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ABSTRACT 

A supersonic, two -dim.ensional, turbulent free m.ixing layer 

was experim.entally investigated in the GALCIT Supersonic wind 

tunnel to clarify the Mach num.ber dependence of this flow field. The 

tests were conducted with a nom.inal Mach num.ber of 2.47 with an 

am.bient stagnation condition. Self sim.ilarities of the m.ean and tur­

bulent flow fields were established. 

The m.ean and fluctuating flow m.easurem.ents were m.ade. In 

addition, the actual entrainm.ent rate of the turbulent free m.ixing 

layer through the low speed interface was also m.easured and it was 

verified that this quantity equals the growth rate of m.om.entum. thick­

nes s. The spreading rate, the entrainm.ent rate and the m.axim.um. 

shear stress were appreciably sm.aller than the respective incom.­

pressible values. Velocity profile scaled to an incom.pressible form. 

by a linear transform.ation of the lateral coordinate. The m.axim.um. 

stream.wise velocity fluctuation was approxim.ately l/3 of the incom.­

pressible value. The flow field of turbulent free m.ixing layer was 

found to be highly dependent upon the supersonic com.pressibility 

effect. 
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I. INTRODUCTION 

In the past two and a half decades, some experimental and 

theoretical studies of compressible (supersonic) turbulent free 

mixing layers have appeared. Experimental investigations were 

confined to determine the mean velocity profiles and the rates of 

growth of the free mixing layer by direct Pitot pressure measure­

ments (Maydew and Reed (1) and Johannesen (2» or density distribu­

tions by interferometer (Gooderum, et al (3) and Bershader and Pai(4» 

in the mixing zone of jet issuing from an axisymmetric or a rec-

tangular nozzle into a quiescent air. The surveys were made in the 

mixing region from the nozzle exit to some distance downstream 

where the axisymmetric effect is not yet significant. Two dimension-

ality of the mixing layer is usually assumed in the region where the 

width of the mixing layer is small compared with a radius of jet. 

Indirect investigations of supersonic mixing layer associated 

with base pressure studies (5-8) were also conducted in the wind 

tunnel. A mixing region is formed to separate the external and 

internal flow fields. Wind tunnel experiment is complicated by the 

expansion of supersonic flow at a corner of the rearward facing step 

creating a low-pressure base flow region. Termination of the dividing 

streamline at the wall feeds the recirculation flow upstream in the 

inner base region and hence the mixing profile does not form a 

pattern of das sical turbulent mixing layer but it is accompanied 

by a reverse flow profile. Detailed investigations of this type of 

flow with various corner conditions were made by Hama.(8) 
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Entrainm.ent of m.ass into the axisym.m.etric m.ixing region 

behind a cone was investigated by Hill and Nicholson.( 9) The en-

trained air was introduced into the base region of the cone through 

the perforated axisym.m.etric tube supporting the m.odel. However. 

no Pitot pres sure survey was m.ade to confirm. the growing rate of 

m.ixing layer predicted by the entrainm.ent m.easurem.ents. One 

interesting aspect of the m.ixing layer behind a cone is that the en-

trainm.ent takes place in the inner side ofaxisym.m.etric flow in con-

trast to the axisym.m.etric jet. in which the entrainm.ent occurs out-

side. This difference is reflected in the difference of m.ixing layer 

growth rate; spreading is greater for the m.ixing layer behind a cone 

than the m.ixing layer produced by a jet. 

It appears that only two wind tunnel tests by Roshko and 

Thom.ke (10) and Sirieix and Solignac (11) were carried out to investigate 

the m.ean flow field of the two dim.ensional supersonic turbulent free 

m.ixing layer. The form.er investigators m.easured the actual en-

trained m.as s by the specially constructed bleed system. and com.-

pared it with the growth rate of m.om.entum. thickness obtained from. 

the Pitot pressure survey. However. the num.ber of Pitot pressure 

surveys were lim.ited and no definite quantitative com.parison between 

the m.easured entrainm.ent and the growth rate of m.om.entum. thickness 

was attained. Evolution of velocity profiles from. the boundary layer 

to the m.ixing layer were obtained by the latter investigato rs using 

the Pitot pressure survey. The velocjty profiles below u/u = o. 10 
e 

were not investigated in detail so the existence of reverse flow region 

cannot be com.pletely discarded. 
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Theoretical determination of the spreading rate and velocity 

profile were made by several investigators. (12-16) The general con-

sensus based on experimental observations is that the mixing layer 

growth rate decreases with increasing Mach number. The velocity 

profile can be represented by the modified error function{17, 18) or 

the velocity profile in a low -speed mixing layer measured, for ex­

ample, by Liepmann and Laufer, (19) with suitable normalization of 

lateral coordinate with linear scaling parameter ('Il = oy Ix). Since 

the density varies appreciably across the mixing layer at supersonic 

speeds, relating the spreading parameter (a) to the ratio of densities 

at slow stream and fast stream sides (p I p ) was a very attractive 
o e 

idea and many attempts were made to that effect. However, Brown 

and Roshko (20) showed that the effect of density ratio alone cannot 

explain the behavior of the supersonic free mixing layer. For ex-

ample, the subsonic two -dimensional mixing layer experiments 

simulating a density ratio equivalent to the M = 5.5 flow showed a 

little change in the spreading rate when compared with the incom-

pressib1e, uniform density data of Liepmann and Laufer (approxi­

mately 70 ...... 80%). However, the supersonic, adiabatic mixing layer 

experiments conducted at M = 4.0 showed a considerable reduction, 

i. e. the spreading rate was approximately 33% of incompressible 

value. 

A supersonic experiment in which mas sive blowing of air or 

foreign gas into the fully developed turbulent boundary layer flowing 

over a flat porous plate was performed by Fernandez and Zukoski. (21) 

In their experiment the injection rate was increased to such an extent 
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that the boundary layer was blown off the walland the shear stress at the 

wall was considered negligibly sm.all. The m.om.entum. of injectant 

was still sm.all com.pared to the freestream. m.om.entum. and hence 

the governing equations were reduced to a form. identical to that of the 

free m.ixing layer. With zero pressure gradient, a self-sim.ilar flow 

field (linear with respect to axial distance) was achieved in which the 

m.om.entum. thickness growth rate equals the entrainm.ent rate of the 

free m.ixing layer. Com.prehensive surveys of the flow profile evolu-

tion from. boundary layer to the m.ixing layer with increasing injection 

rates were perform.ed. The results were quite different from. the 

previous investigations, especially in two respects: (1) A m.as s-

injection rate (A. ) equivalent to the entrainm.ent rate of incom.pres­
e 

sible m.ixing layer (A. ~ 0.035) was required to create a m.ixing layer 
e 

type of flow; and (2) the velocity profiles could be reduced to incom.-

pressible form. with application of the Howarth-Dorodnitsyn coordinate 

transform.ation. Fernandez and Zukoski successfully dem.onstrated 

that the results with different blowing rates m.atched favorably with 

the incom.pressible flow data of McQuaid( 23) for the corresponding 

blowing rate. If we consider blown-off boundary layer as a free 

shear layer, their data indicate that the spreading rate of the super-

sonic m.ixing layer rem.ained constant under the transform.ed co-

ordinate and was independent of Mach num.bers. Since the lateral 

coordinate in com.pressible flow is stretched in the low density region 

by the integral transform.ation, the foregoing results im.ply that the 

actual spreading rate of the turbulent wall m.ixing layer is greater 

than that of incom.pressible flow. This interpretation was also m.ade 
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by Brown and Roshko. (20) 

The apparent contradiction between findings of Fernandez and 

Zukoski (21) and others led to the present wind tunnel experiments. 

The half nozzle section with rearward facing step replaced the cus­

tomary full nozzle configuration. The bottom wall behind a rearward 

facing step was replaced with a 2.0 in. X 8.0 in. porous plate of 10 

micron-porosity. With this setup. air or other gases can be injected 

into the base region so that precise matching of the base pressure and 

freestream can be accomplished and the mixing layer can be brought 

out straight with minimum interference to the external flow. The 

classical turbulent mixing layer can be simulated under the controlled 

supersonic environment. This unique setup serves a double purpose: 

(1) Pressurization of the base region to create a non-reversed flow 

mixing layer; and (2) it permits actual measurements of the entrained 

mass. Continuous. closed cycle operation of the wind tunnel with 

controlled environment allowed a detailed survey of mean flow prop­

erties to be conducted. 

Since the self-similar turbulent mixing layer is a conical flow 

and no length parameter enters into the problem. the turbulent free 

mixing layer flow should be an independent of step heights. Step 

heights corne into the laboratory problem in a region where inter­

action of mixing layer and the bottom wall occurs. It was found that 

the proper setting of injection rate and the proper tailoring of the 

interaction region eliminated the wall effect. A self-similar flow 

was established in a large portion of the test section and the uniform 

pressure field extended far beyond the termination point of injection. 
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Testing under controlled environm.ent. the m.ass injection 

m.ust m.atch the entrained m.ass of m.ixing layer. Therefore, the 

present configuration offers a precise m.easurem.ent of entrainm.ent 

rate of turbulent free m.ixing layer which can be checked against the 

value com.puted from. the velocity profile. Under the perfectly m.atched 

condition. the growth rate of m.om.entum. thicknes s and the m.easured 

entrainm.ent rate agreed (de /dx = A ). 
e 

Since very little is known on the turbulence structure of the 

supersonic m.ixing layer, it was decided to conduct the detailed £1.uc-

tuation surveys of air to air m.ixing rather than perform.ing a m.ean-

flow investigation of air and foreign gas m.ixing. The hot-wire tech-

nique developed for the supersonic turbulent field was extended to 

cover the entire m.ixing layer including the subsonic region. Fluctu-

ation intensities and power spectral density distributions of stream.-

wise m.ass flux. total tem.perature. velocity and static tem.perature 

(density) fluctuations were surveyed. Qualitative autocorrelations and 

cross correlations were also investigated to obtain data on the turbu-

lence field structure. Unfortunately, the sm.allness of the test 

section and the com.plexity of the hot-wire technique did not perm.it 

the construction of a usable X-wire probe and hence the Reynolds 

stres s distribution com.puted from. the m.ean flow profiles could not 

be related to the direct m.easurem.ents of the turbulent field. Although 
, 

the extent of the turbulent investigation was restricted to the m.easure-

m.ents of stream.wis e com.ponents of turbulence velocity and was far 

less extensive than the investigations accom.plished in the incom.pres-

sible flow, som.e insights into the turbulent structure of the supersonic 
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mixing layer were gained to further the understanding of this flow 

field. 
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II. DESCRIPTION OF EXPERIMENTS 

II. 1. Tunnel and Model Description 

The experim.ents were conducted in the Leg 1 Supersonic 

Wind Tunnel of the Graduate Aeronautical Laboratories, California 

Institute of Technology (GALCIT). The tunnel test section is 2 inches 

deep, 2.5 inches wide and 18.25 inches long. The half nozzle con-

figuration was constructed by replacing the upper nozzle block with 

a 10 inch long flat block m.ade of bras s. The nom.inal operational 

Mach num.ber is 2.47 ± 0.02 and m.ost of the tests were conducted 

with a stagnation pressure of 735 m.m. Hg (± 5 m.m. Hg) and stagnation 

o 0 tem.perature of 27 C (± 3 C). The tunnel is operated in closed m.ode 

and the air is cycled through the dryer to rem.ove its m.oisture (see 

Oliver(24». Proper utilization of the dryer (heating and cooling cycle 

of activated alum.ina between each test) results in very dry air with 

the average dewpoint reading of as low as -lOoF (lowest recording 

was -3S o F), considerably better than the one Gran(25) has observed. 

Under this operating condition, the Mach num.ber determ.ined by the 

com.bination of freestream. stagnation pres sure, Pitot pres sure and 

static pressure is accurate to ± 0.01. 

During the initial phase of hot-wire surveys, frequent breakage 

of hot-wire was experienced. The cause of breakage has been traced 

to the flow of m.icroscopic particles introduced in the tunnel circu-

lating system. by the trial run of newly constructed Leg 2 Supersonic 

Tunnel. To capture these particles, layers of filter paper were in-

stalled in two sections of upstream. settling cham.ber, which dropped 
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the operating total pressures to 610 nun Hg. The boundary layer on 

the half nozzle block was tripped just upstream of the throat with a 

strip of fine grain (Carborandum C-320) and rough grain (aluminum 

oxide EC * 30) sandpapers. During the course of hot-wire surveys 

with P = 610 mm Hg, it was found that a strip of fine grain sandpaper 
o 

(operating condition II) did not effectively trip the flow to produce a 

fully developed turbulent boundary layer. All hot-wire measurements 

were, therefore, repeated with an operating condition I (p = 735 mm o 

Hg. with rough trip). The turbulent boundary layer thickness of 

about 0.12 ..... 0.14 inch with associated momentum thickness of ap-

proximately 0.01 inch was obtained just upstream of the rearward 

facing step. 

The downstream block of a plenum chamber and porous plate, 

through which air can be injected, was placed in recessed positions 

behind the rearward facing step of the upstream block. Supplemental 

pieces such as a streamlined block installed behind a porous plate 

and full length fences installed at both sides of the porous plate were 

required to establish the interference free flowfield. Each model 

block was equipped with a series of static pressure taps to monitor 

the flowfield conditions during the test. Pertinent dimensions of each 

model and the locations of pressure taps are illustrated in Figure 

II.la to II.lc. Thes e static pres sures are monitored on a bank of 

mercury manometers. The responses of manometers are accurate 

within ± . 5mm Hg. with a reading error of ± . 20 nun Hg. Also the 

selected pressure taps are monitored by a Statham pressure trans-

ducer simultaneously with Pitot pressure trace. The downstream 
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block is designed to be placed at two recessed positions, i. e., 1. 0 inch 

and O. 5 inch from the top surface of the upstream block. One fence, 

made of a O. 25 inch thick clear plexiglass, filled the gap to the window. 

Its upper surface is made flush with the surface of the upstream block 

so that no flow interference is produced when the znixing layer is 

brought out straight. The opposite fence is made of stainles s steel 

plate and equipped with a series of 40 pressure taps in 1 inch incre­

ments. A gap between the fence and window is filled with epoxy to 

remove the low pressure region as much as possible. 

Advantage of the present setup is that an investigation of truly 

two-dimensional supersonic turbulent free mixing layer under the 

controlled environment can be made possible with a proper mass 

injection. Slightly overblown and underblown cases can be investi­

gated, but some effect of undesirable pressure gradient will be intro­

duced so these unmatched cases were not pursued in detail. The 

disadvantage of using the half nozzle configuration is that the vertical 

working section of the freestream has been reduced by half, which 

may introduce more complicated wave interactions. 

Details of the porous plate characteristics and construction 

of the plenum chamber are given in Appendix A-I. In the present 

experiment, detailed surveys of mean flow with pressure measure­

ments and fluctuation field with hot-wire measurements were made 

with air injection. The injected air is supplied from the house 

air with 90 psig back pressure. In order to maintain the supply 

pressure at a constant value, double filters and double regulators 
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were installed before the flow-meter. Double flow-meter system 

(Fig. II. 2) has been set up but a Meriam Laminar Flow-Meter 

(calibration accuracy of ± 0.5% of all range) was used for the primary 

measurements. The differential pres sure reading acros s the flow-

meter was monitored by the silicone oil micromanometer, and the 

supply pres sure by a Wallace & Tiernan 15 psig pres sure gauge, 

which allows the pressure reading of O. 05 psig. 

The metering valve (Vacco Valve Company) was installed in 

the circuit so that very fine adjustment of injectant is made possible 

with a good repeatability. The flow rate is also monitored by the 

model plenum pressure which is displayed on the mercury manometer 

board. The entrainment. (A ). is computed by first dete rmining the 
e 

mass flow per unit area by dividing the total injection mass flow by 

the plate area and normalizing it by the freestream mas s flux. 

A = p V I p u = rn t l (p u A) e w wee . ac e e (II. 1 ) 

The computed A bas ed on measured inj ection rate and measured 
e 

freestream mass flux is expected to be accurate within ± 5% including 

the flow -meter inaccuracies. 

In order to establish the temperature equilibrium in the test 

section. the tunnel is usually operated for at least liZ hour before 

any measurements are taken. The assumption of uniform total 

temperature across an entire test section is found to be very good 

as the total temperature surveys acros s the mixing layer made at 

a few longitudinal stations show the deviation of ± Z% of the total mean 

temperature. The energy flux acros s the mixing layer is integrated 
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to zero which confirms the existence of adiabatic flow. Temperatures 

of the injectant air and the primary flow were monitored by the iron­

constantan thermocouples and found within a few degrees of each 

other. 

II. 2. Instrumentation 

II. 2. 1. Pitot Probe and Static Pressure Probe 

The Pitot probes and static pressure probes used in the ex-

periments are shown in Fig. II. 3. The Pitot probe tips were 

fabricated from O. 065 inch O. D. stainles s steel tubing with a tip 

flattened and filed to O. 005 inch by O. 08 inch and an opening of ap­

proximately 0.003 inch. The Pitot tube tip was pitched up at an angle 

of about 100 to the freestream direction in order to minimize the 

angle-of-attack effect within the mixing layer. Fernandez (22) showed 

that the flattened tip Pitot tube is insensitive to angle-of-attack varia­

tion of ± 100 for subsonic and supersonic flow. The probe holder was 

made with O. 25 inch O. D. stainless steel tubing with 0.098 inch in­

ternal diameter. For convenience. a holder tip with a leakproof and 

quick change capability was designed and carefully fabricated with 

special threading. 

The static pressure probes were fabricated from 0.032 inch 

O. D. stainles s tubing. The tip is sealed and sharpened to a conical 

shape with an 80 
'" 1 00 semi-vertex angle. Four holes of O. 007 inch 

diameter were drilled 900 apart at about 12 probe-diameters behind 

the shoulder of conical tip in the region where the pres sure recovers 

to local flow condition. The holes are aligned with vertical and hori­

zontal directions. This arrangement was found to be least sensitive 
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to the angle-of-attack effect, and the pressure deviation of less than 

2% is m.easured in the angle-of-attack range of ±5°. The calibration 

made in M = 2.5 freestream. flow is given in Fig. II. 3 with the 

probe drawings. However, no reliable calibration technique is avail­

able for the static pressure probe response in the rapidly changing 

shear flow, especially in the type of supersonic shear layer of the 

present investigation in which maximum velocity gradient occurs 

near the sonic point. Therefore, it is felt that the static pres sure 

measured by the fence tap is taken more reliably. 

The Pitot pressure and static pressure were measured using 

a Statham pressure transducer (PA-208TC-I0-350, 0-10 psia). The 

vertical position of probe is m.easured to the accuracy of 0.002 inch 

by a 40-turn Helipot (Model E) directly coupled to the vertical tra­

verse. In order to elim.inate the position error produced by the 

mechanical backlash, the measurement is always taken in one direc­

tion from the freestream into the m.ixing layer. Since the air loading 

on the probe shifts the vertical position slightly, zero setting is 

always established at X = 0, Y = 0 position after the tunnel is started 

and expected to be accurate within ± O. 005 inch. The relative posi­

tion of X and Y is accurate to O. 002 inch of m.ean position (occasional 

probe tip vibration appears). The pressures versus probe position 

were plotted on a Moseley X-Y recorder. 

During the Pitot and static pressure measurements, a selected 

fence tap pressure is also m.easured by a Statham pressure transducer 

(PA-Z08 TC-5-350, 0-5 psia) with respect to probe position. The 

flow disturbances created by the probe can be detected by this m.ethod. 
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In the low velocity region of turbulent mixing layer, the differential 

pres sure between probe and fence tap is measured by the Statham 

differential pressure transducer (PM6TX ± 5-350, ± 5 psid) to in-

crease the resolution of measurements. 

II. 2. 2. Hot-wire Instrumentation 

II. 2. 2. 1. Fluctuation Measurements 

The hot-wire"probe * used in the present experiment is shown 

in Figure II. 4. The hot-wire needles are made by a size 30 mill 

nickel wire and the needles and probe suppo rt are held together by a 

heat-resistant ceramic compound (Saureisen #7). However, the poor 

bonding of needle to the support was found to cause a tip vibration 

and the wire strain gauging (see Figure II. 4 ). Note the nois e in 

hi~h frequency components of spectra. Mixing of Saureisen #7 and 

Ceramic Glaze HT** (approximately equal amounts) by trial and error 

has produced the excellent bonding between needles and support. The 

needle tips are sharpened to a wedge shape(tip thickness of less than 

O. 003 inch) to minimize the flow interference. Platinum-l 0'% Rhodium 

wire (manufactured by the Sigmund Cohn Corporation) of O. 00005 inch 

diameter is etched in a concentrated nitric acid. The etched wire is 

gold plated to the probe tip using the liquid bright gold #7621 (Engle­

hardt Industry) and heated to about 12000 F in a small oven for a few 

* Author is indebted to Dr. R. L. Gran of TRW for supplying a 
valuable hot-wire technique, which was originally designed and 
developed by Dr. A. Demetriades of Aeronutronics, Philco-Ford, 
and for the use of his equipmentto fabricate the hot-wire probe which 
made this portion of the investigation very successful. 

** Obtained from Ceramics class of Pasadena City College. 
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minutes. About ten coatings are applied to insure good bonding. 

The length to diameter ratios of wire (LID) are 120,..., 160 and the 

-3 0 
probes are calibrated (a = 1. 25 '" 1. 35 X 10 / K, R = R • r r 

[1 + a (T -T ) ] and R is a function of length). These wires will 
r r r 

burn out at ITlidpoint with applied electric current of about 12 ITla. 

The highest current used in the test is limited to 8. 0 rna in the tur-

bulent flow. 

The electronic instrumentation consisted of a Shapiro -Edward 

constant current hot-wire anemometer set and has been described 

by Behrens (26) and recently calibrated by Gran. (25) Auxiliary equip-

ment used in conjunction with the hot-wire set include a Tektronix 

Oscilloscope Type 547 (dual trace) and/or Type 549 (storage), a 

Tektronix Spectrum Analyzer Plug-in Type IL5, a Hewlett-Packard 

Wave Analyzer Model 310A, a Princeton Applied Research Corre­

lation Function Computer Modell OIA, * a Signal Analysis Industry 

Corporation Correlation and Probability Analyzer Model SAl 43A, 

a Philco -Ford Intermittency Meter, a Monsanto Frequency Counter 

Model 100B. a Beckman Amplifier (Fitgo Model RP-IB) and a Cimron 

Digital Voltmeter Model 6653A. 

The mean hot-wire voltage and the applied wire cur rent were 

measured by an external circuit of Shapiro -Edward set constructed 

by Gran (25) and the outputs were read on a Cimron digital voltmeter. 

The distribution of mean square fluctuation voltage were measured 

by feeding the fluctuating signal to a built-in thermocouple circuit of 

* The author is indebted to Dr. R. Batt of TRW for making the PAR 
Model lOlA Correlation Function Computer available for the present 
research. 
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the Shapiro-Edward Hot-wire set and its outputs (Etc) were amplified 

by a Beckman Amplifier before being plotted on the Moseley X-Y 

recorder. The power -spectral density distributions were taken with 

a Tektronix spectrum analyzer operating in manual sweep mode to 

obtain the maximum response in all resolution settings. 

The results were verified by the Hewlett-Packard wave analyzer. 

Auto and crosscorrelation measurements were made with a PAR 

correlator and later repeated with a SAIeOR cor relator. Two sets 

of Shapiro-Edward hot-wire anemometers were used for the cross-

co rrelation measurements. 

It must be noted that the mean square fluctuation and corre­

lation measurements are uncorrected for the amplifier frequency 

respons e. The amplifier frequency response is flat up to 100 KHz 

and down to half power at 320 KHz (Gran (25». Since most of the 

turbulent energy is concentrated between 25 KHz to 100 KHz, the 

error introduced in the Etc and the correlation measurements should 

not be too serious. Proper setting of the compensating amplifier 

(MA ) is also difficult in the turbulence measurements. Prior know­

ledge of thermal response time constant (Mt ) of hot-wire to local 

turbulent flow for each wire us ed is low and the actual measurements 

of Mt in highly turbulent flow is very difficult. A suggested scheme 

is to set the M A at freestream and hold it constant during the survey. 

