction 

The ISTA and TDA wavefunctions for an excited state have the 

general form 

= I 
(rna) 

In this section we shall show that were the excited states 
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repre~ented Ly the above expansion, application of the vdriationdl 

pf'inciple leads to just the ISTA and TDA eigenvalue equations. 

The energy of the above wdvefunction .lS 

E(G) = <E IHI E) 

<EIE) 

(2) 

where we have explicitly noted the fact that the energy is a function 

of the expansion coefficients in Eq.(1). Minimizing the energy with 

respect to variations in these coefficients leads to the configuration 

interaction equations44 

Evaluating the matrix elements of the total Hamiltonian, with the 

singlet state as an example, we find 

= EO + Em - E~ + 2V 
u. maam 

<mIHAln) = 2V - V 
a S naSm namS 

V 
mama 

Combining these expressions with Eq.(3) we obtain 

E - E + 2V - V - (1E - EO) ] g( rna) 
m a maam mama 

+ I (2V Q - V (3) g( nS) = 0 
(nS) na~m nam 

(3) 

(4a) 

(4b) 

( 5) 

which are just the equations satisfied by the expansion coefficient~ of 
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the excitation operator in the ISTA and TDA, Eqs.(2.2-33a) and 

(2.2-37a). TIlllS, the ISTA and TDA are equivalent to a configuration 

in ter'dction calcula tion which includes the appropriate singly excited 

configurations. 

2.4.2. Equivalence of the improved single transition and frozen 

. . 16 core approxlmatlons 

In the improved single transition approximation the excited state 

wave function is 

IE(ISTA» (6) 

As shown in the last section, the coefficients g(ma) are obtained by 

diagonalizing the Hamiltonian in this representation, i.e., by 

requiring that 

= (7) 

It is easily seen that the ISTA wavefunctions can be written as single 

configuration wavefunctions by defining a new orbital 

</>- = m I g(ma)</> 
m 

m 

The excited state then can be represented as 

IE(ISTA» = 

( 8) 
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ThUG, the condItion satisfied by the ISTA wavefunctions, Eq.(7), can 

Le written 

(lOa) 

or 

(lOb) 

and 

(lOc) 

Using the rules for evaluating the matrix elements between 

determinantal functions, Eq.(lOc) becomes 

< cjJ-/ h + 2J - K + J ± K / cjJ- > = 0 nee a a m 
(11 ) 

where J and K are the total Coulomb and exchange operators for the 
c c 

core, i. e. , 

J 
c = K 

c 
= 

and the plus (+) sign refers to the singlet wavefunction and the 

minus (-) sign to the triplet. Eq.(ll) is satisfied only if 

(h + 2J 
c 

= E-cjJ- + I Em-acjJa 
lTi m S IJ IJ 

But, Eq.(12) is just the SCF equation that would be obtained if cjJffi 

(12 ) 
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were functionally optimized for the excited state configuration 

while restricting the remaining orbitals to their ground state forms. 

Thus, the ISTA allows for changes in the virtual orbital due to the 

change in the molecular potential upon removing an electron below the 

fermi level and placing it above with the correct spin coupling. As 

only SCF adjustment of the virtual orbital is permitted, this method 

is commonly called the frozen core approximation.
4 

Since it is 

expected that the largest correction should be associated with the 

virtual orbital, it is possible that this method corrects for the 

major SCF changes in the excited state. 

Note that the functional form of ~- depends on whether the 
m 

excited state is a singlet or triplet as well as on which orbital was 

excited. This will lead to differences in the properties of the 

singlet and triplet states arising from a given configuration and may 

account for the major differences arising from a complete SCF 

treatment of the two multiplicities. 

A more complete discussion of the frozen core approximation has 

5 been given by Hunt and Goddard. 
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3. A CRITICAL EXAMINATION OF THE EXCITATION OPERATOR MBTHOD 

3.1. Analysis of the RPA treatment of ~ simple two electron, two 

orbital problem 

From the arguments given in Section 2. it is obvious that the 

conceptual basis for the excitation operator method is just 

configuration interaction. Thus, the ISTA, TDA and RPA should be 

considered as approximate methods of doing the corresponding con-

figuration interaction calculations. In this regard the ISTA and 

TDA are quite straightforward, being just limited configuration 
, 

interaction as shown in Section 2.4. The RPA, on the other hand, 

deviates from a pure CI treatment by invoking a number of reasonable 

approximations which, however, have never been tested in atomic and 

molecular systems. In this section we will analyze a simple two 

electron, two orbital problem in order to gain some insight into the 

RPA. As an example, we will consider the TI-electron system of 

h 
. 45 

et ylene formed from a minimum basis set of Slater orbltals 

(whethe~ this provides an adequate representation of the states need 

not concern us here). The information needed for the calculations is 

given in Table I. 

Let us begin by solving the problem exactly and then we shall 

solve the RPA equations. Only the singlet state will be considered. 

From the TI and w~ orbitals two configurations of A symmetry can be 
19 

constructed. Diagonalizing the Hamiltonian matrix in this representa-
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tion, we obtain for the ground state 

(1) 

= -0.0405 a.u. 

where all energies are given relative to the Hartree-Fock energy of 

the ground state. Since there are only two orbitals, the 

exact excited singlet state is simply 

= 
(2) 

= 0.4404 a.u. 

Thus, the excitation energy and transition moment for the excitation 

from the ground to the excited singlet state are, for the exact 

wavefunctions, 

E = 0.4404 - (-0.0405) exact 

DX 

exact 

= 0.4809 a.u. 

= -/2 (0.9688 - 0.2478) xnn* 

= - 1.35 a.u. 

Let us now turn to the excitation operator calculations. In the 

TDA, which in this special case is also the STA, the excitation energy 

and transition moment are measured with respect to the Hartree-fock 

ground state, so we find that 
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ilETDA = 0.4404 a.u. 

(4) 
x -1. 87 DTDA = a.u. 

Comparing the results with the exact results, Eq.(3), we see that the 

effect of the doubly excited configuration in the exact ground state 

is to increase the excitation energy and decrease the transition 

moment. 

The RPA attempts to take into account the effect of the doubly 

excited configuration in the exact ground state. The RPA excitation 

operator is 

= (5) 

and the RPA "Hamiltonian" matrix for this particular problem has 

the form, see Eq.(2.2-46), 

[ 

'ETD~K- :ERPA 

TIlT .. , 

K .'. 7T1ff''' 

(6 ) 

The solutions to this equation are 

ilE = ±0.4109 a.u. (7a) 

and the coefficients for the positive energy solution are 

1. 0178 
( 8) 

h(n*n) = -0.1894 
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Using Eq.(2.2-48) the transition moment is seen to be 

= -1.54 a.u. (7b) 

Therefore, while the RPA has decreased the transition moment as it 

should, it has also decreased the excitation energy. In fact, the 

difference between the exact and RPA excitation energies is 1.90 ev. 

This is an indication that the decreases in the excitation energies 

upon going from the TDA to the RPA may be somewhat exaggerated 

because of the approximations made in deriving the RPA equations. In 

more general systems the presence of the triply excited components in 

the RPA excited state, see Eq.(2.2-42), should also lead to a decrease 

in the excitation energy. The decrease in the transition moment, on 

the other hand, is consistent with the exact calculations, although it 

is significantly less. 

It should be noted that as the exchange integral K , approaches 
7T7T~: 

zero, the true wavefunction also approaches the Hartree-Fock wave-

function since this integral is just the off-diagonal element in the 

CI matrix which mixes the two configurations. In the limit that the 

Hartree-Fock wave function closely approximates the exact wavefunction, 

we see from Eq.(6) that the RPA results approach tnose of the TDA as 

do the exact (but from opposite directions). It is the strong mixing 

of the !1f I':u1f I':13 > component into the ground state which is responsible 

for the unusually large deviation between the RPA and exact excitation 

energies. This cautions against too literal an interpretation of the 
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results when applying the RPA to states in which one of the 

d · mn. 1 . h d correspon lng CaS lS arge ln t e groun state. 

Note that the condition 

SRPA 10> = 0 (9) 

provides a means of computing the correlation coefficient in the 

ground state (for a more general discussion see Section 3.3). This 

requirement leads to 

or 

= -0.1861 

Since the exact ratio of the two coefficients is -0.2558, the RPA 

consistency condition, Eq.(9), underestimates the amount of correlation 

in the ground state, although it does significantly better than first 

order perturbation theory which yields -0.1298. 

If we apply the RPA to the triplet state we find that the 

excitation energy is imaginary and, thus, the RPA solution is un-

stable. Like the large deviation between the exact and RPA excitation 

energies for the singlet case, this behavior is a direct result of the 

7T~'~ 7T·l~ 
large C coefficient in the exact ground state. Methods of 

7T7T 

correcting the defects in the random-phase approximation while 
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retaining its conceptual simplicity will be discussed in Section 3.3. 

3.2. Correlation energy differences and the excitation operator 

method 

For either the exact wavefunction to all orders in the energy or 

the first order wavefunction to second order in the energy, the total 

electronic energy of a closed shell atom or molecule can be written 

27 as 

= (1) 

where the e
aS 

are pair correlation energies for electrons in orbitals 

~a and $S· The wavefunction for such states are well approximated 

by27 

10) = A(123 •.. N) [1 + I uaS/(aS)] 
a>S 

(2) 

where A(123 ... N) represents a Slater determinant and u
aS 

is the pair 

function describing the correlation of two electrons in the orbitals 

~a and ~S· In open-shell states, however, correlation effects arise 

which do not occur if all the shells are completely filled. 

Sinanoglu and his co-workers 27 have identified these effects as (1) 

internal correlations which arise from a near degeneracy of zero-

order configurations, (2) semi-internal correlations which arise when 

two electrons are excited, one going into an unoccupied orbital within 

the Hartree-Fock "sea," (3) orbital corrections which result from 
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the non-symmetric (both spin and space) nature of the open-shell 

potential as well as (4) the all-external pair correlations which 

also occur in closed shell systems. If we limit ourselves to the 

excited singlet and triplet states of molecules which arise from 

transitions among non-degenerate orbitals, then internal and semi-

internal correlations are completely absent. To the extent that many 

(~3) body effects are negligible, the wavefunction of an excited 

state obtained by replacing orbital ~ with orbital ~ is then just
27 

a m 

~ ex = A(12 ... am) [1 + L f~/(i) + 
i 1 

L L 
i>j 

u .. ] 
1J 

(3) 

where the f~'s incorporate the effect of symmetry and spin polariza-
1 

tions. If the Hartree-Fock wavefunction contains two or more 

components, as it does for the excited singlet states, then a term such 

as Eq.(3) is obtained for each component. Neglecting the cross terms 

between the fi and uki' the energy of the above wavefunction is 

E 
ex = E~~ + f e~ + I I 

B Y 
# a 

e am 

The effect of neglecting the troublesome cross terms has yet to be 

d . 27. d h eterm1ned, although 1t should be noted that to second or er t ey 

do not contribute at all. The e~ correspond to one-electron energy 
1 

(4) 

increments resulting from symmetry and spin polarizations of orbital 

~ .. If the frozen core approximation is used, the Hartree-Fock energy 
1 

of the excited state becomes 
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'\ eS. CF 
Erc + I ~ ( 5) 

SCF where the e. r'efer to energy increments gained upon SCI' relaxation 
.1. 

of the orbitals. 
. ~SCF 

The correspond~ng f. turns the frozen core 
1. 

orbital ~. into the corresponding Hartree-Fock orbital. 
1. 

Subtracting the ground state energy, Eq.(l), from the energy 

of the excited state, Eq.(4), we obtain for the excitation energy 

t.E t.EHF + I ex I I ( ex gd) I [ (e:~ gd) :: e. + e
SY 

e
Sy + e

Sa i 
]. S y P 

+ ( ex e~~)] ex gd e
Sm + e e am aa 

In deriving this expression we have made use of the fact that the 

(6) 

orbital ~ is doubly occupied in the ground state. This expression 
a 

isolates in a very effective manner the various components of the 

correlation energy difference between the ground and excited state. 

For true valence excited states, we might expect that the 

orbitals change only slightly on going from the ground to the excited 

state (excluding, of course, the virtual orbital for which the frozen 

core approximation is assumed). Thus, for such states it is probable 

that 

(7a) 

and 
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ex 
e~a 

The expression for the excitation energy then simply reduces to 

We also expect 

ex 
e 

am 
gd 

e aa 

(7b) 

(8) 

(9a) 

since e
gd 

represents the correlation of two electrons of opposite spin aa 

in the same spatial orbital. It is also reasonable that 

The e. 's are, of course, always negative but in many cases they 
l 

(9b) 

should be small, e.g., in the carbon atom, 28 Nesbet reports the sum 

, 
of the e i s to be -0.002 a.u. which is also approximately the energy 

difference between the unrestricted and restricted Hartree-Fock 

. 46 energles. In molecules, the e. 's could be more important although 
l 

in most cases we would not expect their sum to exceed -0.01 a.u. 

(- 0.3 ev). Combining Eqs. (9) with Eq. ( 8) we predict that the Hartree-

Fock excitation energy should always be below the exact excitation 

energy. As a guideline, then, any theory which attempts to include 

the effects of correlation upon the description of valence excited 

states should (1) allow for SCF adjustment of at least the virtual 

orbital, (2) compute the differences between the way in which orbital 
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~ in the excited state and orbital ~ in the ground state correlate 
m ct 

with the core and (3) compute the difference between the way in 

which orbital ~ correlates with ~ in the excited state and the way 
m ct 

in which orbital ~ (spin up) correlates with ~ (spin down) in the 
ct ct 

ground state and (4) calculate the effects of spin and symmetry 

polarizations of the orbitals although as argued above this may be 

relatively unimportant. 

Let us now see what correlation effects are contained in the 

'fDA and RPA wavefunctl·ons. G' f t' S' 1 47 h lven any wave unc lon, lnanog u as 

presented a method of analyzing this wavefunction for the orbital 

corrections, f., which turn the orbitals of a given reference con­
l 

figuration into the appropriate Hartree-Fock orbitals, the pair 

functions u .. and so on. The procedure to be used has been discussed 
lJ 

48 in more detail by Hudson and McKoy. To begin, we first split the 

wavefunction into a reference configuration and a remainder 

= I (10 ) 
(nS) 

= I<po> + Ix> 

where we have chosen the normalization 

( lla) 

and 
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g(nS) = g(nS)/g(ma) (llb) 

The ori)ital corrections are given by 

= < X I [123 ... ( i -1 )( i + 1 ) ... am J > + 
xl 

(12) 

+ 
where the integration does not extend over coordinate xl' Thus, for 

the TDA wavefunction we see that the f. will be non-zero only when 
l 

(1) orbital ~ is also singly occupied in one of the terms in Ix); 
a 

if we represent this class of terms as 

n 

then 

f = I g(na)~ m n 
(13) 

n 

or (2) orbital ~m is singly occupied in one of the terms in Ix); then, 

as above 

= -g(mS)~ 
a 

( 14) 

Note that there will never be an orbital correction for <p. In the 
a 

TDA (and RPA) all virtual levels accessible from a given orbital are 

used so that the correction for orbital <Pm is always included. 

However, only if no symmetry whatsoever is present will all of the 

other orbital corrections be included. Even in this case, the fS 
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for the core orbitals will contain no virtual orbital contributions, 

only ~. In general, depending on the total symmetry of the 
a 

molecule, some core orbital corrections may be included and others 

not at all. 

To obtain the pair functions, one first removes the f. from 
1 

Ix> to obtain Ix'>. The pair function is then obtained by deleting 

two orbitals from I~o> and integrating out all coordinates in the 

integral < X' I ~o/( ij) > except those depending on two electrons to 

obtain 

= 1 < X 'I [123 ... ( i -1 )( i + 1) ... ( j -1 )( j + 1 ) •.. am ] > + + 
~ x1x2 

Using Eq.(10) we see that only the pair functions in which i=m and 

and j=S (S#a) will be non-zero and that 

(15 ) 

The swiggle under urnS is a reminder that this is only a portion of 

the pair function, although there is some reason to expect that it may 

Le a sizeable portion of urnS' 

In summary, the TDA wavefunction with 1
m> as the reference 
a 

configuration contains (1) an orbital correction for the virtual 

orbital ~ and essentially none for the core orbitals and ~ and (2) 
m a 

portions of the pair functions describing the correlation of electrons 

in ~m(1)~B(2) (S~a), i.e., correlation between the open-shell orbital 
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rPm and the duubly occupied core orbitals <Pf3 (f3;ia). Thus, the energy 

of the TDA wavefunction is approximately 

E + emSCF + : ~eQm ETDA = STA : ~ (17) 

The tilde over the pair energy e
f3m 

-denotes that only a portion of the 

total pair energy is obtained. Comparing this expression with Eq.(8) 

we see that although the TDA satisfies criterion (1), it contains 

only a portion of the pair correlations e
f3m 

and completely neglects 

e 13a , so that criterion (2) is only partially satisfied. Criteria (3) 

and (4) are neglected entirely. Since the TDA contains only a 

portion of e
13m

, it is possible, but not very probable, that 

Confirmation of this appears to be very difficult. It is obvious 

from this discussion that the fault with the TDA is that it puts all 

of the correlation into the excited state and none into the ground 

state. 

The RPA attempts to remedy the unbalanced description of ground 

and excited states by considering the ground state wavefunction 

10) = I
" \ \ Cnp 

1 np ) Co HF / + L L 
(nS )( py) (3y l3y 

Proceeding with the analysis as before we find that the RPA ground 

state contains portions of the pair functions uaS' Thus, for the 
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above ground state, the energy is 

= E
gd + I ~gsdy 
HF Sy 

~ 

again e
SY 

is just a portion of e
SY

' While this contains the terms 

(18) 

eaa and LSe
aS 

needed to formally balance the energy difference between 

the ground and excited state, see Eq.(8), it also contains terms such 

as LSe
SS 

and LSLye
SY 

which do not occur in an excited state wave­

function represented as a linear combination of single excitations. 

However, the RPA excited state wavefunction has the more complicated 

form given by Eq.(2.2-42) which does include such terms. Quantita-

tively, it has yet to be shown that these correlations enter in a 

balanced manner, although intuitive arguments suggest this 

possibility. Comparing the results of the RPA with Eq.(8) we see 

that the first three criteria are at least partially satisfied. In 

addition, it should be noted that the RPA includes such terms as 

~ 

e Sy (S,y # a), changes in which are expected to contribute little to 

the excitation energy. Finally, in reference to the discussion in 

Section 3.1., it should be remembered that approximations are involved 

in deriving the RPA equations which assume that the Cmn 's are small. 
as 

3.3. The extended random-phase approximation 

As we have seen in previous sections, the random-phase approxi-

mation is a good approximation only when the Hartree-Fock wavefunction 

is an adequate representation of the exact wavefunction. We shall now 
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consider a scheme which permits the RPA to be used even if the above 

criterion is not satisfied. 

The basic error in the RPA sterns from the use of the ground state 

approximation in deriving the eigenvalue equation. Thus, we should 

evaluate all of the commutators over the ground state wavefunction 

10) = + 1: L 
(rna.) (nS) 

In addition, some of the terms in Q, Eq.(2.2-19), must also be retained 

for while 

<HFI [A(E), QJIHF) = 0 

this need not be true for the above wavefunction. In general, the 

calculation of the correlation coefficients, c:~, would be a very time­

consuming chore. However, an additional constraint was imposed in 

deriving Eq.(2.2-17), namely, 

S(E) 10) = 0 (1) 

which will not be satisfied unless there is some relation between the 

-l- -l-
correlation coefficients and the particle-hole amplitudes, G and H. 

Thus, if 

S(E) = L [g(ma.)C(ma.) - h(ma)Ct(ma) J ( 2) 
(rna) 

the consistency condition, Eq.(1), is satisfied only if 
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(rna) 

Or, In mdtrix notation 49 

where, for example, 

C 
"v 

(r') .. 
~ lJ 

= 
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= CmnlC 
a(3 0 

= 0 ( 3) 

Using this approach an iterative solution of the RPA equations could be 

adopted: (1) use the ground state approximation to compute an initial 

. (0) (0) mn 
set of particle-hole amplltudes, ~ and ~ ,(2) calculate Cap 

from Eq.(3), (3) use these correlation coefficients to calculate the 

required expectation values over the ground state, (4) solve the 

modified RPA equations for 

(1) 

a new set of particle-hole amplitudes, G(l) 
'\" 

and ~ ,and (5) re-cycle steps (2)-(4) until the correlation 

coefficients and particle-hole amplitudes converge. Since the coef-

f
. . mn 
lClents, CaB' are small, the iterative process can be expected to 

converge rapidly. In fact, from the calculdtion on ethylene in 

Section 3.1, we see that even the first iteration should yield quite 

~>::1tisfactory values for the corI'elation coefficients. Schemes such as 

this which treat the ground state in a more consistent fashion are 

11 d t '- d d d I .. 50 ca e lie exten e ran om-plase apprOxlmatlon. 

51 In progress. 

Work in this dred is 

An alternate scheme for cvaluatillfo the correldLloll l;ueLtlc.lenl:'; 

52 has been suggested by Sanderson. Using tile RPJ\ (;qudtions <1llJ the 
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fact that the ~ matrix is diagonalized by the TDA solutions, he obtains 

an expression for the correlation coefficients which must also be 

solved iteratively. 

To go beyond the extended RPA, we could formulate a succession of 

53 more complex excitation operators. Unfortunately, such higher 

approximations to the excitation operator lead to eigenvalue equations 

which rapidly become unwieldy and computationally expensive to solve. 

Should accuracy beyond that obtainable by the extended RPA be required, 

27 28 
it would undoubtedly be best to use a pair theory approach. ' 
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4. CALCULATIONS ON THE EXCITED STATES OF ETHYLENE 

4.1. The (nn*) states of ethylene 

Because of the fundamental importance of conjugated and aromatic 

molecules in organic chemistry, an accurate theoretical description 

of such molecules has been a major goal of quantum chemistry since 

54 Goeppert-Mayer and Sklar first considered benzene in 1936. In their 

treatment of benzene, Goeppert-Mayer and Sklar formulated in mathemat-

. I h' I h . . 55 lca terms w at lS now ca led ten-electron approxlmatlon. The 

crucial assumption in the n-electron approximation is that the wave-

function describing the a-core is the same for all of the different 

n-electron configurations. One by-product of our work will be a 

rather critical examination of the validity of this assumption. 

The ethylene molecule is the simplest unsaturated organic 

molecule and, thus, it can be considered a prototype for the larger 

molecules such as butadiene and benzene. Ethylene has the distinct 

advantage that, because of its small size, rigorous calculations can be 

done for this molecule which would not be economically feasible for 

larger molecules. Thus, we can carefully test any approximations 

before applying them to more complicated systems. Although ethylene 

is in some respects atypical of larger conjugated systems, it would 

appear that a method which fails to satisfactorily explain the excited 

states of such a simple n-electron system as ethylene is unlikely to do 

well for more complex systems. 

The excited states of ethylene which are of most interest both 
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experimentally and theoretically are the singlet and triplet states 

arising from the (nn*) configuration. If the molecule lies in the 

1 . h 1 h CC b d' h . F' 1. ,34 h xy-p ane W1t x a ong t e on aX1S as sown 1n 19ure t ese 

states are of B3u symmetry and have been designated V(1B3u ) and 

T(3133) by Hulliken. 56 The (7r)2 ground state is denoted by N(lA1g ).56 

The experimental results have been interpreted as involving a 

3 57 vertical excitation energy of 4.6 ev for the T( B3u ) state and 

58 1 7.6 ev for the V( B
3u

) state. The oscillator strength for the 

t .. h' 1 . 0 3 58 rans1t10n to t e s1ng et state 1S ~ .. 

First, a brief review of three of the more significant 7r-electron 

calculations on ethylene is in order. The first non-empirical 7r-

59 
electron calculation on ethylene was by Parr and Crawford. They 

used a minimum basis set of Slater orbitals with the exponent 

restricted to be the same in all states and approximately equal to 

the exponent obtained in atomic calculations. Their results, which 

are presented in Table II, are typical of such non-empirical 7r-

electron calculations: the location of the triplet state being in 

reasonable agreement with experiment while the singlet state energy 

is too high by as much as 3-4 ev. Still within the 7r-electron 

approximation, Murai60 relaxed some of the constraints on the 7r 

molecular orbitals by optimizing the orbital exponents of the Slater 

basis functions for each state. As is evident from Table II, the 

location of the triplet state is now in much better agreement with 

experiment, but the excitation energy for the excited singlet state, 



66 

which was in much need of improvement, has changed hardly at all. 

I'indlly, Huzinaga61 further relaxed the orbital restrictions by 

per'mitting the basis functions in the 1T- and 1T"'-orbitals to have 

different exponents and optimizing both exponents for each state of 

the system. As is illustrated in Table II, the calculated excitation 

energies now agree very well with experiment. However, a number of 

troubling facts arose from Huzinaga's calculations. First, the 

optimum orbital exponent for the 1T*-orbital in the V state was quite 

small, ~ • < 0.4, and, in fact, Huzinaga notes that the energy was 
1T;; 

even lower for an exponent of ~1T* = 0.2. However, for ~ A = 0.2 it 
1T" 

appeared that the integrals were inaccurate, so that he discounted 

this point. In addition to the inexplicably small orbital exponent 

which we shall discuss later, Huzinaga also obtained an ionization 

potential far (~2.0 ev) below the experimentally observed value. 

Since 1965 the ethylene molecule has been the subject of 

numerous all-electron calculations. In that year Moskowitz and 

Harrison62 published a series of calculations on the ground state of 

ethylene with a number of uncontracted Gaussian basis sets. Using 

the (5s3p/2s) set,63 which gave an energy of -77.5266 a.u. for the 

64 ground state, and the virtual orbital approximation, they obtained 

3 excitation energies of 4.32 ev for the T( B3u ) state and 10.43 ev for 

1 the V( B
3u

) state. While it might have been expected that the spectra 

of ethylene would be resolved once the a-core potential was adequately 

defined, we find that this is not the case. The all-electron 
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calculation gives results no better than those obtainable in the n­

electron treatments. In 1967, Schulman, Moskowitz and Hollister65 

published calculations with a very large uncontracted Gaussian basis 

set, (9s5p/3s),63 which gave an energy of -78.0062 a.u. for the 

64 ground state, and obtained excitation energies only slightly better 

than before. Again the virtual orbital approximation had been em-

ployed for the excited states. In addition, Schulman, Moskowitz and 

Hollister65 reported that preliminary open-shell calculations on the 

singlet and triplet states with the same basis set used for the 

ground state led to excitation energies essentially the same as those 

obtained in the virtual orbital approximation. Evidently, the 

problem is not the neglect of SCF changes in the core. Additional 

Hartree-Fock calculations have been carried out by Kaldor and Shavitt66 

and Robin et al. 67 with results differing little from those mentioned 

above. These calculations are summarized in Table III. On the basis 

of these calculations it would appear that the discrepancy between 

theory and experiment could only be due to 0-n correlation effects 

which are neglected in both the n-electron and all-electron SCF 

calculations. 

\.T kO • • . 34 1· d h ~or lng on thls assumptlon, Dunnlng and McKoy app le t e 

excitation operator method, which is designed to take into account 

such correlation effects, to ethylene. While the results were far 

from being quantitatively correct, these calculations indicated that 

0-n correlation could account for the observed discrepancies in the 
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excitation energy and oscillator strength for the singlet state. Since 

this calculation employed only a minimum basis set of Slater orbitals, 

calculations with more accurate basis sets were deemed necessary. 

