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Abstract 

This study considers the run-up of non-breaking and breaking solitary wave:..; on 

a smooth sloping beach. A non-linear theory and a numerical model solving the 

non-linear shallow water equations (l\LSvV) were developed to model this physical 

process. Various experiments to obtain wave amplitude time-histories, water particle 

velocities. wave free-surface profiles. and maximum run-up were conducted and the 

results were compared with the analytical and numerical models. 

A higher order theoretical solution to the non-linear shallow water equations, 

which describes the non-breaking wave characteristics on the beach. was sought and 

presented in this study. The solution was obtained analytically by using the Carrier 

and Greenspan (1958) hodograph transformation. It was found that the non-linear 

theory agreed well with experimental results. The maximum run-up predicted by the 

non-linear theory is larger than that predicted by Synolakis (1986) at the order of 

the offshore relative wave height for a given slope. This correction for non-breaking 

waves on beach decreases as the beach slope steepens. and increases as the relative 

incident solitary wave height increases. 

A unique run-up gage that consists of a laser and a photodiode camera was de­

veloped in COIlllcction with this study to measure the time-history of the tip of the 

run-up tongue of a non-breaking solitary wave as it progresses up the slope. The re­

sults obtained with this run-up gage agree well with other measurements and provides 

a simple and reliable way of measuring run-up time histories. 

The rml-Up of breaking solitary waves was studied experimentally and nnmerically 
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since no fully theoretical approach is possible. The wave characteristics such as wave 

shape and shoaling charClcteristics. and. for plung'ing breakers. the shape of the jet 

produced are presented. The experimental results show that wave breaking is such 

a complicatC'd process that even sophisticatC'd numerical models cannot adequately 

model its details. 

Two different plunging wave breaking and resultant rUll-Up were found from the 

experiments. The point where the tip of the incident jet produced by the plunging 

breaking 'wave irupinges determines the characteristics of the resulting splash-up. If 

the jet impinges em a dry slope, no splash-up occurs and the plullging breaker simply 

collapses. If the impingement point is located on the free-surface. splash-up including 

a reflected jet is formed. which further increases the turbulence and energy dissipation 

associated with wave breaking. It is hypothesized that both clockwise and counter­

clockwise vortices may be generated by the impinging plunging jet and the reflected 

jet associated with the splash-up when the jet impinges on the front face of a breaking 

wave or on the still water surface in front of the wave. 

If only the run-up process and maximum run-up are of interest, the wave and the 

water flow produced after breaking can be simplified as a propagating bore. which 

is analogous to a shock wave in gas dynamics. A numerical model using this bore 

structure to treat the process of wave breaking and propagation was developed. The 

non-linear shallO\v water equations were solved llsing the weighted essentially non­

oscillatory ("VENO) shock capturing scheme employed in gas dynamics. Wave break­

ing and propagation is handled automatically b~· this scheme and no ad-hoC" term 

is required. A computational domain mapping technique proposed by Zhang (1996) 

is used in the numerical scheme to model the shorelille movement. This numerical 

scheme is found to provide a somewhat simple and reasonably good prediction of 

various aspects of the run-up process. The numerical results agree well with the ex-
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periments corresponding to the run-up on a relatively steep slope (1:2.08) as well as 

on a more gentle slope (1:19.85). 

A simple empirical estimate of maxinmrn rUll-Up based on energy conservation 

considerations is also presented where the energy dissipation associated with wave 

breaking was estimated using the results from the numerical model. This approach 

appears to be useful and the maximum run-up predicted agrees reasonably well with 

the experimental results. 

The splash-up of a solitary wave Oll a vertical wall positioned at different locations 

on a gentle slope was also investigated in this study to understalld the degree of 

protection from tsunamis afforded by seawalls. It was found that the effect of breaking 

wave kinematics offshore of the vertical wall on the splash-up is of critical importance 

to the maximum splash-up. The maximum slope of the front face of the wave upon 

impingement of the wave on the wall, which represents the maximum water particle 

acceleration. was important in defining the maximum sheet splash-up as well as the 

trend for splash-up composed of drops and spray. 
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Chapter 1 Introduction 

1.1 Tsunamis 

Tsunamis arc ocean waves gellera ted b.\' 1ll0VellH'nts of the earth' s crust. Sev­

eral geoph.\'sical ewnts can lead to t his kind of cat astrophe: earthquakes. landslides. 

volcano ern pt ions. and ot her lllechanisms such as underwat er explosions. Once this 

ewnt happens t lw local rise and/or depression of the \vater surface will generate 

waves that propagate in all directions and a tsunami is produced. At generatiou and 

as the waw propagates aWi:n' from the source. the ,vave amplitude is small (perhaps 

less than 1 III r-...; 2 m) but the wavelength is large compared to the local water depth 

(less than ;) km r-...; 10 kIll) and usually of t he order of 100 km, Thus. the energ.\' 

associated with a tsunami can be very large. As tsunamis propagate shoreward the.\' 

uudergo changes induced by the nearshore bathymetr.\' and iucrease significantly in 

height. Upon reaching the shoreline. the waves generated rlm up the shore and cau 

travel inland for rdativd.\' large distances with the potential for causing large property 

damage and loss of life. 

Tsunamis haw a long history around the Pacific Basin. where earthquakes are 

frequeut. Over the past 011C Inllldred years there has bcell approximately OllC de­

structin' tsunami per year. which has caused loss of life or serious propert.\' damage 

iu the world (Zelt (19~(j)). Onlva few of them are lllentioned here. On Juue 15. 

1~96. a tsunami resulting from an earthquake attacked Sanriku. Japan. and more 

than 27.000 people died and over IO.UOO buildings were destro.\'ecl. Oue of the most 
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severe historical tsunamis occured in Indonesia. generated by the eruption of the 

Krakatoa volcano. resulting in the loss of 36.000 people on August 27. 1883. A recent 

earthquake in Turkey on August 17. 1999. generated a tsunami with a maximum rllll­

up on the coast of 2.5 m (Synolakis (1999)). Indeed most of the damag'c associated 

with tsunamis is related to their run-up at the shoreline. Therefore. understanding 

and being able to predict this run-up i:-; an important aspect of any seismic sea wave 

mitigation effort. 

Solitary wave:-; or combination:-; of negative and positive solitary-like waves are 

often used to simulate the run-up and shoreward inundation of these catastrophic 

waves. e.g .. Synolakis (1986. 1987). ZeIt (1991a, 1991b) and Tadepalli and Synolakis 

(1994). Such waves can model many of the characteristics of tsunamis. Using a simple 

plane beach. important characteristics of the run-up tongue can be obtained both 

analytically and experimentally. This information. for the simple two-dimensional 

case of a solitary wave propagating in a constant depth and impinging on a plane 

sloping beach. can yield results applicable to three-dimensional numerical models of 

coastal sites. 

The characteristics of non-breaking and breaking waves have been observed by 

tsunami victims. as revealed by field investigations. For example, the tsunami in 

Papua New Guinea in July 1998 resulted in wide destruction and more than 2.()()() 

deaths. From eye-witness accounts it appears that the waves. some about 15 m high 

at the shoreline. were breaking (Synolakis (1999)). This research was motivated by 

these observations. 
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1.2 Objective and Scope 

The objective of this study was to investigate theoretically, experimentally, and 

numerically solitary wave run-up on a sloping beach. Of particular importance was 

evaluating the maximum run-up. Both non-breaking and breaking waves were COll­

sidered. Special attention was given to the interaction between the breaking wave 

and the slope. 

For non-breaking solitary waves a higher order theoretical solution for non-linear 

shallow water equations was sought. This solution was based on the transformation 

proposed by Carrier and Greenspan (1958). Experiments were also performed in a 

wave tank where solitary waves run up on relatively steep and gentle smooth slopes. 

The incident wave profile, the maximum run-up, and the water particle velocities 

were measured to validate the non-linear theory presented. 

The wave breaking process is so complicated that no fully theoretical approach is 

possible. Figure 1.1 shows the wave breaking and the splash-up process afterwards. 

(These photographs were taken by a still camera at different locations and times of 

the wave breaking process and then rearranged sequentially according to the nature of 

the breaking process. The experiments were repeated until the complete wave break­

ing process was covered.) The complexity of the problem, as well as its theoretical 

intractability, is obvious in Figure 1.1. Thus, the investigation for breaking solitary 

wave run-up presented herein is only experimental and numerical. 

A breaking wave on a smooth slope of 1: 15 was studied to define several charac­

teristics of the plunging jet produced by the breaker. Such results of wave breaking 

kinematics can provide information relating to the study of the air entrainment and 

energy dissipation associated with the plunging jet produced at the crest of the break­

mg waves. 
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A numerical model using i:1 bore structure similar to a shock in gas dynamics to 

treat the process of wave breaking and propagation was developed. The non-linear 

shallow water pquations were solved using the weighted essentially non-oscillatory 

(vVENO) shock capturing schemE' employed in gas dynamics. vVave breaking and 

propagation is treated automatically by the scheme and no ad-hoc term is required to 

keep the scheme stable such as the artificial viscosity term used in Boussinesq models. 

It was found that the numerical scheme can predict the wave profile on the slope and 

maximum run-up very well. 

l'vlaximum run-up. defined as the highest position the wave can reach on a slope. 

IS one of the most important parameters needed to estimate tsunami destruction. 

Theoretical results obtained from non-breaking wave considerations could be used 

to predict it. However. since wave breaking is not considered in such theories. the 

prediction is much higher than actual because of the energy dissipation associated 

with the breaking process. As mentioned earlier. numerical simulations incorporating 

simulated breaking effects can give a reasonable estimate of the maximum run-up. 

However it usually involves time-consuming computations and intensive computing 

resources. A second approach taken in this investigation was a simple empirical esti­

mation based on energy conservation principles using both the experimental results 

and numerical simulations. 

Coastal-sited protective structures such as seawalls have been used in some loca­

tions to reduce inland inundation associated with tsunamis. The rate of overtopping 

of seawalls exposed to periodic and random storm waves has been studied experi­

mentally by numerous investigators generally for specific engineering problems using 

physical models. Goda et a1. (1975) synthesized some of these results into geneml­

ized overtopping volume predictions for periodic waves. For periodic waves. reflec­

tions from the structure significantly affect the overtopping of subsequent waves in i:1 
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Figure 1.1: Phot.ographs of t.he solitary wave splash-np 011 1: 15 slope for incident wave 
height H / ho = 0.40. 
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wave train. Comparable attention has not been given to the overtopping of seawalls 

by "tsunami-like" waves which consist more of groups of "isolated" waves (solitary 

waves) as contrasted with periodic storm waves. One objective of the present study 

\vas to investigate the splash-up (or the run-up) of such waves on vertical walls to 

understand the degree of protection from tsunamis afforded by seawalls. However, 

attention will not be givcn to the rate of overtopping of solitary waves. Experimental 

and numerical studies were conducted to investigate various aspects of this problem. 

Of special interest was the effect of breaking wave kinematics offshore of the vertical 

wall on the splash-up. 

1.3 Thesis Outline 

This chapter has introduced several general aspects of tsunamis and provides some 

historical data relating the destructive features as well as stating the objective and 

scope of this study. Chapter 2 summarizes the literature relating to solitary wave 

run-up and wave breaking characteristics, including theoretical analyses. experimen­

tal research. and numerical modeling. A new theoretical solution to the non-linear 

shallow water equations is presented in Chapter 3, along with a comparison to previ­

ous theoretical analyses. A numerical method to solve the non-linear shallow water 

wave equations and a special treatment of the wave breaking process and the moving 

shoreline are also described. Chapter 4 discusses the experimental equipment and 

t he procedures used in this investigatioll. The results from thc theoretical analysis. 

experiments, and llumerical simulations are presented and discussed in Chapter 5 

along with a discussion of the cOIlservation of energy approach to breaking wave rUIl­

up. Chapter 6 summarizes the major conclusions of the thesis and suggests several 

directions for future work. The experimental results of maximum run-up measured 
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ill the present study were listed in Appendix I. 
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Chapter 2 Literature Review 

The study of the wave propagation. breaking. and the rull-Up process has been the 

subject of nmnerous analytical. numerical. and experirnental studies in recent years. 

Since the objective of this investigatioll is focused on solitary wave run-up and the 

breaking process of the wave on run-up, only the literature related to these two topics 

is reviewed here. General reviews of tsunamis can be found in Lander and Lockridge 

(1989). 

2.1 Theoretical Analyses 

Various simplified models have been used to describe the wave run-up process. 

which is a strongly non-linear and dispersive wave phenomenon. e.g .. the Boussinesq 

equations and the non-linear shallow water wave equations. In theory. the non-linear 

effects and the dispersive effects can be estimated by two parameters respectively: 

H 
a- -. - h 

h 
f =-

1 
(2.1 ) 

where H is the offshore wave height. h is the depth. and l is a characteristic horizontal 

length. For the propagation of long waves such as tsunamis. the Ursell number, Ur 

defined as: 

(2.2) 

is important in this process to measure the relative importance of non-linear effects 

and frequency dispersion. \,yhen H / h « 1 and h/ 1 « 1. both non-linear effects and 



9 

frequency dispersion can be negl~cted and the lin~arized shallow water equations can 

adequately describe the wave propagation (l\Iei (1983)). As these long waves approach 

the coast the wave height increases and at some point tIl(> effects of non-linearity 

cannot be neglected. In that case. the fully non-linear shallow water equations are 

the suitable model if one can neglect the effects of frequency dispersion. 

Keller and Keller (1964) studied periodic wave propagation over a constant depth 

and with the waves running up a sloping beach by matching the solutions for wave 

amplitude and velocities from the linear non-dispersive shallow water equations for 

both regions at the toe of the beach; the theoretical prediction of the maximum run-up 

of the wave on the slope was presented. Carrier and Greenspan (1958) studied the non­

linear shallow water equations and proposed a method to transform these equations 

into a set of linear equations that can be solved analytically. It is still one of the few 

analytical solutions available for non-linear wave dynamics. They investigated the 

run-up of periodic waves with several different initial shapes on a plane slope using 

this theory. Tuck and Hwang (1972) and Spielvogel (1976) extended the Carrier and 

Greenspan (19,58) transformation and used it to solve long wave run-up also under 

prescribed initial water-surface configurations. Tuck and Hwang (1972) investigated 

the problem of the generation of waves on a slope due to a bottom disturbance. 

Spielvogel (1976) extended the Carrier and Greenspan (1958) transformation and 

used it inversely to determine initial wave conditions offshore from the long wave 

run-up assuming a logarithmic initial surface profile on the slope at t he instant of the 

IlwxiuIUln run-up. 

Synolakis (1986. 1987) simplified the Carrier and Greenspan (1958) transfonna­

tion. and applied it to the problem of a solitary wave propagating in a constant depth 

and running up a simple plane beach. His analytical results agreed well with labo­

ratory experiments for non-breaking waves on the slope. Based on his simplification. 
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Synolakis (1986) eIre,v the couciUtiiOll that the maximuIll run-up predicted b.v the lin­

ear shallow water equations was the same as that predicted by the non-linear shallow 

water equations. although the hehavior of the wave on the tilopc such as the wave 

amplitude and the water particle velocities were quite different. Both this statement 

and his atisumptions will be revisited in this investigation. Kanoglu and Synolakis 

(1998) studied long wave evoilltion and run-up on piecewise linear two and three­

dirnelltiional bat hymetries utiing the linear tihallmv water equatiOIlti. In addition. they 

defined the amplification factors of different ocean bathymetry to titudy the evolution 

of solitary waves over various bathymetries. 

The three-dimensional run-up problem has received comparatively less attention. 

Zhang (1996) investigated the run-up associated with a solitary wave obliquely inci­

dent to a plane beach. A linear solution was found for the three-dimensional run-up 

using Fourier synthetiis. Zhang (1996) also investigated both the non-linear problem 

and the effect of frequency dispersion. Brocchini (1998) investigated non-breaking 

solitary pulses incident and refiecting on an inclined plane beach by means of a weakly 

three-dimensional extentiion of the solution proposed by Synolakis (1986). 

All of the simplified models above deal with non-breaking solitary wave run-up. If 

the wave breaks during the run-up or run-down process, the basic physics ofthe run-up 

is complicated and far from being completely understood. l'vIost of the previous work 

on breaking wave Hlll-up consists of experiment al studies or numerical simulations. It 

has been found from field and laboratory studies that after a wave breaks, the form of 

the propagating wave is similar to a propagating bore in terms of appearance. Thus. 

the titudy of bore propagation and bore run-up may provide valuable information 

about breaking wave run-up. Ho and Meyer (1962) and Shen and Meyer (1963) 

proposed all analytical theory for bore run-up using the non-linear shallow water 

equations. From this derivation, they found that whell the bore arrived at the initial 
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shoreline, the height of the bore became zero and, thus, the bore collapsed at the 

shoreline. After that. the fluid motion entered another stage in the form of a thin 

sheet of water propagating up the slope. The maximum run-up predicted by Shen 

and .\leye1' (1963) was: 

(2.3) 

which was independent of the beach slope, and '/1* was the horizontal velocity of 

the bore at the instant it reached the initial shoreline. l'vIiller (1968) experimentally 

measured the maximum run-up of a bore 011 four beaches with different angles and 

compared those results with the prediction, i.e .. Eq. 2.3. He found that the beach 

angle and tIl(' bottom roughness of the slope were important factors in determining 

the run-up of bore. and the experimental results differed from the theoretical predic­

tions significantly. Yeh (1991) also investigated the bore-like tsunami run-up in the 

laboratory and reported that bore collapse did not occur in his experiments. The 

transition process that took place when the bore approached the initial shoreline was 

more of a "momentum exchange" (Yeh (1991)) between the incident bore and the 

small wedge-shaped water that was initially still ahead of the bore along the shore. 

The maximum run-up, however, seemed to be predicted from the initial offshore con-

dition by Eq. 2.3 by reducing the value of '11.*. Thus, it appears that the bore run-up 

theory can give qualitative information about the physical process, and it is one of 

fe,\, analytical solutions available to describe the process of wave propagation after 

wave breaking. 

2.2 Laboratory Experiments 

The early experiments reported by Hall and \VaUs (1953) and Camfield and Street 

(1969) have been used in the past to verify analytical results and the accuracy of 
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numerical models. Hall and Watts (1953) measured the maximum run-up of solitary 

waves on five different beaches. The slopes of the beaches were: 1:1. 1:2.14. 1:2.75. 

1:3.73.1:5.67 and 1:11.43. The empirical formula ofmaximuIll run-up as a function of 

beach slope and incident wave height was given based on the laboratory measurements 

in the form: 

(2.4) 

where k. a. and r are empirical parameters as a function of the beach slope (J. The 

experiments of Hall and 'Watts (1953) were performed for a variety of water depths 

ranging from 15.24 cm to 68.58 cm. The waves were generated by what is now 

considered to be a crude process, i.e .. by pushing the original still water horizontally 

with a vertical plate. The shape of the incident solitary wave was not described 

in these experiments. Using a different generation mechanism. Camfield and Street 

(1969) confirmed Hall and vVatts's (1953) experimental results. 

Battjes (1974) used dimensional analysis to analyze the characteristics of periodic 

wave breaking and run-up on plane slopes. and showed that breaking criterion. breaker 

type. breaker height-to-depth ratio. and the maximum run-up were approximately 

governed by only one parameter referred to as the surf similarity parameter: 

(2.5) 

where Lo is the deep-water wavelength of the incident periodic wave. Battjes (1974) 

summarized published experimental data to present empirical formulas of several 

wave characteristics as a function of the surf similarity parameter. (. For example. 

the maximum run-up normalized by the incident wave height was written as: 

R 
- =( 
H 

fOT 0.1 < ( < 2.3 (2.6) 
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The more recent experiments of Synolakis (1986) and Zelt (1991a) are of impor-

tance in confirming analytical and numerical models of the run-up process due to the 

precision of their experimental techniques compared to those of earlier studies. Syn­

olakis (1986) measured the lllClximum run-up of non-breaking and breaking solitary 

waves on a 1:19.85 slope, and the following expressioIls were obtained: 

non - breaking: 

R 
lio 

breaking: 

R 

ho 

2.831 Jcotf-J( H ) ~ 
hn 

O.918( H )O.(iOfi 

flo 

(2.7) 

(2.8) 

The non-breaking formula was obtained from his approximate non-linear theory and 

reasonably confirmed by experimental data. and the breaking formula was obtained 

empirically for the slope investigated, which was 1:19.85. Synolakis (1986) also mea­

sured the time history and the spatial wave shape for breaking solitary waves. 

Kobayashi and Karjadi (1994) extended the surf similarity parameters proposed 

by Battjes (1974) for solitary wave run-up. The wavelength of the solit ary wave Lo 

in Eq. 2.5 was defined as: 

(2.9) 

where T was the representative time period of solitary waves and selected as the du­

ration that the wave amplitude of the solitary wave was greater than some predefined 

small number 6i (rl(t) > c)i). Kobayashi and Karjadi (1995) fitted the breaking data 

of Synolakis (198G) and the Ilumerical data from their own model and proposed an 

empirical expression for the maximum run-up normalized by the incident wave height 

as: 

R 0 '3"C - = 2.955( .. ",) 
H 

(2.10) 



14 

The laboratory work cited to this point dealt with two-dimensional wave [lUl­

up, i.e., the wave \vas generated and propagated along a narrow \vater channel or 

tank. Briggs et a1. (1994) conducted solitary wave run-up experiments using a three­

dimensional 30 m \vide by 25 m long wave basin 30 CIll deep and compared their results 

with those using a narrow wave tank. They found that the run-up of non-breaking 

waves in a basin was smaller than in a tank. They proposed an explanation that 

in the fiuIlle experiments. the walls were refiective and contained the wave energy, 

while in the basin. energy was leaked from the end of the wave front by diffraction. 

thereby reducing the wave height. The difference in flume and basin experiments 

was negligible for breaking wave rUll-Up because the primary energy loss was due to 

wave breaking. The effect of the wave generation source was also investigated in their 

experiments. 

Run-up of solitary waves on a circular island were reported by Liu et al. (1995). 

Surface displacement and maximum run-up were measured and compared with a 

numerical model based on three-dimensional shallow water equations. It was found 

that maximum run-up was largest in front of the island (facing the wave attack 

direction). and decreased gradually as the wave moved toward the lee side of the 

island. However. if the length of the wave generator or the crest length of the wave 

was much larger than the base diameter of the island. a dramatic increase in the 

run-up was found on the lee side of the island. 

There is large body of literature 011 the process of solitary wave breaking. Only the 

most pertinent work will be discussed here. The general review of the various aspects 

of waves at and after breaking can be found in Peregrine (1983) and Battjes (1988). 

Ippen and Kulin (1955) studied the shoaling and breaking behavior of solitary waves 

on slopes of 1:15.38, 1:20. and 1:43.48. Based on their experimental results they 

concluded that the breaking height-to-depth ratio was practically constant at l.2 
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for all incident solitary \yave heights on gentle slopes, which was different from the 

theoretical value usually quoted of O. 7?) for solitary waves in water of constant depth. 

For a steep slope, this ratio increases with the slope and with decreasing relative 

incident wave height. and the breaking amplitude and breaking depth increase with 

decreasing slope. These results are still used OIl occasion to compare to theoretical 

analyses and numerical models. 

Skjelbreia (1987) used a unique laser Doppler veloC'imeter (LDV) to determine the 

kinematic characteristics of breaking solitary waves. \i\'ater particle velocities were 

measured under spilling and plunging breaking waves close to the free surface and to 

the bottom both near breaking and after breaking. From these measurements vector 

diagrams for the water particle velocities and accelerations ullder breaking waves were 

constructed. However, no dear mechanism was found that would define the initia­

tion of breaking which showed the extreme complexity of the wave breaking process. 

Skjelbreia (H)?)7) also measured the evolution of the wave amplitude during wave 

breaking and defined four regions according to the behavior of the wave amplitude on 

the beach: zones of gradual shoaling, rapid shoaling, rapid decay, and gradual decay. 

Different power laws of growth and decay rate appeared to define these zones. Skjel­

brei a (1987) noted from his measurements that the vortices generated from breaking 

appeared to be counter-rotating, and their size was on the order of the undisturbed 

depth at breaking. In the present discussion. a possible generation mechanism for 

these counter-rotating vortices will be proposed. 

Papanicolaou and Raichlen (1987a, 1987b) investigated the breaking wave kine­

matics by visual observation of the changes in the breaking process using high-speed 

movies. They noted that plunging breaking differed from spilling breaking primarily 

in the rate of change of the properties, not in the overall characteristics of the waves. 

The variation of the breaking wave height-to-depth ratio with distance for solitary 
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waves was presC'nted and compared with that of cnoidal waves. Other aspects of the 

breaking. such as bubble mass. which \vas defined as the area of the roller generated 

bv the air entrainlllent in the breaking wave. were also measured from the images. 

Similar changes \vere found in wave height and bubble lllass for solitary and cnoidal 

waves for each type of breaking. indicating that the effects of bubbles on the breaking 

waves were similar for translatory and oscillatory waves. 

l\Ieasurements of the characteristics of the plunging jet generated by periodic 

breaking waves on slopes were reported by Chanson and Lee (1997). They found that 

the location of the plunging jet impact with the free surface was always above the still 

water level. and the impact angle of the plunging jet with the free surface was about 

310. The energy dissipation associated with the plunging jet was also estimated; they 

suggested that the ratio of the energy dissipation to the incident wave energy was 

about 20Yc to (:iO%. and it increased with the bubble penetration depth and with the 

characteristic length of the plunging jet. 

Stansby. Chegini, and Barnes (1998) investigated the fiow induced by "dam­

breaking" with different ratios of the upstream depth to the downstream depth. An 

interesting observation was the generation of a "mushroom like" jet similar to the 

plunging jet of a breaking wave with the resultant splash-up as was seen in Figure 

1.1. While the structure and the evolution of the jet and the splash-up were complex 

and difficult to define, the overall surface profiles at different times agreed remarkly 

well with exact solutions of the non-linear shallow water equations. These results 

suggested that the same non-linear shallow water equations also may be applicable 

to breaking wave run-up if the details of plunging jet are not included in the analysis. 
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2.3 Numerical Simulations 

There have been a number of numerical solutions relating to the run-up of nOll­

breaking waves and breaking waves using different simplified models. For example. 

an early study by Brennen and vYhitncy (1970) used the inviscid dynamical equations 

of motion in Lagrangian coordinates to investigate run-up of waves, their calculation 

was reasonable for non-breaking waves, but computation stopped when the wave was 

breaking. 

The non-linear shallow water equations have been widel:\' employed to model long 

wave propagation and the run-up process. If provision is made in the numerical model 

to account for the energy dissipation associated with wave breaking, they may also 

be used to simulate the breaking wave run-up. 

Two basic types of numerical methods have been used to solve the shallm\' water 

equations: (i) the method of characteristics and (ii) finite-difference methods. The 

characteristics method has the advantage that the line of characteristics has clear 

physical meaning, and the path of the shoreline is always a characteristic line, thus, the 

position of the shoreline can be obtained direct ly froIIl the computation. Freeman and 

Le Mehaute (1964) used this method to study wave breaking and surging on a dry bed. 

However. when using the method to investigate run-up, "the linc of characteTistics 

beco'ffl.e veTY neaT parallel and this leads to a lar-ge uncertainty in .finding their- point 

of inter-section" (Hibbert and Peregrine (1979)). Finite difference methods have been 

used more successfully to compute the shallow water equations. Hibbert and Peregrine 

(1979) solved these equations in conservative form using the Lax-Wendroff scheme. 

and applied the scheme to calculate the evolution and run-up of a uniform bore on 

a slope. The moving shoreline was treated by adding new grid points during nUl-Up. 

and. if necessary. subtracting the points that were not covered by water during nm-
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down. A predictor-corrector-smoothing procedure was presented to predict whether 

the grid points needed to be adjusted. This numerical treatment was not robust. 

as pointed out b~T Titov and Synolakis (1995). Nevertheless. Hibbert and Peregrine 

(1979) gave the first quantitative and realistic solution of the uniform bore behavior 

during the run-up process. 