The correction is then applied during the data reduction, which is 

valid if the turbulence contri butions come mostly from the high fre­

quency domain where (2m M A)2 » 1 and (2Trf M
t

)2 »1. However, 
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this condition fails to be satisfied in some area of the mixing layer 

with freestream M A setting. especially in the low speed region. In 

this region. proper setting of M A ~ Mt is essential for Etc and corre-

lation surveys. Next to the ideal approach is to obtain an initial sur­

vey of Mt distribution and usethesedataas a reference to the subsequent 

surveys. This approach is reasonable because most wires are con­

structed almost identically to each other and hence the error in 

measurements is minimized (Appendix B-2). 

The quantitative data of fluctuation fields were. therefore. 

obtained by the power spectral density distribution measurements. 

Although this technique is tedious and time consuming. the approach 

is well warranted. because the data can be fully corrected for the 

amplifier frequency response and wire-time constant. At least six 

or more measurements of power spectral distribution with low 

(i == 2.0 ma) to high (i == 8.5 ma) overheats were made at a given 

point of mixing layer to obtain an accurate mode-s eparation of fluctu­

ating quantities. 

II. 2. 2. 2. Correlation Measurements 

Autocorrelations and crosscorrelation functions of the turbu­

lent shear flow were obtained by means of a PAR lOlA correlator. 

The measurements were taken in real time as the experiment was 

conducted. The correlator essentially consists of four main compu­

tational circuits: 1) time delaying function. 2) multiplier. 3) inte­

grator, and 4) averager. Single input of fluctuating voltage from a 

hot-wire is used for the autocorrelation measurements, and the 
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correlation function of tim.e dependent function fA (t) and delayed 

signal fA (t-T) is com.puted. Crosscorrelation m.easurem.ent requires 

an input of two tim.e dependent signals m.easured by two different 

probes. One of the signals is delayed before the two signals are cor-

related. The m.athem.atical relation of the cor relation function is: 

CAB (T) = lim. 
T-oo 

(II. 2) 

where C AB{T) = correlation function com.puted. 

T = actual period of com.putation. 

T = tim.e delaying param.eter 

when A = B, autocorrelation is com.puted; A f: B, cross correlation is 

com.puted. 

Correlation measurem.ents were m.ade with a best estim.ated 

tim.e constant setting for the local flowfield. From. the spectral 

m.easurem.ents, the frequency response of turbulence is known and 

hence bandpassed filters of am.plifier were set accordingly to reject 

the undesirable am.plifier noise, etc. Since the flow properties re-

m.ained constant along the u/u line, longitudinal and spanwise cross­
e 

correlation surveys were less troublesom.e. However, lateral cross-

correlation survey requires a penetration of different levels of the 

flowfield. Consequently changes in sensitivity, frequency response 

and tim.e constant of the wire resulted, but no correction was m.ade 

during the survey. However, indirect correction is applied in data 
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reduction. 

Crosscorrelation of narrow band passed-signal was obtained 

by placing two independent HP-3l0A wave analyzers between the 

respective hot-wire sets and correlator. The same center frequency 

to be xneasured was set on both wave analyzers. The xnatching of the 

two was accomplished by monitoring the center frequency on a 

Monsanto lOOB digital frequency counter. 
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III. EXPERIMENTAL TECHNIQUE AND DIFFICULTIES 

III. 1. Preliminary Mean Flow Measurements of TFML with 

h = 1. 0 inch and h = o. 50 inch 

Preliminary investigations of the supersonic turbulent free 

mixing layer behind a rearward-facing step were conducted to delin-

eate the nature of the flow field. The porous bottom wall in which 

air is injected was initially positioned at two heights of 1. 0 or 0.50 

inch below the surface of the upstream block. 

With h = 1.0 inch, the injection rate (A ) of 0.01 was 
e 

required to bring the mixing layer straight out. The static pressure 

distribution (Fig. Ill. 1 ) just downstream of the step was nearly 

constant up to x = 5.0 and followed by a negative pressure gradient 

resulting in about 20% pres sure drop at the end of the injection plate. 

The static pressure measurements taken with the static-pressure 

probe, the fence taps and the lowest Pitot pressure were found uni-

form within ± 2% of each other. The flow is remarkably self-similar 

in the region of constant pres sure and the virtual 

origin can be traced back to 2.5 inches upstream 

of the step. The growth rate of momentum thickness (d6/dx) com-

puted from the velocity profile is 0.007, less than the actual 

inj ection rate. 

With the bottom wall repositioned at h = 0.5 inch, the actual 

injection of A = 0.0068 was required to establish the self-similar 
e 

flow in the same region. In this case, positive pressure gradient 

was noted beyond x = 4. O. The velocity distribution and de /dx were 

aln~o st identical with the h = 1. 0 cas e, indicating that the turbulent 
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free mixing layer is independent of the step heights in the uniform 

pressure region. It appeared also that there exists a proper height 

in which the injection rate and growing rate of momentum thickness 

can be matched (i. e., A = de /dx for dp/dx = 0). 
e 

The difference between A and d8/dx observed in the pre­
e 

liminary tests can be explained in the following way. For the h = 1. 0 

case, the lower boundary of the mixing layer intersects the wall at a 

point beyond the end of the porous plate creating a cavity 

( mas s d e fi cit) between the mixing layer and the wall. To fill 

the cavity with fluid, the streamlines in the mixing layer are bent 

downward and negative pressure gradient is created. As a result, 

axial flow is induced, which accounts for the unmatched value between 

A and d9/dx. 
e 

Now for the h = .50 case, the ideal mixing layer intersects the 

lower wall on the blowing region. Since the fluid is injected uniformly 

along the porous plate, excess mass not required by the ideal mixing 

layer is blown into the layer beyond the inters ection, causing 

a compression. The positive pressure gradient induces re-

verse axial flow and the actual injection of slightly less than the ideal 

entrainment was required. These observations suggest that the ideal 

condition may be established by tailoring the wall shape beyond the 

termination of inj ection. T his mo d i fi cat ion wi 11 b e 

discussed in Section Ill. 2. 2. 

Important finding of the preliminary test was that the entrain-

ment of supersonic TFML in the nearly constant pressure mixing 

region is nlUch lower than the subsonic mixing layer of Liepmann 
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and Laufer. (19) Present results show the strong compressibility 

effect of supersonic flow# also obs erved by other investigators. 

However, these results were contradicted by the finding of strong­

blowing experiments along a flat, porous surface carried out by 

Fernandez (22) in the same GALCIT Supersonic Wind Tunnel. This 

contradiction led to the detailed and more refined experiments of 

this thesis. 

III. 2. Experimental Difficulties 

During the calibration of porous plate and during the pre-

liminary and major phases of experiments, numerous types of flow 

interference have been noted. In some cases, major modification of 

models and wind tunnel traversing mechanisms, etc., were required. 

Out of many problems encountered, five major modifications 

which have had the impact on the improvement of flow field will be 

discussed briefly in Appendix A for future reference. These are: 

l) Porous plate characteristics; 2) Elimination of pres sure gradient 

by the simulated streamline block downstream of the injection region; 

3) Elimination of shock wave-mixing layer interference produced by 

the vertical traversing mechanism; 4) Effect of finite turbulent bound­

ary layer upstream of a rearward facing step; and 5) The possible 

secondary flow produced by the finite length fences. 
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IV. DATA REDUCTION 

IV. 1. Pres sure Data 

Local mean Mach number was computed from the measured 

Pitot and static pres sures by applying a Rayleigh Pitot formula. 

Corrections for Pitot probe angle of attack and local turbulence were 

not included in this reduction, because the error introduced from 

these effects is probably as large as that from Reynolds number 

effects and calibration limits on the pressure transducer. The 

Reynolds number correction developed by Ramaswamy, (27) applied 

when the mean hot-wire data were reduced, showed a negligible effect 

on the corrected profile and the difference was found to be smaller 

than the raw data fluctuation. Velocity, density and temperature 

profiles were computed from Mach number distribution by assuming 

that the mean total temperature is constant throughout the mixing 

layer, which was confirmed by hot-wire measurements. 

Once the entire flow profiles were determined, all integral 

properties such as a momentum thickness (8), vertical 

velocity and shear distribution can 

be computed. Interpolation was carried out to determine 

a location and properties of the dividing streamline by applying a 

momentum balance. Since the initial boundary layer is non-negligible, 

initial momentum thicknes s must be accounted for in the calculation 

of momentum balance. Vertical velocity and shear computations 

(Fernandez (22)) were simplified and hence the results are valid only 

in the self-similar flow regime. 
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Streamline patterns are determined by the integration of continuity 

equation. Self similarity is established by linear curve fitting of 

axial distributions of constant u/u and linear growth of momentum 
e 

thicknes s. The convergent point of thes e determines the virtual 

origin of turbulent free mixing layer. Another confirmation of simi-

larity is that the velocity profiles collaps ed to a single curve when 

lateral coordinates are normalized by the local momentum thickness. 

IV.2. Hot-Wire Data Reduction 

Quantitative descriptions of mean and fluctuating flow field of 

hot-wire measurements were determined in accordance with methods 

developed by Kovasznay,(28) Morkovin,(29) Kistler,(30) Laufer(3l) 

and Behrens.(32) Behrens I method takes account of the frequency-

dependent heat loss correction from the wire to the supports 
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which is applied to the finite length wire. The excessive heat loss 

at both ends influences the tem.perature loading on short aspect ratio 

wire. resulting in a non-uniform. tem.perature response along the wire. 

Therefore. it is desirable to use a probe with relatively long aspect 

ratio or a probe with therm.ally shielded supports to m.inim.ize the 

end heat conduction. However. the structure failure of long 

wire in highly turbulent flow forced us to use the 

wire with 120 5: L/D 5: 200. 

The m.ean flow reduction of hot-wire data. including the end 

loss correction, is given by Behrens (33) and a condensed version by 

Gran (25) and its iteration s chem.e is given by Ram.aswam.y.( 27) Since 

the reliable Pitot and static pressure profiles are available, the first 

m.ethod described by Ram.aswam.y is followed and thus the pressure 

data supp1em.ent the hot-wire data reduction. Sm.allness of the hot-

wire probe prevented the direct m.easurem.ents of support tem.pera-

ture (T ); therefore, an uncertainty is introduced in the estim.ation 
sup 

of support tem.perature. The reduced data showed that 

(T -Ts )/(T -T ) = 0.9 is a reasonable assum.ption. Wire diam.eter 
sup 0 s 

(D) and resistance per inch (r ) are based on the m.anufacturer's 
r 

specification. The therm.a1 coefficient of wire resistivity (a ) was 
r 

obtained for each wire m.ounted on the probe. a consistently ranges 
r 

between 1. 25 to 1. 35 X 10 -3 /oK, which is lower than the value quoted 

for platinum. - 10% rhodium. (a = 1. 66 X 10- 3 ) wire alone, and the 
r 

difference is perhaps attributed to the construction of the probe. 

The starting shock of wind tunnel passing over the hot-wire slightly 
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affects the reference resistance (R ) of the initially calibrated wire 
r 

in the still air. Since the Mach num.ber and the total tem.perature 

in the freestream. are known within I to 2,% of m.ean values, sets of 

hot-wire data are always taken in this region, and then the value of 

the reference wire resistance is corrected during the data reduction 

to m.atch the freestream. total tem.perature. This correction is usual­

ly les s than 1 % of the initial R. Resistances versus applied currents 
r 

were taken before and after the operation and variation of adiabatic 

resistance of m.ore than 2% is discarded, because it is usually asso-

ciated with a wire dam.age. The m.ean total tem.perature and the 

Nusselt num.ber profiles are com.puted from. the m.easured m.ean 

resistances of wire taken with respect to the applied current. Brief 

descriptions of the reduction technique are presented in Appendix B-1. 

As pointed out by Behrens,(32) the end-loss corrections depend 

on the frequency of the fluctuation. At low frequencies the tem.pera-

ture over the whole length is affected by the heat-conduction to the 

support as in the steady case. At high frequencies, however, the 

conduction effect is confined in a sm.all region near the support, and 

under typical conditions in supersonic turbulent flow the hot-wire m.ay 

be considered to be of infinite length as far as fluctuations are con-

cerned. The end-loss corrections of fluctuating quantities are, there-

fore, m.ade through the sensitivity coefficients of wire which are com.-

puted from. the m.easured m.ean flow values (Appendix B-4). Also, it 

was found that the foregoing as sum.ptions are valid in the low speed 

turbulent flow of the present investigation and the discrepancy intro-

duced is less than 10% of the root-m.ean-square values of the 
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integrated turbulent quantities. 

The relationship between the fluctuating voltage response of 

real hot-wire to "ideal" hot-wire which also includes the proper 

transfer functions of instruments is given in Appendix B-3. The 

power spectral density distribution and its integrated mean square 

voltage are fully corrected for these instrument responses. The 

mean square voltage measured through the thermocouple (Etc) are 

uncorrected for the amplifier frequency and compensator respons es. 

However, Etc data are corrected approximately if the measurements 

were taken in the turbulence field dominated by the high frequency 

components. (See Appendix B-3). 

Once the fluctuating voltages of "ideal" hot-wire and the 

corresponding sensitivity coefficients were computed, the mass flux 

and total temperature fluctuations can be separated by the application 

of mode diagram technique developed for the supersonic turbulence. 

In the pres ent investigation, the survey was made in the entire Mach 

number range from freestream supersonic to zero flow. Therefore, 

some of the simplifying assumptions used in the supersonic flow 

become invalid in low speed flow regime. (1) Correction of fluctu­

ating voltage output by simple ratio of (M/M A)2 fails; (2) hence 

fluctuation measurement by thermocouple (Etc) produces a large 

error unless the MA is set very close to M
t

; and (3) the sensitivity 

coefficients of velocity, density and mas s flux are not identical but 

can be approximately related by S ~ k S where k is a function of 
p sus 

Mach number and Reynolds number (Appendix B -4). Technique and 

approximations required to extend the mode diagram method into the 
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subsonic region of turbulent mixing layer are given in Appendix B-S. 

Separation of velocity and density fluctuations requires 

further as sumptions (Appendix B -6). Freestream turbulence is 

assumed to be produced by the plane wave acoustic radiation from the 

turbulent boundary layer or mixing layer. Velocity and pressure 

fluctuations are computed by assuming a vorticity mode of fluctuation 

is negligible and the isentropic process is considered. In the case of 

turbulent mixing layer, a vorticity and an entropy mode of fluctuations 

dominate the flow field and a pressure fluctuation is as sumed negli­

gible compared with the other two modes. This assumption does not 

preclude that the pressure fluctuation is entirely insignificant. There­

fore, at the edges ofthe mixing layer, where velocity and static temper­

ature fluctuations reduced to the same level as the pres sure fluctua­

tions' the aforementioned assumption is violated. Based on the fore­

going assumptions, the turbulence spectra and turbulence profiles 

across the mixing layer are computed. 

IV.3. Correlation Measurements 

Only qualitative autocorrelation and crosscorrelation surveys 

of freestream and mixing layer turbulence were made. Autocorre-

lation measures the coherence time of the original signal being 

investigated, which can be a simple or complex periodic wave or 

randomly varying noise. By studying the wave shape and decaying 



-29-

characteristic of autocorrelation functions, one can extract informa-

tion regarding the type of time dependent signal to be observed. 

Another useful application is to extract and identify the foreign 

signals overriding on the basic signal, which has been used to identify 

the effect of boundary layer instability. Autocorrelation function is 

maximum and related to the total power of a signal when the delay 

time is zero. Thus, C AA (0) is proportional to the thermocouple 

data (Etc). Autocorrelation function presented herein has been nor­

malized with respect to the maximum power output. 

(IV. 6) 

Crosscorrelation function measures the degree of conformity 

of two signals being sampled simultaneously. It is a very useful tool 

in the turbulence investigation; for example, space-time conformity 

of the turbulent field, instantaneous space correlation of the two 

signals and convection velocity of the turbulent field can be deter-

mined. Crosscorrelation function has been normalized with respect 

to a square root of autocorrelation function of the respective probe 

with zero time delay. An example is shown for a longitudinal cross-

correlation function. 

1 

[ C 11 (0, 0) C 2 2(L~~x, 0) } "2 
(IV. 7) 

However, measurements of autocorrelation functions at different 

levels of shear layer were sometimes not obtained. In such cases, 

the correction described in Appendix B-7 has been applied. 
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V. DAT A PRESENTATION 

V.I. Freestream Turbulence 

The contribution of freestream turbulence to the investi-

gating flow field is always asked in the turbulence experiments. 

A thorough investigation of freestream turbulence was made with 

the hot-wire including the spectral analysis and the correlation 

measurements. The full accounts of this investigation are pre-

sented in Appendix C. Only the main features of freestream tur-

bulence are summarized herein. 

The longitudinal gradients of unresolved freestream turbu-

lent energy distributions were obtained through the built-in thermo-

couple (Etc). The freestream Etc gradients induced by the up-

stream boundary layer (x :::;: 0), the downstream boundary layer 

on a flat plate filler with initial mismatch at x = 0 and the tur-

bulent mixing layer are found to be dE/dx = 0.14/inch, 0.6/inch 

and 1. 4/inch, respectively. E is the freestream Etc distributions 

normalized with the freestream Etc induced by the undisturbed 

boundary layer at x = O. It has been obs erved by Laufer, ( 31 ) 

Liepmann,( 34) Kovasznay,( 28) and others that the freestream 

turbulence in the supersonic wind tunnel is produced by the radiation 

of acoustic energy from the turbulent boundary layer or from the 

free mixing layer. Since the turbulent scale of mixing layer is con-

siderably larger than the bounded shear flow due to the entrainment 

of fluid from both sides, it is expected that the acoustic radiation field 

is enhanced, which is qualitatively verified. 
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Power spectral density distributions showed the rapid devel­

opm.ent of low frequency com.ponents of turbulence with the down-

stream. stations. It also showed that a significant level of energy 

contributions are produced by the relatively high frequency com.po­

nents of turbulent m.ixing layer travelling with a subsonic speed rela­

tive to the freestream. flow. This im.plies that the process of inter­

action between the m.oving wall and the supersonic flow alone cannot 

explain the radiation phenom.enon. Therefore. it appears that the 

acoustic generating source is im.bedded in the turbulent m.ixing layer. 

The velocity and the pressure fluctuations of freestream. can 

be com.puted from. the m.easured data. if one assum.es the plane-wave 

acoustic radiation. In the self sim.ilar flow regim.e. the m.easured 

pressure fluctuation is approxim.ately 0.4", O. 5% of dynam.ic pressure 

and has rem.ained relatively constant with longitudinal and lateral 

variations of positions. Laufer(3I) observed that the pressure fluctu­

ations produced by the uncorrelated signals of four walls contribute 

to the m.easured freestream. value. Therefore. the actual radiation 

of pres sure fluctuation from. the turbulent m.ixing layer is expected 

to be less than the m.easured value. The velocity fluctuations varied 

from. 0.5% at the m.id-test section to O. 75% near the outer edge of the 

m.ixing layer. The upstream. freestream. velocity and pres sure fluc­

tuations are considerably sm.aller. 0.2% and O. 1 %. respectively. 

Appearance and disappearance of the wave in the freestream. 

with a variation of total pres sures were also detected by the spectra 

and the autoco rrelation m.easurem.ents. The interpretation of this 

phenom.enon will be discussed fully in Section V. 4. 
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V.2. Self Similar, Supersonic Turbulent Free Mixing Layer (TFML) 

Investigations of self similar, supersonic turbulent free mixing 

layer have been conducted for the mean flow field and the fluctuating 

turbulent flow field. 

V. 2. 1. Mean Flow Field 

Mean flow field surveys were made with conventional Pitot 

pressure measurements and hot-wire used as a resistance thermom-

eter to determine the total temperature. 

V. 2. 1. 1. Pres sure Survey 

Detailed Pitot pressure surveys have been conducted in the 

region of the test section from one inch upstream of the rearward 

facing step to 9. 75 inches downstream of the step (-1. 0 s:; X s:; 9. 75). 

V. 2. 1. 1 .1. Free Stream Properties 

The typical static pressure and the edge Mach number (free 

stream outside of turbulent free mixing layer) distributions are shown 

in Fig. V.I. Aside from the interference region of the starting mixing 

layer. both pressure and Mach number distributions become uniform 

beyond X s:; 2. 75. Repeatability of the tests is within ± 2% of the static 

pressure setting but uniformity of the flow per test is very good. These 

conditions with minimum disturbance in the free stream outside of the 

TFML are achieved by proper injection of air through the porous plate 

in the subsonic entrained region as discussed in Section III. 

V. 2. 1. 1. 2. Velocity Distri~~!ions and Streamline 

Pattern 

The evolution of velocity profiles from the upstream bound­

ary layer to the fully developed mixing layer obtained with opera­

ting condition I is shown in Fig. V.2. Nearly identical velocity 
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distributions were obtained wit h operating condition II, indicating 

that a sm.all variation in the turbulence level appears to influence 

the m.ean flow properties very little. The longitudinal distributions 

of constant velocities are given in Fig. V. 3. Lines of constant 

velocity are straight and converge to a point 2.5 inches upstream. 

of the step, indicating that the m.ean flow quantities of turbulent free 

m.ixing layer have reached the sim.ilar flow condition beyond X ~ 2. 75 

( ...... 275 e ). The spreading rate (dY /dX) defined between the velocity 
o 

ratios of. 1 0 and. 90 (0. 1 0 ~ u/u ~ o. 90) for this experim.ent is ap­
e 

proxim.ately dY /dX,.... 0.064 and considerably less than the subsonic 

data of Liepm.ann and Laufer, which is approxim.ately dY /dX "'" 0.16. 

Based on this, the spreading param.eter of 27 ~ cr ~ 29 is obtained, 

which agrees reasonably well with the extrapolated data given by 

Maydew and Reed.( 1 ) 

Although the injection is term.inated at X = 8.00, the m.easure-

m.ent taken at X = 8. 75 above the stream.line block is in excellent 

agreem.ent with the upstream. flow, indicating the effectivenes s of 

sim.ulation of injected stream.line by the contoured solid block. The 

effectivenes s of the stream.line block is m.ore dram.atically dem.on-

strated in the next figure (Fig. V. 4) showing the stream.line pattern 

determ.ined by the integration of the continuity equation. Note the 

m.easured stream.line patterns sm.oothly follow the stream.line block 

and no appreciable deviation of pattern is observed. The dividing 

stream.line, '-It = D, is determ.ined by the m.ass balance of linearly 

distributed injected air, and lies slightly below the sonic Mach 

num.ber (0. 92 ~ M ~ 0.98). However, the dividing stream.line defined 
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by the momentum balance shows the value very close to M = 1. 0, 

which is shown as black circle and linear beyond X ~ 2. 75. 

V. 2. 1. 1. 3. Dividing Streamline 

More detailed descriptions of the dividing streamline are 

shown in Fig. V. 5. The lateral position, velocity and Mach number 

distributions along the dividing streamline determined by the mas s 

balance of actually injected air are shown with the triangle data 

points. Circle data points represent the properties along the dividing 

streamline determined by the momentum. balance computed from the 

measured flow profiles. 

* 
/ ~ dy = /YJ ~ (1 _ ~ )dy - 8 

-00 Pe u e -00 Pe u e u e 0 

(V -1) 

where 8
0 

is the initial momentum thickness of the boundary layer 

near X = O. 

The circle data points are observed to be more consistently 

distributed and approach a constant value more rapidly. The 

Mach number along the dividing streamline is approximately unity. 

Two possible causes, inaccuracy in the velocity measurement 

in the low-speed region and excess entrainment in starting mixing 

layer, may have contributed to the observed discrepancies. Defi-

nition of tail end of the velocity profile is very critical especially in 

the thinner mixing layer region. In the low velocity side of TFML, 

1% error in Pitot pressure measurement contributes approximately 

u difference in velocity ratio. 
e 

0.1% error in Pitot pressure 

( ...... O. 05 mm Hg) contributes almost 2.5% u difference in velocity ratio. . e 
, 

The error in this area is cancelled in the momentum balance 
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(i. e. , ! P Uu (1- UU )dy ,.... ! ~uu dy; u/u «1). 
-00 Pe e e -00 Pe e e 

On the other 

hand, the noticeable discrepancies of data determined by the mass 

balance are produced by a combined effect of a uniform distribution 

assumption of injected air and the slight error introduced in the inte-

gration of low speed mass. Detailed investigation of low speed region 

indicates that no noticeable reverse flow is detected (see AppendixD-I). 

v. z. 1. 1. 4. Momentum Thickness Gradient Vs. 

