Tsunamis: Non-Breaking and Breaking Solitary

Wave Run-Up

Thesis by

Ying Li

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2000

(Submitted May, 2000)



1

© 2000
Ying Li
All Rights Reserved



iii

Acknowledgments

I would like to take this opportunity to express the warmest thanks to several

people:

Dr. Fredric Raichlen, my advisor, for your intellectual inspiration and great guid-
ance and for arranging my financial support during my five year investigation at
Caltech. I appreciate vour assistanceand patience which showed me the way to

become an independent researcher. and enjoy answering your endless questions.

Dr. Theodore Yao-tsu Wu. Dr. Christopher E. Brennen, Dr. Tim Colonius, for
kindly serving on my Ph.D. committee and for valuable discussions of the theoretical
and numerical results. 1 appreciate the time and helpful suggestions given to my
investigation. Dr. Thomas Yizhao Hou, I benefit from vour knowledge and intuition

of the numerical analysis.

Dr. Costas Synolakis. Dr. Phillip Liu and Dr. Phil Watts, for the brief discussions

we have had during various occasions.

Rich Eastvedt, for helping me set up and clean the experiment equipment and for
teaching me how to use them. Hai Vu, Russ Green, and Mike Vodus, for the great
knowledgeable assistance with the design and construction of the mechanical and
electrical equipment used during the study. Without your skillful work this doctoral

research would not be possible.

Fran Matzen. Linda Scott, Irene Loera. for the help and support during the daily

work.



iv
Sueanne Lee, Hilla Shaviv, for providing much needed assistance with my experi-

ments.

Xiangjun Li, Ruxia Wang, myv parents, for the encouragement and emotional
O - "

support that accompany me in every step of my life.

Caltech C Soccer Team, Caltech Badminton Club, and “Card Game Gang” for

refreshing me during the exhausting life at Caltech.

Most important of all. Jie Yu. my fiancee, not ounlv for typine and proofreading
) \ Ypug &

this thesis. but also for your unconditional support. love, and smile evervday.

This material is based upon work supported by the National Science Foundation
under Award CMS-9523414. Any opinions. findings, and conclusions or recommen-
dations expressed in this publication are those of the author and do not necessarily

reflect the views of the National Science Foundation.



v

Abstract

This study considers the run-up of non-breaking and breaking solitary waves on
a smooth sloping beach. A non-linear theory and a numerical model solving the
non-linear shallow water equations (NLSW) were developed to model this physical
process. Various experiments to obtain wave amplitude time-histories, water particle
velocities, wave free-surface profiles, and maximum run-up were conducted and the

results were compared with the analytical and numerical models.

A higher order theoretical solution to the non-linear shallow water equations,
which describes the non-breaking wave characteristics on the beach, was sought and
presented in this study. The solution was obtained analytically by using the Carrier
and Greenspan (1958) hodograph transformation. It was found that the non-linear
theory agreed well with experimental results. The maximum run-up predicted by the
non-linear theory is larger than that predicted by Synolakis (1986) at the order of
the offshore relative wave height for a given slope. This correction for non-breaking
waves on beach decreases as the beach slope steepens, and increases as the relative

incident solitary wave height increases.

A unique run-up gage that consists of a laser and a photodiode camera was de-
veloped in connection with this study to measure the time-history of the tip of the
run-up tongue of a non-breaking solitary wave as it progresses up the slope. The re-
sults obtained with this run-up gage agree well with other measurements and provides

a simple and reliable way of measuring run-up time histories.

The run-up of breaking solitary waves was studied experiimmentally and numerically
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since no fully theoretical approach is possible. The wave characteristics such as wave
shape and shoaling characteristics. and, for plunging breakers. the shape of the jet
produced are presented. The experimental results show that wave breaking is such
a complicated process that even sophisticated numerical models cannot adequately

model its details.

Two different plunging wave breaking and resultant run-up were found from the
experiments. The point where the tip of the incident jet produced by the plunging
breaking wave impinges determines the characteristics of the resulting splash-up. If
the jet impinges on a dry slope, no splash-up occurs and the plunging breaker simply
collapses. If the impingement point is located on the free-surface, splash-up including
a reflected jet is formed, which further increases the turbulence and energy dissipation
associated with wave breaking. It is hypothesized that both clockwise and counter-
clockwise vortices may be generated by the impinging plunging jet and the reflected
jet associated with the splash-up when the jet impinges on the front face of a breaking

wave or on the still water surface in front of the wave.

If only the run-up process and maximum run-up are of interest, the wave and the
water flow produced after breaking can be simplified as a propagating bore, which
is analogous to a shock wave in gas dynamics. A numerical model using this bore
structure to treat the process of wave breaking and propagation was developed. The
non-lincar shallow water equations were solved using the weighted essentially non-
oscillatory (WENO) shock capturing scheme employed in gas dynamics. Wave break-
ing and propagation is handled automatically by this scheme and no ad-hoc term
is required. A computational domain mapping technique proposed by Zhang (1996)
is used in the numerical scheme to model the shoreline movement. This numerical
scheme is found to provide a somewhat simple and reasonably good prediction of

various aspects of the run-up process. The numerical results agree well with the ex-
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periments corresponding to the run-up on a relatively steep slope (1:2.08) as well as

on a more gentle slope (1:19.85).

A simple empirical estimate of maximum run-up based on energy conservation
considerations is also presented where the energy dissipation associated with wave
breaking was estimated using the results from the numerical model. This approach
appears to be useful and the maximum run-up predicted agrees reasonably well with

the experimental results.

The splash-up of a solitary wave on a vertical wall positioned at different locations
on a gentle slope was also investigated in this study to understand the degree of
protection from tsunamis afforded by seawalls. It was found that the effect of breaking
wave kinematics offshore of the vertical wall on the splash-up is of critical importance
to the maximumn splash-up. The maximum slope of the front face of the wave upon
impingement of the wave on the wall, which represents the maximum water particle
acceleration, was important in defining the maximum sheet splash-up as well as the

trend for splash-up composed of drops and spray.
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Chapter 1 Introduction

1.1 Tsunamis

Tsunamis are ocean waves generated by movements of the earth’s crust. Sev-
eral geophyvsical events can lead to this kind of catastrophe: earthquakes. landslides.
volcano eruptions. and other mechanisms such as underwater explosions. Once this
event happens the local rise and/or depression of the water surface will generate
waves that propagate in all directions and a tsunami is produced. At generation and
as the wave propagates awayv from the source. the wave amplitude is small (perhaps
less than 1 m ~ 2 m) but the wavelength is large compared to the local water depth
(less than 3 kin ~ 10 km) and usually of the order of 100 k. Thus. the energv
associated with a tsunami can be very large. As tsunamis propagate shoreward theyv
undergo changes induced by the nearshore bathymetrv and increase significantly in
height. Upon reaching the shoreline. the waves generated run up the shore and can
travel inland for relatively large distances with the potential for causing large property

damage and loss of life.

Tsunamis have a long history around the Pacific Basin, where earthquakes are
frequent. Over the past one hundred vears there has been approximately one de-
structive tsunami per vear. which has caused loss of life or serious property damage
in the world (Zelt (1986)). Only a few of them are mentioned here. On June 15.
1896. a tsunami resulting from an earthquake attacked Sanriku. Japan. and more

than 27.000 people died and over 10.000 buildings were destroved. One of the most
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severe historical tsunamis occured in Indonesia, generated by the eruption of the
Krakatoa volcano. resulting in the loss of 36,000 people on August 27, 1883. A recent
earthquake in Turkey on August 17. 1999, generated a tsunami with a maximum run-
up on the coast of 2.5 m (Synolakis (1999)). Indeed most of the damage associated
with tsunamis is related to their run-up at the shoreline. Therefore, understanding
and being able to predict this run-up is an important aspect of any seismic sea wave

mitigation effort.

Solitary waves or combinations of negative and positive solitary-like waves are
often used to simulate the run-up and shoreward inundation of these catastrophic
waves, e.g.. Synolakis (1986, 1987), Zelt (1991a, 1991b) and Tadepalli and Synolakis
(1994). Such waves can model many of the characteristics of tsunamis. Using a simple
plane beach, important characteristics of the run-up tongue can be obtained both
analytically and experimentally. This information, for the simple two-dimensional
ase of a solitary wave propagating in a constant depth and impinging on a plane
sloping beach, can yield results applicable to three-dimensional numerical models of

coastal sites.

The characteristics of non-breaking and breaking waves have been observed by
tsunami victims, as revealed by field investigations. For example, the tsunami in
Papua New Guinea in July 1998 resulted in wide destruction and more than 2,000
deaths. From eye-witness accounts it appears that the waves, some about 15 m high
at the shoreline, were breaking (Synolakis (1999)). This research was motivated by

these observations.
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1.2 Objective and Scope

The objective of this study was to investigate theoretically, experimentally, and
numerically solitary wave run-up on a sloping beach. Of particular importance was
evaluating the maximum run-up. Both non-breaking and breaking waves were con-
sidered. Special attention was given to the interaction between the breaking wave

and the slope.

For non-breaking solitary waves a higher order theoretical solution for non-linear
shallow water equations was sought. This solution was based on the transformation
proposed by Carrier and Greenspan (1958). Experiments were also performed in a
wave tank where solitary waves run up on relatively steep and gentle smooth slopes.
The incident wave profile, the maximum run-up, and the water particle velocities

were measured to validate the non-linear theory presented.

The wave breaking process is so complicated that no fully theoretical approach is
possible. Figure 1.1 shows the wave breaking and the splash-up process afterwards.
(These photographs were taken by a still camera at different locations and times of
the wave breaking process and then rearranged sequentially according to the nature of
the breaking process. The experiments were repeated until the complete wave break-
ing process was covered.) The complexity of the problem, as well as its theoretical
intractability, is obvious in Figure 1.1. Thus, the investigation for breaking solitary

wave run-up presented herein is only experimental and numerical.

A breaking wave on a smooth slope of 1:15 was studied to define several charac-
teristics of the plunging jet produced by the breaker. Such results of wave breaking
kinematics can provide information relating to the study of the air entrainment and
energy dissipation associated with the plunging jet produced at the crest of the break-

ing waves.
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A numerical model using a bore structure similar to a shock in gas dynamics to
treat the process of wave breaking and propagation was developed. The non-linear
shallow water equations were solved using the weighted essentially non-oscillatory
(WENO) shock capturing scheme employed in gas dynamics. Wave breaking and
propagation is treated automatically by the scheme and no ad-hoc term is required to
keep the scheme stable such as the artificial viscosity term used in Boussinesq models.
It was found that the numerical scheme can predict the wave profile on the slope and

maximum run-up very well.