Titov and Synolakis (1995) solved the characteristic form of the shallow water 

equations using finite difference methods and used it to model the propagation and 

run-up of solitary waves. The characteristic equation was solved using the Godunov 

scheme to avoid the numerical instabilities problem associated with wave breaking. 

The moving shoreline was treated the same as that of Hibbert and Peregrine (1979) 

by adding and subtracting grid points according to the shoreline position, except the 

boundary conditions imposed on the shoreline were modified as the following to avoid 

stability problems: 

d:r s = 0 
dt 

at (2.11) 

where :1"8 is the location of the shoreline. 'Tl is the wave amplitude measured from 

the initial water level, and h is the water depth. The wave amplitude evolution and 

maximum run-up for non-breaking and breaking solitary waves were computed and 

compared with experimental results. However. small oscillations can still be found 

around the breaking point in their simulations. and tlw second boundary conditions 

in Eq.2.11 was wrong (see Zhang (1996)) and need to be corrected to provide good 

prediction of run-up. 

Zhang (1996) developed a finite-difference scheme for the shallow water equations 

using the Lax-""endroff scheme to investigate non-breaking solitary wave run-up. The 

run-up was modeled by remapping the grid points at the surface according to the 
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instant shoreline position. Based on his numerical simulations, Zhang (1996) found 

that '·the maximllm. run-up of a solitary wave Vf'cdicted by the shallow water' equations 

was dependent on the initial location of the solitary wave and its value was not llniqlle 

becallse the waUe became incn;asely steepened given long time to tmvel in the absence 

of the dispersive effects. " Zhang (1996) also investigated the frequency dispersion and 

three-dimensional wave run-up upon a vertical wall using his numerical scheme. The 

computing domain mapping technique proposed by Zhang (1996) apparently treats 

the shoreline movement well and will be used in the numerical scheme developed in 

the present study. 

Dodd (1998) investigated wave run-up. overtopping, and regeneration by solving 

the non-linear shallow water equations using a Roe-type Riemann solver, which was 

developed in gas dynamics to track shock waves. An energy dissipative term repre­

senting bottom friction was included in the model. In the scheme. a minimum local 

depth dmin was defined to treat the moving shoreline. When the water depth in the 

cell is less than dmin , the cell was considered "dry", otherwise, the cell was occupied 

by water ('·wet·'). The shoreline was defined as the separation line between the "dry" 

cell and the "wet" cell. Dodd (1998) conducted simulations of wave propagation and 

overtopping including random waves and compared them with experimental results, 

good agreements were found from his investigation. 

In summary, the models utilizing non-linear shallow water wave equations, al­

though having the limitation of failing to provide depthwise variations in velocity 

and omitting frequency dispersive effects, appear to have the ability to model aspects 

of the wave breaking process and the corresponding run-up for solitary waves. "The 

well-documented but unel;plained ability of the shallow water eqllations to provide 

qllantdati71dy C07'Tect TlI.nup T'e:mlts even in parameter- mnges where the underlying 

assu.mptions of the governing equations aTe violated" (Titov and Synolakis (1995)) 
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need further investigation and will bc given attention in this thesis. 

Boussincsq type models have also been used widely to simulate wave breaking and 

run-up. They can represent the nOll-linear effects and dispersive effects theoretically 

to any degree of accuracy and can descrihe most wave phenomena. However. a special 

breaking term has to be included in the momentum conservation equation to model 

the dissipation associated with wave breaking. The term must incorporate coefficients 

that need to be calibrated by field or experimental data. This drawback limits the 

application of the Boussinesq models. Pedersen and Gjevik (1983) developed a finite­

difference scheme for the Boussinesq eqnations using a Lagrangian description. which 

can predict the non-breaking run-up process and also the possibility of wave breaking 

during run-down. The maximum run-up predicted using this numerical model was 

larger than the experimental data of Hall and Watts (1953). Peterson and Gjevik 

(1983) suggested that this difference was due to surface tension and friction effects 

that were neglected in the numerical model. It was also found that the friction effects 

became less important as the depth in the channel increases. 

ZeIt and Raichlen (1990) developed a Lagrangian representation of the Boussinesq 

equations and used a finite-element mociel to investigate non-breaking solitary wave 

run-up on two-dimensional and three-dimensional bathymetry. ZeIt (1991a) applied 

this model to the case of the run-up of both non-breaking and breaking waves on 

a plane beach. "Vave breaking was parameterized with an artificial viscosity term 

in the momentuIll equation. and the bottom friction was also modeled as a term 

quadratic in the horizontal water velocity. ZeIt (1991a) found that non-hydrostatic 

effects associated with the frequency dispersion term in the Boussinesq equations 

reduced the tendency of waves to break and improved the agreement of the numerical 

results with the laboratory run-up data. \Vhen calibrated with laboratory data. the 

model of ZeIt (1991a) could provide reasonable predictions of the wave run-up process. 
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In additioll, ZeIt (1991b) studied the landward inundation of non-breaking solitary 

waves that propagate up a non-planar slope. 

1\mnerical solutions of the Laplace equations and the N avier-Stokes equations also 

have been used in wave run-up investigations as the comput.er power has increased and 

the algorithms used to solve complex systems have beell developed. Grilli, Svendsen, 

and Subramanya (1997) solved a fully non-linear potential flow model (the Laplace 

equation) using the boundary element t.echniques (BE1\l) , and used it to calculate 

various characterist.ics of breaking solitary propagation and run-up. In contrast to t.he 

depth-averaged models like the shallow water equations and the Boussinesq models, 

the vertical structure of the water particle velocities could be treated by the numerical 

model. The detailed wave breaking information including the shape of the plunging jet 

generated by the wave breaking, the celerity, and water particle velocity as well as the 

wave shoaling and overall wave profile were reported. However, this numerical model 

cannot predict maximum run-up since the computation stops when the plunging jet 

impinges the free surface. In Chapter 5, the numerical results of Grilli et al. (1997) 

will be compared to experimental results obtained from the present investigation. 

Lin, Chang and Liu (1999) developed a numerical model solving the Reynolds 

equations for the mean fiow field and the k - f equations for the turbulent kinetic 

energy, k, and the turbulence dissipation rate, f. and applied the model to wave 

breaking and run-up problems. The free-surface locations and movement were tracked 

by the volume-of-fiuid (VOF) method proposed by Rirt and Nichols (1981). Their 

numerical results agreed with the experirnental results in terms of the wave profile 

and velocities. but fail to provide the jet and splash-up information. which may be 

due to the inaccuracy of the free surface tracking techniques used. 
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Chapter 3 Theoretical Analysis 

3.1 Non-Breaking Solitary Wave Run-Up 

III this sectioll the run-up of non-breaking solitary waves on a uniform plane 

beach connected to an open ocean of constant depth is considered. The waves are 

non-breaking during the rUll-Up and run-down process. A non-linear solution to 

the classical shallow water equation, which describes the wave characteristics on the 

beach, is obtained analytically by using the Carrier and Greenspan (1958) hodograph 

transformation. It was found that the non-linear theory agreed well with experimental 

results. The maximum run-up predicted by the non-linear theory is larger than that 

predicted by the approximate non-linear theory of Synolakis (1986) at the order of the 

relative incident wave height. The validity of this non-linear theory also is discussed. 

3.1.1 Governing Equations and Basic Assumptions 

Consider the specific case of the run-up of two-dimensional long waves incident 

upon a uniform sloping beach connected to an open ocean of uniform depth, as shown 

in Figure 3.l. The classical shallow water equations are: 

1]1 + (u(h + T/))T o 

o 

(3.1 ) 

(3.2) 
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Figure 3.1: Definition sketch of the solitary wave run-up 

where the subscripts denote differentiation, h is the wave amplitude, v. is the depth­

averaged velocity, and 9 is the acceleration of gravity. By introducing the following 

non-dimensional variables in Eqs. 3.1 and 3.2: 

* :1: 
:1' 

ho 
h* = ~ 

ho 
* TJ TJ =-

ho 
t* = t fi. 

V~ 
(3.3) 

where ho is the constant ,vater depth in front of the slope. the non-dimensionalized 

non-linear shallow water equations (NLS\V) are obtained: 

o 

o 

(3.4) 

(3.5) 
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For convenience. the asterisk will be dropped in the following developments; therefore. 

all equations presented subsequently in this scction are non-dimensionalized. 

The depth variations in the model to be used. i.e .. Figure 3.l. are: 

{

I 
h(:r) = 

:1' tan p :1' < Xo 

where ,(J is the angle of the slope shown in Figure 3.l. Eqs. 3.4 and 3.5 are the 

governing equations we will investigate in this study. 

3.1.2 Theoretical Considerations - Existing Theories 

In this section the earlier work of Synolakis (1986). Tuck and Hwang (1972). and 

Zhang (1996) will be summarized along with a brief discussion of the linear approach 

that can be taken to this problem. 

Neglecting non-linear effects, Eqs. 3.4 and 3.5 can be linearized to obtain the 

traditional small amplitude long wave equation: 

(3.6) 

For constant depth (11.0 = 1) the general solution to Eq. 3.6 is: 

r;(:r. t) = Aic-ik(x+ct) + A"c i /"(2'-ct} (3.7) 

where Ai. A" are the amplitudes of the incident and reflected wave. respectively. cis 

the non-dimensional wave celerity at constant depth region (c = 1) and k is the wave 

number (27f / L where L is the wave length). For a linearly varying depth the general 
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linear solution to Eq. 3.G can be written as: 

ry(:r. t) = B(/':. (3) Jo(2ky':r cot ;-J)e-il.:ct (3.8) 

By matching Eqs. 3.7 and 3.8 at til(' toe of the slope. i.e .. at Xo. Camfield and 

Street (1969) gave the solution for A,.(k. rJ) and B(k. (3) ill terms of Ai(/';. ;-J) for the 

combined bathymetry as: 

Jo(2kXn) 
Ai exp ( - 2ik cot /J + 21 arctan [( r ) l) 

J1 2kXo 
(3.9) A,.(k. ;3) 

B(k. ;J) 
2 exp( -ikXo)Ai 

(3.10) 

Superimposing a number of linear incident waves at :r = Xo one obtains the 

following expression for the wave amplitude at the toe of the slope: 

(3.11) 

The wave amplitude in the region of positive depth on the slope (0 < :r < Xn) 

can be determined as: 

(3.12) 

This solutioll is valid only for the region 0 < :1' < X(j. However, near the initial 

shoreline non-linear effects cannot be neglected. Therefore, one cannot solve the run-

up as a linear problem. but non-linear effects must be considered and the non-linear 

eqnations. Eqs. 3.4 and 3.5. must be solved to obtain a solution for the run-up subject 

to various assulllPtions and / or approximations. 



26 

Carrier and Greenspan (1958) introduced the follmving transformations consider­

ing Riemann invariants of this hyperbolic system of equations to obtain the solution 

of Eqs. 3.4 and 3.5 for periodic waves: 

:1' 

t 

77 

Wo­
o-
0- 2 W,\ lJ.2 

(16 - 4 + 2) cot ;3 

Wo- A . 
( ---;:- - 2) cot /J 

W,\ v2 

---

4 2 

where (0-. A) are variables in the transformed plane. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Not(' that in the development of the transformations of Carrier and Greenspan 

(1958), the normalized depth variation is defined essentially in terms of the beach 

slope and the characteristic horizontal length of the wave. For the application of 

this approach to solitary waves this characteristic length is a function of the offshore 

depth. and for non-breaking waves it remains relatively unchanged throughout the 

run-up process. Thus. with decreasing depth. as the wave propagates up the slope 

one would not expect. the shallow water wave assumptioll to be compromised by the 

slope. Therefore. the applicatioll of this approach for a steeply sloping beach should 

be as reasonable as for a gentle sloping beach. 

Eqs. 3.4 and 3.5 are then reduced to the following simple linear equation: 

(3.17) 

From Eq. 3.14 it can be seen that the shoreline position is always at 0- = O. 

Using Fourier transforms. Eq. 3.17 can be solved from the boundary condition that 
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at J = Jo, \[f(Jo, k) = F(k); the solution bounded at J = 0 and J = CX) is : 

(3.18) 

The difficulties in determining a solution to Eq. 3.17 lies in specifying the bound­

ary conditions and transferring the boundary conditions from (1". t) space to (J.).) 

space. To circumvent this. Synolakis (1986) simplified the Carrier and Greenspan 

transformations (Eq. 3.13 to 3.16) as follows under the assumption that \[fA « J2/16 

and \[fIT / J«)'/2: 

\[fer 
(3.19) '/J 

J 
2 

J 
(3.20) :r - cot f-J 

16 ' 
). 

(3.21) t -- cot /3 
2 

\[fA 
(3.22) 77 -

4 

These approximate transformation equations are uncoupled. and make the trans-

formation from (1'. t) space to (J.).) space significantly easier. Synolakis (1986) chose 

the seaward boundary condition at the toe of slope. i.e .. :1" = X o• which corresponds 

to J = Jo = 4 in (J. ).) space. The boundary condition F (k) in the (J, ).) plane is de­

termined from Eqs. 3.18 and 3.22 to finally yield the wave amplitude at the shoreline. 

77(1"s, t) where ::cs defines the shoreline path and corresponds to J = O. For Us defined 

as the velocity of the shoreline, Synolakis (1986) obtains the following expression for 

the amplitude at the shoreline: 

(

c ) _ /.00.' Ai.(k)f'. .. :TP(-ik(Xo +. ct)) i1.. _ II; 77 .rs. t - (h 

,-x lo(2kXo) - ill (2kXo) 2 
(3.23) 
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It is noted that the maximum run-up is reached when the shoreline velocity /Ls, 

becomes zero. Using a solitary wave whose wave crest is located at :r = Xl when 

t = 0, the surface profile is defined as: 

H '~'H " ,,(:r.O) = -sech'2( --(T - Xd) 
hI) 4 ho 

(3.24) 

where H is the wave height in the constant depth region (h = 11.0 ), and Xl (see Figure 

3.1) is defined as the distance seaward from the toe of the slope where Xl = L/2, 

and L is a characteristic length of the wave defined here for the solitary wave as: 

') {;k L = - [aTccosh( -)] 
J'.3H / 411.0 0.05 

(3.25) 

Synolakis (1986) obtained for the solitary wave, after considerable effort. the fol­

lowing expression for the maximum run-up normalized by the constant offshore depth: 

Rs ,~H)", -=2.831vcot(:I(- ~ 
ho 11.0 

(3.26) 

Comparing the simplified transformation of Synolakis (1986) to the original trans­

formation of Carrier and Greenspan (1958), both advantages and disadvantages in 

using the simplified approach are apparent. The advantages are that the approach 

can uncouple the transformation equations, can transpose boundary conditions and 

initial conditions easily from (:r, t) space to (a, A) space. and can facilitate the cal­

culation of the wave characteristics beyond the initial shoreline position. This was 

a significant step past the application of the classical linear wave theory. However, 

the major disadvantages of the approximate non-linear theory, which the present ap­

proach attempts to eliminate, is that the simplified transformation neglects not only 

the terms ,,2 and u2 /2, but also the terms qJ a / (j and qJ.x/ 4, which arc both of the 
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order of r7 andlL. This affects both the accuracy of the wave characteristics during the 

run-up and run-down process and the predicted maximuIll run-up height. That these 

terms can be neglected compared to the other terms in the transformation equations 

has to be justified so that the simplified nOll-linear theory of Synolakis (1986) can be 

used. vVe will discuss the extent and significance of the effects of this approximation 

in Section 3.l.3. 

Tuck and Hwang (1972) have proposed another met hod to transform the non­

linear shallow water wave equations to linear form; their transformation equations 

are: 

'11'2 
(3.27) r7 '7+ -

2 

lL v (3.28) 

:[ :r + '7 (3.29) 

t t+v (3.30) 

Using Eqs. 3.27 to 3.30. the shallow water equations. I.e .. Eqs. 3.4 and 3.5. 

become: 

o 

o 

(3.31) 

(3.32) 

Zhang (1996) pointed out that using the simplified transformation proposed by 

Synolakis (1986) is equivalent to solving the linear equations Eqs. 3.31 and 3.32. since 

by combining Eqs 3.13 to 3.16 and 3.27 to 3.30 we can obtain: 

'7 (3.33) 
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Wo-
(3.34) 'U '/1 

(J 

2 
(J 3 (3.35) :r :r 16 cot! 

A 
(3.36) t t -- cot /3 

2 

Thus, the approximate non-linear theory of Synolakis (1986) must have the same 

accurac.v as the linear solution. Hence, in a sense it can be viewed as an extension of 

the linear theory. 

3.1.3 Theoretical Considerations - The Non-Linear Theory 

As mentioned earlier. the transformation of Carrier and Greenspan (1958) reduces 

the sha11O\v water wave equations ( Eqs. 3.4 and 3.5) to a single linear equation. i.e., 

Eq. 3.17, which can be solved using standard methods. The major difficulty is to 

determine accurate boundary conditions or initial conditions in the ((T, A) space. Here 

we propose a method to obtain the boundary condition, which is one order higher 

than that used by Synolakis (1986). Thus, the associated solution of Eq. 3.17 using 

this higher-order boundary condition should be more accurate than both the linear 

and the approximate non-linear solutions. The validity of this method will be verified 

with experiments and discussed later. 

Carrier (1966) pointed out that far seaward from the shoreline, non-linear effects 

can be neglected. Therefore, we assume the linear solution presented in Eq. 3.8 is 

still valid in the region near the toe of the slope, :r = Xo. i.e., the furthest point on 

the slope from the initial shoreline. When we substitute the transformations (Eqs. 
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3.14 and 3.15) into Eq. 3.8. we obtain: 

(3.37) 

Since the wave amplitude. 'I. and tlw velocity. '11. are small quantities near the toe 

of the slope. \W' can expand Eq. 3.37 in a Taylor's series and retain terms less than 

those of the order of 112 and /1
2 . Thus, we obtain for the amplitude: 

kXo 4kXo kXo . 
7/(CT.'\) = B(k, /3)(Jo(-cr) + --.h(-CT)r/)(l - I.kXou.) 

2 CT 2 
(3.38) 

The general linear solution for the wave amplitude presented in Eq. 3.8 can be 

substituted back into the original linearized shallow water equation, and the linear 

solution for the wave velocity 'Il can be found. The relation betweenlJ and '7. obtained 

in this manner is: 

(3.39) 

After substituting Eq. 3.39 into Eq. 3.38, we obtain one algebraic equation for 

the wave height '7 near the toe of the slope (:r = X o), i.e" cr = 4: 

(3.40) 

Eq. 3.40 can be solved easily. and the result can be used as the boundary condition 

to solve Eq. 3.17. Thus, the boundary condition at CT = 4 is: 

B(k (3)eikXofr oJ (2kX ) 
r(4,\)='!' (). 0 

), 1 - 2kXo,h (2kXo)B(k, /3)eikXo~ 
(3.41) 

Sin('(~ the denominator in Eq. 3.41 is less than unity for any value of the wave 
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number k, we can use the approximation (1 - :r) -I = 1 + :r + :r2 + () (:r:3) and expand 

the boundary condition around the toe of the slope as: 

Finally for an arbitrary incident wave as given by Eq. 3.11. the boundary condition 

at (J = 4. Eq. 3.42. becomes: 

rl( 4. A) .l: B(k. (3)f'iI.:Xo~ Jo(2kXo)dk 

+ I: 2kXoB(k.!3)2piI.:XoAJO(2kXo)JJ (2kXo)dk (3.43) 

The first integral in Eq. 3.43 is the boundary condition used in the approximate 

non-linear theory of Synolakis (1986). The second integral that results from the 

present study can be viewed as a correction to this approximate non-linear theory. 

Since the governing equation. Eq. 3.17. is linear in (J and A. we can solve the complete 

problem by snperposing the solutions for Eq. 3.17 using the first term and second 

term in Eq. 3.43 as the boundary condition. The solution using the first integral 

in Eq. 3.43 as the boundary condition is the same as the approximate non-linear 

solution of Synolakis (1986). and the solution using the second integral in Eq. 3.43 

as the boundary condition is: 

(3.44) 

Adding thE' two solutions. we obtain the final solution for the non-linear problem 
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subject to the approximations discussed earlier: 

C'>.(a. ,\) 

4 
.l: B(k. f3)ei/';Xo~ Jo(kXo% )dk 

+ I' x 2kXoB(k. j3)'2ei'2/';X()~ Jo(2,kXo),h (2kXo)Jo(kXoa) dk 
, -C)G Jo( 4kXo) (3.45) 

11 

'7 

1.,' 

t 

4J(} (a. ,\) 
a ,I: iB(k. (3)ei/';Xo~ Jo(l,;Xo% )dk 

+ lX,' 2kXoB(k. !3)'2ei'2/';Xo~ J1(2kXo)'2Jo(I.:Xoa) dk 

-x J1 (4k:X o) 
If',>. u'2 

4 2 
2 a 

cot/J( 16 - Tl) 

,\ 
cot/J(u - -) 

2 

where B(k. ;3) is given in Eq. 3.10. 

(3.4G) 

(3.47) 

(3.48) 

(3.49) 

Once the incident wave profile is known in terms of the Fourier components Ai ( k ). 

we can calculate all the wave characteristics in the sloping region including the max­

imum run-up from Eqs. 3.45 to 3.49. The asymptotic form of the Bessel function is 

used to simplify the calculations. 

For an incident solitary wave centered at 1.' = Xl. the Fourier form of this wave 

1S: 

(3.50) 

where a = nh and I = (3H/4ho)1/'2. 

Now we are ill a position to compare the solitary wave run-up predicted by the 

approximate non-linear theory and the present non-linear theory. The nOll-linear rU11-
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up is given by the value of the wave height at shoreline position, i.e., (]" = O. From 

Eqs. 3.45 to 3.49, we obtain: 

f}(O. A) 

2 
(3.51) 

where as beforell,s is the velocity of the shoreline tip, i.e., the tip of the run-up tongue. 

At the maximum run-up, the shoreline velocity is zero. (It is noted that in Eq. 

3.51 the first integral is identical to Eq. 3.23, i.e., the maximum run-up predicted 

by the linear theory and the approximate non-linear theory.) The two integrals can 

be calculated using the method proposed by Synolakis (1986). Thus, the maximum 

run-up obtained from the present non-linear theory is obtained as: 

(3.52) 

with 

Rs ~H" (3.53) 2.831 cat/3( -):j 
ho ho 

Rcr :1 H q 

(3.54) O.293( catp) 2 ( - ):j 
ho ho 

Rc:r H 
O.104coW( -) (3.55) 

R" ho 

In Eq. 3.52 Rs/ho is the run-up obtained by Synolakis (1986) and Rcr)ho is the 

correction to the approximate theory based on the non-linear approach presented 

here. Thus. the non-linear run-up is different from the linear run-up by an extra term 
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that is a function of the initial relative illcident wave height and beach slope. The 

significance of the non-linear correction term. Rer/ Rs' can be seen easily from Eq. 

3.55. This will be discussed later along with the influence of wave breaking on the 

non-breaking correction term. 
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3.2 Numerical Simulation of Breaking Solitary Wave 

Run-Up - WENO Scheme 

The higher-order nOll-linear theory presented ill the previous section is applied to 

non-breaking solitary waves run-up only. As the incident \"ave height increases or the 

slope investigated becomes gentler, the non-linear effects and the dispersive effects 

cannot be balanced during the wave propagation process, and the wave height and 

water particle velocit~· in the wave increase. The increase rate is so large that when 

the water particle velocity equals t he wave speed. wave breaking occurs. "The phys­

ical sign~fi:cance of this wave bn;aking pmcess arises fmm the .fluid motion associated 

with breaking that absorbs most of the energy transmitted with the wave." (Galvin 

(1983) ). This energy dissipation process not only changes the wave kinematics of the 

propagation process but also decreases the maximum wave run-up dramatically. From 

recent field observations, it appears that the run-up associated with many tsunamis 

may be caused by breaking waves. As mentioned earlier, one recent event in Papua 

~ew Guinea in July 1998 resulted in wide destruction and more than 2,000 deaths. 

From eye-witness accounts it appears that the waves. some about 15 m high at the 

shoreline. were breaking. Thus. the development of an applicable theory to predict 

run-up due to breaking waves is desirable and important for the tsunami research. 

Due to the mathematical difficulties in dealing with the complexities of the fluid 

motion in the wave breaking process, most of the previous studies on breaking wave 

run-up are experimental and focus 011 breaking wave effects on beaches. In the present 

study. a numerical model based on the weighted essentially non-oscillatory (\VENO) 

scheme used in gas dynamics is developed to simulate the process of wave breaking 

and run-up. However, since breaking was only lllodeled as a propagating bore by the 

numerical model. the details of wave breaking. such as the plunging jet. splash-up. 
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etc .. cannot be provided. 

A depth-averaged numerical model that solves the non-linear shallmv water equa­

tiems is implemented here. As mentioned earlier. the shock-capturing method of 

\Neighted Essentially Non-Oscillatory Scheme(\VENO) developed in gas dynamics is 

used to capture the wave breaking process. The wave breaking process is modeled 

and captured automatically by the numerical scheme without introducing any ad-hoc 

breaking term to suppress the numerical oscillation that is very common in other nu­

merical models. The energy dissipation associated with breaking and the maximum 

wave run-up on the slope during the wave breaking process will be investigated by 

this numerical method. 

3.2.1 Mathematical Formulation 

\Ve consider the run-up problem defined in the last section of two-dimensional 

long waves incident upon a uniform sloping beach connected to an open ocean of 

constant depth (see Figure 3.1). 

The difficulties associated with the numerical study of wave breaking and the re­

sulting run-up process lie in how to choose a suitable mathematical model to simulate 

wave breaking. The classical nonlinear shallow water equations (NLSW): 

rlt + (v,(h + rl)).1: o 

o 

(3.56) 

(3.57) 

were found to be a suitable model to describe the run-up process of non-breaking 

solitary waves in Section 3.l.3. These equations are very sirnilar in terms of the 

mathematical structure to the Euli;r equations ill gas dynamics. which can admit 
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discontinuous solutions if written in conservative form. The discontinuities are inter-

preted as shocks and found to be good mathematical representations of the real fiow. 

Similarly. if we write the NLSV\T equations in conservative form. a discontinuity in 

the solution is also possible and it can be used as a simplified mathematical model 

for a breaking wave or a bore. 

When written in conservative form. the shallow water equations become: 

(h + Tl)t + (u(h + T7)):r 

(u(h + '7))t + [(h + Tl)u? + ~9(h + T7)2].1' 

o (3.58) 

(3.59) 

Let d = II + Tl and introduce the following non-dimensional variables in Eqs. (2.3) 

and (2.4): 

* :r 
:r =-

hn 
h* = ~ 

ho 
* TI T7 =-

ho 
t* = t [j[ V lio 

(3.60) 

where ho is the constant depth seaward of the slope, as shown in Figure 3.1. The 

non-dimensional conservative shallow water equations are then obtained as: 

dt + (nd):r: 

212 
(du)t + [du +"2d L· 

() 

dh,l' 

(3.61) 

(3.62) 

For convenience. the asterisk (*) indicating non-dimensionality has been dropped 

in the above equations and the remaining discussion. 