Entrained Mas s 

Momentum thickness (8) and measured entrained mass distri-

butions are presented in Fig. V.6. The entrainment rate is assumed 

to be uniformly distributed. Note the measured injected mass remains 

constant beyond X = 8.0 due to the termination of physical injection. 

The gradients of measured entrained mass and momentum distributions 

are reasonably compared within the experimental accuracy of measure-

ments. For the operating condition I, the measured entrainment rates 

are A. ~ 0.0074. The slope of momentum thickness distribution is 
e 

approximately O. 0071 ~ de /dx ~ 0.0075, depending upon how the 

straight line is fitted through data. The zero momentum thicknes s is 

traced to approximately Z. 5 inches upstream of the step which is 

determined by the linear extrapolation of data. In fact, the convergent 

point agrees with the virtual origin of TFML obtained by the velocity 

distribution. Linear growth of momentum thickness assures the satis-

faction of another necessary condition of self similar TFML. Off-

center measurements, taken along 60'% of tunnel semi-span from the 

centerline, also showed good agreement with the centerline value, 

indicating the existence of reasonably good two-dimensional flow. 
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Qualitatively similar results are obtained for the operating 

condition II. 

Note the growth rate of momentum thickness is considerably 

smaller than the subsonic data of dS/dx = 0.035 and the supersonic 

forced mixing layer experiment of Fernandez(22) which gives 

ds/dx = 0.029. The comparison will be made in Section V. 2.1. 4. 

V. 2. 1. 1. 5. Normalized Velocity Profiles 

The velocity profiles over the range of X from 3. 75 i"J 7. 75 

are normalized with momentum thickness of respective stations. 

All profiles referenced to the dividing streamline taken at M = 1.0 

collapsed to a single profile (Fig. V. 7) as expected from the pre-

vious obs ervations. Little difference between the profiles obtained 

with two types of boundary layer trippings, F-T-F and R-T-F, 

operated with p = 735 mm Hg condition is observed. The profile 
o 

at X = 9. 75 measured above the streamline block has been normalized 

with the effective momentum thickness, i. e •• the linear extrapolation 

of S distribution of Fig. V. 6 to simulate the extension of TFML. In 

this normalization, the high speed portion of TFML matches identically 

with other profiles, whereas the flow near the solid block began to 

deform to boundary layer flow. Non-dimensionalized velocity gradi-

ent is also shown in the same figure. 

With the assumption of constant static pressure and total 

temperature profiles across the TFML, density and shear stress 

distributions were computed and are shown in Fig. V. 8 with Mach 

number profile. Note that more than 80% of the density change 

occurs in the supersonic side of the TFML above the dividing 
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streamline, and less than 20% of the density gradient occurs below 

the dividing streamline. This ratio is expected to increas e as the 

Mach number flow increases. This offers a partial explanation of 

the difference in growth rate of TFML observed with the binary 

mixing of subsonic flow simulating the same density ratio as super-

sonic flow. A controlling parameter is not only the density ratio of 

fast and slow speed sides of TFML but the shape of the density pro-

file. This discussion will be taken up in more detail in the section 

of scaling of TFML. 

V. 2. 1. 1.6. Shear Stres s Distribution 

Shear stress distributions were computed by the integration 

of the momentum equation. 

d8 

For the similar TFML, Fernandez (22) 

shows that if Ae = dx' then the shear stres s 

be written as 

normalized with A 
e 

can 

u 
u 

e 

Yf 8 Yj8 2 
I ~ d(yf 8))+ I pu 2 d(yf8). (V. 2) 

-00 Pee -00 P u 
e e 

The computed shear stress distribution is given in Fig. V. 9. The 

peak occurs slightly above the dividing streamline, where local 

ufu ""' 0.64. For the truly asymptotic turbulent mixing layer, the 
e 

locations of maximum shear stress and dividing streamline should 

coincide. The discrepancy may be attributed to the presence of finite 

initial boundary layer. The peak value ('T fA P u 2) is approxi­
max e e e 

mately O. 385 and is constant with axial distance. The constancy of 

peak value with X also satisfies another self similarity condition of 

two-dimensional TFML. This value is slightly higher than the in­

compressible value of Liepmann and Laufer (9) ('T fA P u 2 2: 0.34). 
max e e e 
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However, A (M) decreases with an increasing Mach number, so 
e 

2 
'T' / p u dec!"eases with increasing Mach number. 
max e e 

The turbulent shear stress without viscous contribution in 

the supersonic shear flow consists of two correlations of fluctu-

ating quantities, i. e •• 'T' = - P u'v' - U plv'. With the assump-

tions of p' «u', T' in the turbulent shear flow and the fluctua-

tions of scalar quantities (To', T', pI) are insensitive to the hot­

wire orientations, it was found that p'v' = (Y-I)~ u'v' and hence 

this term is negligible if Mach number is small. However, in 

the supe rsonic portion of the shear layer, p'v' becomes compar-

able tou 'v'. Unfortunately, the measurements with hot-wire to 

obtain p'v' and u'v' separately were unsuccessful. 

The eddy vis cosity, the turbulence production term and 

the flow angle distribution with u/u are shown in Fig. V. 10. 
e 

The normalized eddy viscosity is smaller than the incompressible 

value and the peak appears in the supersonic side of the layer. 

The production term is maximized near or slightly above the 

dividing streamline. The minimum flow angle of 0.4 degree is 

attained near u/u "-J 0.60. 
e 

The flow angle greater than 12 

degrees occurs in the region where u/u E>; 0.05. 
e 

V. 2.1. 1.7. Static Pressure Profiles 

Static pressure profiles were measured with static pressure 

probe and fence taps (Fig. V. 11 ). In order to obtain the high 

resolution, a Statham differential pressure transducer was 

used to monitor the pressure between the static p-probe and the 
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reference fence taps distributed along Y = -0.5 stations. Non-

uniformity of up to 3% of static pressure produced by the free 

stream wave interactions were detected, but the pressure deviation 

of this magnitude in the free stream edge does not contribute to 

serious error. 

An interaction of wave emanating from the p-probe and the 

mixing layer produces a false pressure profile, which must 

be corrected. The interaction pattern is shown in the sketch 

in Fig. V.11. At some distance away from the effective edge of the 

mixing layer the pressure ports first sense the reflection of com­

pression waves from the mixing layer. As the p-probe moves toward 

the mixing layer, the bulge of interaction shifts upstream such that 

the expansion waves pass through the p-ports to give the negative 

pressure dip. The pressure recovers as the second compression 

waves strike the p-ports and continue until the p-probe is completely 

immersed in the mixing layer. 

The general shape of the pressure profile is a gradual de­

crease of pressure as the center core of TFML is approached. It 

appears that the minimum pressure of I ,.,. 2 % below the mean static 

pressure is attained near the dividing streamline and recovers as 

the opposite edge is reached. This trend is also observed by Maydew 

and Reed.(l) A static pressure probe is very sensitive to the flow 

angle and also has not been calibrated in the shear flow (especially 

in the supersonic shear layer), and it is not certain that the observed 

phenomenon is actually a real one. The static pressure readings 

from the fence taps distributed along Y = -.06, -.20, -. 35, -.50 
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and -.85 show relatively constant distributions when the interference 

free TFML is created (i. e., reposition of the p-probe far downstream 

away from the testing region). 

It must be noted also that the slight interference from the 

probe still exists even after the vertical traverse has been relocated. 

Monitoring of the pres sure from the single fence tap (usually 

Y = -.50 tap) with respect to the probe position indicates the slight 

variation (± • 5~) of pressure across the entire mixing layer which 

occurs as a function of probe position. 

V. 2. 1. 2. Total Temperature 

By using the hot-wire as a resistance thermometer combined 

with the Pitot pressure measurements, mean total temperature (T ) 
o 

distribution was obtained. Total temperature distribution normalized 

with edge T • (T IT - 1), is shown in Fig. V. 12. A peak value 
o 0 0 e 

of approximately 2~ above To is observed at the turbulent edge of 
e 

the TFML where highly intermittent flow is expected (Y 18 ,.... 3.6). 

Then it decreases to approximately 2~ below To near the dividing 
e 

streamline and recovers to the freestream value at the opposite edge 

of TFML. The data taken with operating condition I show a slight 

anomaly in the lower velocity region. 

Total temperature flux distribution shows approximately equal 

positive and negative areas so that the integration across the TFML 

gi ves zero net energy flow. The results confirm the validity of the 

assumption of constant total temperature distribution. Difference in 

thl~ velocjty profiles obtained hy use of conl:;tant and meal:;\ued total 

ternperature il:; found to he Hmall. 
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V. 2. 1. 3. Scaling of Supersonic TFML 

Fernandez(22) suggested that when the supersonic turbulent 

mixing layer is compared with the subsonic data, the integral 

transformation of Howarth-Dorodnitsyn type (y = f L dy) should 
Pe 

be used to transform the lateral coordinate. Similar transforma-

tion was applied to compare the velocity profile of cur rent experi-

ments with subsonic data, namely, the velocity profile of Liepmann 

and Laufer (19) (Fig. V. 13). Both data have been matched at a 

common point of u/u = 0.5. The transformed supersonic profile 
e 

is stretched more in the high speed side and contracted in the low 

speed side compared to the low-speed profile. 

It is concluded that although the Howarth-Dorodnitsyn trans-

formation is valid in application on compressible boundary laye r 

flow, it is not the proper transformation for the free mixing layer 

flow. When the Y -coordinate of the present profile has been re-

duced by a constant factor, excellent matching of supersonic and 

subsonic profiles is observed, except near both ends of the profile. 

The linear scaling suggests the existence of the universal TFML 

velocity profile in the physical coordinate. Of course, this obser-

vation must be substantiated by further experiments in the higher 

Mach number. This observation also confirms the validity of linear 

scaling parameters used by the previous investigators of this type 

of flow. 

Scaling of supersonic TFML is examined by many investi­

gators, Korst and Trippp 5) Alber, (16) Fernandez, (22) Roshko and 
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Thomke (10) and others, in an attempt to cormect this parameter 

with physically measurable properties such as density ratio, Mach 

number, etc. 

Previous investigators have shown that a reasonable 

dependence of the spreading rate of supersonic TFML on the 

density ratio across the layer was obtained, although the exact 

nature of the relation is not firmly established. Brown and 

Roshko (20) found in the experiment of heterogeneous gas (binary-

incompres sible) mixing that the spreading parameter, 0" did not 

vary with PI / P2 as much as supersonic flow did with the same 

density ratio. They concluded that the observed variation in rJ in 

supersonic flow must have corne from the compres sibility, mainly 

from non-negligible and For the supersonic TFML, 

the spreading rate can be reasonably approximated (10% of actual 

spreading) with density ratio as shown in Appendix D.2. 

V.2.1.4. Comparison of Supersonic TFML and 

Turbulent Wall Mixing Layer 

Uniform injection of mass (X-distribution) into turbulent 

boundary layer (TBL) creates a flow pattern which deviates from 

the TBL profile. Supersonic experiments of this type have been 

carried out by Fernandez, (22) who found that a flow field similar 

to TFML type (dp/dx = 0) can be created when the uniform injection 

rate approaches A =. 035, the value comparable to the incompres­
e 

sible TFML case. Scaling of velocity profiles with Howarth-

Dorodnitsyn transformation (y = f....e.. dy) shows that the supersonic 
Pe 
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velocity profiles with various blowing rates were reduced in scale 

to match the respective subsonic velocity profiles of various blowing 

rates. A = 0.029 data matched fairly well with Liepmann and 
e 

Laufer's incompressible TFML data. It was concluded that 

the entrainment rate. A = (d9/dx). of the supersonic TFML is given 
e 

also by A = 0.035 and thus the growth rate of momentum thickness 
e 

in the similar-flow TFML is independent of Mach number. (9 is in-

variant under Howarth-Dorodnitsyn transformation). 

However. other investigators. ( 1-4. 9 -11 ) of supersonic 

TFML found the Mach number dependence in the growth rate. 

Present experimental results have confirmed the entrainment depend-

ence with Mach number of supersonic TFML. Since both experi-

ments were done (i.e., Fernandez and the present) in the same two-

dimensional supersonic tunnel. the conditions existing in both tests 

are identical, i. e., Mach number, upstream boundary layer. etc. 

Then, why are the two different results obtained as to the growth 

rate of supersonic TFML? We must note that Fernandez' experi-

ments required mass injection into the turbulent boundary layer 

from the bottom wall to create the TML. Thus. this problem should 

be defined as "turbulent wall mixing layer (TWML)" or "forced 

mixing layer." 

As discussed before, the growth rate of TFML is 1--I1ach 

number dependent and the velocity profile in the physical coordinate 

appears invariant except by the linear scaling of Y -coordinate. The 

flow is conical as predicted and the virtual origin can be determined 

by linear fit tin g 0 f velocity profile distribution as 0 bs erved. 
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However, TWML is Mach number independent and the scaling of 

profile conforms to the integral transformation of Howarth-

Dorodnitsyn. Careful investigation of Fernandez I data revealed 

that TWML can be divided into two distinct regions, i. e., above 

and below the dividing streamline (Tl *) which was determined by 

actual mass balance of injected air. The external flow field above 

* Tl is almost invariant in velocity profile as the injection rates were 

varied (Y coordinate normalized with X E of upper layer) as shown 

in Fig. V.14. It appears that the external pattern (supersonic portion) 

* is identical 10 the similar TFML. The flow pattern below the Tl 

varies with the injection rates. The stretching of lateral coordinate 

below the dividing streamline by forced entrainment appears to be 

cancelled by the contraction of Y -coordinate by the H-D transforma-

tion. This behavior suggests the valid application of H-D transfor-

mation to the TWML flow. 

Collins has also conducted a forced mixing layer flow exper-

iment using the 200 ramp model of Fernandez. * His data taken with 

and without the downstream block are also shown in Fig. V.16 and 

compared with the present data. In order to achieve a straight mix-

ing layer with zero pressure gradient, the injection rate of 

Ae = 0.0176 is needed for a model with streamline block (SB). 

Without the streamline block, uniform pres sure distribution cannot 

be achieved so that no truly similar flow exists. The data taken at 

x = 2. 00 (middle of injection region) show qualitatively identical results 

as for TWML, except that the tail of velocity profile is stretched 

* These unpublished data were made available by the courtesy of 
D. J. Collins of JPL. 
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with alm.ost constant low velocity to the surface of the injection plate 

to accom.odate for the forced entrainm.ent. External profile above the 

breaking point is identical with the present TFML data. Integration 

of m.ass confirm.s that the difference in m.ass flow between TWML and 

TFML can be accounted for in the tail profile. Although the m.om.en-

tum. gradient and entrainm.ent rate cannot be balanced for the flow with 

pressure gradient, entrained m.ass m.ust define the dividing stream.-

line. Note that this flow with large injection rate of A = O. 0262 also e 

shows the m.odification of profile only below the sonic point. 

So far no turbulent m.ixing layer with fo rced entrainm.ent large 

enough to alter the flow pattern in the supersonic side of the velocity 

profile has been observed. It is uncertain at this m.om.ent that the 

dividing stream.line always rem.ains on or below the sonic point or ifthe 

profile ofthe supersonic side ofthe TFML will ever be altered appreciably. 

V. 2. 1.5. Investigation of Mach Num.ber Dependence of TFML 

Available experim.ental data were investigated in order to 

assess quantitatively the effect of Mach num.ber dependence of two-

dim.ensional TFML properties. The m.axim.um. shear stres sand 

growth rate of m.om.entum. thickness decreases sharply with increasing 

Mach num.ber as shown in Fig. V. 15. Dividing stream.line Mach 

nwnber and spreading rate param.eter, a , are also shown and the 
m. 

detailed dis cus sion is given in Appendix D. 3. 

V. 2. 2. Turbulent Field 

In this section turbulent field of TFML is investigated. As 

will be seen in this section, the criteria for sim.ilarity of fully deve1-

oped TFML becom.es very stringent. It appears from. the current 

investigation that at least the following three conditions m.ust be m.et 
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before the turbulent mixing layer (subsonic or supersonic) is declared 

as the fully developed aSytnptotic form: I} Linear dependence of 

spreading rate with longitudinal distance, X, including the normali­

zation of turbulent spectra; 2} Turbulent spectra of br.oad band char­

acter with no peak signal which implies the existence of no well­

organized large scale wave-like motion; and 3) Constancy of total 

energy level independent of longitudinal distance. 

Hot-wire measurements with thermo -couple (Etc)' turbulent 

spectra and auto-cross correlations were made and the results are 

discussed in the following subsections. Because of limited dimension 

of the test section, installation of X-wire was not possible and hence 

no u'v' and p'v' correlations were obtained. An attempt was made with 

a single slanted wire but alignment of two orientations of wire with 

flow field was uncertain and undesirable cros s coupling of terms ap­

peared, and this task was abandoned. 

V. 2. 2. 1. Turbulent Energy Profile (Etc) 

Hot-wire fluctuation voltage processed through the built-in 

thermocouple of the Shapiro-Edwards Hot-Wire Anemometer repre­

sents the mean square voltage resulting from unknown combination 

of fluctuations in the compres sible turbulent flow. 

In order to deduce the different mode of flucutation components, 

a series of Etc profiles with several overheat parameters was obtained. 

Typical profiles of low, medium and high overheats are shown in Fig. 

V. 16. Thes e profiles were obtained with the aITlplifier time constant 

(M A) of compensator adjusted for the free stream condition (Mt ~ 50 

J.L sec) and held constant acros s a shear layer. Investigation of turbu­

lent spectra in the middle to low velocity region revealed that the 
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above technique introduces substantial error in the quantitative data 

reduction of TFML, which is associated with a large region of low 

velocity field. Nevertheless, this technique provides the information 

as to the qualitative changes taking place within the TFML. The bell 

shaped energy distribution with a peak appearing near the maximum 

mean mass flux gradient is observed with low current (overheat 

parameter is function of current) setting, i = 2.4 mao Amplifier 

gain was increas ed to obtain more meaningful data in low signal region. 

No qualitative change was observed on i = 4.0 mao data, except 

the increase in amplitude. But with the highest current setting, 

i = 6.0 ma., the profile began to develop a noticeable change below 

the first peak. Since the wire with high overheat responds to the 

mas s flux fluctuation, this development away from the region of maxi-

mum mean mass flux gradient corresponds to the increase in the con-

tribution from velocity fluctuation. Also a plateau appears in the low-

speed region, which was found later as the static temperature fluctua-

tion. Note the 3 decibel change in gain represents approximately 

twice the amplitude scale of the previous setting. That means that the 

ratio of the peak amplitude of i = 6. 0 rna. and i = 2.4 mao settings is 

approximately 17:2.5. 

Comparison of the resolved spectra of mass flux and total tem-

perature fluctuation with two fluctuating voltage spectra are shown in 

Fig. V. 17 to demonstrate the hot-wire response to the flow. Low 

overheat (llR /R ,.... 4,%) spectra agree reasonably well to the total 
aw ,.... 

temperature fluctuation spectra. e,2 (f) is the fluctuating voltage nor-

ma1i7.ed hy the integrated quantity. When the wire current was 



-48-

increased to the level corresponding to t.R/R - 30%, the unresolved aw 

spectra matches better with the mass flux fluctuation spectra. With 

higher overheat better matching will be attained, but excessive over-

heating will weaken the wire in highly turbulent flow such that 

t.R /R - 25% is the recommended limiting test condition in the high aw 

Mach number regime. t.R/R ~ 40% has been attained in the low 
aw 

speed side of TFML without breaking the wire. 

V. 2. 2. 2. Turbulent Spectra 

Turbulent spectrum analyses in the turbulent free mixing layer 

were conducted in accordance with the methodology described in Sect. 

II. 2. 2. Quantitative data were obtained by the method described in 

Sect. IV. 2. Unsteady mass flux (see Appendix B. 5 for more precise 

definition of this quantity) and total temperature spectra were obtained 

by well-established curve fitting technique. The sensitivity coeffi-

cients of hot-wire respons e equation were assumed independent of 

the frequency and determined only by the mean flow field (s ee Appendix 

B.4). 

V. 2. 2. 2. 1. Unsteady Mas s Flux Spectra 

Unsteady mas s flux spectra taken in several lateral stations of 

TFML are presented in Fig. V.18. The abscissa and ordinate of 

spectra are the dimensionless frequency fe /u
L 

and the normalized 
00 

intensity u L g{f)/8 fo g df. Under these normalizations, the maximum 

-2 amplitude occurs near fe /uL - lO • The data taken in the mid sub-

sonic and supersonic domain of TFML appear to collapse reasonably 

into a single curve. Disagreement is noted in the low frequency com-

ponent of spectra taken at Y /9 = 3.36. Three more spectra taken 
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below Y 19 = 5.25 collapsed into reasonable agreement. 

Since the major variation of mean mass flux occurs in the 

supersonic region of TFML. it is anticipated that the proper normal-

ization parameter is a mas s flux ratio instead of the velocity alone. 

Excellent agreement of spectra taken in the Mach number range 

of 1. 99 to 0.66 under this normalization is shown in Fig. V. 18b. 

The distribution of integrated quantities is given in Fig. V.25. 

Under the new normalization. the peak intensity occurs at 

(f8/u )(p u Ipu) "" 2 X 10-2 and the intensity is flat below this 
e e e 

point. 

V. 2. 2. 2. 2. Unsteady Total Temperat':.lre Spectra 

Unsteady total temperature spectra normalized with momen-

tum thickness and local mean velocity are shown in Fig. V. 19. 

Spectra of all Mach number range collapse into a single curve 

within reasonable scatters. Since the variation of total tempera-

ture is practically nil (approximately ± 2%). within the TFML. it 

is anticipated that normalization with the convective field is a 

reasonable one. The spectra is much broader than the mass flux 

fluctuation and the peak intensity points have shifted to approxi-

e -2 
mately f luL"-J 5 xl 0 and appear flat below that point. Very low-

speed region shows further shift of peak value to f9/uL '" 10-
1 

J 

but in this region. the amplifier response of signal to nois e ratio has 

deteriorated and also the low frequency domain was measured. The 

results are less accurate than the ones obtained in the intense turbu-

lent region. 
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V. 2.2.2.3. Unsteady Streamwise Velocity' Spectra 

Unsteady streamwise velocity spectra normalized with e/uL 

are shown in Fig. V. 20. Reasonable agreement among the data taken 

within the Mach number range from 1. 99 to 0.66 is obtained. The 

peak intensity occurs near fe /u
L 

,.... 2 X 10 -2and appears to flatten out 

below this point. A relatively large portion of the spectra are distri­

buted proportional to f- l • Hinze (37) has shown for the incompres sible 

shear layer with high mean vorticity distributions (i. e. aul ay). the 

large velocity gradient not only serves as a constant source of turbu-

lent energy. but it also interferes w:i.th the turbulence. Spectra of the 

frequency range in which the violent interaction occurs between two 

motions were shown to be distributed proportional to -1 power of fre-

quency. From the observation. the foregoing argument also appears to 

be valid for the supersonic TFML. Spectral distribution of the small 

scale eddies is proportional to -5/3 power. 

V. 2. 2. 2.4. Unsteady Static Temperature Spectra 

Unsteady static temperature spectra normalized with e/u
L 

do 

not fall into a single curve. which implies that this is not a proper 

parameter for normalizing the unsteady temperature field. Data are 

shown in Fig. V. 2la. The spectra collapses to a single curve. as 

shown in Fig. V. 21 b. if the parameter is normalized with the local 

mean temperature field fe 
u e 

T; ). 
The peak intensity appears to occur at new non-dimensional frequency 
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-2 of 10 and is flat below this point. 

V. 2. 2. 2. 5. Comparison of Turbulent Spectra 

Direct comparison of spectra of mass -flux, total temperature, 

streamwise velocity and static temperature fluctuation fields appear 

to show each has its independent turbulent structure. For example, 

recall the unsteady mass flux and total temperature spectra taken at 

x = 4.75, Y = 0.0 shown in Fig. V. 17. Since 9/u
L 

is constant for a 

given position in the TFML, this figure shows the direct comparison 

of two fluctuation quantities in the frequency domain. Intensity of 

mass flux fluctuation is greater than the unsteady total temperature. 

However, the spectra of the latter is much broader than the former, 

implying that more energy is distributed in a higher frequency domain 

and has a slower decaying structure. The energylevel of the former is con-

centrated in a low frequency domain and is followed with a rapid decay 

of energy field in high frequency components. Similar trend is ob-

served in the streamwis e velocity and the static temperature fluctua-

tion spectra. At a first glance, these spectra indicate no resemblance 

to each other. 