Because of the low n*-orbital exponent which Huzinaga found in 

his v-electron calculations61 and because of open-shell llartree-fock 

68 
calculations which became available since this research began (to be 

discussed later), it was decided to do the excitation operator calcu-

lations with two different basis sets: a valence basis set adequate 

for the ground state and an extended set containing diffuse basis 

functions in addition to those in the valence set. The valence basis 

sets for the atoms are the carbon (9s5p) and hydrogen (4s), ~ = 1.2, 

. 't' G' f H' 69 . 11 d t d bl pr~m~ ~ve auss~an sets 0 uZlnaga optlma y contracte 0 ou e 

] 70 zeta size, [4s2p] for carbon and [2s for hydrogen. This basis 

set will be denoted as [4s2p/2s] 63 for the molecule. The expanded 

basis set was obtained by adding to the valence set three low 

exponent 2Pn basis functions on each carbon. The additional functions 

were left uncontracted. This basis set will be denoted as [4s2p/2s] 

+ R(3p C) for the molecule. 63 The exponents and contraction z 

coefficients for these basis sets are listed in Table IV. 

for the above basis sets the matrix Hartree-fock equations were 

solved for the ground state configuration of ethylene which in the 

present coordinate system is 
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The integrals over the Gaussian basis functions were calculated with 

a program (MOSES) written by M. Geller of the Jet Propulsion Lauora­

tories71 and modified by N. Winter and the author. The SCf cycling 

was performed with a set of routines adapted by W. Hunt for the MOSES 

integral package. The electronic, total and orbital energies obtained 

from the ground state calculations are presented in Table V. As 

expected, the diffuse basis functions had little effect on the ground 

state calculation, lowering the total energy by less than 0.0001 a.u. 

and the energies of the occupied orbitals by 0.0010 to 0.0005 a.u. 

Except for the n- and n*-orbitals, the virtual orbitals were also 

little affected by the additional 2p basis functions. The most 
n 

accurate calculation on the ground state of ethylene to date is that 

of Schulman, Moskowitz and Hollister. 65 However, their ground state 

energy of -78.0062 a.u. is higher than that of the valence basis set 

which has considerably fewer basis functions (28 vs. 60). This 

reinforces our conviction that the contraction schemes used here are 

close to optimum for the atoms considered. 70 Of course, the quality 

of a wavefunction should not be judged solely on the energy obtained. 

A much more sensitive measure of the accuracy of the wavefunction is 

the expectation values of one-electron operators. In Table VI. we 

list the expectation values of the following one-electron operators 

Second moments 

Quadrupole moments G as = 

2 
r 

a 
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Potentials 

Electric fields 

Electric field gradients = 

Densities 

l/r 

f = ex. 

-+-
6(r) 

3 r /r 
ex. 

for the two basis sets to be used in the present calculations as well 

as a more accurate set which is known to yield results very close to 

72 those obtainable with a completely uncontracted set. A discussion 

73 of these properties can be found elsewhere. The computer program for 

calculating the one-electron integrals over the Gaussian basis 

functions is a revised version of a program originally written by D. 

Heumann and J. Moskowitz at New York University.74 First, it should 

be noted that the addition of the diffuse basis functions to the 

valence set has a negligible effect on all of the properties except 

those related to the second moments. It is the second moments which 

are, of course, most sensitive to the detailed form of the wave-

function at large distances. Comparing the expectation values for 

the [4s2p/2s] basis set with those of the larger [4s3p/2s] set, 

we note large changes only in the carbon field gradients. This is in 

agreement with calculations on other molecules which also indicated 

that more flexibility is needed in the p basis set of first row atoms 

than is available in the contracted [2p] 70 set. 

From the energies and pr'operties quoted above we can safely con-

clude that the valence basis set should be adequate for describing 

those excited states of ethylene which arise from the atoms in their 
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ground states. The expanded basis set should then not only be able 

to describe the valence excited states of ethylene but possibly one 

or two (1T7r~'q Rydberg states as well. 

To carry out the excitation operator calculations, a computer 

program for Caltech's IBM 7040-7094 was written. Starting with the 

output from the LCAO-MO SCF calculation on the ground state and a list 

of the coupled elementary transitions, the program assembles the 

necessary two electron integrals, solves the excitator operator 

eigenvalue equations and computes the transition moments and 

oscillator strengths. The program for diagonalizing the unsymmetric 

RPA matrix was written by S. F. Persselin of the Rocketdyne Division 

of the North American Aviation Company. An important point which 

should be mentioned is that the use of symmetry was extremely im­

portant in efficiently assembling the two-electron molecular integrals. 

To make optimum use of symmetry it is necessary to first transform 

the integrals over the atomic basis functions to integrals over 

symmetry adapted functions. 

Calculations in the ISTA, TDA and RPA were first carried out on 

the (nn*) states of ethylene using just the valence basis set, 

[4s2p/2s]. The excitation energies, transition moments and oscilla­

tor strengths for the lowest singlet and triplet states are listed in 

Table IX. As with the minimum basis set calculation reported 

previously, the triplet state in the RPA is unstable, i.e., ~E is 

pure imaginary (see reference 34) . 



72 

A number of important features are evident in this Table. First, 

these results support the conclusion drawn from the minimum basis set 

calculation,34 namely, that O'-n correlation as included in the excita-

tion operator method has a significant effect on both the excitation 

energy and transition moment for the lowest (nn*) excited singlet 

state. As was also found previously, the effect on the triplet state 

is minimal. Thus, the overall picture which emerges from the accurate 

valence basis set calculation is unchanged from that drawn from the 

minimum basis set calculation. The numerical values are, of course, 

in much better agreement with experiment. However, it should be 

. noted that upon increasing the flexibility of the basis set the 

excitation energy of the singlet state was lowered by over 2.5 ev in 

the ISTA. This is due solely to the SCF improvement in the n*-orbital. 

With the same change in the basis set the triplet state excitation 

energies differ by only 0.1 eVe The large decrease in the singlet 

state excitation energy indicates a marked sensitivity to the function-

al form of the n~Lorbi tal and leads one to question whether this 

orbital is adequately described even'in the large valence basis set 

used here. In the past it has been assumed, either implicitly or 

explicitly, that the V state is a valence state and, therefore, that 

56 a valence basis set should be adequate. As we shall see, this 

interpretation of the V(lB ) state is inappropriate and more diffuse 
3u 

basis functions than those which occur in the valence set are 

essential for a correct description of the state. 
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Tables X and XI contain the results of the excitation operator 

calculations on the lowest (nn*) singlet and triplet states of 

ethylene with the expanded basis set, [ 4s2p/2s ] + R(3p C). 
z 

Compar-

ing these results with those obtained with just the valence set, the 

most striking change is the marked improvement in the ISTA description 

of the excited singlet state: the excitation energy is lowered by 

nearly 1 ev and the oscillator strength by a factor of over 2. The 

excitation energy is now only 0.7 ev above the experimental vertical 

excitation energy58 and the calculated oscillator strength of 0.41 

is in reasonably good agreement with the experimental value of ~0.3.58 

Although it is not obvious from the particle-hole amplitudes, an 

examination of Table XII which contains the orbital expansion 

coefficients for the improved virtual n*-orbital reveals that this 

basis set spans the space of the n*-orbital quite adequately. Again, 

these changes result strictly from an SCF improvement in the n*-

orbital. From these results it is obvious that a major defect in all 

of the previous calculations on the singlet state (except for 

Huzinaga I s 61) was the use of an inadequate basis set for the 1T~L 

orbital. 

3 The triplet state, T( B
3u

)' on the other hand, was little 

affected by the addition of the diffuse basis functions, so we can 

conclude that such functions are not essential to the description of 

the triplet 1T*-orbital. An examination of Table XII verifies this 

conclusion. 
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To further illustrate the differences in the n*-orbitals, Table 

XIII compares the charge distribution of the singlet and triplet 

n*-orbitals with that of the ground state n-orbital dS revealed by the 

second moments and the < l/I' >. As can be seen, the spatial extent 
c 

of the triplet n1'-orbi tal is comparable to that of the IT-orbital in 

the ground state, being significantly more diffuse only along the CC 

bond axis as expected from its nodal structure. This is a reflection 

of the basic similarities in the electronic structure of the lowest 

(ground) singlet and triplet states as discussed below. In the 

excited singlet state, on the other hand, the n*-orbital is quite 

diffuse <z2) = 26.2889 a.u. and is bound by only 1.7 ev. These 

results reveal a basic dissimilarity between the ground and first 

excited singlet states. 1 
As is shown below, the planar V( B3u ) state 

is just not a "true" valence state but rather it is an ionic state. 

To better understand the relationship between the N, T and V 

states, let us examine the orbital representations of the excited 

states. First, consider a minimum basis set representation of the 

n- and n*-orbitals. Then, in terms of the atomic basis set 

{2Pa' 2Pb}' we obtain for the spatial part of the n-electron wave­

functions (neglecting normalization) 

Thus, we see that the triplet state is just the anti-bonding state 
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corresponding to the valence bond ground state. Hence, its charge 

distribution should be somewhat similar to that of the ground state, 

in agreement with the above calculations. The excited singlet state, 

on the other hand, is an ionic state and as such would be poorly 

represented by the above wavefunction; we clearly must allow the 

orbital exponents of the basis functions in the n- and n*-orbitals to 

be different. If ~n* # ~n' then the wavefunction for the singlet 

state is a sum of two terms: 

where 

n 'V 

2p' - 2p' a b 

The first term (enclosed in the first set of braces) is a split-shell 

ionic component analogous to the previous singlet state wavefunction. 

The second term is a covalent component \vhich did not appear in the 

minimum basis set representation of the state. The ionic component 

will clearly tend to have ~ '. « ~ in order to minimize the electron nh n 

repulsion with a static in-out correlation. In addition, upon 

dissociation the functions in the covalent term asymptotically 
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approach 

2p -+ 2p (atom) 
a a 

2p' -+ 3p (atom) 
a a 

and likewise for the terms on atom b. The excited singlet state 

wavefunction cannot dissociate to two carbon 2p-orbitals for at 

infinity the only available states are 

to which the ground and first excited triplet state dissociate. Thus, 

we expect the covalent terms to also favor i;;1T)'( « i;;1T. 

Since the diffuse nature of the 1 V( B
3u

) state of ethylene is a 

consequence of the basic nature of the wavefunction, such behavior is 

expected to be general. In fact, calculations by Phillipson and 

Mulliken 75 on the lowest 1,3 L: states of H2 first indicated this 

trend of T and V states over a decade ago. 

f · . f h 1,3 + . ( ) 19urat1on or teL states 1S a a . 
u u g 

took 

a ex: ls + ls gab 

a ex: ls' - ls' 
t; a b 

The Hartree-Fock con-

Phillipson and Mulliken 

and separately optimized the exponents in the a and a orbitals for 
g u 

each state. At the equilibrium internuclear distance for the ground 

state they found that C = 1.325 and C = 0.575 for the T(J~:) ~tdte 
g u 
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dnd ~g = 1.450 and ~ = 0.275 for the V(l[+) state in agreement with 
u u 

the results for the analogous states in ethylene. In addition, while 

relaxing the restriction Su = Sg lowered the triplet state by 6.6 ev, 

it lowered the singlet state by 8.8 ev. Referenced to the Hartree-

Fock ground state Phillipson and Mulliken obtained an excitation 

energy and oscillator strength for the singlet-singlet transition of 

12.38 ev and 0.275 which are in good agreement with the experimental 

1 (12 27 f h .. 76) va ues . ev or t e excltatlon energy . The calculated inter-

1 d · f h (1", +) . 0.. h h nuc ear lstance or t e V ~ lS 1.15 A whlch lS longer t an t at 
u 

077 for a Rydberg state, R ~1.05A, but shorter than the experimentally 
e 

observed internuclear distance for the V state, R 
e 

077 = 1. 2927 A. • 

While the results obtained by these authors are admittedly rather 

crude approximations to the exact Ilartree-Fock results, the different 

behavior of the singlet and triplet states is expected to persist at 

the Hartree-Fock limit. The significance of this calculation had, 

until the present, been completely overlooked. 

As stated previously, in calculations invoking the n-electron 

approximation, Huzinaga61 also obtained a diffuse n*-orbital, 

S * <0.4, for the V(lB3 ) state of ethylene. However, he also found 
TI u 

that the energy was lower still for S * = 0.2, which leads to an 
TI 

orbital significantly more diffuse than that found here. To understand 

these results we recall that Huzinaga used a Goeppert-Mayer-Sklar 

potential to represent the interaction with the a-core. Thus, the 

n*-orbital which he obtained was an eigenfunction of the Hamiltonian 
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H
GMS = h + 2J + J + K c 7T 7T 

whereas the correct SCF Hamiltonian is 

SCF 
H = h + 2J K + J + K 

c c 7T 7T 

The two Hamiltonians differ by the exchange interaction with the core 

which is an attractive, and therefore binding, potential. Were the 

orbital to be loosely bound, as it is in the V(lB3U ) state, the neglect 

of such an interaction could cause the orbital to be unbound, in which 

case the optimum orbital exponent would be zero. In any event, neglect 

of the core exchange potential would cause the diffuse character of the 

state to be exaggerated. This character of the excited singlet state 

casts considerable doubt on the pseudo-potentials chosen in previous 

55 7T-electron calculations to represent the o-core. 

. 10 . b' RobLn, Hart and Kuebler have also suggested that dLffuse aSLS 

functions might be required in calculations on excited states. 

However, they based their analysis on the virtual orbital approximation. 

As emphasized earlier, such a representation of the excited state 

wavefunction is completely inadequate. 5 For example, in the present 

case the 17T*-orbital from the ground state calculation with the expand­

ed basis set has dl7T"') = +0.0122 a.u. and <z2) = 224.43 a.u. and 

leads to excitation energies of 9.1877 ev and 9.1874 ev for the V(lB3U ) 

and T(3B3U ) states respectively. 

The all-electron calculations on ethylene by both Schulman, 

Moskowitz and Ilollister65 and Kaldor and Shavitt66 used only a valence 

basis set and, thus, they obtained excitation energies for the V(lB3u ) 
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state which are far too high. Basch, Robin and Kuebler,6,67 in an 

attempt to circumvent the use of virtual orbitals, proposed that the 

restricted Hartree-Fock equations be solved for the triplet state and 

the set of orbitals so obtained used to construct the corresponding 

singlet wavefunction. This has the advantage that both open-shell 

orbitals in the triplet state are the eigenfunctions of a single 

Hamiltonian and, so, the orthogonality of the orbitals is trivially 

guaranteed and the calculations considerably simplified. However, as 

we have seen, the spatial distribution of the n*-orbitals in the sing-

let and triplet states is markedly different. To see why this is so, 

we note that the Hartree-Fock Hamiltonians for the n*-orbital in the 

T and V states are 

h A = h + 2J nft c 

h A = h + 2J TIft c 

K + J K 
c n n 

K + J + K c TI n 

Thus, the singlet and triplet TI* Hamiltonians differ by 2K. If this TI 

exchange interaction is large, as it is in the lowest (TITI*) states, we 

expect the singlet orbital to be considerably more diffuse than the 

triplet orbital since this interaction is repulsive in the singlet 

Hamiltonian. On the other hand, for some states such as Rydberg 

states, as well as some valence states, the exchange interaction is 

quite small and it is a better approximation to assume that the 

singlet and triplet orbitals are the same. 

In summary, we find that a more flexible basis set leads to a 
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much improved orbital description of the lowest (nn*) singlet state. 

Let us now see how correlation affects this orbital description. 

Using the results derived in Section 3.2., we see that the TDA 

wavefunction contains (1) an orbital correction for the n*-orbital, 

fn*' which turns the reference n*-orbital into the appropriate SCF 

orbital and (2) portions of the pair functions which describe the 

correlation of the n*-orbital with all the valence a-orbitals, uan*. 
Comparing the difference between the ISTA and TDA for the valence 

and expanded basis sets, we find that the decrease in the excitation 

energy for the expanded set is less than half of what it is for the 

valence set (0.52 vs. 1.10 ev). Furthermor~, in the expanded basis we 

find that the addition of a-n* correlation actually increases the 

oscillator strength by ~25% whereas in the valence set it decreased it 

by more than 30%. Thus, the role played by a-n* correlation in the 

description of the excited state in the TDA is significantly different 

in the two basis sets. Energetically, we find that a-n* correlation 

is much less dominant, although it is far from being negligible 

(0.52 ev). 

Although a-n correlation plays a reduced role in the description 

of the energetics of the excitation process, an equally important 

question is how it affects the charge distribution of the excited 

state. From calculations on atomic negative ions, we know that split­

shell wavefunctions tend to exaggerate the diffuse nature of the 

loosely bound orbital. In the atomic case angular corI'elation must be 
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included for an accurate charge distribution e.g., in the hydride 

ion, H , angular correlation decreases < r2 > by nearly 40%.78,79 How 

then do the correlations described by u A and u A affect the spatial 
an"' nn"' 

distribution of the n*-orbital? From n-electron configuration inter-

. 1 1 . 68 k h d' fl" act10n ca cu at10ns we now t at one om1nant type 0 corre at10n 1n 

molecules, that of left-right correlation along a bond, has little 

effect on the charge distribution. 

is strictly a n-electron effect. 

This is a portion of u ~,i.e., it 
1fn" 

In analogy to the atomic case it is 

possible, perhaps even probable, that the "angular" correlation of 

the n-electrons around the carbon-carbon bond, which is the remainder 

of U .t., would lead to a significant contraction in the n)"-orbi tal. 
'ITlT"" 

Of course, in molecules correlations other than just those between the 

two open-shell orbitals can occur. Thus, we have yet to consider a-n* 

correlation effects such as the TDA wavefunction contains. 

In Tables XIV and XV the results of the natural orbital analysis 

of the TDA wavefunctions for the lowest singlet and triplet (nn*) 

states are presented. Note the compact form of the natural orbital 

wavefunction; only the six "virtual" orbitals in addition to the eight 

orbitals occupied in the ground state need be considered. Thus, the 

original twenty-five configuration wavefunction in terms of the regular 

virtual orbitals has been reduced to just a six term expansion in the 

natural orbitals. 

Comparing the n* natural orbital from the TDA wavefunction with 

the frozen core n*-orbital, see Table XVI, we immediately note a marked 
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contraction of the orbital. Thus, the effect of including the a-vA 

correlation accounted for by the TDA has been to shrink the size of 

the molecule. While it is reasonable that correlations of this type 

would cause a contraction in the vA-orbital, the magnitude of the 

contraction seems unusually large. Perhaps it is a consequence of the 

ionic nature of the wavefunction. On the other hand, the basis set 

could be inadequate for describing the correlation effects in such a 

diffuse state, e.g., there are no diffuse basis functions other than 

in the v- and v*-orbitals, so that all a* virtual orbitals are 

necessarily spatially contracted. An examination of the cr* natural 

orbitals reinforces this idea. However, there is insufficient infor­

mation at this point to draw a sound conclusion. 

Before proceeding we should reconsider the results of the TDA 

calculation on the lowest (vv*) singlet state with the valence basis 

set. Knowing only the result of this calculation we might have thought 

that the description of the excited state was quite adequate: both 

the excitation energy and oscillator strength were greatly improved 

over their ISTA values and were in reasonable agreement with experi­

ment. The calculations with the expanded basis set show otherwise, 

however. It is obvious then that some care must be taken in doing 

configuration interaction calculations especially if the character of 

the state of interest is unknown. It is possible, as actually occurs 

in the present case, that use of an inadequate basis set could 

increase some portion of the correlation energy and, thereby, 

obscure any need for a more flexible basis set. It must be 
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realized that no minimum principle exists for any of the components 

of the correlation energy and, thus, the pair energies calculated with 

a given basis set are not necessarily an upper bound on the exact pair 

energies. Before attempting to include correlation effects, it would 

be best to obtain an accurate orbital description of the excited state 

if for no other reason than to set some limits on the problem. It 

should also be noted that such calculations are decidedly less expen-

sive than correlation energy calculations of even the limited type 

considered here. A natural orbital analysis of the CI wavefunction 

is also a useful means of monitoring the convergence of the wave-

function, for an examination of the natural orbitals will often 

indicate any deficiencies in the basis set. 

Finally, considering the RPA results for the singlet state given 

in Table X, we see that, as before, the RPA leads to a significant 

decrease in both the excitation energy and the oscillator strength, 

although interestingly enough the oscillator strength is still above 

that obtained in the ISTA. As was shown in Section 3.1., these 

changes are due to the strong mixing of the (n*an*B) configuration into 

the Hartree-Fock ground state; for a basis set such as the one con-

1T~'~ 'IT~" 
sidered here C ~O.3. Thus, again the condition for the applica-?Tn 

bility of the RPA, namely, that 

is not satisfied. Using the previous calculation on ethylene as d 
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guideline, we expect the neglect of the correlation coefficient~ to 

increase the transition moment slightly and to decrease the excitation 

energies appreciably. To estimate the correction to the RPA excitation 

energy we must first determine the lowering due to the use of the 

ground state approximation as separate from any which could be due to 

the inclusion of triple excitations in the excited state and then we 

need to correct the ground state energy for the mixing of the (n*an*S) 

configurations into the ground state Hartree-Fock wavefunction. From 

n-electron CI calculations 68 we find that the lowering due to the 

inclusion of the (n*an*S) configurations in the ground state is 

~L = -0.0322 a.u. o 

= -0.88 ev 

Determining the lowering of the RPA excitation energy due to the use 

of the ground state approximation is unfortunately not quite so 

straightforward. It seems reasonable to assume, however, that the 

lowering observed in an RPA calculation involving only the (nn~), 
l 

i = 1, n A, configurations is an approximation for the decrease in the 
n" 

RPA excitation energy due to the neglect of the correlation 

coefficients, since we are again dealing with a two particle system. 

The difference between the RPA and the TDA in this case is 0.17 ev. 

Thus, the corrected RPA excitation energy referenced to the RPA ground 

state, Eq.(2.2-40). is 
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This should be a good approximation for the excitation energy which 

would be obtained upon solving the extended RPA equations. Referenc-

ing the TDA result for the triplet state to the same ground state, we 

obtain 

The experimental values are 7.6 ev and 4.b ev for the V and T states 

respectively. 

There is one major effect which still has not been included in 

the RPA -- SCF relaxation of the a-core. Open-shell calculations on 

1 3 68 the V( B
3u

) and T( B
3u

) states have shown that, while core changes 

are of negligible importance in the triplet state, they lower the 

energy of the singlet state by 0.6 ev. This is as expected since it 

is the n*-orbital in the singlet state which differs significantly in 

spatial extent from the n-orbital in the ground state. Inclusion of 

the SCF changes will bring the calculated excitation energy into 

better agreement with experiment. 

In Table XVII we list the one-electron properties of ethylene in 

. the lowest (nn*) singlet and triplet states and the ground state. 

Because the triplet state has a charge distribution similar to that of 

the ground state, we note a marked similarity in the expectation 

values of the one-electron operators. Any differences are primarily 

a result of the different "shapes" of the n- and n~·:-orbitals. Quite 

large changes in the one-electron properties are obtained upon 
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(vertical) excitation to the lowest (nn*) singlet state. The Jiffer-

ences between the n*-orbital in the ISTA and TDA are clearly reflected 

in the one-electron properties. For the triplet state the difference 

between the properties in the ISTA and TDA are small and of little 

importance. Because the ground state approximation is of limited 

validity in ethylene, the differences in the properties between the 

TDA and the RPA are exaggerated. For this reason the RPA results 

have been omitted from the table (see the discussion at the end of 

Section 2.3.). These expectation values unfortunately have essentially 

no experimental value for the equilibrium geometry of both the T and V 

states has the two CH
2 

groups rotated 900 relative to each other. 56 ,58 

They do, however, provide a means of displaying the changes in the 

charge density which occur upon (vertical) excitation. 

h .80 
It as been suggested that changes in the forces on the nuclel 

upon excitation should correlate with observed changes in the 

equilibrium geometry. Examining the electric fields given in Table 

XVII we predict that in both singlet and triplet states the CC bond 

distance will be lengthened considerably and the HCH bond angle com-

pressed slightly. In addition, in the singlet state the CH bond 

distance is predicted to be somewhat longer. While it is obvious that 

the CC bond should be longer in the excited states, the predicted 

changes in the hydrogen positions are probably completely unreliable 

since they should be strongly coupled to the larger change in the CC 

bond length. Finally, we note that forces can provide no information 
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whatsoever about the much more interesting rotations around the CC 

uond, since the components of the forces in this direction vanish by 

symmetry. 

Accurate open-shell Hartree-Fock calculations on the T(3B3u ) and 

1 68 
V( B3u ) states of ethylene have recently been carried out and the 

results are given in Table XVIII. The basis set is essentially the 

expanded set employed here (the valence set is a [4s3p/2s] basis 

formed from the primitive (9s5p/4s) set and the diffuse functions are 

identical). He see that the excitation energy is in quite good 

agreement with experiment although the oscillator strength is too 

small by a factor of two. It should also be noted that the Hartree-

Fock excitation energy is now below the experimental value in distinct 

t t h . I I· 66,67 con rast 0 t e prevlous ca cu atlons. This is in agreement with 

conclusions drawn in Section 3.3. where it was argued that open-shell 

states such as the (nn*) states of ethylene should inherently have 

a smaller correlation energy than the ground state so that 

< ~E 
exp 

Since the excitation energy is the sum of the differences of the 

Hartree-Fock and correlation energies, the SCF calculations indicate 

that 

Eex 
corr 

0.23 ev 

Considering the diffuse nature of the n*-orbital, a difference this 
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small is somewhat puzzling. This could be due to other changes which 

dccompany excitation, e.g., the contraction of the 0- and n-orbitals. 

since this Sdme phenomena occurs in bydr>ogen, however, it is likely 

that this is an intrinsic property of such" ionic" :3tates. 75,81 

We see that the open-shell Hartree-Fock calculations also give 

a diffuse n*-orbital. In fact, we see that the n*-orbital in the SCF 

approximation is significantly more diffuse than the frozen core n*­

orbital, e.g., <n;';lz 2 In;,;) = 42.1 a.u. vs. 26.3 a.u. This is caused 

by the relaxation of the core orbitals (both a and n) which upon self-

consistency become more contracted than in the ground state. Combining 

this observation with the fact that SCF relaxation of the core also 

1 lowers the energy of the V( B
3u

) state by ~0.6 ev, it is obvious that 

an accurate description of the V(lB3u ) state of ethylene cannot be 

obtained if such self-consistency is neglected. However, we do find 

that the essential physical characteristics of the excited state are 

contained in the frozen core, TDA and RPA wavefunctions. 

For the triplet state, self-consistency has a much smaller effect 

on the charge distribution and, thus, the frozen core approximation 

is more reliable. In fact, one might expect this to be the general 

trend in most "true" valence states. 

As was noted previously, the o-n* correlation effects contained in 

the TVA causes a significant contraction in the n1:-orbi tal, e. g., in 

the TDA < "_1 21 .) 7T"" Z TT~C = 10.7 a.u. Judging from the open-shell Hartree-

Fock calculations, the charge distribution in the TDA is too con-
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tracted spatially, since the TDA does not include any SCF relaxation 

ot the core. 

Both the excitation operator and open-shell Hartree-fock calcu­

lations lead to a V(l U3u ) state which is considerably more ditfuse 

than a valence state. Since this conclusion is at odds with the 

interpretation of the experimental results as well as with previous 

theoretical discussions about the nature of this state, it would seem 

necessary to briefly discuss the experimental facts known about the 

1 82 
V( B3u ) state of ethylene. 

58 
The n+ni( (N+V) electronic transition of ethylene consists of 

a single, slightly irregular progression of diffuse bands of rapidly 

increasing intensity. The origin of the bands (0+0 transition) is 

thought to be near 2650 AO with absorption beginning in the gas phase 

at ~2100 AO and merging into a continuum at 1750 AO which reaches a 

flat maximum at 1620 AO. The maximum in the absorption curve is thus 

at 7.65 ev which according to the Franck-Condon principle corresponds 

to a vertical excitation. Since the excited state nas three bonding CC 

orbitals (a
2
n) and one anti-bonding orbital (n*), excitation of the 

carbon-carbon stretching vibration is expected to occur. On this 

b . W"lk· d ·k 58 . d b d as~s ~ ~nson an Mull~ en ass~gned the observe an s as pro-

gressions in the upper state carbon-carbon stretching vibration, 

-1 obtaining a frequency of 852 em "" d ll"k 58 Although Wllk~nson an Mu ~ en 

. recognized that the equilibrium geometry of the V(lB ) state had the 
3u 

° 56 two CH2 groups rotated at 90 relative to each other, they neglected 
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any effect torsional oscillation might have on the spectrum. Later, 

83 McDiarmid and Charney re-interpreted the spectrum as progressions 

-1 
in the V state twisting vibration, obtaining a frequency of 807 cm 

compared to 1027 cm-1 in the ground state, and Ogilvie 84 has even 

attributed them to the CH
2 

wagging vibration. Finally, in 1969 

MereI' and Mulliken
85 

put forth the argument that both stretching and 

twisting vibrations must be taken into account and claim that reason-

able agreement between the calculated and observed band structure 

can be obtained in this way. However, pending further work, they did 

not give the stretching and twisting frequencies so obtained. At this 

time then, reliable estimates of the vibrational frequencies of any 

of the modes in the V state are not available. 