3.2.2 Numerical Model and Treatment of a Moving Shoreline 

\Vhen using Eqs. 3.61 and 3.62 on wave rUll-Up problems. difficulties arise 

from treating the shoreline position, since the shoreline changes as the water swashes 
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up the slope during the run-up process. Therefore a special treatment has to be 

included in t he numerical model to define the shoreline. The most commonly used 

technique to model the mn-up is using EulE;rian models with fixed numerical meshes 

covering both t 11(' wet and the dry regions. The shorelinE' position is then defined as 

the interfacE' between the "wet celr' and the "dry cell". Examples of this treatment 

can be seell in Lin. Chang. and Liu (1999). These methods can he implemented easily. 

but can cause inaccuracy in determing the shoreline positioll alld numerical instabili-

ties if not treated carefully. Also the "dry" region has to be covered in the computing 

domain. which affects the computational efficiency of the numerical scheme. Another 

approach is using a Lagrangian model for the governing equations instead of the 

Eulerian model. In this method the shoreline position is automatically defined. Zeit 

(1991b) used a Lagrangian Boussinesq finite-element waY(' model to study the run-up 

of non-breaking and breaking solitary waves. The Lagrangian methods do Hot need 

special treatment at the shoreline. but the governing equations become complicated 

and these methods are rarely used in wave studies. 

In this development we use the computational domain mapping technique pro-

posed by Zhang (1996) to model the shoreline movement. This method retains the 

simplicity of the Euler method, but uses the simplified Lagrangian approach for the 

shoreline position. The technique is smllInarized below. (The following description is 

from Zhang (1996).) 

For the computational domain (-f, 0) of the numerical calculation the following 

transformation on (:r. t) plane is introduced: 

:r 

t 

(1 + X ):r' + X r 
t' 

(3.63) 

(3.64) 
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where :r = X (t) is the shoreline position defined in the coordinate system as a function 

of time t. r is the total initial length of the computational domain. (1:'. t') is the new 

computing plane. ~otice that under this transformation. the water shoreline position 

l' = X(t) is always located at 1:' = O. and the seaward boundary of the computational 

domain. :1' = - r. is always located at :1" = -fin the transformed computational 

domain (:t'. t'). Therefore. the length of the computational domain and the number 

of mesh points do not change with time dming the shoreline movement process in the 

new (:r'. t') plane. Only the actual location for each grid in (:r. t) plane is changed at 

each calculation cycle. but this actual location for each mesh point can be calculated 

from Eqs. 3.63. 3.G4 after every computing cycle. The moving boundary problem 

is then changed to a fixed boundary problem and the shoreline and its associated 

boundary conditions can be treated using standard techniques. 

From Eqs. 3.63 and 3.64 the relationship between the derivatives m the two 

systems are obtained as: 

U 
at 
U 

U1: 

a 
Ot' 

1 

1 +:r'jf U~ 
1 + Xjf ch' 

a 
1 + Xjr 0:1" 

(3.65) 

(3.66) 

where U = dX j dt is the shoreline velocity along the slope. Substituting these rela­

tions into the original equations. i.e .. Eqs. 3.61 and 3.62. the governing equations in 

the new coordinate system are obtained (the primes are dropped for convenience): 

dt + (-('IUd + C'2l.ld)x 

'2 1 '2 
(du)/ + [-c1Udu. + C'2 dv. + -C'2d lr 

2 

_ C'2
Ud r (3.67) 

(3.68) 



where ('1, (''2 are defined as: 

1 + :rjr 
('1 = ('1(:1', t) = 1 + Xjr 

41 

(3.69) 

Eqs. 3.u7. 3.G8 can be written in standard vector form as: 

(3.70) 

where V is the calculating variable. F is the numerical flux. and § is the source term. 

These vectors are defined as: 

s = [ -C'2
Ud

jr 1 
c'2dh;r - C2 Udu.jr 

(3.71 ) 

Eq. 3.70 is a system of hyperbolic conservation laws. and can be discretized on 

uniform grids by the standard finite difference method with conservative form: 

FI! - Ffl 
i+~ i-~ + §n 

6:1' I 
(3.72) 

where 6t is the computing time step. 6:1' is the grid size. F(V) is the numerical flux 

function: 

(3.73) 

The quantity f is a Lipschitz continuous function in all the arguments. and con­

sistent with the physical flux F. These conditions assure that if the solution to the 

conservative scheme Eq. 3.72 converges. it will converge to a weak solution of original 

partial differential equation. i.e., Eq. 3.70. (i - T.t - T + L .... i + 8) is the stencil of 

the present nUlllETical scheme. 
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3.2.3 Weighted Essentially Non-Oscillatory (WENO) Shock-

Capturing Scheme 

The differences between various numerical met hods applied to the general conser­

vation laws. Eq. 3.70. lie in the choice of the computational stencils and the numerical 

£lux functions. Traditional numerical methods like the Lax-Wendroff method and the 

l\IacConnack method use fixed stencils for each computing point and interpolate the 

numerical £lux function inside the stencil to get the flux values at the cell boundaries 

i + 1/2. i - 1/2. These methods work well for most problems with continuous so­

lutions. For example. Zhang (1996) used the Lax-\Vendroff scheme to compute the 

non-breaking solitary wave run-up on steep slopes. However, when applying the fixed 

stencil method to a problem with discontinuities within the computing domain. such 

as breaking wave cases. a well-known numerical problem called the "Gibbs phenom­

enon" arises. This is when the nnmerical solution oscillates near the discontinuities. 

and does not decay when the grid is refined. The oscillations often lead to numerical 

instabilities. which are the challenge that must be faced when numerically simulating 

breaking waves. Various remedies have been used to eliminate or reduce the spurious 

oscillations. The most successful methods that have been used in the past are the ar­

tificial viscosity method and the limit £lux or slope method. These methods introduce 

some ad-hoc "breaking terms" to increase the numerical dissipation in the original 

equations or reduce the order of accuracy. These arc very problem dependent. The 

coefficient in the ad-hoc term must be calibrated according to prior experimental data 

before being applied to actual numerical calculations. Besides. since the numerical 

dissipation has been increased, the discontinuities will be smeared and the numerical 

scheme will lose accuracy. 

The essentially non-oscillatory (ENO) scheme developed by Harten. Engquist. 08-
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her, and Chakravarthy (1987) is the first sllccessful method that achieves no oscilla­

tiems near the discontinuities and retains high-order accuracy to solve the conservative 

laws (Eq. 3.70). The difference between the ENO scheme and other methods lies in 

how to choose the cells used in the reconstructing the numerical flux. These cells 

together are called the stencil for the llumericalmethod. The basic idea of the ENO 

scheme is instead of using a fixed stencil to interpolate the numerical flux function. 

an adaptive stencil is chosen based on the local smoothness of the solutions. The 

measurement of the local smoothness. the hierarchy to choose the stencil points, and 

the extension to higher-order schemes have been developed by Harten et a1. (1987) 

to ensure the efficiency and accuracy for the numerical methods. The EN 0 scheme 

has been used successfully in gas dynamics to simulate shock behavior and in channel 

flows to simulate bores. The' results have been very satisfactory. For example. Yang 

and Shu (1993) used a second-order ENO scheme to simulate bore impingement on a 

circular cylinder and the propagation of a bore through a channel with a contraction 

and an expansion. 

Recently Liu. Osher. and Chan (1994) and Jiang and Shu (1996) have developed 

the weighted essentially non-oscillatory scheme (\VENO) based on the original ENO 

scheme. The WENO scheme provides several improvements compared to the END 

scheme. and it can achieve a higher accuracy of the numerical flux on the same 

number of stencil points by exploring all the local smoothness information provided 

by the ENO method. Applications of WENO scheme to gas dynamics have been 

reported recently. see Shu (1998). However th(' application to breaking waves and 

bore problems has not been reported. This study is the first to attempt to implement 

this scheme in simulating the breaking wave run-up process. A detailed description 

of the WE~O scheme can be found in Shu (1998); below is the summary of the 

fifth-order ·WENO scheme used with Eq. 3.70. 
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i-2 i-I . 
i+l i+2 I 

i-1/2 i+1/2 

Figure 3.2: Sketch of the stencil used in \VENO scheme 

Consider the possible stencils used for calculation for point i (i - 2, i - L .. '. i + 2) 

shown in Figure 3.2. The value of the numerical £lux P is known from Eq. 3.71. To 

assure the numerical stability and convergence to a physical possible solution for Eq. 

3.70. the Lax-Friedrichs £lux splitting is used on the numerical £lux: 

where 

a = max IP'(V)I 
r 

note pi (V) is the derivative matrix and can be obtained easily from Eq. 3.71. 

(3.74) 

From numerical analysis. a polynomial with third-order accuracy can be con-
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structed from point-wise values Fi±CV) for the candidate stencils and the value ~!1/:z(T7) 

in Eq. 3.72 can be obtained from this polynomial. This will give us three different 

reconstructions for the stencils above: 

(3.75) 

where Crj is the interpolation coefficient and call be found in Shu (1998) alld 1m::.; the 

value: 
'" """, IT'" ( . . _ ~ L...-1=OJopm q=O.qopm,1 T - q + 1) 

(r] - L k 

m=J+l ITI=o.lopm (m - l) 
(3.7G) 

The \VENO ::.;cheme give::.; a new approximation to the numerical flux at the bound-

aries as the combinations of these reconstructions: 

(3.77) 

where uJr can be obtained as: 

dr 
(3.78) 

f is a ::.;mall number introduced to make sure the denominator in above equation does 

not become zero; one usually choo::.;e::.; f = 10~6. The quantities dr, fir are determined 

as: 

and 

3 
d-­

II - 10 
1 

d:z= -
10 

(3.79) 

(3.80) 

(3.81 ) 
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(3.82) 

By applying the above procedure on it (r) and ii- (r) separately for both the 

left boundary Il1lInerical flux PII I and the right boundary numerical fiux pll 1 at each 
1-'2 1+'2 

computing point i. we can get the total flux for the cell. From Eq. 3.72, the solutions 

at the new time level Tl + 1 can be found explicit 1.\' from the values at time level 

n. By numerical analyses of Shu (1998). the above numerical scheme is stable and 

has accuracy up to fifth-order at smooth regions and obtains sharp discontinuities 

without spurious oscillation nearby. 

3.2.4 Boundary Conditions 

It is necessary to apply boundary conditions to the computational domain. To 

efficiently impose diflercnt boundary conditions, "ghost cells" have been added to 

the left and right boundary. When choosing the computing stencil in the numerical 

scheme described above to calculate the numerical flux. only real cells are chosen 

during the calculation. 

For the totally refiective boundary conditions (vertical wall located at the bound­

ary between first cell (ghost cell) and the second cell (the real cell)) at the seaward 

boundary. the velocity of the wave at the vertical wall must be zero: 'U 1 = O. The 
'2 

following boundary conditions can be derived from the Eq. 3.70: 

(dlL )0 

(3.83) 

(3.84) 

where the cell with index 0 is the ghost cell added in the computation domain. (This 
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boundary condit ions will also 1)(' used in this thesis to model t he vertical wall in the 

case of the splash-up of a non-brmking or hreaking ,vaw 011 a vertical wall.) 

l\' 0 special treatment has to 1)(' imposed 011 the boundar:v for the non-reflcctive 

boundary conditions at the seaward b01111darv sillce the \VENO schewe is H conS('I'va-

tiv(' schcmc: this conditions are automatically satisfied when calculating the 111ll11Crical 

flux at the boundary cells. 

For the shoreline boundarv conditions. Zhang (1~)9G) has proposed the followillg 

('onditions ill tho transforlllcd computing domain: 

h(X(t)) + TI(X(t). t) 0 (3.~5) 

dX 
U(t) (3.~G) 

dt 
dU 

(3.~7) 
dt 

-Tl.r 

Eqs. 3.~5 and 3.~G are obviously true for shorelille position. and 3.87 is identi(,al 

to Eq. 3.57. It is the Lagrangian description of the shoreline lllovement. 

The I3ealll- \Varming scheme and trapezoidal integration are used whell discretizing 

Eqs. 3.85 to ;).~7 followillg Zhallg (199G). These schemes are second-oreier ill space 

and time: 

-t M2 
Un+1 T[" 6 ('J II 4 n . II ) + (3 n '). II + /I ) \' = c}\, - -;- .J'''\, - . 'IS-l + rlI\;-2 ')A 2 rl,v - -'/]\;_1 rlIv-2 . u.r _():J' 

(3.88) 

(3.89) 

where 1V is the last grid index of the transformed com put ing domain. and ahva~'s 

corresponds to the shorelinc position. 
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3.2.5 Test Cases 

In this section the numerical scheme including the boundary conditions described 

ahove is verified bv several numerical experiments. 

A Solitary Wave Propagating on a Constant Water Depth This test case 

lIlodels the sillgle solitary wave propagating on a COllstant water depth and is used 

to verify bot h the accuracy of the numerical scheme when solving wave problems and 

the conservation laws of the physical parameters like total lIlass and total energy of 

the computing domain. 

\\'e use the first-order solitary wave theory for the initial wave shape and wave 

velocity. i.e.: 

71 2~ H.sech ( -. (:1' - Xl) 
4h~ 

(3.90) 

CI7 
(3.91) v --

1 + 71 

c Jg(H + ho) (3.92) 

where H is the initial relative wave height for the solitary wave. Xl is the position of 

the initial wave crest in the computing domain as shown in Figure 3.1 . and c is the 

wave celerity. 

The comparison between numerical results and theoretical results is presented in 

Figure 3.3 for waw shape. It has been pointed out by other researchers that any 

disturbancc with a positive hump like the solitary wave propagating into still water 

of constant depth under shallow water equations will ultimately be discontinuous and 

break see Stoker (1957). This can be proved by analyzing the characteristic curves 

for the simple wave case. Thus. the dispersive effects cannot be neglected and the 
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balance between the non-linear effects and dispersive effects is very important when 

simulating the solitary wave propagation on a constant water depth. To include 

the dispersive effect in the nUlllerical scheme. we include the dispersive term of the 

general Doussinesq model (~TU (1979)) into our numerical scheme. The treatment 

of this dispersive term is the same as that of Zhang (1996). It can be seen that 

the solitary wave keeps the original shape when propagating and that the agreement 

between the theoretical predictioll and numerical results is very good. The amplitude 

of the solitary wave is almost constant during the calculation with numerical error less 

than 0.1 r;;;. This shows the WENO scheme has high-order accuracy in smooth regions. 

Note the discretization of the Boussinesq term here is still using a fixed stenciL this 

will cause numerical stability when simulating the wave breaking process and hence 

cannot be used in the breaking wave run-up simulation. However. as pointed out 

before. for the wave run-up process. the dispersive term is very small compared to 

the non-linear term and thus can be neglected. 

The mass and energy conservation properties are investigated in this numerical 

experiment. l\Iass conservation is guaranteed by the governing Eq. 3.58. For con­

tinuous solutions. the lIlass conservation of Eq. 3.58 and momentum conservation 

of Eq. 3.59 are equivalent to the energy conservation. thus mass and energy should 

be conserved for solitary wave propagation. The calculated mass and energy in the 

computing domain as a function of time are presented in Figure 3.4. We can see that 

the lIlass and energy are illdeed preserved during the calculation process. The method 

to calculate the nmss and energy will be discussed in Chapter 5. For solutions with 

discontinuities. the energy will not be conserved but decrease across the shock. This 

can be interpreted as the energy dissipation during the wave breaking process. 
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Figure 3.3: Numerical simulation of propagation of a solitary wave with H/ho = 0.30 
over constant water depth. Shapes of the wave at different times 

Dam-Break Problem The dam-break problem is an interesting theoretical and 

practical problem in civil engineering. Various theoretical and experimental investi­

gations have been conducted in the past to study this particular flow. Here we use 

the numerical scheme described to simulate the flow. The numerical results will be 

compared to the theoretical results presented by Stoker (1957). 

The initial water is still and separated by a thin plate with left (upstream) water 

depth hI = 1.5. and right (downstream) water depth 112 = 1.0. as shown in Figure 3.5. 

At t* = 0 the plate is removed and the water flows freely. By theory. after the plate is 

removed an expansion wave propagates upstream and a bore (discontinuity) travels 

downstream. The comparison between the theoretical solutions and the numerical 

results for water free-surface at t* = O. t* = 5.0. t* = 10.0 is shown in Figure 3.5. 
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Figure 3.4: l\umerical simulation of propagation of a solitary wave with H / ho = 0.30 
over constant water depth. Evolution of the potential energy, kinetic energy, and 
volume as a function of normalized time 

We can se(' that the numerical results agree well with the theory even around the 

sharp discontinuity (bore). The numerical scheme can reconstruct the jump in 2 

rv 3 cells, and neither obvious numerical dissipation nor oscillation can be observed 

in the solution. This demonstrates that the \VENO scheme can indeed capture a 

shock (bore) without spurious oscillations while maintaining high order of accuracy 

at smooth regions without shock. 
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Figure 3.5: Numerical simulation of dam-break flow with the ratio between upstream 
water depth and downstream water dept.h: h d h2 = 1.5 
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Chapter 4 

Procedures 

Experimental Apparatus and 

4.1 Wave Tanks and Wave Generation System 

4.1.1 Wave Tanks 

Three wave tanks were used to investigate solitary wave run-up. To generate 

a breaking wave for a relatively small incident wave height (0.03 < H / ho < 0.4). 

the slope of the beach should be quite gentle (usually 1:15 or smaller). Of course. 

a breaking wave can be generated on a steep slope if the incident wave height is 

large enough. Two wave tanks were used for breaking solitary wave studies: (i) 

a 3l. 73 m long wave tank located at the "'T. ]V1. Keck Hydraulics Laboratory of the 

California Institute of Tedmology (denoted as Caitech "'Test Tank. GWT). (ii) the 45.7 

m long wave tank located at the Coastal Engineering Research Center. \Vaterways 

Experimental Station, USACE (denoted as CERe). For non-breaking solitary wave 

run-up on a steep slope. the length of the wave tank is not critical and a shorter \vave 

tank (15.25 m long) located at the ~T • .1\1. Keck Hydraulics Laboratory of Calteeh 

was used (denoted as Caltech Student Tank, CST). 

The Caltech West Tank (C\VT) is 3l.73 m long, 39.37 ern wide. and 60.96 em 

deep consisting of 9 identical sections. It has been described by Hammack (1972). 

Goring (1979). and Synolakis (1986). A schematic drawing of the wave tank is shown 

in Figure 4.1 and a typical section is shown in Figure 4.2: the dimensions are in 
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English units. The wave tank was constructed with glass sidewalls throughout and a 

painted structural steel bottom. The glass wall of each section is l.52 m long, 63.50 

em high and l.27 cm thick. The bottom is leveled carefully with the deviation from 

the horizontal surface less than ±2.5 nun. The joints along the edges of the glass and 

t he bottom were sealed with silicone caulking to eliminate leakage. Stainless steel 

rails 3.1)1 em in diameter are mOlmted along the top edge of the wave tank and are 

leveled to within ±O.3 mm. ),Iovable instrument carriages are designed for these rails. 

A steel scale is mounted along the top edge of the tank to provide all accurate measure 

of distance. An aluminum ramp was installed at one end of the fiume joined to the 

constant depth region with the toe of the slope 17.30 m from the wave generator. The 

beach was 14.15 III long constructed of 5 panels of 0.64 em thick anodized aluminum 

plate. A frame was constructed of aluminum angles ( 2.5 in x 2.5 in) to support the 

beach. with the material anodized before assembling. Each plate was fixed to the 

aluminum frame by countersunk screws, and the gap above the heads of the screws 

was filled with wax to guarantee the smoothness of the slope surface. The edges of 

the plates were machined with a groove on one plate and a matching protrusion on 

the other resulting in a "tongue and groove" joint. This provided a smooth surface 

across the joints and a rigid plane beach face to be mounted to the frame; where 

there was a small gap between plates, wax was used. The frame consisted of five 

modules, each 2.83 m long. Each module was supported on four leveling legs with 

screws whose length can be adjusted according to the beach slope. (The toe section 

only had two adjustable legs.) A detail of a leveling screw is shown in Figure 4.3. 

The aluminum frame was installed in the tank by first placing one frame module on 

the tank bottom without the beach plate. Then the slope of the frame module was 

adjusted to the desired angle by changing the four leveling screws at both ends. This 

process was repeated until all the frame modules were set in place and adjusted to 

the same slope. This method allowed each frame module to be leveled independently 
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without adjusting the adjacent module. The leveling screws were locked in place. The 

aluminulll plates were attached to the frame and sealed in place with silicone. For the 

breaking solitary run-up experiments the beach was set at the slope of 1 vertical to 15 

horizontal with a deviation from a plane surface of less than ±1 mm. This slope \vas 

chosen so that a range of offshore wave heights could be used with the wave breaking 

either 011 run-up or run-down. (The ramp is also shown in Figure 4.2.) A photograph 

of the wave tank and beach is presented in Figure 4.4. To balance the hydrostatic 

pressure acting on the sloping plate. the wave tank section behind the plate was filled 

with water so that the still water level was the same as that in the test section. 

The maximum run-up of breaking solitary waves for water depths ho 2:: 30.48 em 

were measured in the CERC wave tank. The CERC wave tank is 45.7 m long, Cl.9 III 

wide and 0.9 m deep. A sketch is presented in Figure 4.5 showing the wave tank and 

the setup of the experiments. The beach used in the CERC tank was constructed of 

painted plywood and the slope was set at 1:15. Thus. the experimental data from 

this tank could be compared to that from Caltech 'West Tank (CWT). The plywood 

beach was sealed to the tank walls and the tank bottom with silicone. 

Non-breaking solitary wave run-up experiments were conducted in the relatively 

short wave tank at Caltech (CST). The wave tank is 15.25 m long. 39.6 em wide, 

and 61 em deep and consists of 5 identical sections that are each the same as those 

in the C~TT. The plane beach used was 2.83 m long and was composed of one beach 

module used in the c\~rT. A small wedge made of lucitc was machined and installed 

at the toe of the slope to eliminate the gap hetween the wave tank bottom and the 

beach. The beach was installed with the toe of the slope 12.35 m from the wave 

generator and the slope of the beach was adjustable also; for these experiments it was 

set at 1:2.08 with a deviation from a plane surface of less than ±1 lIUll. This slope 

,vas chosen so that a reasonably large offshore wave height could be llsed without 
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Slope Frame 

Adjustable Screw 1 

- Adjustable Screw 2 

Adjustable Screw 3 

-~-- --"- -------, 

__ .. _ .. ___ ~ ______ -.J 

Figure 4.3: Schematic sketch of the adjustable legs used to support the beach frame 
ofGWT 

the wave breaking either on run-up or run-down. A photograph of the non-breaking 

solitary wave run-up experimental setnp is shown in Figure 4.G. 
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Figure 4.4: A photograph of the ramp and the Caltech west tank (GWT) 

4.1.2 Wave Generation System 

4.1.2.1 Hydraulic System 

The wave generation systems used for the two Caltech wave tanks are similar 

and were described by Goring (1979). Synolakis (1986). and Ramsden (1993). It 

includes the hydraulic supply system. the servo-valve flow controller. the trajectory 

generation system. and the bulkhead wave generator. A systematic sketch of the 

generation system is shown in Figure 4.7 after Ramsdell (1993). A photograph of the 
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Figure 4.6: A photograph of the ramp and the Caltech student tank (CST ) 

wave generator is also shown in Figure 4.8. The wave generating carriage traveled on 

rails supported by a frame fixed to the floor isolated from the wave tank. Thus, any 

vibration caused by the wave generation would not affect the wave tank. The rails 

are Pacific-Bearings hardened steel rods of 3.175 cm diameter , model No. SA-20-120. 

Rubber windshield wiper blades are attached around the perimeter of the vertical 

bulkhead that composes the generator to act as a seal to the wave tank sidewalls and 

bottom while the plate is moving. 

The hydraulic power supply system used to drive the wave generator consists of 

a Denison constant flow pump rated at 0.011 m3 jmin (2.9 GPM), which supplies the 

hydraulic system with oil at an operating pressure of 20.68 MPa ( 3000 psi) from an 

oil reservoir with 0.152 m3 (40 Gal) capacity. It is powered by a 5.6 kW, 1800 rpm 

motor. The temperature of the oil is controlled by a water-cool heat exchanger set at 
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Servo controller 

Figure 4.7: Schematic sketch of wave generation system (after Ramsden (1993)) 

23.9°C. An unloading valve located downstream of the oil pump directs the oil flow 

to the servo-valve when the downstream pressure is below the operating pressure. 

Thus. a constant pressure supply of oil is always available for the hydraulic cylinder 

shown in Figure 4.8. Two oil accumulators are installed and can be seen in Figure 

4.8. These accumulators supply hydraulic fluid when the available flow rate in the 

hydraulic power supply is exceeded for the desired plate trajectory. 

Two hydraulic cylinders were used in the generation system for the C~TT. One 

cylinder is a ~Iiller DH77B cylinder with a 6.35 cm bore and a 3.49 cm rod. and 

allows strokes up to 2.44 m. This cylinder is generally used when generating solitary 

waves. The other cylinder is a .\Iiller DER-77 model with a 12.7 em bore and 4.45 

cm rod. and permits a stroke of 40.6 cm. This is especially useful for generating 

long period progressive waves. Either cylinder can be connected to the wave carriage. 

A servo-valve ( l\Ioog. model 72-103) controls the flow of the hydraulic fluid to the 

hydraulic cylinder depending on the current provided to it by the servo-controller ( 
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Figure 4.8: A photograph of the wave generator (GvVT) 

l\loog, model 82-151); it is rated at 0.227 m3 /min (60 GPM) at 40 rnA current. 

The servo-valve is actuated by the servo-controller, which compares the current 

position of the wave paddle to the desired position prescribed by the wave generation 

trajectory. In the ideal situation withont friction and the response of the mechanical 

system, the wave paddle velocity is proportional to the oil flow rate through the 

valve, which is itself proportional to the voltage signal from the trajectory generator. 

Thus, ideally only a voltage proportional to the desired piston trajectory is required 

for the wave generation. However in the actual situation. mechanical response and 
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the friction between thC' wave paddle and tank often distorts the paddle movement 

compared to the desired trajectory, i.e., the wave generated by the paddle will not 

b(' the shape desired. To correct this, feedback must be provided in the generation 

system, and the servo-controller does this. If the paddle position is the saIIle as that 

desired, the output from the servo-controller is zero. Otherwise, a signal proportional 

to the position difference \vill be sent to the servo-valve to control the oil flow rate. 

and the paddle velocity is changed accordingly. This process continues until the 

desired position is achieved. The controller was modified by the addition of a resistor 

to allow fine tuning of the system damping and of a Dither oscillator to provide a 

600Hz excitation to the valve. This continuous excitation reduces the force required 

to overcome static friction and enables smoother movements from an at-rest position. 

The amplitude and the frequency of this excitation does not produce any detectable 

fr('e snrface motions. 

Two different transducers were used to measure the paddle position and to provide 

a feedback voltage to control the plate motion. When the long cylinder was used to 

drive the wave paddle. a ten-turn potentiometer riding on a precision rack was used 

in a raek and pinion arrangement. When the short cylinder is used. a Linear Variable 

Difference Transformer (LVDT) was used. Details of both transducers can be found 

in Goring (1979). 

Wave generation systems of the CERC wave tank and the CST are similar, except 

the cylinder used in the CST is a smaller diameter compared to the C\VT, with a 

3.76 em bore. a 2.57 ern rod, and allowing strokes up to 50 cm. 
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4.1.2.2 Trajectory Generation 

The desired trajectory of the wave generator was supplied to the servo-controller 

as a time series of discrete voltage levels. The trajectories were generated with a 

personal computer w.;ing the method described bv Goring (1979). The signal then 

was transferred from tIl(' computer to the servo-controller by means of a D / A converter 

with buffer storage (manufactured by Shapiro Scientific Instruments (SSI), Corona 

del l\Iar. CA). An amplifier that was also designed by SSI was used to adjust the 

gain of the generated signal so that a large range of the motions could be realized. 