However, the investigation of Sect. V. 2. 2. 2. 1 to V. 2. 2. 2. 4 

has revealed that the proper normalization parameters of the turbu-

lent spectra are the respective mean flow quantities. Under these 

normalization parameters, very interesting and perhaps most useful 

facts of supersonic TFML were found. Spectra of all fluctuating 

quantities (i. e., Fig. V.18b, V. 20 and V. 21b) collapse into a single 

curve when they are overlaid on top of each other. The differences 

among these curves are indistinguishable within the data scatters 
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and show very good correlation to each other. at least in the region 

where local Mach number is mid subsonic to supersonic (Fig. V.22a). 

Total temperature fluctuation spectra. however. does not fall 

into this category of data because the mean quantity is practically 

constant acros s the TFML and independent of shear flow distribution. 

Therefore. the fact that this spectra does not comply with the above 

rule is understandable. However. the nature of the log -log plot is 

that it does not alter the shape of the spectra if the change in its mag-

nitude is dependent only on the multiplicative constant. The adjust-

ment of the coordinate to compare the qualitative nature of the spectra 

is possible. Overlap of Fig. V.19 onto Fig. V. 22a also shows the 

excellent agreement of the qualitative shape of the spectra. This 

finding is important because the spectra of the entire supersonic TFML 

(or at least the spectra in the mid subsonic to supersonic regionof TFML) can 

be found by knowledge of the mean flow profile and at least one of the 

spectra measurement at anyone point in the TFML. Because the hot­

wire operating with high overheat parameter (6R/R .,.., 40%) of con­
aw 

stant current hot-wire anemometer responds to unsteady mass flow. 

then the measurement of this fluctuating spectra can supply the neces-

sary information without the quantitative data reduction. 

Turbulence spectra of subsonic (incompressible). two-dimen-

sional. s elf-pres erving turbulent mixing layer of two stream flow 

have been reported by Spencer and Jones (38) and Yule.(39) Spectra 

from both investigators show the qualitative agreement including the 

slight overshoot at peak intensity point and flat distribution below the 

frequency where the peak intensity occurs. 
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The present investigation of supersonic TFML may show 

some overshoot of spectra, but they are not as pronounced as the 

subsonic ones and data scatter does not warrant the same conclusion 

to be drawn. The abscissa of the velocity fluctuation spectra is re-

normalized with the width (b) of the mixing layer determined by the 

slope intercept method suggested by Batt, et al.(40) The new scale 

is shown below Fig. V.22a. The incompressible spectra of Batt, 

et al falls into the present data when the ordinate is properly normal-

ized to the common scale. Excellent agreement of the low frequency 

range of spectra is observed and the falloff point begins at the Strouhal 

number of unity (2nfb/u
L 

= 1. 0). -1 
The f range of supersonic spectra 

is larger than the incompressible one. Tbe high frequency components 

of incompressible data fall off with -2 power, whereas the spectra of 

the present investigation decreases with -5/3 power. 

Further investigation of the pres ent experiment leads one to 

suspect that the pronounced spectra peak observed in the faster 

stream side of the subsonic TML might be caused by the flow distur-

bance fed in from the upstream bou11.dary layer or transitional mixing 

layer. The quantitatively reduced spectra of streamwise velocity, 

static temperature and mass flux fluctuation obtained by the operation 

condition II (p = 610 mm Hg, R - 2000, F-T-F) show a peculiar 
o ee 

peak. This peak becomes less pronounced as the low speed side of 

TFML is surveyed. This spectrumplotted in the log-log scale shows 

the qualitative characteristic observed in the subsonic velocity spectrum 

(see Fig. V.22b). Furthermore, this anomalous peak vanishes as 

higher operating Reynolds number or coarse boundary layer trip is 
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used. The disturbance may be Reynolds number dependent, except 

that this phenomenon does not appear to be the inherent characteristic 

of fully developed turbulent m.ixing layer. Therefore, the results of the 

current investigation reveal that the turbulent spectrum of the entire 

TFML is similar and without the pronounced peak, not as shown by 

other investigators. This implies that the structure of fully developed 

TFML consists of a random.1y fluctuating and disorganized field with 

no large scale wave motion in a preferred frequency range. However, 

Brown and Roshko (20) have shown the existence of such motion visually 

in the subsonic binary mixing layer experiment to disprove the exten-

sion of the foregoing argument to the incompressible mixing layer. 

Batt, et al (40) have shown the vanishing trend of the overshoot of 

spectra with the increasing operating velocity of two-dimensional 

TFML in subsonic flow. Because of the poor resolution of the existing 

spark Schlieren (6t ,..., 21J sec. produces flow motion of approximately 

.04 in. ) and the existence of low density flow below the dividing stream-

line, the flow is visible only in the supersonic side of TFML. How-

ever, it is expected that the presence of large scale motion should be 

visually detected, if it is pres ent. Unfortunately, no organized motion 

was visually observed with the present experiment. 

V. 2. 2. 3. Self Sim.ilarity 

Self similarity of supersonic TFML in turbulence level was 

checked by conducting the turbulent spectra surveys at X = 3. 75, 

4.75 and 6.75 along the two constant u/u lines (u/u ,..., 0.91 and 0.58) 
e e 

with the operating condition 1. Frequency and spectra intensity are 
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normalized by respective integrated quantities and uL/e such that 

00 fe J F d(-- ) = 1 as before. Since the surveys were made along the 
o u L 

constant u/u , the independent variable is the momentum thickness, 
e 

e, which is a linear function of X
E 

measured from the virtual origin 

of TFML. 

The spectra of mass flux, total temperature and their corre-

lation coefficients; the spectra of streamwis e velocity, static temper-

ature and their correlation coefficients for the constant u/u taken e 

along the vicinity of the dividing streamline are given in Fig. V.23a 

to V. 23f. Reasonable agreement of data from widely separated 

longitudinal stations (X/e """ 375, 475, 675) are encouraging. If the 
o 

turbulent field of TFML has reached a similar flow condition, it is 

expected the integral scale of turbulence is also a linear function of 

longitudinal distance. Then one can conclude that the integral scale, 

L , is proportional to the momentum thickness of TFML. In fact, x 

the behavior of spectra collapsing to a single curve with respect to the 

normalizing parameter, e, supports the foregoing argument that the 

growth of the turbulent field is linear with X E. 

Data of correlation coefficients, Rrh'~ and Ru IT' , are more 

widely scattered than the other spectral distributions, but neverthe-

less, the qualitative behavior of these quantities are well matched. 

R~TI obtained at the u/u """ 0.91 
moe 

ofTFML (Fig. V.23d) shows 

the moderate correlation of the large scale cOITlponents of mass -flux 

-1 
and total teITlperature but small scale components (f9/uL ;z, 10 ) 

appear to be uncorrelated or slightly anti-correlated. Ru IT' (Fig. V.23e) 

shows a trend cOITlpletely reversed froITl the trend of R~IT" i. e., the 
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energy carrying low frequency components are highly anti-correlated 

but high frequency components are correlated. Correlation of high 

frequency components of u' and T' suggests that the transformation of 

kinetic energy to heat takes place by the small scale eddies. The 

hypothesis that small scale eddies are responsible for the final decay 

of turbulence and the production of heat is qualitatively observed. 

Anticorrelation of u' and T' in low frequency components means the 

positive correlation of pI and u' of large scale eddies. R 'T"i"'ifI mea s -
m 0 

urements taken at the center of TFML (u/u ,..,... 58) show the direct 
e 

correlation with constant value throughout the frequency domain. 

Ru'T" however, follows exactly the same trend of the former posi-

tion (Fig. V. 23c and f). 

It appears that so far every requirement of self-similarity has 

been met. However, a single uncertainty which seemed to negate the 

self similar criteria crept up such that it cast a shadow of doubt as 

to the existence of truly fully developed TFML even in this experiment. 

The uncertainty was that the total fluctuation energy level measured 

in the TFML kept increasing with the longitudinal distance. However, 

the observed discrepancy was found to be produced by the instruro.en-

tation respons e and the corrected value showed the constant turbulence 

intensity (s ee Appendix D.4 ). 

This finding is very encouraging because all necessary and 

sufficient conditions fo r the existence of fully developed TFML have 

been met by the pres ent investigation. Asymptotic form of turbulent 

mixing layer requires a considerably long developing distance. In 

the cas e with fully developed turbulent mixing layer without any 
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upstream disturbances, the similar TFML appears to be developed in 

400 e downstream of the step. However, a much greater distance 
o 

is required with some upstream disturbances and laminar boundary 

layer for the starting condition. 

V. 2. 2. 4. Turbulent Intensities 

V. 2. 2.4. 1. Fluctuation Mode Diagram 

Quantitative data ofturbulent flow properties in the core of TFML 

have been reduced by the application ofthe method described in Sect. IV. 

Typical mode diagrams of fluctuations taken under the operating condition 

I are shown in Fig. V. 24. The mode diagrams have been constructed 

by least square curve fitting of the data compiled from several tests 

to the equation of hyperbola. Data points include the properly cor-

rected Etc data and integrated data of spectral density distributions. 

Scattering of data is inevitable in this type of experiment, thus 

the confidence level of the computed data is reduced when it is com-

pared with the mean flow measurements. However, ensemble of 

many data points establishes a certain trend of physical measurements 

associated with the flow field of realizable turbulence. Recall that the 

linearity of fluctuation m .ode diagrams has been observed in measure-

ments of freestream turbulence (Fig. C. 5). In the core of TFML, 

vorticity and temperature fluctuation are believed to dominate and it 

is expected that the curve is no longer linear and correlation of the 

mass flux and total temperature fluctuation (Rm'T,)will no longer 

(30) 0 
remain at -1. O. Kistler has observed that Rm'T' will shift 

o 
from high negative ( ...... -1. 0) to positive correlation as supersonic tur-

bulent boundary layer is traversed from the outer edge. In fact, the ap­

pearance of vertex of hyperbola in the region of positive overheat param­

eter (r = Su 1ST ) indicates the shifting of the correlation as one moves 
o 

from the high speed outer flow to the low speed inner core of the TFML. 
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V. 2. 2. 4. 2. Mass Flux Fluctuation 

The mass flux fluctuation profile of supersonic TFML is shown 

in Fig. V.25a. The solid lines represent the Etc measurement taken 

with a time constant of the compensating amplifier set at the value 

correct in the freestream (M A= 50 ,." sec). The dashed lines repre­

sent the measurernents taken with the rnatched time constants of the 

local flow field (see Appendix D-5 for the mismatched error). Indi­

vidually plotted data points repres ent the results reduced from the 

integrated spectral measurements. Points shown as large circles 

or large triangles represent the averaged value of all available data 

as shown in the typical fluctuation mode diagram. Reasonable agree­

ment with data points and dashed lines is encouraging. 

Mean mass flux distribution is also shown in the same figure. 

Since most of the mass flux change is taking place in the supersonic 

flow regime above the dividing streamline, the peaks appearing in 

that side of the flow are expected. The peak fluctuation appears near 

y 18 = 2.0 and occurs just below the maxirrmm gradient of the mean 

mass flux distribution. The peak fluctuation level is somewhere 

between 8 and lO% of the mean value. 

V. 2.2.4. 3. Total Temperature Fluctuation 

Total temperature fluctuation distribution is shown in Fig. 

V.25b. Note that the solid and dashed lines are very close as ex­

pected from the previous discussion. A peak fluctuation level of 6% 

of the mean total temperature exists near the point where maximum 

gradient of mean total temperature occurred (i. e., switching point 

of total temperature). 



-59-

V. 2. 2.4.4. Streamwis e Velocity Fluctuation 

Streamwise velocity fluctuation in the core of TFML has been 

computed and is shown in Fig. V.25c. Negligible pressure fluctuation 

is assumed as discussed in the data reduction section. The discrep-

ancies between solid and dashed lines reappear for the reason given 

in the mass flux fluctuation section. Integrated power spectra and 

dashed line curve show reasonable agreement . In the core of the 
---:7 -2 

mixing layer, the transformation equations of u' and T' based on 

-:-;z -2 
are shown as (see Appendix B. 6) m and T' 

a 

,2 2 
k

2 2k
S

Q --:-;z 
u a 

S 
m 

T,2 1 f32 1 -2f3 T ,2 = 
(a+ks f3 )2 a 

(V. 9) 

u'T' -Qf3 kS (a -kSf3) m'T' a 

where the correlation coefficients are defined as 

Rm'T' 
a 

= 
mIT' 

a 
and Ru'T' = 

u'T' 

Note that the velocity fluctuation is affected substantially by 

total temperature fluctuation in supersonic region where kS is near 

unity. In the slow speed region mass flux contribution is seen to 

predominate. Peak streamwis e velocity fluctuation bas ed on local 

mean value (I u '2 lu
L

) is approximately 8 ,.... 9% and occurs just above 

the dividing streamline. Absolute maximum fluctuation of approxi­

mately 5 to 6% tf freestream velocity, (/~ lu ) occurs near Y 18:=:! 1.5. 
e 

The similar measurements of incompressible, two -stream 

mixing layer of air made by Spencer and Jones (38) show a peak 
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I~ 
Yu' /6U of 18 - 20% and peaks near zero streamline. In their exper-

iment 6 U is the velocity difference of two streams, and as U2 ap­

proaches 0, the above definition becomes precis ely the same as 

lu,2/u of the present experiment. Subsonic data of Wygnanski and e 

Fiedler(42) indicate peak fluctuations of 17.5%. Results of Lieprnann 

and Laufer{l9) of incompressible TFML also show substantially higher 

fluctuation intensities (I u,2 /u ,...- 16%). The basic qualitative differ-
e 

ence between subsonic and supersonic flow is also noted. Since 

Liepmann and Laufer's data have been plotted with respect to Y /9, 

matching of their coordinate and the pres ent one will be accomplished 

by matching the mean velo city profile. Comparis on of the two data 

are shown in Fig. V. 26a. Note that the data taken in the supersonic 

flow shows the bell shape profile with respect to Y /9 = 0, but subsonic 

data peaks at the lower speed side if the fluctuation quantity was 

normalized with the local velocity. If the fluctuation velocity field is 

normalized with respect to the freestream velocity, both curves 

become bell shaped, except for the shift in the point of peak values 

(Fig. V. 26b). 

Based on this comparison, the intensity of RMS velocity fluc-

tuation of supersonic TFML is approximately 1/3 of subsonic TFML. 

This finding may be the partial explanation for the reduction of the 

TFML growth rate. It is expected that general relationahip between 

the remaining fluctuation velocity components in the supersonic TFML 

should not be greatly different from that obs erved in the subsonic 

TFML. Then jt is safe to conclude that the relative kinetic energy 

of velocity fluctuation is also considerably lower. One must be 
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cautioned that assumption of p,2 «u,2 and T'2 may become invalid 

in both edges of TFML where the magnitudes of u,2 and T,2 become 

small. However, fluctuation intensity in the core of TFML is ex-

pected to be accurate within ± 15~. 

v. 2. 2. 4. 5. Static Temp.!:.~ature Fluctuation 

By inspection of the transformation equation, static tempera-

ture fluctuation is seen to be highly dependent on the total temperature 

fluctuation. Contribution from the mass flux fluctuation is strongly 

felt in the supersonic region (13 2 
dependence) and negligible in the sub-

sonic side. The static temperature fluctuation is found to be consider-

ably higher than expected as shown in Fig. V. 25d. The peak tempera­

ture fluctuation of approximately 8. 5~ based on local static temperatur~ 

I T,2/ T L' is noted in the region of maximum temperature gradient. 

Note that the second plateau which was observed in the Etc profile 

below Y / e ~ -4. 0 (Fig. V. 16) with high overheat is obs e rved in the 

temperature fluctuation. The obs erved phenomenon may be produced 

by the interaction of two fluids with slightly mismatched temperature 

or from the possibility of Prandtl number not equal to one (Pr ~ 1). 

The stagnation temperatures of primary flow and injected air 

have been monitored by iron-constantan thermocouples and found to 

be within 20 F. However, the Brown potentiometer pyrometer (Model 

#156 X 15p) is rated for an accuracy of ± 4
0 

F. Since the mean static 

temperature was reduced from the Pitot pressure data with an assump-

tion of constant static pressure across the TFML, the mean tempera-

ture of a few percent mismatch will not be detected. However, total 
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temperature profile taken with the operating condition I shows slight 

data anomaly in the low speed region where entrainment of injected 

air occurs (see Fig. V.12). Under the assumption of negligible pres-

sure fluctuations, the temperature fluctuation is precisely a negative 

of density fluctuation (T; = - 7), but RMS fluctuations of density 

and temperature are the same (..; T'2 IT = ..; p,2/p). 

V. 2. 2.4.6. Correlation Coefficients R~I and R ~ ____________________________ m___ 0 u 

The correlation coefficient of mass -flux and total-temperature 

fluctuations is initially highly anti-correlated (i. e., R m'T I < - O. 7 
o 

in the freestream edge of TFML). There is a trend approaching to 

zero correlation as the dividing streamline is approached and becoming 

positive as the streamline is crossed (Fig. V.27). Kistler(30) ob-

served a similar phenomenon in supersonic turbulent boundary layer. 

Although a considerable scattering of data is obs erved, the general 

trend indicates that the switching point may coincide with that for the 

mean total temperature distribution. 

The correlation coefficient of streamwise velocity and static 

temperature (Ru'T') almost follows the trend of R~'T ,. Observation 
o 

of the transformation equation shows that RuIT' takes the sign of 

R ~ where Q! - (3k becomes positive (if k = I, M ~ 1. 58) and the 
m 0 s s 

negative contribution from the mass flux fluctuation becomes negligible 

as Mach number decreases (i. e., (3 approaches zero). In the turbulent 

boundary layer survey made by Kistler, Ru 'T' remained anticorre­

lated throughout the layer. This is possible because the local mean 

flow remains supersonic in case (3 does not become small and the 
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negative contribution from mass flux fluctuation offs ets the contribu-

tion from Rro.'T ' even if it becomes positive. 
o 

V. 2.2.5. Autocorrelation and Space-Time eros s-

correlation in TFML 

Qualitative analysis of autocorrelation and crosscorrelation 

made in the TFML will be presented herein. The measurements are 

taken in accordance with the methodology des cribed in Sect. II.2. 2. 

Initial investigations were conducted with the operating condition II 

and the qualitative results were verified later under the operating 

condition 1. Autocorrelation measurements were taken in several 

lateral positions in TFML at X = 6. 75. In order to check the self-

similarity of the turbulent scale, the measurements were also taken 

at longitudinal stations along the line where maximum fluctuation 

signals were detected (Y = O. 12). To establish a meaningful trend 

of data with variation of longitudinal or lateral stations, most of the 

comparison investigations were conducted the same day with the same 

probe when possible in order to avoid introducing the additional un-

certainties in the measurements (i. e., variation in the operating con-

dition, probe sensitivity, etc.). 

V. 2. 2. 5. 1. Auto co rrelation 

Unresolved autocorrelations at three overheat parameters 

(~R fR ,.... 25%, 15%, 2%) are shown in Fig. V. 28a. The ordinate has 
aw 

been normalized with respect to the value of autocorrelation measure-

ments taken with zero delay time (All (0». The delay time has been 

normalized with respect to the effective longitudinal stations measured 

from the virtual origin of TFML. Since the TFML grows linearly 
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from the virtual origin, this normalization is proportional to the 

normalization with respect to the local width (b) of the TFML. Non-

dimensionalized delay time is obtained by an introduction of free -

stream velocity (6'T ue/X
E

). Data at five stations extending from 

X = 3.75 to X = 7.75 collapsed into reasonably good single curves 

for each respective overheat parameter. This implies that the 

turbulent structures of TFML of the pres ent investigation l-tave reached 

the s elf-similar flow. The decay of the cor relation functions with 

increasing delay time is markedly different with different overheat 

parameter. Although this observation implies that the separation of 

fluctuation into different modes is desirable to delineate the structure 

of the turbulent field, qualitative conclusions can be drawn from thes e 

unresolved autocorrelation functions by an application of the knowledge 

gained from the study of turbulent spectra. 

Recall that a hot-wire operating at low overheat responds to 

the total temperature fluctuation and a hot-wire operating with very 

high overheat parameter (t.R/R ,....., 40%) responds to mass flux fluc-
aw 

tuation. The data of the lowest overheat show the fastest decay and 

the general trend is slower decay of autocorrelation functions with 

increasing overheat. Thus it is safe to say that the coherence time 

of total temperature fluctuation is shorter than the one of mass fluc-

tuation. In fact, this trend reaffirms the findings from the spectra 

measurements. The mathematical relation between autocorrelation 

function and power spectrum is a pair of Fourier transforms 

1
0000 

= 21T JAIl ('T) cos W'T d'T and All ('T) = ! F II (W)cos W 'T dW 
-00 -00 

(V. 10) 
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where F 11 (W) is the power spectrum., All ('r) = lim. 2T I f l (t)f l (t-1" )dt 
T ..... oo -T 

is an autocorrelation function and W is angular frequency. The larger 

coherence tim.e im.plies that the scale of the fluctuating field is larger 

and it takes m.ore tim.e to pas s through the point of m.easurem.ents. 

In spectral evaluation, this im.plies that the peak arn.plitude shifts to 

a lower frequency as the turbulent field of larger extent exists. That 

is, the energy containing frequency is inversely proportional to the 

correlation tim.e. Observation of m.easured data confirm.s the above 

argum.ent. For exam.ple, the autocorrelation m.easurem.ents taken at 

three lateral stations are shown in Fig. 28b. The m.ost rapid decay 

of autocorrelation function is noted in the data taken at Y /8 = 3.3 

where the m.axirn.um. turbulence signal was detected and power spectra 

extended to 300 KHz. The qualitative trend of slower decay with 

decreas e in Y /8 was obs erved. The slowest decay was noted at 

Y /8 = -1. 82 where the low frequency turbulent com.ponents predom.inate. 

V. 2. 2. 5. 2. Cros s correlation with Longitudinal 

(X) Displacem.ent 

Crosscorrelation functions of axial com.ponents of flow are 

rn.ade by two hot-wire probes placed in tandem. along the constant u/u 
e 

field. Since the growth rate of TFML is linear and the flow properties 

are equivalent along rays from. the virtual origin (conical flow), the 

m.oving probe rn.ust be shifted in Y -axis as well as in X-axis to rem.ain 

along the constant velocity field. This was assured by m.aintaining 

the m.ean voltage output of m.oving hot-wire at a constant level.(3l) 

Because the hot-wire sensitivity is dependent upon the m.ean flow field 

(Mach num.ber, Reynolds nurn.ber, Nus selt nurn.ber), the constancy of 



-66-

mean voltage output of hot-wire means constant flow field. In order 

to avoid the wake interference of each other, probes were installed 

so that leesides of the probes faced each other. Also, the moving 

probe (M-probe) was initially displaced in the Y -direction by approxi-

mately 0.01 inch to avoid probe contact produced by occasional vibra-

tion. The stationary probe (S-probe) was positioned at X = 4.75 for 

operating condition II and at X = 6. 75 for operating condition I and the 

M-probe was traversed fore and aft of the S -probe. 

The definition of convection velocity adopted by Wills (44) and 

Wilmarth (45) is given as u = OX/aT at the point where @R/ox),.. t 
c I = cons. 

= O. This point can be determined by finding the tangency of cros s-

correlation function and the contour of the envelope. Typical space-

time correlation taken at Y /8 = 3. 3 is shown in the lower part of Fig. 

V.29. Normally, the mapping of space-tiIne crosscorrelation of this 

figure is sufficient to determine the convection velocity. The spatial 

correlation is determined by plotting the cros s correlation function at 

zero time-delay with respect to the longitudinal separation distance. 

The discrepancy of peak amplitude noted at the zero !::'x separation is 

attributed to the initial !::'y separation required to avoid the probe inter-

ference (Fig. V. 29). 

The contour map of space-time correlation is shown in Fig. 

V. 30. This contour map is produced froIn Fig. V. 29 by plotting con-

stant correlation contour in the !::.x-T plane. Fitting a curve through 

points where the least change in correlation occurs with respect to 

!:x gives the u lu :::: o. 795. The most uncertain part of the present 
c e 

investigation lies in the accurate determination of the initial separation, 
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thus it is unwise to force the curve to go through the origin. The 

relative separation from any known point is accurate to O. 002 inch, 

and hence confidence level outside of the initial point is rather high. 