1 If the planar V( B
3u

) state of ethylene is actually as diffuse as 

the calculations predict, it might be expected that the stretching 

58 -1 frequency would be nearly that of a Rydberg state, ~1300 cm 

l'1ulliken
58

,85 has estimated the carbon-carbon bond length in the 

1 
V( B3U> state to be 1.70-1.80 AO (in analogy with the "corresponding" 

77 states in the oxygen molecule ) whereas the equilibrium bond length 

for the first Rydberg state is ~1.45 AO. Clearly, however, these 

simple deductions are complicated by the fact that, unlike Rydberg 

states, the V(lB3u ) state has an equilibrium geometry with the planes 

of the two CH 2 groups at right angles. In addition, although the 'IT~L 

orbital is considerably more diffuse than a valence orJ)ital, it is 

not as diffuse as a typical Rydberg orbital, e.g., the first Rydberg 
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'IT~Lorbital in the triplet series has an <z2) = 69.6 d.U. vs. 

76.3 a. u. fOI' the 1T~Lorbi tal in the V state. Unlike Rydberg states 

we also might expect the ionic component of the wavefunction, ~lich 

in a minimum basis set description was the only component, to be an 

integral part in the description of the state. Thus, although a 

formal analogy exists between the Rydberg states and the V(1B3) 

state because of the diffuse nature of the 1T:L orbi tal, one should be 

cautioned against any broad generalities until a more thorough 

investigation has been completed. 

Information on the spatial extent of a state can also be obtained 

from the spectrum of the molecule in either the solid phase, in a 

matrix or under extremely high pressure. In such a situation the 

diffuse orbital is strongly perturbed by the neighboring atoms or 

molecules resulting in a marked change in the spectra. Lubezky and 

86 
Kopelman obtained the spectrum of a molecular crystal of ethylene 

1-rom thick. The only IIpositive ll results which they obtained were two 

weak and relatively sharp transitions at 2044 AOand 2079 AO which they 

assigned to the N~V transition. Because of the lack of data this 

assignment must be considered tenative. 67 Robin et al. report the 

spectra of ethylene in both a Krypton matrix and in the gas phase 

wittl 2200 psi of N added. Although they were interested in the first 
. 2 

Rydberg transition, and therefore the spectra is somewhat incomplete 

1 
as concerns the V( B ) state, the underlying vibrational structure 

3u 

whicll is attributed to the V state does not Jiffer radically from 
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that in the gas phase. In summary, the experimental data on the 

physical characteristics of the V(lB3U ) state are quite incomplete 

and attest to the difficulty in interpreting the spectra of a molecule 

even as simple as ethylene. Of all of the experimental work done on 

57 ethylene only that of Robin et al. has provided any information on 

the extent of the excited state charge distribution and even there the 

data at present are quite incomplete. The basic question, of course, 

is not whether the state is perturbed on going to the solid phase but 

is how diffuse a state has to be before it is perturbed significantly 

by the neighboring atoms and molecules and how does the perturbation 

depend on the angular characteristics of the diffuse orbital, tile 

composition of the matrix, etc.,87 although certainly the disappear-

ance of the first Rydberg state of ethylene sets some limits. 57 

Of course, the spatial extent of the V state in its equilibrium 

configuration with the two groups rotated 90
0 

relative to each other 

need not be as diffuse as it is for the planar' configuration. 

In addition to the lowest singlet and triplet (nn*) states of 

ethylene, the expanded basis set is sufficiently flexible so as to 

cldequately describe the first (n1f~':) Rydberg state. The excitation 

energies, transition moments, oscillator strengths and particle-hole 

amplitudes for these states are given in Tables IXX and XX. 

In the frozen core approximation the excitation energy for the 

Rydberg singlet state is 9.12 ev. Since the Koopmans's theorem 

ionization potential for this basis set is 10.15 ev, the stal)il i ty of 
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the Rydberg state is -1.03 ev. Correcting the excitation energy for 

88 the difference between the Koopmans's theorem and experimental 

ionization potentials (0.37 ev). we predict a singlet (7171"') Rydberg 

state at 9.49 ev and the corresponding triplet state at 9.14 ev. 

Since the oscillator strength is predicted to be rather large, 

f ~ 0.16-0.05, this transition should be observable in the optical 

spectra. 

Wilkinson89 has observed four Rydberg series in the ultraviolet 

spectr'a of ethylene. Of these, three have their first members in the 

region of the strong N-+V transition, so that they cannot be attributed 

to n-+n7l I" excitations. The fourth Rydberg series has its origin at 

'3.05 ev and Wilkinson has tenatively assigned this as a n-~7rl" transition 

with n = 4 and a quantum defect of 0.95. The theoretical calculations 

presented here locate the first Rydberg (nn*) state of ethylene at 

~9.5 ev. As was discussed previously, the lowest singlet (7In*) state 

dissociates to atoms in a (2p,3p) configuration, so the appropriate 

quantum number for the first Rydberg level should be n = 4 in agree-

[ilent wi th ~lilkinson. The calculated quantum defect is 0 .It?. Tne fact 

tl,dt the Ln l ', orbitaJ has an effective quantum number of four can 

also be understood j)y noting that the In'', orbital is nominally a 3d-

orbital of the positive ion and, thus, the 2n* orbital will be the 

4d-orbital. Because of the nature of the lower (lnln*) state, we 

expect the (ln2n l',) state to be somewhat perturbed ft'OIll an atomic-like 

structure. This is reflected in the qUdntulII deJect; d-ol'lJi LLls 
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usually have 6 ~ O. 

Examining these tables in more detail we see that the difference 

in the ISTA and TDA excitation energies are considerably smaller for 

the second (nn*) state than for the first: 0.18 ev vs. 0.52 ev for 

the singlet state and 0.01 ev vs. 0.11 ev for the triplet state. 

Since the TDA wavefunction is primarily accounting for o-n* correla­

tion, this is direct evidence for the decreased importance of such 

effects in Rydberg states. As a result, the correlation energy of a 

nydberg state is similar to that of the positive ion as was discussed 

in the Introduction. The decrease in the oscillator strength by a 

factor of more than three is indicative of significant changes in the 

. electronic structure of the excited state which are not, however, 

reflected in the energy changes. 

The difference between the description of the state in the TDA 

and in the RPA is much smaller than for the lowest (nn*) state and 

the triplet state is now stable. The decrease in the oscillator 

strength for the singlet state is again more than might have been 

expected. The smaller effect of the RPA on the excitation energies 

is Dot an indication of a smaller effect of the (n*an*a) configura­

tions on the ground state, that is a constant which is independent of 

the excited state under consideration, but reflects a decreased 

sensitivity of the equations to the ground state approximation. 

The orbital expansion coefficients for the n*-orbitals from both 

the ISTA and TDA wavefunctions are given in Table XXI. A reasonably 
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accurate description of the singlet or triplet excited state can be 

obtained just by corriliining the appropriate frozen core (ISTA) n*­

orbital with the remaining ground state orbitals. The effect of the 

TDA upon the (singlet) n1:-orbi tal is evident both in this Table and 

in Table XXII, which contains expectation values of the second moments 

and lire. Just as in the lowest (nn":) state the additional con­

figurations in the 'fDA has caused a substantial contraction in the 

2n*-orbital. In fact, if the overlaps of the ISTA and TDA orbitals 

are any criterion, the differences are even greater in this case than 

in the lowest (nn":) state. This result is at present inexplicable, 

although it could be an indication that the basis set in not suffi­

ciently flexible to describe the correlations in such a diffuse 

Rydberg state. 

Open-shell Hartree-Fock calculations have also been carried out 

on the second (nn":) state. 68 These calculations predict the second 

]{ydberg state to be at g. 61 ev with an oscil.lator strength of 0.06, 

in good agreement with the excitation operator calculations. As for 

the lowest (nn";) state the SCF n,':-orbi tal is considerably more diffuse 

than the frozen core orbital (186.7 a.u. vs. 137.7 a.u.). 

In summary, both the excitation operator and open-shell Hartree­

Fock calculations predict a Rydberg (nn*) state at ~9.5 ev with an 

oscillator strength in the range 0.16 - 0.02. Tentatively, this is 

correlated with the R'" state observed by Wilkinson in the optical 

spectra. 
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4.2. Other valence excited states of ethylene 

Excitation operator calculations were also carried out on a 

number of other singly excited states of ethylene. Only those tran-

si tions terminating in the n)':-orbi tal were found to be valence 

. states. Because these states are true valence states, the [4s2p/2s] 

set was found to be adequate and the results reported here are for 

that set. All other excited states involved Rydberg a*-orbitals which 

cannot be adequately described by our basis set (the expanded set 

contains only diffuse nand n*-orbitals). 

The lowest (an*) states arise from the transitions 

1b
1g 

-+ 7T-;', 1,3B 
3g 

3a -+ 1T~t: 1,3
B ag 2g 

Neither of these transitions is dipole allowed and, hence, they will 

appear only weakly in the optical spectrum if at all. In fact, no 

such states have even been reported, all of the observed lines in the 

spectra above the V(1B3u ) state being attributed to Rydberg 

transitions. 89 It is possible that such states could be detected in 

electron impact work90~91 where the usual selection rules are no longer 

valid and where the intensity of forbidden transitions has identifiable 

characteristics. 

Tables XXIII, XXIV, XXV and XXVI list the excitation energies and 

particle-hole amplitudes for the singlet and triplet B
3g 

and B
2g 
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states. The effect of a-~* correlation as contained in the TDA and 

RPA is seen to be of minor importance in all four states. Even though 

the (~*a~*B) configurations are quite important in the exact ground 

~; ti.J.te wdvefunction, they have no effect on these excited states since 

they do not occur in the corresponding EPA ground states. See 

. ~q.(2.2-40) and (3.3-3). 

92 
In 1963 Berry suggested that a-+~)': transitions could have low 

excitation energies in ethylene in analogy to the n-+~* transition in 

formaldehyde. He chose the lb
1g 

-+~1: transition as a most likely can­

didate on the basis that the lb
1g

-orbital most closely reseT~les the 

n-orbital of formaldehyde (it is also highest in energy of the a-

orbitals). Since the excitation energy for the singlet n-+~~': tran-

sition in formaldehyde is "'4 ev, we see that the analogy is far from 

complete. This result is due to the lower energy of the lb
1g 

-orbital 

(2 ev) and the reduced Coulombic interaction between the lb -
19 

and 

~~':-orbi tals (4 ev); it should be remembered that the n- and 1T~':-

orLitals in formaldehyde are both predominantly on the oxygen. At 

the time this explanation was put forth to explain the so-called 

"mystery band" of ethylene. 93 . 90 91 94 However, recent experlmental work ' , 

has failed to confirm the existence of this transition, although Ross 

91 
and Lassettre have attributed small irregularities in their 

electron impact spectra of ethylene in the region around 7 ev to a 

quadrupole transition. 

In Table XVII we list the orbital expansion coefficients for the 
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IT·Lorbital in the singlet and triplet B
3g 

and B
2g 

states from the ISTA 

or frozen core wavefunctions. Because of the small changes associated 

with higher approximations to the excitation operator, these improved 

virtual orbitals when combined with the appropriate ground state 

orbitals (see Table V) should provide a reasonable approximation to 

the excited state wavefunctions. Note that the expansion coefficients 

illustrate quite effectively the valence-like nature of the n*-orbitals 

( compare with the coefficients in the expansion of the n·Lorbi tal in 

the V state, Table XII). 

Just for the sake of completeness, a number of one-electron 

properties of the a~n* excited states are given in Table XVIII. The 

second moments indicate that both states involve the removal of a 

predominantly carbon-hydrogen bond orbital from the a-core. Examina-

tion of the expansion coefficients of the lb
1g

- and 3a1g-orbitals 

given in Table V support this conclusion. If the forces are any 

indication of the equilibrium geometry, we would predict that the 

carbon-carbon bond length will be smaller than the ground state in the 

1,3B states and longer in the 1,3B2g states. In addition, in all 
3g 

fuur excited states the Hell 10wl angle is predicteu to be significantly 

~;flJdller' and the ell bond length longer than ill the ground state. The 

larger changes in the forces associated with the hyurogens again 

indicate carbon-hydrogen character in the a orbital. Note the small 

differences between the charge distributions in the ::;inglet dnd triplet 

states of the same orbital configuration. 
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5. CONCLUSIONS 

Although the Tamm-Dancoff and random-phase approximations have 

veen actively discussed for many years, especially in reference to 

I ·" 1e,30 d 1 " 19,20,29 h f h th d so 1u state an nuc ear ~lyS1CS, t e use 0 t ese me 0 s 

in atomic and molecular systems has been suggested only recent-

1 
31,34,39 y. Because of the indeterminate form of the interaction 

potential in solids and nuclei, the work in these areas tested the 

ability of the TDA and RPA to provide a semi-empirical framework for 

the interpretation of experimental results more than their effective-

ness as ab initio methods. In addition, the phenomena which occur in 

the infinite electron gas and in infinite nuclear matter are inherently 

different in nature from those which occur in atoms and molecules, 

h · . d 30 e.g., t e states of 1nterest often correspond to collect1ve mo es. 

Because of the known interaction potential (l/r .. ) in atomic and 
1J 

molecular systems and because it is now possible to carry out rigorous 

calculations on molecules as large as ethylene, we were able to care-

fully examine some of the approximations involved as they pertain to 

atoms and molecules. 

Unfortunately, the analysis of the TDA and RPA was complicated 

by the discovery that the (nn*) excited singlet state of ethylene has 

a much different character than had been expected. Thus, it is likely 

that ethylene is too stiff a test case and that the TDA and RPA could 

lead to more consistent results for larger systems where the basic 

approximations may be more valid. 
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For ethylene the TDA and RPA lead to reasonable values for the 

excitation energies and oscillator strengths. Ilowever, we found that 

the correlation introduced by these methods does not always enter in 

the ground and excited states in a particularly balanced manner and 

that SCF changes in the core are neglected. In addition, the strong 

mixing of the (n~:an:':S) components into the ground state of ethylene 

led to a number of problems in the RPA, e.g., instability of the 

3 
triplet, T( B

3u
)' equations and too Iowan excitation energy for the 

V(lB3u ) state. Comparing the results of calculations with a valence 

and an extended basis set we found that the role of a-n* correlation 

varied considerably. In the valence set such correlation was an 

essential part of the description of the excited state. In the more 

flexible set, however, a-n* correlation was reduced to the auxiliary 

role of modifying a much improved orbital representation of the state. 

While causing small changes in the excitation energy and oscillator 

~trength for the V state, the o-n* correlation effects caused a 

:;uustcmt i al contraction in the spatial extent of the charge distribu-

tlon of the excited state. While this could be due to bdsis set 

limitations, it is also possible that it is dn intrinsic property of 

such "ionic" wavefunctions. 

It is not expected that the diffuse character of the V state is 

limited to ethylene, but rather such states should also be present in 

such molecules as butadiene, benzene and napthalene. In the ldrger 

systems it is expected that some n+n* singlet trdnsitil)n~ will involve 
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valence n,Lorbi tals while others will make use of expanded orbitals as 

in ethylene. 

The diffuse nature of the V states has extensive implications in 

many areas of chemistry. Thus, because of the extended size of the 

molecule and the low binding energy of the n*-orbital, ethylene in its 

V(lB3u ) state might be expected to be rather reactive, especially in 

reactions which involve electron transfer. In addition, the exciton 

structure of a molecular crystal of ethylene would be decidedly 

different than would be expected for a valence state. Although there 

has been little experimental interest in crystalline ethylene, as 

mentioned above such diffuse states are also expected to occur in 

molecules such as benzene and naphthalene which are more accessible 

experimentally. 
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A series of nonempirical calculations are reported on the excited states of the ethylene molecule using a 
recent minimum basis set LCAO MO SCF wavefunction. For the lowest excited singlet state of ethylene 
(I Bau) the coupling between the.". electrons and IT electrons is significant: the excitation energy being de­
creased f~om 11.98 to 10.17 cV and the oscillator strength from 1.03 to 0.73. This coupling has little effect 
on the ~nplet state. In the next higher approximation (the random-phase approximation) the excitation 
energy IS further decreased to 9.44 eV and the transition moment to 0.51. With the use of accurate LeAO 
MO SCF wavefunctions, it is felt that the methods presented here will provide a hasis for the theoretical 
interpretation of electronic spectra. 

I. INTRODUCTION 

A. General 

Now that the application of the Hartree-Fock­
Roothaan treatment of the electronic structure of 
molecules is practical for many molecules of chemical 
interest,1-3 one of the more important problems in 
molecular quantum mechanics is assessing the effect 
of electronic correlation particularly for observables 
other than the total energy. To obtain even a simple 
approximate Hartree-Fock wavefunction for a rela­
tively small molecule requires a fair amount of effort 
and computer time. Very accurate Hartree-Fock wave­
functions for the ground state would demand a prohibi­
tively large investment. If one is interested in properties 
relat!!d to two states, the problem becomes even more 
formidable, and correlation effects have still not been 
included. What we show in this paper is that correlation 
effects are significant in locating an important excited 
state of ethylene (for both excitation energy and 
oscillator strength for the singlet state located at 7.6 eV 
experimentally), but that it can be described quite 
economically from a simple ground-state Hartree-Fock 
calculation by applying, among others, the theory of 
the random-phase approximation (RPA) for electronic 
correlation. We chose the methods for their conceptual 
usefulness and potential for future applications, but 
they are certainly not the only ones which would 
yield these results. 

The methods to be employed have been widely used 
both in nuclear and solid-state physics4-7 and more 
recently in the study of electronic correlation in atoms8 

- Woodrow Wilson Foundation Predoctoral Fellow 1965-1966 
t Contribution No. 3527. . 
1 L. C. Allen and A. M. Karo, Rev. Mod. Phys 32, 275 (1960). 
2 B. J. Ransil, Rev. Mod. Phys. 32, 245 (1960). 
3 R. M. Pitzer and W. N. Lipscomb, ]. Chern. Phys. 39, 1995 

(1963); W. E. Palke and W. N. Lipscomb ]. Am Chern Soc 88 
2384 (966). ' . .., 

4]. P. Elliott and B. H. Flowers Proc. Roy. Soc. (London) 
A242, 57 (1957). ' 

• D. ]. Thouless, Nucl. Phys. 22, 78 (1961). 

and molecules.9 The theory as applied here is not very 
difficult and the physical concepts are simple. In keep­
ing with the usual procedure in these fields, we derive 
the equations using the formalism of second quantiza­
tion. In this representation we can make reasonable 
approximations which arc difficult to formulate in the 
coordinate representation. All of the equations derived 
in this paper are obtainable from appropriate varia­
tional procedures, but the method employed here has 
the advantage that the approximations are explicitly 
displayed and the removal of any difficulties is a con­
ceptually straightforward matter. 

We chose ethylene as our example as its spectrum is 
of considerable interest. It is not necessary to stress the 
importance of understanding the ethylene molecule 
quantum mechanically. It is the simplest 1r-electron 
system and a prototype for larger 1r-electron molecules. 
If we want to know the properties of some of its excited 
states, we need to have some physical idea as to how 
"to get" this state from the ground state. The problem 
is one of finding a form for an operator A+(I~) such 
that it satisfies the following equation: 

[x,A+(mJIO)=M~A+(m 10 ), (1) 

where X is the complete electronic Hamiltonian for the 
molecular system under consideration. The operator 
A+(E) contains whatever physical information we have 
about the excited state of the system. We see that the 
operator A+(E) generates an excited state of the 
Hamiltonian X, with excitation energy !lE, when it 
operates on the ground state; i.e., 

A+(E) 10)= IE). (2) 

Note that the above describes a vertical excitation. In 
practice, because of electronic interaction, A+(E) can­
not be determined such that the above equation is 
exactly satisfied, but rather we have 

[X, s+(E)]=tlEs+(E)+R 

~!lES+(E), 

(3a) 

(3b) 
• P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
7 H. Suhl and N. R. Werthamer, Phys. Rev. 122,359 (1961). • A. Herzenberg, D. Sherrington, and M. Suveges, Proc. Phys, 
a P. L. Altick and A. E. Glassgold, Phys Rev. 133,632 (1964). Soc. (London) 84,465 (1964). 
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FIG. 1. The geometry of ethykne. 

where R represents all the terms which cannot be 
reduced into a form consistent with S+(E). The 
operator S+(E) generates an approximate excited 
state of the system when it acts on the ground state. 
It is one of the variables of the problem in whose 
formulation we may utilize our chemical intuition. 

In this paper we consider the following three approxi­
mations for the excited states created by the excitation 
operator S+(E). 

(1) The single-transition approximation (STA)IO is 
the approximation most frequently used by chemists. 
It assumes that the excited state can be represented by 
a single particle above the set of levels occupied in the 
ground state coupled with a hole within that set, e.g., 
the IB3,.+-lA 1g transition in ethylene would correspond 
to an electron going from a 7r-bonding to a 7r-anti­
bonding orbital. 

(2) In the Tamm-Dancoff approximation (TDA)4.9 
the excited state is represented as a linear combination 
of single~particle transitions. This method is encoun­
tered quite frequently in molecular quantum mechanics 
e.g., in the study of the spectra of aromatic molecules b; 
~ople.I1. Again, with ethylene as an example, we now 
Include In the excited-state wavefunction configurations 
corresponding to moving an electron from the "0''' and 
"CH" bonding orbitals (the 0' core) into antibonding 
levels. 

(3) In the random-phase approximation (RPA)5.8 
the. excited. state is stilI represented by a linear combi­
natIOn of single-particle transitions except that now we 
allow. the ground state to include configurations other 
than Just the Hartree-Fock (HF) component, i.e., the 
effects of configuration interaction (CI) are to some 
exten~, taken into ~ccount. We still solve an ;igenvalue 
equatIOn for IlE dIrectly. This, as expected, is an im­
provement on Method (2). 

In the above a "hole" state corresponds to an 
unoccupied level within the normal HF ground state 
whi.le a "p~rti~le" state denotes an occupied virtual 
orbItal. ExcItatIOn of the type considered here creates 

:~ c. C. J. Roothaan, Rev. 1\lotl. Phys. 23, 69 (t 95 1). 
J. A. Pople, Proc. Phys. Soc. (Lontlon) A68, 81 (1955). 

"particle-·hole" pairs, each such pair having its own 
frequency (excitation energy). By diagonalizing the 
Hamiltonian matrix within this set we fin(l the normal 
modes of the assembly of coupled oscillators. Surpris­
ingly, such coupling is not negligible in ethylene as it 
reduces the oscillator strength given hy the STA by a 
factor of 2. 

B. The Ethylene Molecule 

To provide a concrete foundation for the above 
approximations, we have done the complete set of 
calculations on the ethylene molecule utilizing the 
recent minimum basis set LCAO 1\10 SCF calculation 
by Palke and Lipscomb.12 The excited state in which 
we are most interested is the one which arises from the 
so-called 7r~7r* transitions which, if we detine the 
coordinate system as shown in Fig. 1, is of symmetry 
Bal< with the emitted radiation polarized along the 
x axis. Since some new concepts have arisen from this 
work, especially in regard to the 7r-electron approxima­
tion, we briefly review three of the more significant 
7r-electron calculations on ethylene in order to gain the 
proper perspective. 

The first nonempirical 7r-clectron calculation on 
ethylene was by Parr and Crawford13 using the formal­
ism developed by Coeppert-Mayer and Sklar.l" Their 
results are typical of nonempirical 7r-electron calcula­
tions: the predicted spectra being in qualitative, but 
not quantitative, agreement with experiment. The 
results of this calculation, as well as the following two, 
are listed in Table I along with the experimentally 
observed excitation energies and oscillator strengths. 
Still within the 7r-electron approximation, Murai l5 

relaxed the constraints on the 7r-molecular orbitals by 
allowing the orbital exponents of the atomic Slater 
orbitals to be a function of the state of the system. As 
is evident from Table I, the triplet state is now in 
better agreement with experiment while the singlet 

TADLE I. ".-Electron calculations on the excited B .. state of 
ethylene: excitation energies (in electron volts), oscillator 
strengths, and ionization potential.> 

3B3u (T) 

IB3u (V) 

JUB,.) 

I.P. 

Parr and 
Crawford 

3.10 

11.50 

11.90 

Murai Huzinaga 

4.60 4.45 

11.20 7.28 

8.80 8.52 

• Except a. noted. see text Ref. lB. 

Exptl 

4.6 

7.'1 

~.3b 

10.52 

b M. Zelikolf ami K. Watanabe. 1. Opt. Soc. Am. 43, 756 (lQS.l). 

I' \V. E. I'alke and W. N. Lipsl"l)mh (privatI' communication). 
13 R. G. Parr and B. L. Crawford, J. Chl'lll. I'hys. 16, 526 

(1948) . 
"M. Coeppcrt-;'Ifaycr and A. L. Sklar. J. Ch"IIl. l'hys. 6, 645 

(19.~8) . 
1& T. l\Iurai, J'roHr, Theoret. l'hys. (Kyoto), 7, 345 (1952). 
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state, which was in much need of improvement, has 
hardly changed. Finally, Huzinaga1e carried the 7r­
electron approximation to its fullest by permitting the 
bonding and antibonding 7r-lllolecular orbitals to have 
different exponents as well as allowing the exponents 
to vary with the state. The predicted spectra now agree 
very well with experiment. However, the calculated 
ionization potential is far below the experimental. 

The 7r-electron treatment of ethylene has attained a 
refmement which cannot be approached in larger 7r­
electron systems and still all the experimental facts 
cannot be adequately explained. An improvement in 
t!le theoretically calculated value of one observable is 
attained only at the expense of poor values for other 
ohservables. We feel that the calculations presented in 
this paper go a long way towards resolving these diffi­
culties. We can sec the role played by electronic 
correlation in the excitation process and discuss a 
simple method of taking it into account. 

One may have expected that the problem of the 
spectra of ethylene would be resolved once an accurate 
16-e1ectron Hartree-Fock treatment of the molecule 
was available, for then the core potential would be 
adequately defined. However, the locations of the ex­
cited states obtained from Palke and Lipscomb's LCAO 
MO SCF wavefunction are comparable to those ob­
tained by 7r-electron theory (compare the STA results 
in Tables V and VI with those for the Parr and 
Crawford calculation given in Table I) and therefore 
the trouble with predicting the spectra does not arise 
completely from the 7r-electron approximation for the 
ground-state calculation. 

The source of the trouble is the neglect of the change 
in the u core upon excitation; the 7r electrons being 
coupled by the residual electronic interaction to the u 
electrons. In fact, this coupling is sufficiently strong to 
cause a decrease of about 2 eV in the excitation energy 
and a decrease of 30% in the oscillator strength for the 
IB3u_1A Jo transition compared to the 7r-t1\'* approxima­
tion. As expected, the R I' A further decreases the exci­
tation energy to 9.44 eV and the oscillator strength to 
0.51. 

A wonl of caution is appropriate at this point. Our 
calculations arc based on a minimum basis set LCAO 
MO SCI-' calculation and as such we have not reached 
the Hartree-Fock molecular-orbital limit. As a remedy 
for this we could enlarge the basis set, for example, see 
the results of Moskowitz and Harrisonl7 using a large 
set of Gaussian orbitals which predict values for the 
excitation energies using the 7r-t1\'* approximation 
which are almost as good as ours using the RP A. 