The initial position of the wave paddle can be also adjusted by adding or subtracting 

an off'set voltage from the signal sent to the servo-valve. The relation of the gain 

setting to the desired stroke of the wave paddle was determined and the resulting 

calibration curve was used in the experiments. A calibration curve for the C\VT 

wave generation system is shown in Figure 4.9. A sample trajectory output from the 

personal computer for the generation of solitary wave is presented in Figure 4.10. 

4.2 Water Surface Elevation Measurements 

The water surface time-histories were measured using wave gages. Two types of 

wave gages were used in this study: (i) a resistance-type wave gage and (ii) a capac­

itance wave gage. The next discussion describes the principles and the operations of 

these gages. 

4.2.1 Resistance Wave Gage 

A typical schematic sketch of a resistance wave gage is shown in Figure 4.11. It 

consists of a pair of stainless steel wires of diameter 0.254 nnn spaced 4.0G mIll apart. 
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Figure 4.9: Calibration curve of the wave generator gam setting to stroke of the 
wavcmaker 

The wires are insulated from each other and are stretched taut between the open ends 

of a thin rod bent in a 7f-shape. ·When immersed in a conducting fluid. the gage 

acts as a variable resistor in the Wheatstone bridge circuit shown in Figure 4.11. The 

resistance between the wires varies with the depth of immersion in water. Initially 

the bridge circuit is balanced with the gage immersed at the still water level. As the 

water level changes. the voltage imbalance caused by the changed resistance of the 

gage is monitored and amplified by a preamplifier. The output from the preamplifier 

then was converted to digital signal and recorded by the data acquisition system. 

The resistance wave gage used in the experiments was calibrated by changing its 

vertical position relative' to the water using a Vernier scale accurate to 0.1 mIll. A 
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Figure 4.10: The wave generator tra.iectory signal for a solitary wave 

typical calibration is shown in Figure 4.12. The range of the calibration covers the 

maximum wave height of the incident solitary wave and also half the depth of the 

water. The depth of the immersion of the wave gage was changed in increments of 0.5 

em while recording the voltage output of the electronics. A second-order polynomial 

was fitted to these data with the coefficients determined by a least squared regression 

method. The polynomial equation obtained was then used to determine the wave 

surface elevation relative to t he initial water surface elevation in experiments. Fignre 

4.12 also shows the calibration one hour after the first calibration. The good agree­

ment between the two calibration curves indicates that the gage and its electronics 

are stahle for at least this period of time. The response of resistance wave gages has 

been studied over a wide range of frequencies and amplitudes in the past by \Niegel 
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FiESure 4.11: Schcmatic sketch of the rcsist ance wave ESage and its electronic circuit. 
(after Raichlcn (1965) and \Vanic\vski (1999)) 
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• Calibration before Experiments 
o Calibration after Experiments 

Second-Order Polynomial Fitting 
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Voltage Output (V) 

Figure 4.12: Calibration curve of the resistance wave gage 

6 

(195G) and Dean and Ursell (1959) and discussed by Ramsden (1993). It was found 

that the errors in amplitude were within 5% of the range for small-scale laboratory 

water waves. (In Figure 5.2 of Chapter 5 a comparison of the wave amplitude ob­

tained from resistance wave gages and that from a high-speed video recording will be 

presented. This comparison showed that the resistance wave gage appears to have 

adequate dynamic response to resolve the time varying water surface of the solitary 

wave used in this investigation.) The error of varying the position of the wave gage 

and the error caused by the approach of the gage to the tank bottom is also discussed 

by Ramsden (1993). These errors were not found to be significant. 
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Capacitance Wave Gage 

Tlw resistance wave gage described above cannot be used to measure the wave 

amplitude for locations close to the initial shoreline and the locations above the shore­

line on the slope. \Yhen the locations are dose to the shoreline the local water depth 

decreases and the calibration is not possible. Also. the gages cannot be calibrated 

in deeper water and then moved back. since strong boundary effects exist when the 

g'ages are too close to the surface of the slope. For such locations. a capacitance wave 

gage consisting of a single wave probe was used in the experimental investigation 

combined with a special calibration procedure that will be discussed presently. 

A photograph of the capacitance wave gage used is shown in Figure 4.13 and dis­

cussed by Synolakis (1987). It consists of a wave probe with the associated electronics 

directly connected to the gage. The probe was made of a steel rod of 0.76 mm di­

ameter and was fit into a glass capillary tube with a 1.58 mm outside diameter. The 

electronic circuit of the gage can be found in Synolakis (1986). An external oscillator 

was used to drive a field effect transistor (FET). which provides current to the wave 

probe. The current passed through the probe and then was converted to a voltage 

signal by a current to voltage converter. During the calibration. the wave gage was 

moved along the slope by changing its position and height. but the distance between 

the tip of the probe and the surface of the slope was kept constant. thus, the recorded 

voltage output from the electronics was changed also according to the iunnersion of 

t he probe in the water. This voltage signal was then fitted by essentially the same 

method used to calibrate the resistance wave gage. Since the distance of the probe to 

the surface of the slope was always maintained the same. the boundary effects were 

eliminated by the calibration. The calibration process was performed in a location 

with relatively deep water and then moved back to the actual measurement location. 

A typical calibration curve for the capacitance wave gage is presented in Figure 4.14. 
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SYIlolakis (1986) compared the measurement of wave amplitude on a dry bed taken 

by the capacitance ,vave gage to that of a high-speed movie camera operated at 63.25 

frames per second. Good agreement ,vas found during run-up, but there were sIllall 

differences observed during run-down. Synolakis (1986) attributed the difference to 

the difficulty of identifying the free-surface location in the movie frames because the 

windows of the tank were wetted during the run-up. Differences were also found dur­

ing the present study. However, there is an additional probability that may contribute 

to this error. \\Then using a capacitance wave gage similar to the one in Figure 4.14 

to measure the water amplitude on a dry bed, the flowing water runs up on the wave 

probe. This can cause the wave gage to report a higher amplitude than the actual 

value. This error Illay become important when the water velocity is large and the 

water level is small, as in the run-down process. 

4.3 Run-Up Gage 

A unique gage was developed in the present investigation to measure the time­

history of the run-up of a solitary wave, unbroken or broken, on a plane sloping 

surface. A schematic sketch of the run-up gage is presented in Figure 4.15. The run­

up gage consists primarily of a laser and a photo diode camera (LC300A, manufactured 

by EG&G Reticon). The camera is identical to an ordinary camera in terms of the 

optics with the exception that the photographic film is replaced by a photodiode array 

capable of discriminating 1024 parts in all array length of 26.lH IllIll. Measurements 

arc obtained from the camera by determining the position of a light spot on the 

array, which t hell defines the voltage output of the photodiode array and associated 

electronics. A small adjustable mirror was located at the top of the sloping beach 

with the light emitted from the laser directed at this mirror. The reflected beam was 
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Figure 4.13: A photograph of the capacitance wave gage 

adjusted such that it was directed down the slope, parallel to it. and somewhat less 

than 0.5 Hlm above the surface. As the tip of the run-up tongue progressed up the 

slope. the laser was reflected from its tip and focused on the photodiode array of the 

RetiC'on camera. Based on the length of the slope imaged by the camera (about 60 

crn). the precision of the position of the tip of the run-up tongue was about ±0.6 mm. 

The electrical output signal from the camera was a composite video signaL which 

included a timing pulse and an analog signal that represented the gray scales of the 

line measnred along the slope. Because the intensity of the laser spot on the slope 

was much larger than the ambient light, a pulse-like signaL which showed the location 

of the laser spot. can be found in the analog signal from the camera. as illustrated 

in Figure 4.16. After passing through a comparator circuit and signal conditioning 
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Figure 4.14: Calibration curve of the capacitance wave gage 

circuit. the analog signal was converted into a pulse train, where the duty cycle 

(defined as the ratio of the time the pulse equals unity to the period of the signal) 

was set by the laser spot. This pulse train was then integrated to give an analog 

voltage output whose amplitude is directly proportional to the time-wise length of 

the duty cycle. The analog output was digitized to determine the run-up. The run-up 

gage was calibrated by refiecting the laser into the camera at known positions along 

the slope. A typical calibration curve is presented in Figure 4.17. There are sorne 

limitations to the use of this instrument during the run-down process. since once 

the beach is wet it is difficult to define the leading edge of the run-down by optical 

refiection. The comparison of the rUll-Up tongue measurement by this particular run­

up gage and high-speed video is presented and discussed in Chapter 5. It has been 
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Figure 4.15: Sketch of the run-up gage 

fonnd that this laser run-up gage appears to have promise for certain types of wave 

measurements. 

4.4 Water Particle Velocity Measurement 

The water particle velocity was measured usmg a Laser Doppler Velocimeter 

(LDV) manufactured by TSI (signal processor model IFA 550 with model 9201 Col­

or'burst multicolor beam separator). The frequency range of the signal processor was 

1 kHz to 15 .t--.IHz. with a time resolution of the measurement 2 ns. A frequency 

shift of 200 kHz between the reference beam and the scattered beam was set for the 

system ~with a filter with the range between 100 kHz and 300 kHz. These settings 
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Figure 4.10: Sketch of the working principle of the run-up gage circuit 

were sufficient to measure the particle velocities of the solitary waves before and close 

to breaking. Once the wave broke, air bubbles entrained in the breaking region ob­

scured the laser beam and velocity data could not be obtained. Two channels of 

signal processors were available; thus, two velocity components. i.e., the horizontal 

velocity and the vertical velocity can be measured. The data acquisition mode of the 

LDV system was set to random, which llleant that the horizontal velocity signal and 

vertical velocity signal could be independently acquired during the experiments. The 

signals from the processors were transmitted to a microcomputer in the form of 16-bit 

parallel digital data. The microcomputer. which is IBM-AT compatible, is equipped 

with "flow information display (FE\D)" software by TSL Both statistical and time­

history velocity data can be obtained directly using this software. A schematic sketch 
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Figure 4.17: Calibratioll curve of the run-up gage 

of the LDV system is shown in Figure 4.18 from the TSI LDV system manual. 

3.6 

The transmitting probe. which both transmits the laser beam and receives the 

backscattered signal. was supported on a special platform mounted atop a tripod. 

The platform could be moved in two horizontal directions by means of twin screws 

and raised and lowered using an adjustment on the tripod. The horizontal coordinates 

of the laser beam could be determined accurately within 0.1 mm by a scale attached 

to the platform. The vertical position of the laser beam was determined by a point 

gage on the wave tank. The laser probe could be rotated to align the beams with the 

slope to measure the wave particle velocity parallel to the slope. 

\Vater particle veiocitiefi were obtained at several locations ranging from the toe 

of the filope to locatiollfi ncar the initial fihoreline. The scatter beams frolll the LDV 



D 
Computer and 
FIND Software 

77 

Port B 

Signal Processor 
• 

Transmitting Probe 

Port B Channel 1 

APV Receivers 

Figure 4.18: Schematic sketch of the LDV system 
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system were focused at a position 20 cm from the glass wall of the wave tank (roughly 

along the centerline of the wave tank) to prevent sidewall effects. A wave gage (ca­

pacitance wave gage or resistance wave gage. depending on the local water depth of 

tlw measurement point) was placed in the wave tank above the laser beams to simul­

taneously measure the elevation of the water surface. If the local water depth was 

not deep enough to permit both the wave gage and the laser beams being at the same 

position. the laser beams were positioned a very short distance behind the wave gage. 

The dist ance was usually less than 3 nnn so that. considering the horizontal length 

scales of the waves. t he measurement could be regarded as having been performed at 

a single location. 

4.5 High-Speed Video Equipment 

The wave breaking process. run-up, and splash-up were recorded using two high­

speed video cameras. Both are model HR-500 l'vIotionscope high-speed video cameras 

manufactured by Redlake Camera Corporation. The camera can record and store a 

sequence of video images of an event at frame rates of 60 to 500 frames per second. 

with a maximum shutter speed of 1/10,000 per second. The resolution of the recording 

is 480 x 420 pixels for a recording speed of 250 frames per second and 240 x 210 pixels 

for a recording speed of 500 frames per second. The camera consists of a CCD camera 

head. a display monitor. and a control panel. A photograph of the camera and display 

monitor are shown in Figure 4.19. A memory buffer is integrated into the camera 

system to store the images captured by the CCD camera. The number of frames that 

can be stored in the buffer is determined by the recording speed. For example, for 

500 frames per second speed, 2.048 frames (4.1 seconds of data) can be stored, while 

at 250 frames per second. since the recording resolution is higher, only 512 frames 
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Figure 4.19: A photograph of the high-speed video camera and display monitor 

(2.0 seconds of data) can be stored. A standard RS-170 NTSC and PAL video out 

Video and S-Video) port are available so that the images can be recorded on video 

tape to be analyzed later. A typical image obtained with the high-speed video camera 

is shown in Figure 4.20. The frame number and the time of the frame in milliseconds 

are also displayed with the image. Other information related to the recording. such 

as the recording speed, the trigger mode of the camera, and the shutter speed are 

displayed and call be seen in Figure 4.20. 
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Figure 4.20: A typical image from the high-speed video recording 

4.5.1 Sideview Recording 

The wave propagation and breaking process were recorded with the high-speed 

camera positioned perpendicular to the glass walls of the wave tank. A sketch of 

the arrangement of the equipment is presented in Figure 4.21. A special carriage to 

support the camera and lights that can be moved on the tank rails was constructed. 

The carriage consisted of a steel frame resting on a movable carriage with a triangle­

shaped leg, which was about 2 m long, oriented perpendicular to the tank centerline 

and extending from the side of the wave tank. The extended leg was detachable 

and was bolted to the steel frame. At the end of the leg two vertical steel bars and 

a horizontal steel bar were clamped. The camera head and the lights used for the 
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Figure 4.21: Sketch of the experimcntal arrangement for sidcview recording 

recording were attached to these bars. A vertical bar was connected to the carriage 

on the far side of the wave tank to carry lights (see Figure 4.21). The camera was 

located approximately l.5 m from the wave tank sidewall, resulting in a record area 

about 50 em x GO CIll. During the expcriments, the carriage was normally moved at 

the speed of tIl(; incident waves. This maximized the area and the time that could be 

covered during one experiment. 

The recording area was illuminated with three 500 Watt Lowel ViP lights; two 

lights were placed near the high-speed camera. one on each side of the camera. The 

other light was placed on the opposite side of the wave tank. A translucent panel was 

placed on t he far side of the wave tank to provide a uniformly illuminated background 

and to prevent direct light OIl the camera. 
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Fiducial marks on the glass sidevvall of the water tank were used to assist in 

defining the video images. Each mark was made of black tape and stuck to the 

outside glass wall of the wave tank. For the non-breakiug solitary wave run-up study. 

a grid with lines spaced 5 cm apart was attached to the ghsswall for the full test 

section. Since the region of wave breaking is relatively large. only cross-shaped marks 

20 eIll apart were attached to the glass. Both the grid and the simple marks were 

used to defiue t he wave and to correct anv image distortion due to the position of the 

camera relative to the tank (sec section 4.5.3). 

4.5.2 Over head Recording 

The wave run-up on the sloping beach and the splash-up on the vertical wall were 

also recorded using a stationary high-speed video camera. The camera was mounted 

on a swivel bracket attached to the inner frame of the carriage discussed in earlier 

section. A sketch of the camera arrangement is shown in Figure 4.22. Using the swivel 

bracket the position and angle of the camera were adjusted such that a viewing area 

of GO em x 60 em centered on the centerline of the wave tank could be recorded. A 500 

Watt Lowel ViP light was also mounted on the carriage to provide illumination. The 

angle of the light was adjusted to minimize refiections. A photograph of the high­

SI)('cd camera in the overhead position is shown in Figure 4.23. A scale was attached 

to the vertical wall or the slope to provide reference for measurements. The space 

between lines on the scale was 5 cm for the run-up study and 2 em for the vertical 

wall splash-up experiments. This arrangement provided sufficient spatial precision 

for the experiments. 
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Figure 4.22: Sketch of the experimental arrangement for overhead recording 

4.5.3 Image Processing 

The images rE'corded on videotape were digitized using a PCl image board installed 

on an lBI\I-AT compatible personal computer. The image board (model PlXCl-SV 4) 

was manufactured by EPlX Corporation. and it can capture/convert images at a speed 

of 30 frames per second. The color information in the video image was digitized into 

gray level intensities ranging from 0 to 255 (8 bits) for each pixel. The maximum 

resolution of each image is 754 x 480 pixels for NTSC format video and 922 x 580 for 

PAL format video signal. Software developed by EPlX performed the image capturing 

and analysis. 

It WFtS found that the Images obtained using the high-speed video were often 
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Figure 4.23: A photograph of the high-speed video camera in the overhead position 
and the carriage used 

distorted due to the combination of the viewpoint of the camera and its optics. The 

distortion is quite pronounced if the axis of the camera is not perpendicular to the 

wave tank sidewalls or if the observation area is too large. To accurately detennine the 

wave shape and locations of the run-up / splash-up, this distortion has to be eliminated 

either by carefully positioning the camera or by image processing. Due to the difficulty 

of accurately positioning the camera and of the requirement to maximize the area 

covered. image processing was used to minimize distortion. 

Considering correcting the optical distortion. a recorded frame can be viewed as 
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a linear transformation from the physical coordinate system on the glass walls of the 

wave tank to the lle\V coordinate system on the image, i.e., the recording plane of the 

camera. TIl(' distortion that comes from both perspective and the optical elements of 

the camera can he corrected using standard 2- D projective geomet.ry theory. Thus, if 

t he homogeneous coordinates were used t.o represent a point. the transformation can 

be expressed as : 

:r 

= 1\1 

(1' 

.5 

t 

1 

(4.1 ) 

where 1\1 is t.he linear mappmg function. (.T. y. w)y represents a point 1Il physicaI 

coordinates. and (s. t.1)T represents the corresponding point in image coordinates. 

The quantity 11' is a normalization scale, where U' = 0 refers to a point at infinity; 

the value of (:r, .lJ) shows direction. In another word. (1) W. Y /11') is the location of the 

point in x-y coordinates. 

The transformation function 1\1 can be obtained by considering the mapping of a 

rectangle from the physical coordinates to the image coordinate as shown in Figure 

4.24. The infinity point in horiwntal direction ((1, O. o)Y in homogeneous represen­

tation of the physical coordinate) was mapped into point hs, the point of infinity in 

vertical direction ((0. 1. Orr) was mapped into point }~ and the center of the rectangle 

((0. O. 1 )T) was mapped to point }~. These three points were sufficient to determine 

the transformation 1\1: 

100 

010 

001 

(4.2) 

where ,~,. '0. ,~ were obtained from the coordinates of the four corner points of the 
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Figure 4.24: The illustration of the mapping transformation used in the image process­
mg 

rectangle in the image as: 

}~ 

}~ 

}~ 

((1 x b) x (d x n 
(bxf)x(axd) 

(a x r) x (d x b) 

( 4.3) 

( 4.4) 

( 4.5) 

where (1, b. c. (I are the vector representation of the homogeneous coordinates for the 

four corner points of the rectangle. as shown in Figure 4.24. 

Thus. once the location of the wave in the image was obtained. the corresponding 

physical location could be calculated from Eq. 4.1. During experiments. the observa-
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tion area to be recorded waf:> divided into f:>everal rectangles with the fiducial marks 

described above and the physical locationf:> of the rectangle corner points were 1nea­

f:>ured in advance. All the points iUf:>ide a rectangle in the image were calibrated by 

the coordinates of the corners, the distortion cauf:>ed by the opticf:> of the camera waf:> 

then elimiuated. 

4.6 Vertical Wall 

A vertical wall extending the entire width of the wave tank waf:> used in the solitary 

waw splash-up experiments. It was 90 em high and 60 em \vide, and was constructed 

of 1.40 em thick Incite. The perimeter of the wall was scaled by rubber windshield 

wiper blades to prevent water leakage from the gap between the wall and wave tank. 

The surface of the vertical wall waf:> carefully painted with several layers of paint so 

that the surface was smooth. A scale consisting of black lines 2 cm apart was painted 

on the surface. The vertical wall was mounted on an instrument carriage so that its 

position on the slope could be changed between experiments. Lead weights placed on 

the slope behind the vertical wall increased the rigidity of the wall. 

4.7 Data Acquisition System 

The voltage f:>ignal from the wave gages and the run-up gage were acquired by 

a Macintosh personal computer with a MacADIOS-8ain analog-to-digital board con­

trolled with Superscope II software developed by G\V Instruments. The accuracy of 

the AID conversion was ±5mV over 20 V range. The maximum sampling rate of 

the AID hoard was 1 l\IHz. During the experiments, the trials were recorded with a 
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sampling rate of 200 Hz. and the calibrations were recorded with the sampling rate 

of 100 Hz. 

4.8 Experimental Procedures 

4.8.1 Measurements of the Run-Up of Solitary Waves on 

Slopes 

A schematic of the solitary wave run-up experiments was presented in Figure 3.1. 

The origin of the coordinate system was chosen at the initial shoreline position of 

the water on the' slope. with the positive :r axis directed offshore towards the wave 

generator and :y axis directed upward from the still water level. The water level in 

the wave tank was measured by a point gage located at the toe of the slope. which 

had an accuracy of ±O.I mm. The measurement was also performed after a series of 

experiments; if necessary more water was added to the tank to keep the water depth 

constant. Three computers were used during the experiments for wave generation 

and data acquisition. The first computer was used to generate the solitary wave 

trajectory. the second computer was used to process the data from the wave gages 

and the high-speed video camera, and the third computer was used to control the 

LDV system. 

The initial incident wave height H / ho was determined using a resistance wave 

gage described above. It was located at half of a characteristic length. L/2. of the 

incident solitary wave from the toe of the slope. where L was defined in Eq. 3.25. The 

wave gage \vas calibrated before and after the experiment. \Vhen the desired solitary 

,vave was generated by the wave generation system with the first compnter. the data 

acqnisition system was also started in the second computer. An electronic signal 
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was sent to the two high-speed video cameras and the third computer to trigger the 

video recording and to start the LDV system data collection. A time delay ranging 

from several milliseconds to tens of seconds could he set to control the high-speed 

video camera depending on the camera locations: the exact value of this time delay 

was determined by one or two test nms before the experiments. Therefore. once 

tlw wave generator was started. all the data acquisition and video recording were 

automatically controlled through electronic trigger signals. which were all properly 

referenced to each other in time. 

The time-histories of the run-up of the solitary waves on the slopes were measured 

by two methods: (i) the run-up gage introduced in the previous section. It was 

calibrated before each experiment. This gage was used for non-breaking solitary 

wave run-up. (ii) High-speed video recording. The run-up gage was not applicable 

for breaking solitary wave run-up on a gentle slope since the light spot generated by 

the laser refiection on the breaking wave front was too weak to be captured by the 

linear camera. For this case. the high-speed camera was used to record the wave front 

time-histories. The time-histories of the run-down process could not be recorded by 

the high-speed vid(~o camera because the surface of the slope was already wetted by 

the rUll-Up wave; therefore, the run-down stream cannot be recognized in the images. 

Thus. only the run-up portion of the time-histories was available for breaking solitary 

wave run-up. 

The maximum run-up of the solitary wave on the slope was also measured by two 

methods: (i) high-speed video recording and (ii) visual observations plus the point 

gage. The high-speed video recording can give the most accurate measurement, but 

several trial runs have to be conducted before the actual measurement to determine 

the recording region that covers the maximum run-up position. The visual observation 

method is relatively simple. The run-up water will leave a clear intersection line 
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Figure 4.25: The comparison of maximum run-up obtained from the high-speed video 
and visual observations 

between the wet surface and the dry bed. During the experiment, the position of 

the intersection lill(, was marked either by the placement of a small weighted marker 

made of steel or by marking the slope surface directly. Then the height of the mark 

with respect to the initial shoreline line was measured by a point gage. This height 

was regarded as the maximum run-up of the incident solitary wave. The accuracy 

of the point gage used for the purpose was within ±O.l mm. Figure 4.25 shows the 

experimental data for solitary wave maximum rUll-Up from both these methods. it 

call be seen that the data from visual observation method agreed with the high-speed 

video very well, thus. most of the maximum run-up data was measured by the visual 

lllethod. 
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4.8.2 Measurements of the Splash-Up of Solitary Waves on 

Vertical Walls 

A sketch showing the arrangement for the measurement of splash-up of solitary 

waves on a vertical wall is shown in Figure 4.26. The experimental setup was the same 

as that of the run-up experiments on a slope except a vertical wall was mounted on 

the slope. The vertical wall position on the slope could be changed to investigate the 

effects of different breaking conditions on the splash-up. The splash-up was recorded 

using high-speed video. If the wave contacted the vertical wall before breaking or 

after breaking. the splash-up on the vertical wall was relatively small and consisted 

of a run-up ;'water sheet". and the whole process could be recorded by the camera. 

However, when the wave broke near the position of the vertical wall the splash-up 

was quite high and broke up with the drops and spray. Some fluid was even ejected 

about 1 m rv 2 m above the wall and nearly reached the ceiling of the laboratory. For 

this case. the maximum height of the splash-up was estimated. A second high-speed 

video camera was placed on one side of the wave tank to record the shape of wave 

breaking from a sideview. These two high-speed video cameras were referenced to 

each other in time so that both the wave shape and the splash-up on the vertical wall 

could be obtained simultaneously. 

4.8.3 Other Experimental Procedures 

Approximately 15 rv 20 minutes was allowed between two consecutive runs in the 

experiments to ensure that the wave generated in the second nm was not contam­

inated by the previous waves and the experiments were reproducible. During this 

period of time. the wave amplitude and the wave particle velocity in the wave tank 

were measured several times. t he second run began only when no detectable variation 
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Figure 4.26: Scherrmtic sketch of the experimental arrangement for a solitary wave 
splash-up on vertical walls 

in the amplitude and velocity could be found in the measurement. 

The water was chemically treated to reduce algae growth, and after changing the 

tank water it was allowed to stand for at least 24 hours to purge the tank of small 

snspended air bubbles. Usually after the experiments, which lasted one or two days, 

all the water in the tank was replaced. 
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Chapter 5 Presentation and Discussion 

of Results 

The results presented in this chapter are based on the experimental measurements 

and numerical simulations for three cases of solitary wave run-up: (i) the non-breaking 

solitary wave run-up on relatively steep slopes, (ii) breaking solitary wave run-up OIl 

gentle slopes. and (iii) breaking solitary wave splash-up on vertical walls. In each case 

the characteristics of the interaction between the wave and the slope/wall during the 

run-up and splash-up process such as wave shape, time-history, and wave velocity were 

measured experimentally and compared with the results from theoretical analyses for 

non-breaking solitary wave run-up and numerical results from the \i\TENO scheme for 

breaking waves presented in Chapter 3. The experimental conditions of the slopes 

and initial incident solitary waves for the run-up process are given in table 5.1. The 

measurement of maxirnum run-up has also been conducted over a wide range of 

water depths and wave heights for the three slopes: 1:2.08, 1:15, and 1:19.85. The 

parameters of these measurements are shown in table 5.2. 

The water depth in the constant depth region seaward of the toe of the slope, ho. 