Maximum run-up. defined as the highest position the wave can reach on a slope.
is one of the most important parameters needed to estinate tsunami destruction.
Theoretical results obtained from non-breaking wave considerations could be used
to predict it. However, since wave breaking is not considered in such theories, the
prediction is much higher than actual because of the energy dissipation associated
with the breaking process. As mentioned earlier, numerical simulations incorporating
simulated breaking effects can give a reasonable estimate of the maximum run-up.
However it usually involves time-consuming computations and intensive computing
resources. A second approach taken in this investigation was a simple empirical esti-
mation based on energy conservation principles using both the experimental results

and numerical simulations.

Coastal-sited protective structures such as seawalls have been used in some loca-
tions to reduce inland inundation associated with tsunamis. The rate of overtopping
of seawalls exposed to periodic and random storm waves has been studied experi-
mentally by numerous investigators generally for specific engineering problems using
physical models. Goda et al. (1975) synthesized some of these results into general-
ized overtopping volume predictions for periodic waves. For periodic waves, reflec-

tions from the structure significantly affect the overtopping of subsequent waves in a
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Figure 1.1: Photographs of the solitary wave splash-up on 1:15 slope for incident wave
height H/hy = 0.40.
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wave train. Comparable attention has not been given to the overtopping of seawalls
by “tsunami-like” waves which consist more of groups of “isolated” waves (solitary
waves) as contrasted with periodic storm waves. One objective of the present study
was to investigate the splash-up (or the run-up) of such waves on vertical walls to
understand the degree of protection from tsunamis afforded by seawalls. However,
attention will not be given to the rate of overtopping of solitary waves. Experimental
and numerical studies were conducted to investigate various aspects of this problem.
Of special interest was the effect of breaking wave kinematics offshore of the vertical

wall on the splash-up.

1.3 Thesis Outline

This chapter has introduced several general aspects of tsunamis and provides some
historical data relating the destructive features as well as stating the objective and
scope of this study. Chapter 2 summarizes the literature relating to solitary wave
run-up and wave breaking characteristics, including theoretical analyses, experimen-
tal research. and numerical modeling. A new theoretical solution to the non-linear
shallow water equations is presented in Chapter 3, along with a comparison to previ-
ous theoretical analyses. A numerical method to solve the non-linear shallow water
wave equations and a special treatment of the wave breaking process and the moving
shoreline are also described. Chapter 4 discusses the experimental equipment and
the procedures used in this investigation. The results from the theoretical analysis,
experiments, and numerical simulations are presented and discussed in Chapter 5
along with a discussion of the conservation of energy approach to breaking wave run-
up. Chapter 6 summarizes the major conclusions of the thesis and suggests several

directions for future work. The experimental results of maximum run-up measured
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in the present study were listed in Appendix L.



Chapter 2 Literature Review

The study of the wave propagation. breaking, and the run-up process has been the
subject of nmmerous analytical, numerical, and experimental studies in recent years.
Since the objective of this investigation is focused on solitary wave run-up and the
breaking process of the wave on run-up, only the literature related to these two topics
is reviewed here. General reviews of tsunamis can be found in Lander and Lockridge

(1989).

2.1 Theoretical Analyses

Various simplified models have been used to describe the wave run-up process,
which is a strongly non-linear and dispersive wave phenomenon, e.g., the Boussinesq
equations and the non-linear shallow water wave equations. In theory, the non-linear

effects and the dispersive effects can be estimated by two parameters respectively:

a = € =

H
- (2.1)

h
1
where H is the offshore wave height, h is the depth, and [ is a characteristic horizontal
length. For the propagation of long waves such as tsunamis, the Ursell number, U,
defined as:

U, == (2.2)

is important in this process to measure the relative importance of non-linear effects

and frequency dispersion. When H/h < 1 and h/l < 1, both non-linear effects and
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frequency dispersion can be neglected and the linearized shallow water equations can
adequately describe the wave propagation (Mei (1983)). As these long waves approach
the coast the wave height increases and at some point the effects of non-linearity
cannot be neglected. In that case, the fully non-linear shallow water equations are

the suitable model if one can neglect the effects of frequency dispersion.

Keller and Keller (1964) studied periodic wave propagation over a constant depth
and with the waves running up a sloping beach by matching the solutions for wave
amplitude and velocities from the linear non-dispersive shallow water equations for
both regions at the toe of the beach: the theoretical prediction of the maximum run-up
of the wave on the slope was presented. Carrier and Greenspan (1958) studied the non-
linear shallow water equations and proposed a method to transform these equations
into a set of linear equations that can be solved analytically. Tt is still one of the few
analytical solutions available for non-linear wave dynamics. They investigated the
run-up of periodic waves with several different initial shapes on a plane slope using
this theory. Tuck and Hwang (1972) and Spielvogel (1976) extended the Carrier and
Greenspan (1958) transformation and used it to solve long wave run-up also under
prescribed initial water-surface configurations. Tuck and Hwang (1972) investigated
the problem of the generation of waves on a slope due to a bottom disturbance.
Spielvogel (1976) extended the Carrier and Greenspan (1958) transformation and
used it inversely to determine initial wave conditions offshore from the long wave
run-up assuming a logarithmic initial surface profile on the slope at the instant of the

maximumn run- up.

Synolakis (1986, 1987) simplified the Carrier and Greenspan (1958) transforma-
tion, and applied it to the problem of a solitary wave propagating in a constant depth
and running up a simple plane beach. His analytical results agreed well with labo-

ratory experiments for non-breaking waves on the slope. Based on his simplification,
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Synolakis (1986) drew the conclusion that the maximum run-up predicted by the lin-
ear shallow water equations was the same as that predicted by the non-linear shallow
water equations. although the behavior of the wave on the slope such as the wave
amplitude and the water particle velocities were quite different. Both this statement
and his assumptions will be revisited in this investigation. Kanoglu and Synolakis
(1998) studied long wave evolution and run-up on piecewise linear two and three-
dimensional bathymetries using the linear shallow water equations. In addition, they
defined the amplification factors of different ocean bathymetry to study the evolution

of solitary waves over various bathymetries.

The three-dimensional run-up problem has received comparatively less attention.
Zhang (1996) investigated the run-up associated with a solitary wave obliquely inci-
dent to a plane beach. A linear solution was found for the three-dimensional run-up
using Fourier synthesis. Zhang (1996) also investigated both the non-linear problem
and the effect of frequency dispersion. Brocchini (1998) investigated non-breaking
solitary pulses incident and reflecting on an inclined plane beach by means of a weakly

three-dimensional extension of the solution proposed by Synolakis (1986).

All of the simplified models above deal with non-breaking solitary wave run-up. If
the wave breaks during the run-up or run-down process, the basic physics of the run-up
is complicated and far from being completely understood. Most of the previous work
on breaking wave run-up consists of experimental studies or numerical simulations. It
has been found from field and laboratory studies that after a wave breaks, the form of
the propagating wave is similar to a propagating bore in terms of appearance. Thus,
the study of bore propagation and bore run-up may provide valuable information
about breaking wave run-up. Ho and Meyer (1962) and Shen and Meyer (1963)
proposed an analytical theory for bore run-up using the non-linear shallow water

equations. From this derivation, they found that when the bore arrived at the initial
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shoreline. the height of the bore became zero and. thus, the bore collapsed at the
shoreline. After that, the fluid motion entered another stage in the form of a thin
sheet of water propagating up the slope. The maximum run-up predicted by Shen

and Meyer (1963) was:
*2
U

Rb = 5
2g

(2.3)

which was independent of the beach slope, and u* was the horizontal velocity of
the bore at the instant it reached the initial shoreline. Miller (1968) experimentally
measured the maximum run-up of a bore on four beaches with different angles and
compared those results with the prediction, i.e.. Eq. 2.3. He found that the beach
angle and the bottom roughness of the slope were important factors in determining
the run-up of bore, and the experimental results differed from the theoretical predic-
tions significantly. Yeh (1991) also investigated the bore-like tsunami run-up in the
laboratory and reported that bore collapse did not occur in his experiments. The
transition process that took place when the bore approached the initial shoreline was
more of a “momentum exchange” (Yeh (1991)) between the incident bore and the
small wedge-shaped water that was initially still ahead of the bore along the shore.
The maximum run-up, however, seemed to be predicted from the initial offshore con-
dition by Eq. 2.3 by reducing the value of u*. Thus, it appears that the bore run-up
theory can give qualitative information about the physical process, and it is one of
few analytical solutions available to describe the process of wave propagation after

wave breaking.

2.2 Laboratory Experiments

The early experiments reported by Hall and Watts (1953) and Camfield and Street

(1969) have been used in the past to verify analytical results and the accuracy of
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nunierical models. Hall and Watts (1953) measured the maximum run-up of solitary
waves on five different beaches. The slopes of the beaches were: 1:1, 1:2.14, 1:2.75,
1:3.73. 1:5.67 and 1:11.43. The empirical formula of maximum run-up as a function of
beach slope and incident wave height was given based on the laboratory measurements
in the form:
T R (3] (2.4)

ho h()
where k. a. and ¢ are empirical parameters as a function of the beach slope 5. The
experiments of Hall and Watts (1953) were performed for a variety of water depths
ranging from 15.24 cm to 68.58 ¢cm. The waves were generated by what is now
considered to be a crude process, i.e., by pushing the original still water horizontally
with a vertical plate. The shape of the incident solitary wave was not described
in these experiments. Using a different generation mechanism, Camfield and Street

(1969) confirmed Hall and Watts’s (1953) experimental results.

Battjes (1974) used dimensional analysis to analyze the characteristics of periodic
wave breaking and run-up on plane slopes, and showed that breaking criterion, breaker
type. breaker height-to-depth ratio, and the maximum run-up were approximately

governed by only one parameter referred to as the surf similarity parameter:

tan3

(=—""75 (2.5)
(H/Ly)'"*

where Ly is the deep-water wavelength of the incident periodic wave. Battjes (1974)

summarized published experimental data to present empirical formulas of several

wave characteristics as a function of the surf similarity parameter. (. For example.

the maximum run-up normalized by the incident wave height was written as:

=¢ for 01<(<23 (2.6)

Sef Ry
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The more recent experiments of Synolakis (1986) and Zelt (1991a) are of impor-
tance in confirming analytical and numerical models of the run-up process due to the
precision of their experimental techniques compared to those of earlier studies. Syn-
olakis (1986) measured the maximum run-up of non-breaking and breaking solitary

waves on a 1:19.85 slope, and the following expressions were obtained:

non — breaking :

o 2.831\/(20t/’)’(£)% (2.7)

]1() h’()
breaking :
R H e
— = 0.918(—)"0% (2.8)
ho 10

The non-breaking formula was obtained from his approximate non-linear theory and
reasonably confirmed by experimental data, and the breaking formula was obtained
empirically for the slope investigated., which was 1:19.85. Synolakis (1986) also mea-

sured the time history and the spatial wave shape for breaking solitary waves.