The convection velocities within the entire lateral profile of 

TFML have been obtained by the method of Fig. v. 29 (tangency). 

The results compared with the mean velocity are shown in Fig. V.3la. 

It appears that the convection velocity of the energy carrying turbulent 

field lags behind the mean flow velocity in the supersonic region and 

leads it in the subsonic region. Within the experimental scatter, the 

convection velocity determined by the operating conditions I and II 

have produced almost identical results. The subsonic data obtained 

by Wills (44) in axisymmetric jet mixing layer are also shown and agree 

approximately with the present results. Bradshaw(41) obtained the 

same results as Wills. Subsonic 2 -D mixing layer results obtained 

by Wygnanski and Fiedler (42) show consistently lower convection 

velocity throughout the TFML. 

Convection velocities of selected frequency components of 

turbulence at u/u ~. 90 (maximum turbulence signal), u/u ~. 61 
e e 

(near the dividing streamline) and u/u ...... 25 are obtained by appli­
e 

cation of two Hewlett-Packard wave analyzers and the results are 

presented in Fig. V.3Ib. At point A {u/u ~. 90}, the convection 
e 

velocities of large scale turbulence are found lower and monotonically 

increasing with frequency. The mean convection velocity at this 

lateral position js approximately 0.80 u , indicating that the energy 
e 

carrying turbulent components are concentrated near the frenuency 

domain of 25K to 100 KH7,. The unresolved power spectrum in this 
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-1 
frequency domain appears to be proportional to f . At point B 

(u/u ==.61), all frequency components of turbulence are convecting e 

with uniform speed. Convection velocities of the turbulence com-

ponents below the dividing streamline decrease with frequency. Note 

that large scale turbulence of TFML appears to be convecting with 

relatively constant speed across the layer. This obs ervation suggests 

that the small scale turbulence adjusts to the local environment faster 

than the large scale eddies, and it supports the following interpretation 

of TFML. 

The present and Wills' results indicate that the switching point 

of the relative velocity occurs very close to the dividing streamline 

of TFML. In fact, this result suggests that the turbulence is created 

in the vicinity of the dividing 

maximum velocity gradient. 

streamline by maximum shear stress and 

ou 
Recall that the production rate, T oy , 

determined from the mean flow values maximized at u/u == O. 55,.... 0.60 
e 

(Fig. V. 10), which also supports the foregoing argument. Since the 

outer flow is moving at a higher speed, entrainment of faster flow 

accelerates the newly created turbulence field as it grows, but every 

frequency component of turbulence does not fully attain the local 

velocity for the reason given in th e foregoing paragraph. Below the 

dividing streamline, newly created turbulence imparts its momentum 

and drags along the originally stationary fluid. Thus, it is expected 

that the turbulent field will propagate faster than the mean fluid. 

Additional supporting evidence of the foregoing argument is given in 

Appendix D. 6. 
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Space-time crosscorrelation measurements were made with 

an intermediate overheat so that the hot-wire sensed the coupled 

fluctuations. Then a question was raised as to what mode of fluctua-

tion quantity propagates with the measured convection velocity. To 

investigate this, space-time crosscorrelation measurements at 

several overheats were made at a given separation distance. Within 

the accuracy of measurements, no appreciable shift in time delay 

was noted for all overheat ranges, which implied all fluctuating 

quantities were propagating in one blob. 

v. 2. 2. 5. 3. Comparison of Autocorrelation and 

Crosscorrelation Function 

The condition which must be satisfied to justify the Taylor's 

hypothesis (46) is that transformation of autocorrelation function into 

space -correlation and vice versa by means of convection velocity, 

such as u = t::.x/tJ'f, is valid (see AppendixD.7). 
c 

Comparison of autocorrelation and space correlation functions 

taken at two lateral stations along uL/u
e 

= 0.90 and 0.59 are shown in 

Fig. V.32. Separation distance of the space correlation function was 

transformed to time delay by the local convection velocity. Although 

the Taylor's hypothesis is expected to fail in the turbulent mixing layer 

flow because it is non-homogeneous, (Wygnanski-Fiedler(42», agree-

ments between both correlation functions were surprisingly good. 

Noted discrepancies near the zero tJx separation were produced by an 

initial tJy separation of two probes. The apparent validity of Taylor's 

hypothesis in the present investigation was attributed to 1) existence 

of small fluctuating velocity field ((u,2/uL < 10%, Sect. V. 2. 2.4); 
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and 2) convection of quasi-frozen turbulent pattern (see Sect. V. 2. 2. 

5.6). Usefulness of Taylor's hypothesis was that the axial spatial 

correlation rrleasurerrlents could be sirrlplified by the autocorrelation 

rrleasurerrlents, using rrlodern equiprrlent, in the TFML where srrlall 

scale turbulence exists. Since the direct rrleasurerrlents of space 

correlation required unavoidable 6y separation, the accuracy of the 

data in the initial separation was greatly irrlproved by autocorrelation 

rrleasurerrlents. Within tolerable data scatter, sufficient proof was 

presented to validate Taylor's hypothesis even in the free shear flow. 

V. 2. 2. 5. 4. Crosscorrelation with Lateral (6y) 

Displacerrlent 

The lateral scale of turbulence can be deterrrlined by the 

crosscorrelation rrleasurerrlents of strearrlwise flow cOrrlponents taken 

with lateral displacerrlent. The difficulty encountered in this type of 

rrleasurerrlent was that the sensitivity of wire response with a constant 

current setting varied as different lateral positions of the flow field 

were surveyed. Corrections were rrlade in data reduction (s ee Sect. 

IV. 3). 

The foregoing rrleasurerrlents were rrlade with operating condi­

tion I at X = 6.75. The M-probe was traversed above and below the 

S-probe positioned at Y/8 == 3.6 and Y/8 = 0.64. The typical correlo­

grarrls plotted with peak correlation as a COrrlrrlon reference point are 

shown in Fig. V. 33a. The S -probe has always been delayed and hence 

the rrleasurerrlents in both directions were referenced with respect to 

the S -probe. The rrleasurerrlents showed that the relative position of 

the turbulent field in the fast strearrl side leads and the slow strearrl 
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side lags with respect to the reference point in the flow, which con-

forms with the previous observation (see Appendix D. 8). 

Considering the X-station in which the S-probe is positioned 

as a reference plane, the lead or the lag time of the maximum corre-

lation of the streamwise component measured with respect to the 

lateral separation represents the relative position of the convecting 

turbulence field (by vs. Lx). The arrival time of the maximum corre-

lation normalized with an effective X -distance and a convection veloc-

ity of the reference point is shown in Fig. V. 33b. The normalized 

negative delayed time can be considered as the downstream b.x position 

(b.x/XE = -6r uc/XE). It must be cautioned that the b.J vs. 6r does not 

repres ent the lateral component of velocity (i. e., v f. 6y I 6r). 
c 

The lateral spatial correlation of unresolved turbulence taken 

above and below the reference points are shown in Fig. V. 34. The 

peaks of autocorrelation functions at different lateral positions of 

mixing layer and the corrected spatial correlation of corresponding 

points are also shown. The correlation functions above and below 

y 18 = 3.6 appear to be symmetric and uncorrelated in the normal-

ized lateral dimension of 0.02 (lSi IX E == 0.02). Asymmetric correla­

tion functions are noted in the data taken at Y / e = o. 64. The differ-

ence may be attributed to the unmatched time constant of wire as it 

traversed into the TFML where low frequency contributions became 

large. Comparison of the correlation functions of operating conditions 

I and II shows the latter case has a slightly broader decaying trend 

which may be due to the pres ence of large scale motion (Fig. 34a). 
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v. 2. 2.5.5. Crosscorrelation with Spanwise (6Z) 

Displacement 

Similarly. crosscorrelation in spanwise displacement was 

obtained with S-probe stationed at the centerline of the tunnel at X=6.75. 

y/e = 3.2. Two wires were arranged in vertical position normal to 

stream so that initial 6Z separation could be set as small as possible. 

Unresolved space-time correlation and normalized space cor­

relation taken at zero time delay are presented in Fig. V.35. The 

delay-time at the peak correlation function did not shift with 6Z. as 

shown in the figure. implying that the turbulent flow field is perfectly 

two -dimensional. Additional confirmation of two -dimensionality was 

observed in the distribution of correlogram. i. e •• the crosscorrela­

tion functions of the spanwise separations were enveloped within the 

skirt of autocorrelation function and very little distortion of the flow 

pattern is observed. Additional correlograms were taken with fore 

and aft separations (6x = ± O. 15 inch) of the center probe with respect 

to the spanwise swept probe and the delayed and advanced time corre­

sponding to the peak correlations remain constant within the experi­

mental scatter. Once again the space-correlation function obtained 

with the operating condition II shows the slower decay indicating the 

existence of larger scale motion. Two-dimensionality is expected. 

because no mean flow gradient should exist in the spanwise direction. 

V. 2. 2. 5. 6. Moving frame Correl~tions 

The moving frame autocorrelation function characterizes the 

evolution of turbulence as convected in the streamwis e direction. The 

slow decay of the moving frame autocorrelation with increasing time 
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delay implies a slowly changing pattern of turbulence as it moves 

downstream and hence the assumption of a frozen pattern passing at 

a stationary point becomes nearly correct. This function can be con-

structed by forming an envelope of space-time correlation functions 

as observed in Fig. V.29. The decay of the moving frame correlation 

indicates that the turbulence pattern is not frozen in the mixing layer. 

However, the ratio of integral time scales between the moving frame 

and a single point autocorrelation is large (J f/f == 10). Hence the 
m sp 

convection of quasi-frozen pattern is a reasonable assumption, and 

reflects the validity of Taylor's hypothesis. 

The integral length scale in the moving frame is determined 

from a moving frame spatial correlation. This function is constructed 

by forming an envelope of space-time correlation functions plotted 

against 6x at constant 6'[. The moving-frame spatial correlation func-

tions are shown in Fig. v. 36 along with the fixed-frame functions 

taken at y /8 = 3.3 (near the maximum fluctuation signal) and Y /8 = 0.28 

(near the dividing streamline). Slight anomalies near the small 6x 

separation are probably caused by the interaction of shock emanating 

from the forward probe. This phenomenon was also observed by 

Demetriades. (47) The moving frame integral scale is larger at 

Y / 8 = 3. 3 than the value taken at Y /8 = 0.28. Considering the relative 

change in the wire sensitivity at different points within the mixing 

layer, it appears that uniform evolution of turbulence exists across 

the mixing layer. However, a definitive conclusion cannot be drawn 

frOll'1 the present investigation. Comparison of the integral scales 

between the stationary and moving frame correlations are also shown 
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in the same figure. The method described by Demetriades (47) and 

actual integration of correlations between O. 1 ~ R (6x) s; 1. 0 show 
o 

almost identical results. The ratios of moving frame to stationary 

integral scale (L /L) vary from 5. 1 to 8.0 indicating the relatively o s 

slow growth of turbulence and support the quasi -frozen turbulent 

spot as sumptions. 

Incidentally, the integral scales determined from the corre-

lation function and from the power spectral density distribution agree 

within 20% of each other. 

V. 2. 2.5. 7. Integral Scale Comparison 

Relative scales of streamwise components of turbulent field 

in three axes can be observed in Fig. V.37. Integral scale of space-

correlation defines the dimension of large scale eddies. Within the 

experimental data scatter, the longitudinal and lateral scales of turbu-

lence appear to be identical (Lx ~. 0056 X
E

, Ly == .0051 X E ). This 

may imply that the scale of turbulence structure is proportional to 

the width of the mixing layer. The spanwise scale is larger than the 

other scales (L
Z 

== • 0094 X
E

). 

v. 2. 3. Intermittency Factor (y) 

Intermittency factors across the turbulent mixing layer were 

obtained by passing a hot-wire signal through a Philco-Ford Inter-

mittency meter. In order to detect a large scale motion, band-pas s ed 

turbulent signals of 100 :;-{z to 40 KHz were surveyed. The triggering 

level of the signal was set so the peak value of y within a shear layer 

was near unity. One difficulty encountered here was the variation 

of hot-wire sensitivity a c ross the layer for a given setting of hot-wire 
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current. However. no correction was applied during the survey. 

It must be cautioned that the investigation establishes only the quali-

tative nature of intermittency. 

In order to distinguish the different modes of fluctuation fields 

the surveys were conducted with a moderately high (i = 6 rna) overheat 

and a low (i = 2. 3 rna) overheat to detect mass flux fluctuation and 

total temperature spottines s. Traces of intermittency factor (y) dis-

tributions across the shear layer are presented in Fig. V.38. A 

survey with the higher overheat representing the combined response 

of mass flux and total temperature fluctuations shows that a very 

sharp demarcation exists between the turbulent and potential fields. 

This phenomenon was found to occur in the velocity ratio (u/u ) range e 

of O. 95 to 1. O. Since very little change in wire s ensiti vity occurred 

in this region. the uncorrected data are reliable. Relatively flat 

y-distribution was noted for values of Y / e between 4 and O. Below 

Y / e = 0 (M = 1. 0). gradual decaying of the y-distribution accom-

panied by a secondary hump. which was also obs erved in the Etc pro­

file. occurred. The observation also implies that the turbulent edge 

consists of the small scale eddies. In contrast, the mixing process 

below the dividing streamline appeared to be extending into the entire 

lower subsonic layer. The skewnes s of the y-profile of this magnitude 

was not obs erved in the incompres sible turbulent mixing layer of 

Wygnanski and Fiedler.(42) which is superimposed on the same figure 

as y(u/u ). 
e 

The second hump observed in the yand Etc profiles must be 

associated with a mass flux fluctuation because it vanished with lower 



-76-

overheats (i ~ 4.0 m.a). The }I-distribution of total tem.perature spot-

tiness m.easured by the low overheat showed a relatively gradual 

variation with a peak appearing at Y 19 == 2. O. This distribution also 

showed that the fully turbulent field was confined in the supersonic 

side of the m.ixing layer. The difference between the two profiles 

obtained at the different overheat currents, therefore, can be inter-

preted as being the contribution from. the m.ass £lux, and the correla­

tion m'T'. The observed phenomena, confinem.ent of turbulence in 
o 

the layer above the dividing stream.line and greater interm.ittency zone 

below the dividing stream.line, appear to be som.e of the distinguishing 

features of the supersonic m.ixing layer. Distributions of actual £luctu-

ation signals and probability density are given in Appendix D. 9. 

V.3. Developm.ent of Supersonic TFML with Finite Turbulent 

Boundary Layer Upstream. of the Step 

With the pres ence of the finite turbulent boundary layer (TBL) 

upstream. of the corner of the rearward facing step, the flow m.ust 

travel som.e distance downstream. before it develops into a self-sim.ilar 

turbulent free m.ixing layer (TFML). Thus a virtual origin of sim.ilar 

TFML can usually be traced back upstream. of the physical origin. 

Analysis of m.ixing layer with initial boundary layer m.ade by Chapm.an and 

Korst(12) and Nash(14) did not show the evolution of m.ixing layer devel­

opm.ent. Baum. (49) and Denison and Baum. (50) solved the problem. of 

com.pres sible lam.inar free shear layer with finite initial thicknes s 

of laminar boundary layer. They have demonstrated the evolution 

of free shear layer from. a Blasius boundary layer profile at separation 

to a Chaplnan's free mixing layer profile far downstream. Qualitatively. 
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their results show the similar trend of development as observed in 

the present investigation. 

It was quoted that the flow must travel at least 450 e to 1000 o 

e downstream of the corner to have fully developed TFML (see o 

Appendix A.4). In the present investigation, careful Pitot pressure 

and hot-wire Etc surveys were made in the starting region. The 

initial thickness of turbulent boundary layer is approximately O. 14 

inch (based on u/u = o. 99) and the corresponding momentum thick­
e 

ness is 0.010 inch. It has been observed that self-similar mean flow 

was developed beyond X = 2.75 (X/9 = 275). 
o 

At X = 0, no-slip condition of the boundary layer at the wall 

is removed and the outer moving fluid interacts with the stationary 

inner fluid by a mixing process. Momentum is transported by turbu-

lence from boundary layer to stagnant fluid, which is set into motion. 

The entrainment of inner fluid at the lower boundary begins to take 

place and the free mixing layer grows from inside whereas the ex-

ternal portion of flow profile is virtually unaffected and retains the 

boundary layer form. This phenomenon is caused by the nature of 

supersonic flow that any disturbance created in the downstream does 

not propagate upstream of the Mach wedge or Mach cone. In the 

velocity profile (Fig. V. 39), the development of the inner mixing layer 

propagating into the original boundary layer profile is indeed observed. 

The profile of the boundary layer is slowly eaten away from the low 

speed side and the mixing layer profile is formed below the dividing 

streamline. At X = 2.00, it has developed into the full TFML form. 

Hot-wire Etc output shows the development of the turbulence field 
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(Fig. V. 40). Basic turbulence energy profile of turbulent boundary 

layer is observed in the data taken at X = -1. O. Note that secondary 

turbulence layer has started from the interface of the moving and 

stationary fluids and its maximum energy level rapidly increas es 

beyond the boundary layer one. Growth rate of the inner layer is much 

faster than the one of the later stage when the s elf similar mixing 

layer flow is established. The energy spectrum distributions were 

taken at the peak of Etc profiles. The frequency was normalized with 

the local velocity and the width of the inner layer determined by the 

slope intercept method. The peaks of energy carrying spectra are 

observed at the non-dimensionalized frequency (2'11"h//uL ) of unity. 

V.4. Reynolds Number De.pendence of TFML 

When hot-wire surveys were made with an operating condition 

II, a peculiar peaking of signal near frequency of 5 KHz appeared in 

the turbulence spectra taken in the TFML. The cause of this peculi­

arity was speculated in Sect. V. 1. 3., but the real cause was finally 

traced down to the one of the upstream conditions, laminar-turbulent 

transitional boundary layer instability or some Reynolds number 

dependent disturbance in the boundary layer. 

The respons e of turbulence spectra measured in the free 

mixing layer to the total pressure variation was investigated. Since 

all other operating conditions remained unchanged, the total pressure 

variation implied the direct Reynolds number variation. The unre­

solved turbulent energy spectra were normalized with the integrated 

quantity and with the non-dimensionalized effective X-distance which 

is referenced to X = 4. 75 value (i. e., the data taken at X = 4. 75 
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correspond to the spectra displayed in the physical frequency domain). 

Spectra were taken at several X-stations along the line of constant 

mean voltage output of hot-wire. The input current to the hot-wire 

was maintained constant at i = 4. 8 rna., but it must be cautioned that 

the sensitivity coefficients of wire response varied with p. There­
o 

fore, the comparison of integrated voltages between different cas es 

is not recommended. 

The boundary layer of the first three cases (p = 500, 610, o 

900 mm Hg) was tripped with a strip of fine grain sandpaper. The 

spectra taken with p = 500 mm Hg are shown in Fig. V.4la. The 
o 

spectra are accompanied by pronounced peaking near f = 5 KHz (peak 

shift is due to X-normalization), which signifies the passage of high 

energy carrying organized eddies in the preferred frequency range. 

No significant development of medium to small scale turbulence is 

noted (oddly, it follows the f- 5 / 3 law immediately following the peak). 

Approximately 80% of the total energy is carried in the frequency 

domain of les s than 100 KHz. But more than 20% of energy is con-

tained in the frequency domain of below 10KHz. The integration 

of power spectra was taken in accordance with Appendix D.7 and 

shows the decreasing trend with X. The energy profile shows that 

the boundary layer is transitional with high intensity signal existing 

near the wall which is similar to the ones observed by Laufer and 

Vrebalovich.(43) The presence of large scale periodic motion was 

detected by autocorrelation measurements as shown in Fig. 42. 

The spectra taken with p = 610 mm 1-Ig are shown in Fig. V. 
o 

41 b. Peaking of spectra near 6 KHz persists but a considerable 
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development of higher frequency energy carrying components is also 

observed. This observation implies that this flow condition is the 

followup stage of previous flow field. The agreement of the data of 

x = 4. 75 and beyond is excellent which indicates the linear dependence 

of high frequency turbulence on the axial growth rate. Approximately 

50% of energy is contained in the high frequency components above 

100 KHz. The passage of large scale wave-like motion, which is 

less pronounced in intensity as compared to the previous condition, 

was also detected (Fig. 42). The integrated intensities were found 

relati vely constant with X. 

When the total pres sure was increas ed to p = 900 mm Hg, the 
o 

obs erved peculiar peak vanished completely and the broad band spectra 

of turbulence was obtained (Fig. V.41c). To operate the present wind 

tunnel at high stagnation pressure, the dryer section must be bypassed 

and the amount of oil impingement on the hot-wire becomes severe. 

In view of operational handicap, the data showed reasonable agree-

mente High frequency components of this spectra distribution was 

identical to the spectra taken with p = 610 mm Hg. 
o 

Prolonged use of filters in the upstream settling chamber 

fortunately cleaned the tunnel circulating system and the removal of 

filters restored the normal operation of the wind tunnel with ambient 

stagnation condition without breaking the wire. The boundary laye r 

trip was also changed to a strip of coarse grain sandpaper. With 

the-se combined operating conditions (operating condition I), the 

peaking signal was eliminated and the entire spectra were found to be 
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identical with the data taken with p = 900 ITlITl Hg. Self-siITlilarity 
o 

of the turbulence field was evident in these ITleasureITlents. 

The spectral developITlent of turbulence with Reynolds nUITlber 

repres ents the different sequential developing stages of the turbulent 

ITlixing layer. Criteria for the fully developed s elf-siITlilar TFML are 

defined as the existence of 1) turbulent spectra of broad band char-

acter with no discrete peak, and it can be norITlalized with X E ; and 

2) constancy of total integrated energy level with X so that equilibriuITl 

flow is established. 



-82-

VI. CONCLUSIONS AND RECOMMENDATIONS 

VI. 1. Conclusions 

(1) Self-similarity of the two-dimensional. supersonic turbu-

lent free mixing layer has been established. The mean flow field with 

a linear growth of TFML is observed at X ~ 275 e and the virtual 
o 

origin of conical flow is located at approximately 250 e upstream of 
o 

the step. Self-similarity of the turbulent field is assured at X ~ 375 

e • provided the upstream boundary layer is fully turbulent. o 

(2) Compressibility effect (supersonic-adiabatic flow) reduces 

the spreading rate. the entrainment rate and the maximum shear stress 

of TFML. The quantitative data comparisons of compressible-

incompressible TFML are shown in Table 1. 

(3) Entrainment rate matches with momentum thickness 

growth rate (A = de /dx). 
e 

(4) Maximum shear stress is independent of the axial station. 

(5) Velocity profiles are reduced to an incompressible form 

by a linear transformation of the lateral coordinate by a constant 

scaling parameter. a. a varies with Mach number. This observation 

suggests that a universal velocity profile of the TFML in the physical 

coordinates may exist. Forced entrainment by the mass injection into 

the boundary layer appears to alter the profile only in the subsonic 

region of the mixing layer. 

(6) Power spectral density distributions taken at several axial 

stations along the ray of the constant flow field collaps e to a single 

curve by e or X E normalization. The integrated intensities are found 

to be constant along the ray of the flow field. 
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(7) Energy carrying spectral components of velocity fluctuation 

exist near the Strouhal number (2nfb/u
L

) of unity, and they match the 

incompressible data. A relatively large region where the spectral 

function varies as f-
l 

exists in the pres ent experiment. 

(8) Spectral peaks observed near the Strouhal number of unity 

appear and disappear with Reynolds number or with different boundary 

layer trips. This implies that the fully developed TFML consists of 

the randomly fluctuating fields without the large organized motion of a 

preferred frequency. This interpretation is based on the present 

supersonic TFML investigation and it may not necessarily be appli-

cable to the incompressible TFML. 

(9) Maximum intensities of different turbulence modes occur 

near the maximum gradients of the respective mean flow properties 

which exist in the supersonic side of the TFML. The combined inten-

sities of all fluctuating modes are large but a considerable amount of 

the energy appears to be dissipated into the thermal energy as ob-

served in the temperature fluctuation profile. Therefore, the vor-

ticity mode of fluctuation which mainly contributes to the growing of 

the turbulent field is left with relatively low kinetic energy. The 

maximum streamwise velocity fluctuation of M = 2.47 flow is ap­
e 

proximately 1/3 of the incompressible value. 