Type of Run-up slope H/ho ho(cm) L/ho 
N on-breaking 1:2.08 0.163 21.51 6.23 

Breaking 1:15 0.30 30.48 4.59 
Breaking 1:19.85 0.30 30.48 4.59 

Table 5.1: \i\fave parameters for run-up process of solitary waves 
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Type of Run-up Wave Tank Slope 
ho(cm) H/h u 

hOmin houuU' Hillin Hma:r 
Non-breaking CST 1:2.0~ 16.30 21.51 Cl.02 0.35 

Breaking C\VT 1:15 7.00 30.48 0.05 0.45 
Breaking CERC 1:15 30.4~ 76.20 Cl.04 0.20 
Breaking CvVT 1:19.85 30.4~ 30.4~ Cl.04 0.40 

Table 5.2: ""ave parameters for maximum run-up of solitary waves 

is chosen to normalize all the length parameters such as wave height H. horizontal 

coordinate :r and vertical position :y in the following discussion. The purpose of this 

arrangement is to permit the reader to quickly envision the relative wave conditions 

and scales. so the results can ultimately be used with field conditions. In this frame 

of reference :1"* = :r/ho = 0 is the initial shoreline and:1"* = l/s is the toe of the slope. 

where the tangent of the slope angle. i.e., tan!] = s. In this discussion. the time. t. is 

normalized by the time scale parameter 1/ J 9 / ho and the time coordinate is plotted 

from left to right: this gives a visual presentation which is the same as that of the 

definition sketch. Figure 3.1. 

The detailed list of experimental runs and results is presented in Appendix. For 

purpose of clarity. the definition sketch of the solitary run-up presented in Chapter 3 

is repeated in Figure 5.1. 

5.1 Solitary Wave Characteristics 

Solitary waves were used throughout this study as a model of a tsunami in na­

ture. The wave generation method proposed by Goring (1979) has been used and is 

described in Chapter 4. The algorithm can be used to generate a solitary wave with 

high accuracy in the laboratory. 
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h" 

Figure 5.1: Definition sketch of the solitary wave run-up 

To test the accuracy of the solitary wave generated in experiments, the ",;ave 

profile and the wave velocity measured in the laboratory are compared with the 

corresponding theoretical data from third-order solitary wave theory. 

The wave profile is presented in Figure 5.2 for a solitary wave with a relative 

wave height in the constant depth portion of the wave tank of Hjho = 0.276. The 

theon~tical solitary wave profile obtained from a third-order theory is also included in 

Figure 5.2. The wave was measured ill the constant depth region seaward of the toe 

of the slope with ho = 30.48 crn. The incident wave height H j lio = 0.276 is measured 

at the location :rjho = 24.64. i.e. far from the toe of the slope. The ratio of the 

distance from the measurement point to the wave generator paddle to ho is 32.81. 

Two techniques were used in these measurements: (i) a resistance wave gage, and (ii) 

high-speed videos. There is good agreement between these two experimental methods 

and with the theory indicating both that the video method of obt aining the profile is 

quite reliable and that the non-linear wave generation technique used produces a well 

formed solitary wave in the constant depth region of the tank. Small oscillatory waves 

were found in the region for t* > 5, i.c. the tail of the wave. which are due to the first-



96 

0.30 r---------------------------, 

0.25 

0.20 

0.15 
11* 

0.10 

0.05 

0.00 

hI) = 30.48 em 

----..--

-0.05 L--->.~~~---'-~~~__'_~~~~_'__~~~~~~~"______'~~~___'_____' 
-15 -10 -5 o 

t* 
5 10 15 

Figure 5.2: Comparison of high-speed video and wave gage output to the third-order 
theory for solitary wave profile with H / ho=O.27G. The dashed line is the third-order 
theory, the solid line is the experimental data obtained from the wave gage. and the 
circles are the experimental data obtained from the high-speed video 

order wave generation method. The wavemaker generates the wave according to the 

first-order theory. which is not an exact solitary wave form. Therefore, as the wave 

propagates along the wave tank dispersive eHects and non-linear eHects transform 

the wave into a soliton followed by a small oscillatory tail. The generated solitary 

wave height is generally smaller than that specified in the procedure used in the wave 

generation: as mentioned earlier. this is both because the generation procedure is 

accurate to first-order and due to viscous eHects on the free surface and the bottom 

of the wave tank. 

The normalized horizontal velocities and vertical velocities u* =u/ Jgho and 

0* =(1/ J gho of solitar? waves were measured in the constant depth region of \v;-we 

tank using a LDV, and the results are presented in Figure 5.3 and Figure 5.4. The 
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measurements were conducted in the relatively deep wave tank at the Coastal Engi­

neering ReseEm:h Center. USACE. (This wave tank denoted as CERC was described 

in Chapter 4.) A water depth ho = 60.96 em was used with an incident wave height 

H/h o = 0.20. The velocities at three depths were measured: y/ho = -0.016. which is 

close to the still water level; y/ho = -0.328; and y/lin = 0.148. These velocities are 

compared with the third-order theoretical velocity at the still water level y / lin = 0.0. 

It is seen that tllP measured horizontal and vertical velocities in the region above the 

still water level are shown only for a small time when the four laser beams used in 

the LDV were in the water; when the beams were out of the water. no data could 

be obtained. All measured velocities agreed well with each other except near the 

maxima (around t* = 0) where the maximum velocity decreases with depth. as would 

be expected. Awav from the maxima. the difference between these measurements is 

small. The vertical velocities shown in Figure 5.4 were relative small compared to 

the horizontal velocities especially as the bottom is approached. This demonstrated 

t hat the assumption of a small (or negligible) vertical velocity made in shallow water 

wave theory is reasonable. Since all of these measurements were obtained from sev­

eral different experiments. the reproducibility of the solitary wave generated also was 

confirmed. 

5.2 Non-Breaking Solitary Wave Run-up 

5.2.1 Wave Amplitude and Velocity Time-Histories 

A solitary wave with a relative wave height H/hn = 0.163 was used in the run-up 

experiments with a water depth of 21.51 cm and a beach slope of 1:2.08. The water 

surface time-histories using tht' WENO numerical scheme. the non-linear theory and 
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Figure 5.3: Comparison of LDV measurement of horizontal velocity in CERC tank 
to the third-order theory for solitary wave with H / ho=0.20. The solid line is the 
third-order theory at y / ho = 0.0. the dotted line is the LDV data obtained at 7J / 11.0 = 
-0.328, the dash-dotted line is the LDV data obtained at y / ho = -0.016, and the 
dashed line is the LDV data obtained at location y / ho = 0.148 

the approximate non-linear theory presented by Synolakis (1986) are compared to 

experimental results at nine locations in Figures 5.5 for this plane beach. (It is noted 

that x* = 0 refers to location of the original shoreline; positive values are offshore 

and negative values are onshore of that position. Therefore, :r* = 2.08 is located at 

t he toe of the slope for this beach.) 

~'hen calculating the wave amplitude, and horizontal velocities using Eqs. 3.45 

to 3.49, the actual location (:r, t) in the physical plane has to be calculated from 

the transformed plane ((T. A), since all the equations are explicit in terms of (T and A. 

These calculation can be performed iteratively using Newton's method and the actual 

location 1', t can be obtained by the method described below: (All the calculation 
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Figure 5.4: Comparison of LDV measurement of vertical velocity in CERC tank to the 
third-order theory for solitary wave with H j ho = 0.20. The solid line is the third-order 
theory at y j ho = 0.0. the gray dotted line is the LDV data obtained at y j ho = -0.328, 
the black dash-dotted line is the LDV data obtained at y j ho = -0.016. and the dashed 
line is the LDV data obtained at location yjho = 0.148 

was performed using TVIathematica.) The relations between ((J. A) and (x, i) are the 

transformation equations. i.e., Eqs. 3.48 and 3.49. If we differentiate Eq. 3.48 in 

terms of (J and Eq. 3.49 in terms of A. the following equations are obtained: 

dl.· 
d(J 
di 

dA 

~J( (J w'\tT u( W uu - 11.) ) 
caiD - - -- + -----

. 8 4 (J 

( 
w.\u 1 ) cai!] -- --

(J 2 

(5.1 ) 

(5.2) 

To seek the wave characteristics at a particular location (:r. i). the above equations 
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can be written in difference form yielding the following expressions: 

( 5.3) 

(5.4) 

where (:r*. t*) is the specific location of the wave m space aud time and i is the 

iteration index. The calculation process begins by choosing an initial value of 0"1 and 

A]. and substituting them into Eqs. 3.45 to 3.49 to get :1'(0"1. AI)' t({Tl. Ad, v and WArT, 

W (T(T' If 1:1'( {T]. Ad - :1'* 1 is less than some prescribed small quantity. the process stops. 

Otherwise new values of O"i and Ai are calculated from Eqs. 5.3. 5.4. and the process 

continues until the required accuracy is achieved. This iteration converges very fast 

in the calculations: usually in less than 10 steps the desired accuracy can be achieved. 

As seen in Figure 5.5. for the locations that are near the toe of the slope, the non­

linear theory agrees quite well with the experiments especially for the portion of the 

water surface-time history which corresponds to the incident wave. The differences 

between the theory of Synolakis (1986). the present theory and the experiments in this 

region are relatively small; this feature will be discussed later. As locations close to 

the initial shoreline position. i.e., x* = 0, are approached the solitary wave increases in 

height and deforms. )JoIl-linear effects cannot be neglected in that region; the present 

non-linear theory appears to properly handle the non-linear effects. Shoreward of the 

initial shorelinc. since there is no water at those elevations until the run-up tongue 

reaches that location. hoth the experimental and theoretical results are available only 

for an abbreviated interval of time. Out of this intervaL the measurement was zero 

since no singnal was detected by the probe. The present non-linear theory agrees well 

with the experimental data for these locations. 

The Ilumerical results for wave time-histories from the \VENO scheme described 
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Figure 5.5: (a)-(d) Run-up of solitary wave with H/ho = 0.163 on 1:2.08 slope. 
~ormalized wave amplitudes are shown as a function of normalized time at diff'erent 
locations. The solid line is the numerical simulation. the dashed line is the non-linear 
theory, the dash-dotted line is the approximate non-linear theory of Synolakis (1986). 
and the circles arc the experimental data. 
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Figure 5.5: (e)-(h) (continued) Run-up of solitary wave with H/ho = 0.163 on 1:2.08 
slope. Normalized wave amplitudes arc shown as a function of normalized time at 
different locations. 
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Figurp 5.5: (i) (continued) Run-up of solitary wave with H/ho = 0.163 on l:2.08 
slope. Normalized wave amplitudes are shown as a function of normalized time at 
different locations. 

in Chapter 3 are also presentpd in Figure 5.5 as solid lines. In general the numerical 

results agree well with both the non-linear theory and experimental data. This is 

no surprise since both the numerical scheme and non-linear theory solve the same 

NLSW equations. vVhen comparing the numerical results with the experimental 

data for a specific location. the numerical solutions from the computational grid 

which is the closest to the actual x coordinate are chosen for comparison. Since the 

actual x-coordinate of the calculation grid changes during the computing because of 

tlw mapping technique used in the numerical scheme. the grid closest to the actual 

location will vary in the calculation. This causes small variations in the data for 

the wave shape. There is also a small time-lag between the llumerical data and 

the experimental data for the reflected wave and the cause for that needs further 

investigation. 

The normalized horizontal and vertical velocities IJ.* U/(ghO)1/2 and u* 
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l' / (g 11.0 ) 1/'2 in these experiments were measured in t he region near the original shoreline 

and offshore at normalized depths which vary \'lith the measurement location; ill gen­

eral. the measurements were at mid-depth. These experimental results are presented 

in Figures 5.6 and are compared to the non-linear theory developed in this study. the 

numerical simulation from the \VE:\O scheme, and to the approximate non-linear 

theory of SYllolakis (1986). "\ote that there are no predicted vertical velocities. since 

the shallow water theory assumes the vertical velocities are negligible. The experi­

mental measurements for all locations. even those close to the initial shoreline. show 

the vertical velocity is less than 20<J(' of the horizontal velocity. The present nOll-linear 

theory appears to predict the horizontal velocity reasonably well with some deviation 

near the maxima for the run-up on a 1:2.08 slope. The numerical results agree with 

bot h t he experiments and t he non-linear theory very well at most of the locations 

except at the location :r* = 0.22. where the numerical simulation predicts a shock like 

discontinuity in the run-down process and thus a much higher peak velocity than the 

non-linear theory. 

5.2.2 Free Surface Profiles 

\Vater surface profiles on the 1 :2.08 slope are presented in Figures 5.7 at the in­

dicated non-dimensional times. The non-linear theory, the numerical simulation and 

the approximat.e non-linear theory of Synolakis (1986) arc compared to the experi­

mental results. In the initial run-up stages the difference between the two theories. 

the numerical results and the experimental data is small. As the run-up proceeds. the 

non-linear theory obtained in the present study appears to agree better with the ex­

perimental results than the approximate nOll-linear theory. This would be expected. 

since the lloll-linear effects become more important as the run-up process proceeds. 

especially during rull-down, see Figure 5.7 (f) and 5.7 (g) for t* = 11.2 and t* = 12.2, 
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Figure 5.6: (a)-(d) Run-up of solitary wave with H/ho = 0.163 on 1:2.08 slope. 
Norrnalized wave velocities are shown as a fUllction of normalized tilne at different 
locations. The solid line is the numerical simulation. the dashed line is the non­
linear theory. the dash-dotted line is the approximate non-linear theory of Synolakis 
(1986). the triangles are the experimental horizontal velocities. and the circles are the 
experimental vertical velocities. 
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Figure 5.G: (e) (continued) Run-up of solitary wave with H/ho = 0.163 on 1:2.08 
slope. ~ormalized wave velocities are shown as a function of normalized time at 
different locations. 

respectively. For this slope. breaking did not occur during run-down. For all times 

it is apparent that both theories agree reasonably well with the experimental data 

as the distance offshore from the initial shoreline increases. This supports the as­

sumption that the effects of non-linearities are small and can be neglected near and 

offshore of the toe of the slope. In the region near the run-up maxima (Figure 5.7 

(e), t* = 10.2) the present theory tends to overestimate the amplitude of the run-up 

tongue compared to the experiment. This lllay be due to the effect of friction and / 

or the use of the meniscus to define the wave amplitude in the experiments. 

Experimental data are presented in Figure 5.8 from Synolakis (198G) for the vari­

ation in water surface amplitude with distance on a plane beach inclined at a slope 

of 1:19.85 along with the numerical results and the nOll-linear theory from this study 

and the approximate non-linear theory from Synolakis (1986) for four non-dimensional 

times. Since the slope was relatively gentle in those experiments. it was necessary to 
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Figure 5.7: ('\)-(d) Run-up of solitary wave with H/ho - 0.163 on 1:2.08 slope. 
Kormalized surface profiles arc shown as a fUllction of normalized distance at different 
times. The solid line is the numerical simulation. the dashed line is the non-linear 
theory. the dash-dotted line is the approximate non-linear theory of SYllolakis (1986). 
and the circles arc the experimental data. 
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Figure 5.7: (e)-(h) (continued) Run-up of solitary wave with H/ho = 0.163 011 1:2.08 
slope. Normalized surface profiles are shown as a function of normalized distance at 
different times. 
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Figure 5.7: (i)-(j) (continued) Run-up of solitary wave with H/ho = 0.163 on 1:2.08 
slope. ::-Iormalized surface profiles arc shown as a function of normalized distance at 
different times. 

use a much smaller wave than was used in the present study to prevent \vave breaking 

during run-up, i.e., H/ho = 0.0185. For the cases shown, both theories agree well with 

the experimental data. The difference between the two theories and the numerical 

resnlts is almost undetectable. since for such sIllall relative wave height the non-linear 

effects are relatively unimportant compared to those for the larger wave whose results 

were shown in Figure 5.7 . 
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Figure 5.8: (a)-(d) Run-up of solitary wave with H/ho = 0.0185 on 1:19.85 slope. 
Normalized surface profiles are shown as a function of normalized distance at different 
times. The solid line is t he numerical simulation. t he dashed line is the non-linear 
theory, the dash-dotted line is the approximate non-linear theory of Synolakis (1986). 
and the triangles are the experimental data from Synolakis (1986). 
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5.2.3 Shoreline Movement and Maximum Run-Up 

The normalized run-up is shown as it function of normalized time in Figure 5.9 for 

run-up on a 1:2.08 slope. Experimental data are presented from two methods: the 

laser run-up gage discussed earlier alld high-speed video results. During the run-up 

process (t* < 10). both experiment al methods are in excellent agreement. During 

the run-down process (t* > 10), the wave retreats so quickly that the reflected laser 

spot is too weak to be captured by the photo diode camera. Therefore. only the 

high-speed video recording data are shown. Both the theory from the present study 

and the approximate' non-linear theory predict the run-up stage very well for t* < 8. 

The non-linear theory agrees better with the data in the region of the maximum 

run-up than the approximate non-linear theory. The approximate nOll-linear theory 

underestimated the run-down trough. as was seen ill Figure 5.7. It can be found 

that the maximum run-up obtained from the direct numerical calculations of Eq. 

3.23 and Eq. 3.51 were larger than that predicted by the approximate formula, i.e., 

Eq. 3.2G and Eq. 3.52. respectively. For example, the difference of the maximum 

rUll-Up between the present non-linear theory and the approximate non-linear theory 

proposed by Synolakis (198G) is about 1l /('~. but that predicted by the approximate 

formula, i.e., is only 5%. This suggests that direct numerical calculation is necessary 

if accurate rUll-Up is desired. The numerical results agree with the experimental 

data very well especially around the maximum run-up position. which shows that 

the current numerical scheme can model the movement of the shoreline with high 

accuracy. The good agreement also shows that the computation domain mapping 

technique used ill the numerical method is very stable and efficient in calculating the 

shoreline position. 

The variation of the maximum run-up with relative wave height. H / ho, is pre­

sented in Figure 5.10 for the slope of 1:2.08. Experimental results and the results of 
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Figure 5.9: Run-up of solitary wave with H/h o = 0.163 on 1:2.08 slope. Normalized 
shoreline position is shown as a function of normalized timc. The solid linc is the 
numerical simulation. the dashed line is the non-linear theory. the dash-dotted line is 
the approximate non-linear theory of Synolakis (1986). the circles are the experimental 
data from the run-up gage. the triangles are the high-speed video recording. 

the present theory. Eq. 3.52. and the results of the approximate non-linear theory. 

Eq. 3.23. are shown for comparison. The nOll-linear theory from the present study 

agrees quite well with the experimental data for the full range of the wave heights 

investigated. It is noted that the differences between the results of the present theory 

and those of Synolakis (1986) are small. This is to be expected, as can be seen in 

Figure 5.11. where the ratio of the correction term of present nOll-linear theory to the 

approximate non-linear theory of Synolakis (1986). RT / R". is plotted as a function 

of the relative wave height. H / ho. for constant values of slope from Eq. 3.55. Figure 
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Figure 5.10: Normalized maximum run-up as fUllction of incident wave height Hjho 
for a slope of 1:2.08. The solid line is the non-linear theory, the dash-dotted line is 
the approximate non-linear theory of Synolakis (1986), the triangles are experimental 
data at lio = 21.51rm. 

5.11 shows that wave breaking limits the relative wave height of non-breaking waves 

for which either of the two theories can be applied. The limit of relative wave height 

for wave breaking on run-up is defined here as: 

Hjho = O.8183(cot!3)-10/9 (5.5) 

from the theoretical analysis of Synolakis (1986) by considering the Jacobian of the 

Carrier and Greenspan (1958) transformation. Combining this expression with Eq. 

3.55 gives the "breaking limit" curve presented in Figure 5.11. At wave breaking 
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Figure 5.11: The variation of the ratio of ReT to Rs as a function of the relative 
incident wave height and beach slope. The limit due to wave breaking suggested by 
Synolakis (1986) is shown also. 

the non-linear correction term vanes from only about 5% to 8% for slopes from 

1:200 to 1:2. respectively. However, as mentioned earlier, the approximate formulas 

underestimate the maximum run-up; therefore. the correction by the present non-

linear theory is somewhat larger than that predicted by Figure 5.11. The magnitude of 

t he correction term is also determined by the breaking limit used. If a weaker breaking 

limit is adopted. larger correction can be expected. The approach presented here 

sheds light on the influence of both slope and relative "vave height on the highly non­

linear rUll-Up process. Nevertheless. for practical engineering problems the approach 

of Synolakis (1986) appears to be sufficient to predict the maximum run-up of non-

breaking solitary waves. 
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5.2.4 Energy Transformation in the Run-Up Process 

One goal of the present research is to investigate the energy transformation and 

energv dissipation during the solitary wave run-up process. especially for breaking 

solitary waves in order to pre'dict the' maximum run-up from the energy considerations 

alone. In this section, the' energy transformation associated with non-breaking wave 

rUll-up will be discussed. For the non-breaking solitary wave run-up. since the wave 

shape and velocities are continuous for the run-up and run-down process, the total 

energy of the wave should be conserved. Any energy loss due to the viscous effects 

on the free surface and wave tank bottom which are generally slllall will be neglected 

here. This will be verified and discussed later in the discussion of energy consideration 

associated with breaking waves. 

The numerical scheme developed in Chapter 3 is based on the non-linear shallow 

water equations which is a depth-averaged model. This means the variation of the 

horizontal velocities in the vertical direction is zero over the water depth. Thus. 

the energy computation is greatly simplified. The kinetic energy, E K. and potential 

energy, Ep. can 1)(' obtained from the following expressions: 

(5.6) 

(5.7) 

where r is the length of the computation domain as in Chapter 3, 6:1' is the grid 

size in T direction, and N is the total number of the grids. Adding the potential 

energy and kinetic energy together. the total energy of the wave can be obtained. 
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Performing this calculation during each time st.ep of the numerical simulat.ion. the 

energy trallsformation and the conservation of energy during the run-up and rUll-

dmvn process can be investigated. In the following discussion. the energy and volume 

were lloll-ciimensionalized by the following parameters: 

17* = ~ 
v } :2 

'0 
(5.8) 

(It is assumed that width section III the direction of the wave crest IS unity thus, 

t.he nOll-dimensionalized parameters used above are one order less than t.hat for a 

three-dimensional problem.) 

The variation of the calculated energy of a solitary wave with normalized time 

is presented in Figure 5.12 for H / ho=0.163 and a slope 1:2.08. The corresponding 

variation of energy for a solitary wave with a wave height H/h o=0.025 on a slope 1:15 

is presented in Figure 5.13. Both of these cases are for non-breaking solitary waves. 

As the waves move toward the slope. the wave shape deforms as t he depth decreases; 

this has been described before. During the run-up process the kinetic energy decreases 

and transforms to potential energy. This can be seen clearly in Figures 5.12 and 5.13. 

For the non-breaking wave run-up on 1:2.08 slope. as the wave reaches the maxi­

mum run-up position. tIl(' potential energy reaches a maximum and the kinetic energy 

goes to zero. This result will be used in the development of an energy balance model 

later in this chapter. After that, during the run-down process. the potential energy 

begins to transform to kinetic energy with the kinetic energy being equal to the po-

tential energy for t* > 13. During the whole process, both the total energy and total 

volume are constant which means the mass and the energy are conserved. (Small 

oscillations in volume are found numerically especially during the run-down process. 

In the calculations. linear accuracy methods were used to calculate the energy and 
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Figure 5.12: Calculated normalized energy of non-breaking solitary wave run-up with 
H / ho=O.163 on 1 :2.08 slope as a function of normalized time. The solid line is the 
total energy i:tssociated with the wave. the dashed line is the potential energy, the 
dash-dotted line is the kinetic energy. and the dotted line is the volume of the wave. 

volume for efficiency of the computing. If higher-order methods had been used. this 

oscillation should be avoided.) 

For the non-breaking wave run-up on 1:15 slope shown in Figure 5.13. a relatively 

large variation in volume calculation was found. and the computed kinetic energy at 

the maximum run-up. i.e .. t* :=:::; 40. was at a small positive value and not equi:tl to zero, 

which suggested either a small reflective wi:tve may exist in the computing domain, 

or the wave still has a slllall water particle velocity. Nevertheless, considering the 

balance between kinetic energy and potential energy at the time of maximum run-up, 

lleglecting the killetic energy at that time seems reasonable. 
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Figure 5.13: Calculated normalized energy of non-breaking solitary wave run-up with 
H/h()=O.025 on 1:15 slope as a function of normalized time. The solid line is the 
total energy associated with the wave. the dashed line is the potential energy. the 
dash-dotted line is the kinetic energy. and the dotted line is the volume of the wave. 

5.3 Breaking Solitary Wave Run-Up 

This section describes results for the run-up of breaking solitary waves on plane 

beaches. For the two gentle slopes used in this study. 1:15 and 1:19.85. the incident 

solitary wave breaks even for a very small wave height. i.e .. H / hn ;::::; 0.04. Experimen­

tal results for the wave breaking characteristics such as: wave shape. shoaling. wave 

celerity and. for the plunging breaker. the shape of the jet produced are presented 

and compared with numerical results. The experiments show that the wave break-

ing process is such a complicated process that even sophisticated llumerical models 
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Cannot model its details. On the contrary. if only the run-up process and maximum 

run-up are of interest. the wave produced after breaking can be simplified as a prop­

agating bore which is analogous to the shock wave in gas dynamics as described in 

Chapter 3. The ll1uIlerical results from the non-linear shallO\,: water wave theory and 

the \NENO scheme will be presented and compared to the experimental results in 

t his section. 

5.3.1 Wave Breaking Characteristics 

5.3.1.1 Wave Shape 

Several types of breaking waves have been reported by other researchers: spilling. 

surging. collapsing. and plunging breaking. For the slopes used in this study, most of 

the waves break as plunging breakers. A photograph of a breaking solitary wave for 

an incident relative wave height of H /11.0 = 0.30 is shown in Figure 5.14. This picture 

dearly shows the shape of the wave after t he breaking point (the breaking point is 

defined here as when the front face of the wave crest becomes vertical.) The tip of the 

jet formed bv the post-breaking wave has touched the front face of the wave already 

in Figure 5.14. 

Figure 5.15 and Figure 5.16 show the evolution of the solitary wave during the 

breaking process for incident wave heights of H / ho = 0.30 and H /110 = 0.45. respec­

tively. Both experimental results and numerical results are shown: the latter are from 

Grilli et al. (1997) and will be discussed presently. A portion of this section is taken 

from the discussion by Li and Raichlen (1998) of the paper by Grilli et al. (1997). 

The experimental results were obtained from high-speed video recordings. The high­

speed video camera llsed (described in Chapter 4) operated at 250 frames per second: 

this provided the required spatial and time accuracy needed. Due to the limited 
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Figure 5.14: Photograph of a typical plunging breaking wave with beginning splash­
up 

data st.orage of the high-speed video camera and hence the recording time available, 

i.e., 2.1 seconds, it was necessary to repeat each wave several times with the camera 

moved to cover the complete wave breaking process. Since the wave generation system 

is very reproducible. i.e .. the amplitudes of the waves generated during consecutive 

runs differ by only about 1% , this procedure is acceptable. The images from the 

high-speed video were calibrated to minimize distortion and error associated with the 

optical measurement method and the wave shape was obt.ained from the images using 

standard image processing method. The development of the plunging breaking wave 

is shown clearly in these figures. As the solitary wave propagates on the slope, the 

shape appears quit.e asymmetric and the front face of the wave steepens reaching a 

vertical slope which marks the beginning of the breaking process. From this point, a 

water jet is formed at the crest of the plunging wave, and this jet is projected forward 

until it impinges upon the leading portion of the wave, the still water region ahead, or 

the "dry" slope depending on the initial wave height. of the incident solitary wave and 
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the slope investigated. These definC' where the wave breaks relative to the original 

shordille. The shape and trajectory of the jet after breaking have implications with 

regard to the ingestion of air and production of turbulence in the breaking procC'ss; 

these free surface characteristics were measured carefully in the experiments. 