Kobayashi and Karjadi (1994) extended the surf similarity parameters proposed
by Battjes (1974) for solitary wave run-up. The wavelength of the solitary wave L
in Eq. 2.5 was defined as:

_gT?

Ly = 2.¢
=L 29)

where T" was the representative time period of solitary waves and selected as the du-
ration that the wave amplitude of the solitary wave was greater than some predefined
small number 9; (n(t) > 9;). Kobayashi and Karjadi (1995) fitted the breaking data
of Synolakis (1986) and the numerical data from their own model and proposed an
empirical expression for the maximum run-up normalized by the incident wave height
as:

g = 2.955("39 (2.10)
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The laboratory work cited to this point dealt with two-dimensional wave run-
up, i.e.. the wave was generated and propagated along a narrow water channel or
tank. Briggs et al. (1994) conducted solitary wave run-up experiments using a three-
dimensional 30 m wide by 25 m long wave basin 30 cm deep and compared their results
with those using a narrow wave tank. They found that the run-up of non-breaking
waves in a basin was smaller than in a tank. They proposed an explanation that
in the flume experiments, the walls were reflective and contained the wave energy,
while in the basin, energy was leaked from the end of the wave front by diffraction,
thereby reducing the wave height. The difference in flume and basin experiments
was negligible for breaking wave run-up because the primary energy loss was due to
wave breaking. The effect of the wave generation source was also investigated in their

experiments.

Run-up of solitary waves on a circular island were reported by Liu et al. (1995).
Surface displacement and maximum run-up were measured and compared with a
numerical model based on three-dimensional shallow water equations. It was found
that maximum run-up was largest in front of the island (facing the wave attack
direction), and decreased gradually as the wave moved toward the lee side of the
island. However. if the length of the wave generator or the crest length of the wave
was much larger than the base diameter of the island, a dramatic increase in the

run-up was found on the lee side of the island.

There is large body of literature on the process of solitary wave breaking. Ounly the
most pertinent work will be discussed here. The general review of the various aspects
of waves at and after breaking can be found in Peregrine (1983) and Battjes (1988).
Ippen and Kulin (1955) studied the shoaling and breaking behavior of solitary waves
on slopes of 1:15.38, 1:20. and 1:43.48. DBased on their experimental results they

concluded that the breaking height-to-depth ratio was practically constant at 1.2
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for all incident solitary wave heights on gentle slopes, which was different from the
theoretical value usually quoted of 0.78 for solitary waves in water of constant depth.
For a steep slope, this ratio increases with the slope and with decreasing relative
incident wave height, and the breaking amplitude and breaking depth increase with
decreasing slope. These results are still used on occasion to compare to theoretical

analyses and numerical models.

Skjelbreia (1987) used a unique laser Doppler velocimeter (LDV) to determine the
kinematic characteristics of breaking solitary waves. Water particle velocities were
measured under spilling and plunging breaking waves close to the free surface and to
the bottom both near breaking and after breaking. From these measurements vector
diagrams for the water particle velocities and accelerations under breaking waves were
constructed. However, no clear mechanism was found that would define the initia-
tion of breaking which showed the extreme complexity of the wave breaking process.
Skjelbreia (1987) also measured the evolution of the wave amplitude during wave
breaking and defined four regions according to the behavior of the wave amplitude on
the beach: zones of gradual shoaling, rapid shoaling, rapid decay, and gradual decay.
Different power laws of growth and decay rate appeared to define these zones. Skjel-
breia (1987) noted from his measurements that the vortices generated from breaking
appeared to be counter-rotating, and their size was on the order of the undisturbed
depth at breaking. In the present discussion, a possible generation mechanism for

these counter-rotating vortices will be proposed.

Papanicolaou and Raichlen (1987a, 1987b) investigated the breaking wave kine-
matics by visual observation of the changes in the breaking process using high-speed
movies. They noted that plunging breaking differed from spilling breaking primarily
in the rate of change of the properties, not in the overall characteristics of the waves.

The variation of the breaking wave height-to-depth ratio with distance for solitary
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waves was presented and compared with that of cnoidal waves. Other aspects of the
breaking. such as bubble mass, which was defined as the area of the roller generated
by the air entrainment in the breaking wave. were also measured from the images.
Similar changes were found in wave height and bubble mass for solitary and cnoidal
waves for each type of breaking. indicating that the effects of bubbles on the breaking

waves were similar for translatory and oscillatory waves.

Measurements of the characteristics of the plunging jet generated by periodic
breaking waves on slopes were reported by Chanson and Lee (1997). They found that
the location of the plunging jet impact with the free surface was always above the still
water level. and the impact angle of the plunging jet with the free surface was about
31°. The energy dissipation associated with the plunging jet was also estimated; they
suggested that the ratio of the energy dissipation to the incident wave energy was
about 20% to 60%, and it increased with the bubble penetration depth and with the

characteristic length of the plunging jet.

Stansby, Chegini, and Barnes (1998) investigated the flow induced by ”dam-
breaking” with different ratios of the upstream depth to the downstream depth. An
interesting observation was the generation of a “mushroom like” jet similar to the
plunging jet of a breaking wave with the resultant splash-up as was seen in Figure
1.1. While the structure and the evolution of the jet and the splash-up were complex
and difficult to define. the overall surface profiles at different times agreed remarkly
well with exact solutions of the non-linear shallow water equations. These results
suggested that the same non-linear shallow water equations also may be applicable

to breaking wave run-up if the details of plunging jet are not included in the analysis.
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2.3 Numerical Simulations

There have been a number of numerical solutions relating to the run-up of non-
breaking waves and breaking waves using different simplified models. For example,
an early study by Brennen and Whitney (1970) used the inviscid dyvnamical equations
of motion in Lagrangian coordinates to investigate run-up of waves, their calculation
was reasonable for non-breaking waves, but computation stopped when the wave was

breaking.

The non-linear shallow water equations have been widely employed to model long
rave propagation and the run-up process. If provision is made in the numerical model
to account for the energy dissipation associated with wave breaking, they may also

be used to simulate the breaking wave run-up.

Two basic types of numerical methods have been used to solve the shallow water
equations: (i) the method of characteristics and (ii) finite-difference methods. The
characteristics method has the advantage that the line of characteristics has clear
physical meaning, and the path of the shoreline is always a characteristic line, thus, the
position of the shoreline can be obtained directly from the computation. Freeman and
Le Mehaute (1964) used this method to study wave breaking and surging on a dry bed.
However, when using the method to investigate run-up, “the line of characteristics
become very near parallel and this leads to a large uncertainty in finding their point
of intersection” (Hibbert and Peregrine (1979)). Finite difference methods have been
used more successfully to compute the shallow water equations. Hibbert and Peregrine
(1979) solved these equations in conservative form using the Lax-Wendroff scheme.
and applied the scheme to calculate the evolution and run-up of a uniform bore on
a slope. The moving shoreline was treated by adding new grid points during run-up,

and, if necessary. subtracting the points that were not covered by water during run-
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down. A predictor-corrector-smoothing procedure was presented to predict whether
the grid points needed to be adjusted. This numerical treatient was not robust,
as pointed out by Titov and Synolakis (1995). Nevertheless, Hibbert and Peregrine
(1979) gave the first quantitative and realistic solution of the uniform bore behavior

during the run-up process.

Titov and Synolakis (1995) solved the characteristic form of the shallow water
equations using finite difference methods and used it to model the propagation and
run-up of solitary waves. The characteristic equation was solved using the Godunov
scheme to avoid the numerical instabilities problem associated with wave breaking.
The moving shoreline was treated the same as that of Hibbert and Peregrine (1979)
by adding and subtracting grid points according to the shoreline position, except the
boundary conditions imposed on the shoreline were modified as the following to avoid

stability problems:

durg
dt

n(xs) + hizs) =0 =0 at x=u4t) (2.11)

where x, is the location of the shoreline, 7 is the wave amplitude measured from
the initial water level, and h is the water depth. The wave amplitude evolution and
maximum run-up for non-breaking and breaking solitary waves were computed and
compared with experimental results. However, small oscillations can still be found
around the breaking point in their simulations, and the second boundary conditions
in Eq.2.11 was wrong (see Zhang (1996)) and need to be corrected to provide good

prediction of run-up.

Zhang (1996) developed a finite-difference scheme for the shallow water equations
using the Lax-Wendroff scheme to investigate non-breaking solitary wave run-up. The

run-up was modeled by remapping the grid points at the surface according to the
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instant shoreline position. Based on his numerical simulations, Zhang (1996) found
that “the maximum run-up of a solitary wave predicted by the shallow water equations
was dependent on the initial location of the solitary wave and its value was not unique
because the wave became increasely steepened given long time to travel in the absence
of the dispersive effects.” Zhang (1996) also investigated the frequency dispersion and
three-dimensional wave run-up upon a vertical wall using his numerical scheme. The
computing domain mapping technique proposed by Zhang (1996) apparently treats
the shoreline movement well and will be used in the numerical scheme developed in

the present study.

Dodd (1998) investigated wave run-up, overtopping, and regeneration by solving
the non-linear shallow water equations using a Roe-type Riemann solver, which was
developed in gas dynamics to track shock waves. An energy dissipative term repre-
senting bottom friction was included in the model. In the scheme. a minimum local
depth d,,;, was defined to treat the moving shoreline. When the water depth in the
cell is less than d,,;,. the cell was considered “dry”, otherwise, the cell was occupied
by water (“wet”). The shoreline was defined as the separation line between the “dry”
cell and the “wet” cell. Dodd (1998) conducted simulations of wave propagation and
overtopping including random waves and compared them with experimental results,

good agreements were found from his investigation.

In summary, the models utilizing non-linear shallow water wave equations, al-
though having the limitation of failing to provide depthwise variations in velocity
and omitting frequency dispersive effects, appear to have the ability to model aspects
of the wave breaking process and the corresponding run-up for solitary waves. “The
well-documented but unexplained ability of the shallow water equations to provide
quantitatively correct runup results even in parameter ranges where the underlying

assumptions of the governing equations are wviolated” (Titov and Synolakis (1995))
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need further investigation and will be given attention in this thesis.

Boussinesq type models have also been used widely to simulate wave breaking and
run-up. They can represent the non-linear effects and dispersive effects theoretically
to any degree of accuracy and can describe most wave phenomena. However, a special
breaking term has to be included in the momentum conservation equation to model
the dissipation associated with wave breaking. The term must incorporate coefficients
that need to be calibrated by field or experimental data. This drawback limits the
application of the Boussinesq models. Pedersen and Gjevik (1983) developed a finite-
difference scheme for the Boussinesq equations using a Lagrangian description, which
can predict the non-breaking run-up process and also the possibility of wave breaking
during run-down. The maximum run-up predicted using this numerical model was
larger than the experimental data of Hall and Watts (1953). Peterson and Gjevik
(1983) suggested that this difference was due to surface tension and friction effects
that were neglected in the numerical model. It was also found that the friction effects

became less important as the depth in the channel increases.