(10) Convection velocity of turbulence above the dividing stream-

line lags behind the mean velocity and below the dividing streamline 

leads the mean velocity. The two velocity fields are identical in the 

vicinity of the rlividing streamline, where the turbulence production 

is maximized. Small scale turbulences appear to adjust quickly to 
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the new local environments but the large scale eddies throughout 

the layer appear to be convecting with the velocity which exists at 

the dividing streamline. 

(11) Taylor's hypothesis appears to be valid. 

(12) Two -dimensionality of turbulent front is obs erved by the 

spanwise cross correlation measurements. 

VI. 2. Recommendations for Future Work 

(1) The possible existence of a universal velocity profile 

should be verified by a higher Mach number TFML experiment using 

the present technique. The proposed Mach number should be greater 

than 5.0 (M ~ 5.0) to observe a meaningful comparison of data. 
e 

(2) A high resolution instantaneous visualization technique 

should be developed to observe the turbulent motion of supersonic 

TFML. especially the existence of large organized eddies detected 

in the incompressible TFML. 

(3) A two -stream mixing of supersonic and subsonic layer 

flow should be conducted to determine whether or not the extension 

of incompressible scaling law to this type of flow is valid. 



-85-

Table 1: Comparison Between Incompressible 

and Supersonic Two -Dimensional 

Turbulent Free Mixing Layer Properties 

r-'--~ , ----------T--Incompressible I Sup;;~~~ic(M-~-2. 47) ! 
+ (Lieprnann & Laufer) ~pre. ent Inves tigations ) J 

I (.IOd~/ ~/U e ~ -.:~) - 1- -- - -~-:.~ ~ ---- -- i ----_-O.-~-6~----- - i 

d8/dx = A 
e 

a 

2 
T /A P u max e e e 

2 
T /p u 
max e e 

I j I 0.035 . 

! 
I 

I 
I 
I 
! 

12 

.34 

.012 

1.0 

0.0073 

27 ,.., 29 

.385 

.0028 

.45 

l
j I_Pw/Pe 

'lu,2/ue ) .16"".18 .05,..,.06 
max i 

--.. - - --_._----- -.- -.----.---.--~--------------.-------.---.--. ---.----.--.-------------' 
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I 10.00 ------------11 
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•••• LO. '.0 \III I I I I I I I I J7° 

.25 
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t 1 T 
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UPSTREAM BLOCK WITH PRESSURE TAPS 
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~
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FIG. II. 1 b MODEL CONFIGURATIONS 
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FIG. II. 1 c MODEL CONFIGURATIONS 
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.083 Tubing (5ft. long) 
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./2510 1 
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APPENDIX A 

FLOWFIELD IMPROVEMENTS 

A. 1. Porous Plate Characteristics 

The unique setup of this experiment is the installation of the 

porous plate at the bottom wall behind a rearward facing step which 

permits an injection of fluid into the base region of separated flow. 

The stainless steel porous plate was supplied by Mott Metallurgical 

Corporation of Hartford, Connecticut. The overall dimension of 

10 -micron grain porosity plate is 0.25 inch thick, 2. 0 inches wide 

and 8.0 inches long with O. 125 inch radii at the four corners. The 

original model of the pres ent investigation was constructed with a 

single plenum chamber as Fernandez (22) has suggested. However, 

the check of blowing uniformity under the pressure level of actual 

testing condition revealed the non-uniform distribution of mass flow. 

A peak in mass flux distribution was detected in the vicinity where 

the inlet pipe was located in the plenum chamber. The obs ervation 

implied that the mas s flux distribution through the plate is dependent 

upon the flow condition inside the plenum chamber, which was also 

confirmed with the side port inlet nozzle. Rotation of the nozzle 

disclosed that the highest mass flux distribution was always noted 

in the region where the side port was directed. 

In order to eliminate the undesirable effect, the model was 

modified to a double plenum chamber configuration. After several 

trials, the mo st effective flow damper was constructed in the following 

way. Uniformly patterned holes of 1/16 inch diameter were drilled 
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on two sheets of aluminum. Another aluminum sheet with offset 

pattern of holes was sandwiched between the other two sheets and 

bolted together very tightly. In this way the flow must travel the 

gaps between three layers of aluminum sheets such that approximately 

200 mm Hg pressure drop was obtained across the plate, creating a 

very uniform second plenum chamber. The longitudinal traces of 

hot-wire surveys taken along three spanwise stations (centerline and 

z = ± 0.50 inch) are shown in Figure A.l a. Local mass flux fluc­

tuation of approximately 10~ is observed, but the mean flow is rela-

tively constant. The local fluctuations were damped at the height 

farther away from the plate. 

The spanwise survey shows the interesting phenomenon pro-

duced by the effect of fences. Without fences, large peaks of jet-like 

mass flux appeared on both edges as shown in Fig. A. lb. First it 

was thought to be caused by the leakage between the porous plate and 

the model block. The edges were completely sealed with epoxy, and 

yet the same peaks appeared. Installation of fences, however, elimi-

nated the peaks. This obs ervation implies that very small pr es sure 

gradient created between the blowing and non-blowing regions is suf-

ficient to alter the flow pattern such that jet-like flow is directed 

toward the low pressure sides. 

Once the uniform blowing has been established, the mass flux 

versus plenum chamber pressure and pressure ratio across the plate 

were investigated. The mass flux through the particular plate 

appeared to becOIne insensitive to the pressure ratio, p IIp, when 
p e 

the pressure ratio is approximately 6. Beyond this point, the mass 
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flux is independent of external pressure distribution and dependent 

solely on the plenum. cham.ber pressure (Fig. A. 2 a). The behavior 

of the plate appeared to be sim.ilar to the choked flow phenom.enon 

in the sense that there is a sonic flow at the exit. However, Fernandez 

has estim.ated that the pressure ratio of an order of 200:1 is required 

to choke the type of porous plate used in the present experim.ent. 

Furtherm.ore, the Mach num.ber of the flow at the exit is quite low 

(~ O. 1 which was confirm.ed by Pitot m.easurem.ent) and hence the 

flow pos s es s es negligible m.om.entum. com.pared to the freestream. 

m.om.entum.. The m.axim.um. m.ass flux versus the plenum. cham.ber 

pressure is shown in Fig. A.2b_ which appears to have approxim.ate-

ly a parabolic relation which follows the argum.ent m.ade by Fernandez 

m ..... Ppl [1 + (p Ip )2 + - - ] plate e pI 

Since this represents the m.axim.um. m.ass flux for the given Ppl' the 

actual m.as s flux m.ust be obtained by application of cor rection facto r 

if p lip < 6. O. However, the direct m.ass flux m.easurem.ent taken p e 

from. the flow m.eter is us ed during the test. The us eful application 

of the foregoing inform.ation is to provide the conditions under which 

the spatial uniform.ity of the injection rate m.ay be expected. Testing 

under the condition of p lip < 6.0 im.plies the blowing rate over the 
p e 

plate will be non-uniform. if the external pressure field is non-uniform.. 

Therefore, it is desirable to conduct a test under the condition 

p lip > 6. O. P e 
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A.2. Simulated Streamline Block 

The preliminary test revealed that the pos sible remedy for 

the undesirable pres sure gradient produced by the termination of 

blowing is the tailoring of the downstream block to simulate an ideal 

streamline. Based on the self-similar flowfield obtained in the 

longitudinal region of 2.00 :c;; x :c;; 4. 00. the normalized streamline 

pattern was determined by integration of the continuity equation. 

For a self-similar two-dimensional turbulent mixing layer. 

the stream function is given by 

where Xe£t' Yeff are measured from the effective origin. From the 

above expression for the stream function. we obtain 

f I (Tl) 

f (-00 ) 

Also from the momentum integral. we have 

In the present experiment the effective origin was located at x = -2. 5 

inches and y = o. 16 inch. and hence 

xeff = x + 2.5 inches. Yeff = y - O. 16 inch. 

Also (A ) ft· was o. 00706. e e 
Therefore, from the measurements of 

turbulent mixing layer in the self-similar region, we can determine 

the norl1lali7.ec1 stream function f(Tl) (Fig. A.3). 
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The following steps are us ed to reconstruct the streamline 

pattern with '¥ = constant. 

1) Choose the longitudinal station where the streamline block 

begins and deterInine xeff = x sta + 2.50. 
o 

2) DeterInine the effective streaIn function by '¥ eff = -0.00706-
o 

X eff • The initial 
o 

y coordinate can be determined by y = -0. 1-
o 0 

xeff + O. 16. 
o 

3) Subsequent coordinates of teff = constant can be deter­

mined by selecting an xeff downstream of x eff • Then t eff I xeff = 
o 0 

f(Yeff!xeff) gives the Yeff/xeff from the normalized streamline curve. 

The actual streamline block constructed for the downstream 

of porous plate (x ~ 8. 00) is also shown in the same figure. Uniform 

pressure distribution obtained with the streaInline block is also 

shown in Fig. III. 1. The effectiveness of this modification is demon-

strated in Section V. 2. 1. 1. 

A.3. Effect of Vertical Traverse Mechanism 

The vertical traverse mechanism was originally installed in 

the aft portion of the test section. The forward tip of the probe 

holder support was at the x-station 8.00 when it was at the rearmost 

position so that the flow survey downstream of x == 7. 00 was made 

impossible. In addition. the flow disturbance created by the rela-

tively large struts fed into the large subsonic region associated with 

a TFML to produce an undesirable flow interference. 

Major Inodification to relocate the vertical travers e out of the 

test section was. therefore. undertaken. At the saIne tiIne. a Inotor-

ized axial drive was designed and installed to increase the surveying 
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capability up to 15 inches of axial traverse. The vertical traverse 

was relocated in the diffuser section, which eliminated the major 

flow interference from the traverse struts. The disturbance created 

by the probe holder and by the Pitot probe was unavoidable, but their 

contributions were negligibly small. After the modification the full 

sweep of vertical traverse produces a static pressure deviation of 

± O. 5% at most. 

A.4. Effect of Finite Initial Turbulent Boundary Layer (TBL) 

The presence of a finite TBL at the edge of the rearward facing 

step influences the subsequent development of TFML. The present 

experimental setup produces a TBL with thickness (6) of approxi-

mately 0.12,..., O. 14 inch and its momentum thickness (8 ) of approx­
o 

imately 0.01 inch at the corner. d8/dx ~ 0.007 and the virtual origin 

at x = -2.5 have been determined from the preliminary TFML test. 

Based on these parameters, the momentum thickness of TFML is 

approximately 0.049"'" 0.07 inch in the region 4.5 inches :S;;x :S;; 7.5 

inches. Alber(l6) suggested that x/a
8 

8
0 

> 10 is required for the 

establishment of similar flow. a8 ~ 45 is estimated for the present 

test from the correlation curves of a8 vs. Me of Alber. Considering 

8 = 0.01 inch, then the required distance is approximately 4.5 o 

inches downstream of the step. Bradshaw(5l) defined the criterion 

of 1000 8 whether the initial boundary layer is laminar or turbulent, 
o 

which corresponds to 10 inches downstream of the step. Most of the 

current test program was carried out in the region 475 e :5: x :S;; 875 9 
o 0 
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where the e was momentum thicknes s of the turbulent boundary o 

layer. The relaxation to the equilibrium turbulent flow was inves-

tigated in the fluctuation measurements and the length in the present 

experiment appears sufficient. 

Another contribution of initial momentum thicknes s of the 

finite magnitude is an influence on establishing the actual dividing 

streamline position by mass balance. For a constant pres sure 

assumption. the integrated momentum and 

duced to a form 6(x)- 8 = w w dx = S
x P v 

o x Pe u e o 

continuity equations re­
y* p u S -u- dy]x' where 8 (x) 

-00 Pe e 

is a momentum thicknes s of mixing layer profile measured at x-station 

downstream of the step. Then the definition of y*. the lateral position 

of a dividing streamline determined by mass balance. is highly de-

pendent on e . However. in the region where the present test is 
o 

conducted, the linear growth rate of momentum thickness agrees with 

the measured entrained mass (de/dx = A = 
e 

A.5. Effect of Finite Length Fences 

Although the flow field in the main test section over the entire 

injection region (0 s:; x s:; 8.0) appeared to be two-dimensional with the 

finite length fences extending 3. 25 inches beyond the injection termi-

nation. the Pitot pressure surveys showed the presence of a secon-

dary flow over the streamline block. The flow field deviation from 

the two-dimensionality was created by the low pressure produced in 

the base region of finite length fence by the flow expansion. which 

was sensed by the large subsonic region of the mixing layer flow. 
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The full length fences (L = 18. 0 inches) covering the entire 

length of the test section replaced the finite length fences. The 

flow field in the region of interest (0 ~ x: ~ 9. 75) remained uniform 

and it appears the two-dimensional mixing layer was established. 
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APPENDIX B 

HOT-WIRE TECHNIQUE 

Portions of a finite length hot-wire technique developed by 

Behrens (32) are summarized in this appendix. In addition, the ap-

proximations required to extend the application of its technique to 

the subsonic region of turbulent mixing layer are discussed. 

B. 1. R eduction of Mean Flow Quantities 

The rotal temperature (T ) and the Nusselt Number (Nu ) based 
o 0 

on the total temperature are required to compute the sensitivity coef-

ficients and the thermal lag time constant (M
t

) of wire when the fluc­

tuation data are reduced. The iteration method used to account for 

the heat conduction loss to the end support is given by Ramaswamy!27) 

The uncorrected adiabatic temperature (T ) of wire and Nusselt 
awm 

number (Nu ) can be determined from the direct measurements by 
m 

obtaining the mean resistance (R ) or mean voltage outputs (E ) 
w w 

corresponding to the several applied currents (i). A linear relation 

between Rand i
2

R was fitted by the least-square-error method. 
w w 

The value at i = 0 gives the adiabatic resistance of wire (R ) and awm 

the slope (k) determines the Nu • Gran (52) showed that it is more 
m 

convenient to plot the data in l/R versus i 2 for one reason that 
w 

variation in R does not affect the value of abscissa as observed in 
w 

the other method. Once again, R is determined when i = 0 and awm 

slope (k) is determined by 

k = 
R awm 

.2 
1 

(~-
awm 

__ 1 ) 
Rw 

(B. I) 

The corrected adiabatic temperatures were determined from the 

following relations. 
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R = awm R [1 + a (T - T )] r r awm r 
(B. 2 ) 

T 
aw 

T = 
awm 

cosh ;;;- - T /T 
'" 0 sup aWIn 

cosh Fo- 1 
(B.3) 

where a = Nu fa; 
o 0 

Nu = Nu 'f; 
o m n 

a=k /[k (L/D)2] 
w 0 

T = T) T = corrected adiabatic temperature of wire aw 0 

'fn = End loss correction parameter found by iteration 

k = Thermal conductivity of air at stagnation temperature 
o 

k = Thermal conductivity of wire w 

LID = Aspect ratio of wire 

T) = Recovery factor 

Nu = R a /(wDL k) = measured Nusselt number. m r r 

B.2. Thermal Lag Time Constant 

The heat capacity of the hot-wire results in the response lag 

when the hot-wire is placed in fluctuating flow. The hot-wire set is 

equipped with a compensating amplifier whose response is the inverse 

of the response lag of hot-wire. Proper setting of amplifier time con-

stant (M
A

) requires a prior knowledge of wire time constant (M
t

)· Mt 

was computed by the following equation at different lateral positions. 

Mt(y, i) = K I-tanhJa(y. i) /,ja(y. i) (Function of applied current i) 
Nuo (y)-i 2 r a /trk 

2 r r 0 (B.4) 
p C D 

where K = ~;; is the property of wire and the thermal conduc-
o tivity of air which is approximately constant 

(To distribution is ± 2%). 

a(y, i) = 

Nu (y) 
o 

Nu (y)k 
ok 0 (1 - i 2 r a /wNu (y)k ) (L/D)2 • 

r roo 
w 

known from mean flow measurements. 

Measurements of M
t 

with square wave technique quantitatively agree with 

the computed values of the above equation and the repeatability is 

found within ± 10% of mean values. 
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B.3. Hot-wire Transfer Functions 

Relationship between the fluctuation voltage response of real 

hot-wire to "ideal" or "massless" hot-wire is given as 

--;z 
e f, m 

where 7 e f,m 

= 

= 

--;z 
e f . 

, 1. 

Measured mean square voltage fluctuation at 

frequency f. 

(B.5) 

-;2 = e f . , 1 
Ideal mean square voltage fluctuation at frequency f. 

The relation between the input and output voltage of the amplifier is 

where Go = Zero frequency gain of the amplifier. 

G*(f) = Frequency response of the amplifier. 

The compensating amplifier response is 

-,2 ,-,2 
e e = f, comp f. A 

2 
1 + (21TfM A) 

1 + (21TfM
A

'K)2 

(B.6) 

( B.7) 

where K = floor to ceiling ratio (K: = 420 for the present set). 

So the mean square voltage fluctuation sensed by the "ideal" hot-wire 

is 

--;z 
e

f 
. 

I 1 

7 e 
= f, m 

[G G*(f)J2 
o 

(B.8) 

Power spectral density distribution is fully corrected for these amp-

lifier responses. The power spectral measurem.ents were taken with 

a Tektronix lL5 Spectrum Analyzer whose resolution setting is taken 

equivalent to the bandwidth of the sampling instrument. The data, 
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J e,l(f) versus frequency (f), were plotted on a Moseley X-Y plotter. 

The sweep rate of the spectrum analyzer was operated in manual 

mode, so that the respons e of amplitude of the signal was maximized. 

Therefore, additional correction required in the data reduction rou-

tine is the bandwidth of the instrument. 

7 e f · = 
, 1 

e{ {I + (lnfMt )ll { lnfM A l} ,m I+() 
BW[GoG*(f)]l I + (In:fMA)l I( • 

(B.9) 

The integrated mean square voltage fluctuation (e,l) is obtained by 

-;z e 
00 -

= ! ef
l

. df = 
o ,1 

Hot-wire thermocouple output is correct only when 

* 
MA = Mt , G (f) = 

In:fMA 2 
I. 0 and ( K )« I . 

Then -;z 
e = K tc Etc (m0) (B. 11) 

where K tc Calibration constant 2 
= (mv /mv) 

Etc = Thermocouple voltage output (mv) 

If the main contribution of total energy comes from the high frequency 

2 2 
turbulent components where (2nfM.

t
) »1 and (2n:£M A) »1 were 

satisfied, the Etc measurement can be interpreted properly by 

-,2 
e = 

M 
( t) K E 

MA tc tc 
(B.Il) 
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B.4. Sensitivity Coefficients 

The fluctuating voltage of "ideal" hot-wire is expressed in 

terms of the sensitivity coefficients as the parameters 

e! f = 
1, 

- S u' - S pI + ST' 
u f p f To of 

(B.l3) 

Sensitivity coefficients are defined as 

(B. 14) 

where 
4i R a 1') T Nu k M t ~ C = r roo 0 1 + 1/ (M

t 
w)2 

C n 2 
Pw w 

Bl = a~Nu /a~Re o 0 These values are determined 

B Z = a0n'l1/a0nRe 
0 

by a function of local Mach 

number and Reynolds number 

B3 = a~Nu /a~M 0 and interpolated from the para-

B4 = a0n'l1/a0nM metric curves given in Ref. 32. 

n = d ~ k /d ~ T ~ O. 885 o 0 

m = cI ~ IJ /d ~ T ~ O. 765 o 0 
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g = tanh ffl ff Function of current, i, and frequency, 

f. g vanishes as f -t 00 or land 

a -t 00 (i. e., infinite hot-wire) • 

w /b = 211' f K I (Nu - i 
2 

r a I -rr k ) orr 0 

w = 2-rrf. 

The first square bracket terms in the sensitivity coefficients are 

independent of frequency response. The frequency response enters 

in the sensitivity coefficients through a function g. It was found that 

error contribution resulting from the neglect of g is less than 15~ 

of RMS fluctuating quantities in the pres ent investigation. 

Sand S are found to be related by S = k S + k for all 
u p p s u 

Mach number range where ks = Bl(B1 + B3 a1)and the contribution 

from k is negligible. The parallel relation between Sand S • in 
u p 

fact, permits us to use the curve fitting technique of hot-wire mode 

separation (Appendix B-5). 
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B.S. Extension of Curve Fitting Method - To 5ubsonic Flow 

In order to separate the fluctuating flow properties, the 

fluctuation voltage can be expressed in terms of fluctuating flow 

quantities. 

e ' = 

where u ' , p' and T I are non-dimensional fluctuations of velocity, 
o 

density and total temperature, respectively. 5 , 5 and 5
T 

are 
u p 0 

their respective sensitivity coefficients (Appendix B.4). Mean 

square of the above equation after normalizing with respect to 5 T 
o 

becomes. 

-;2 e 
ST 2 = 

o 

2-2 22 2 -- -- --
r 1 u I + r 2 p' + T ~ - 2 r 1 u I T ~ - 2 r 2 p'T ~ + 2 r 1 r 2 p 'U I 

(B. IS) 

In principle, all mean square and correlation quantities can be found 

by inversion of 6 x6 matrix, if sufficient data were taken with six 

different overheat parameters. However, 5 ~ 5 ~ 5." in super-
u p m 

sonic flow (M :<! 2.0) and it was found also that S = k S + k, 
P s u 

(where k contribution is small and can be neglected) in all Mach 

number range; then the inversion is impossible because of the vanish-

ing of the determinant. In this case the mean square voltage fluctua-

tion can be rewritten as 

e ' = - 5u (u' + ks p') + 5 T o 
T' 

o 
or 

~ 2 ·22 - =r (ul+k pI) -2r(u ' +k p')T '+T I 
S s 0 0 

5 T 2 where r = 5 /5 
ouT o 

(B.16) 
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and Morkovin's curve fitting technique to hyperbola in the rn.ode 

diagram of e' versus r can be extended in all Mach number range. 

The total tern.perature fluctuation will be most accurate arn.ong all of 

the fluctuation pararn.eters to be computed. becaus e it is determined 

by the zero intercept of ordinate. In this region error bound is much 

rn.ore easily defined. Mass flux fluctuation depends on the coefficient 

of r2 which is highly dependent on the asymptotic slope of hyperbola. 

The correlation coefficient is described by the coefficient of r. 

(i. e •• slope at small value of r) which means the position of vertex 

deterrn.ines the degree of correlation coefficient. RID'T ,. Therefore. 
o 

the rn.ass flux fluctuation and correlation coefficient are rn.ore sensi-

tive to the scatters of data. However. the effect of data scatters is 

reasonably averaged if sufficient numbers of data are collected as 

seen in the exarn.ple fluctuation mode diagram (Fig. V.26). 

In accordance with the approxirn.ation of Appendix B. 4, the 

term which has been called mass flux is not exactly as it is meant to 

be but is modified by a correctionpararn.eter. k (i.e •• m'/ffi=u'/u+k pl/p, s s 

where S = k S ). The correction parameter k approaches 1. as the p sus 

high supersonic flow is encountered with sufficiently high Reynolds 

number bas ed on hot-wire diameter and can be less than 0.5 for low 

Mach number. Since no other suitable name is found. it will be 

called rn.ass flux fluctuation in this writing. However, this definition 

is strictly true only in high supersonic flow where Mach number 

dependence of sensitivity coefficient vanishes and assumption of 

s . ~ S ~ S is applicable. 
In u p 
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B.6. Separation of Velocity, Pressure and Temperature 

Fluctuations 

Separation of u' and pI requires the further assumptions. 

In supersonic freestream region where the flow is essentially in­

viscid, the vorticity mode is assumed absent. Laufer,(31) 

Kovasznay( 28) and others showed that the freestream turbulence 

is most likely produced by the acoustic radiation from the turbulent 

boundary layer or mixing layer. Assuming isentropic process and 

considering a plane sound wave (Laufer ( 31», the fluctuation voltage 

equation can be rewritten in terms of uland pI (pI is normalized 

pressure fluctuation). 

(B.17) 

At overheat operating at r = 13, contribution from the velocity fluctu-

ation vanishes and the mean square voltage fluctuation is proportional 

to the mean square pressure fluctuation. Similarly, velocity fluctua­

tion is determined by the voltage fluctuation at r = 13 1M2. Since the 

2 
measurements were not taken exactly at r = f3 or r = f3 1M , curve 

fitting of the data in the original form (Eq. B. 16) was made to deter­

mine the J pl2 and J U l2 • In reality, some residual turbulence 

associated with a wind tunnel characteristic such as a temperature 

spottiness produced by a compressor-dryer combination, the flow 

disturbance produced in the upstream plenum chamber, etc. exists 

in the freestream. However, these residual turbulences are much 
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smaller in magnitude and uncorre1ated with the acoustic radiation 

field in the well-designed wind tunnel. Freestream turbulence 

produced by the pure temperature spottiness can be detected if the 

linear mode diagram converges to r = -a as shown by Kovasznay.(Z8) 

The temperature spottiness in percent of total temperature can be 

found bye' at r = O. 