The numerical results from Grilli et al. (1997) using a two-dimensional fully non­

linear potential fiow wave model (FNPtvI) are also shown in Figure 5.15 and Figure 

5.10 to compare \vith the experimental results. The n11merical model was solved by 

the Boundary Element l'vlethod (BEl\iI) and the calculation was carried up to the 

point where the jet t011ches the water ahead. After that point since a singularity 

forms at the jet contact point the computing has to be terminated. The normalized 

time for each case is shown in the figure also where t* = t J9/ ho. To compare with 

the numerical results of Grilli et al. (1997). the origin of time is chosen when the crest 

of the wave is at the toe of the slope. (This is different from that used in the earlier 

discussion where the time origin was set as the time wave crest was located one-half of 

the characteristics length of solitary wave (L /2) from the toe of the slope.) Also. Grilli 

et al. (1997) chosE' the toe of the slope as the origin of the :1: coordinate. and positive 

l' was directed shoreward. In the following. this coordinate system is adopted to 

present the experimental results from the present study in order to compare directly 

to the numerical results of Grilli et al. (1997). In both Figure 5.15 and Figure 5.16 it 

is seen that the experimental wave profiles after breaking tend to lag that predicted 

by the numerical model for the same non-dimensional times. t*. This may due to the 

influencE' of bottom and sidewall friction in the experiments. which arE' neglected in 

the inviscid non-linear theory. 

In Figure 5.17 and 5.18 the shapes of the jet for the times when the tip of the 

jet nearly t011ch the front face of the wave are shown in detail for H / ho = 0.30 and 

H / lio = 0.45. respectively. It can be seen that the jet from the experiments is different 
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from that in numerical results Ileal' the location of jet impact.. The experimentally 

defined jet is considerably thinner than its numerical counterpart. In Figure 5.19 

the jet shape obtained from experiments is presented for H / ho = 0.45 for a non­

dimensional time chosen such that the location of the tip of the jet is approximately 

the same as that in numerical results. This corresponds to time shift of about M* = 

O.HI3 and the time in the experiments is t* = 12.913 instead of 12.73 used in the 

numerical results. \Vhen compared this way, the trajectories of the jet are similar but 

the jet thickness from the experiments is generally abont one-half of that obtained 

from the numerical simulation. This difference shows that even after solving a fully 

non-linear numerical model it is difficult to define the location and details of the free 

surface. 

The variation of the ratio of the local wave height to the incident wave height 

at the constant depth portion of the wave tank, H' / H. is plotted in Figure 5.20 as 

a function of the ratio of the depth in the constant portion of the tank to the local 

depth. ho/h. for both the experiments and the numerical results of Grilli et a1. (1997). 

The region investigated in the experiments is from the shoaling region just before 

breaking to a relative distance :r/ ho = 13.83 for H / ho = 0.3. and to :1'/ ho = 13.89 for 

Ho/ ho = (J.45. As before. the experimental results were obtained from a frame-by­

frame analysis of the high-speed video. Since the crest of the wave is often somewhat 

fiat after wave breaking. a relatively large error may exist in defining the position of 

the crest.. I\evertheless. in both cases the agreement between the experiments and the 

numerical theory for the shoaling. maximum wave height at breaking. and the general 

collapse of the wave is very good. These good agreements demonstrate that although 

the details of wave breaking are not possible to modeL the global parameters snch as 

wave shoaling curve. and the wave profile outside of the breaking area can be obtained 

relatively accurately. This "macro agreement" past breaking will be revisited in the 
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section that discusses the run-up of breaking and broken waves. 

5.3.1.2 Geometry of the Jet 

~rith plunging breaking waves. the water jet projecting ahead of the wave can 

cause turbulence. energy dissipation. and the entrainment of the air bubbles when 

it impacts the water surface. To gain more knowledge of the characteristics of the 

plunging jet. the geometry of the jet for one case was also measured in the experi-

ments. The incident wave height of the solitary wave investigated was H / lio = 0.30. 
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line is the experimental results. the dashed line is the numerical results from Grilli et 
al. (1997). 

the bottom slope was 1: 15. A schematic drawing of the jet of a plunging breaking 

wave is illustrated in Figure 5.2l. Three parameters were used to define the jet: (i) 

The trajectory of the tip of the jet. This trajectory will define the motion and loca­

tion of the jet and the impact point. The distance between the tip and the breaking 

point with respect to the constant water depth seaward of the slope. i.e. ((:rb - :rd / ho. 

yd 11.0 ) was used to represent the trajectory. (ii) The length and thickness of the jet 

before impingement. The length of the jet Ll was defined as the horizontal distance 

from the tip of the jet to the nearest location of the wave surface which was vertical. 

as shown in Figure 5.2l. Two parameters were used to define the thickness of the jet: 
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wave for H /11.0 = 0.30. The solid line is the experimental results. the dashed line is 
the numerical results from Grilli et a1. (1997). 

one is the thickness of the jet at the wave vertical plane. i.e. L'2' the other is the thick­

ness of the jet at half length of the jet. i.e. L:~. These two variables not only describe 

the thickness of the jet but they also show how the thickness changes at different 

locations. (iii) The horizontal impinging velocity of the jet. This can describe "the 

strength of the impingement". i.e .. how strong the momentum exchangE~ happens at 

the impingement point. 

Figure 5.22 shows the trajectory of the tip of the impinging jet. In the Figure 

5.22 a curve which is denoted as the "free-falling" curve as simply the trajectory of 

a free-falling jet is also shown. The initial horizontal velocity of the free-falling jet is 
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chosen to be the wave celerity in the constant depth region seaward of the slope, and 

the initial jet tip position was chosen from the experiment. The assumption is made 

here that the water particle velocity at breaking is essentially equal to the wave speed 

just before the wave propagates up the slope. Thus. the trajectory can be described 

as: 

. _ _ ~[:J:th - :1:/0]2 '/ 
l)th - 2 + .lJtO 

Cth 
(5.9) 

where (1'th ,:IJth) is the theoretical location of the tip according to free-falling aSSllIllp-
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Figure 5.21: Definition sketch of the jet produced by the plunging breaking wave 

tion. (:J'tO.Yw) is the initial jet tip location from experiments. and Cth = Jg(ho + H) 

is the theoretical wave celerity in the constant depth region. The good agreement. be­

tween the experiment al results and the free- falling curve shows that once t.he water jet 

is propelled from the breaking wave. the trajectory is the same as that of a free-falling 

jet. until it impinges on the free surface. To verify this result. the horizontal velocity 

of the jet. tip was also calculated from the high-speed video images. and is shown 

in Figure 5.23 as a function of the jet location wit.h respect to the breaking point 

(:1:b -:Tt) / lio· The horizontal velocity was computed by dividing the distance between 

the :r coordinate of the tip in consecutive images by the time interval between frames. 

Because of tIl(' limits of the spatial and time ({ccuracy of the high-speed video. the 

velocity data obtained this way have a relatively large variation. especially when the 

tip of the jet is close to the free surface. The shape of the tip makes the measurement 

of the tip location difficult. Large variation also exists at the initial stage of the jet 

because the jet dimension is very small and the error associated with obtaining the 
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Figure 5.22: Trajectory of the tip of the jet produced by the plunging breaking wave. 
The tTiangles are the experimental results. the solid line is the fitted free-falling curve. 

jet tip location from the video images is relatively large. Nevertheless. it seems that 

the horizontal velocity of the jet tip is almost constant over most of the jet trajectory. 

The theoretical wave celerity eth described above is also shown in the Figure 5.23. 

The results suggest that the wave velocity at breaking is of the sallle order as the 

wave celerity ill the constant depth region offshore. This has been pointed out by 

other researchers. for example. Skjelbreia (1987). 

The water velocity Vm and the angle of impact of the jet trajectory, em, at impinge­

ment can be derived from the free-falling jet trajectory. If we assume the maximum 

height of the wave at breaking is Hb measured from the free surface where impact 

will take place. the wave breaking velocity is Vb ~ Cth. the impingement velocity and 
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regIOn. 

angle is: 

Vm JCZh + 2gHu (5.10) 

em ('til 
(5.11) arctan[ . 1 

y!2gHb 

The length of the jet with respect to the distance between the location where the 

wave crest breaks_ i.e .. :J:b, and the location of the tip. :ft. is shown in Figure 5.24. It 

WetS seen that the length of tlw jet increases linearly as the plunging breetking wave 

and the jet propagates on the slope. A linear curve from linear regression analysis is 
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Figure 5.24: Hori20ntal length of the jet produced by the plunging breaking wave. 
The triangles are the experimental results, the solid line is the fitted curve from a 
lillear regression analysis. 

also presented in the figure as the form: 

L l' - T 
_1 = 0.282['0 . t] _ 0.067 
ho ho 

(5.12) 

Since the velocity of the water jet tip is constant from above analysis, the wave 

celerity of the plunging breaking wave is less than the jet tip velocity at the order of 

incident wave height (0.282) from the linear regression analysis. 

The thickness of the jet at t he middle of the jet and the thickness of the jet at the 

location that the plunging wave surface becomes vertical are shown in Figure 5.25. It 

can be found from the experiments that both these measurement for the jet thickllcss 
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are almost constant. The thickness of the jet at the middle length. I.e, L:3• is about 

half of that at the base of the jet L 2 . 

The overall geometry of the impacting jet produced by the plunging breaking 

wave was measured accurately during the experiments. These geometric parameters 

which describe the jet associated with the plunging breaker can be used to model 

the jet impingement process perhaps leading to a better understanding of the air 

entrainment, and the energy dissipation associated with plunging breaking waves. 
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5.3.1.3 Splash-Up 

As tIl(' plunging breaker propagates up the slope, the jet propelled from the wave 

ma," strike the dry bed of the slope or the water ahead of the wave depending on the 

incident wave height and the slope of the beach. Figure 1.1 showed the photographs 

of a case where the jet impinges on the water ahead of the wave. As the jet impinges 

011 the free surface ahead of the wave. a reflected jet is propelled from the impact point 

and the splash-up process is initiated. The reflected jet appears not to be symmetric 

with the incident jet as shown in Figure 1.1-(e). but reflects at a angle greater than 

the incident angle perhaps due to the movement of the jet and plunging \vave with 

respect to the slope. The surface of the reflected jet is not as smooth as the incident 

jet, and drops can be seen to separate from the splash-up jet. As the incident wave 

moves toward the shoreline. the shape of the splash-up (reflected) jet changes and 

curves back toward the incident wave. more and more water was dropped on the 

incident jet in the form of spray and drops as time progresses. Finally the incident 

jet breaks up and the whole reflection structure collapses into a turbulent mess with 

apparent vortex generation. This process can be seen clearly in Figure 1.1- (i), (j). 

Shortly after the impingement of the incident jet on the free surface the originally 

smooth wave surface around the impact point becomes rough, as shown in (d) of 

Figure 1.1 which suggests that a short wave is generated reversely propagating with 

respect to the incident wave. The rough area caused by this reversed wave gets larger 

as the splash-up process continues. and the air entrained into the wave and jet can 

be seen as the form of the bubbles in the pictures. 

The splash-up process described above can be used to explain the generation of 

the counter-rotating vortex proposed by Skjelbreia (1987). The stage ofthe reflection 

process is illustrated in Figure 5.26. In this illustration. the incident jet. reflected jet, 
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revers(~ flow under the impingement point. and the motion of the water separated from 

the splash-up jet are shown diagrammatically. The direction of the flow is represented 

by the arrows. Three possible vortices arc illustrated here: (i) tlw clockwise vortex 

formed by the incident jet and the reversed flO\v under the jet. (ii) the clockwise 

vortex formed by the reflected jet from the impingeIllent point and the reversed flow 

generated by the impact of reflected jet on the water, and (iii) the vortex formed by 

the flow of water separated from the splash-up which falls on the incident jet and the 

water flow beneath the impingement point. This vortex is counter-clockwise rotating 

as show11 in the sketch and could only be formed if the jet penetrates a significant 

depth of water before splash-up, which can also be found in Figure l.1 -(i) and 

(j) where the complete wave breaking and splash-up process is shown. Initially the 

amount of spray and drops separated from the splash-up is small and the water depth 

of impingement is small; thus, the vortex is very weak. When the wave is dose to the 

initial shoreline position. most of the water in the splash-up jet will fall back toward 

the incident wave. and the strength of the counter-clockwise vortex increases. ""hen 

the broken wave consisting of the incident jet. the reflected jet, and the plunging 

wave behind collapses. three "large" vortical structures are left in the flow and finally 

transform to smaller vortices and show evidence of energy dissipation. This discussion 

has been primarily qualitative. and the existence of these vortices must be verified 

by experiments directly using methods such as particle image veloeimetry. Skjelbreia 

(1987) used velocity measurement by Laser Doppler Veloeimetry (LDV) to infer the 

existence of counter-rotating vortices. 

If the incident wave height of the attacking solitary wave is smalL the wave breaks 

up the slope near the original shoreline. Thus, the point of impingement of the jet 

generated by the plunging breaking wave is located on the dry slope rather than on 

the water surface. In this case, a reflected jet cannot be produced. and the incident 
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Figure 5.26: The illustration sketch of the vortices generated by the plunging breaking 
wave 

jet and breaking \vave behind the jet simply collapse after breaking. A photograph 

of this kind of plunging breaking is presented in Figure 5.27 (a). For comparison. the 

case of plunging breaking with splash-up is shown in Figure 5.27 (b). 

The reason for the difference between wave breaking with and without splash-up is 

puzl'Jing. but perhaps it can be explained by considering two simple cases of a moving 

water jet impinging: (i) on a dry inclined plate or (ii) on the surface of a quiescent pool 

wit h a small depth. Because the scale of the jet and its Reynolds number are relatively 

large. it is reasonable to neglect viscous effects and the effects of surface tension 

relative to the kinematics and dynamics of the problem. Considering first the case 

of a moving jet impactillg a dry sloping snrface. if assnming zero vorticity associated 

with the jet. aIle can use potential theory to describe the jet-plate interaction. e.g .. see 

l\1ilne-Thomson (1968). The impingement point. considered as the center of the jet, 

is a stagnation point that separates the flow running up the slope from that running 

down the slope. A jet that is refiected frmll the bottom and directed upward is not 
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generated and the run-up tongue is simply composed of the water associated with the 

portion of the jet running up along the slope. 

\\'hen the plunging jet impacts the surface of a slIlall depth of water. the' jet 

interacts with the original still water surface before reaching the sloping bottom. 

This physical process is complicated and various vortical motions are generated such 

as those three types discussed earlier in the slIlall region composed of the plunging 

jet. the water beneath the impingement point. and the base of the incoming breaking 

wave. Here only a tentative explanation is proposed to describe this complex process. 

'When the translating jet impacts the water surface it will push a "wedge shape" 

portion of water that was originally still (zero water particle velocity) forward up the 

slopE' to form the run-up tongue. At the same time the momentum exchange between 

the jet and the water up-slope redirects the jet upward and away from the slope. i.e .. 

prevents it froIll running along the slope as in the dry slope <:ase. Since the breaking 

wave and the impinging jet advance shoreward with a relatively large speed (close 

to the celerity of the wave in the constant depth region). the down-slope force that 

acts on the jet as it impacts the quiescent region is relatively large and the water 

associated with it can be defiected upward relatively violently. Thus. tll(' refiected 

jet and splash-up is produced. (A physical process that Illay be analogous to this 

splash-up is how the snow in the path of a snow-plow is defiected forward into the air 

by the moving plow.) 

Considering the difference in the breaking process between the "dry slope" break­

ing and the case of breaking in a depth of water, the development of vortices would be 

very different. In the case of plunging breaking without splash-up as shown in Figure 

5.27, since no reflected jet generated. one would not expect counter-rotating vortices 

to be found. hut this must be verified by experiments. Also. the energy dissipation 

and the resulting run-up process must be different in these two cases becanse of the 
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Figure 5.27: Photographs of two cases of the plunging breaking of solitary waves 011 

1:15 slope. (a). Plunging breaking without splash-up; H/ho = 0.10. (b). Plunging 
breaking with splash-up; H / ho = 0.40 
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difference between the impingement processes. This will be discussed later in this 

chapter ,vhen the numerical and experimental run-up results are presented. 

5.3.2 Breaking Solitary Wave Run-Up - Comparison with 

Results from the WENO Scheme 

In this sectioIl the numerical results from the vVENO scheme ck'scribed in Chapter 

3 to treat breaking solitary wave run-up will be presented and compared to experi­

mental ref:iUlts. 

5.3.2.1 Wave Amplitude and Velocity Time-Histories 

The water surface time-histories at eight different locations for an incident relative 

wave height Hjho = 0.263 breaking on a 1:19.85 slope are presented in Figure 5.28. 

Both the numerical results from the WENO scheme and the corresponding experi­

mental results from the wave probe are shown. The eight locations shown cover the 

range from the toe of the slope to locations above the initial shoreline position. The 

scale of the ordinate of each part of the figure is the same so that the relative height 

of the wave at different locations can be compared easily. It can be seen that as the 

wave runs up the slope the wave height increases gradually and the front face of the 

wave steepens because of the non-linear effects. At breaking, the front face becomes 

verticaL and shoreward of this position the wave height decreases dramatically. The 

numerical scheme can model this wave shoaling and decaying process well, as the 

good agreement between the numerical results and experimental results demonstrate. 

It is noted that at locations close to the initial shoreline position (Figure 5.28 (e) and 

5.28 (f)), tIl(' numerical scheme predicts a much steeper water surface time-history 
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than experiments. Since the breaking process is only represented as a sharp cliscon­

tinuit,\: in the numerical modeL this difference is probably due to the over-simplified 

llumericalmocleling of the wave breaking process. Also, it has been noted before that 

in the experiments the existence of the plunging jet and air entrainment associated 

with the breaking wave can reduce the accuracy of the measurement from the wave 

probe; this error may also contribute to the disagreement between experimental and 

numerical results. Zhang (1996) showed by numerical simulation that dispersion ef­

fects may be important during the run-down process for nOll-breaking solitar,\' wave 

run-up. This statement may also be true for breaking solitary waves, as shown in 

Figure 5.28 (b)-(d). It is seen that the numerical scheme is relatively poor in treating 

the run-down process. The numerical results show the existence of a bore propagating 

away from tIlE' slope. but only a somewhat undular reflected wave was recorded in 

the experiments. During the experiments, it can be found that a "hydraulic jump" is 

generated near the initial shoreline by the run-down water along the slope, which can 

be seen in Figure 5.28 (d). The "hydraulic jump" does not propagate and essentially 

generates the undular reflected wave at the end of the rUll-down process. 

Figure 5.29 shows the water particle velocity time-histories during the run-up 

process for a relative incident wave height: H / ho = 0.263. These are the same con­

ditions as shmvn for the wave amplitude time-histories in Figure 5.28. The velocities 

were normalized by vi gho as before. The measurement vvas at mid-depth. Because 

of the relatively low sampling rate of the LDV system used for the velocity measure­

ments, velocity measurements for locations above the position of the initial shoreline 

are not available; only the locations from the toe of the slope to a location near the 

initial shoreline were sampled. For the location near the toe of the slope, the numer­

ical result agrees well with the experiments. The velocity time history is similar to 

the original solitary wave shape, which shows the refiection from the slope before the 
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Figure 5.28: (a)-(d) Run-up of solitary wave with H/ho = 0.263 on 1:19.85 slope. 
T\'onnalized wave amplitudes are shown as a function of normalized time at different 
locations. The solid line is the result of numerical simulation. the dashed line is the 
experimental data from the wave probe. 
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Figure 5.28: (e)-(h) (continued) Run-up of solitary wave with H/ho = 0.263 on 1:19.85 
slope. ~onnalized \vave amplit.udes are shmvn as a function of normalized time at 
different locations. 
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run-down process must be small. (This has also been observed from water surface 

observations by SYllolakis (198G).) In the following section this property of breaking 

solitary \vave run-up will be used in developing an energy balance model to predict 

the maximum run-up.) The numerical simulation overestimates the maximum veloc­

ity near that point of wave breaking. as can be seen in Figure 5.29 (b). Just after 

the wave breaks. experimental data are not available in the breaking region due to 

the presellce of bubbles generated by the plunging jet of the breaking wave. These 

bubbles obscure and ;.;catter the laser beam of the LDV. Past the breaking point. the 

·'triangular shape" of the variation with time of the breaking wave velocity is seen 

very dearly both in experimental and numerical results similar to the water surface 

variation shown in Figure 5.28 (c). (d) and (e). OveralL the numerical results agree 

well with the experimental except in the region dose to breaking. It is obvious that 

the details of wave breaking are so complex that they cannot be simulated by this 

simplified shock model. 

5.3.2.2 Free Surface Profiles 

The water surface profiles. i.e., the water surface elevation variations with distance. 

for an incident wave height of H / ho = 0.30 are presented in Figure 5.30 for different 

non-dimensional time;.;. Figure 5.30 covers the full run-up and run-down process. The 

numerical results from the WENO scheme presented in Chapter 3 are compared to 

the experimental data of Synolakis (1986). The experimental results were obtained 

from a combination of 10 rv 12 wave probes. and the variation of the free surface 

with distance at different time;.; was constructed from the water surface time-histories 

at various locations. As the wave shoals. the front face becomes steeper compared 

to the rear face and the shape becomes asymmetricaL see Figure 5.30 (b) and (c). 

The numerical results dearly show this trend and are confirmed by the experimental 
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Figure 5.29: (a)-(d) Run-up of solitary wave with H/ho = 0.263 on 1:19.85 slope. 
Normalized wave velocities are shown as function of normalized time at different 
locations. The solid line is the result of numerical simulation. the triangles are the 
experimental data from LDV. 
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data. At t* = 10 the numerical results overestimate> the rnaxnIlum height of the 

wave by about 10%. As time increases, the front face gets steeper and ultimately 

hecomes vertical. this is defined as the breaking point in the numerical model. This 

occurs for 15 < t* < 20. The wave height reaches a maximum value at this time 

and decreases after the wave breaks. As described before. the wave probe cannot 

accurately measure the details of the breaking wave front because of the air entrained 

ill the breaking wave. Nevertheless. the shock-like front face of the breaking wave 

is found in Figures 5.30 (b) and (c). There appears to be a shift in T / ho of the 

front face of t he breaking wave between the numerical data and experimental data 

as seell in Figure 5.30 (c). Considering the violence of the wave breaking process 

and the simplicity of the numerical modeL this shift may either be caused by the 

over-simplified model or the measurement error associated with the breaking wave or 

a combination of both. 

As the breaking wave propagates up the slope. it collapses near the initial shoreline 

position and the wave height decreases dramatically. These processes described in 

section 5.3.1 were foulld in the experiments. i.e., the jet formation and the creation 

of the vortices and the splash-up. However away from the front tip of the wave. the 

shape changes slowly. The physical length of the wave collapse region is around the 

order of the initial water depth and is small compared to the characteristic length of 

the solitary wave. This implies that, induding the shock structure into the long wave 

model. the long wave assumptions should still be valid even during the wave breaking 

pro('ess. The favorable agreement. between the numerical results and the experimental 

results found in Figure 5.30 (d) and (e) provides additional support for the shock 

Illodel. There an' some differences between the numerical dat a and experiment al 

data near the nIn-up tip shown in Figure 5.30 (g). (h). These discrepancies may be 

duE' to the assumption of the hydrostatic pressure distribution ill the shallow water 
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equations as explained by Lin et a1. (1999), or simply that the shock model cannot 

model the details of the complicated process of the jet and the splash-up. The tip 

effects get smaller and finally disappear as the wave swashes up the slope. The 

Il1lmerical results agree well \\'it 11 the experiments for this stage (Figure 5.30 (e) and 

(f)). The maximum run-up occurs about t* = 37. 

The wave run-down process begins after the wave reaches the maximum run-up. 

The water retreats as the trailing edge of the solitary wave still propagates toward tll(' 

slope. This retreating stream interacts with the wave tail and creates a region of large 

free surface curvature Ilear the initial shoreline position. This interaction develops a 

"hydraulic jump" near the initial shoreline as seen in Figure 5.30 (j). The hydraulic 

jump is modeled as a discontinuity (shock) in the numerical method also. The sharp 

angle of the water surface obtained in the numerical results 8hown in Figure 5.30 (k) 

and (1) is not realistic. In the laboratory the front collapses and foam can be found in 

this region. However. both the position of the jump and the height difference between 

upstream and dowIlstream are predicted well by the numerical method. 

It can be found that the thickness of the run-down stream predicted by the nu­

merical method is smaller than the experimental results. The difference may be due 

to a systematic error associated with the capacitance wave gages used by Synolakis 

(1986). When using a wave gage to measure the height of a stream with a significant 

velocity, the depth measurement is larger than the actual value because the stream 

tends to run-up on the probe due to the velocity of the run-down stream, this has 

been discussed in Chapter 4. 
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Figure 5.30: (a)-(d) Run-up of solitary wave with Hjho = 0.3 on 1:19.~5 slope. ~or­
malized wave surface profiles are shown as a function of normalized distance from the 
initial shoreline at different times. The solid line is the result of numerical simuhttion. 
the black circles are the experimental data from Synolakis (1986). 
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Figure 5.30: (e)-(h) (continued) Run-up of solitary wave with H/ho = 0.3 on 1:19.85 
slope. Normalized Wi:lVe surface profiles are shown as a function of normalized distance 
from the initial shoreline at different times. 
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Figure 5.30: (i)-(l) (continued) Run-up of solitary wave with H/ho = 0.3 on 1:19.85 
slope. Normalized wave surface profiles are shown as a functioll of normalized distance 
from the initial shoreline at different times. 
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5.3.2.3 Shoreline Movement and Maximum Run-Up 

The normalized run-up is shown as a function of normali7:ed time in Figure 5.31 

for a solitary wave with H/h a = 0.30 on a 1:19.85 slope with the Il1lIllerical results 

compared to the experimental results. The experimental data were obtained using 

the high-speed "ideo camera. As the wave propagates up thf' slope, the contact line 

found between the tip of the run-up tongue and the dry slope is used to locate the 

actual shoreline at different times with the help of a scale attached to the surface 

of the slope. Because of the limited distance the high-speed "ideo can cover on the 

slope. the experiment was repeated three times with the high-speed video camera 

moved to a new locatioll each time. In this way the run-up time-history was recorded 

up to the maximum run-up. The results from different runs were assembled to givc 

the \\'hole picture of the run-up process. During the run-down process. since the 

slope was already wet, the contact lim) was indistinct and almost undetectable in the 

video recording. Thus, only the run-up phase of the shoreline position is presented. 

Good agreement was found between the numerical results and experiments which 

shows that t he \\TE~ 0 numerical scheme can simulate the run-up and the shorelinc 

position with relatively high accuracy. 

The normalized maximum run-up, R/ho, is shown as a function of incident wave 

height H/ha in Figure 5.32, 5.33 and 5.34 for three slopes: 1:5.67, 1:15, and 1:19.85 

respectively. The experimental data for the 1:5.67 slope are from Hall and Watts 

(1953). where the solitary wave was generated by the simple impulsive motion of a 

vertical bulkhead. The experimental data for the 1:19.85 slope came from Synolakis 

(1986) for initial water depths ranging from 6.25 ern to 38.32 cm. The data for 1:15 

slope were measured by the author for the different water depths shown. The wa"e 

generation system is the same for Synolakis's (1986) data alld author's. Note that 

the data for 1:15 slope presented are from two wave tanks: the CWT and the CERC 
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Figure 5.31: Run-up of solitary wave with Hlho = 0.30 on 1:19.85 slope. The nor­
malized shoreline position is shown as a function of normalized time. The solid line 
is the numerical results. the circles are experimental data from high-speed video. 

tank. These figures show clearly that tIl(' maximum run-up is predicted well by the 

vVENO scheme combined with the non-linear shallow wave equations. 