Zelt and Raichlen (1990) developed a Lagrangian representation of the Boussinesq
equations and used a finite-element model to investigate non-breaking solitary wave
run-up on two-dimensional and three-dimensional bathymetry. Zelt (1991a) applied
this model to the case of the run-up of both non-breaking and breaking waves on
a plane beach. Wave breaking was parameterized with an artificial viscosity term
in the momentum equation, and the bottom friction was also modeled as a term
quadratic in the horizontal water velocity. Zelt (1991a) found that non-hydrostatic
effects associated with the frequency dispersion term in the Boussinesq equations
reduced the tendency of waves to break and improved the agreement of the numerical
results with the laboratory run-up data. When calibrated with laboratory data, the

model of Zelt (1991a) could provide reasonable predictions of the wave run-up process.
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In addition. Zelt (1991b) studied the landward inundation of non-breaking solitary

waves that propagate up a non-planar slope.

Numerical solutions of the Laplace equations and the Navier-Stokes equations also
have been used in wave run-up investigations as the computer power has increased and
the algorithms used to solve complex systems have been developed. Grilli, Svendsen,
and Subramanya (1997) solved a fully non-linear potential flow model (the Laplace
equation) using the boundary element techniques (BEM), and used it to calculate
various characteristics of breaking solitary propagation and run-up. In contrast to the
depth-averaged models like the shallow water equations and the Boussinesq models,
the vertical structure of the water particle velocities could be treated by the numerical
model. The detailed wave breaking information including the shape of the plunging jet
generated by the wave breaking, the celerity, and water particle velocity as well as the
wave shoaling and overall wave profile were reported. However, this numerical model
cannot predict maximum run-up since the computation stops when the plunging jet
impinges the free surface. In Chapter 5, the numerical results of Grilli et al. (1997)

will be compared to experimental results obtained from the present investigation.

Lin, Chang and Liu (1999) developed a numerical model solving the Reynolds
equations for the mean flow field and the k — ¢ equations for the turbulent kinetic
energy, k, and the turbulence dissipation rate, e, and applied the model to wave
breaking and run-up problems. The free-surface locations and movement were tracked
by the volume-of-fluid (VOF) method proposed by Hirt and Nichols (1981). Their
numerical results agreed with the experimental results in terms of the wave profile
and velocities, but fail to provide the jet and splash-up information, which may be

due to the inaccuracy of the free surface tracking techniques used.
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Chapter 3 Theoretical Analysis

3.1 Non-Breaking Solitary Wave Run-Up

In this section the run-up of non-breaking solitary waves on a uniform plane
beach connected to an open ocean of constant depth is considered. The waves are
non-breaking during the run-up and run-down process. A non-linear solution to
the classical shallow water equation, which describes the wave characteristics on the
beach, is obtained analytically by using the Carrier and Greenspan (1958) hodograph
transformation. It was found that the non-linear theory agreed well with experimental
results. The maximum run-up predicted by the non-linear theory is larger than that
predicted by the approximate non-linear theory of Synolakis (1986) at the order of the

relative incident wave height. The validity of this non-linear theory also is discussed.

3.1.1 Governing Equations and Basic Assumptions

Consider the specific case of the run-up of two-dimensional long waves incident
upon a uniform sloping beach connected to an open ocean of uniform depth, as shown

in Figure 3.1. The classical shallow water equations are:

e+ (ulh+n)) = 0 (3.1)

U +uthy +gn, = 0 (3.2)



Figure 3.1: Definition sketch of the solitary wave run-up

where the subscripts denote differentiation, h is the wave amplitude, u is the depth-
averaged velocity, and ¢ is the acceleration of gravity. By introducing the following

non-dimensional variables in Eqs. 3.1 and 3.2:

x h n [g
rr=— h* = — = =1,/ = 3.3
v ]1,0 ! h() K }L() ])0 ( )

where hg is the constant water depth in front of the slope. the non-dimensionalized

non-linear shallow water equations (NLSW) are obtained:

ne + (R +07)e = 0 (3.4)

ufe +utui.e + 0. = 0 (3.5)
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For convenience. the asterisk will be dropped in the following developments; therefore.,
o

all equations presented subsequently in this section are non-dimensionalized.

The depth variations in the model to be used, i.e., Figure 3.1. are:

1 r > Xy
h(xr) =
rtan < Xy

where /7 is the angle of the slope shown in Figure 3.1. Eqgs. 3.4 and 3.5 are the

governing equations we will investigate in this study.

3.1.2 Theoretical Considerations — Existing Theories

In this section the earlier work of Synolakis (1986), Tuck and Hwang (1972), and
Zhang (1996) will be summarized along with a brief discussion of the linear approach

that can be taken to this problem.

Neglecting non-linear effects, Eqs. 3.4 and 3.5 can be linearized to obtain the

traditional small amplitude long wave equation:

et — (T];I?h'):r =0 (36)

For constant depth (kg = 1) the general solution to Eq. 3.6 is:

n((f.f) — Aie—ik(erc{,) —+—A7.(-’,“‘T(T_Ct) (37)

where A;., A, are the amplitudes of the incident and reflected wave, respectively, ¢ is
the non-dimensional wave celerity at constant depth region (¢ = 1) and & is the wave

number (27/L where L is the wave length). For a linearly varying depth the general
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linear solution to Eq. 3.6 can be written as:
n(x.t) = B(k.3)Jo(2k+/x cot 3)e (3.8)

By matching Eqs. 3.7 and 3.8 at the toe of the slope, ie., at X, Camfield and
Street (1969) gave the solution for A, (k. 3) and B(k, #) in terms of A;(k, 3) for the

combined bathymetry as:

J()(QA’IX())

Ak B) = A exp(—2ik cot 3 + 2 ar(‘tall[m

) (3.9)

, 2exp(—ikXg)A;
B(k.3) = -
R0 = Rk Xe) = i (2K K] 0

Superimposing a number of linear incident waves at x = Xy one obtains the

following expression for the wave amplitude at the toe of the siope:

n(Xo,t):/ A(k)e *etdg (3.11)

oG

The wave amplitude in the region of positive depth on the slope (0 < = < Xj)

can be determined as:

Ay(k
o Z( ) e](:)(ZA‘X()) - ’I,Jl(QAXO)

> Jo(2h/ 1 X ,—tk(Xo+ct)
7](117'1#):2/ o) dk (3.12)

This solution is valid only for the region 0 < ax < Xy. However, near the initial
shoreline non-linear effects cannot be neglected. Therefore, one cannot solve the run-
up as a linear problem, but non-linear effects must be considered and the non-linear
equations, Eqs. 3.4 and 3.5, must be solved to obtain a solution for the run-up subject

to various assumptions and /or approximations.
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Carrier and Greenspan (1958) introduced the following transformations consider-
ing Riemann invariants of this hyperbolic system of equations to obtain the solution

of Egs. 3.4 and 3.5 for periodic waves:

= Yo (3.13)
7, ,

r = ({—; - \%\ + g) cot 3 (3.14)

t = (% - %) cot (3 (3.15)

n = % - g (3.16)

where (0. A) are variables in the transformed plane.

Note that in the development of the transformations of Carrier and Greenspan
(1958), the normalized depth variation is defined essentially in terms of the beach
slope and the characteristic horizontal length of the wave. For the application of
this approach to solitary waves this characteristic length is a function of the oftshore
depth, and for non-breaking waves it remains relatively unchanged throughout the
run-up process. Thus, with decreasing depth. as the wave propagates up the slope
one would not expect the shallow water wave assumption to be compromised by the
slope. Therefore, the application of this approach for a steeply sloping beach should

be as reasonable as for a gentle sloping beach.

Eqs. 3.4 and 3.5 are then reduced to the following simple linear equation:

(0¥5)e = Wiy (3.17)

From Eq. 3.14 it can be seen that the shoreline position is always at ¢ = 0.

Using Fourier transforms, Eq. 3.17 can be solved from the boundary condition that
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at 0 = oy, Y(og, k) = F(k): the solution bounded at ¢ = 0 and 0 = o0 is :

1 [~ Jo(ko)
V(o \) = — F(k)——=e"dk 3.
/(0. \) 5 /oo ( )Jg(lfao)e dk (3.18)

The difficulties in determining a solution to Eq. 3.17 lies in specifying the bound-
ary conditions and transferring the boundary conditions from (x, t) space to (o, \)
space. To circumvent this. Synolakis (1986) simplified the Carrier and Greenspan
transformations (Eq. 3.13 to 3.16) as follows under the assumption that ¥y < ¢2/16
and U, /o< \/2:

v,

u = -2 3.16

u . (3.19)
o2

v = 1= cot 3 (3.20)

A )

t = ) cot 3 (3.21)
W .

n T (3.22)

These approximate transformation equations are uncoupled, and make the trans-
formation from (. t) space to (0. A) space significantly easier. Synolakis (1986) chose
the scaward boundary condition at the toe of slope, i.e.. ¥ = X, which corresponds
to 0 =0y =4 in (0, A) space. The boundary condition F'(k) in the (o, A) plane is de-
termined from Eqs. 3.18 and 3.22 to finally yield the wave amplitude at the shoreline,
n(xs, t) where x, defines the shoreline path and corresponds to ¢ = 0. For u, defined
as the velocity of the shoreline, Synolakis (1986) obtains the following expression for

the amplitude at the shoreline:

dk — = (3.23)

(20 1) /'OC Ai(k)exp(—ik(Xy + ct)) u?
Tg, t) = - : '
" o J()(Qk)ﬂ()) - ’I/Jl(QIiTX()) 2
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It is noted that the maximum run-up is reached when the shoreline velocity w,,
becomes zero. Using a solitary wave whose wave crest is located at © = X; when
t = 0. the surface profile is defined as:
3H

H ; .
n(r.0) = msc(fhz( ZH(I - X)) (3.24)

where H is the wave height in the constant depth region (h = hg). and X (see Figure
3.1) is defined as the distance seaward from the toe of the slope where X; = L/2,

and L is a characteristic length of the wave defined here for the solitary wave as:

2

\/ 3H/4h0

= [arccosh(

)] (3.25)

Synolakis (1986) obtained for the solitary wave, after considerable effort. the fol-
lowing expression for the maximum run-up normalized by the constant offshore depth:

R, - H s
i—-—-2.831 (*()tﬁ(}—)Z (3.26)

10 o hy

Comparing the simplified transformation of Synolakis (1986) to the original trans-
formation of Carrier and Greenspan (1958), both advantages and disadvantages in
using the simplified approach are apparent. The advantages are that the approach
can uncouple the transformation equations, can transpose boundary conditions and
initial conditions ecasily from (r, t) space to (o, \) space, and can facilitate the cal-
culation of the wave characteristics beyond the initial shoreline position. This was
a significant step past the application of the classical linear wave theory. However,
the major disadvantages of the approximate non-linear theory, which the present ap-
proach attempts to eliminate, is that the simplified transformation neglects not only

the terms n? and »?/2, but also the terms ¥,/ and W,/4, which are both of the
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order of n and u. This affects both the accuracy of the wave characteristics during the
run-up and run-down process and the predicted maximum run-up height. That these
terms can be neglected compared to the other terms in the transformation equations
has to be justified so that the simplified non-linear theory of Synolakis (1986) can be
used. We will discuss the extent and significance of the effects of this approximation

in Section 3.1.3.