The methods discussed here arc not the only ones 
relevant to the problem. One could use the LCAO ]\10 
SCF results as a basis for an extensive configunttioll-

18 S. Huzinaga, J. Chcm. Phy,. 36, 453 (1962). 
17 J. W. Moskowitz and M. C. lIarrison, J. Chem. Phys. 42, 

172~ (1965); J. S. Schulman, J. W. Moskowitz, and C. Hollblt'r, 
J. Chem. Phys. 46,2759 (1967). 

interaction calculation on both the ground state and 
excited states. Besides being uneconomical (for a large 
number of molecular integrals must bc asscmbled), thc 
following consideration must be taken into account. In 
the usual Cl calculation one mixes in components 
corresponding to double excitations from electrons in 
the same spatial orbital. These are usually the most 
important. However, the lowering that we observe 
while essentially being a correlation elTect is due to 
correlations between electrons in orbitals that are quite 
different spatially, i.e., as Herzenberg et aZ.V state 
"correlations extending from bond to bond." 

Alternately, one could do an open-shell LCAO MO 
SCF calculation on the excited states with the hope 
that correlation effects would cancel. This method 
would allow for some relaxation of the u electrons and 
should give an excitation energy lower than the STA. 
However, preliminary open-shell calculations in this 
Laboratory and others (e.g., see Ref. 17) indicate that 
the relaxation of the core electrons has a small effect 
on the excitation energy and the oscillator strength. 
These results emphasize that the important coupling 
is due to the residual U-7r interaction, i.e., it is a correla­
tion effect. 

As a brief outline of the remainder o(the paper, in 
Sec. II we discuss the main ideas of second quantization 
and then derive the equations related to the various 
approximations to A +(l!:). In Sec. III the results of 
the calculations on ethylene are presented in detail. 
In Sec. IV we discuss the results and comment on 
their interpretation. 

II. THEORY 

The electronic Hamiltonian for the molecular system 
is, in atomic units, 

Q 

(4b) 

In the Hartree-Fock approximation we replace the 
electronic interaction term, ~ LjVij, by an effective 
one-particle potential, Vi. Thc lowest N eigenfunctions 
of the ncw Hamiltonian 

(11+ V) I i) =Ej I i) (5) 

are then combined into a Slater determinant in order 
to form the Hartree-Fock molecular wavefunction, 
I HF). 

For molecular systems explicit numerical solution of 
the Hartrec-Fock equations is intractable and an addi­
tional approximation is required; namely, that the 
molecular orbital, I i), can be satisfactorily approxi­
mated by a linear combination of atomic orbitalg 
centered on the variow:; nuclei (the U 'AO approxi­
mation). The IbrtreeFock, Of l\Iolecular-orbihtl, 
limit can, thus, be achieved only through the lise of 
large basis sets. 
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Combining Eqs. (4b) and (5) the complete electronic 
Hamiltonian can be written as 

JC= L(lIi+ Vi)+ L(! LVij- Vi). (6) 
i i; 

The last two terms comprise the residual interaction 
and give rise to electronic correlation. 

In the notation of second quantizationl8 the Hamil­
toni!m is 

JC= Lfia;+a,+! LVijklaj+a;+akal 
i ijkl 

- L(V~j{J"-V{Jj~)a/a,,, (7) 
Jk{J 

where we have introduced the explicit form of the 
Hartree-Fock one-particle potential, Vi. The operators 
a,+ and ai are the creation and annihilation operators. 
The operator a,+ acting on a state puts an electron into 
level i while ai does just the reverse. The usefulness of 
this "occupation number" representation is in part due 
to the fact that in this new representation we can make 
reasonable approximations which are very difficult to 
formulate in the coordinate representation. 

The integrals Vij"l are defined by 

V,jkl= ff 4>,*(l)4>/(2)r12-14>,,(l)4>1(2)dvldv2, 

the <Pi's denoting the molecular spin orbitals. In this 
equation and the ones to follow, we denote by the 
subscripts 

a, fl, 7, 8, ••• single-particle states occupied in the 
Hartree-Fock ground state (i.e., hole 
states) , 

m, n, p, q, ••• single-particle states unoccupied in 
the Hartree-Fock ground state (Le., 
particle states), 

i,j, k, 1, ... any state (either particle or hole). 

If we define the Fermi level, Ep (we use it just for 
vocabulary purposes), as being the uppermost level 
which is occupied in the Hartree-Fock ground state, 
then in the Hartree-Fock approximation the orbital 
occupation numbers are given by 

n,=1, 

n,=O, 

These are just the expectation values of the number 
operators n;=ai+a, over the HF ground state. A 
transition will then be defined as removing an electron 
from below the Fermi level and placing it above. 

We now need the precise form of the excitation 
operator, S+(E), in second quantization. But, before 
doing this we require a further property of the exact 

18 A concise discussion of the formalism of second quantization 
may be found in L. D. Landau and E. M. Lifshitz, Quantum 
Mechanics, Non-Relatitistic ThetNy (Pergamon Press Ltd., 
London, 1958), pp. 215-223. 

excitation operator. Denoting the eigenstates of the 
Hamiltonian II by I 0), I E), etc., the equations defming 
the excitation operator A+(E) are just Eqs. (ta) and 
(lb). Ta.king the Hermitian conjugate of Eq. (1), we 
can derive a relationship connecting the true ground 
state and the Hermitian conjugate of the excitation 
operator, namely, 

A(E) 10)=0. (8) 

This property of A (E) will be used frequently and 
places restrictions on the choice of the approximate 
excit~tion operator, S+(E); i.e., given an approximate 
10), S+(E) must be such that its Hermitian conjugate 

satisfies the above equation and vice versa. 
Let us now define a particle-hole creation operator 

C+(ma) =a", +aa (9a) 

and the corresponding destruction operator 

C(ma) =aa +a".. (9b) 

These operators will be the basic building blocks used 
to construct the various approximations to the excited­
state operator; for example, 

C+(ma) I HF)= I:>, 
a Slater determinant derived from the HF ground state 
by replacing the orbital I a) by the virtual orbital I m). 
With these definitions, the particle-hole creation and 
destruction operators satisfy the following commuta­
tion relations: 

[C+(ma) , C+(nfl)]=[C(ma) , C(nm]=O, (lOa) 

[C(ma) , C+(nfl)]=8 ... "8a{J-8a{Ja,,+a,,.-8 ... ,,a{J+aa, (lOb) 

whereas the operators a,+ and ai satisfy the anti­
commutation relation 

la .+ a·} -~ .. " ) -U'r 

(lla) 

(llb) 

The eigenvalue equations for the various forms of 
S+(E) can all be derived from a consideration of the 
equationlt 

(E I (E-JC)C+(ma) 10)=0, (12) 

which after a little manipulation becomes 

(E-F'-o)(E I C+(ma) 10)-(£ I [JC, C+(ma)] I 0)=0. 

(13) 

Using the property of the excitation operator, E<1. (1), 
and its Hermitian conjugate, Eq. (X), the above mn 

II The derivation I-;iven here foll'JWK I I",.dy 11".t IIr All i, k alld 
Glassgold, Ref. IS. 
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be rewritten as 

(I~- Ho) (0 1 [A (1'-), Ct-(ma) J 1 0) 

-(01 (A(E),[X,C+(ma)JIIO)=O. (14) 

Note the way in which the pertinent eigenvalues appear, 
as 6.E=E-Eo. One need only postulate an approximate 
excitation operator and a consistent ground state; the 

above then provides the necessary equations for calcu­
lating the wavefunction and excitation energy of the 
excited state. 

From Eq. (14) we see that all of the subsequent 
derivations will have one thing in common--the com­
mutator [:Ie, C+(ma) J, which is independent of ollr 
choice of S+(J~). Using the second quantized form of 
the Hamiltonian, we find that 

[x, C+(ma)]= (E",-E.,+V",.,,,,,,-Vmam.,)c+(ma) + L'(V.,,,m/l-Va n/lm)C+(n{3) + L(Va/lm,,- Va/l"m)C(n{3) +Q, (IS) 
(nil) (n/l) 

where20 

Q= L (V,,'m.,- Val.,m)C+(c5y) + L (Vapmr - Vaprm)C+(pr) 
~~ ~~ 

-! L(Vijkm- Vijmk)aaa/ai+ak+! L(Vajkl-V jakl )am +aj+a~1 
ijk ilol 

- L(V/il/im-V/i4m/i)C+(OO) - L(V/in/im- V/inm/i)C+(na) 
(/il) (/in) 

+ L(V/iapa-V{1"a/i)C+(mlJ) + L(V/ia/in-V/ian/i)C+(mn). (16) 
(/iI) (/in) 

This splits the commutator into two groups: the first 
group contains all the single particle-hole terms while 
Q contains no net single particle-hole terms but con­
tains interactions which might be described as hole-hole 
[C+(c5y) J, particle-particle [C+(pr) J, multiple particle­
hole [C+(n,B)C+(py)J, etc. In this paper we are only 
interested in excited states which can adequately be 
represented by an elementary transition or a linear 
combination of elementary transitions. Thus, in the 
above commutator only single particle-hole interactions 
are retained. We may now neglect Q and linearize the 
commutator to 

[x, C+(ma) J~ (Em -Ea + V maam - V mama) C+(ma) 

+ L'(V"nm/i-Van/im)c+(n{3) 
(nil) 

+L'(Va/imn-Va~mn)C(n{3). (17) 
(nil) 

Note that (1) the above derivation has ignored spin, 
the resulting equations can be specialized for singlets 
and triplets in a final step and (2) the prime on the 
summations indicate exclusion of the term (ma). 

In second quantization the dipole moment operator is 

r= Ld;ja/aj, 
i.i 

where 

• 20 As .given, it appears that Q contains single yarticle-hole 
mteractlOns. However, when the commutator LA (E) ,QJ is 
eva}uateJ over the HF ground state, these particle-hole inter­
actIons are canceled by corresponding ones in the third and 
fourth terms of Eq. (16). Equation (16) was retained in its pres­
ent· form for convenience. 

Again, retaining only the particle-hole interactions, 
this reduces to 

r~ Ldma[C+(ma) +C(ma)]. 
(rna) 

The dipole transition moment is defined as 

D=-(ElrIO) 

or, using Eqs. (2) and (8), 

D=-(O 1 [A (1';), rJ 10). (18) 

We are now in a position to derive the equations 
relating to the various approximations to the excited­
state operator. 

A. The Single-Transition Approximation1o 

In this approximation, the one most commonly used 
by chemists, the excited-state operator is represented 
by a single particle-hole creation operator, i.e., 

S+(E) =C+(ma). (19) 

Thus, we speak of 71"-71"* transitions, tl-7r* transitions, 
etc. However, this method, frequently called the frozen 
core approximation is too rigid; it constrains the orbitals 
to retain their ground-state form. It is hardly likely 
that the molecular orbitals which are consistent for the 
excited state are the same as those for the ground 
state.21 

Using Eq. (17) and the commutators Eqs. (lOa) and 
(lOb), we find that Eq. (14) becomes 

E-Eo=Em-Ea+Vma"",-Vmama. (20) 

II S. R. LaPaglia and O. Sinanogiu. J. Chem. Phys. 44, 1888 
(1966) . 
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Making the excited states eigenfunctions of spin, we 
get for singlets 

lE-Fo=E",-Ea+2V",aa",- V ... a ... a 

and for triplets 

(21b) 

whi<.:h arc the equations derived by Roothaan in 1951.10 

Note that the V ijkl arc (Icfinerl in terms of molecular 
orbitals. 

Using Eqs. (18) and (19) the dipole transition 
moment is 

(22a) 

(22b) 

where the superscript denotes the spin multiplicity. 
In the derivation of the excitation energies and 

transition moments for the singlet and triplet states, 
we have assumed that the molecular orbitals involved 
are nondegenerate, which is the case for ethylene. If 
this is not true, say for acetylene, then the appropriate 
modifications must be made. In any case Eq. (19) is 
the starting point. 

B. The Tamm-Dancoff Approximation1,9 

In this approximation we assume that the excited 
state can be adequately represented by some linear 
combination of single-particle excitations of the appro­
priate symmetry. The net effect of this is to allow, in 
some restricted way, for the rearrangement of the total 
charge (Iensity during the excitation. On the basis of 
chemic-al intuition we would expect that the above 
linear combination would have a major component 
which defines the e!>sentials of the excitation. This 
allows us to retain in a limited sense the classification 
of transitions as being 71"-->71"* etc., but this is certainly 
not required. The effect of the minor components on 
the excitation energy and transition moment is a matter 
which can best be settled by numerical calculation, 
although they had previously been assumed small 
unless degeneracy was involved. Certainly on the basis 
of the one-electmn levels one might not have expected 
these minor components to have the effect we soon find. 
It is the coupling together of many of these excitations 
that leads to a modification of the lowest-lying state of 
ethylene. 

The excitation operator is 

S+(E) = ,Lg(ma; E)C+(ma). (23) 
(rna) 

Use of Eqs. (17) and (14) and the commutator rela­
tions for the particle-hole operators gives the eigenvalue 
equation to be satisfied by the particle-hole amplitudes, 

g(ma; E), 

[E",-Ea+V",aa",+V",am .. - (E-Eo)]g(ma; E) 

+ L/(V",,~-V"nPm)g(n{3; E) =0. (24) 
(nfJ) 

For convenience the designation HE" in the particle­
hole amplitudes is dropped. Specializing the above to 
describe eigenfunctions of spin as before, we get 

for singlets: 

[E",-Ea+2V",a"",- V mam .. - (IE-lio)]g(ma) 

and for triplets: 

+ ,L'(2V .. ,,~- V anPm)g(n{3) =0 
(nfJ) 

[Em-Ea- Vmama - (3E-Eo)]g(ma) 

- ,L'(Va .. ~m)g(n{3) =0. 
(np) 

(25a) 

(2Sb) 

These are just the equations derived by Herzenberg 
et al.9 in their semiempirical calculation, including the 
rT electrons, on the spectra of ethylene. 

The transition moment in this approximation is 

ID'fDA =V'l,Lg(ma) dma . (26) 
(",a) 

These results could also have been obtained by a 
linear variational procedure. If we represent the excited 
state by 

I m= ,Lg(ma) 1m> 
(ma) 01 

(27) 

and apply the variational principle to determine the 
amplitudes g(mOl), Eg. (24) would result. 

C. The Random-Phase Approximationh
,8 

Using the language of CI, the ground-state wave­
function to first order is represented by the expansion 

mn1mn> 
10)=CoIHF)+,L,LC {31 (3 , (28) 

(ma) (np) 01 I 01 

where 

is a double excitation from the orbitals occupied in the 
HF ground state (0I{3) to the virtual orbitals (mn). We 
still represent the excited state as being a linear com­
bination of single-particle transitions except that now, 
using the above ground state, a single-particle transi­
tion may be "obtained" in two ways: (1) by exciting 
from the HF ground state [the associated operator 
being C+(ma) ] or (2) by de-exciting from one of the 
doubly excited components of the true ground state 
[the associated operator being C(n{3)]. In view of this 
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we would expect that a hetter approximation to the 
excitation operator would be 

SI (m = :LJg(ma; Jt;)C+(ma) -h(ma; H)C(ma)]. 
(m,,) 

(29) 

Examination of the commutators in Eqs. (3a) and (17) 

!lhows Ihat this approximation lakes into account all of 
the sinf.(le partidehole terms. Tn this case, also, there 
will he an eCjuation analogous to Eq. (14) involving 
C(ma). 

Using the resulting Eqs. (14) and the commutators 
for the particle-hole operators, we get the set of coupled 
equations 

[E",-t"+V",,,,,,,,-V,,,..,,.,,- (E-F-o)]g(ma) + L'(Vanmll - Vanllm)g(ntJ) + L(Va/imn- Vallnm) h (11/3) =0, (30a) 
(nil) (nil) 

[E",-Ea+Vmaam- Vmama+(E-Eo)]h(ma) + L'(Vanm/l- Van/lm)h(lltJ) + L(Va/lmn - Va/lnm)g(n/3) =0. (30b) 
(n/l) (n/l) 

Specializing these equations for singlets and triplets in the usual way leads to 

for singlets: 

[E",-E.,+2V",a" ... - V",ama- (1E-Eo) Jg(ma)+ L:'(2V"nmll- V"nllm)g(nfJ) + :~:::C2V""mn- V,,"nm)h(n{3) =0, (31a) 
(nil) (nil) 

[e",-E.,+2V",,,a,,,- V",am" + (IE-Eo)]h(ma) + L:'(2Vanmll- Vanllm)h(nfJ) + L:(2 Vallmn - Vallnm )g(n{3) =0, (31b) 
(nil) (nil) 

and for triplets: 
[Em-e,,- Vmama- (8E-Eo) Jg(ma) - L'V"n/lmg(n{3) - :LVallnmh(ll/3) =0, 

. (nil) (nil) 
(31c) 

[Em-t,,- Vmam" + (8E-Eo)]h(ma) - L:' V"n/lmh (IZ{3) - L:,v"llnmg(n/3) =0. (31d) 

These equations can be written in matrix notation as 

where for the singlet state 

A(ma, ma) =Em-e"+2V ... "",,,- V ... ama, (33a) 

(nil) (nil) 

Thus, the eigenvectors for the negative eigenvalues 
are identical to those of the positive eigenvalues with 
the roles of Hand G interchanged. The requirement 
that the excited states be orthonormal 

(R I E')=OEE' (35a) 
leads to 

(0 I [A(E), A+(E')] 10)=088' (3Sb) 
A(ma, n(3) =2V .. nrn,'l- V"n/im, (33b) or 

B(ma, n(3) =2V,,/imn- Valin ... , (33c) 

and a corresponding set for the triplet. 
Comparing the above equations to those derived in 

the previous section, we note that the TDA involves 
only the matrix A, and the ST A only the diagonal 
elements of A. The B matrix allows for the effect of the 
doubly excited components of the true ground state on 
the singly excited state. 

From Eq. (32) we see that the excitation energies 
are the eigenvalues of a non-Hermitian matrix. Because 
of this the eigenvalues and eigenvectors have some 
peculiar properties which we now discuss. 

The matrix form of the RPA equations indicates that 
negative eigenvalues occur with the same magnitude 
as the positive eigenvalues. To see this, take the 
Hermitian conjugate of Eq. (32) to get 

(.H) 

L:[g(ma; mK(maj N) -h(ma; E)h(ma; R')]=OEB', 

(35c) 

The particle-hole amplitudes are, thus, normalized to 
an indefinite metric. Last, we note that the excitation 
energies could be complex. However, because of the 
physical interpretation of these eigenvalues we are only 
concerned with those which have Im(AE) =0. 

The above is the random-phase approximation as it 
usually is presented in the literature.6 ,6,g We would now 
like to pause and elaborate on the derivation of the 
RPA equations. The origin of the non-Hermiticity of 
the matrix then becomes apparent. 

In deriving the RP A equations we have assumed for 
the ground state to first order 

I O)=Co I HF)+ LCd I d), (36a) 
that 

C(}~I, (36b) 

This allows us to use the ground-state approximation, 



110 

1742 T. H. DUNNING AND V. McKOY 

TABLE II. Wavefunction of ethylene.-
---~- ---------_._---_.- --.---~------ ----

Orbital HI H2 
MOl. energy 2pzCl 2PvC1 

-----_. 
la.(1a.) -11.3391 -0.004420 -0.004420 

O. O. 

lI"u(1b.u) -11.3384 -0.004461 -0.004461 
O. O. 

2".(2a.) t .0419 0.080301 0.080301 
O. O. 

2b,u (2b.u) 0.8025 0.206081 0.206081 
O. O. 

1ba .. (lb.u) - 0.6661 0.251413 -0.251413 
0.399054 O. 

3a.(3a.) - 0.5908 -0.207729 -0.207729 
O. O. 

Ib •• (lb,.) 0.5292 0.367882 -0.367882 
0.4{)8586 O. 

lb •• (1b, .) 0.4047 o. O. 
O. 0.628564 

Ib •• (1b •• ) 0.2056 O. O. 
O. 0.825081 

4a. (4a.) 0.4344 -0.669375 -0.669375 
O. O. 

2b.,,(2b2u ) 0.4409 0.711080 -0.711080 
-0.756979 O. 

3b'u(3b.u) 0.4711 0.725739 0.725739 
O. O. 

2b •• (2b,.) 0.7179 0.727053 -0.727053 
-1.019986 O. 

4b,,, (4b,u) 0.8037 0.105834 0.105834 
O. O. 

• Thi. table I. from unllubllshed calculations by W. E. Palke and W. N. 
LiIlHComb. To facilitate comllarison with their previously publi,hed reo 
suIts. Ref . .1. the molecule here lie .• in the .n plane. For the remaindn of 
this work the molecule has been rotated Into the xy plane to agree with the 
u~ual spectro8CoPic notation. 

i.e., ignore products of the Cis while retaining the 
terms linear in Cd. To evaluate the commutators in 
Eq. (14) over the state 10), we can then effectively use 
the Hartree-Fock ground state. Thus, only if the HF 
ground state closely represents the true ground state 
can we expect the RP A results to be valid. 

From the form of the singlet and triplet RP A equa­
tions, we can see that the RPA is more likely to fail in 
locating a triplet than a singlet excited state. Specifi­
cally, for molecular calculations the appearance of this 
"instability" will depend on how closely the LCAO 
expansion approaches the HF limit; although in some 
pathological cases of strong mixing of the ground state 
with a doubly excited configuration, it may never 
disappear. Fortunately, the correction of this defect is 
straightforward: one need merely evaluate the com­
mutators using the ground-state wavefunction to first 
order. This, however, assumes that the correlation 
coefficients, Cd, are known-just the difficulty that we 

._--_._-------_.---_._--- --- .--.---------~.--

CoelIicien ts 

H3 H4 lsCI 2sCI 2p.Cl 
IsC2 2~'C2 2p.C2 2p.C2 2p.C2 

.. _--_._._---" --------- ------_._----
-0.004420 -0.004420 0.703982 0.014810 -0.002067 

0.703982 0.014810 0.002067 O. O. 

0.004461 0.004461 0.703805 0.023659 0.003673 
-0.703805 -0.023659 0.003673 O. O. 

0.080301 0.080301 -0.161837 0.479569 0.110549 
-0.1618.H 0.479569 -0.110549 O. o. 
-0.206081 -0.206081 -0.126147 0.431860 -0.203934 

0.126147 -0.431860 -0.203934 O. O. 

0.251413 -0.251413 O. O. O. 
O. O. O. 0.399054 O. 

-0.207729 -0.207729 -0.011250 0.025045 0.512543 
-0.011250 0.025045 -0.512543 O. o. 
-0.367882 0.367882 O. O. O. 

O. O. O. -0.408586 O. 

o. o. o. o. o. 
O. O. O. O. 0.628564 

O. O. O. 0. O. 
O. O. O. O. -0.825081 

-0.669375 -0.669375 -0.101083 0.995990 -0.515356 
-0.101083 0.955990 0.515356 O. O. 

0.711080 -0.711080 O. O. o. 
O. O. o. -0.756979 o. 

-0.725739 -0.725739 0.132831 -1.153837 0.270117 
-0.132831 1.153837 0.270117 O. O. 

-0.727053 0.727053 O. O. o. 
O. o. O. 1.019986 o. 

-0.105834 -0.105834 -0.094518 0.992343 1. 210833 
0.094518 -0.992343 1. 210833 O. O. 

b The liymmctry of the orbitals for tlu.~ molecule rotaled Into the xy plane 
are elldoscd in J1arenthe~s. Note that in Ref. 3. the blu orbitals were illcor­
redly laheled aH a 111 (private ('ommunk-atioll from W. E. Palke). 

were trying to bypass when we used the ground-state 
approximation. There is another, and more interesting, 
approach to the problem. From the definition of the 
excitation operator, we find that there is a mutual 
constraint which this operator and the ground-state 
wavefunction must satisfy, namely, 

A(E) [0)=0. (8) 

Given the form of the excitation operator, we merely 
look for a ground state which satisfies the above 
relation. For the RPA excitation operator the ground 
state is as given in Eq. (28) and equations can be 
derived which permit the calculation of the correlation 
coefficients, C,{Jmn.?:l. In nuclear physics this is known as 
the extended RPA.2J Its applicability to molecular 
systems is presently under study. 

.. E. A. Sanderson, Phys. Letters 19,141 (1965). 
23 K. Hara. Progr. Theoret. Phys. Kyoto 32,88 (1f)()4); K. Ikeda. 

T. Udagawa, and H. Yam aura, ibid. 33, 22 (1965). 
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TABU; III. The molecular integrals, V.jkl, required for the treatment of the B3 • state of ethylene.-
. - .... _. - _. -_._- -_.-- -_ .. ---- -- --

9 
II 
12 
14 
10 
13 
12 
14 
11 
12 
14 
11 
13 
12 
14 
12 
14 
12 
13 
12 
14 
14 
14 
14 
10 
13 
12 
14 
13 
13 
14 
12 
14 
14 
9 

11 
12 
14 
10 
13 
12 
14 
14 
14. 
14 
11 
13 
12 
14 

j 

9 
9 
I) 
I) 
I) 
<) 

') 
I) 

11 
11 
11 
10 
11 
11 
11 
12 
12 
10 
12 
12 
12 
13 
12 
14 
10 
10 
10 
10 
13 
12 
13 
12 
12 
14 
8 
7 
6 
6 
4 
5 
3 
3 

14 
10 
6 
7 
5 
3 
3 

k 

8 
8 
8 
8 
8 
8 
II 
II 
7 
7 
7 
7 
7 
7 
7 
6 
6 
6 
6 
6 
6 
6 
6 
6 
4 
5 
4 
4 
5 
5 
5 
3 
3 
3 
9 
9 
9 
9 
9 
9 
9 
9 
6 
6 

11 
10 
11 
11 
11 

8 
7 
6 
(i 

4 
5 
3 
3 
7 
6 
6 
4 
5 
3 
3 
6 
6 
4 
5 
3 
3 
5 
3 
3 
4 
4 
3 
3 
5 
3 
3 
3 
3 
3 
8 
8 
8 
8 
8 
8 
8 
8 
6 
4 
7 
4 
7 
7 
7 

0.486677 
-0.006293 
-0.000596 

0.018200 
0.024901 

-0.011451 
-0.04(,558 

0.043314 
0.358632 

-0.034885 
-0.002028 
-0.055069 

0.117438 
0.037165 

-0.014081 
0.360222 

-0.015710 
0.109642 

-0.027352 
0.009487 

-0.035274 
-0.007745 
-0.035274 

0.111471 
0.359020 

-0.039745 
-0.094796 
-0.036816 

0.391534 
0.055546 

-0.033708 
0.359503 

-0.040165 
0.537546 
0.158394 

-0.014897 
0.009200 
0.092648 
0.056091 

-0.050457 
-0.055192 

0.060550 
0.499948 
0.048800 

-0.014189 
-0.027126 

0.039152 
0.023518 

-0.019405 

j II 
------ ._------

12 
14 
12 
1.3 
12 
14 
14 
14 
14 
14 
14 
10 
13 
12 
14 
13 
11 
12 
11 
12 
14 
10 
13 
12 
14 
12 
14 
11 
13 
12 
14 
12 
13 
12 
14 
14 
14 
14 
14 
1.3 
14 
12 
14 
14 
13 
12 
14 
13 
14 

6 
6 
6 
5 
6 
3 
6 
6 
6 
6 
6 
4 
5 
3 
3 
5 
7 
6 
8 
8 
8 
8 
8 
8 
8 
7 
7 
4 
7 
7 
7 
4 
6 
6 
6 
4 
5 
3 
6 
5 
3 
3 
3 
3 
4 
4 
4 
3 
5 

12 
12 
10 
12 
12 
12 
14 
10 
t.3 
12 
14 
10 
10 
10 
10 
13 
11 
11 
9 
9 
9 
9 
<) 
I) 

9 
11 
11 
10 
11 
11 
11 
10 
12 
12 
12 
10 
13 
12 
14 
12 
13 
12 
12 
14 
10 
10 
10 
12 
13 

6 
6 
4 
(, 

3 
(, 

6 
4 
5 
3 
3 
4 
4 
4 
4 
5 
7 
7 
7 
6 
6 
4 
:; 
3 
3 
6 
6 
7 
5 
3 
3 
6 
5 
3 
3 
6 
6 
6 
J 
3 
5 
3 
J 
3 
5 
3 
3 
5 
3 

0.025382 
0.010080 
0.021)1)()3 

-0.016009 
-0.014651 
- O. 0()<)848 

0.089809 
0.045175 

-0.039177 
-0.039565 

0.047390 
0.050754 

-0.034288 
-0.033584 

0.009595 
0.048769 
0.044318 

-0.020512 
-0.007751 

0.006714 
0.008209 
0.027503 

-0.009673 
-0.030172 

0.024716 
-0.02.3160 
-0.017414 
-0.022275 

0.061154 
0.015003 

-0.018506 
0.042439 

-0.013004 
-0.014651 
-0.039565 

0.016506 
-0.009401 
-0.00<)848 

0.(J47390 
O.O.nt40 

-0.034339 
0.029072 

-O.025U6 
0.000354 

-0.016829 
-0.030548 
-0.009334 

0.014()JO 
-0.015973 

=============~=====-= ___ -___ -__ -_-_-=-_·-_---c_-. __ ="C----
• In this table. 