It was found in section 5.3.1 that the wave breaking process was quite different with 

and without splash-up. In figures 5.32 to 5.34 although the maximum run-up increases 

smoothly and there is no sudden increase or decrease between the plunging breaking 

without splash-up and plunging breaking with splash-up. However, the change of the 

maxirrmm run-up with respect to the incident wave height differs significantly for the 

two case of breaking. i.e., with and without splash-up. This is shown in Figure 5.35 

where the incremental change in the maximulll run-up with wave height of a solitary 

wave on a 1:15 slope, bRlbH, is shown as a function of relative wave height, Hlho. 
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Only the numerical results using the WENO scheme are shown. From experiments, 

the maximulll wave height H / ho of the solitary wave which breaks \yithout splash-up 

is 0.14 for 1:15 slope. this splash-up limit line is shown ill Figure 5.35 as well as the 

breaking limit line proposed by Synolakis (1986). i.e .. Eq. 5.5. Two lines were fitted 

to the data in the two regions separated by the splash-up limit line. It can be seen 

dearly that the slope of the incremental change is different in these two regions. i.e .. 

t he curvature of the curve R / ho vs H / ho is different. This suggests that the splash-up 

and plunging incident jet may affect the global variables of the wave run-up process 

such as maximulll run-up. and as we have discussed. perhaps due to the different 

processes of air entrainment. vortex generation. and decay. 

The normalized maximum run-up. R/ho. is shown as a function of the cotangent 

of the angle of the slope investigated. cot ;f. in Figure 5.36. Both the data for non­

breaking and breaking solitary wave run-up are presented and separated by a line 

which represents the wave breaking limit (Eq. 5.5). The maximum run-up for non­

breaking solitary wave was calculated from the non-linear theory in Chapter 3 (Eq. 

3.52). and that for breaking solitary wave was obtained from the vVENO numerical 

model. It can be seen in Figure 5.36 that the variation of the maximum run-up 

with the angle of the slope relative to horizontal is different for non-breaking solitary 

waves and breaking solitary waves. In the non-breaking region. the maximum run-up 

increases as the angle of the slope decreases. while for breaking waves the maximum 

run-up decreases as the slope becomes gentler. This is caused by two different effects. 

For non-breaking waves the energy dissipation relative to the incident wave energy is 

small and the run-up is controlled by gravity. For example. consider the same relative 

incident wave incident upon two different slopes. The forces that cause the run-up 

on the slope. neglecting bottom friction, are opposed by the component of weight of 

the run-up tongue acting parallel to and down the slope. Thus, as the slope angle 
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decreases, assummg the same volume in the run-up tongue for the same incident 

wave height and the two different slopes, the component of force opposing motion 

up the slope decreases allowing increasing run-up. III the case of breaking waves, 

t his variation of the weight component with change in slope still occurs, but now the 

energy dissipation associated with wave breaking becomes a significant fraction of the 

incident \vave energy and tends to control run-up. This can be seen in the following 

argument. As tht' angle of the slope decreases for a given offshore wave height, the 

wave \vill break further offshore. If one uses the bore model to describe the energy 

dissipated by breaking, as the angle of the slope decreases the bore will propagate a 

larger distance along the slope leading to increasing energy dissipation with decreasing 

slope angle. If one accepts this model. it appears from the experiments that for the 

breaking w,we case. energy dissipation rather than gravity forces (weight component) 

may be in control. Therefore, the converse is true for breaking waves compared to 

non-breaking waves and as the angle of the slope decreases the run-up also decreases. 

This will be discussed later when we treat the run-up model constructed from energy 

conservation principles. 

5.3.2.4 Energy Dissipation 

One important effect of the wave breaking process is energy dissipation. The 

relatively good agreement between the numerical results and the experimental results 

for wave shape, water surface time-histories, and the maximum run-up suggests that 

the shock simplification used in the numerical model can represent some effects of wave 

breaking at least with regard to the global properties of the wave. Thus, taking a 

bore, i.e., a moving hydraulic jump, as a model of the broken wave, we will estimate 

the ellergy dissipation associated with wave breaking. It is realized that the wave 

breaking and splash-up processes as shown in Figure 5.27 are extremely complicated. 
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Figure 5.37: Schematic sketch for the discription of energy dissipation across a prop­
agating bore 

Therefore. this approach to determine the energy dissipation associated with breaking 

in terms of dissipation related to a bore is indeed a simplification of the process. 

The mass conservation and momentum conservation equations for a bore are the 

same as the non-linear shallow water equations written in conservative form. i.e .. 

Eqs. 3.58 and 3.59. except there is a discontinuity (a bore) in the domain to be 

considered. The rate of energy dissipation associated with a bore has been analyzed 

by Stoker (1957): for completeness his solution is presented herein. Considering a 

section enclosed by CLo(t) -::; :r(t) -::; CLl(t) such that the region is composed of a fixed 

mass. Stoker (1957) sought to analyze the energy dissipation across the bore (see 

Figure 5.37). The integrated forms of the shallow water equations (Eqs. 3.58 and 
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3.59) for the domain sketched in Figure 5.37 are as follows: 

d j,n 1 (t) 

d p(rl + h)d:r 
t . 00(1) 

o (5.13) 

i JOdt
) T p(rl + h)ud:r 

ct . (lo(t) f ilO /"11 
Pudy - P1 dy 

. -li o • -hl 

121 2 
2yp(rlo + ho) - 2 gp(r/l + h 1) (5.14) 

where an (t). u 1 (t) arc t he vertical planes upstream and downstream of the water ('01-

mnn that cont ains the bore. Tli. Pi. hi are the wave amplitude. pressure and water 

depth at the vertical planes. respectively. In the Eq. 5.14. the shallow water assump­

tion of a hydrostatic pressure distribution. ]J = 9 P(T7 - :/j). has been used to derive the 

equation. 

For continuous flow without a bore. i.e .. a propagating wave without rapid chang­

ing shape. the energy equation can be derived directly from considerations of mass 

and momentum conservation. Thus. energy is conserved for the non-breaking solitary 

wave run-up, as shown before. However. the law of the conservation of energy does 

not hold across a bore. Theoretically fluid particles may gain or lose energy crossing 

the discontinuity. Since there is no energy source in the bore. the water particles 

cannot gain energy when crossing the bore. and energy must be lost. This inequality 

will be enforced in the following discussion to get a unique physically possible solution 

for the problem. For the same water column considered above. the integral form of 

energy eqnation is: 

dE 
dt 

d ;"!ldt
) '112 pq 

-{ [pel] + h)- + -' (II + hlldx} 
dt oo(t) 2 2 

+ ('1 Plu1dy _ ('U PolLudy 
J-II1 J-IIo 

(5.15) 
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where the first term in the equation on the right-hand side is the total energy change 

within the water colnmn including kinetic energy and potential energy. tlw second 

term and third term respectively are the work done by the environment upon the 

water column at the vertical plane o.l(t). ao(t). 

For the limiting casE' where the length of the control volume. 1.e .. ao(t) - (J.l (t). 

tends to zero, the following relations between the physical variables across the bore 

can be obtained from Eqs. 5.13 and 5.14: 

where 

o (5.16) 

1 . 212 
-gp(rlo + ho) - -gp(rl1 + hi) (5.17) 
2 2 

1Jo - t: (5.18) 

(5.19) 

are the relative upstream and downstream velocities with respect to the bore propa-

gation speed ~ and: 
. dao(t) dadt) c- __ - __ 
'-,- -

cit cit 
(5.20) 

Using these relations and assuming a hydrostatic pressure distribution. Eq. 5.15 

becomes: 

(5.21) 

where the quantities Pi and jJi are analogous to density and pressnre in gas dynamics 

and are defined as: 

p(rJi + lid (5.22) 
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-(T]· + II) = -p. 2 1 t 2p 1 

(5.23) 

Eliminating the variablesui and replacing t5i with Pi the energy dissipation rate 

in Eq. 5.21 call be expressed in the simple form: 

dE 

dt 

TrIg (Po - pd;' 
p 4{Jo{Tl 

where rn is the mass flux across the bore: 

(5.24) 

(5.25) 

It can be seen that energy is not conserved unless Po = iTl. i.e .. the flow is continu-

ous. If a bore exists in the flow domain. energy must be dissipated by the turbulence 

produced at the front of the bore. As stated before. wave breaking during run-up is 

assumed to be modeled as a propagating bore. Thus the rate of energy loss in the 

breaking wave run-up, i.e., dE / dt, can be obtained from Eq. 5.24. 

The energy dissipation equation. Eq. 5.24. can be simplified further by solving for 

the bore propagation speed ( Since the laws of mechanics are invariant with respect 

to axes moving at constant velocities. one of the three velocities in the problem 'Ill), 

111' or ~ can always be assumed to be zero without loss of generality. For example, if 

the upstream velocity tLo = O. from Eqs. 5.16,5.17 the speed of the bore propagation 

can be written as : 

e = 9 P1 (1 + ~l ) 

2p {Jo 
(5.26) 

Substituting Eq. 5.26 into Eq. 5.24, the energy dissipation rate across a bore can 

be expressed as the function of the water depths across the bore: 
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D - dE _ 1 (1 );3[9(do + ddll/2 - - - - f)9 (0 - d 1 dt 4 2dod1 
(5.27) 

where eli = hi + Tli is the total water depth. 

If the energy dissipation rate D in Eq. 5.27 is integrated over time from the start 

of the breaking process to the time of bore collapses Te. (The time Tc is defined as 

the end of the wave breaking for the run-up process.) The total energy dissipated 

can be obt ained. as: 

fTc 1'1; 
EB = Ddt = 

. 0 0 
(5.28) 

The \VENO scheme presented ill Chapter 3 solves the mass and momentum conser-

vation equations across the shock the energy conservation equation is automatically 

solved according to the above analysis. The total energy in the domain is calculated 

directly by integrating the potential energy and kinetic energy over the computing 

domain, i.e .. Equations 5.6. 5.7. By comparing the value of the total energy at the 

time of the maximum run-up to the initial energy associated with the incident solitary 

wave. an estimation of the total energy dissipated by wave breaking can be obtained. 

Figure 5.38 is the result of the calculated energy of a solitary wave with wave height 

H/ho=O.30 which runs up a 1:15 slope. The energy and volume were normalized as 

in Eq. 5.8. It can be seen that as the wave propagates up the slope, the normalized 

kinetic energy decreases and potential energy increases since some kinetic energy is 

transformed into potential energy. A slight increase in total energy was found during 

the initial stage of the calculation and needs further investigation. Nevertheless. 

the total energy is still approximately conserved before wave breaking since 110 bore 

exists in the domain. When t* ~ 8 the wave breaking process begins, both kinetic 

energy and potential energy decrease. but the rate of decrease is slightly different 
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from the computational results. This energy dissipation process stops when the wave 

reaches the initial shoreline position. which begins the run-up process at t* ~ 18. The 

total energy is again conserved as the kinetic energy decreases and potential energy 

incre<1ses. The wave reaches the maximum run-up position around t* = 30, where the 

potential energy reaches maximuIll value <11so. The kinetic energy at this position is 

very smalL as seen in Figure 5.38. This sIllall amount of energy may be associated 

with the mild reflected wave from the slope or the small and negligible water particle 

velocity assci<1ted with the run-up tongue and will be discussed l<1ter. Past this point. 

the potential energy decreases and the kinetic energy incrc<1ses as the water begins to 

run down the slope. The total volume associated with the wave is also presented in 

Figure 5.38 and it is found that the volume is constant for the run-up and run-down 

process. which shows the mass is conserved in the computing although slight variation 

is seen which is probably due to computatiOIl<11 errors. 

The total energy dissipation for the breaking solitary wave run-up can be obtained 

by comparing the tot<11 energy at the maximum run-up position, i.e .. t* = 30 in Figure 

5.38. to the tot<11 energy in the incident wave, which can be calculated theoretically. 

Figure 5.39 shows the dissipated energy calculated this way as a function of incident 

wave height. H / lio, for given slopes. Figure 5.40 shows the ratio of the dissip<1ted 

energy due to bre<1king. E B , to the energy associated with the incident wave. E r • 

as function of incident wave height, H / ho, for given slope. Five slopes ranging from 

1:5.67 to 1:50 were investigated. It can be seen that as the incident wave height 

incTc<1ses. the portion of the incident energy which is dissipated incn~ases. For the 

1:5.67 slope. wave breaking first occurs when H/ho = 0.137 according to the breaking 

criterion proposed by Synolakis (1986). the numerical results confirm this in that the 

energy dissipation is almost zero for H / ho ::; 0.15. The energy dissipation on more 

gent Ie slopes is larger than t hat OIl the steep slope for the saIIle incident wave height. 
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Figure 5.3~: Calculated normalized energy of breaking solitary Inn-up with 
H/h o=0.30 011 1:15 slope as a function of normalized time. The solid line is the 
total energy associated with the wave, the dashed line is the potential energy. the 
dash-dotted line is the kinetic energy, and the dotted line is the volume of the wave. 

For example. almost 40% of the incident energy will be dissipated on a 1:15 slope for 

incident solitary wave with H / ho = 0.3(), but only 51<' on 1:5.67 slope. The energy 

dissipation predicted by the numerical model for 1:50 slope is larger than one would 

expect. i.e .. almost 70% of the incident energy will be dissipated in the process even 

for a relative small incident wave height such as H /11.0 = 0.2: these results may need 

further investigation in the future research. 

The calculated energy dissipation of solitary waves breaking on a slope obtained 

from Figure 5.39 was used to find an empirical formula to model this dissipation. The 

following equation obtained from linear regression analysis represents this relation of 
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Figure 5.39: Energ'Y dissipation for breaking solitary run-up as a function of relative 
incident wave height. l'\ umerical results. 

energy dissipated by breaking to the incident wave height and slope reasonably well: 

(5.29) 

Figure 5.41 shows the comparIson of this empirical formula with the numerical 

results which were used to obtain Eq. 5.29. The abscissa is the numerical results 

and the ordinate is the prediction from the empirical formula with a line of identity 

shown. From the figure, the empirical formula appears to fit the data reasonably welL 

the relatively larger error appears to be for the 1:5.67 slope. 
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Figure 5.40: Ratio of dissipated energy to the incident wave energy for breaking 
solitary wave run-up as a function of relative incident wave height. Numerical results. 

The relatively good agreement between the numerical results of the \VENO scheme 

and the experimental results should be investigated further, since the bore structure 

used to model the wave breaking process in the numerical model considerably sim­

plifies the physical process it represents. Oue possible reason for the good agreement 

when using this simplified model may be clue to tllC' relatively large length scales of 

both the incident wave and the run-up process compared to the length scale of the 

wave breaking region. In other words. although the wave breaking process is complex 

and difficult to be fully understood, the region that it affects is actually small (at the 

order of water dept 11). Thus, from this "macroscopic view", the wave breaking call 
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Figure 5.41: The energy dissipation of breaking solitary wave run-up: Comparison 
between numerical results and the empirical formula Eq. 5.41. 

be regarded as a sharp discontinuity or an energy sink. In addition, the equations 

defining the numerical model correctly represent mass and momentum conservation 

across the breaking wave. If the mass and momentum exchange across the disconti­

nuity are tneated correctly, then, like the hydraulic jump or the dam-break problem, 

one should be able to obtain the global parameters of the characteristics of the wave 

run-up process such as the maximum run-up and the wave amplitude time-histories 

wit h reasonable confidence. 
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5.3.3 Breaking Solitary Wave Run-Up - An Exploration of 

Energy Conservation 

In this section the results of an exploratory study of the energy conservation 

associated with the maximum run-up of breaking solitary waves will be presented. 

The thoughts which arc developed here are base on what we will refer to as "the 

energy balance model". 

III the previom; sections we have proposed a theoretical SOlUtiOll for non-breaking 

solitary waves run-up on lillearly varying slope and a nurnerical method to calculate 

the run-up of breaking solitary waves. These methods are complicated to use for 

prediction purposes. They either require a relatively long computation time or neglect 

some eflects which may be potentially important according to the local bathymetry 

of the coast or special properties of the attacking tsunami. To overcome some of 

these problems, an energy balance model has been developed based simply on energy 

conservation considerations during the run-up process. Thus. it doesn't neglect such 

effects as non-linearities. dispersive effects, etc. The maximum run-up predicted is 

confirmed to some extent by experimental results. 

In the following discussion the incident wave energy involved in the run-up process 

is specified and a general energy balance equation is presented. This equation assumes 

that the wave shape at the maximum run-up position is self-similar and the potential 

energy at this position is a function of the maximum run-up and the volume of the 

incident solitary wave. (These assumptions were confirmed by experiments as well 

as by the numerical model developed in the last section.) The empirical expression 

for energy dissipation during wave breaking developed in last section will be used to 

account for the energy loss. Based on this energy conservation model and the energy 

dissipation model based on a bore representation of wave breaking, a maximum rU11-
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Figure 5.42: Definition sketch of the energy balance model for breaking solitary wave 
run-up 

up prediction is presented. 

5.3.3.1 Energy Conservation Considerations 

Figure 5.42 shows the sketch of the problem investigated. OncE' the solitary wave 

is produced either by the wave generator in experimental conditions or by earthquake, 

landslide. etc, in nature, the wave with wave height H propagates towards the beach 

with inclination angle /-], runs up on the beach to a maximum run-up R. and then the 

run-up tongue retreats and produces the major reflected wave propagating offshore. 

(There is also a minor reflected wave which occurs during the run-up process due to 

wave-slope interaction.) 
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Consider the control volume, V. shown in Figure 5.42. The control volume is se­

lected in such a way that all the wave motion has been included in the control volume 

V. The wave IIlotion and velocity at the seaward boundary of V is so small that both 

the mass and momentum infiux at that boundary can be neglected although theoret­

ically the wave length of the solitary ,vave extends to infinity. The left boundary of V 

includes tlw initial shoreline and the maximum run-up position on the slope. There­

fore, all the run-up and run-down process is confined to the chosen control volume. 

This guarantees that there is no mass and momentum flux out of the control volume 

V. 

The energy inside the control volume is analyzed next. As mentioned above. there 

is no mass or momentum flux at either the left or the right boundary; therefore, the 

work don(' by the environment at the left and right boundaries of the system defined 

in the control volume is zero. The energy transformation from the initial time to to 

the time t1 is investigated. The initial time to is defined as the time that the solitary 

wave has the crest at position Xl. (X 1 is half of the characteristics length of the 

solitary wave (L/2) offshore of the toe of the slope. and L is defined in Eq. 3.25.) The 

final time t1 is chosen as the moment that the run-up tongue reaches its maximum 

position on the slope. All the energy terms involved in the run-up process and the 

energy conservation equation are shown in Figure 5.43 and discussed below. The 

relative magnitude of each energy term is represented approximately by the width of 

the arrow in Figure 5.43. 

Initially all the energy inside the control volume V is contained in the incident 

solitary wave. i.e .. both the kinetic energy and potential energy. This is denoted as 

E/. One form of the theoretical solitary wave shape and velocity up to the first-order 
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accuracy are pres0ntcd before and are repeat0d here' for completeness: 

Il(:1', t) 2/~ HSfCh ( 3hg (:r - ct)) (5.30) 

/1 (:r, t) CTI 
(5.31) --

1+1] 

c ylg(h o + H) (5.32) 

By integrating these and related expressions from -00 to x the total volume, ki-

netic energy and potential energy of a solitary wave with wave height H are obtained: 

(5.33) 

(5.34) 

(5.35) 

\iVher(' kinetic energy and potential energy with respect to the incident solitary 

wave height are shown in Figure 5.44. It call be found that the kinetic energy is 

almost eqnal to the potential energy if the incident wave height is not too large. To 

silllplify the discussion the following eqnation for the kinetic and potential energies is 

used: 

~ _ 4pg 3/2 :3/2 
EK ~ Ep - /0 H 110 

3v3 
(5.36) 

The error associated with the above simplification IS less than 7% even for a 
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Figure 5.44: The potential and kinetic energy of solitary wave. The normalized energy 
is shown as function of incident wave height H / ho. The solid line is the kinetic energy. 
t he dashed line is the potential energy. 

relatively large wave height of H / ho = 0.40. 

The solitary wave will propagate towards and run up the slope. As the wave 

travels towards the slope, because of the non-linear effects. the wave height increases 

and therefore some of the kinetic energy is transformed into potential energy. Thus. 

the kinetic energy decreases and the potential energy increases slowly as the wave 

propagates up the slope. At the position of maximum run-up, the potential energy 

reaches a maximum while the kinetic energy is a minimum and has a value dose 

to zero. This process was seen clearly in Figure 5.12 for non-breaking solitary wave 

run-up and Figure 5.38 for breaking solitary wave run-up and has oeen discussed 

previously". After the maximum run-up is reached the run-down process begins with 



175 

a decrease in tIl(' potential energy and a corresponding increase in kinetic energy. 

During propagation a portion of the energy will be reflected from the slope and a 

portion of the energy is dissipated. The dissipation is caused by several mechanisms: 

friction at the bottom of the wave t auk friction at the free surface, i.e., between the 

air and the wave. and most important. wave breaking: 

(5.37) 

In Eq. 5.37 ED is the total dissipated energy, EFF is the energy dissipated by the free 

surface friction between air and water, EFB is the energy dissipated by the bottom 

friction, and EB is the energy dissipation associated with wave breaking. 

Keulegan (1948) has analyzed the rate of loss of energy due to viscous shear with 

the laminar boundary layer beneath the solitary wave on a smooth surface, and found: 

dE 

dt 

(5.38 ) 

where in Eq. 5.38 the energy dissipation rate due to bottom friction was proportional 

to the attenuation in wave height dHjd:r. Naheer (1978) also investigated the energy 

dissipation and viscous damping of solitary waves propagating in a constant depth 

over a rough bottom. and the viscous dissipation and attenuation were found to be 

small compared to the energy associated with the incident wave. Clearly. for breaking 

solitary wave run-up on the slope, the majority of energy dissipation is due to wave 

breaking. This is especially true in experiments where the wave tank bottom and the 

slope surface are smooth. For rough beaches and other conditions such dissipatioIls 

probably cannot lw neglected. and corresponding empirical formulae can be used in 
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the energy balance model to represent these. Neverthelesti. in the following discussioll 

the dissipation caused by friction will be omitted for simplicity. Therefore. assuming 

the energy dissipation iti caused mainly by wave breaking. then in Eq. 5.37 ED ~ E B . 

Thus. the energy equation for the run-up process at an arbitrary location on the slope 

shoreward of breaking can be expressed as: 

(5.39) 

where EI\ and Ep are the kinetic and potential energies. respectively, ER is the energy 

dissipation associated with wave breaking. and En is the energy associated with the 

reflection. 

The reflected wave associated with run-up mentioned in the literature usually 

refers to the reflected wave arising both from the reflected wave from the slope be­

fore the wave reaches the maximum run-up and the wave generated by the run-down 

process. However. the reflected wave used in the energy balance consideration here 

only refers to the wave which is reflected from the slope before the water sheet on 

the slope reaches the maximum run-up position. A time-history of the solitary wave 

run-up process is presented in Figure 5.45 (denoted as water time-history without 

eliminating the run-up tongue in the figure) for a wave gage located half of charac­

teristic length of solitary wave (L/2) offshore of the toe of the slope. Tlw initial wave 

height of the solitary wave iti H/ho = 0.28, the slope of the beach is 1:15, and the 

water depth in the constant depth region before the slope is 17.0 = 30.48 cm. The 

portion of the water surface time-history between line A and line B in the figure is 

the reflection used in this discussion. and the reflection associated with the run-down 

generated wave extended from line B to the end of the recording, i.e., t* > 20. It can 

be seen that the specific reflected wave used in this discussion only comprises a small 

portion of the total reflected wave system. Therefore, the energy associated with it 
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is much smaller. A series of experiments were conducted in the lab to measure this 

portion of the energy which is labeled ER in Figure 5.43. 

Figure 5.46 shows the experimental arrangement used to measure the refiected 

wave energy. The difference between this setup and that used for measuring run-up 

discussed earlier lies in t he arrangement of the slope. Instead of the relatively long 

slope used for wave run-up measurement. the slope used in the reflection measurement 

only extends from the wave tank bottom to the initial shoreline position. A collection 

box with water level lower than that in the wave tank is arranged shoreward of the 

end of the slope. Thus, when the incident solitary wave runs up the slope. the portion 

of the wave which would normally comprise the run-up tongue and hence the run­

down tongH(.' will fiow over the end of the slope and be captured in the collection 

box. Therefore, only the reflected wave which is due to the wave-slope interaction, 

E R , will be recorded by the offshore wave gage. 

The measured water surface tirne-history from a wave gage using t his experiment al 

setup is also shown in Figure 5.45 (denoted as water time-history after eliminating 

the rUll-Up tongue). The location of the wave gage was the same as that in regular 

rUll-Up measurement. It can be seen clearly that the reflected wave from the slope is 

very small compared to the wave generated by the run-down from the slope. Another 

wave gage was located at the toe of the slope to measure the profile of the refiected 

wave and also the maximum height of the reflected wave height. Figure 5.47 shows 

this maximum height as function of incident wave height for solitary wave run-up. 

From Figure 5.47 we can see that even for a incident solitary wave with wave height 

H /11.0 = 0.45. the relative maximum reflected wave height before the run-down process 

is less than 0.03. For such a small wave, the linear wave theory is applicable to 

calculate the wave properties such as wave celerity, wave energy etc. For example. 

the time-history measurement can be converted into spatial measurement according 
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Figure 5.45: The experimental wave time-history for solitary wave run-up with 
H /110 = 0.28. The solid line is the normalized wave amplitude after eliminating of the 
run-up tongne. the dashed line is the wave amplitude obtained without eliminating 
the run-up tongue. 

to linear theory. the wave energy including potential energy and kinetic energy can be 

computed by integrating this spatial wave signal over the wave record. i.e. Eqs. 5.u 

and 5.7. By doing this. the energy associated with the reflection ER can be obtained 

and it was found that ER ~ 0 compared to the incident wave energy. 

The kinetic energy E[,- associated with the water movement at the time of max-

inmrn run-up is also very small. This kinetic energy comes from the wave energy 

associated with the run-up tongue on the slope. It was found from numerical simula­

tions that the water particle velocity of the run-up tongue at the maximum run-up is 

very small. Grilli and Svendsen (1989) calculated the non-breaking run-up on a slope 
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Figure 5.4G: Sketch of the experimental setup used to measnre the wave refiection 

using the BE::\l method and found the kinetic energy in the run-up tongue at the 

time of the maximum run-up is almost equal to zero. The numerical results using the 

\lrENO scheme presE'llted earlier, i.e., Figure 5.12, 5.13 and 5.38. also shows that the 

kinetic energy at the time of maximum run-up is very small. Therefore. the kinetic 

energy term in the energy conservation equation. Eq. 5.39. at the time of maximum 

run-up. is neglected. i.e., EJ( ~ O. 