Tuck and Hwang (1972) have proposed another method to transform the non-

linear shallow water wave equations to linear form; their transformation equations

are:
0l

N o= 7}4—? (3.27)

i = (3.28)

T = x4+ (3.29)

t = t+u (3.30)

Using Eqgs. 3.27 to 3.30, the shallow water equations. i.e., Eqs. 3.4 and 3.5.

become:

B+ (Fd); = 0 (3.31)

@+ = 0 (3.32)

Zhang (1996) pointed out that using the simplified transformation proposed by
Synolakis (1986) is equivalent to solving the linear equations Eqs. 3.31 and 3.32. since

by combining Eqs 3.13 to 3.16 and 3.27 to 3.30 we can obtain:

n =n = - (3.33)
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v,
uw o= u = — (3.34)
%
ro= I = i cot 5 (3.35
ro=aro= 1 / -395)
- A )
t = = —cot 3 (3.36)

Thus, the approximate non-linear theory of Synolakis (1986) must have the same
accuracy as the linear solution. Hence. in a sense it can be viewed as an extension of

the linear theory.

3.1.3 Theoretical Considerations — The Non-Linear Theory

As mentioned earlier, the transformation of Carrier and Greenspan (1958) reduces
the shallow water wave equations ( Egs. 3.4 and 3.5) to a single linear equation, i.e.,
Eq. 3.17, which can be solved using standard methods. The major difficulty is to
determine accurate boundary conditions or initial conditions in the (o, A) space. Here
we propose a method to obtain the boundary condition, which is one order higher
than that used by Synolakis (1986). Thus, the associated solution of Eq. 3.17 using
this higher-order boundary condition should be more accurate than both the linear
and the approximate non-linear solutions. The validity of this method will be verified

with experiments and discussed later.

Carrier (1966) pointed out that far seaward from the shoreline, non-linear effects
can be neglected. Therefore, we assume the linear solution presented in Eq. 3.8 is
still valid in the region near the toe of the slope, ¥ = Xy, i.c., the furthest point on

the slope from the initial shoreline. When we substitute the transformations (Eqs.
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3.14 and 3.15) into Eq. 3.8. we obtain:

2 . -
n(o\) = Bk, 3)Jo(2kXo1/ ‘1’—6 — )ik Xotu=3) (3.37)

Since the wave amplitude. 7, and the velocity, u, are small quantities near the toe
of the slope, we can expand Eq. 3.37 in a Taylor’s series and retain terms less than

those of the order of h? and u?. Thus, we obtain for the amplitude:

kX 4k X v X
00) ()Jl(/ﬁ()o

2 % 2

n(o. \) = Bk, B)(Jo(

a1 — ik Xou) (3.38)

The general linear solution for the wave amplitude presented in E¢. 3.8 can be
substituted back into the original linearized shallow water equation, and the linear
solution for the wave velocity u can be found. The relation between u and 7, obtained

in this manner is:
— =]1<2A7X(])
Jo(2kX0)

U

n (3.39)

After substituting Eq. 3.39 into Eq. 3.38, we obtain one algebraic equation for

the wave height 5 near the toe of the slope (r = Xy), i.e., 0 = 4:

n(4,)) = Bk, B)e™X02 (Jy(2kXo) + 2k X 0T, (2kX0)n) (3.40)

Eq. 3.40 can be solved easily. and the result can be used as the boundary condition

to solve Eq. 3.17. Thus, the boundary condition at o = 4 is:

B(k. B)e* X0 Jo(2kX,)

A = ' X
( ) 1 - 2]\’7XOJ1 (2]*0){())3([“ H)€lkXU§

(3.41)

Since the denominator in Eq. 3.41 is less than unity for any value of the wave
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number k., we can use the approximation (1 —z)~' = 1+ + 22 + O(x?) and expand

the boundary condition around the toe of the slope as:

N(4.N) = [B(k. 3)e*X02 Jo(2kXo)] + [2k X0 Bk, 3)2¢* 50N Jo (26 X0) 1 (26 X)) (3.42)

Finally for an arbitrary incident wave as given by Eq. 3.11, the boundary condition

at 0 = 4, Eq. 3.42, becomes:

n4N) = / B(k. )™ X2 J,(2k X, )dk

oG

+ / 2k XoB(k, 3)%e™X0A I (2k X o) J) (2k X, ) dk (3.43)

o

The first integral in Eq. 3.43 is the boundary condition used in the approximate
non-linear theory of Synolakis (1986). The second integral that results from the
present study can be viewed as a correction to this approximate non-linear theory.
Since the governing equation. Eq. 3.17. is linear in ¢ and A, we can solve the complete
problem by superposing the solutions for Eq. 3.17 using the first term and second
term in Eq. 3.43 as the boundary condition. The solution using the first integral
in Eq. 3.43 as the boundary condition is the same as the approximate non-linear
solution of Synolakis (1986). and the solution using the second integral in Eq. 3.43

as the boundary condition is:

’U",\(O’. /\) _ /OC QATX()B(]{T,//)))QEiQkXO%J()(2]ﬂX0)J1(QI{TX())JU(ATX()O') dk (344)

4 Jo(4kXo)

X0

Adding the two solutions, we obtain the final solution for the noun-linear problem
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subject to the approximations discussed earlier:

L—A% - / B(Ar./3)6“—*0%JO(A:XOg)dk

oC

% Ok XoB(k, 3)2¢26X03 T (2 X )T, (2k Xo) Jo (kX
N / oB(k. )% of ,0) 1(26X0) Jo( (’J)dk (3.45)
J—oc J0(4]1)&0>
Voo, A
y = YoloN)
g
= / iB(A:;3)4‘*~’~*’0%J0<A:X0%)dk
% 2k X B(k. 3)262kX03 J (2 X, )2 Jo(k Xoo) )
+ dk 3.46
/:)c .]1(4]{7X()) ( )
! 2
n o= v 3 47
= 5 (3.47)
0.2
r = cotii(— —; 3.
a cot (16 1) (3.48)
t = (fot/i’(u~%) (3.49)

where B(k, 3) is given in Eq. 3.10.

Once the incident wave profile is known in terms of the Fourier components A;(£),
we can calculate all the wave characteristics in the sloping region including the max-
imum run-up from Eqs. 3.45 to 3.49. The asymptotic form of the Bessel function is

used to simplify the calculations.

For an incident solitary wave centered at x = X, the Fourier form of this wave

2 "
A(k) = gk[csch(akz)e”‘xl] (3.50)
where o = 7/~ and v = (3H /4ho)"/2.

Now we are in a position to compare the solitary wave run-up predicted by the

approximate non-linear theory and the present non-linear theory. The non-linear run-
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up is given by the value of the wave height at shoreline position, i.e., 0 = 0. From

Eqs. 3.45 to 3.49, we obtain:

4 oS I ] I8 L1k lexw%‘(o )
(0. \) = / csch(ak)e dk

3. Jo(2kXo) — iJ1(2kX,)

—0oC

4 321‘(0 /oo /\"SCSCJI(O(li')z(",mk(‘x1 AU+AO ]()(QAX())Jl({)I\X()) ]A
9 J . (Jo(2hXo) — i, (2kX0))2J0(4k Xo) “
2
- (3.51)

where as before u, is the velocity of the shoreline tip, i.e., the tip of the run-up tongue.

At the maximum run-up, the shoreline velocity is zero. (It is noted that in Eq.
3.51 the first integral is identical to Eq. 3.23, i.e., the maximum run-up predicted
by the linear theory and the approximate non-linear theory.) The two integrals can
be calculated using the method proposed by Synolakis (1986). Thus, the maximum

run-up obtained from the present non-linear theory is obtained as:

R_B |l Ry Fa
}l,() - h,() h,(] h(] Rs

) (3.52)

with

R. H
— = 2.831/cotd( ]— )i (3.53)

ho
R, i H oo

— = 0.293(cotP)2(—)1 (3.54)
]l,() }
R, H

T = 0.104cot3(— 3.55
R cot, (ho) (3.55)

In Eq. 3.52 Ry /hg is the run-up obtained by Synolakis (1986) and R.,/h is the
correction to the approximate theory based on the non-linear approach presented

here. Thus. the non-lincar run-up is different from the linear run-up by an extra term
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that is a function of the initial relative incident wave height and beach slope. The
significance of the non-linear correction term, R, /R, can be seen easily from Eq.
3.55. This will be discussed later along with the influence of wave breaking on the

non-breaking correction term.
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3.2 Numerical Simulation of Breaking Solitary Wave

Run-Up - WENO Scheme

The higher-order non-linear theory presented in the previous section is applied to
non-breaking solitary waves run-up only. As the incident wave height increases or the
slope investigated becomes gentler, the non-lincar effects and the dispersive effects
cannot be balanced during the wave propagation process, and the wave height and
water particle velocity in the wave increase. The increase rate is so large that when
the water particle velocity equals the wave speed, wave breaking occurs. " The phys-
1cal significance of this wave breaking process arises from the fluid motion associated
with breaking that absorbs most of the energy transmitted with the wave.” ( Galvin
(1983) ). This energy dissipation process not only changes the wave kinematics of the
propagation process but also decreases the maximum wave run-up dramatically. From
recent field observations, it appears that the run-up associated with many tsunamis
may be caused by breaking waves. As mentioned earlier, one recent event in Papua
New Guinea in July 1998 resulted in wide destruction and more than 2,000 deaths.
From eye-witness accounts it appears that the waves, some about 15 m high at the
shoreline, were breaking. Thus, the development of an applicable theory to predict

run-up due to breaking waves is desirable and important for the tsunami research.

Due to the mathematical difficulties in dealing with the complexities of the fluid
motion in the wave breaking process, most of the previous studies on breaking wave
run-up are experimental and focus on breaking wave effects on beaches. In the present
study, a numerical model based on the weighted essentially non-oscillatory (WENO)
scheme used in gas dynamics is developed to simulate the process of wave breaking
and run-up. However, since breaking was only modeled as a propagating bore by the

numnerical model, the details of wave breaking, such as the plunging jet. splash-up.
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cte., cannot be provided.