Viikl = ii <P.*(I)<Pi(l)r12-'<Pk*(2)"" (2)d.,d",. 

This arrangement was chosen to coincide with that of the atomic integrals 
obtained from the LCAO MO SF calculation. The integrals are in atomic 
unit~. 

For the RPA, the transition moment is 

lDRPA = -\1'1 Llg(ma) +h(ma) Jdma• (37) 
(rna) 

For comparison with experiment we also calculate 
the oscillator strength of a transition. The oscillator 
strength, I, is defined by 

f=~llE 1 D 12, (38) 

where AE IS the theoretically calculated excitation 
energy, and llE and D are both in atomic units. 

Before closing this section we should point out that 
the RPA equations can be derived via time-dependent 
Hartree-Fock theory (TDHF) .24.26 However, the inter­
pretation of the resulting wavcfunctions from that 
viewpoint is not at all clear.26 Also, the remedy of a 
breakdown in the theory, corresponding to the insta­
bility discussed here, cannot be implemented so easily 
as in the present approach. 

.. M. A. Ball and A.D. 1\IcLachlan, J\1ol. Phys. 7, 501 (19o-!). 

.. A. 1>. McLachlan, Kev. 1\lod. Phys. 36, ~-H (1964). 
2. D. J. Rowe, Nucl. Phys. 80,20<) (1966). 



112 

1744 T. II. DUNNING AND V. McKOY 

TAnr.F. IV. The single-particle transitions coupled to form the 
excited B.u states of ethylene. 

Transitiona Singlet 
------- - - ._ ... --- Approximate transition 

Symmetry Numerical descriptionb energy· 
--.--_ .. _--- --._- -~- ._--._-_._- . 

1/",. - .lb2• 8.9 1r-- ~1f. 11.98 
1/'1." .2("u 7-.11 CH-·CII· 19.05 
31l. ",.~h,u Ii .12 eH (0') --.CI \0(0'.) 20.47 
31,. -.4(",. Ii .14 ell (0')->0'0 29.23 
2h;,u· .4au 4.\0 ell (u·)-.CHO (".) 26.65 
1 I>,u" .21>,. 5 .\3 CH-·CHo 29.66 
2a. --.31>,u 3--> 12 u--.CU· (u·) 32.97 
2a .. -">4b •• 3--.14 (f-)O'* 38.88 

• The symmetry designation is that with the molecule In the "'Y plane. 
The numerical designation is used in the following table to Identify the 
two-electron Integrals. 

b Except for the first transition. these descriptions are only qualitative 
since the orbitals are delocalized. The designation enclosed In parentheses 
refers to the minor component of the orbital. 

• Calculated with Eq. (21a) of the text. The excitation energies are In 
electron volts. 

ill. RESULTS 

To provide a concrete foundation for the theories 
discussed in this paper, we have carried out the full 
set of calculations on the ethylene molecule using the 
recent LCAO MO SCF wavefunction of Palke and 
I.ipscomb (unpublished results, see Table II). The 
purposes of the calculation are: (1) to check the 
relevance of these theories for the calculation of the 
electronic spectra of molecular systems and (2) to 
rigorously investigate the proposal of Herzenberg et al.e 

that the coupling between the CT and 11" electrons in 
ethylene could have a profound effect on the lowest­
lying excited states of that molecule. Their results were 
obtained in the TDA with a dipole-dipole approxima­
tion for 1/r12 and a semi empirical evaluation of the 
integrals which caused some skepticism about the 
strength of the observed coupling. 

In Table II the wavefunction obtained by Palke and 
Lipscomb12 for ethylene is given. The basis functions 
are Slater orbitals with orbitals exponents chosen by 
Slater's rules; this is in contrast to their published work3 

in which a hydrogen exponent of 1.2 was used. Table 
III lists the two-electron molecular integrals, V,jkl, 

required for the calculation on the B"" state. The atomic 
integrals are available upon request. 

In Table IV are listed the eight excitations which 
are. coupled together to form the excited Ba" states of 
ethylene. We have ignored any excitation of the Is 
electrons as being energetically unfavorable; calcula­
tions on the other states showed that the contribution 
from the Is electrons was indeed negligible. 

Tables V and VI give the results of the calculations 
on the singlet and triplet states of symmetry Ba". 
Excitation energies, transition moments, oscillator 
strengths, and wavefunctions (particle-hole amplitudes) 
for the STA, TDA, and RPA are given. 

The STA values are comparable to those presented 
earlier for the 1I'-electron calculations for the same 
assumptions are inherent in both, namely, a neglect of 
the effect of the excitation of a 11' electron on the 
remaining electrons in the molecule (the CT electrons in 
this case). The only difference is that in the LCAO MO 
SCF calculation the core potential is generated exactly 
(within the limited basis set used) in the ground-state 
calculation. 

From the TDA results we immediately note the 
profound effect that the inclusion of the IT electrons has 
on both the excitation energy and the oscillator 
strength. It is just not possible to ignore the rearrange­
ment of the CT core as is done in 1I'-electron theory. It is 
quite polarizable. From the wavefunctions we can see 
why this interaction was not detected earlier. In the 
previous calculations which attempted to answer the 
question of CT-7r separability,27 the CT electrons which 
were considered were those of the carbon-carbon bond . 
Clearly, the electrons to be considered are those in the 
CH bonds for these are the ones most strongly coupled 
to the ~11'* transition. 

As expected, the RPA results are merely a refinement 
of those of the TDA, bringing the calculated excitation 

TABLE V. The lowest singlet state of ethylene of symmetry 
B •• : excitation energies (in electron volts), transition moments, 
oscillator strengths, and wavefunctions for the various approxi­
mations to the excited state. 

STAa TDAb 

il.E 11.98 10.17 
])d 1.87 1.71 
f 1.03 0.73 

Wavefunctions 

(m,a) g(ma) g(ma) 

( 9,8) 1.000000 0.960329 
(U,7) 0.056820 
(12, 6) -0.033354 
(14, 6) -0.206246 
(10,4) -0.119678 
(13,5) 0.093880 
(12, 3) 0.062356 
(14,3) -0.062177 

( 9,8) 
(11,7) 
(12,6) 
(14,6) 
(10,4) 
(13, 5) 
(12, 3) 
(14,3) 

• From ~;qs. (2Ia). (22a). and (38) of the text. 
b From Eq •. (2Sa). (26). and (38) of the text. 
• From Eqs. (3Ia). (3Ib). (37). and (38) of the text. 

RPA· 

9.44 
1.49 
0.51 

g(ma)o 

0.966983 
0.036436 

-0.023823 
-0.160605 
-0.087569 

0.067878 
0.041913 

-0.045988 

h(ma) 

-0.098574 
0.006566 
0.000955 

-0.083727 
-0.032685 

0.032538 
0.029633 

-0.036484 

d In atomic units. The dipole matrix elements were computed using the 
dipole-moment program of M. D. Newton Bnd F. P. Boer as modified by 
R. Frank. 

o Unnormallzed. 2:: (g' (mal -hl(ma») -0.957785; see Eq. (3Sc) of the 
text. 

~ C. M. Moser, Trans. Faraday Soc. 49,1239 (1953). 
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energy and oscillator strength into better agreement 
with experiment. 

Because of the large 

component in the ground state, see Table VII, the 
conditions for the application of the RPA were not 
strictly satisfied and, as a result, the excitation energy 
of the triplet state became pure imaginary. The remedy 
of this situation, if it is worthwhile since the properties 
of triplet states are relatively easy to predict with just 
the STA, has been discussed previously and is not 
commented on further here. It is instructive to note, 
however, that the wavefunction of Moskowitz and 
Harrison,17 which they believe approaches the (sp) 
limit, does not exhibit this instability. 

TABLE VI. The lowest triplet state of ethylene of symmetry 
Bau: excitation energies (in electron volts) and wavefunctions 
for the various approximations to the excited state. 

STAa TDAb 
~- .. -. ~.- ~-- --------------

AE 3.36 

W a vefunctions 

(m,a) g(ma) 

( 9,8) 1.000000 
(11,7) 
(12, 6) 
(14,6) 
(to, 4) 
(13,5) 
(12,3) 
(14,3) 

a From Eq. (21 b) of the text. 
b From E'l. (25h) of the text. 

3.19 

g(ma) 

0.995423 
-0.029092 

0.005806 
0.034536 
0.043743 

-0.024380 
-0.053773 

0.040760 

In these calculations we did not make the assump­
tions and approximations that Herzenberg el al.9 did. 
But, our results indicate that their conclusions arc 
essentially correct. As a further test of their suggestion9 

that the effect of the particle-hole scattering terms is 
negligible, the calculation for the Bat< state was done 
neglecting those terms. The results were essentially the 
same as those obtained previously: the contribution 
from the (f core being appreciable. 

The effect obtained for the transition moments is 
particularly striking. It has long been known that 
transition moments calculated by the simple MO 
method (STA) are off by a factor of 2 or so-the 
explanation being electronic correlation. As evidenced 
by this calculation, the inclusion of all particle-hole 
terms provides an adequate explanation of the above 
phenomena. The discrepancy is a result of neglecting 
the "unexcited" electrons in the molecule, e.g., the (f 

electrons in ethylene during a 7T-electron transition. 

TABLE VII. Configuration interaction: inclusion of the 

component in the ground state of ethylene . 
.. -.-::-:-:--.-~-----==--:---=-': -~.==== 

Required integrals (in a.u.) 

•• =-0.4047 •• '=0.2056 

J .. =0.487271 

J.·.·=0.500717 

J .. '=0.486677 1\ .. '=0_158394 

Results 

E- EHF= -0.040518 a.u. 

Coefficients 

Co 0.968805 

-0.247825 
=-.;=-,=c=.c=======-~-=-=~--~-~~.-- ----- --------

The program for diagonalizing the unsymmetric 
RPA matrix was provided by S. F. Perssclin of Rocket­
dyne Division of the North American Aviation 
Company. With this program we were able to repro­
duce the required symmetry of the eigenvectors to 
eight significant figures by suitable adjustment of the 
optimization parameters and, hence, we feel that the 
performance of the program is satisfactory. 

Finally, in Table VIII the lowest excitation energies 
for states of various symmetries arc listed. Of particular 
interest are the two low-lying states of symmetry B2u 

and Bau which are also in the same region of the spec­
trum as the singlet Eau state. 

IV. DISCUSSION AND CONCLUSIONS 

These results indicate that most of the essential 
features of an excitation are contained in the TDA with 
the RPA merely altering these values by small, but far 
from negligible, amounts. Within the scope of the TDA 

TABU; VIII. Excitation energies for other low~lying excited 
states of ethylene. 

~tate 

Excitation energies 
(in eV) 

----~ -- ---

~TA' TDAb 
-- -------- -_. ------

3B •• 9.99 9.73 
'B2• to. 76 lO.4i 

3B3• 9.82 9.81 
'B •• 10.46 10.44 

3B,. 13.23 13.10 
'B,. 14.24 1·L11 

'B,. 17.78 IL'i-t 
'B,. 19.5S IS. (,I) 

• i<'rol11 1''1'' (2Ia) alld (Jib) tilth. trXl. 
I> From E<l •. (Ha) amI (l51» ill lhe t .. xt. 
01'10111 Ell'" (.lIu). (Jib). (.Ila). (.111» IlIlh .. tc_\l. 

Rl'Ae 
---------

9.43 
10_32 

9.79 
10.44 

12.96 
14.10 

14.22 
IS.o7 
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we may draw an analogy between the excited molecule 
and a set of interacting oscillators. Calculation of the 
lowest excitation energy of a given symmetry then 
('orrespollrls to a search for the lowest mode of the set 
of coupled oscillators, which, as expected on classical 
grounds, occurs at a lower frequency than that of any 
one of the oscillators. 

As Herzenherg et al.8 pointed out, the coupling to­
gether of many particle-hole excitations leads to a 
significant modilication of the low-lying excited states 
of ethylene which can be interpreted in terms of a 
reduction in the effective interaction between the 7r 
electrons by the dynamic polarization of the other 
electrons. This reduction is primarily a result of long­
range, interbond, correlations as is evidenced by the 
fact that the dipole approximation for the Coulomb 
potential was sufficient to reproduce the significant 
features of this effect. They also estimated that there 
may be a collective state of ethylene at about 50 eV. 
No indication of such a state was found in this calcu­
lation (one excitation corresponding to an excitation 
energy of 32 eV did have a heavy weighting in several 
elementary transitions; however, the oscillator strength 
was only 0.25) . 

On the basis of chemical intuition we would expect 
that many excitations would have a major component 
which essentially defines the excitation, thus allowing 
us to retain, in a limited sense, the classifications of 
excitations as being 7r~7r* etc. This is indeed the case 
for the lowest state of symmetry Bau in ethylene, the 
7r~7r* component comprising about 92% of the total 
wavefunction. However, the effect of the minor com­
ponents of the excitation are far from being insig­
nificant. 

One of the assumptions of 7r-electron theory is that 
the u core is invariant to the disposition of the 7r 
electrons, i.e., the u electrons are little affected by 
the precise form of the 7r-electron wave-function. 
However, the 7r electrons are strongly coupled to 
the u electrons such that a rearrangement of one 
causes a corresponding rearrangement of the other. 
Allowing in some crude fashion for the polarization of 
the u core decreases the excitation energy by ,....,15% 
and the oscillator strength by ,...,30%. At the same 
time the TDA results provide a theoretical justification 
for the success of the Pariser-Parr-Pople method.28 

The net effect of the coupling between the particle­
hole pairs is to decrease the interaction between the 
7r electrons and justifies the use of empirical values for 
the matrix elements of 7r-electron theory smaller than 
the theoretical ones. By lowering the value of a certain 
integral, 'Ypp, using spectroscopic arguments, Pariser29 

achieved this required decrease in the electronic inter­
action. Thus, the downgrading of certain integrals is 
justified by molecular considerations as well as the 

28 R. G. Parr, Quantum Theory of Molecular Electronic Structure 
(W. A. Benjamin, Inc., New York, 1963), Chap. 3. 

It R. Pariser, J. Chern. Phys. 21, 568 (1953). 

proposed atomic considerations.30 From the above we 
note that in a molecule, the 7r electrons may be pictured 
as being immersed in a polarizable medium correspond­
ing to the u-electron density.BI It might thus be possible 
to describe the effect of this polarizable medium on the 
7r electrons by means of a microscopic dielectric con­
stant. Herzcnberg et al.8 showed that within the set 
of approximations adopted by them, Le., a dipole-dipole 
approximation for the Coulombic potential, that this 
indeed was the case-both the decrease in the excita­
tion energy and the transition moment being explicable 
in terms of such a concept. This model can be rigorously 
justified by a selective summation of Feynman dia­
grams32 or by a series of appropriate transformations 
on the Hamiltonian.33 Investigation of the feasibility of 
this approach for the study of the spectra of larger 
'II'-electron systems is presently under way. 

In contrast to the 7r-electron calculations, we note 
that the methods presented here have no effect on the 
calculated ionization potential. The calculated value of 
10.82 eV is in excellent agreement with experiment 
(see Table I). 

Also, of considerable interest is the application of 
the techniques presented here for the study of other 
molecules, e.g., acetylene, numerous diatomics,34 etc. 
At the present time, the set of calculations presented 
herein is being rerun using the Gaussian wavefunction 
for ethylene which was calculated by Moskowitz and 
Harrison}7 This will provide information on the sensi­
tivity of the method to the accuracy of the ground-state 
wavefunction and, if the effects which have been shown 
to be operative here persist in the more detailed wave­
function, the results should provide a limit for the 
theoretical excitation energy and oscillator strength. 

From a study of Table VIII in the last section, we 
see that in the STA four states lie below the IB3u state 
while in the RPA no singlet state lies below it.36 This 

30 M. Orloff and O. Sinanoglu, J. Chern. Phys. 43, 49 (1965). 
31 Contrary to the traditional viewpoint, the,.. electrons are 

deeply immersed in the a-electron denSity. See, for example, C. A. 
Coulson, N. H. March, and S. Altmann, Proc. Nat!. Acad. Sci. 
(U.S.) 38, 372 (1952) ; M. D. Newton, F. P. Boer, and W. N. 
Lipscomb, J. Am. Chern. Soc., 88, 2367 (1966); A. C. Wahl, 
"Pictorial Studies of Molecules," Argonne National Lab. Tech. 
Rept. July, 1965. In these works it is shown that the a-electron 
den~ity exceeds that of the ,.. electrons throughout most of the 
bonding region, including the region in which the ,..-electron 
density is greatest. 

82 D. Falkoff. in Lecture Notes 011 Ihe Mally-Body Problem fram 
the First Bergen lnternational School of Physics-1961 (W. A. 
Benjamin, Tnc., New York, 19(2). 

33 R. Harris (private communication). 
.. For application of the STA see C. W. Sherr, J. Chern. Phys. 

23,569 (1955) ; Nt; J. W. Richardsoll, ibid. 35, 1829 (1961), Nt; 
H. Brion and C. Moser, ibid. 32, 1194 (1960); CO; B. J. Ransil, 
ibid. 35, 669 (1961); F2, HF, Lit, LiH, Nt, and others; and R. K. 
Nesbet, ibid. 43, 4403 (1966); Nt, CO, BF. For applications of 
the TDA see II. Lefebvre-Brion, C. ~Ioser, and R. K. Nesbet, 
ibid. 35, 1702 (1961); CO. 

86 Note that this is in disagreement with the CI results of R. 
Polak and J. Paldus, Theoret. Chim. Acta 5, 422 (1966), who 
obtained a reversal of the energy levels and found an exdted 
singlet state (1B2.) much below lB"u. However, their usc of the 
Mulliken approximation to evaluate the multicenter integrals 
negates much of the quantitative significance of the calculation. 
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is in contrast to the results of Robin el at:de who, with 
a set of Guassians augmented with expanded orbital 
exponents, fmd two states below IB3u , namely, IBI" 

and 3131". In our calculations the four states lying 
closest to the IBa .. state are of symmetry B3u and B2Q, 
the former corresponding to the Berry'"' assignment of 
the mystery band of ethylene. The state proposed by 
Robin el at. for the mystery band, Btu, is found to lie 
at rather high energies, ,...,,14 eV, even in the RPA. 
Thus, our calculations cannot account for a mystery 
band lying below the IBav. state. To prevent misinter-

III M. B. Rohin, R. R. Hart, and N. A. Kuebler, J. Chern. Phys. 
44,180.3 (J966). 

X7 H. S. Berry, J. Chern. Phys. 38, 1934 (1963). 

pretation, however, it should be pointed out that 
because of the nature of the ground-state calculation 
(i.e., the use of a minimum basis set), the above results 
cannot provide a definitive answer to the question of 
the mystery band of ethylene. 
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A series of calculations on the excited states of formaldehyde using excitation operator techniques are 
presented. As in ethylene, the effect of IT""'" interaction on the "T-+,..""(IA I ) excitation is rather large, 
decreasing the calculated excitation energy from 14.89 to 12.03 eV and the oscillator strength from 1.01 to 
0.30. The coupling has little effect on the corresponding triplet state (a AI). The next higher approximation 
reduces the excitation energy to 11.22 eV and the oscillator strength to 0.21. The effect of the coupling on 
the "n-+,..*" (1.3 A 2) excitations is not as large as that for the I AI state, lowering the excitation energies for 
both the singlet and triplet by "'-'0.5 eV. Similar results were obtained for the "IT-+,..""(1,3BI ) excitations. 
Trends are observed in calculations on corresponding states in ethylene and formaldehyde. Numerous 
one-electron properties are calculated for the excited states. The results are in moderate agreement with 
experiment; a major source of error probably arises from the use of an unoptimized, minimum basis set 
LCAO(STO)-MO-SCF wavefunction. 

I. INTRODUCTION 

The electronic excited state of molecules are of inter­
est to chemists as a means of interpreting spectra, as 
reaction intermediates and for numerous other reasons. 
Unfortunately, a Hartree-Fock treatment of open-shell 
systems is more complicated than for closed shells and 
it has only been recently that theoretical work has been 
started on a Hartree-Fock theory of the excited states 
of molecules! and calculations begun on simple diatomic 
molecules.2 This article applies to formaldehyde an 
alternate approach to problem, based on excitation 

* National Science Foundation Predoctoral Fellow 1966-196R. 
t Contribution No. 3593. 
1<;. C. ]. Roothaan, Rev. Mod. Phys. 32, 179 (1960); S. 

Huzmaga, Phys. Rev. 120, 866 (1960); S. Huzinaga, Ph),s. 
Rev. 122, 131 (1961); and C. C. ]. Roothaan and P. S. Bagus, 
Methods in Computational Physics (Academic Press Inc., New 
York, 1963), Vol. 2, pp. 49-54. 

• CO: W. M. Huo, ]. Chern. Ph),s. 45, 1554 (1966); BeO: G. 
Verhaegen and W. G. Richards, ibid. 45, 1828 (1966), and W. M. 
Huo, K. F •. Freed, and W. Klemperer, ibid. 46, 3556 (1967). 

operator techniques, which was discussed in a previous 
article and applied there to ethylene.3 

An excitation operator approach has advantages over 
a Hartree-Fock theory in that only the ground-state 
wavefunction, including the virtual orbitals, need be 
known (thus, eliminating the reoptimization of numer­
ous nonlinear parameters), electronic correlation is put 
into the ground and excited states in a balanced manner, 
and energy differences are solved for directly. Also, the 
problem of nonorthogonal molecular orbitals encoun­
tered in a Hartree-Fock theory is avoided by con­
structing both states out of a set of mutually orthogonal 
orbitals. This is of particular importance when cal­
culating quantities connecting the two states, such as 
the transition moment. However, such a method has 
the disadvantage that only vertical excitations can be 
described, although in the interpretation of spectra it 
is just this type of excitation which is of most interest. 

aT. II. Dunning and V. McKoy, }. Chem. Phys. 47, 1735 
(1967). 
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HHO.O. 1. 7320508. +O.~l 

H210.0, -1.7320508,+0.5) 

FIG. 1. The geometry of formaldehyde. 

Formaldehyde (for the geometry see Fig. 1) was 
chos-en for the present study because of its special 
interest to spectroscopist.s and because a theoretical 
description of its excited states has not been attempted, 
even at a level comparable to the pi-electron calculations 
on ethylene,. except by semiempirical schemes.5 Also, 
although the formaldehyde molecule has been the sub­
ject of numerous experimental investigations,6 some 
confusion still exists over the assignment of the excited 
state giving rise to the absorption band at "-'8.0 e V: 
the two alternatives being that the excited state results 

T ABl.F. J. Experimental vertical excitation energies, oscillator 
strengths, and dipole moments for the various states of the 
formalflchyde molecule. 

Electronic 5T A 
state Assignment> 

Energy 
(eV)!' 

Oscillator 
strength,J1' 

Dipole 
moment (D) 

------- ------ ----_ .. _------
'A, 0.0 2.34±0.O2° 
'A, n---t7r* 3.2 very weak 
'A, n~7r· 4.3 ",10-4 1.56±0.07d 

'B, (J~---+7r. 

'B, (J-+7r* 7.1 .-..{J.02 
"A, 11'"-+'11"* 

'A. '7r--+11"* 8.0 .-..{J. 1 
3B. n-+a* 
'B2 n--)q* lO? 

a See text. 
b See Ref. 6. 

< J. N. Shoolery and A. H. Sharbaugh. Phys. Rev. 82. 95 (l9St). 
d See ReI. 17. 

• R. G. Parr and B. L. Crawford, J. Chern. Phvs. 16,526 (1948)' 
T. Murai, Progr. Theoret. Phys. (Kyoto) 7,345 (1952); and S: 
Huzinaga, J. Chern. Phys. 36, 453 (1962). 

• T. Anno and A. Sado, J. Chern. Phvs. 26, 1759 (1957); J. W. 
Sidman, J. Chern. Phys. 27 429 (1957); ]. A. Pople and ]. W. 
Sidman, ibid. 27, 1270 (1957); R. D. Brown and M. L. Heffern!ln, 
Trans. }<'araday Soc. 54, 757 (1958); J. M, Parks and R. G. l'arr. 
J. Chern. Phys. 32,1657 (1960); F. L. Pilar, ibid. 47, 884 (l967l. 

~ H. Ley and B. Arends, Z.l'hysik. Chern. 12, 132 (1931); W. C. 
frIce, ]. Chern. Phys. 3, 156 (1935); J. C. D. Brand, J. Chem. 
Soc. 1956, 858; G. W. Robinson and V. E. DiGiorgio, Can. J. 
Chern. 36, 31 (1958);]. R. Henderson, J. Chern. Phys. 44, 3496 
(1966), and many others. 

from (a) a~· transition and (b) a Rydberg transi­
tion.7 

Further, many properties of formaldehyde have been 
measured experimentally, thus providing a stringent 
test for any theory. When these experimental values are 
compared with the theoretical values calculated with a 
recent minimum basis set LCAOMO .... SCF wavefunc­
tion, which also provides It hasis for t he calculations to 
he prescnted herc, the agreement is rather poor.s But, 
even though we cannot expect any more from the 
excited state calculations, we can still use the calculated 
valucs of these properties to get an idea of the differ­
ences in the elcctronic distributions between the various 
states. Most important, by comparing the results of 
the single transition approximation with those of the 
Tamm-Dancoff approximation (see the following sec­
tion) , we can assess the significance of "core relaxation," 

TAIlLE II. The elementary transitions coupled to form the excited 
states of formaldehyde of symmetry A •. 

=========== ~==~=== 

Transition> Common Singlet energy 
Numerical Symmetry design a tion b STAo 

7 ...... 9 1 b,-->2b. 11"~1f. 14.8geV 
8 ...... 11 2b.-->3b, n(Yo)-->CH* 22.98 
6-->10 5a.-->6a, O' ...... CH* 24.09 
6 ...... 12 5a,-->7al q-+a* 27.46 
5 ...... 11 Ib.r-.. 3b, CH-->CH* 30.07 
4 ...... 10 4a ....... 6a, CH-->CH* 30.78 
4 ...... 12 4a .. --.. 7al CH-->O'* 34.47 
3 ...... 10 3a ....... 6al O,,-->CH* 45.15 
3 ...... 12 3a.-->7a. 0,,-->0'* 46.88 

> The symmetry dc.ignation is that with the mol.cule In the )'I plane 
(see Fig. I). The nUtnl'rical designation iA used in the followinll table to 
denote the tran.ilion. (m. a). Note that the numbero refer to the orbitale 
In order of increasing orbital en{*rgy and not as given In S. Auna:, R. M. 
Pitzer, and S. J. Chan, J. Chern. Phy •. 45 • .1547 (1966). 

b Except for the firlit tranijition. these descriptions are only approximate 
since tht, orbitalI'! are delocalizt·d. The major component of the MO is 
written without the parehthf"~i~. Rny minor comlJonent within. 

• Calculated frolll EQ. (]) of the text. The excitation ."ergiee Qre in 
electron volt •. 

i.e., a rearrangement of the electronic density of those 
electrons not usually associated with a given transition 
(e.g., the u electrons in a "11"-electron excitation"). 

In Table I, the experimental results on formaldehyde 
are listed. Note that an lAI state has been given at 
",8.0 eV although this assignment at present is ques­
tionable.7 

II. THEORY 

The purpose of this section is to give a brief review of 
the method and to present the necessary formulas. For 

1 See, for exampk, G. W. Robinson in Melh.)ds oj Experimental 
Phvsics: },f,,!cCIIlar PIII'sics (Academic Prl!ss Inc., New York, 
19(2), Vol. 3, pp, ISS-2M. 