In the core of turbulent shear flow. the pressure fluctuation 

is assumed negligible compared with the velocity and the temperature 

fluctuations. Then the temperature and the density fluctuations are 

related by T' =-p'. Neglecting the second order fluctuation terms. 

the total temperature fluctuation can be expressed in terms of velocity 

and temperature fluctuations. T ' = (3 u' + aT'. 
o 

where 

'V-I 2 2 -1 Z 2 -Z -2 -2 2 
a = (1 + 2 M (1 + q')] ; (3 = (y-l)M a and q' = (u' +v' +w' )/u 

and can be neglected without introducing a serious error. The mass 

flux fluctuation term is as given before. fi' = u' + k pl. Inversion of 
s 

mean square properties produces the velocity and temperature fluc-

tuations explicitly in terms of mass flux and total temperature fluctu-

ations. 

~ Z 
k

2 
2k a ~ u a m s s 

T'Z 
1 

(32 T ,Z = (c+k (3)Z 1 -Z(3 
0 s 

u'T' -a{3 k (a -k (3) mIT' 
s s 0 

(B.18 ) 
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Another approach is shown by Behrens (32) and Gran; (25) fluctu-

ation volt age equation can be rewritten in term.s of redefined 

sensitivity coefficients and new m.ode diagram. can be constructed. 

~ e 

52 T 

= 

where = 

IR = 

T,2 + 2 1R u'T' + JR2 u,2 

Q! ST + S = Q! ST + ks Su' 
o p 0 

«(35 T 0 - 5 u) / 5 T 

( B.19) 

sensitivity coefficient 
for tem.perature. 

In the core of the mixing layer, both methods yield results within a 

few percent of each other. 

B.7 Correction of Cross correlation Functions 

The crosscorrelation functions are obtained by the co-

variance of two signals divided by the square roots of variance 

of signal taken at surveying position. However, the variance of 

signal at different positions in the flow field were not always 

measured simultaneously with the crosscorrelation survey. In 

such cases, the data are corrected in the following manner. 

Recall that 

= 

C l2 (0. 0, 0;0) = 
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Then 
1 1 

{Cll (0,0) CZZ(fuc, O)}z = C 1Z (O, 0, 0;0) fCZZ(fuc, O)/CZz(O,O)}Z 

Finally 

(B.20) 

A technique for mode separation of crosscorre1ation function 

is given by Demetriades.(47) Measurement of at least sixteen com-

bined overheats of both wires will be required per sample point and a 

great deal of time is involved. In the present investigation, quantita-

tive mode separation, therefore, has not been made. 
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APPENDIX C 

FREESTREAM TURBULENCE 

C. 1. Qualitative Discussion 

Because of the small cross-section (half height I inch and 

width 2.5 inches) but with relatively long longitudinal surveying 

dimension (8 inches) of test s ection# the complete elimination of 

wave interaction in freestream region is next to impossible. In 

addition# joints of nozzle blocks and downstream blocks# etc., create 

some infinitesimal mismatches which produce very weak interaction 

waves. These waves are expected to interact with turbulent boundary 

layer of opposite wall or turbulent mixing layer of test flow and in 

turn feed the complicated interaction patterns downstream. Although 

the weak interactions are expected to contribute little to the change 

in mean flow properties, the turbulent fluctuation level may be in­

fluenced appreciably. In order to assess qualitatively the natures 

of these interactions# hot-wire surveys were made in axial direction 

at approximately midpoint of freestream (Y = 0.45). The total fluc­

tuation intensities obtained through thermo -couple output (Etc)' of 

Shapiro-Edward set are shown normalized with upstream boundary 

layer quantity (Fig. C.1. ). Turbulent boundary layer was created 

by tripping the flow just upstream of the throat. Roughnes s of trip 

and operating total pressure influenced the nature of the boundary 

layer. 

For a reference# a flat plate filler was installed behind the 

step with upper surface flushed with upstream block to extend the 
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turbulent boundary layer all the way to X-station 10 inches. The 

rate of increase of fluctuation intensity under operating condition I 

(dE/dx:?! O. 14/in. ) remained constant up to X = o. 90 and higher rate 

(dE/dx:?! 0.6 lin. ) downstream. The irregular pattern of intensity 

is probably caused by the wave interaction. The change in the rate 

of increas e is obviously caused by the slight mismatch of the flat 

plate at X = 0 producing the weak wave and in turn amplifying the 

growth of turbulent boundary layer (effective tripping). Turbulent 

boundary layer fluctuation (Etc) profile and boundary layer thickness 

determined by slope intercept method show the increase in turbulent 

boundary layer growing rate beyond X = 1. O. Observation complies 

with the suggestion of Liepmann(34) that the sound radiation from the 

turbulent boundary layer may be produced by the fluctuation of 

turbulent boundary layer displacement thickness. Laufer(53) also 

observed the similar phenomena. 

In order to see the pattern of the interaction waves, the 

leading edge of flat plate filler was beveled such that expansion 

flow is initially created at X = 0 and recompressed to a little 

stronger shock wave. From the traces taken at two Y -stations, 

the initial and reflected shock patterns can be mapped. Schematic 

reconstruction of the major flow field confirmed the locations of 

wave interactions to occur. However, it was noted that amplitude 

of signal and growth rate were almost identical to the previous 
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flat plate case, except where direct interaction of reflected wave 

occurred, indicating no further amplification of freestream turbu­

lence by intensifying the shock waves. 

Two other traces were taken with turbulent mixing layer down-

stream. of X = 0 (Fig. C. 1. ). In general, the rate of increase is 

considerably higher, (dE/dx~ 1. 4/in.), which is accompanied with 

initial offset of intensity, than the one with turbulent boundary layer. 

The irregular patterns are almost in phase with those of the turbulent 

boundary layer case, which indicated that there exists a fixed distur­

bance pattern in the test section whether it was boundary layer or 

mixing layer beyond X = O. Case 2 was run with operating condition 

II. As will be discussed in Section V.4, the boundary layer up­

stream of X = 0 at this operating condition was not effectively tripped 

and the effect of laminar-turbulent transition was present and ampli­

fied in the mixing layer at f = 5 """ 6 KHz. Although initial increase 

of growth rate differs from Case 3, it appears that final growth rates 

are identical. Case 3 was made with operating condition 1. All spec­

tral investigations have confirmed that fully developed turbulent flow 

in both upstream boundary layer and downstream mixing layer have 

been established. This has much sharper and shorter initial ris e in 

turbulent intensity than Case 2. 

There is a distinct difference in the growth rate of free stream 

turbulence between the flat-plate case and the mixing-layer cases. 

The intensity upstream of X = 0 increases very slowly with distance 

and independent of downstream conditions. The change in freestream 

turbulent intensity measured downstream of X = 0 depends on the type 
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of flow that follows. The increase of growth rates of turbulence were 

detected by hot wire when the probe travelling axially at the middle 

of the test section was stationed approximately at X = O. 90 ...., 1. 00 in. 

This is where the Mach wave (9 = 23° for M = 2.47) emanating from 

the zero X-station intersects the probe path. This implies that the 

initial disturbance in the freestream is generated from the lower flow 

field and not from the opposite wall which sees no interference until 

further downstream. 

The difference in the initial rise with mixing layer under two 

different operating conditions becomes apparent when the evolutions 

of the power spectral density with the distance are compared. In 

comparison with the higher frequency components. the initial ris e 

of 5 KHz signal component takes much greater distance before it 

reaches the final growth rate (Fig. c. 2). The results shown 

in Fig. C. 1 are the energy of the flow fluctuation integrated 

over the entire spectral range. As will be seen later in the variation 

of spectral density distributions of freestream turbulence with re­

spect to the operating Reynolds number (Appendix C. 3), under the 

operating condition II. the spectral components of 5 "'" 6 KHz contains 

the energy in order of magnitude higher than any other frequency 

components. Therefore, the Hhape of total energy profile is strongly 

dependent on the 5 "'" 6 KHz components. On the other hand. a broader 

power spectral distribution is observed in the fluctuation under the 

operating condition I. Thus the total integrated energy has more 

contribution from high frequency components. and hence its ris e is 

more rapid than that for Case 2. 
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It has been noted that fluctuating field of relatively high fre-

quency (I'V 20 KHz) is observed in the freestream. Turbulent com-

ponents of the free mixing layer fluctuating with the frequency greater 

than 20 KHz appears to be convecting with a velocity faster than 

u (f)/u I'V 0.7. Then the relative velocities between these components c e 

and the freestream become subsonic. Hence the acoustic radiation 

produced by the supersonic interaction of wavy wall model alone 

cannot explain the radiation energy measured by the high frequency 

components in the freestream. 

Lighthi1~54~lso suggested that acoustic radiation may be gen-

erated by the supersonic quadrupole field in the shear flow. The 

average convection velocity of what seems to be a freestream turbu-

lence field has been measured by space-time crosscorrelation with 

longitudinal separation of two probes. The convection velocity defined 

by 6x/!Yr gives approximately 80% of freestream mean velocity which 

is equivalent to the convection velocity of turbulent spot measured 

within the turbulent free mixing layer at the point of the maximum 

fluctuation. If it can be assumed that the supersonic quadrupole source 

is imbedded in the turbulent spot and radiating sound energy as con-

vected downstream in the turbulent free mixing layer, Lighthill's 

hypothesis becomes valid argument. Then measured convection 

velocity inside and outside of turbulent free mixing layer can be 

synchronized. However, this portion of experimental evidence re-

vealed the fact that the explanation of sound field generation, only 

by the argument of interaction of turbulent eddies and supersonic 

freestream, is insufficient. 
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C.2. Mode DiagraITls and Power Spectral Density Distributions 

of Free StreaITl Fluctuation (R-T-F: Po = 730 ITlITl Hg) 

Typical power spectral density distributions (-;;2vs f) of the 

freestreaITl turbulence taken at three axial stations above the turbulent 

free ITlixing layer (X = 3. 75. 4. 75. 6. 75) and one axial station over 

upstreaITl boundary layer (X = -1. 0) are presented in Fig. C. 3a 

and Fig. C. 3b for two overheat paraITleters (r = O. 075 and 

r = 0.45), respectively. The low overheat data set gives approxi-

ITlately the hot wire response to the total teITlperature fluctuation. 

The latter set corresponds to a cOITlbination of ITlass flux and total 

teITlperature fluctuations due to interITlediate range of overheat used. 

To have a ITleaningful cOITlparison of data, all of these ITleasureITlents 

were taken under the saITle conditions. 

The spectral distribution ITleasured at X = -1. 0 is significantly 

lower intensity than others, and shows broader energy distributions 

in higher frequency range (10 KHz s; f s; 75 KHz). The probe retracted 

downstreaITl along the ITliddle of the test section began to sense the 

freestreaITl turbulence generated by the turbulent free ITlixing layer. 

Increases of turbulent signals have been observed in the entire fre-

quency dOITlain which indicates the strengthening of generating source 

of turbulent field, naITlely turbulent free ITlixing layer. Especially 

the contribution froITl the energy carrying large scale eddies shows 

astonishingly rapid developITlent. 

Since the starting of turbulent free ITlixing layer is dis cus s ed 

in detail in Section V. 3, the present observation will be ITlade in the 

established flow regiITle. Although the ITleasureITlents with both 
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overheat parameters show the extensive growth of low frequency 

components, the data taken with higher overheat show mo re pro-

nounced results. 

The observation has established the certain qualitative trend 

of the turbulent field. The frequency of peak intensity measured by 

low overheat has remained nearly constant whereas the frequency of 

peak still shifts lower in higher overheat measurement as the flow 

moves downstream. This indicates the larger scale eddies of mass 

flux fluctuation are growing in turbulent free mixing layer and quickly 

adjust to the local condition, such that non-dimensionalized fre-

quency (f6/u) of the peak remains constant. However, the total 

temperature fluctuation is somewhat slower in adjusting to the local 

condition. 

Spectra of mas s flux fluctuations (d;. '(f)) and total temperature 

fluctuations ('T~(f)) measured at X = 4. 75 and X = 6. 75 along Y = O. 40 

are shown in Fig. C. 4 a. ;:;.' (f) of both axial stations are almost 

identical within the expe rimental scatter and largest intensity is 

contained in the lower frequency domain (3 KHz "'" 4 KHz). Total 

temperature fluctuation shows the increasing intensity as convected 

downstream and peaks in the frequency domain of 5 KHz to 6 KHz. 

Integrated quantities are given at the bottom of the figure. Note that 

the spectra collapsed to a single curve if the total temperature distri-

butions are normalized by the integrated quantity. The same is true 

for the velocity fluctuation as can be observed in Fig. C. 4b. 

As :;unling the a coustic field is a plane wave with adiabati c pres!:iure-

density relation, and as suming vorticity fluctuation is negligible in 
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essentially inviscid freestream flow, pressure and velocity 

fluctuations can be reduced (see data reduction). The pres sure 

fluctuations at the two stations appear identical and peak at 3 KHz 

range. The velocity fluctuations vary with X-station. If these 

freestream disturbances are generated by acoustic radiation from 

the selfsimilar turbulent free mixing layer, then the turbulence 

field of freestream is also similar and linearly dependent on the 

growth rate of turbulent free mixing layer. The collapse of 

spectral data to a single curve when properly normalized by the 

integrated quantity gives assurance to the above hypothesis. 

Pressure fluctuations shown in Fig. C. 4b are given in 

fractions of static pres sure (p). The integrated RMS pressure 

fluctuation of the two stations is approximately 1. 6'1> of p. For 

meaningful comparison of the pressure term with other fluctuation 

quantities, it is convenient to express the pressure fluctuation as 

percent of dynamic pressure (ty pM 2 ) in which case it is O. 4~ How­

ever, Laufer{ 31) has shown that the disturbances in the freestream 

consist of additive contributions of acoustic energy from the turbu­

lent boundary layer of four walls, then the turbulent intensities 

generated by the turbulent free mixing layer is less than the 

measured value even though turbulent free mixing layer contribu­

tion is greater than the turbulent boundary layer one. 

Constant and relatively low level of pres sure fluctuation with 

respect to the axial stations and also with lateral stations (shown later 
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in this s ection) will contribute to the further s implification of sepa-

ration of turbulent components in the core of turbulent free mixing 

layer. Kovasznay (28) hypothesized that the sound wave generated 

within the shear layer propagates freely through the outer boundary 

without appreciable reflection back into the layer. Then the intensity 

of sound wave outside of shear layer cannot be different from its in-

tensity just inside the layer. The turbulent velocity fluctuation of 

turbulent free mixing layer is at least an order of magnitude greater 

than the pressure fluctuation measured outside (i. e., two orders of 

magnitude difference in mean square quantities). Therefore, neglect 

of pres sure fluctuation from the equation of fluctuation voltage to 

reduce the turbulent velocity and temperature spottiness of highly 

turbulent shear layer is justifiable. 

Mode diagrams of integrated spectra are constructed and 

the best curve fit of these data shows less than l%of mass flux 

fluctuation (0. 6% ~ J ffi,2rrn ~ o. 8%) and less than 0.5% of total tem­

perature fluctuation (0. 35% ~ J To/2 ITo ~ o. 56%). Linearity of the 

curve implies the strong anticorrelation of mass flux fluctuation and 

total temperature fluctuation (R~/= -1. 0) to exist. The 
m 0 

mode diagram curves taken at X = 4. 75 and 6. 75 do not appear to 

converge at r = f3 point, although the fluctuation of pres sure spectra 

has shown the excellent agreement of these two stations. Because of 

low turbulence level of freestream, the signa1-to-noise ratio of the 

amplifier response deteriorates and the confidence level of the 

absolute magnitudes of measurements are not high. Assuming the 

plane acoustic wave propagation, the foregoing results can be used 
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to compute the streamwis e velocity fluctuation (J u '2 IUL) and 

pressure fluctuation normalized with respect to freestream dynamics 

pressure (J p '2/t,),pM
2

); which are approximately 0.5% and 0.4%. 

respectively. As will be shown in Appendix C. 3. the streamwise 

velocity and pres sure fluctuations induced by the upstream turbulent 

boundary layer with operating condition I are O. 2% and O. l~ respec-

tively. 

Very interesting results are observed in the next mode dia-

gram (Fig. C. 5). These data were taken at fixed X-station 

(X = 4. 75) by moving the probe in the lateral (Y) direction. Y = 0.5 

is geometrically located in the middle of the freestream and Y = O. 25 

1S located approximately at the edge of turbulent free mixing layer 

where the turbulence is occas ionally intermittent. The intensity of 

mean square voltage was obtained through the thermo-couple (Etc). 

High pas s and low pass filters were set so that signals outside of 

100 Hz '" 320 KHz were rejected. Time constant of amplifier (M
A

) 

was set at 50 p, sec. Actual time constant (M
t

) of wire response in 

the freestream with operating condition I is approximately 45 p, sec. 

Under thes e testing conditions, the mode diagrams of the freestream 

fluctuation taken at various lateral positions appear to converge at 

r = 13 which indicates the pressure fluctuation remained almost 

constant with varying Y. Its level is approximately O. 4%. Velocity 

fluctuation ranges from O. 5% at midpoint to O. 75% at Y = O. 30, just 

outside of the turbulent free mixing layer. Increase of ,,/ u '7'uL is 

partially contributed from the infrequent pas sage of the turbulent 

edge. 
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C.3. Effect of Laminar - Turbulent Boundary Layer I-Pstability 

(Reynolds Number Dependence) 

It will be mentioned in the spectral investigation of turbulent 

mixing layer (Section V. 2. 2. 2) that a peculiar peaking of spectral 

signal occurred near the frequency of 5 KHz when the test was con-

ducted with p = 610 mm Hg and upstream tripping of the boundary 
o 

layer with a strip of fine sand paper. These signals have been 

observed in free mixing layer and freestream. At first, the pecu-

liarity of the signal was thought to be caus ed by strain-gauging of 

the hot-wire. However, these discrete signals appeared consistently 

for all different probes used and no appreciable shifts in frequency 

were noted. Previous experience has shown that the strain-gauging 

of the hot-wire occurs in relatively high frequency range and does not 

usually repeat in the same frequency, because no hot wire will be 

constructed exactly alike. Hence the strain-gauging has been dis-

carded as the source of this consistent peaking. Mechanical vibra-

tion of the probe holder is below 100 Hz and most unlikely to influence 

the measurements. Therefore, it was suspected that the observed 

signal is inherent in the flow field. 

The second speculation was that an oscillation of the entire 

mixing layer pivoted at the X = 0 station. A turbulent boundary layer 

of finite thickness is present at the starting point of the free mixing 

layer and the outer edge is expected to be fluctuating. This fluctuation 

causes the oscillation of weak shock wave emanating from the corner 

and in turn the turbulent free mixing layer itself may oscillate. 
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Another contribution to the suspected os cillation is from the pos sible 

unsteadines s of inj ected air. 

Although these possibilities cannot be entirely ruled out, more 

positive clues to these peculiarities have been found when the testing 

condition was altered. Repeated experiments with different operating 

total pressures have revealed that the presence of intensity and the 

peak are dependent on Reynolds number. Possible cause of this 

phenomenon is the laminar-turbulent flow transition of the boundary 

layer as discussed below. If the argument of the foregoing paragraph 

of free mixing layer os cillations was true, then thes e disturbances 

should not propagate upstream in supersonic and hence should not be 

observable when the signals were sampled atupstream of the corner. Sur-

prisingly, however, the same discrete signals have appeared in the 

measurements of upstream free stream and boundary layer! This 

finding confirmed that whatever the sources of disturbance may be, 

it must exist upstream of the test section. 

Spectral density distribution were taken in the freestream at 

x = -1. 0 station with wind tunnel stagnation pres su re (po) varied, 

which changed the Reynolds number of the test section. Spectra of 

the mean square fluctuating voltage (e 12 ) taken at the same Sffi/ST 
o 

are shown in Fig. C. 6. Data at the total pressure 

setting s of 420 mm Hg to 610 mm Hg were taken on the same day 

with the same probe and direct comparison of intensity level is pos-

sible. But the last data points (p = 735 mm Hg) were taken several 
o 

days later and hence only the qualitative shape of the spectra, but 

not the level, may be compared with the oth er data. 
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At P = 420 nun Hg the energy spectra of hot-wire fluctuating 
o 

voltage has been obs erved to be at very low level and flat in the fre-

quency range of 500 Hz ~ f ~ 30 KHz. Integrated values of power 

spectral density distribution obtained by the hot-wire operated with 

several overheats yield the fluctuating mode diagram. The 

curve is perfectly linear and its intercept of ordinate 

is approximately 1 X 10- 3 (or 0.1%). It intersects the abscissa 

approximately at r = -0:' where r = S • 1S
T (ratio of sensitivity co­

rn 0 
!.:..!. 2-1 efficient of mass flux and total temperature) and 0:' = (1 + 2 M) . 

According to Kovasznay (see Data Reduction Section) this condition 

exists when the free stream fluctuation is caused by the entropy 

fluctuation (pure temperature spottiness of flow caused by the pro­

* ces s of compres sion, after cooling, drying, etc.). The shape of 

spectral distribution and the mode diagram imply that virtually no 

pressure fluctuation produced by the acoustic radiation is present 

in inviscid free stream and the boundary layer is laminar. Turbu-

lence level is approximately O. 1 % solely from temperature spottines s. 

Approximately 10% increase in total pressure (p = 470mmHg) 
o 

introduces the peaking of fluctuating voltage near 6 KHz and the peak 

intensity increases by a factor of 4 of laminar flow. The data taken 

with p = 526 mm Hg show the highest peak signal at almost 30 times 
o 

higher than the laminar case. Slight decrease of the peak intensity is 

noted in p = 610 mm Hg data. Mo st of the integ rated ene r gy corne s 
o 

from the frequency band of 1 KHz to 15 KHz. The frequency 

* It appears that the level of temperature spottines s may change with 
the condition of the dryer. which depends upon the heating and cooling 
cycle of the drying agents prior to the tunnel operation. 
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corresponding to the peak intensity appears to shift slightly lower 

as the Reynolds number increased. As mentioned in the section 

on data reduction, it is very reasonable to assume that temperature 

spottines s of flow is completely uncorrelated with velocity and pres­

sure fluctuations in the freestream. Then turbulent velocity and 

pres sure fluctuation intensity in freestream can be found if plane 

acoustic radiation field is assumed. 

Several days after the foregoing test, one of the filters in 

the upstream settling~chamber was removed and the total pressure 

of the test section was increased to the atmospheric condition. 

Also, the boundary layer trip made of a strip of fine grain sandpaper 

(C-320) was replaced with coarse grain sandpaper (EC *30). 

During thes e alterations, the activated dryer was left cooled for 

a few extra days. It is possible that this condition might have 

changed the temperature fluctuation in the operating system. 

The new testing condition definitely changes the pattern 

of turbulent intensity distribution. The discrete signal at 5 KHz 

vanished from the freestream (Fig. C. 6) and boundary layer 

measurements, which is not shown. The spectra distribution 

is broader and extends into considerably higher frequency range 

(up to 100 KHz in the freestream). Although the level of intensity 

is the lowest in the low frequency range, it is higher in frequency 

above 15 KHz. However, as mentioned earlier, the temperature 

spottiness of the flow might have changed and the responses of 

different probes are not identical. Two sets of outputs made 

on different days may not be compared directly. However, 
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spectra plotted in log-log scale is unaltered by multiplicative varia-

tion of intensity level. qualitative comparison of spectral distribution 

is valid. 