A depth-averaged numerical model that solves the non-linear shallow water equa-
tions is implemented here. As mentioned earlier. the shock-capturing method of
Weighted Essentially Non-Oscillatory Scheme(WENO) developed in gas dynamics is
used to capture the wave breaking process. The wave breaking process is modeled
and captured automatically by the numerical scheme without introducing any ad-hoc
breaking term to suppress the numerical oscillation that is very common in other nu-
merical models. The energy dissipation associated with breaking and the maximum
wave run-up on the slope during the wave breaking process will be investigated by

this numerical method.

3.2.1 Mathematical Formulation

We counsider the run-up problem defined in the last section of two-dimensional
long waves incident upon a uniform sloping beach connected to an open ocean of

constant depth (see Figure 3.1).

The difficulties associated with the numerical study of wave breaking and the re-
sulting run-up process lie in how to choose a suitable mathematical model to simulate

wave breaking. The classical nonlinear shallow water equations (NLSW):

e+ (uh+n)), = 0 (3.56)

U+ uly +gn, = 0 (3.57)

were found to be a suitable model to describe the run-up process of non-breaking
solitary waves in Section 3.1.3. These equations are very similar in terms of the

mathematical structure to the Eulér equations in gas dynamics, which can admit
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discontinuous solutions if written in conservative form. The discontinuities are inter-
preted as shocks and found to be good mathematical representations of the real flow.
Similarly, if we write the NLSW equations in conservative form, a discontinuity in
the solution is also possible and it can be used as a simplified mathematical model

for a breaking wave or a bore.

When written in conservative form, the shallow water equations become:

(h+n)+ (wh+n)e = 0 (3.58)
(u(h +n)) + [(h 4+ n)u* + %g(h +m)?. = glh+n)h, (3.59)

Let d = h+n and introduce the following non-dimensional variables in Eqs. (2.3)

and (2.4):
x h 7 q ,
= — h* = — Nt = =1,/ = 3.60
! hqo l ho L ho ho ( )

where hq is the constant depth seaward of the slope, as shown in Figure 3.1. The

non-dimensional conservative shallow water equations are then obtained as:

di + (ud), = 0 (3.61)

‘ 1.
(du); + [du® + édz]g, = dh, (3.62)

For convenience. the asterisk (*) indicating non-dimensionality has been dropped

in the above equations and the remaining discussion.

3.2.2 Numerical Model and Treatment of a Moving Shoreline

When using Eqgs. 3.61 and 3.62 on wave run-up problems, difficulties arise

from treating the shoreline position, since the shoreline changes as the water swashes
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up the slope during the run-up process. Therefore a special treatment has to be
included in the numerical model to define the shoreline. The most commonly used
technique to model the run-up is using Eulérian models with fixed numerical meshes
covering both the wet and the dry regions. The shoreline position is then defined as
the interface between the “wet cell” and the “dry cell”. Examples of this treatment
can be seen in Lin, Chang. and Liu (1999). These methods can be implemented easily,
but can cause inaccuracy in determing the shoreline position and numerical instabili-
ties if not treated carefully. Also the “dry” region has to be covered in the computing
domain. which affects the computational efficiency of the numerical scheme. Another
approach is using a Lagrangian model for the governing equations instead of the
Eulérian model. In this method the shoreline position is automatically defined. Zelt
(1991b) used a Lagrangian Boussinesq finite-element wave model to study the run-up
of non-breaking and breaking solitary waves. The Lagrangian methods do not need
special treatment at the shoreline. but the governing equations become complicated

and these methods are rarely used in wave studies.

In this development we use the computational domain mapping technique pro-
posed by Zhang (1996) to model the shoreline movement. This method retains the
simplicity of the Eulér method, but uses the simplified Lagrangian approach for the
shoreline position. The technique is summarized below. (The following description is

from Zhang (1996).)
For the computational domain (—TI', 0) of the numerical calculation the following
transformation on (. t) plane is introduced:

X
r = (1+ ?):17’ + X (3.63)

t =t (3.64)
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where 2 = X (¢) is the shoreline position defined in the coordinate system as a function
of time ¢. [' is the total initial length of the computational domain, (z'.t') is the new
computing plane. Notice that under this transformation. the water shoreline position
x = X(t) is always located at 2’ = 0, and the seaward boundary of the computational
domain, ¥ = —I', is always located at 2/ = —T in the transformed computational
domain (27, t"). Therefore, the length of the computational domain and the number
of mesh points do not change with time during the shoreline movement process in the
new (2/.¢') plane. Only the actual location for each grid in (. t) plane is changed at
each calculation cvcle, but this actual location for each mesh point can be calculated
from Eqs. 3.63. 3.64 after every computing cycle. The moving boundary problem
is then changed to a fixed boundary problem and the shoreline and its associated

boundary conditions can be treated using standard techniques.

From Eqs. 3.63 and 3.64 the relationship between the derivatives in the two

systems are obtained as:

J o 1+2'/T 0 .
o or 1 X o (3.65)
0 1 J o
g T 11 X/Tor (3.60)

where U = dX /dt is the shoreline velocity along the slope. Substituting these rela-
tions into the original equations, i.e., Eqgs. 3.61 and 3.62, the governing equations in

the new coordinate system are obtained (the primes are dropped for convenience):

dy + (—ClUd + (-Q’u,d)x = *%Ud (3.67)

. 1 . g .
(du), + [—c Udu + codu® + 5(‘2(12]1 = codh, — %Udu (3.68)
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where ¢;. ¢y are defined as:

1+a/T 1
hn=clrt) = ——= 9= C(t) = ——= 3.69
a=abeh) =y esel) =y (3.69)
Eqs. 3.67, 3.68 can be written in standard vector form as:
Vi+F =58 (3.70)

where V' is the calculating variable, F'is the numerical flux, and S is the source term.

These vectors are defined as:
. d - — Ud + coud . —cUd/T
V= F = S =
du —c Udu + codu® + %ngz cadhy, — caUdu/T
(3.71)
Eq. 3.70 is a system of hyperbolic conservation laws, and can be discretized on
uniform grids by the standard finite difference method with conservative form:
— - Cn o n
‘fi,n+ _ ‘/;71 B F;+é F‘i— 1

— . 4 gn 3.72
ot ox to ( )

where 0t is the computing time step. dx is the grid size. F (‘7) is the numerical flux
function:

Fry =V, Ve V) (3.73)

The quantity f is a Lipschitz continuous function in all the arguments, and con-

sistent with the physical flux F'. These conditions assure that if the solution to the

conservative scheme Eq. 3.72 converges, it will converge to a weak solution of original

partial differential equation, i.e., Eq. 3.70. (i —r.i —r+ 1, -+, i+ s) is the stencil of

the present numerical scheme.
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3.2.3 Weighted Essentially Non-Oscillatory (WENO) Shock-

Capturing Scheme

The differences between various numerical methods applied to the general conser-
vation laws. Eq. 3.70, lie in the choice of the computational stencils and the numerical
flux functions. Traditional numerical methods like the Lax-Wendroff method and the
MacCormack method use fixed stencils for each computing point and interpolate the
numerical flux function inside the stencil to get the flux values at the cell boundaries
i+ 1/2, @ —1/2. These methods work well for most problems with continuous so-
lutions. For example, Zhang (1996) used the Lax-Wendroft scheme to compute the
non-breaking solitary wave run-up on steep slopes. However, when applying the fixed
stencil method to a problem with discontinuities within the computing domain, such
as breaking wave cases. a well-known numerical problem called the “Gibbs phenom-
enon” arises. This is when the numerical solution oscillates near the discontinuities,
and does not decay when the grid is refined. The oscillations often lead to numerical
instabilities. which are the challenge that must be faced when numerically simulating
breaking waves. Various remedies have been used to eliminate or reduce the spurious
oscillations. The most successtul methods that have been used in the past are the ar-
tificial viscosity method and the limit flux or slope method. These methods introduce
some ad-hoc “breaking terms” to increase the numerical dissipation in the original
equations or reduce the order of accuracy. These are very problem dependent. The
coefficient in the ad-hoc term must be calibrated according to prior experimental data
before being applied to actual numerical calculations. Besides, since the numerical
dissipation has been increased, the discontinuities will be smeared and the numerical

scheme will lose accuracy.

The essentially non-oscillatory (ENO) scheme developed by Harten, Engquist. Os-
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her, and Chakravarthy (1987) is the first successful method that achieves no oscilla-
tions near the discontinuities and retains high-order accuracy to solve the conservative
laws (Eq. 3.70). The difference between the ENO scheme and other methods lies in
how to choose the cells used in the reconstructing the numerical flux. These cells
together are called the stencil for the numerical method. The basic idea of the ENO
scheme is instead of using a fixed stencil to interpolate the numerical flux function.
an adaptive stencil is chosen based on the local smoothness of the solutions. The
measurement of the local smoothness, the hierarchy to choose the stencil points, and
the extension to higher-order schemes have been developed by Harten et al. (1987)
to ensure the efficiency and accuracy for the numerical methods. The ENO scheme
has been used successfully in gas dynamics to simulate shock behavior and in channel
flows to simulate bores. The results have been very satisfactory. For example, Yang
and Shu (1993) used a second-order ENO scheme to simulate bore impingement on a
circular cylinder and the propagation of a bore through a channel with a contraction

and an expansion.

Recently Liu, Osher. and Chan (1994) and Jiang and Shu (1996) have developed
the weighted essentially non-oscillatory scheme (WENQ) based on the original ENO
scheme. The WENO scheme provides several improvements compared to the ENO
scheme, and it can achieve a higher accuracy of the numerical flux on the same
number of stencil points by exploring all the local smoothness information provided
by the ENO method. Applications of WENO scheme to gas dynamics have been
reported recently, see Shu (1998). However the application to breaking waves and
bore problems has not been reported. This study is the first to attempt to implement
this scheme in simulating the breaking wave run-up process. A detailed description
of the WENO scheme can be found in Shu (1998); below is the summary of the

fifth-order WENO scheme used with Eq. 3.70.
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Figure 3.2: Sketch of the stencil used in WENO scheme

Consider the possible stencils used for calculation for point 7 (i —2,¢—1.---,i+2)
shown in Figure 3.2. The value of the numerical flux F is known from Eq. 3.71. To
assure the numerical stability and convergence to a physical possible solution for Eq.

3.70, the Lax-Friedrichs flux splitting is used on the numerical flux:
F(V)y=F*(V)+ F (V) (3.74)

where
(F(V) +aV) a = max |F'(V)]
v
note F’ (V) is the derivative matrix and can be obtained easily from Eq. 3.71.