8 W. H. Flygart·,]. 1\\. Pochan, C. l. Kcrlt'y, T. Caves, M. Kar­
plus, S. Aung, l{. M. Pitzer. :ulIl ~. J. Chan, J. Chern. Phys. 45, 
2793 (1966); !lnd S. Aung, R. M. l'itzrr, an,1 S. 1. Chan, ibid. 45, 
3457 (1966). The l!lst article contains the wan'function used in the 
calculations presented here. 
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a more detailed treatment the reader is referred to our 
previou~ paper'! and the references contained therein. 

We start by postulating an excitation operator, 
Sj·( /1;), which we hope will represent lhe excited state~ 
of the system reasonably well. We then examine those 
terms which are neglected upon forcing the commutator 
relationship to be satislied: 

[x, S+(1O ] = (E-l'-o) S+(E). (1) 

X is the total electronic Hamiltonian of the system, 
E is the energy of the excited state, and Eo is the ground 
state energy. From Eq. (1) we can see that when the 
excitation operator, S+(E), acts on the ground state, 
10), it produces an excited state of the Hamiltonian:te. 
The terms which are discarded in Eq. (1) represent the 
error which arises from the use of such an operator to 
describe the excited state. In this way we arrive at a 
set of operators which more or less correspond to the 
true excited states of the system. 

The present technique utilizes excitation operators 
which give rise to wavefunctions which can be inter­
preted in terms of configuration interaction. Specifically 
the operators are chosen to represent excited states 
which result from single-particle transitions. If this is 
not the case, then S+(1<:) must be generalized to in­
clude double-particle transitions, etc. 

TABLE III. The lowest excited singlet state of formaldehyde 
of symmetry AI (the "..-->..-*" transition): excitation energies 
(in electron volts), transition moments, oscillator strengths and 
wavefunctions for the various approximations to the excited 
state. 

STA- TDAb 

AE 14.89 12.03 
D. -1.67 -1.02 
f 1.01 0.30 

Wavefunctions: 

(m, a) g(ma) g(ma) 
(9,7) 1.000000 0.930110 

(11, 8) 0.161225 
(10,6) 0.044100 
112,6) 0.298489 
111, S) -0.087123 
(to,4) 0.059452 
(12,4) - O. (){)4821 
(10,3) -0.020318 
(12, 3) -0.079374 

(9,7) 
(11, 8) 
(10, 6) 
(12,6) 
(11, 5) 
(10,4) 
(12,4) 
(10,3) 
(12,3) 

• From EQs. (3). (4). and (12) of the text. 
h From EQs. (6). (7). and (12) of the text. 

RPA" 

11.22 
-0.88 

0.21 

g(ma) 
0.966104 
0.126608 
0.035271 
0.243681 

-0.068162 
0.045562 

-0.005282 
-0.014553 
-0.063840 

h(ma) 
-0.081276 

0.041397 
0.011469 
0.09422R 

-0.030<)92 
0.017562 

-0.007204 
-0.014135 
-0.046865 

o From I';qs. (10)-(12) of the text. The wnv~fllnctioll ns Klv"n is Ilor­
malized with 2: [g(ma)'-h(ma)'l -1.000000 •• "e Eq. (35<') of Rd .. 1. 

TAIlLI, IV. The lowest triplet state of formaldehyde of sym­
metry AI (the "..---.,..*" transItion): excitation ener~ies and wave­
functions for the various approximations to the excited state. 

-'---' .. _'--'--------.~ --- - .- ------~ - - ---------_. -

----------

Wavcfullctions: 

(m, a) 
(9,7) 

(11,8) . 
(to, 6) 
(12,6) 
(11, 5) 
(10,4) 
(12,4) 
(10,3) 
(12,3) 

3.99 

g(mer) 
1.000000 

& From EQs. (3) and (4) of the text. 
b From EQs. (6) and (7) of the text. 

•• -" _. -- - - -+ -_. _.---

3.RR 

gem,,) 
0.997776 
0.001237 
0.0110653 

-0.025463 
0.021884 

-0.036564 
-0.004753 

0.021475 
0.038648 

It is obvious that if the excitation operator is made 
completely general by the inclusion of all types of 
multiple transitions, then the true excited states of the 
molecule will result. How many terms must be retained 
in the expansion depends on the single-particle energy 
level schemes and the symmetry of the states arising 
from such single, double, etc. excitations. The question 
of interest is whether the series converges fast enough 
to be useful. Allowing for the relatively incomplete 
ground-state wavefunctions, the results of the calcula­
tions on ethylene and formaldehyde are encouraging. 

In this paper (and the previous oneal we choose three 
approximations to the excitation operator S+(E). In 
the single transition approximation (STA) the excited 
state is derived from the Hartree-Fock ground state 
by removing an electron from an occupied orbital and 
placing it in a virtual orbital. This approximation 
assumes that the orbitals for the excited states are the 
same as those for the ground state, i.e., relaxation is not 
allowed to occur. In the STA for the excitation a->m 

and 

where 

SSTA+(E) =C+(ma), 

llEsTA(ma) =A(ma.mah 

C+(ma) = a".1 aa, 

(2) 

(3) 

and am + and a" arc the creation and annihilation opera­
tors for electrons in ll101ewlar orbitals cPm, a virtual 
orbital, and cPa, an orbital occupied in the Hartree-Fock 
ground state. The matrix A is defined by its elements 

fDr singlet states and 
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TABLE V. The elementary transitions coupled to form the excited the expansion coefficients being solutions of 
states of formaldehyde of symmetry A,." 

Transition Singlet 
--------- Common energy 

Numerical Symmetry designation STA 

8--.<) 2b.~2bl IS (yo) --tlr· 4.03 eV 
5-.1) Ib.~2bl CH---Ir· 13.4n 
7---11 Ibl~3b. Ir---CII· 21.97 

• Sre COIlIIllf'nh below Tuble 11. 

for triplet states. The Ei denote orhital energies and 

Vi)kl= ff rpi*(1)rp/(2)r12-1rp,,(1)rp,(2)dTldT2. 

D is the transition moment from the ground to the 
excited state. 

In the Tamm-Dancoff approximation (TDA) the 
excited state is represented as a linear combination of 
single particle transitions. This allows for electronic 
relaxation upon excitation through the residual Cou­
lomb interaction. In this case 

STDA+(E) = L g(ma; E)C+(ma) , (5) 
(ma) 

the expansion coefficients being solutions of the matrix 
equation 

AG=AErDAG (6) 
with 

(G) (ma)=g(ma; E). 

The transition moment is given by 

DTDA (E) = -v'2" L g(ma; E) d".... (7) 
(rna) 

In the random-phase approximation (RPA) the ex­
cited state is still written as a linear combination of 
single-particle transitions (plus minor contributions 
from higher order odd excitations, i.e., triplet, etc.), but 
now we make implicit recognition of the fact that the 
true ground state contains, in addition to the Hartree­
Fock wavefunction I HF), components corresponding to 
excitations (mainly double) from the Hartree-Fock 
ground state, I a{J",n), i.e., the true ground state is better 
represented by 

I O)=Co I HF)+ L LCa{Jmn I a{Jmn) 
(ma) (n{J) 

+ (higher order excitations). (8) 

The RPA then assumes that the Ca{r" are sufficiently 
small so only terms linear in them need be retained 
products being neglected. In this approximation ' 

SRI'A+(F) = L [g(ma; mC+(ma)-h(ma; R)C(ma)] 
Cma) 

(9) 

c: -:X:) ~dE"A (:). (10) 

The matrix B is defined by 

IB(ma.n/l) = 2 Va/!non - Va/l nm , 

3B(ma.n/l) = - Va{Jnm, 

for the singlet and. triplet slates, respectively. The 
transition moment now is 

DRPA(E) =-v'2" L [g(ma; E)+h(ma; J~)]dm«. (11) 
(ma) 

The energy lowering observed in the RPA is somewhat 
overestimated and arises from the neglect of products 
of ground-state correlation coeflicients; this can be 
corrected through the extended RPA.3 One of the 
principal successes of the RPA is the effect on the transi­
tion moment through the h(ma) coefficients [see Eq. 
(11)]; this effect is linear in the correlat ion coetlicients 
and, accordingly, is reasonably well approximated by 
the RPA. Because of the assumptions about the ground­
state correlation coefficients, Ca{Jmn, the RP A becomes 
unstable (i.e., yields imaginary eigenvalues and eigen­
vectors) when these become large, as they are for 
Crr"*"* in both ethylene and formaldehyde. 

The oscillator strength, j, which is an experimentally 
measured quantity, is related to the transition moment 
and excitation energy by 

(12) 

all quantities being given in atomic units. 
The above formulas describe transitions among non­

degenerate molecular orbitals. If degeneracies exist then 
the equations must be modified accordingly. 

TABLE VI. The lowest singlet state of formaldehyde of sym­
metry A2 (the "n~1r·" transition): excitation energies (in eiL'C­
tron volts) and wave£unctions for the various approximations to 
the excited state. 

STAa 

t.E 4.03 

Wavefunctions: 

(m, a) g(ma) 
(9,8) 1.000000 
(9,5) 

(11, 7) 

(9,8) 
(9,5) 

(11,7) 

" From Eq8. (.1) and (4) of the text. 
b From Eq8. (6) and (7) of the text. 

TDAh RPAo 

3.60 3.47 

g(ma) J:Cma) 
0.978447 0.983127 

-(L20(H<)8 -0_211607 
0.000804 0.008716 

It(ma) 
-0.0880:;0 

0.025684 
-0.0545'>5 

o From 1':<.18. (10) and (\1) of lhe text. The \\lIWfUllrlion i. nor mali led 
with l: IK'(ma) -h'(ma) I -1.000000. see Eq. (35<:) of Ref. j. 
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III. RESULTS AND DISCUSSION 

Tables II-IV give the results of the calculations on 
the At states. Qualitatively, these states are described 
as arising from a ?r-71r* transition. 

The results in these tables indicate that the Al 

states of formaldehyde exhibit the same general be­
havior as the corresponding Ball states in ethylene3: the 
singlet state is quite affected by the coupling of the 
transitions, the triplet state practically unchanged. It 
is possible that this type of hehavior can, in general, be 
expected for transitions which have been denoted by 
MullikenU as N~V, T, i.e, transitions from bonding to 
the corresponding antibonding orbitals. Should this 
prove to be the case, a semiempirical scheme similar to 
that used by Herzenberg, Sherrington and SlivegeslO 
could possibly be developed to treat molecules which 
are out of the range of present LCAO-MO-SCF tech­
niques (and will probably remain so for some time to 
come). 

The effect of the coupling is slightly larger in formal­
dehyde than in ethylene. It is difficult to say whether 
this is significant (it probably is not!) except to note 
that similar results were obtained for ethylene when 
methane optimized exponentsll were used in the mini­
mum basis set: the STA guess was worse, the coupling 
larger. l2 

TABLE VII. The lowest triplet state of formaldehyde of sym­
metry A2 (the "n->,..*" transition): excitation energies (in elec­
tron volts) and wavefunctions for the various approximations to 
the excited state. 

STAa 

IlR 2.88 

Wavefunctions: 

(m, a) g(ma) 
(9,8) 1.000000 
(9,5) 

(11,7) 

(9,8) 
(9,5) 

(11,7) 

a From EQs. (3) and (4) of the text. 
b From EQs. (6) and (7) of the text. 

TDAb RPAc 

2.33 2.13 

g(ma) g(rna) 
0.974376 0.985927 

-0.224803 -0.236076 
-0.007391 -0.021384 

hemal 
0.147309 

-0.043466 
-0.068204 

• From EQs. (10) and (J I) of the text. The wavefunction is normalized 
with 2: [,'(mal -h'(ma) 1= 1.000000. see EQ. (35c) of Ref. 3. 

8 R. S. Mulliken, J. Chern. Phys. 7,20 (1939). 
10 A. Herzenberg, D. Sherrington, and M. Siiveges, Proc. Phys. 

Soc. (London) 84,465 (1964), 
11 R. M. Pitzer, J. Chern. Phys. 46, 4871 (1967). 
12 For ethylene using methane optimized exponents, it was 

found that EMS. = -77.8429 a.u, which is a decrease of 0.0086 
a.u. over the energy obtained by using Slater exponents with 1.2 
on the hydrogen, and that 31lR =3.13,2.95 eV for the triplet state 
and lAE= 12.88, 10.81, 9.96 eV in the STA TDA and RPA 
respectively: from unpublished calculations by W. E. Palke and 
T. H. Dunning. 

TABLE VIII. The elementary transitions coupled to form the 
excited states of formaldehyde of symmetry B,. a 

Transition Singlet 
Common energy 

Numerical Symmetry designation STA 

6-+9 5al->2b, u-+7r* 9.06 cV 
4->9 4a,->2b, CH->,..· 20.38 
7->10 Ib,-+6a, ,..-->CII* 20.46 
7->12 Ib,->7a, .,,---.a* 2l.l8 
3->9 3a,-->2bl 0 ... -+,..· 31.14 

==--_-__ -.-=-_-_-_-_-. -=c_ === 
a See the comment. below Table II. 

In formaldehyde the doubly excited I n"*"*) state 
lies 19.25 eV above the ground state and is of the 
appropriate symmetry to mix with the singly excited 
I ."*) state (and the ground state). Hence, the question 
arises as to whether the excited state of IAl symmetry 
is well represented by a single-particle transition (or 
some suitable linear combination). To answer this 
question we did a configuration--interaction caJculation'3 

"mixing" the I ","*) and I ...... *r*) states and found that 
(a) the energy of the first excited state was lowered by 
0.02 eV, (b) the transition moment with the Hartree­
Fock ground state changed from -1.67 to -1.66, and 
(c) the dipole moment of the excited state decreased 
from 0.352 a.u. to 0.096 a.u. l • From this we can conclude 
that for properties connecting the two states, we might 
approximate the excited state by a single-particle transi­
tion, but for the relatively sensitive expectation values 
we definitely cannot! In this paper we are primarily 
interested in properties which relate to both the ground­
and excited states (excitation energies and oscillator 
strengths), so we will not concern ourselves with the 
above except to point it out. However, in the future, 
for more accura te calculations, this interaction will 
have to be taken into account and the excitation opera­
tor modified accordingly. 

If we assume that the difference 6RcIl lo- 6R.xpt l is 
the same for the IAI state of formaldehyde as for the 
lBau state of ethylene, which is not unreasonable in 
view of the observed trends, then we would predict 
an excitation energy of 9.4 eV for the so-called ?r-71r* 
transition in formaldehyde. It is thus possible that the 
lAl state does give rise to the band at ,,-,8.0 eV. In 
view of the effect on 6EsTA as a result of improvements 
in the wavefunction for ethylene,15 calculations of 
formaldehyde employing excitation operator techniques 
on analogous wavefunctions should provide a definite 
answer to this question. 

13 For the form of the matrix clements see: J. Cizek, Theoret. 
Chim. Acta 6, 292 (1966). 

14 To convert from atomic units to debyrs multiply by 2.541603. 
16 For the excitation energies (S,[,:\) for ethylene calculated 

from various Gaussian wavefunctions sec: J. W. Moskowitz and 
M. C. Harrison,]. Chern. Phys. 42,1726 (1965) anel]. M. Schul­
man, J. W. Moskowitz, and C. Hollister, ibid. 46,2759 (1967). 
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TABLE IX. The lowest singlet state of formaldehyde of sym­
metry B1 (the "u-+".*" transition): excitation energies (in elec­
tron volts), transition moments (in atomic units), oscillator 
strengths, and wavefunctions for the various approximations to 
the excited state. 

STAa TDAb 

ilE 9.06 8.85 
J) -0.17 -0.22 
f 0.006 0.011 

Wavefunctions: 

(m, a) g(ma) g(mer) 
(9,6) 1.()(XX)OO 0.91)3979 
(9,4) 0.073172 

(10,7) -0.()()2842 
(J 2, 7) 0.()()2421 
(9,3) -0.081468 

(9,6) 
(9,4) 

(10,7) 
(12, 7) 
(9,3) 

• From Eqs. (3), (4). and (12) of the text. 
b From Eqs. (6), (7), and (12) of the text. 

RPAo 

8.56 
-0.22 

0.010 

g(ma) 
0.999448 
0.072425 
0.001395 
0.017584 

-0.081868 
h(ma) 

-0.051212 
-0.018942 
-0.011221 
-0.088920 
-0.011903 

o From Eqs. (10)-(12) of the text. The wavefunction I. normalized with 
2: [g'(ma) -h'(ma)I-1.0oo000, see Eq. (3Se) of Ref. 3. 

The A2 states, qualitatively described as arising from 
an n-+7r* transition (or N~ in Mulliken's notationI6), 

are of much interest since they are prototypes for such 
states in larger molecules and because they are out of 
the realm of pi-electron theory. In an elementary picture 
n is taken as a 2p-Ione pair orbital on oxygen. From the 
LCA0-MO-SCF wavefunction,8 however, we see that 
the corresponding molecular orbital has a significant 
amplitude on the hydrogens and carbon. In fact, as 
Freeman and Klemperer17 point out, this molecular 
orbital has its centroid 0.12 A from the midpoint of 
the CO bond rather than at the oxygen as would be 
the case if the orbital were pure 2p. Just as a point of 
inter(;st, consider the following. If we use the LCAO­
MO--SCF 71"* orbital and orbital energies for n l8 and 71"*, 
but let n be an oxygen 2PII orbital, we find that in the 
STA the triplet excitation energy is 1.09 eV and the 
singlet 2.33 eV in marked contrast to both the LCA0-
M0-SCF STA calculation (see below) and the experi­
mental results. Thus, just as Freeman and Klemperer17 

found that the change in dipole moment upon excitation 
was better rationalized by the LCA0-M0-SCF orbital, 
we find that the LCAO-MO-SCF results represent the 
excited state better than the simpler picture. 

Tables V-VII list results of the calculations on the 

16 R. S. Mulliken, Phys. Rev. 50, 1017 (1936); H. L. McMurry 
and R. S. Mulliken, Proc. Nat!. Acad. Sci. U.S. 26, 312 (1940); 
and H. L. McMurry, J. Chern. Phys. 9, 231 (1941). 

17 D. E. Freeman and W. Klemperer, J. Chern. Phys. 45, 52 
(1966) . 

18 The SCF orbital energy is 10.49 eV, which compares quite well 
with the ionization potential of the "lone pair" oxygen electrons in 
formaldehyde, 10.83 eV CW. C. Price, Phys. Rev. 46, 529 (1934)]. 

A2 states. When compared to the previous iV-V, T 
results, we see that the magnitude of the effect is not 
as large as that observed in the N-V case but larger 
than for the N-T case. Also, the effect of the coupling 
is slightly larger for the triplet state than for the singlet. 
Such behavior may be indicative of n-+7r* transitions. 
Since the transition to the 1 A2 state is magnetic dipole ft 

rather than electric dipole allowed, no transition mo­
ment has been calculated. 

The results for the BI states are given in Tables 
VIII-X. The transition to this state is electric dipole 
allowed, polarized in the x direction, and can qualita­
tively be described as arising from a cr----77r* transition. 
The coupling has an effect similar to that for the corre­
sponding transitions in ethylene (Blu or B2u ). In fact, 
in all cases investigated, the effect of the coupling is 
nearly the same for corresponding transitions in 
ethylene3 and formaldehyde. In this case the coupling 
increases the transition moment, which is toward better 
agreement with experiment. 

The excitation energies for the B2 states are found to 
be rather high (15-18 eV), so we will not discuss them 
anymore at present. We will mention that the coupling 
is much larger in the triplet, decreasing the energy by 
2.4 eV, than in the singlet, decreasing the energy by 
only 0.4 eV; this is similar to that for the corresponding 
B2u state of ethylene. 

In the STA the charge distribution in singlet and 
triplet states derived from the same orbital configura­
tion is identically the same. However, in the TDA, 
as in Hartree-Fock theories, this is not so. Thus, by 
computing the expectation values of various one-elec­
tron operators, we can compare not only the changes 
in the electronic density from one state to the next, 

TABLE X. The lowest triplet state of formaldehyde of sym­
metry 8 1 (the "u-+".·" transition): excitation energies (in elec­
tron volts) and wavcfunctions for the various approximations to 
the excited state. 

STA-

ilE 7.28 

Wavefunctions: 

(m,a) g(ma) 
(9,6) 1.000000 
(9,4) 

(10,7) 
(12,7) 

(9,3) 

(9,6) 
(9,4) 

(10,7) 
(12,7) 
(9,3) 

• From Eqs. (3) and (4) of the text. 
b From Eq •. (6) and (7) of the text. 

TDN' RPAo 

6.99 6.53 

g(ma) g(ma) 
0.986418 0.995786 
0.159971 0.164044 

-0.015612 -0.026983 
-0.030052 -0.056657 
-0.015582 -0.027327 

hemal 
0.086910 
0.035876 

-0.024582 
-0.116694 

0.011093 

o From Eqs. (10) and (1 J) of the text. The wavefunctlon is normalized 
with 2: [g'(ma) -h'(ma)] -1.000000. see Eq. (lSe) of Ref. 3. 
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TABLE XI. One-electron properties of formaldehyde in various states (in atomic units) . ==_-_-=::.:::::--=-.:.=_-_-_-:=--=.:::c===================== - - -

Property· 

q .. (O) 

"0 cosOo 

/.(0) 

f.(c) 

f..(H) 

llrH 

qa6(D) 

q~p(D) 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

STA 

'fDA 

STA 

TDA 

STA 

TDA 

STA 

TDA 

Ground 
state 
IA,b 

0.8365 

-2.9294 

0.3964 

83.3788 

-2.6481 

0.2507 

-0.1238 

-0.0008 

6.4983 

0.4498 

0.0055 

-0.2204 

1.1545 

1.1502 1.0489 

-2.6556 

-2.6553 -2.6182 

0.3520 

0.3482 0.2241 

83.6995 

83.7138 83.9258 

-3.1395 

-3.1355 -2.7861 

0.5333 

0.5345 0.5265 

-0.1179 

-0.1182 -0.1189 

-0.0079 

-0.0079 -0.0070 

6.5061 

6.5066 6.5177 

0.4452 

0.4452 0.4411 

0.0124 

0.0124 0.0104 

-0.2135 

-0.2136 -0.2132 

Excited states· 

0.5832 

0.6298 0.6225 

0.4286 

0.3390 0.3532 

0.1436 

0.1964 0.1882 

82.8990 

82.7473 82.7709 

-2.4596 

- 2 .4949 - 2 .4894 

0.4037 

0.3861 0.3888 

-0.0769 

-0.0813 -0.0806 

-0.0160 

-0.0169 -0.0168 

6.4399 

6.4340 6.4349 

0.4220 

0.4254 0.4249 

0.0174 

0.0188 0.0186 

-0.1834 

-0.1850 -0.1847 

3.4569 

3.4115 3.4386 

-2.7966 

-2.7767 -2.7875 

-0.2344 

-0.1847 -0.2237 

84.1396 

83.9680 84.1162 

-1.0676 

-1. 1034 - 1. 0963 

0.6392 

0.6036 0.6365 

-o.o~m 

-0.1017 -0.1001 

0.0131 

0.0142 0.0131 

6.5114 

6.5064 6.5105 

0.4374 

0.4388 0.4377 

-0.0113 

-0.0123 -0.0112 

-0.1852 

-0.1860 -0.1853 

• For definitions of the operators see: W. H. Flygare. J. M. Pochan. 
G. I. Kerley. T. Caves. M. Karplus. S. Aung. R. M. Pitzer. ali<I S. I. 
Cban. J. Chern. Phys. 45, 2793 (1966) and tbe text. 

b S. AunK. R. M. Pitzer. and S. I. Chan. J. Chern. Phy •. 45. 3457 (1966). 
C The upper Ilumher is the eXl-Wctation value in the ~TA. the lower two 

Ih~ expectation valll~" in the '1'11;\. 
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but also we can a~sess the differences between the 
elect ronic density in singlet and t riptet states. Further, 
by comparing the STA and 'fDA we can determine 
Ihe signiJicance of any ''t:ore relaxation." A word of 
caution though: this is not the saJlle relaxation elTeet 
which wflldd be ol,sl"rved in an LeAO -MOSCF calcu­
latifJl) ()I\ the excited stat(~, for the relaxation ohserved 
here al"" ('ontains sOllie of the effects of electron COITe­
lation. We sh:dl lIot be concerned with the absolute 
lIlagnitudes of the various quantities, since the agree­
ment Iwtween ~nlllr1d st ate expectation values and 
experiment was poor, but sh:dl attach some significance 
only to differences. Anyway, the wavefunctions ob­
tained here describe vertical excitations, so care must be 
taken when comparing quantities which strongly depend 
on the internuclear distance with experiment. 

In Table XI we list the values of various one-electron 
properties for the ground and excited states. The sym­
bols have the following meaning8: 

qzz(O) = (3z02-r02)jr05, 

qvu(O) = (3yo2- r02)jro5, 

ro coslio = Zo, 

ru2, 

f.(O) =zo/r0 3, 

f.(c) =zJrc
3

, 

j.,(lI) =all/rll3, 

ffJ(H) =/311/rH\ 

l/rH, 

qaa(D) = (3a,}-rD2)/rD5, 

gafJ(D) =3/3DaD/rD6, 

qfJfJ(D) = (3/3DL rD2)/rD6. ( 13) 

The a axis is along the elI axis and the /3 axis is perpen­
dicular to a in the plane of the molecule. 

Examination of the table shows that for the AI states 
the triplet state is well represented in the STA while 
the singlet varies considerably. Thus, relaxation is 
significant for the 'AI state but negligible for the 3Al 
st ate, a fact which was predicted earlier from a consider­
ation pf the expansion coenicients, !?(ma) , alone. 

For the .12 states the singlet state relaxes less than 
the trIplet, hut in both cases this change is appreciable. 
Of special interest is the dipole moment of formaldehyde 
ill the lA2 state for this has recently been measured by 
Freemall ;lnd KlelllpererY They found that the dipole 
nlOlllent changes by 0.7 D upon excitation. We predict 
OJ) and o.s D in the STA and TDA, respectively.'4 
Thus, in t his case the effect of core relaxation is slllall 
and of no particular importance. 

For the Bl states the amount of relaxation is again 
larger for the triplet state than for the singlet, but in 
both Cases it is relatively small and resembles that for 
the Az states 

As in ethylene (lBa,,) the Rf'A treatment of the 3.!h 
state of formaldehyde is unstahle. Again this instability 
is caused by the large I n W*'*) component in the true 
ground state. We shall not disclIss this further at present 
for it will be treated in later papers. 

IV. CONCLUSIONS 

('ollsidering the in:ldeqll:lcy of the wavdullctions 
which have been elliployed, i.t., unopt illlizul, Illinimum 
basis set LCAO l\1() S( 'F wan'funel ions, the resuits of 
the ethylene:! and formaldehyde calculations demon­
strate the utility of an C\citation operator approach to 
the excited-state probltm. To fully assess the capa­
bilities and limitations of the method, we now need to 
do calculations on molecules for which accurate 
lIartree-Fock wavcfunctions are known, e.g., diatomic19 

or simple linear polyatomic molecules. tU However, be­
cause of the interest in and importance of ethylene and 
formaldehyde, calculations have begun on these mole­
cules using waveiul1ctions, constructed from large 
Gaussian basis sets, which arc considered to be near the 
(sP) limit.2l These calculations, while not at the 
lIartree-Fock level, should provide an adequate repre­
sentation of the low-lying valence excited states of 
these molecules. 

Examination of the ethylene3 and formaldehyde re­
sults shows that transitions denoted as j\,~ V, T have 
a definite and predictable behavior: the triplet state is 
well represented by the STA while the singlet state, 
becallse of the large relaxation eITed, is not. It is quite 
possible that J\'~Q transitions will also follow the 
pattern observed here. If such trends persist, this 
could provide a means of empiricizing calculations, such 
as those presented here, for molecules beyond the reach 
of SCF techniques. This possibility argues for calcula­
tions on other large molecules, such as propene and 
acetaldehyde. 
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Table I. A minimum Slater basis set representation of the n-electron 
a 

system of ethylene. The a-core is the LCAO-MO SCF core for the 

ground state. All integrals are in atomic units. 