Unfortunately. the level of integrated quantity was also dif-

ferent from the previous results. If it was as sumed that temperature 

spottiness of the latter case was almost zero after the prolonged 

cooling of the dryer. resulting in very uniform temperature distri-

bution throughout the dryer, then data obtained in two different days 

may be replotted in new fluctuation mode diagram. If it is as sumed 

that temperature spottiness is completely uncorrelated from pressure 

and velocity fluctuations induced by turbulent boundary layer, then 

the mean square respons e equation of the hot-wire for freestream 

can be written as: 

--;z 
e 

~ T 
o 

= 

where e = T' 
s 

temperature spottines s expres sed in reference to 

total temperature 
(31) 

Laufer shows that correlation coefficient, R u I T I, is -1. 0 in free-

stream is reasonable when R m'T I = -1. O. Thus we obtain 

e
/2 2- °Ju/2 

_ (a + r) e 2 = (P.) (P. 
ST 2 a t-'-r u - t-' 

o 

Assume a pure laminar flow exists for the operating condi-

t 2 
tion of p = 420 mm Hg, '>/ e ~. 001. Using this value, new mode o 

diagrams are constructed and shown in Fig. C. 7. Highest 
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intensity is observed with p = 526 mm. Hg data and increasing­
o 

decreasing trend has been established. This indicates that the 

largest unstable eddies interacting with freestream. (relative velocity 

m.ay be supersonic) appears to be responsible for the freestream. 

turbulence. Pressure and velocity fluctuations versus operating 

total pressure are shown in Fig. C. 8. Bas ed on mom.entum 

thickness, the R ::: 2400 (for p = 735 m.m. Hg, M = 2.47) and asso-ee 0 

ciated pres sure fluctuation is approxim.ately O. 1% of dynamic pressure. 

Pressure fluctuation intensity measured in JPL supersonic tunnel at 

M = 2. 2 and R ~ 9000 is shown to be approx:i.m.ately O. 2% of e ee 
dynamic pressure (this value is obtained by 4 times Laufer's data 

taken for a single wall). 

Appearance and disappearance of signal near the frequency of 

5 KHz'" 6 KH z with variation of Reynolds numbers and method of 

tripping definitely confirmed the idea of existence of laminar-turbulent 

instability. Below the certain operating condition, sm.all disturbance 

created by fine grain size tripping was unable to effectively trip the 

supersonic flow to create the fully developed turbulent boundary 

layer. Combination of fine tripping and p = 900 m.m. Hg finally elim.­
o 

inated the discrete signal from m.ixing la\ t,' r spectra as will be 

observed in Section V. 4. 

Full turbulent boundary layer has been effectively developed 

when the combination of very coarse grain tripping and atm.ospheric 

operating condition was used as demonstrated. Qualitative agreem.ent 

of the present investigation and extrapolation of Laufer's (43) experi-

m.ent gives credence to the correctness of the present idea. 
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Contributory effect of the upstream flow instability to the subs equent 

free mixing layer behind the step will be discussed in Section V. 2. 

C.4. Freestream Autocorrelation (po = 610 mm Hg F-T -F) 

Autocorrelation measurements of freestream turbulence along 

the middle of the test section (Y = O. 45) at longitudinal locations 

(-0. 5 ~ X ~ 4. 75) are taken under the testing condition of p = 610 mm 
o 

Hg with a fine trip (Fig. C.9). Two important pieces of information 

have been gained from the measured data, which verifies the earlier 

conclusion from the power spectra distribution. 

I) The magnitude of All (0) distribution with respect to the 

X-stations shows that a noticeable abrupt change in freestream turbu-

lent level occurred between X-station O. 75 to 1. 75, which generating 

source can be traced back to the origin of the mixing layer at X = O. 

This phenomenon was also verified in the hot-wire measurements 

taken with thermocouple output (Etc). 

2) Autocorrelation function All ('1") shows the existence of 

periodic oscillatory motion of flow which is nearly exponentially 

damped. Evaluation of the period of oscillation gives the frequency 

of approximately 5 KHz"", 6 KHz. The discrete signal observed in the 

power spectral density distribution obtained at the same operating 

condition in fact coincides with this frequency (Appendix C-2). 

To verify that the existence of os cillatory motions in the 

freestream flow is dependent upon the Reynolds number. the auto-

correlation functions of freestream turbulence with various total 

pressure settings have been measured and shown in Fig. C. 10. 

Since the observed wave is a low frequency component, the band 
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lim.ited signal of 100 Hz to 40 KHz is sam.pled with a hot -wire oper­

ating with a m.oderate overheat (i = 6.4 m.a). The total pressure 

setting of 418 m.m. Hg detects the presence of a very weak wave. The 

m.ost intensified waviness has been detected with an operating pres­

sure of 525 rn.m. .Hg and the frequency of periodic waves appears to 

be approxim.ately 5 KHz. Further increase in total pressure has 

resulted in decreasing of intensity and frequency of waves. The 

auto co rrelation m.easurem.ents verified the observation of power 

spectral density distributions m.ade in Appendix C. 3. 
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APPENDIX D 

SUPPLEMENTAL DATA FOR SUPERSONIC TFML 

D.I. Detailed Definition of Low Speed Tail of Pressure Profile 

Very slight undershoot of Pitot pressure before recovering 

to the final value (Pitot p-prove senses static pressure as u -+ 0) at 

the low speed end of the Pitot pres sure profile was noted in the direct 

measurement, which may have indicated the possible existence of 

reverse flow. The response of Pitot p-probe deviates from the true 

value as the local flow angle of attack exceeds the value approxi -

o mately 15 • With a large flow angle, the Pitot p-probe senses the 

contribution from the cross -flow component. As a consequence the 

measured pressure is less than the true value. 

To confirm that the obs erved undershoot is not the true indi-

cation of reverse flow, a 1 psig Statham differential pressure trans-

ducer was used to monitor the pressure difference between a forward 

facing Pitot p-probe, a rearward facing Pitot p-probe or a static 

p-probe and a fence tap distributed along Y = -0.5 inch. With a 

matched blowing rate, all probes registered the negative differential 

pressure in the low velocity regions. The crucial point is the compari-

son of the both Pitot pressures with a static pressure trace. Typical 

measurements are shown in Fig • . D. 1. a. Note, the pressure of the 

forward facing Pitot p-probe remains above the pressure trace of 

static p-probe and approaches it asymptotically without crossing the 

static pressure. On the other hand, the Pitot pressure distribution 

of the rearward facing probe remains below the static pressure indi-

cating that it read the base pressure behind the Pitot p-probe. These 
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data show that no revers e flow existed. 

When the injection rate is decreased to create a recirculation 

zone, the pressures read on the rearward facing probe become 

greater than the static pressure indicating the existence of reverse 

flow with velocity approximately 8 to 10% of the free stream value 

as shown in Fig. D. 1. b. 

The transducer showed approximately 0.05 mm Hg of shift 

in pressure, which may have been partially created by the unsteadi-

ness of the flow. The discrepancy of this magnitude corresponds to 

the uncertainty of measurements of approximately 0.1% of static 

pressure. Therefore, with the combined effect of discrepanices 

caused by the flow angles with respect to probes and a transducer 

response, the uncertainty of the profile in very low speed region 

magnifies. The partial remedy was attempted with the us e of a 

Pitot p-probe with smaller relative angle of attack but the improvement 

was minimal. 

D. 2. ApprOximation of TFML Spreading rate with Density Ratio 

The reason why the prediction of spreading rate of supersonic 

TFML with a density ratio appears to be valid is partially explained 

in the following discussion. The momentum balance across the 

dividing streamline of a mixing layer (dp/dx = 0) is 

00 

f ~ u * p u (1 - u )dT) = 
T) e e e 

(D-I) 
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The universal velocity profile is assumed and the density profile is 

a function of Mach number. For dp/dy = dT / dy = 0: 
o 

where 'l1 = .!!:l = x 

o. y. 
1 1 

X 
and 'l1* is a location of the dividing 

(D-2) 

streamline. Note that most of the density variation occurred in the 

supersonic side of the TFML above u/u ,..., .55 (Fig. D.2). Then 
e 

the density below the dividing streamline is approximated by a 

constant value, namely, p / p • 
w e 

With these assumptions, the momentum balance equation is 

reduced to 

* 00 

I -E.lL (1 - ..1!. )dT] 
-00 peue u e 

= l ~ dT] ~ Pw 
-00 Pe u e Pe 

or dy. 
1 

* Tl I ..1!. dT] 
u 

-00 e 

dx (D-3) 

* u(T] ) /u is approximately constant within the Mach number range 
e 

of 1.0 to 5. O. Differentiating equation D. 3 with X, and letting 

d e. /dx = A. , 
1 e. 

1 

de 
== 

o. 
1 

o 

o. 
1 = o 

de. 
1 

dx 
(D-4) 

The scaling parameter, o. /a can be computed from the known ex-
1 

perimental data. From the present investigation of M = 2.47 TFML, e 

the measured quantities are 

de /dx - 0.0073 
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The incompressible value of Liepmann and Laufe/ 19 ) gives 

d 9./dx = 0.035 
1 

The computed scaling parameter is found very c10s e to p / p w e 

a./a ~ 0.465 "'" p /p 
1 W e 

( cr. /a 
1 

computed from the data of Maydew and Reed ( l) and Sirieix 

and Solignac (11 ) is obs erved to be larger than p / p ). w e 

Since the measurements of de/dx of the present investigation are 

more reliable than those of the previous investigators, it is assumed 

that the approximation of 

cr. 
1 

a (D-5) 

is reasonable. (Note that incompressible binary mixing flow does not 

follow this rule). 

Then the spreading of momentum thicknes s and width of 

supersonic TFML can be approximated from the incompressible 

values by density ratio relations. 

de p 2 de. 
"'" ( ~) 1 

dx dx Pe 
Gives good approximations (D-6) 

~ 
p dy. within 10% of actual values 

~ ( ~) 1 

dx Pe dx 

D. 3. Mach Number Dependence of TFML 

Maximum shear stress, momentum thickness growth rate and 

dividing streamline Mach number were shown to be varied with Mach 
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number. To establish the trend, thes e quantities were computed from 

the available data. Experiments of Maydew and Reed( 1 ) were 

carried out in the half jet region of axisymmetric jet exhausting into 

the quiescent air. Five Mach numbers of O. 70, 0.85, 0.95. 1.49 and 

1.96 were investigated. Although questions of three-dimensional 

effects were raised. the mean flow quantities appeared to be reliable. 

Experiments of Sirieix and Solignac ( 11 ) were conducted in the wind 

tunnel equipped with a cavity and an adjustable end plate, and the 

flow in the cavity was very likely to be recirculating. Mach numbers 

of 3.0 and 4.0 were investigated. Schlieren photograph shows the 

existence of thick boundary layer on the half nozzle section and the 

regions investigated appear to be barely out of the influence of the 

initial boundary layer. However. the axisymmetricity and starting 

conditions observed by both experiments do not appreciably alter the 

mean velocity profiles. but may affect the spreading rates. The 

velocity profiles of both experiments agree reasonably well with the 

theoretical profile of Crane ( 35) with a proper choice of spreading 

parameter, cr. The foregoing statement. however, will not be true 

for the fluctuating field. 

The computed results bas ed on their experimental data are 

shown in Fig. V. 13. Insufficient numbers of data were available 

below u/u = 0.10 in some cases and in those cases data were ex­e . 

tended according to Crane's curve in the low velocity region. :Maxi-

mum shear stress ('T" / P u 2) starts with 0.012 of Liepmann and 
max e e 

Laufer. (19) and remains relatively constant to M = 0.85 (Maydew 

and Reed data showed slightly higher values, 'T" / p u 2 = 0.0127 
max e e 
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and 0.0123 for M = 0.7 and 0.85, respectively). It decreases rapidly 

beyond M = 1. 0 and the value of O. 0017 is attained with M = 4. 0 data. 

Two points taken in the separated shear layer ahead of the forward 

facing step by Behrens (36) are also shown, which are higher than 

the trend established in the free mixing layer. Shear stress of the 

pres ent investigation is O. 0028 and smoothly fills the gap between 

the two previous experiments. The shear stress measured by Brown 

and Roshko (20) for a two gas mixing experiment is considerably higher 

- 2 
than the adiabatic supersonic TFML with density ratio r!mal p(t.U} = 

0.0106 for u l /u2 = J7 and PI/ P2 = 7, P = t(P
I 

+P2». Maximum shear 

stress normalized by the respective d6/dx shows the slightly increas­

ing trend with Mach number. The growth rate of momentum thickness 

(d6/dx) decreases with increasing Mach number similar to the behavior 

of shear stress with Mach number. Lowest d6/dx = 0.004 is obtained 

for M = 4. O. 

Mach number at the dividing streamline is also shown. 

Although the existence of initial boundary layer was clearly evident 

in the experiments of Sirieix and Solignac, no boundary layer correc-

tion has been applied in momentum balance, i. e., 6 of equation V. 1 
o 

is set equal to zero. Predictions of the dividing streamline Mach 

numbers are made with an assumption that the linearly scaled velocity 

profile of the pres ent investigation is invariant with Mach numbers. 

The upper curve represents the ideal self-similar flow case without 

influence of the initial momentum thickness, i. e., 6 /6« 1. Where-
. 0 

as the lower curve is predicted with an assumption that non-negligible 

6
0 

based on the present investigation exists. The data points of the 
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previous investigators com.puted without the effect of the inital m.om.en-

tum. thicknes s m.atch reasonably well with the upper curve. 

The variation of linear scaling param.eter. (J • is determ.ined m. 

by the evaluation of m.om.entum. thickness with a universal velocity 

profile. The variation of (J is also shown in Fig. V. 13. which is m. 

higher than p / p distribution. 
w e 

D.4. Constant Turbulence Intensity of Self Sim.ilar TFML 

The clue to the ever increasing trend of the m.easured turbu-

lence energy was found to be the direct cons equence of instrum.ent 

respOnse to high frequency turbulent com.ponents associated with the 

* supersonic turbulent m.ixing layer. It has been noted that substantial 

level of turbulent energy is carried by the high frequency com.ponents. 

say. 100 KHz and above. However. the am.plifier response of the 

Shapiro-Edwards Model SOB hot-wire anem.om.eter is flat up to 100 KHz 

and shows the degrading character as it was calibrated by Gran. (25) 

Also. the highest frequency cutoff of low-pass filter is 320 KHz. 

Therefore. the energy contribution resulting from. the high frequency 

dom.ain which extends beyond the filter cutoff point or in the degrading 

portion of the am.plifier response affects the Etc and the autocorre­

lation m.easurem.ents due to the built-in characteristic of the am.plifier. 

Since the power spectral distribution of self sim.ilar turbulence 

shifts to a lower frequency range with the increasing longitudinal 

distance. the norm.alization of spectra with som.e characteristic 

dim.ension, such as m.ixing layer width, of TFML holds true. Then 

* The author wishes to thank Professor A. Roshko for pointing out 
this fact. .! 
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Etc or autocorrelation measurement taken near the beginning of fully 

developed TFML loses more energy contributions from the high 

frequency components than the one from farther downstream. 

Therefore, a false indication of continuously increasing trend of total 

energy level is obs erved with respect to longitudinal distance. 

The spectra data have been corrected for the amplifier re­

sponse and the proper compensation time constant so that the ideal 

response of wire to the high frequency turbulent field is simulated. 

Although ideal integration of spectra should be taken from zero to 

infinity in the physical frequency domain, this is not practical in the 

experiment due to the res pons e characteristics of the instruments. 

The integration must be carried out within the consistent range of 

normalized frequency domain. especially when a comparison of inte­

grated quantities obtained at the different positions of the flow field 

is desired. Once the integration of the spectra is carried out to the 

prescribed value of f9/u
L

, a reasonably flat total energy distribution 

with respect to the longitudinal distance is obtained. However, the 

actual integrated energy is greater than the one computed due to the 

integration cutoff limit. Therefore, actual value should be taken from 

the result of the full range integration of the farthest downstream data. 

Nevertheless, it has demonstrated the existence of truly equilibrium 

flow. The results are presented in Sect. V.4. 

D. 5. Effect of Unmatched M A and Mt 

The Etc data produce an error in the quantitatively reduced 

fluctuation intensity, if the time constant of compensating amplifier is 

set une0ual to the time constant of wire response in the flow and the 
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turbulence contribution of local flow is dominated by the low frequency 

spectrum components. Since the wire time constant. Mt • is directly 

dependent upon the overheat parameters. larger variations of Mt from 

the M A setting will result for the wire operated at higher overheat 

than the one at low overheat. Therefore. the degree of overcorrection 

of data by Mt/M A may become worse for the high overheat measure­

ments. The typical mode diagram which shows the difference of data 

produced by the matched and unmatched time constant is illustrated 

in Fig. D. 3. The Etc data with matched time constant (M A 2! Mt > 

agree reasonably well with the integrated spectral measurements. in 

which case ~I = 0.05 and 0.046, respective1 y. However, the Etc 

measurements taken with M A < M
t 

overcorrect the data resulting in 

approximately 30 % higher fluctuating voltage (ji;2/ ST ) at r = 1.2. 
o 

Curve fitting of these data points gives ~I 2! 0.074, which is approxi-

mately 50% higher than the corrected value. The difference is less 

pronounced for the high frequency dominated turbulent field which is 

obs erved in the high speed side of the mixing layer. 

D.6. Development of Space-Time Correlation Function 

(fuc Separation) 

Study of the spatial corre10gram at three lateral positions 

(Fig. D.4) reaffirms the same aspect of convection field discussed in 

Section V. 2. 2. 5. 2. For the clarity of data presentation, the time 

delay is shifted so the peak correlation points are aligned in a common 

axis. The line of zero time delay is also shown. The initially sym-

metric form of axial crosscorrelation function with respect to the 

negative and positive time delay ( I:::.-r) develops into the distorted 
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pattern as the axial separation distance ( fue) increases. The M-probe 

positioned upstream of the S-probe has been delayed and thus a process 

in negative time delay represents the past occurence and in positive 

time delay as the future occurence with respect to the S-probe. 

The definition of axial crosscorrelation is 

I T 
C (fue, ~T) = lim 2T f f (x, t) f (x-fue, t-~T)dt 

ms T-+ 00 -T s m 

The correlogram taken near the dividing streamline (Y /9'" 0.28) 

shows the least development of distortion with x-separation which 

indicates a progagation of relatively uniform flow field along the 

dividing streamline. The turbulent flow fields above and below the 

dividing streamline (data taken near the maximum fluctuation, 

Y /9 ~ 3.2, and subsonic region, Y /9 ~ -1.82) distinctly show the 

asymmetric development of correlation functions with positive and 

negative delay time. A more pronounced and rapid development in 

the low-speed region may be attributed to the entrainment process of 

slow moving fluid at the lower boundary. The steeper slope of cor-

relation function in the negative delayed time implies the arrival of 

sharper and distinctly patterned turbulent front. On the other hand, 

a relaxing of slope in positive delayed time implies the growing 

pattern of trailing tail of turbulence. The observation can be inter­

preted as the process of entrainment of mass at the turbulent front and 

the growth of turbulent scale as convected. The non-uniformity of 

propagating turbulent form also hints that the mean velocity and the 

convection velocity of a frozen turbulent spot may not necessarily be 

identical along the off-centered positions of turbulent mixing layer and 
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the flow is highly internrittent near the edges. However, it cannot 

dis clos e the rrlechanisrrl relating to the rrleanflow field and turbulent 

convection. 

D.7. Taylor's Hypothesis 

Taylor's hypothesis assumes that "if the velocity of the flow 

field which carries the turbulent spot is rrluch greater than the turbu-

lent fluctuation velocity, then the sequence of changing u at the fixed 

point is sirrlply due to the passage of an unchanging pattern of turbu­

lent rrlotion over the point." Thus he assumes u = 0(t) = 0(x/u) 

and the correlation function R 
x 

= (I(t) (I(t + x/u) 

7 
Then he went on to prove that space correlation function and spectral 

function are Fourier transform pair. 

R = x 

F(f) = 

00 21tfx I F(f) cos -u df 
o 

4 100 
R 27rfx dx U x cos U 

o 

where F(f) is the spectral function normalized to give 

00 

I F(f)df = 1 
o 

This relation is found identical to the transforrrl pair of autocorrela-

tion and power spectra if the delay time, D. T. is replaced by 6:x/u. 

Then the existence of the above transforrrl pair is assured by Sect. 

V. 2. 2. 5.1. provided D.T = t.x/u exists. Therefore. validity of 

Taylor's hypothesis requires the finding of the existence of u, narrlely 

u = t.x/6.T. c 
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D.8. Interpretation of Space-Time Correlation 

(6.y Separation) 

The lateral cross correlation measurements were taken with 

M-probe displaced above and below the S-probe on the same X-plane. 

S -probe was always delayed. The asymmetric form of correlation 

functions reversed the trend and the correlation peaks appear in the 

opposite side of zero time delay as M-probe crossed the positon of 

S-probe. Since the positioning of the delayed probe upstream of the 

undelayed probe depicts the future occurrence in positive delayed time 

with respect to undelayed probe, the shifting of delayed probe down­

stream will produce the mirror image pattern in negative delayed 

time. In positive 6.y, the appearance of correlation in negative time 

delay indicates that the correlating signal passing over the M-probe 

is located downstream of the corresponding signal passing over the 

S-probe. For a negative 6.y, the process is reversed and hence the 

correlation in the positive side of the time delay indicates the cor­

relating flow passing over the M-probe is upstream of the S-probe. 

D.9. Fluctuation Signals and Probability Density Distributions 

The raw fluctuation signals and corresponding response of 

intermittency meter outputs for the higher overheat taken at the 

marked positions are shown in Fig. D.5. Corresponding probability 

density distributions for the two sampled overheat currents are shown 

in Fig. D.6. The probability density distributions were obtained by 

using a SAleOR correlator and the signals were computed in a real 

time process as the experiments were conducted. As the turbulent 

mixing layer was penetrated hy the hot-wire from the freestream 
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side, noticeable positive fluctuating voltages began to appear, indi-

eating the passage of an occasionally slower and hotter flow field 

(e' = -r fi' + T ') over the sensor. The one-sided fluctuation signal 
o 

was m.ost intense at location C and the positive skewness of the 

probability density distribution confirm.ed that the turbulent field 

which produced the positive fluctuation voltages dominates the flow. 

Recall that higher total tem.perature and lower convection velocity 

were m.easured in this region. At point D, the signals appeared to 

be extending evenly on both sides and a Gaussian-like probability 

density distribution was obtained. Up to this point, the qualitative 

probability distributions of both sam.pled currents were identical. 

At point E just below the sonic point, negative spikiness began 

to predom.inate, indicating that the wire spent m.ore tim.e in a faster 

and colder fluctuation field. The skewness or probability distribution 

taken with the higher overheat revers ed the distribution but the ones 

taken with a lower overheat rem.ained relatively Gaussian in form., 

indicating the negative spikiness of the signal was produced prim.arily 

by the m.ass flux fluctuation. The Gaussian form. of the probability 

distributions taken with the lower overheat within the m.ixing layer 

were not too surprising, because the m.ean total tem.perature profile 

is relatively constant. Kovasznay( 28) observed sim.ilar phenom.ena 

in the supersonic turbulent boundary layer. Although Kovasznay was 

uncertain about whether the reversal of the skewness of probability 

distributions which occurred from. the outer boundary layer edge to 

near the wall was caused by a real flow phenom.enon or was an instru-

m.entation phenom.enon connected with operating a probe in the shear 
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layer close to the sonic point. it is apparent that the observed phen­

om.ena do exist in the supersonic turbulent m.ixing layer of the present 

investigation. 

Since the m.ean value of fluctuation m.ust vanish ( I e' dt = 0). 

the skewness of probability density distributions taken near both 

edges of the m.ixing layer im.plies that the large excursions of fluctu­

ation m.ust exist for a shorter tim.e and the sm.all excursions in the 

opposite direction exist for a longer period. Fisher and Davies (48) 

have dem.onstrated in the incom.pressible m.ixing layer experim.ents 

that the convection velocity of turbulent field is strongly influenced 

by the large fluctuations in spite of the short im.e for which they are 

present. In the region of alm.ost zero skewness of probability density 

distributions. the two velocities are alm.ost identical. Qualitatively. 

the m.easured convection velocity follows the trend of probability 

density distributions obtained with a high overheat as described above. 
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.09 Me = 2.47 "-e=0.0073 

Po = 735 mmHg R-T- F 

X = 4. 7 5 Y = -.1 0 (Y / e = .045 ) 
.08 

.07 

0 .2 .4 .6 .8 1.0 1.2 
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0 - ,-
• 1 TI 
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FIG. D. 3. COMPARISON OF TFML FLUCTUATION MODE DIAGRAM 

ETC VS INTEGRATED SPECTRA 
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H 0 

G C 
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E A 

SWEEP TIME 

i = 6.0 ma 100Hz ~ f' 40KHz 

FIG. D. 5. TURBULENT FL UCTUATION SIGNALS 

AND INTE1ZMITTENCY METER OUTPUTS 

150r sec ' 
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