From numerical analysis, a polynomial with third-order accuracy can be con-
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structed from point-wise values ﬁii(f’) for the candidate stencils and the value F’i, /o ( V)
in Bq. 3.72 can be obtained from this polvnomial. This will give us three different
reconstructions for the stencils above:

+(r) 2 +
F = Ej:()("jF

i) . r=0.12 (3.75)

where ¢,; is the interpolation coefficient and can be found in Shu (1998) and has the

value:

K e k )
= Z Zl:&bﬁm Hq:().q;ﬁm,l(7 —q+ 1)

. (3.76)
m=j+1 H[:()_l;&rn(nl - [)

(',r]'

The WENO scheme gives a new approximation to the numerical flux at the bound-

aries as the combinations of these reconstructions:

+ 9 k()
Fly =X g FL (3.77)
where w, can be obtained as:
Q. d,
“r = Qp = >3 3.78
- 32 " e+ )2 ( )

€ is a small number introduced to make sure the denominator in above equation does

not become zero; one usually chooses € = 107%. The quantities d,, 3, are determined

as:
3 3
dy = 10 dy = 5 dy = 10 (3.79)
and
‘ 13 + e, Loopt + + )2 ‘
G = E(FL - 2Fi+1 + Fi+2) + Z(SFz - 4Fi+1 + Fi+2) (3.80)
| 13 , 1 ‘ -
A= E(Fil —2FF + F )+ Z(E:EI —FE))? (3.81)
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1:
_5(Fi

3y = s
112 12 =z

5 1 .
- 2inj51 + Fii)z + Z(Fiz o 4Fi1 + 3Fz‘i)2 (3.82)

By applying the above procedure on F-*(V’) and 131_(‘_») separately for both the

e
left boundary numerical flux E’L : and the right boundary numerical flux ﬁ[’; 1 at each
computing point 7. we can get the total flux for the cell. From Eq. 3.72, the solutions
at the new time level n + 1 can be found explicitly from the values at time level
n. By numerical analyses of Shu (1998). the above numerical scheme is stable and

has accuracy up to fifth-order at smooth regions and obtains sharp discontinuities

without spurious oscillation nearby.

3.2.4 Boundary Conditions

It is necessary to apply boundary conditions to the computational domain. To
efficiently impose different boundary conditions, “ghost cells” have been added to
the left and right boundary. When choosing the computing stencil in the numerical
scheme described above to calculate the numerical flux, only real cells are chosen

during the calculation.

For the totally reflective boundary conditions (vertical wall located at the bound-

ary between first cell (ghost cell) and the second cell (the real cell)) at the seaward

boundary. the velocity of the wave at the vertical wall must be zero: u 1= 0. The
following boundary conditions can be derived from the Eq. 3.70:

d(] = d] (383)

(d’u)() = —(dU)l (384)

where the cell with index 0 is the ghost cell added in the computation domain. ( This
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boundary conditions will also be used in this thesis to model the vertical wall in the

case of the splash-up of a non-breaking or breaking wave on a vertical wall.)

No special treatment has to be imposed on the boundary for the non-reflective
boundary couditions at the seaward boundary since the WENO scheme is a conserva-
tive schieme: this conditions are automatically satisfied when calculating the munerical

flux at the boundary cells.

For the shoreline boundary conditions. Zhang (1996) has proposed the following

conditions in the transformed computing domain:

RX (1) +n(X(1).6) = 0 (3.85)
dX -
7 = Ult) (3.80)
dU o oo
.(7; = I (‘58{)

Eqs. 3.85 and 3.86 are obviously true for shoreline position. and 3.87 is identical

to Eq. 3.57. It is the Lagrangian description of the shoreline movement.

The Beamn-Warming scheme and trapezoidal integration are used when discretizing
Eqs. 3.85 to 3.87 following Zhang (1996). These schemes are second-order in space
and time:

~ .

ot ot |

UV =UR — 5(3’0&' —dnN_ +noy) T W(&/f\" = 205y + i) (3.88)
1

X3 = XR + Sot(UR + UR) (3.89)

where N is the last grid index of the transformed computing domain. and alwavs

corresponds to the shoreline position.
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3.2.5 Test Cases

In this section the numerical scheme including the boundary conditions described

above is verified by several numerical experiments.

A Solitary Wave Propagating on a Constant Water Depth This test case
models the single solitary wave propagating on a constant water depth and is used
to verify both the accuracy of the numerical scheme when solving wave problems and
the conservation laws of the physical parameters like total mass and total energy of

the computing domain.

We use the first-order solitary wave theory for the initial wave shape and wave

velocity, i.e.:

n = Hsech?( (3.90)

w = (3.91)
1+mn

c = Vg(H+ hy) (3.92)

where H is the initial relative wave height for the solitary wave, X, is the position of
the initial wave crest in the computing domain as shown in Figure 3.1 , and ¢ is the

wave celerity.

The comparison hetween numerical results and theoretical results is presented in
Figure 3.3 for wave shape. It has been pointed out by other researchers that any
disturbance with a positive hump like the solitary wave propagating into still water
of constant depth under shallow water equations will ultimately be discontinuous and
break. see Stoker (1957). This can be proved by analyzing the characteristic curves

for the simple wave case. Thus, the dispersive effects cannot be neglected and the
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balance between the non-linear effects and dispersive effects is very important when
simulating the solitary wave propagation on a constant water depth. To include
the dispersive effect in the numerical scheme, we include the dispersive term of the
general Boussinesq model (Wu (1979)) into our numerical scheme. The treatment
of this dispersive term is the same as that of Zhang (1996). It can be seen that
the solitary wave keeps the original shape when propagating and that the agreement
between the theoretical prediction and numerical results is very good. The amplitude
of the solitary wave is almost constant during the calculation with numerical error less
than 0.1%. This shows the WENO scheme has high-order accuracy in smooth regions.
Note the discretization of the Boussinesq term here is still using a fixed stencil, this
will cause numerical stability when simulating the wave breaking process and hence
cannot be used in the breaking wave run-up simulation. However. as pointed out
before, for the wave run-up process, the dispersive term is very small compared to

the non-linear term and thus can be neglected.

The mass and energy conservation properties are investigated in this numerical
experiment. Mass conservation is guaranteed by the governing Eq. 3.58. For con-
tinuous solutions, the mass conservation of Eq. 3.58 and momentum conservation
of Eq. 3.59 are equivalent to the energy conservation, thus mass and energy should
be conserved for solitary wave propagation. The calculated mass and energy in the
computing domain as a function of time are presented in Figure 3.4. We can see that
the mass and energy are indeed preserved during the calculation process. The method
to calculate the mass and energy will be discussed in Chapter 5. For solutions with
discontinuities, the energy will not be conserved but decrease across the shock. This

can be interpreted as the energy dissipation during the wave breaking process.
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Figure 3.3: Numerical simulation of propagation of a solitary wave with H/hg = 0.30
over constant water depth. Shapes of the wave at different times

Dam-Break Problem The dam-break problem is an interesting theoretical and
practical problem in civil engineering. Various theoretical and experimental investi-
gations have been conducted in the past to study this particular flow. Here we use
the numerical scheme described to simulate the flow. The numerical results will be

compared to the theoretical results presented by Stoker (1957).

The initial water is still and separated by a thin plate with left (upstream) water
depth ki, = 1.5, and right (downstream) water depth h, = 1.0. as shown in Figure 3.5.
At t* = 0 the plate is removed and the water flows freely. By theory. after the plate is
removed an expansion wave propagates upstream and a bore (discontinuity) travels
downstream. The comparison between the theoretical solutions and the numerical

results for water free-surface at t* = 0. ¢* = 5.0, t* = 10.0 is shown in Figure 3.5.
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Figure 3.4: Numerical simulation of propagation of a solitary wave with H/ho = 0.30
over constant water depth. Evolution of the potential energy, kinetic energy, and
volume as a function of normalized time

We can see that the numerical results agree well with the theory even around the
sharp discontinuity (bore). The numerical scheme can reconstruct the jump in 2
~ 3 cells, and neither obvious numerical dissipation nor oscillation can be observed
in the solution. This demonstrates that the WENO scheme can indeed capture a

shock (bore) without spurious oscillations while maintaining high order of accuracy

at smooth regions without shock.
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Figure 3.5: Numerical simulation of dam-break flow with the ratio between upstream
water depth and downstream water depth: hy/ho = 1.5



Chapter 4 Experimental Apparatus and

Procedures

4.1 Wave Tanks and Wave Generation System

4.1.1 Wave Tanks

Three wave tanks were used to investigate solitary wave run-up. To generate
a breaking wave for a relatively small incident wave height (0.03 < H/hy < 0.4).
the slope of the beach should be quite gentle (usually 1:15 or smaller). Of course.
a breaking wave can be generated on a steep slope if the incident wave height is
large enough. Two wave tanks were used for breaking solitary wave studies: (i)
a 31.73 m long wave tank located at the W. M. Keck Hydraulics Laboratory of the
California Institute of Technology (denoted as Caltech West Tank, CWT), (ii) the 45.7
m long wave tank located at the Coastal Engineering Research Center. Waterways
Experimental Station, USACE (denoted as CERC). For non-breaking solitary wave
run-up on a steep slope, the length of the wave tank is not critical and a shorter wave
tank (15.25 m long) located at the W. M. Keck Hydraulics Laboratory of Caltech

was used (denoted as Caltech Student Tank, CST).

The Caltech West Tank (CWT) is 31.73 m long, 39.37 cm wide. and 60.96 cm
deep consisting of 9 identical sections. It has been described by Hamunack (1972).
Goring (1979). and Synolakis (1986). A schematic drawing of the wave tank is shown

in Figure 4.1 and a typical section is shown in Figure 4.2; the dimensions are in
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English units. The wave tank was constructed with glass sidewalls throughout and a
painted structural steel bottom. The glass wall of each section is 1.52 m long, 63.50
c¢m high and 1.27 cm thick. The bottom is leveled carefully with the deviation from
the horizontal surface less than £2.5 mm. The joints along the edges of the glass and
the bottom were sealed with silicone caulking to eliminate leakage. Stainless steel
rails 3.81 cm in diameter are mounted along the top edge of the wave tank and are
leveled to within 0.3 mm. Movable instrument carriages are designed for these rails.
A steel scale is mounted along the top edge of the tank to provide an accurate measure
of distance. An aluwminum ramp was installed at one end of the flume joined to the
constant depth region with the toe of the slope 17.30 m from the wave generator. The
beach was 14.15 m long constructed of 5 panels of 0.64 c¢m thick anodized aluminum
plate. A frame was constructed of aluminum angles ( 2.5 in x 2.5 in) to support the
beach, with the material anodized before assembling. Each plate was fixed to the
aluminum frame by countersunk screws, and the gap above the heads of the screws
was filled with wax to guarantee the smoothness of the slope surface. The edges of
the plates were machined with a groove on one plate and a matching protrusion on
the other resulting in a “tongue and groove™ joint. This provided a smooth surface
across the joints and a rigid plane beach face to be mounted to the frame; where
there was a small gap between plates, wax was used. The frame consisted of five
modules, each 2.83 m long. Each module was supported on four leveling legs with
screws whose length can be adjusted according to the beach slope. (The toe section
only had two adjustable legs.) A detail of a leveling screw is shown in Figure 4.3.
The aluminum frame was installed in the tank by first placing one frame module on
the tank bottom without the beach plate. Then the slope of the frame module was
adjusted to the desired angle by changing the four leveling screws at both ends. This
process was repeated until all the frame modules were set in place and adjusted to

the same slope. This method allowed each frame module to be leveled independently
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without adjusting the adjacent module. The leveling screws were locked in place. The
aluminum plates were attached to the frame and sealed in place with silicone. For the
breaking solitary run-up experinients the beach was set at the slope of 1 vertical to 15
horizontal with a deviation from a plane surface of less than +1 mm. This slope was
chosen so that a range of offshore wave heights could be used with the wave breaking
either on run-up or run-down. (The ramp is also shown in Figure 4.2.) A photograph
of the wave tank and beach is presented in Figure 4.4. To balance the hydrostatic
pressure acting on the sloping plate, the wave tank section behind the plate was filled

with water so that the still water level was the same as that in the test section.