Orbitals 

n = 0.6286(2p ) + 0.6286( 2Pb) a 

7T1t = 0.8251(2p ) O. 8251( ?Pb) 
a 

Required integrals 

£ = -0.4047 £ .'. = 0.2056 
n no> 

J = 0.4873 
nn 

J 
7T~'; rr-J: = 0.5007 

J 
'ITTT~tt = 0.4867 K 

1T1T~': 
= 0.1584 

X n 1[ ~': 
= 1.32 

a" uee reference 34. 
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Table II. Pi-electron calculations on the lowest 1,3B (nn*) excited 
3u 

states of ethylene. Excitation energies and ionization potentials are 

given in electron volts (evs). 

Parr and 
.b a 

duzinaga c Expt'l Crawford Mural 

3 
E( B

3u
,T) 3.10 4.60 4.45 4.6d 

E(lB V) 
3u' 11. 50 11. 20 7.28 7.6

e 

f( l
B3u

) "'0.3 
e 

1. P. 11.90 8.80 8.52 10.52
e 

a 
Reference 59. 

b 
Reference 60. 

c 
Reference 61. 

d 
Reference 57. 

e 
Reference 58. 
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Tuble VII. Electronic energies, total energies and orbital energies 

from the LCAO-MO scr calculations on ethylene. All qUuntities are in 

d Lamie uni t~;. a 

basis set 

Electronic energy 
Total energy 

t:{la
1g

) 

t:{lb
3u

) 

t:{2a
lg

) 

t:{ 2b
3u

) 

t:{lb
2u

) 

E(3a
1g

) 

t:{lb
lg

) 

t:{ lb
lu

) , l1T 

t:{ 2b
lu

), 21T 

E(1b
2g

) , 1 n1; 

E:( 3b
lu

) , 31T 

E:( 2b
2g

) , 21T 1; 

E:(3b
2g

) , 31T;'; 

E:(4b1) , 41T 

E:(4b
2g

), 41T 2'; 

d3b
3u

) 

E:(4a
lg

) 

d2b
2u

) 

E:(4b3) 

d 5a
1g

) 

d3b 2) 

E ( 2b ) 
19 

d 5b
lu

) , 51T 

d3b
lg

) 

[ 4s2p/2s ] + I«3p C) 
z 

-111.3936 
-78.0111 

-11. 2420 

-11.2405 

-1. 0397 

-0.7969 

-0.6565 

-0.5812 

-0.5187 

-0.3731 

0.0088 

0.0122 

0.0392 

0.0456 

0.1141 

0.1503 

0.2124 

0.2607 

0.2862 

0.3838 

0.4004 

0.4177 

0.4351 

0.4545 

0.6580 

0.7048 

l 4s2p/2s ] 

-111.3934 
-78.0109 

-11.2411 

-11.2395 

-1.0387 

-0.7961 

-0.6555 

-0.5802 

-0.5148 

-0.3726 

0.4918 

0.1440 

0.6132 

0.2611 

0.2868 

0.3844 

0.4010 

0.4182 

0.4358 

0.4549 

0.7053 
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Table VII. 'continued' 

£( 5b 2g ), 5'JT~'~ 0.7150 

d6a
1g

) 0.7325 0.7333 

d5b3) 0.8911 0.8922 

£(6b
3u

) 1.1294 1.1302 

e:(7a
1g

) 1. 3051 1. 3058 

e:(4b
2u

) 1.4115 1.4122 

e:(7b
3u

) 1.4406 1.4413 

e:( 4b
1g

) 1.7320 1. 7326 

a 
1 a.u. of energy = 27.2107 e.v. 
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Table VIII. The one-electron properties of ethylene: the ground 

state in the [4s2p/2s], [4s2p/2s] + R( 3p e) and [4s3p/2s J 
z 

Gaussian basis sets. All expectation values are in atomic units. 

Basis set [ 4s2p/2s ] [ 4s2p/2s ] + R(3p e) [ 4s3p/2s ] 
z 

P . a,b ropertl.es 

< 2" 49.5867 49.6160 49.6435 x / eM 

< y2) eM 21.2688 21. 2965 21. 3057 

< z2) eM 12.0636 12.1718 12.0172 

< r2) eM 82.9191 83.0843 82.9664 

o (eM) 
xx 1.3859 1.4246 1. 3244 

o (eM) 1. 6025 1. 6435 1. 5708 
yy 

o (eM) -2.9884 -3.0681 -2.8952 
zz 

< l/rH) 6.2531 6.2522 6.2538 

< l/re ) 18.5744 18.5737 18.5801 

E (Hl) 
x -0.0426 -0.0427 -0.0428 

E (Hl) 
y 0.0672 0.0672 0.0685 

E (e) 
x -0.0062 -0.0065 -0.0126 

q (H) 
aa -0.3749 -0.3747 -0.3738 

QSs(H) 0.1805 0.1805 0.1791 

q (H) zz 0.1944 0.1942 0.1947 

~ 00 22' 00 23' 0
0
18' 

q (e) 
xx 0.1424 0.1420 0.2359 

~y(e) 0.1461 0.1472 0.1293 

q (e) 
zz -0.2885 -0.2893 -0.3652 

< o(r-H) 5 0.4274 0.4274 0.4285 < o(r-e) 119.5868 119.5879 119.5715 

a 
See the text for a definition of the operators. 

b 
The following abbreviations have been adopted eM = center of mass, 
Hl = hydrogen 1 and e = carbon 
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Table IX. The lowest singlet and triplet (nn*) states of ethylene in 

the ISTA, TDA and RPA: excitation energies, transition moments and 

oscillator strengths. 

Basis set: 

ISTA 

Singlet state: V(lB3u ) 

flE(ev) 9.29 

D (a.u.) x -2.03 

f 0.94 

Triplet state: T(3B3) 

flE(ev) 3.47 

[ 4s2p/2s ] 

TDA 

8.19 

-1. 79 

0.65 

3.36 

RPA 

7.71 

-1. 59 

0.48 
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Table X. 1 The lowest singlet (TITI*) state of ethylene, V( B3u)' in the 

ISTA, TDA and RPA: excitation energies, transition moments, oscillator 

strengths and particle-hole amplitudes. 

t.E(ev) 
D (a.u.) 

x f 

(10,8) 
(12,8) 
(13,8) 
(15,8) 
(25,8) 

(18,7) 
(21,7) 
(30,7) 

(16,6 ) 
(19,6) 
(27,6) 
(28,6) 
(31,6) 

(22,5) 
(24,5) 
(32,5) 

(17,4) 
(20,4) 
<25,4) 
(29,4) 

(16,3) 
(19,3) 
(27,3) 
(28,3) 
(31,3) 

Basis set: 

ISTA 

8.34 
-1.42 

0.41 

g(ma.) 

-0.250468 
0.691152 
0.676696 

-0.023941 
0.032926 

[ 4s2p/2s] + R( 3p C) 
z 

TDA 

7.82 
-1.67 
0.54 

g(ma.) 

-0.105781 
0.448533 
0.832210 

-0.248508 
-0.011189 

-0.035701 
0.084469 

-0.006859 

0.030111 
0.037379 

-0.101015 
0.022247 
0.011744 

0.055212 
-0.028736 
-0.004129 

-0.052889 
-0.030509 
-0.029806 

0.010178 

-0.039046 
0.005008 
0.021589 

-0.030203 
-0.007168 

RPA 

7.46 
-1.55 
0.44 

g(ma.) 

-0.071451 
0.364520 
0.856938 

-0.339084 
-0.036234 

-0.033288 
0.068970 

-0.006124 

0.028121 
0.032260 

-0.087859 
0.020329 
0.010409 

0.044927 
-0.022554 
-0.003072 

-0.044262 
-0.024493 
-0.024493 

0.007933 

-0.031772 
0.001645 
0.017119 

-0.025572 
-0.007121 

h(ma.) 

0.000806 
-0.008731 
-0.051499 
0.047914 
0.011959 

-0.017113 
0.027848 

-0.004053 

0.016077 
0.009365 

-0.055767 
0.013639 
0.005248 

0.019576 
-0.013156 
-0.002580 

-0.017811 
-0.006061 
-0.021823 

0.005220 

-0.017716 
0.006630 
0.020281 

-0.015391 
-0.002380 

a 
The numerical designation refers to the position of the orbital 
in Table VII. 
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Table XI. The lowest triplet (nn*) state of ethylene, T(3B3U )' in the 

ISTA and TDA: excitation energies and particle-hole amplitudes. 

f'.E(ev) 

(rna) 
a 

(10,8) 
(12,8) 
(13,8) 
(15,8) 
(25,8) 

(18,7) 
(21,7) 
(30,7) 

(16,6 ) 
(19,6) 
(27,6) 
(28,6) 
(31,6) 

(22,5) 
( 24 ,5) 
(32,5) 

(17,4) 
(20,4) 
(26,4) 
(29,4) 

(16,3) 
(19,3) 
(27,3) 
(28,3) 
(31,3) 

a 
The numerical 
in Table VII. 

Basis set: [ 4s2p/2s J + R( 3p C) z 

ISTA TDA 

3.48 3.37 

g(ma) g(ma) 

-0.016665 -0.016326 
0.154796 0.152582 
0.767107 0.762290 

-0.601313 -0.602733 
-0.160405 -0.163701 

-0.016335 
-0.010337 
-0.0064-39 

-0.006975 
-0.011952 

0.020961 
-0.007095 
-0.006355 

-0.006861 
0.014544 
0.006472 

0.027613 
0.012879 

-0.005034 
-0.012764 

0.025164 
-0.028212 
-0.032879 

0.010230 
-0.010327 

designation refers to the position of the orbital 
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Table XII. Orbital expansion coefficients for the n*-orbital from 

the ISTA or frozen core wavefunctions. 

a 

Basis set: 

Orbital 

Basis functions a 

2p C1 
z 

2p'C1 
z 

2p"C1 
z 

2p"'C1 z 
2pivC1 

z 

2p C2 
z 

2p;C2 

2p"C2 
z 

2p"'C2 
z 

2pivC2 
z 

See Table IV 

[4s2p/2s] + R(3p C) 
z 

0.196536 

0.317532 

0.930933 

1.608963 

0.042753 

-0.196536 

-0.317532 

-0.930933 

1.608963 

0.042753 

3 ,'. n' 

0.564740 

0.528518 

0.066389 

0.041982 

-0.026140 

-0.564740 

-0.528518 

-0.066389 

-0.041982 

0.026140 
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Table XIII. A comparison of the singlet and triplet TI*-orbitals 

from the ISTA or frozen core wavefunction and the ground state TI­

orbital. 

Basis set: 

Ground state 

[4s2p/2s] + R(3p C) 
z 

Excited states 
Propertya 1T 3 TI)', 1 .'. TI" 

<x2 >CM 2.1847 3.8852 27.2726 (6.84b9)b 

</>CM 0.9089 0.9265 8.7630 (1.4006 ) 
. 2 "- (4.2019) <z / CM 2.7268 2.7795 26.2889 

< l/r > 0.5303 
C 

0.5287 0.2164 (0.4355) 

a 

b 

E: -0.3731 -0.2454 -0.0665 (-0.0311) 

C11 refers to the center of mass of ethylene and C refers ·to 
carbon 1. 

The values ~n parentheses are for the valence basis set. 



T
a
b

le
 

X
IV

. 
T

h
e 

n
a
tu

ra
l 

o
rD

it
a
ls

 
a
n

d
 
n

a
tu

ra
l 

o
rb

it
a
l 

o
c
c
u

p
a
ti

o
n

 
n

u
m

b
er

s 
fo

r 
th

e
 

lo
w

e
st

 
(n

n
*

) 

s
in

g
le

t 
s
ta

te
 
o

f 
e
th

y
le

n
e
, 

V
(l

B
3u

).
 

B
a
si

s 
s
e
t:

 
[ 

4
s2

p
/2

s 
] 

+
 R

(3
p

 
C

) 
z 

O
rb

it
a
l 

la
lg

 
lb

3
u

 
2

a
lg

 
2

b
3

u
 

lb
2

u
 

3
a
lg

 
lb

l 
lb

lu
(7

T
) 

g 
O

cc
. 

n
o

. 
2

.0
0

0
0

0
 

2
.0

0
0

0
0

 
1

.9
9

8
3

5
 

1
.9

9
5

2
7

 
1

.9
9

6
1

0
 

1
.9

8
5

5
1

 
1

.9
9

1
5

3
 

1
.0

3
3

1
8

 

F
u

n
c
ti

o
n

 

ls
H

l 
0

.0
0

0
3

4
 

0
.0

0
0

4
1

 
0

.1
2

2
0

8
 

0
.1

4
8

1
9

 
0

.1
5

3
9

2
 

0
.0

8
5

7
0

 
0

.1
9

2
3

9
 

0
.0

 

ls
'H

l 
0

.0
0

0
0

5
 

0
.0

0
0

0
0

 
0

.0
4

5
8

3
 

0
.0

6
8

9
4

 
0

.0
9

8
1

7
 

0
.0

8
7

0
0

 
0

.1
4

2
5

2
 

0
.0

 

ls
H

2
 

0
.0

0
0

3
4

 
0

.0
0

0
4

1
 

0
.1

2
2

0
8

 
0

.1
4

8
1

9
 

-0
.1

5
3

9
2

 
0

.0
8

5
7

0
 

-0
.1

9
2

3
9

 
0

.0
 

ls
'H

2
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

4
5

8
3

 
0

.0
6

8
9

4
 

-0
.0

9
8

1
7

 
0

.0
8

7
0

0
 

-0
.1

4
2

5
2

 
0

.0
 

~
 

+
 

ls
H

3
 

0
.0

0
0

3
4

 
-0

.0
0

0
4

1
 

0
.1

2
2

0
8

 
-0

.1
4

8
1

9
 

0
.1

5
3

9
2

 
0

.0
8

5
7

0
 

-0
.1

9
2

3
9

 
0

.0
 

lD
 

ls
'H

3
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

4
5

8
3

 
-0

.0
6

8
9

4
 

0
.0

9
8

1
7

 
0

.0
8

7
0

0
 

-0
.1

4
2

5
2

 
0

.0
 

ls
H

4
 

0
.0

0
0

3
4

 
-0

.0
0

0
4

1
 

0
.1

2
2

0
8

 
-0

.1
4

8
1

9
 

-0
.1

5
3

9
2

 
0

.0
8

5
7

0
 

o 
·
"
,
~
~
c
 

.1
.'

:j
L

.j
 .....

 
0

.0
 

ls
'H

4
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

4
5

8
3

 
-0

.0
6

8
9

4
 

-0
.0

9
8

1
7

 
0

.0
8

7
0

0
 

0
.1

4
2

5
2

 
0

.0
 

ls
C

l 
0

.4
2

4
8

1
 

0
.4

2
4

9
8

 
-0

.0
8

9
2

2
 

-0
.0

7
5

2
0

 
0

.0
 

0
.0

3
6

8
2

 
0

.0
 

0
.0

 

ls
'C

l 
0

.3
0

9
2

2
 

0
.3

0
9

4
6

 
-0

.1
1

9
9

2
 

-0
.1

0
2

2
3

 
0

.0
 

0
.0

4
9

9
4

 
0

.0
 

0
.0

 

2
sC

l 
0

.0
0

3
5

4
 

0
.0

0
3

0
9

 
0

.3
2

6
2

3
 

0
.2

8
1

3
0

 
0

.0
 

-0
.1

3
7

3
8

 
0

.0
 

0
.0

 

2
s
'C

l 
-0

.0
0

0
2

2
 

-0
.0

0
1

1
8

 
0

.2
0

5
4

6
 

0
.2

4
5

7
6

 
0

.0
 

-0
.0

4
2

3
1

 
0

.0
 

0
.0

 

2
p

 
C

l 
0

.0
0

0
4

9
 

-0
.0

0
0

2
6

 
-0

.0
4

2
2

2
 

-0
.1

9
2

8
4

 
0

.0
 

-0
.4

9
2

5
7

 
0

.0
 

0
.0

 
x 

2
f;

'C
l 

-0
.0

0
0

1
2

 
-0

.0
0

0
3

7
 

-0
.0

3
5

1
7

 
-0

.0
1

0
4

8
 

0
.0

 
-0

.0
5

6
6

9
 

0
.0

 
0

.0
 

x 
2

p
 

C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.3

8
0

2
8

 
0

.0
 

0
.3

7
7

0
8

 
0

.0
 

Y
 

2
p

'C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

5
8

9
7

 
0

.0
 

0
.1

2
5

8
8

 
0

.0
 

Y
 



T
a
b

le
 

X
IV

. 
'c

o
n

ti
n

u
e
d

' 

O
rb

it
a
l 

la
lg

 
lb

3
u

 
2

a
lg

 
2

b
3

u
 

lb
2

u
 

3
a
lg

 
lb

lg
 

lb
lu

(l
T

) 

2
p

 
C

l 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.4
6

1
2

5
 

2
p

'C
l 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.2

1
1

0
2

 

2
p

 "
C

l 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
0

8
0

9
 

2
p

' 
"
C

1
 

0
.0

 
0

.0
 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

0
4

2
2

 

2
p

iv
 C

l 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
-0

.0
0

1
5

6
 

ls
C

2
 

0
.4

2
4

8
1

 
-0

.4
2

4
9

8
 

-0
.0

8
9

2
2

 
0

.0
7

5
2

0
 

0
.0

 
0

.0
3

6
8

2
 

0
.0

 
0

.0
 

ls
'C

2
 

0
.3

0
9

2
2

 
-0

.3
0

9
4

6
 

-0
.1

1
9

9
2

 
0

.1
0

2
2

3
 

0
.0

 
0

.0
4

9
9

4
 

0
.0

 
0

.0
 

I-
-"

 
U

1 
0 

2
sC

2
 

0
.0

0
3

5
4

 
-0

.0
0

3
0

9
 

0
.3

2
6

2
3

 
-0

.2
8

1
3

0
 

0
.0

 
-0

.1
3

7
3

8
 

0
.0

 
0

.0
 

2
s'

C
2

 
-0

.0
0

0
2

2
 

0
.0

0
1

1
8

 
0

.2
0

5
4

6
 

-0
.2

4
5

7
6

 
0

.0
 

-0
.0

4
2

3
1

 
0

.0
 

0
.0

 

2
p

 
C

2 
-0

.0
0

0
4

9
 

-0
.0

0
0

2
6

 
0

.0
4

2
2

2
 

x 
-0

.1
9

2
8

4
 

0
.0

 
0

.4
9

2
5

7
 

0
.0

 
0

.0
 

2
p

'C
2

 
0

.0
0

0
1

2
 

-0
.0

0
0

3
7

 
0

.0
3

5
1

7
 

x 
-0

.0
1

0
4

8
 

0
.0

 
0

.0
5

6
6

9
 

0
.0

 
0

.0
 

2
p

 
C

2 
0

.0
 

0
.0

 
0

.0
 

Y
 

0
.0

 
0

.3
8

0
2

8
 

0
.0

 
-0

.3
7

7
0

8
 

0
.0

 

2
p

'C
2

 
0

.0
 

0
.0

 
0

.0
 

Y
 

0
.0

 
0

.0
5

8
9

7
 

0
.0

 
-0

.1
2

5
8

8
 

0
.0

 

2
p

 
C

2 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.4
6

1
2

5
 

2
p

'C
2

 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.2
1

1
0

2
 

2
p

"
 C

2 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
0

8
0

9
 

2
p

' 
, 

'C
2

 
0

.0
 

0
.0

 
0

.0
 

z 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
0

4
2

2
 

2
p

iv
 

C
2 

0
.0

 
0

.0
 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

-0
.0

0
1

5
6

 



T
a
b

le
 

X
IV

. 
'c

o
n

ti
n

u
e
d

' 

O
rb

it
a
l 

lb
 

( 7
T

:';
) 

3
b

3
u

 
2

b
2

u
 

4
a

1
o-

2
b

1
g

 
4

b
3

u
 

2
g

 
0 

O
cc

. 
n

o
. 

0
.9

6
6

8
1

 
0

.0
1

4
4

8
 

0
.0

0
8

4
6

 
0

.0
0

4
7

2
 

0
.0

0
3

8
9

 
0

.0
0

1
6

4
 

F
u

n
c
ti

o
n

 

ls
H

l 
0

.0
 

0
.0

0
2

5
2

 
-0

.1
5

8
7

3
 

-0
.0

0
6

2
7

 
0

.0
0

3
5

1
 

0
.0

3
3

3
0

 

ls
'H

l 
0

.0
 

-0
.2

8
8

9
9

 
-0

.6
7

5
4

9
 

0
.6

4
2

9
9

 
0

.0
7

0
5

6
 

-0
.3

9
4

2
6

 

ls
H

2
 

0
.0

 
0

.0
0

2
5

2
 

0
.1

5
8

7
3

 
-0

.0
0

6
2

7
 

-0
.0

0
3

5
1

 
0

.0
3

3
3

0
 

ls
'H

2
 

0
.0

 
-0

.2
8

8
9

9
 

0
.6

7
5

4
9

 
0

.6
4

2
9

9
 

-0
.0

7
0

5
6

 
-0

.3
9

4
2

6
 

ls
H

3
 

0
.0

 
-0

.0
0

2
5

2
 

-0
.1

5
8

7
3

 
-0

.0
0

6
2

7
 

-0
.0

0
3

5
1

 
-0

.0
3

3
3

0
 

ls
'H

3
 

0
.0

 
0

.2
8

8
9

9
 

-0
.6

7
5

4
9

 
0

.6
4

2
9

9
 

-0
.0

7
0

5
6

 
0

.3
9

4
2

6
 

I-
-"

 
c..

,., 
I--

" 

ls
H

4
 

0
.0

 
-0

.0
0

2
5

2
 

0
.1

5
8

7
3

 
-0

.0
0

6
2

7
 

0
.0

0
3

5
1

 
-0

.0
3

3
3

0
 

ls
'H

4
 

0
.0

 
0

.2
8

8
9

9
 

0
.6

7
5

4
9

 
0

.6
4

2
9

9
 

0
.0

7
0

5
6

 
0

.3
9

4
2

6
 

ls
C

1
 

0
.0

 
0

.0
6

9
9

0
 

0
.0

 
0

.0
7

9
7

6
 

0
.0

 
-0

.0
9

5
2

4
 

ls
'C

l 
0

.0
 

0
.1

0
5

6
0

 
0

.0
 

0
.1

2
7

3
4

 
0

.0
 

-0
.1

5
2

4
4

 

2
sC

1
 

0
.0

 
-0

.4
7

3
8

2
 

0
.0

 
-0

.7
4

7
4

7
 

0
.0

 
0

.9
8

0
9

1
 

2
s
'C

l 
0

.0
 

-0
.8

3
4

4
7

 
0

.0
 

-0
.3

5
2

2
8

 
0

.0
 

-0
.9

0
2

6
6

 

2 
(1

 
P

x 
0

.0
 

-0
.9

6
6

5
4

 
0

.0
 

0
.3

1
8

2
9

 
0

.0
 

-0
.3

9
0

7
0

 

2
p

'C
1

 
x 

0
.0

 
-0

.6
7

3
9

3
 

0
.0

 
0

.2
4

0
9

1
 

0
.0

 
-0

.1
3

5
4

8
 

2
p

 
C

l 
0

.0
 

0
.0

 
-0

.3
5

4
6

8
 

0
.0

 
0

.7
2

7
3

7
 

0
.0

 
Y

 
2

p
'C

1
 

0
.0

 
0

.0
 

1
.1

9
2

3
7

 
0

.0
 

-1
.4

2
2

5
1

 
0

.0
 

Y
 



T
a
b

le
 

X
IV

. 
'c

o
n

ti
n

u
e
d

' 

O
rb

it
a
l 

1
b

 
( 7

[1
' )

 
2

g
 

3b
3

u
 

2
b

2
u

 
4

a
1

g
 

2
b

1
g

 
4

b
3u

 

2
p

 
C

1 
0

.3
5

3
5

8
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

2
p

'C
1

 
0

.4
8

7
5

5
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

2
p

' 
'C

1
 

0
.8

0
1

9
2

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
" 

'C
1

 
0

.6
2

0
6

6
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

2
p

iv
 

C
1 

-0
.0

7
9

6
6

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
1

sC
2

 
0

.0
 

-0
.0

6
9

9
0

 
0

.0
 

0
.0

7
9

7
6

 
0

.0
 

0
.0

9
5

2
4

 

1
s'

C
2

 
0

.0
 

-0
.1

0
5

6
0

 
0

.0
 

0
.1

2
7

3
4

 
0

.0
 

0
.1

5
2

4
4

 
.....

 
U

1 
IV

 
2

sC
2

 
0

.0
 

0
.4

7
3

8
2

 
0

.0
 

-0
.7

4
7

4
7

 
0

.0
 

-0
.9

8
0

9
1

 

2
s'

C
2

 
0

.0
 

0
.8

3
4

4
7

 
0

.0
 

-0
.3

5
2

2
8

 
0

.0
 

0
.9

0
2

6
6

 

2
p

 
C

2 
0

.0
 

-0
.9

6
6

5
4

 
0

.0
 

-0
.3

1
8

2
9

 
0

.0
 

-0
.3

9
0

7
0

 
x 

2
p

'C
2

 
0

.0
 

-0
.6

7
3

9
3

 
0

.0
 

-0
.2

4
0

9
1

 
0

.0
 

-0
.1

3
5

4
8

 
x 

2
p

 
C

2 
0

.0
 

0
.0

 
-0

.3
5

4
6

8
 

0
.0

 
-0

.7
2

7
3

7
 

0
.0

 
Y

 
2

p
'C

2
 

0
.0

 
0

.0
 

1
.1

9
2

3
7

 
0

.0
 

1
. 

4
2

2
5

1
 

0
.0

 
Y

 
2

p
 

C
2 

-0
.3

5
3

5
8

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
'C

2
 

-0
.4

8
7

5
5

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
' 

'C
2

 
-0

.8
0

1
9

2
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

2
p

" 
'C

2
 

-0
.6

2
0

6
6

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
iv

 
C

2 
0

.0
7

9
6

6
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 



T
ab

le
 

X
V

. 
T

he
 

n
a
tu

ra
l 

o
rb

it
a
ls

 
an

d
 
n

a
tu

ra
l 

o
rb

it
a
l 

o
c
c
u

p
a
ti

o
n

 n
u

m
b

er
s 

fo
r 

th
e
 

lO
K

es
t 

(i
T

';,
.:

':)
 

tr
ip

le
t 

s
ta

te
, 

T
(3

B3
U

)
' 

o
f 

e
th

y
le

n
e
. 

B
a
si

s 
s
e
t:

 
[4

s2
p

/2
sJ

 
+

 R
(3

p 
C

) 
z 

O
rb

it
a
l 

la
1g

 
lb

3
u

 
2

a 1
g

 
2b

3
u

 
lb

2u
 

3
a 1

g
 

lb
1g

 
lb

1u
(T

I)
 

O
cc

. 
n

o
. 