In the followillg discussioll the remaining terms in equation 5.39. i.e .. EE and Ep 

are treated. From these discussions a simple and reasonably accurate prediction of 

the maximum run-up of breaking solitary waves is presented. This is contrasted to 

the numerical model. which although more accurate, is more difficult to apply. 
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Figure 5.4 7: ~Iaximnm reflected wave height for breaking solitary wave run-up after 
eliminating the run-up tongue as a function of relative incident wave height 

5.3.3.2 Potential Energy 

If the potential energy. Ep in Eq. 5.39, can be modeled correctly. the energy loss 

caused by wave breaking can be obtained from the energy equation. or conversely. 

if the energy dissipation can be modeled. the potential energy can be obtained. In 

this section, the empirical formula which was obtained using the WENO numerical 

model presented earlier (Eq. 5.29) is used to model the dissipated energy due to wave 

breaking. Using dimensional analysis a relationship between the maximum run-up 

for a breaking solitary wave and the potential energy at the time of maximum run-up 

is proposed. 

Dimensional analysis will be used as an aid to model t he potential energy at the 
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time of maximum wave run-up, R. The dependent variables for this rUll-Up process 

are grouped into three categories: (i) the incident wave parameters: the wave height 

H. the water depth in the constant depth region flo. and the total volume of the wave 

V. (ii) the angle of the slope (3 and the maximum run-up of solitary \vave on the 

slope R. and (iii) physical constants: the acceleration of gravity 9 and the density of 

the water, p. \Vriting this as an expression in functional form: 

f(Ep. H. ho. v~ R cot.!1. p. g) = 0 (5.40) 

where Ep is the potential energy at the time of maximum run-up. 

Choosing the variables ho, p and 9 as the independent physical variables, we obtain 

the following expression: 

Ep R V H 
--'3 = F( -. 2' -, cot/3) 
pghCl ho ho ho 

(5.41 ) 

(Only two-dimensional run-up is considered here and the width of the section is 

assumed to be unity and non-dimensionaL thus, the dimensional parameters above 

such as the volume of the water are one order less in length scale.) 

The relation among the non-dimensional variables in Eq. 5.41 can only be obtained 

from numerical simulations or experiments. 

To calculate the potential energy at the time of the maximum run-up, the shape 

of the full run-up tongue has to be determined. Figure 5.48 shows profile of the 

run-up tongue shape at the time of maximum run-up determined experimentally for 

a solitary wave: H / ho = 0.30 on 1: 15 slope. (These data were obtained using high­

speed video.) As mentioned earlier, the experiments were repeated several times with 

the camera moved to new location to cover tIlE' full length of the rUll-Up tongue. 
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There are some deviations in the data obtained from the two recordings probably due 

to a small variation in the' generated ,vaves for such set of data. These data were 

illtegrated numerically to get the potential energy for this example. To reduce the 

error associated with the mUllerical integration, the order of the numerical integration 

accuracy is chosen such that for a change in the integration greater than 17< .. the 

order of the integration is increased by 1. It was found that fourth-order polynomial 

fitting is adequate for the numerical integration. The data of rull-UP tongue shape 

from Synolakis (1986) shmvn in Figure 5.30 were also nsed to calculate t he potential 

energ~' at maximum run-up for the 1:19.85 slope. These two data sets were used to 

verify the potential energy obtained using the numerical WENO scheme. The results 

are shown in Figure 5.49 for 1:15 slope and Figure 5.50 for 1:19.85 slope. Agreement 

between the numerical results and the experiments is relatively good. 

An assumed form of the functional relation described by Eq. 5.41 is taken as: 

Ep R V 
-. -.) = 0'-2 
pgh'o ho ho 

(5.42) 

the quantity (Y is a constant called the shape factor. In Eq. 5.42. it has been 

assumed that the potential energy is independent of the slope angle cot/i. and not 

directly related to the initial wave height H / ho except as it relates to the total volume 

of the wave. V. 

Knowing Ep • R. and V. Eq. 5.42 can be solved for shape factor. o. Figure 

5.51 shows the values of shape factor obtained frorn the numerical simulations. The 

results from three slopes ranging from 1:15 to a very gentle slope of 1:50 are shown. 

For 0.05 < H / ho < 0.5 the shape factor. ex. is abont 0.12. Therefore. in the following 

discussion 0' is chosen to as 0.12. 
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Figure 5.48: The shape of the run-up tongue of breaking solitary wave on 1:15 slope 
with wave height H / ho = 0.30 

5.3.3.3 Prediction of Maximum Run-Up 

Equation 5.29 presented in last section is used to model the energy dissipation due 

to wave breaking during the solitary wave run-up process. "'Then Eq. 5.29 and the 

expression for the potential energy at the maximum run-up. i.e .. Eq. 5.42 along with 

(Y = 0.12 are substituted into the energy balance equation (Eq. 5.39). by doing some 

simple i:lJgeuraiC' manipulations, the following expret-lsion for the maximuIll rUll-Up of 

a breaking solitary wave can be obtained: 

R 
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Figure 5.49: The normalized potential energy at maximum run-up for 1:15 slope as 
a fUllction of relative iucident wave height 

R 

ho 
(5.43) 

where 0] is a constant which slightly changes with slope and was found to best fit 

Eq. 5.43 to the data to be: 

(5.44) 

Eq. 5.43 will be used to predict the maxnnum run-up of a breaking solitary 

wave based Oll energy conservation considerations and the results will be compared 

to both the numerical results from the WE~O scheme and experimental results. It 

seems that Eqs. 5.43 and 5.44 derived from the energy balancE' model can predict the 

trend of the maximum run-up as function of incident wave height reasouably well. 
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Figure 5.50: The normalized potential energy at maximum run-up for 1:19.85 slope 
as a function of relative incident wave height (Experiment from Synolakis (1986)) 

Figures 5.52. 5.53, 5.54 show tIl{' variation of the maximum run-up with incident 

wave height for 1:5.67 slope. 1:15 slope and 1:19.85 slope. respectively. It can be seen 

that Eq. 5.43 can model the maximum r1111-llP for a wide range of incident wave 

height 0 < H /11.0 < 0.35. For incident wave heights greater than 0.40. the energy 

dissipation formula. i.e .. Eq. 5.41 appears to overestimate the energy dissipation, 

thus, the maximum run-up predicted by the energy balance model is somewhat less 

than that ohtained from the numerical model. 
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Figure 5.51: The shape factor of solitary wave run-up tongue at maximum run-Hp as 
a function of relative incident wave height. Numerical results 

5.4 Breaking Solitary Wave Run-Up on Vertical 

Walls 

In this section. the experimental and numerical results of breaking solitary wave 

run-up (splash-up) on a vertical wall positioned at difFerent locations on a 1:19.85 

slope are presented. (This section is taken from the paper by Li. Raichlen. and Lee 

(2000b)). 

Splash-up resulting from the interaction between the wave and the wall usually 

consists of sheet flow for sIllall relative wave heights. but for extreme waves it is 

composed of both sheet fiow and spray and drops which break away from the splash-
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up tongue and can travel significantly higher than would the sheet splash-up. The 

numerical results from the "VENO scheme described in Chapter 4 was applied only 

to the sheet flow process. HoweveL experimental data are prcf:iented for the spray 

and drops where applicable. 

TIl(' experimental arrangement for the solitary wave splash-up all a vertical wall 

waf:i shown in Figure 4.26. As mentioned earlier. experiments were conducted using 

a movable vertical wall mounted at various positions on a plane beach with a slope 

of 1:19.85. Therefore. for a solitary wave with a given relative wave height offshore. 

HI ho. either a non-breaking. an incipient breaking. or a post-breaking (broken) wave 

can be caused to impinge on the wall. Data for three offshore relative wave heights 

arc presented in Figure 5.55 where the abscissa is the ratio of the distance between 

the vertical wall and the original shoreline. i.e .. :'-1/" to the offf:ihore depth. 110 , Positive 

values indicate distances offshore of the shoreline and negative distances are shoreward 

of the shoreline. The ordinate. RI H. is the ratio of the maximum splash-up on the 

wall with respect to the original water surface. R. to the incident wave height. H. The 

position where breaking occurs for each of the three relative incident wave heights 

is indicated by the arrows on the abscissa. "Then the \vall is at its most seaward 

location. i.e .. :rwlho = 19.85. the wall if:i located eSf:ientially at the shoreward extent 

of the constant depth portion of the tank. Thus. af:i would be expected, for a relative 

height of HI ho = eu 0 the splash-up relative to the incident wave height is about two 

from the theoretical analysif:i and experiments (see I3yatt-Smit h (1971) and Ramsden 

(1 DD~i)). For that wall location as the relativp wave height offshore increases. the 

splaf:ih-up becomes greater than two due to increaf:iing non-linear effects. As the 

wall is moved onshore. but to pOf:iitions seaward of the location of wave breaking. 

the splash-up increaf:ies significantly. For example, for a relative offshore height of 

HI ho = 0.43 the splaf:ih-up on the wall increases by a factor of three as the wall is 
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Figure 5.55: Variation of splash-up with the vertical wall location rela.tive to the 
shoreline. bottom slope 1:19.85 

moved from the toe of the slope to a location just seaward of wave breaking. It will 

be shown later that this increase is associated with the increasing slope of the front 

face of the ,vave as it shoals while propagating up the beach. However, if the wall 

is located some distance shoreward of the breaking location the relative splash-up 

decreases dramatically. This is due to the collapse of the wave shoreward of breaking 

with a resultant decrease ill both the wave height and the slope of the front face of 

the wave compared to that when the wall is located near where the wave breaks. 

The variation of the relative splash-up. RI H. with relative incident wave height, 

HI ho. is presented in Figure 5.56 for eleven different wall locations varying from the 

toe of the sloping beach to shoreward of the shoreline. In upper portion of Figure 5.56 
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Figure 5.56: Variation of location of wave breaking and splash-up with relative inci­
dent wave height 

the location of breaking is also shown as a function of relative incident wave height. 

H / ho. with the ordinate expressed as Xb/ ho at breaking. where :rb was denoted as the 

horizontal location of wave breaking point measured from the initial shoreline. For 

the limits of experiments. i.e .. 0.1 < H / ho < 0.45, it can be seen that the location of 

the breaking wave is: 1 < (:J:b/ hohr.eaking < 6. i.e .. one to six depths offshore of the 

shoreline. Thus. referring to upper portion of Figure 5.56. for waves with a relative 

wave height of H / ho ~ O. L except for the two most shoreward locations of the wall. 

the splash-up is caused by non-breaking waves. In generaL it appears that for each 

relcitive wave height. H / ho. the further the wall is located offshorc of the position of 

wave breaking the smaller the relative splash-up. 
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The maximum splash-up is presented in Figures 5.57 (a), (b). and (c) as a function 

of the relative incident waY(' height for three different wall locations: XII'; 110=19.85. 

9.03. and 0.0. respectively. The numerical results obtained using the \VE0JO scheme 

described in Chapter 3 are also presented. The three cases shown correspond to: 

the toe of t he slope, tIl(' original shoreline. and a location midway between these 

two. For the vertical wall located at the toe of the slope and at the mid-point, 

i.e .. half-way between the toe of the slope and the original shoreline. the waves are 

not breaking before they impinge on the wall. However. for the wall located at 

the shoreline (:Til'; 110 =0.0) the waves break seaward of the wall at different distances 

depending upon the incident wave heights. see upper portion of Figure 5.56. TIlE' 

numerical results arc compared to the experiments for each case. and the agreement is 

reasonable for the experiments corresponding to the non-breaking waves. Theoretical 

results from Byatt-Smith (1971) for the case of a solitary wave propagating in a 

constant depth and impinging on a vertical wall are also shown in Figure 5.57 (a). 

These results agree well both with the experimental data and the numerical results of 

this study. For the larger incident waves and a wall location further up the slope the 

wave is either ncar breaking or breaking before impinging on the wall. In Figure 5.57 

(b) where the wave shoals. but does not break before striking the walL the numerical 

model agrees reasonably well with the experimental results. When the wave splash-up 

is composed of spray and drops one would not expect the numerical model to predict 

the maximuIll splash-up. as can be seen in Figure 5.57 (0) for H/ho = 0.36. In Figure 

5.57 (c) agreement with the theory appears reasonable for a relative wave height of 

H / ho = 0.1 and for H / ho > 0.36. The former is a case of a wave of small amplitude 

breaking about one depth, i.e., ho, seaward of the wall. The latter corresponds to 

waves which have broken some distance from the wall and impinge on the wall as 

a collapsed broken wave. In between these limits. i.e., for 0.1 < H / ho < 0.36, the 

impingelllent is more violent and drops and spray are formed and agreement with 
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the th~ory would not be exp~cted. It is in this region that th~ detailed kinematic:-; of 

the wave at breaking must he important in defining the splash-up. and these details 

cannot be defined by the non-linear shallow water theory. 

The splash-up of a wave on the vertical walL RI H. is shmvn as a function of 

normalized time. t* = t Jg I ho in Figures 5.58 and 5.59 for two cases for a wall position 

of l' w I II () = 11. 56: (i) a wave nearly breaking before reaching the vertical wall (H I ho = 

O.29G), and (ii) a wave which has broken already before reaching the wall (Hlho = 

0.374). Favorable agreement is found between the r~sults of the ,"VENO numerical 

model and the experiments for the sheet splash-up showing that the numerical scheme 

can model both t he waves shoaling but not breaking before impinging on a vertical 

wall and waves which break on the 1:19.85 slope and the splash-up process associated 

with broken wav~s impinging on the wall. In the latter case the wave breaks and then 

collapses as it propagates shoreward before striking the wall. 

The experiments have suggested that the maximum local water particle acceler­

aticm of the incident wave at the time the wave just reaches the wall may be more 

important in d~fining the extent of the splash-up than the maximum water particle 

velocity at that instant. From the non-linear shallow water theory. the water particle 

acceleration is equivalent to the local wave slope as shown in the following: 

Du. 
Dt = nt + nux = - 9T/:r (5.45) 

Where Dill Dt is the water particlc' a('c~leration. and TI:r n~presents th~ wave slope. 

Therefor~. the maximum wave front slope at the instant that the wave r~aches th~ 

vertical wall was chos~n to r~present the wave particle acceleration. 

\Ve use a length scale for the deforming and breaking wave which incorporates 

the maxilllmll slope of the front face of the wave just as it impinges on the vertical 
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Figure 5.57: Variation of the splash-up with relative incident wave height for vari01lS 
wall locations. solid line is the present numerical results, dashed line is the t heoret­
ic:al results of I3yatt -Smith (1971), Solid triangle is the solid sheet splash-up. hollow 
triallgle is the drop and spray splash-up. 
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Figure 5.58: Variation of splash-up with time. H/ho = 0.296. :I:w/ho = 11.5G. Open 
circles with line with line are experiments. solid line is the numerical theory. 

wall. (The use of this front face slope was first proposed by Hammack (1972) to 

define a more meaningful Ursell number for a breaking or broken long wave.) The 

length scale used is the ratio of the wave height to the maximnm slope on the front 

face of the wave. i.e .. H/(ld7//drl)rnax' The dramatic increase in the splash-up. as 

seen in Figure 5.55. as the wall location approaches the position on the sloping beach 

where the wave breaks is probably due to the increase in the slope of the front face 

of the wave as it shoals and then impinges on the wall. The variation of the ratio 

of the relative splash-up. R/ H. with time that is normalized by using this length 

scale. f[gH/ldT//d:rl mll:1:]l/2, as determined from experiments is presented in Figure 

5.60 for a range of relative incident wave heights. All cases are for a wall position 

of :r",/hu = 11.5G. and from Figure 5.56 it is seen that the wave impinging on the 
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Figure 5.59: Variation of splash-up with time, H/ho = 0.374, :rw/ho 
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35 

0.0. Open 

wall is unbroken for this walllocatioll. The variation of the maximum splash-up with 

relative offshore wave height was also shown in Figure 5.56 for this location. The 

abscissal parameter appears to be reasonable in shifting the time-histories so that the 

non-dimensional times of the maxima are in nominal agreement. 

The maximum splash-up on the wall, R / H, is shown in Figure 5.61 as a function 

of the maximum front face slope Id1]/d:rl rnar for various wall locations. :1'11'/ho. and 

offshore relative wave heights, H / ho. A well-defined linear fit to the data is seen 

independent of the wall location and the initial relative wave height: 

R , I d1] I 
-11. = 4.73 -d" rna:r 

o .1 
(5.46) 
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Figure 5.60: Splash-up time-history for solitary waves; wall location xw/ho = 11.56 

If the wave breaks on the slope just in front of the vertical wall, it appears that this 

relationship is violated and large splash-up occurs consisting of drops and spray along 

with a relatively ill-defined water sheet following the drops and spray. (This effect can 

be seen in Figure 5.61 for large water surface slopes.) Although the data still appear 

to follow the trend associated with smaller wave-face slopes. the data are scattered. 
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Chapter 6 Conclusions 

The' objective of this study has been to investigate some aspects of solitary wave 

run-up on a smooth plane sloping beach. 

The process of non-breaking solitary wave run-up was investigated theoretically 

by proposing H Hew higher order solution to the well-known shallow water equations. 

Experiments were performed in the laboratory to measure the surface profile. wave 

time-histories. water particle velocities. and maximum run-up. These experimen­

tal data were compared to the theoretical results and good agreement was found. 

The run-up of breaking solitary waves was studied experimentally and numerically. 

A finite-difference numerical model that solved the fully non-linear shallow water 

equations including a bore structure was developed and used to simulate the break­

ing solitary wave run-up. This numerical model was validated by the experimental 

measurements. A simple empirical formula used to predict the maximum run-up of 

breaking solitary wave run-up from energy conservation considerations was presented 

and discussed in this study. The special case of breaking solitary wave run-up on a 

gentle slope and then splash-up on a vertical wall at various locations with respect 

to the slope was also studied experimentally and numerically. 

The following major conclusions were drawn and they are divided into categories 

corresponding to the main areas of this investigation: 
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6.1 Non-Breaking Solitary Wave Run-Up on Beaches 

1. The non-linear theory developed herein agrees well with the experimental data 

corresponding to the run-up on a relatively steep slope (1:2.08) as well as on 

a more gentle slope (1:19.85). The agreement is good for both the water sur­

face time-histories. the spatial water surface profiles. and the horizontal water 

Imrticle velocities that were obtained at several locations during the run-up 

process. 

2. The present non-linear theory provides a somewhat better prediction of various 

aspects of the run-up process than the approximate non-linear theory presented 

earlier by Synolakis (1986). The improvement in accuracy of this prediction 

fro III the present non-linear theory cOInpared to t}w approximate non-linear 

theory is at the order of 10%. based on the wave breaking limit chosen. This 

indicates that the assumptions made by SYllolakis (1986) in his approximate 

non-linear theory are reasonably satisfactory for most engineering applications 

especially for small slopes where the breaking wave height is significantly less 

than that for steep slopes such as those investigated here. 

3. A unique laser-photodiode camera experiment arrangement was developed in 

connection with this study to measure the time-history of the tip of the run-up 

tongue of a solitary wave. which was non-breaking. as it progressed up the slope. 

The results obtained with this run-up gage agreed well with other measurement 

and provided a simple and reliable \vay of measuring run-up time-histories. 
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6.2 Breaking Solitary Wave Run-Up on Beaches 

6.2.1 Plunging Jet and Splash-Up 

1. The jet. generat.ed by t.he plunging breaking wave has t.he trajectory of a simple 

free-falling jet. with the horizontal velocity equal to the solitary wave celerity in 

t.he constant ch:pt h region. 

2. The point where the plunging jet touched the slope determines the resulted 

splash-up. If the jet impinges on a dry slope. no splash-up occurs and the 

plunging breaker simply collapses. If the impingement point is located on the 

free surface ahead of the jet, splash-up including a reflected jet is formed which 

furt her increases the turbulence and energy dissipation associated with wave 

hreaking. 

3. Clockwise and connter-clockwise vortices may be generated by the impinging 

plunging jet and the reflected jet associated with the splash-up when the jet 

impinges on the front face of a breaking wave or on the still water surface. 

4. Thc plunging jet kinematics generated hy a breaking solitary wave are similar 

to those generated by breaking periodic waves. 

6.2.2 Numerical Model 

1. The numerical method developed in this study to predict the run-up of breaking 

waves provides a somewhat simple and reasonably good prediction of various 

aspects of the rUll-Up process. The results agree well with t.he experimental 

data corresponding to the run-up on a relatively steep slope (1:2.08) as well as 

on R gentle slope (1:19.85). 
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2. The numerical method is stable. simple to implement and reqUlres relatively 

sIIlall compntational resources. 

3. The numerical results for the "global parameters" of solitary wave run-up such 

as Ow maximum run-up and the wave profile agree reasonably well with the 

experiments for both wave breaking conditions. i.e., wave breaking with and 

without rigorous splash-up. 

4. The detailed characteristics of wave breaking process snch as plunging jet and 

splash-up cannot be described by the numerical model. 

6.2.3 Energy Balance Model 

1. The energy dissipation associated with wave breaking is estimated usmg the 

numerical model and this was verified by the experiment al measurement of po­

tential energy at maximum run-up. and the incident and reflected wave energy. 

2. The reflected wave energy resulting from the wave-slope interaction for the slope 

investigated is negligibly sIllall comparing to the incident wave energy associated 

\'vith the solitary wave. 

3. The fairly good agreement of the energy balance model with experiments in­

dicates that the bore model which is used to describe energy dissipation is 

reasonable. 

4. The energy balance model appears to be useful to predict the run-up of exper­

imental plunging breaking solitary waves. 



204 

6.3 Breaking Solitary Wave Splash-Up on Vertical 

Walls 

1. The pOf-litioll of the vertical wall on the f-llope is of critical importance to the 

maximulIl splash-up af-l it relates to thE' location of wave breaking. 

2. The numerical approach propof-led appears to predict the time-history of the 

sheet splash-up well both for non-breaking waWf-l and for waves which break 

secnvard of the wall location. 

3. The maxinmm slopE' of the front face of the wave upon impingement of the wave 

on the wall is important in defining the maximum sheet splash-up as well as 

the trend for f-lplash-up composed of drops and spray. 

6.4 Future Research Considerations 

Thrcf' possible future research directions can be recommended here: 

1. The numerical model developed in this study has the potential to be extended 

to study three-dimensional breaking wave run-up. 

2. It appears that plunging jet and the resulted splash-up are important to un­

derstand the wave breaking kinematics and the energy dissipation process. A 

numerical modeL similar to that used by Lin. chang, and Liu (1999), solves the 

Navier-stokes equation and uses VOF method to advect free snrface. could lead 

to promising results of jet and also the maximum run-up of solitary waves. This 

type of numerical model, if tested and validated by the experimental results. 

can provide a more accurate description of the wave breaking process. 
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3. To obtain more information about the wave breaking and run-up process, more 

experimental measurements such as water particle velocity measurements using 

digital particle imaging velocimetry (DPIV) haw to be conducted. 
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Appendix 

Experimental Data 

Table A-I: Experimental l\Iaximum Run-Up of Non-Breaking Solitary \Vaves 

ho(cm) ~Wave Tank cot;) H/ho R/ho 

21.51 CST 2.08 0.026 0.050 

21.51 CST 2.08 0.063 0.148 

21.51 CST 2.08 0.071 0.172 

21.51 CST 2.08 0.089 0.221 

21.51 CST 2.08 0.108 0.273 

21.51 CST 2.08 0.113 0.304 

21.51 CST 2.08 0.135 0.362 

21.51 CST 2.08 0.147 0.415 

21.51 CST 2.08 0.164 0.443 

21.51 CST 2.08 0.174 0.496 

21.51 CST 2.08 0.198 0.566 

21.51 CST 2.08 0.201 0.575 

21.51 CST 2.08 0.230 0.690 

21.51 CST 2.08 0.236 0.694 

21.51 CST 2.08 0.258 0.773 

21.51 CST 2.08 0.271 0.846 

21.51 CST 2.08 0.281 0.889 

21.51 CST 2.08 0.288 0.889 
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ho( em) Wave Tank coi!l H/ho R/ho 

21.51 CST 2.08 0.307 0.974 

21.51 CST 2.08 0.316 1.033 

21.51 CST 2.08 0.322 1.075 

21.51 CST 2.08 0.339 1.132 

Table A-2: Experimental ,\Iaximum Run-Up of Breaking Solitary Waves 

hn( em) 

24.98 

24.98 

24.98 

24.98 

24.98 

24.98 

24.98 

24.98 

24.98 

30.48 

30.48 

30.48 

30.48 

30.48 

vVave Tank 

C~'T 

CvVT 

C~TT 

GWT 

C~'T 

CvVT 

CvVT 

C~TT 

C~TT 

C\VT 

C\VT 

C\VT 

CvVT 

CvVT 

cot/-J 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

15.0 

H/ho 

(U)48 

Cl.094 

0.140 

0.186 

0.203 

0.231 

0.274 

0.317 

0.364 

0.036 

0.034 

0.053 

0.071 

0.082 

R/ho 

0.152 

0.288 

0.384 

0.467 

0.500 

0.542 

0.607 

0.672 

0.739 

0.125 

0.125 

0.198 

0.267 

0.291 
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flo (em) \Yave Tank cot;) H/ho R/ho 

30A~ C\\TT 15.0 0.107 0.342 

30.48 C\;VT 15.0 0.126 0.380 

30.48 C\iVT 15.0 0.146 0.414 

30.48 C\VT 15.0 0.165 0.450 

30.48 C~TT 15.0 0.183 0.481 

30.48 C\\:T 15.0 0.201 0.511 

30.48 C\VT 15.0 0.21~ 0.538 

30.48 C\VT 15.0 0.234 0.572 

30.48 C\\TT 15.0 0.332 0.705 

30.48 C\;VT 15.0 0.343 0.718 

30.4~ C\\TT 15.0 0.357 0.745 

30.48 C\VT 15.0 0.371 0.761 

30.48 C\VT 15.0 0.387 0.775 

30.4~ C\VT 15.0 0.394 0.797 

30.48 C\VT 15.0 0.408 0.821 

30.48 C\\TT 15.0 0..118 0.836 

30.48 CERC 15.0 0.042 0.122 

30.48 CERC 15.0 0.079 0.251 

30.48 CERC 15.0 0.095 0.298 

30.48 CERC 15.0 0.109 0.321 

30.4~ CERC 15.0 0.136 0.3~2 

30.48 CERC 15.0 0.157 0.419 

30.48 CERC 15.0 0.177 0.456 
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hO(CIll) \;\~ave Tank cotj) H/ho R/ho 

3().4~ CERC 15.0 0.202 0.497 

45.72 CERC 15.0 0-L)l9 0.053 

45.72 CERC 15.0 (1.038 0.134 

40.72 CERC 15.0 0.056 0.206 

45.72 CERC 15.0 0.070 0.264 

45.72 CERC 15.0 0.099 0.347 

45.72 CERC 15.0 0.110 0.372 

45.72 CERC 15.0 0.134 0.415 

45.72 CERC 15.0 0.156 0.448 

45.72 CERC 15.0 0.174 0.4~2 

45.72 CERC 15.0 0.200 0.514 

60.96 CERC 15.0 0.040 0.150 

60.96 CERC 15.0 0.078 0.287 

60.96 CERC 15.0 0.102 0.350 

60.96 CERC 15.0 0.102 0.351 

60.96 CERC 15.0 0.120 0.394 

60.96 CERC 15.0 0.141 0.436 

60.96 CERC 15.0 0.162 0.477 

60.96 CERC 15.0 0.181 0.510 

60.96 CERC 15.0 0.202 0.541 

76.20 CERC 15.0 0.039 0.159 
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ho( ClU) \VaVC' Tank cot;3 H/ho R/ho 

76.20 CERC 15.0 0.080 0.296 

76.20 CERC 15.0 0.104 0.349 

76.20 CERC 15.0 0.124 0.394 

76.20 CERC 15.0 0.146 0.439 

76.20 CERC 15.0 0.167 0.478 

76.20 CERC 15.0 0.191 0.515 

76.20 CERC 15.0 0.198 0.527 
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