2
.0

0
0

0
0

 
2

.0
0

0
0

0
 

1
. 9

97
13

 
1

. 9
98

87
 

1
. 9

99
69

 
1

. 9
99

40
 

1
.9

9
9

5
7

 
1

. 0
05

27
 

F
u

n
c
ti

o
n

 

ls
H

l 
0

.0
0

0
3

4
 

0
.0

0
0

4
1

 
-0

.0
5

5
9

3
 

0
.1

4
8

1
9

 
0

.1
5

3
9

2
 

0
.1

3
8

2
7

 
0

.1
9

2
3

9
 

0
.0

 

ls
'H

l 
0

.0
0

0
0

5
 

0
.0

0
0

0
0

 
0

.0
0

8
7

9
 

0
.0

6
8

9
4

 
0

.0
9

8
1

7
 

0
.0

9
7

9
5

 
0

.1
4

2
5

2
 

0
.0

 

ls
H

2
 

0
.0

0
0

3
4

 
0

.0
0

0
4

1
 

-0
.0

5
5

9
3

 
0

.1
4

8
1

9
 

-0
.1

5
3

9
2

 
0

.1
3

8
2

7
 

-0
.1

9
2

3
9

 
0

.0
 

ls
'H

2
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

0
8

7
9

 
0

.0
6

8
9

4
 

-0
.0

9
8

1
7

 
0

.0
9

7
9

5
 

-0
.1

4
2

5
2

 
0

.0
 

f-
" 

ls
H

3
 

0
.0

0
0

3
4

 
-0

.0
0

0
4

1
 

-0
.0

5
5

9
3

 
0

.1
4

8
1

9
 

0
.1

5
3

9
2

 
0

.1
3

8
2

7
 

-0
.1

9
2

3
9

 
o 

() 
U

'1 w
 

ls
'H

3
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

0
8

7
9

 
0

.0
6

8
9

4
 

0
.0

9
8

1
7

 
0

.0
9

7
9

5
 

-0
.1

4
2

5
2

 
0

.0
 

ls
H

4
 

0
.0

0
0

3
4

 
-0

.0
0

0
4

1
 

-0
.0

5
5

9
3

 
0

.1
4

8
1

9
 

-0
.1

5
3

9
2

 
0

.1
3

8
2

7
 

0
.1

9
2

3
9

 
0

.0
 

ls
'H

4
 

0
.0

0
0

0
5

 
0

.0
0

0
0

0
 

0
.0

0
8

7
9

 
0

.0
6

8
9

4
 

-0
.0

9
8

1
7

 
0

.0
9

7
9

5
 

0
.1

4
2

5
2

 
C

.O
 

ls
C

l 
0

.4
2

4
8

1
 

0
.4

2
4

9
8

 
0

.0
9

4
9

1
 

-0
.0

7
5

2
0

 
0

.0
 

-0
.0

1
7

5
6

 
0

.0
 

.)
.0

 

ls
'C

l 
0

.3
0

9
2

1
 

0
.3

0
9

4
6

 
0

.1
2

7
8

1
 

-0
.1

0
2

2
3

 
0

.0
 

-0
.0

2
3

2
2

 
0

.0
 

0
.0

 

2
sC

l 
0

.0
0

3
5

4
 

0
.0

0
3

0
9

 
-0

.3
4

8
5

2
 

0
.2

8
1

3
0

 
0

.0
 

0
.0

6
1

9
0

 
0

.0
 

0
.0

 

2
s'

C
l 

-0
.0

0
0

2
2

 
-0

.0
0

1
1

8
 

-0
.1

9
5

4
8

 
0

.2
4

5
7

6
 

0
.0

 
0

.0
7

6
1

0
 

0
.0

 
0

.0
 

2p
 

C
1 

0
.0

0
0

4
9

 
-0

.0
0

0
2

6
 

-0
.2

3
2

1
6

 
-0

.1
9

2
8

4
 

0
.0

 
-0

.4
3

6
4

8
 

0
.0

 
0

.0
 

x 
2

p
'C

l 
-0

.0
0

0
1

2
 

-0
.0

0
0

3
7

 
-0

.0
0

1
2

7
 

-0
.0

1
0

4
8

 
0

.0
 

-0
.0

6
6

7
0

 
0

.0
 

0
.0

 
x 

2p
 

C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.3

8
0

2
8

 
0

.0
 

0
.3

7
7

0
8

 
0

.0
 

Y
 

2
p

'C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

5
8

9
8

 
0

.0
 

0
.1

2
5

8
8

 
0

.0
 

Y
 



T
a
b

le
 

X
V

. 
'c

o
n

ti
n

u
e
d

' 

O
rb

it
a
l 

la
lg

 
lb

3
u

 
2

a
lg

 
2b

3
u

 
lb

2
u

 
3

a
lg

 
ln

1 ... 
g 

lb
 lu

 (i
T

) 

2
p

 
C

l 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.4

6
1

2
5

 
z 

2
p

'C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.2
1

1
0

2
 

Z
 

2
p

' 
'C

l 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

0
8

0
9

 
z 

2
p

 I 
"
C

l 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

0
4

2
2

 
z 

2
p

iv
 

C
l 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
-0

.0
0

1
5

6
 

z 
ls

C
2

 
0

.4
2

4
8

1
 

-0
.4

2
4

9
8

 
0

.0
9

4
9

1
 

0
.0

7
5

2
0

 
0

.0
 

-0
.0

1
7

5
6

 
0

.0
 

0
.0

 

ls
'C

2
 

0
.3

0
9

2
1

 
-0

.3
0

9
4

6
 

0
.1

2
7

8
1

 
0

.1
0

2
2

3
 

0
.0

 
-0

.0
2

3
2

2
 

0
.0

 
0

.0
 

p (J
l 

~
 

2
sC

2
 

0
.0

0
3

5
4

 
-0

.0
0

3
0

9
 

-0
.3

4
8

5
2

 
-0

.2
8

1
3

0
 

0
.0

 
0

.0
6

1
9

0
 

0
.0

 
0

.0
 

2
s'

C
2

 
-0

.0
0

0
2

2
 

0
.0

0
1

1
8

 
-0

.1
9

5
4

8
 

-0
.2

4
5

7
6

 
0

.0
 

0
.0

7
6

1
0

 
0

.0
 

0
.0

 

2
p

 
C

2 
-0

.0
0

0
4

9
 

-0
.0

0
0

2
6

 
0

.2
3

2
1

6
 

-0
.1

9
2

8
4

 
0

.0
 

0
.4

3
6

4
8

 
0

.0
 

0
.0

 
x 

2
p

'C
2 

0
.0

0
0

1
2

 
-0

.0
0

0
3

7
 

O
. 0

0
1

2
7

 
-0

.0
1

0
4

8
 

0
.0

 
0

.0
6

6
7

0
 

0
.0

 
0

.0
 

x 
2

p
 

C
2 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.3

8
0

2
8

 
0

.0
 

-0
.3

7
7

0
8

 
0

.0
 

Y
 

2
p

'C
2 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

5
8

9
8

 
0

.0
 

-0
.1

2
5

8
8

 
0

.0
 

Y
 

2
p

 
C

2 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.4

6
1

2
5

 
z 

2
p

'C
2 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.2
1

1
0

2
 

Z
 

2
p

"
C

2
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
0

8
0

9
 

z 
2

p
 I 

"
C

2
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
0

4
2

2
 

z 
2

p
iv

 
C

2 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

-0
.0

0
1

5
6

 
z 



T
ab

le
 

X
V

. 
rc

o
n

ti
n

u
ed

r 

O
rb

it
a
l 

lb
 

( 1
f~

':
 )

 
3b

3u
 

4
a 1g

 
4b

3u
 

2b
2u

 
2b

1g
 

2g
 

O
cc

. 
n

o
. 

0
.9

9
4

7
2

 
0

.0
0

2
8

6
 

0
.0

0
1

1
2

 
0

.0
0

0
5

9
 

0
.0

0
0

4
2

 
0

.0
0

0
3

0
 

F
u

n
c
ti

o
n

 

ls
H

l 
0

.0
 

0
.2

4
4

3
8

 
0

.2
9

3
7

2
 

-0
.2

6
4

3
6

 
-0

.2
6

8
4

9
 

-0
.2

8
0

8
9

 

ls
rH

l 
0

.0
 

0
.4

8
8

7
6

 
0

.7
0

2
2

7
 

-0
.7

2
8

2
8

 
-0

.5
2

5
2

8
 

-1
.2

1
5

8
5

 

ls
H

2
 

0
.0

 
0

.2
4

4
3

8
 

0
.2

9
3

7
2

 
-0

.2
6

4
3

6
 

0
.2

6
8

4
9

 
0

.2
8

0
8

9
 

ls
rH

2
 

0
.0

 
-0

.4
8

8
7

6
 

0
.7

0
2

2
7

 
0

.7
2

8
2

8
 

-0
.5

2
5

2
8

 
1

.2
1

5
8

5
 

ls
H

3
 

0
.0

 
-0

.2
4

4
3

8
 

0
.2

9
3

7
2

 
0

.2
6

4
3

6
 

0
.2

6
8

4
9

 
-0

.2
8

0
8

9
 

ls
r H

3 
0

.0
 

-0
.4

8
8

7
6

 
0

.7
0

2
2

7
 

0
.7

2
8

2
8

 
0

.5
2

5
2

8
 

-1
.2

1
5

8
5

 
f-.

l. 
(J

1
 

(J
1

 

ls
H

4
 

0
.0

 
-0

.2
4

4
3

8
 

0
.2

9
3

7
2

 
0

.2
6

4
3

6
 

0
.2

6
8

4
9

 
-0

.2
8

0
8

9
 

ls
rH

4
 

0
.0

 
-0

.4
8

8
7

6
 

0
.7

0
2

2
7

 
0

.7
2

8
2

8
 

0
.5

2
5

2
8

 
-1

.2
1

5
8

5
 

ls
C

l 
0

.0
 

0
.0

9
1

1
6

 
0

.0
5

4
4

4
 

0
.0

1
6

0
3

 
0

.0
 

0
.0

 

ls
rC

l 
0

.0
 

0
.1

3
1

5
2

 
0

.0
7

7
7

8
 

0
.0

3
1

1
8

 
0

.0
 

0
.0

 

2
sC

l 
0

.0
 

-0
.4

0
6

5
8

 
-0

.2
5

2
0

1
 

-0
.3

4
8

2
3

 
0

.0
 

0
.0

 

2
sr

C
1

 
0

.0
 

-2
.1

9
6

5
7

 
-1

.1
1

1
3

2
 

1
.0

5
8

0
2

 
0

.0
 

0
.0

 

2p
 

C
l 

x 
0

.0
 

-0
.5

8
4

6
4

 
0

.4
0

9
4

2
 

-0
.7

7
6

0
9

 
0

.0
 

0
.0

 

2p
r C

l 
x 

0
.0

 
-0

.3
1

4
4

5
 

0
.3

7
0

8
3

 
-0

.4
6

1
0

2
 

0
.0

 
0

.0
 

2p
 

C
l 

Y
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.6

8
1

5
8

 
0

.8
7

1
0

6
 

2p
r C

l 
Y

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.1
5

0
2

6
 

1
.6

8
7

7
6

 



T
a
b

le
. 

X
V

. 
'c

o
n

ti
n

u
e
d

' 

O
rb

it
a
l 

lb
 

( 7
T~

';
) 

2
g

 
3

b
3

u
 

4
a

1
g

 
4

b
3

u
 

2b
2

u
 

2b
1

g
 

2
p

 
C

l 
0

.5
6

7
9

6
 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

2
p

'C
l 

z 
0

.5
2

4
3

4
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 

2
p

 I
I
 C

l 
0

.0
5

9
4

0
 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

2
p

' 
I 

'C
l 

0
.0

4
3

0
6

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
iv

 
C

l 
-0

.0
2

6
8

7
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

ls
C

2
 

0
.0

 
-0

.0
9

1
1

6
 

0
.0

5
4

4
4

 
-0

.0
1

6
0

3
 

0
.0

 
0

.0
 

ls
'C

2
 

0
.0

 
-0

.1
3

1
5

2
 

0
.0

7
7

7
8

 
-0

.0
3

1
1

8
 

0
.0

 
0

.0
 

p (J
l 

0'>
 

2
sC

2
 

0
.0

 
0

.4
0

6
5

8
 

-0
.2

5
2

0
1

 
0

.3
4

8
2

3
 

0
.0

 
0

.0
 

2
s'

C
2

 
0

.0
 

2
.1

9
6

5
7

 
-1

.1
1

1
3

2
 

-1
.0

5
8

0
2

 
0

.0
 

0
.0

 

2
p

 
C

2 
0

.0
 

-0
.5

8
4

6
4

 
-0

.4
0

9
4

2
 

-0
.7

7
6

0
9

 
0

.0
 

0
.0

 
x 

2
p

'C
2

 
0

.0
 

-0
.3

1
4

4
5

 
x 

-0
.3

7
0

8
3

 
-0

.4
6

1
0

2
 

0
.0

 
0

.0
 

2
p

 
C

2 
0

.0
 

0
.0

 
Y

 
0

.0
 

0
.0

 
0

.6
8

1
5

8
 

-0
.8

7
1

0
6

 

2
p

'C
2

 
0

.0
 

0
.0

 
Y

 
0

.0
 

0
.0

 
0

.1
5

0
2

6
 

-1
. 

6
8

7
7

6
 

2
p

 
C

2 
-0

.5
6

7
9

6
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 

2
p

'C
2

 
-0

.5
2

4
3

4
 

0
.0

 
z 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

2
p

' 
'C

2
 

-0
.0

5
9

4
0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

r-
' 

, 
'C

2
 

-0
.0

4
3

0
6

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

z 
2

p
iv

 
C

2 
0

.0
2

6
8

7
 

0
.0

 
0

.0
 

0
.0

 
0

.0
 

0
.0

 
z 



157 

Table XVI. A comparison of the rr*-orbital from the ISTA and TDA 

wavefunctions for the lowest (rrrr1:) singlet state of ethylene. 

Basis set: [4s2p/2s] + R(3p e) 
z 

Property 
a 

ISTA TDA 

<x2
) eM 27.2726 11.7286 

< 2) 
Y eM 8.7630 3.5615 

2 <Z ) CM 26.2889 10.6845 

< 1/rC) 0.2164 0.3499 

< rr~':ISTA I rr~':TDA) 0.9206 

a 
CM refers to the center of mass of '3thylene and C to carbon 1. 
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Table XVII. The one-electron properties of ethylene in the lowest 

(nn*) singlet, V(lH3u ), and triplet, T(3B3u ), states. 

a 
Property 

E (Hl) 
x 

E (Hl) 
z 

E (Cl) 
z 

< 6( r-l-I) > 
< oCr-O) > 

Basis set: [ 4s2p/2s ] + R(3p C) 

Ground State 

lA 
19 

49.6160 

21. 2965 

12.1718 

83.0843 

6.2522 

18.5744 

- 0.0427 

0.0672 

- 0.0065 

0.4274 

119.5879 

z 

Excited States 

TDA 

74.7039 58.8365 

29.1506 23.9287 

35.7338 19.8973 

139.5883 102.6625 

6.1135 6.1843 

18.2598 18.3995 

- 0.0928 - 0.0766 

0.1144 0.0919 

- 0.0714 - 0.0664 

0.4274 0.4263 

119.5879 119.5950 

TDA 

51.3165 51.2811 

21.3141 21.3100 

12.2245 12.1891 

84.8551 84.7802 

6.2538 6.2544 

18.5721 18.5741 

- 0.0530 - 0.0529 

0.0603 0.0603 

- 0.0558 - 0.0557 

0.4274 0.4276 

119.5879 119.5865 

a 
For the definition of the operators, see the text. CM refers to the 
center of mass of ethylene, Hl to hydrogen 1 and Cl to carbon 1. 
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Table XVIII. The results of accurate open-shell Hartree-focl< 

calculations on the 1,3B3U(nn*) state of ethylene. a Except as noted, 

all quantities are in atomic units. 

t.E(ev) 

f 

dn) 

d n~'·) 

< nlx~MI n) c 

< nIY~Mln) c 

< n I z~MI n) c 

< 'I 2 1 ') c n~' y CM Tf~' 

< "'1 2 1 ."" c n" zCM Tf"/, 

Basis set: [4s3p/2s] + R(3p C) 
Z 

b 
Ground state 

1A 
19 

-78.0140 

-0.3729 

2.1540 

0.8809 

2.6428 

Excited 

V(lB3u ) 

-77.7415 

7.41 

0.15 

-0.5995 

-0.0593 

2.0294 

0.7246 

2.1739 

43.0190 

14.0272 

42.0815 

states 

T( 3B3) 

-77.8917 

3.33 

-0.5175 

-0.2419 

2.0634 

0.7559 

2.2678 

3.8468 

0.9149 

2.7446 

aT. H. Dunning, W. J. Hunt and W. A. Goddard, Chern. Phys. Letters 
(to be published). 

hT. H. Dunning and V. McKoy, unpublished results. 

c eM f re ers to the center of mass of ethylene. 
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Tdble XIX. The first Rydberg 1B3u(1T1T~") state of ethylene in the ISTA, 

TDA and RPA: excitation energies, transition moments, oscillator 

strengths and particle-hole amplitudes. 

Basis set: [ 4s2p/2s ] 

ISTA TDA 

l1E(ev) 9.12 8.94 
Dx(a. u. ) -0.85 -0.49 

f 0.16 0.05 

(rna.) 
a 

g(ma) g(ma.) 

(10,8) -0.838459 -0.705474 
(12,8) 0.190221 0.583394 
(13,8) -0.500052 -0.315662 
(15,8) 0.101730 0.234586 
(25,8) -0.020029 0.015110 

(18,7) 0.010862 
(21,7) -0.041949 
(30,7) 0.002365 

(16,6 ) -0.011783 
(19,6) -0.018717 
(27,6) 0.044911 
(28,6) -0.009093 
(31,6) -0.005236 

(22,5) -0.026218 
(24,5) 0.014947 
(32,5) 0.002128 

(17,4) 0.025406 
(20,4) 0.014194 
(26,4) 0.012995 
(29,4 ) -0.004802 

(16,3) 0.015191 
(19,3) -0.003708 
(27,3) -0.009953 
(28,3) 0.013244 
(31,3) 0.003255 

+ R(3p C) 
z 

RPA 

8.89 
-0.30 

0.02 

g(ma.) 

-0.670474 
0.658043 

-0.230962 
0.247937 
0.023331 

0.006818 
-0.028298 

0.001521 

-0.008402 
-0.013309 

0.031028 
-0.006379 
-0.003672 

-0.017393 
0.010133 
0.001370 

0.017325 
0.009141 
0.008425 

-0.003074 

0.008886 
-0.002141 
-0.006493 

0.008823 
0.002575 

h(ma.) 

-0.000201 
0.002245 
0.013689 

-0.013406 
-0.003943 

0.003529 
-0.009209 

0.001042 

-0.003795 
-0.003121 

0.017617 
-0.004109 
-0.001786 

-0.006833 
0.004903 
0.001040 

0.005552 
0.002785 
0.006985 

-0.001837 

0.005930 
-0.002073 
-0.006478 

0.005248 
0.000816 

The numerical designation refers to the position of the orbital in 
Table VII. 
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'i',ilJJ.e xx. Tile first Rydberg 3B3UCrT7Tic) state of ethylene in the 181'1\, 

'J'lJ1\ clUJ 1<1'A: uxcl ta LiOll energie~:; and part icle-hole <..ullpli tudes. 

Basis set: [4s2p/2s ] + R(3p C) 
z 

18TA TDA RPA 

6E(ev) 8.77 8.76 8.75 

(ma)a g(ma) g(ma) g(ma) h(lIla) 

(10,8) -0.561044 -0.557396 -0.547054 0.000182 
(12,8) 0.788200 0.789794 0.796049 -0.002315 
(13,8) 0.031565 0.037578 0.060549 -0.015910 
(15,8) 0.247207 0.248424 0.247188 -0.017845 
(25,8) 0.043169 0.044807 0.047575 -0.010755 

(18,7) 0.007461 0.012612 0.003273 
(21,7) 0.005943 0.008635 0.002050 
(30,7) 0.001253 0.002319 0.001340 

(16,6) -0.003709 -0.005545 -0.000694 
(19,6) 0.002776 0.005529 0.001903 
(27,6) -0.004924 -0.006477 -0.002735 
(28,6) 0.000580 0.000310 0.000069 
(31,6) 0.001230 0.002073 0.001151 

(22,5) 0.005054 0.007103 0.001859 
(24,5) -0.003674 -0.005859 -0.002442 
(32,5) -0.001345 -0.002118 -0.001202 

(17,4 ) -0.005728 -0.008509 -0.003226 
(20,4) -0.006426 -0.008639 -0.002575 
(26,4) -0.001685 -0.001717 0.000046 
(29,4) 0.002547 0.003746 0.002040 

(16,3) -0.009598 -0.011162 -0.002834 
(19,3) 0.002979 0.003912 0.002238 
(27,3) 0.004067 0.004620 0.002602 
(28,3) -0.003507 -0.004597 -0.002096 
(31,3) 0.001366 0.001612 0.000845 

a 
The numerical designation refers to the position of the orbital in 
Table VII. 
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Table XXI. The n*-natural orbital from the ISTA and TDA wavefunctions 

for the first Rydberg B3u (nn;':) state of ethylene. 

Basis functions a 

2p C1 z 
2p ' Cl z 
2p" C1 

z 
2p I I 'Cl 

z 
2piv C1 

z 

2p C2 
z 

2p ' C2 
z 

2p I 'C2 
z 

2p.I I 'C2 
z 

2piv C2 
z 

aSee Table IV. 

Basis set: [ 4s2p/2s ] + R( 3p C) 
z 

ISTA TDA 

1 .'. n" 

-0.152934 

-0.248965 

-0.661197 

1.260439 

4.661401 

0.152934 

0.248965 

0.661197 

-1.260439 

-4.661401 

-0.086796 

-0.087344 

0.379847 

2.833696 

1.276134 

0.086796 

0.087344 

-0.379847 

-2.833696 

-1.276134 

1 .'. n" 

-0.164770 

-0.233127 

-0.182901 

2.582962 

2.606347 

0.164770 

0.233127 

0.182901 

-2.582962 

-2.606347 

3 ,'. n •• 

-0.086819 

-0.084082 

0.391247 

2.829064 

1.253484 

0.086819 

0.084082 

-0.391247 

-2.829064 

-1.253484 



163 

Table XXII. The spatial extent of the n*-natural orbitals from the 

ISTA and TDA wavefunctions for the first Rydberg B3u (nn":) state of 

ethylene. 

ISTA 

< x
2

) CM
a 

138.5613 

<y2) CMa 45.9043 

< z2) CM
a 

137.7128 

< r2) CM
a 

322.1784 

< l/ r c ) 0.1187 

d n":) -0.0380 

< n1:ISTAln~~TDA) 

Basis set: [4s2p/2s] + R(3p C) 
z 

1 .'. n" 

TDA 

95.7734 

31.6333 

94.8998 

222.3065 

0.1185 

ISTA 

70.4704 

23.1947 

69.5841 

163.2492 

0.0998 

-0.0510 

3 .'. n" 

TDA 

69.9248 

23.0127 

69.0380 

161.9755 

0.1002 

0.8870 0.9999 

a CM refers to the center of mass of ethylene. 
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Table XXIII. The lowest excited 1B3g(OCHn*) state of ethylene in the 

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes. 

Basis set: [ 4s2p/2s ] 

ISTA TDA RPA 

D.E(ev) 9.50 9.45 9.41 

(m,a)a g(ma) g(ma) g(ma) h(ma) 

(10,7) 0.98909 0.98487 0.98556 -0.01372 
(12,7) -0.14731 -0.15432 -0.15575 0.OOS09 

(18,8) -0.05744 -0.05526 -0.01643 
(21,8) 0.00639 0.01060 -0.03494 
(30,8) 0.00699 0.00687 0.00555 

(9,5) -0.05323 -0.05422 0.00344 

a ror uniformity the numerical designation of the virtual orbitals 
corresponds to that for the expanded set (see Table VII). 
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Table XXIV. The lowest excited 3B3g(OCH1T;':) state of ethylene in the 

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes. 

Basis set: [ 4s2p/2s ] 

ISTA TDA RPA 

flE(ev) 8.92 8.87 8.82 

(m,a) a 
g(ma) g(ma) g(ma) h(ma) 

(10,7) 0.98745 0.98357 0.98384 0.01693 
(12,7) -0.15796 -0.16750 -0.16955 -0.00640 

(18,8) 0.02092 0.02148 -0.00529 
(21,S) -0.01817 -0.02418 -0.04035 
(30,S) -0.00490 -0.00517 0.00052 

(9,5) -0.06241 -0.06514 -0.00458 

aFar uniformity the numerical designation of the virtual orbitals 
corresponds to that for the expanded set (see Table VII). 
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Table XXV. The lowest excited lB2g(OCHn*) state of ethylene in the 

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes. 

Basis set: [ 4s2p/2s ] 

ISTA TDA RPA 

l'.E(ev) 10·22 9.96 9.84 

(m,a) 
a 

g(ma) g(ma) g(ma) h(ma) 

(10,6) 0.97863 0.95652 0.96237 -0.01358 
(12,6) -0.20561 -0.21145 -0.21697 0.00718 

(16,8) 0.14756 0.11242 0.01163 
(19,8) -0.06689 -0.06167 0.00746 
(27 ,8) -0.01092 -0.00439 -0.05863 
(28,8) 0.00712 0.00396 0.00980 
(31,8) -0.00885 -0.00881 0.00460 

(9,4) 0.02898 0.03032 -0.00633 

(10,3) 0.10088 0.10211 0.00188 
(12,3) -0.05328 -0.05374 -0.00072 

a for uniformity the numerical designation of the virtual orbitals 

corresponds to that for the expanded set (see Table VII). 



167 

Table XXVI. The lowest excited 3B2g(OCH7T;';) state of ethylene in the 

ISTA, TDA and RPA: excitation energies and particle-hole amplitudes. 

Basis set: [ 4s2p/2s ] 

ISTA TDA RPA 

l:.E(ev) 9.50 9.29 9.05 

(m,a) a 
g(ma) g(ma) g(ma) h(ma) 

(10,6 ) 0.97623 0.94838 0.94301 0.02797 
(12,6) -0.21672 -0.22399 -0.23142 -0.01153 

(16,8) 0.18318 0.20876 0.02296 
(19,8) -0.02187 -0.02903 0.01280 
(27,8) -0.04830 -0.06182 -0.07874 
(28,8) 0.02735 0.03348 0.02203 
(31,8) 0.00148 0.00136 0.00944 

(9,4) 0.02737 0.02424 -0.00827 

(10,3) 0.09286 0.10463 0.00884 
(12,3) -0.06266 -0.07054 -0.01312 

a For uniformity the numerical designation of the virtual orbitals 
corresponds to that for the expanded set (see Table VII). 
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Table XXVII. The 1f;':-natural orbitals for the lowest 1,3B3g and 

1,3B excited states of ethylene from the ISTA (or frozen core) 
2g 

Havefunctions. 

Basis functiona 

2p C1 z 
2p'C1 z 

2p C2 z 
2p'C2 

z 

a See Table IV 

Basis set: [4s2p/2s] 

Excited states 

0.51320 

0.64359 

-0.51320 

-0.64359 

3 .'. 1f" 

0.52106 

0.62966 

-0.52106 

-0.62966 

0.55566 

0.56608 

-0.55566 

-0.56608 

3 .'. 1f" 

0.56360 

0.55097 

-0.56360 

-0.55097 
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Table XXVIII. Selected one-electron properties of ethylene in the 

lowest 1,3
B 

3g 
and 

1,3
B 

2g 
states. All quantities are in atomic units. 

Basis set: [4s2p/2s] 

Ground State 
Excited States 

a b lA lB 
3

B lB 3
B 

Property , 3g 2g 2g 

< c, 19 3g 

x /CM 49.5867 49.1994 49.1407 49.0574 48.9989 
2 

<y /CM 21.2688 19.3266 19.3060 20.9758 20.9552 

< c-, 12.0636 14.5373 14.2503 14.1886 Z /CM 14.4753 
. 2" 

<r /CM 82.9191 83.0633 82.9220 84.2835 84.1427 

<1IrH1> 6.2531 6.1168 6.1179 6.1800 6.1811 

<1/rC1> 18.5744 18.6185 18.6202 18.5290 18.5339 

f (Hl) 
x -0.0426 -0.0659 -0.0652 -0.0284 -0.0277 

f (Hl) 
Y 

0.0672 0.0663 0.0655 0.0966 0.0959 

f (Cl) 
x -0.0062 0.0142 0.0147 -0.0441 -0.0436 

<6(r-Hl) 0.3974 0.3974 0.3974 0.3551 0.3551 

<6(r-CU) 119.5868 119.5868 119.5868 119.5816 119.5816 

a 
See the text for the definition of the operators. 

b 
The following abbreviations have been adopted: 
mass, Hl = hydrogen 1 and Cl = carbon. 

CM = center of 