The maximum run-up of breaking solitary waves for water depths hg > 30.48 cm
were measured in the CERC wave tank. The CERC wave tank is 45.7 m long, 0.9 m
wide and 0.9 m deep. A sketch is presented in Figure 4.5 showing the wave tank and
the setup of the experiments. The beach used in the CERC tank was constructed of
painted plywood and the slope was set at 1:15. Thus, the experimental data from
this tank could be compared to that from Caltech West Tank (CWT). The plywood

beach was sealed to the tank walls and the tank bottom with silicone.

Non-breaking solitary wave run-up experiments were conducted in the relatively
short wave tank at Caltech (CST). The wave tank is 15.25 m long, 39.6 cm wide,
and 61 cm deep and consists of b identical sections that are each the same as those
in the CWT. The plane beach used was 2.83 m long and was composed of one beach
module used in the CWT. A small wedge made of lucite was machined and installed
at the toe of the slope to eliminate the gap between the wave tank bottom and the
beach. The beach was installed with the toe of the slope 12.35 m from the wave
generator and the slope of the beach was adjustable also; for these experiments it was
set at 1:2.08 with a deviation from a plane surface of less than &1 mimn. This slope

was chosen so that a reasonably large offshore wave height could be used without
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Figure 4.3: Schematic sketch of the adjustable legs used to support the beach frame
of CWT

the wave breaking either on run-up or run-down. A photograph of the non-breaking

solitary wave run-up experimental setup is shown in Figure 4.0.



Figure 4.4: A photograph of the ramp and the Caltech west tank (CWT)

4.1.2 Wave Generation System
4.1.2.1 Hydraulic System

The wave generation systems used for the two Caltech wave tanks are similar
and were described by Goring (1979). Synolakis (1986). and Ramsden (1993). It
includes the hydraulic supply system. the servo-valve flow controller. the trajectory
generation system, and the bulkhead wave generator. A systematic sketch of the

generation system is shown in Figure 4.7 after Ramsden (1993). A photograph of the
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Figure 4.6: A photograph of the ramp and the Caltech student tank (CST)

wave generator is also shown in Figure 4.8. The wave generating carriage traveled on
rails supported by a frame fixed to the floor isolated from the wave tank. Thus, any
vibration caused by the wave generation would not affect the wave tank. The rails
are Pacific-Bearings hardened steel rods of 3.175 cm diameter, model No. SA-20-120.
Rubber windshield wiper blades are attached around the perimeter of the vertical
bulkhead that composes the generator to act as a seal to the wave tank sidewalls and

bottom while the plate is moving.

The hydraulic power supply system used to drive the wave generator consists of
a Denison constant flow pump rated at 0.011 m?®/min (2.9 GPM), which supplies the
hydraulic system with oil at an operating pressure of 20.68 MPa ( 3000 psi) from an
oil reservoir with 0.152 m?* (40 Gal) capacity. It is powered by a 5.6 kW, 1800 rpm

motor. The temperature of the oil is controlled by a water-cool heat exchanger set at
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Figure 4.7: Schematic sketch of wave generation system (after Ramsden (1993))

23.9°C. An unloading valve located downstream of the oil pump directs the oil flow
to the servo-valve when the downstream pressure is below the operating pressure.
Thus, a constant pressure supply of oil is always available for the hydraulic cylinder
shown in Figure 4.8. Two oil accumulators are installed and can be seen in Figure
4.8. These accumulators supply hydraulic fluid when the available flow rate in the

hydraulic power supply is exceeded for the desired plate trajectory.

Two hydraulic cylinders were used in the generation system for the CWT. Oune
cylinder is a Miller DH77B cylinder with a 6.35 cm bore and a 3.49 cm rod, and
allows strokes up to 2.44 m. This cylinder is generally used when generating solitary
waves. The other cylinder is a Miller DER-77 model with a 12.7 ¢m bore and 4.45
cm rod. and permits a stroke of 40.6 cm. This is especially useful for generating
long period progressive waves. Either cylinder can be connected to the wave carriage.
A servo-valve ( Moog, model 72-103) controls the flow of the hydraulic fluid to the

hydraulic cylinder depending on the current provided to it by the servo-controller (



Figure 4.8: A photograph of the wave generator (CWT)

Moog, model 82-151); it is rated at 0.227 m®/min (60 GPM) at 40 mA current.

The servo-valve is actuated by the servo-controller, which compares the current
position of the wave paddle to the desired position prescribed by the wave generation
trajectory. In the ideal situation without friction and the response of the mechanical
system, the wave paddle velocity is proportional to the oil flow rate through the
valve, which is itself proportional to the voltage signal from the trajectory generator.
Thus, ideally only a voltage proportional to the desired piston trajectory is required

for the wave generation. However in the actual situation, mechanical response and
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the friction between the wave paddle and tank often distorts the paddle movement
compared to the desired trajectory, i.e., the wave generated by the paddle will not
be the shape desired. To correct this. feedback must be provided in the generation
system, and the servo-controller does this. If the paddle position is the same as that
desired, the output from the servo-controller is zero. Otherwise, a signal proportional
to the position difference will be sent to the servo-valve to control the oil flow rate.
and the paddle velocity is changed accordingly. This process continues until the
desired position is achieved. The controller was modified by the addition of a resistor
to allow fine tuning of the system damping and of a Dither oscillator to provide a
600Hz excitation to the valve. This continuous excitation reduces the force required
to overcome static friction and enables smoother movements from an at-rest position.
The amplitude and the frequency of this excitation does not produce any detectable

free surface motions.

Two different transducers were used to measure the paddle position and to provide
a feedback voltage to control the plate motion. When the long cylinder was used to
drive the wave paddle, a ten-turn potentiometer riding on a precision rack was used
in a rack and pinion arrangement. When the short cylinder is used. a Linear Variable
Difference Transformer (LVDT) was used. Details of both transducers can be found

in Goring (1979).

Wave generation systems of the CERC wave tank and the CST are similar, except
the cylinder used in the CST is a smaller diameter compared to the CW'T, with a

3.76 cm bore, a 2.57 cm rod, and allowing strokes up to 50 cm.
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4.1.2.2 Trajectory Generation

The desired trajectory of the wave generator was supplied to the servo-controller
as a time series of discrete voltage levels. The trajectories were generated with a
personal computer using the method described by Goring (1979). The signal then
was transferred from the computer to the servo-controller by means of a D/A converter
with buffer storage (manufactured by Shapiro Scientific Instruments (SSI), Corona
del Mar. CA). An amplifier that was also designed by SSI was used to adjust the
gain of the generated signal so that a large range of the motions could be realized.
The initial position of the wave paddle can be also adjusted by adding or subtracting
an offset voltage from the signal sent to the servo-valve. The relation of the gain
setting to the desired stroke of the wave paddle was determined and the resulting
calibration curve was used in the experiments. A calibration curve for the CWT
wave generation system is shown in Figure 4.9. A sample trajectory output from the

personal computer for the generation of solitary wave is presented in Figure 4.10.

4.2 Water Surface Elevation Measurements

The water surface time-histories were measured using wave gages. Two types of
wave gages were used in this study: (i) a resistance-type wave gage and (ii) a capac-
itance wave gage. The next discussion describes the principles and the operations of

these gages.

4.2.1 Resistance Wave Gage

A typical schematic sketch of a resistance wave gage is shown in Figure 4.11. It

consists of a pair of stainless steel wires of diameter 0.254 miumn spaced 4.06 mm apart.
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Figure 4.9: Calibration curve of the wave generator gain setting to stroke of the
waveinaker

The wires are insulated from each other and are stretched taut between the open ends
of a thin rod bent in a 7—shape. When immersed in a conducting fluid, the gage
acts as a variable resistor in the Wheatstone bridge circuit shown in Figure 4.11. The
resistance between the wires varies with the depth of immersion in water. Initially
the bridge circuit is balanced with the gage immersed at the still water level. As the
water level changes. the voltage imbalance caused by the changed resistance of the
gage is monitored and amplified by a preamplifier. The output from the preamplifier

then was converted to digital signal and recorded by the data acquisition system.

The resistance wave gage used in the experiments was calibrated by changing its

vertical position relative to the water using a Vernier scale accurate to 0.1 mm. A



0.8 -

0.6 -

Normalized Voltage Output

0.2

0.0 -

0.2 I 1 1 1 1 L t
-8 -6 -4 -2 0 2 4 [} 8

Normalized Time t(g/h,)"”

Figure 4.10: The wave generator trajectory signal for a solitary wave

typical calibration is shown in Figure 4.12. The range of the calibration covers the
maximum wave height of the incident solitary wave and also half the depth of the
water. The depth of the immersion of the wave gage was changed in increments of 0.5
cm while recording the voltage output of the electronics. A second-order polynomial
was fitted to these data with the coefficients determined by a least squared regression
method. The polynomial equation obtained was then used to determine the wave
surface elevation relative to the initial water surface elevation in experiments. Figure
4.12 also shows the calibration one hour after the first calibration. The good agree-
ment between the two calibration curves indicates that the gage and its electronics
are stable for at least this period of time. The response of resistance wave gages has

been studied over a wide range of frequencies and amplitudes in the past by Wiegel
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Figure 4.11: Schematic sketch of the resistance wave gage and its electronic circuit.
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Figure 4.12: Calibration curve of the resistance wave gage

(1955) and Dean and Ursell (1959) and discussed by Ramsden (1993). It was found
that the errors in amplitude were within 5% of the range for small-scale laboratory
water waves. (In Figure 5.2 of Chapter 5 a comparison of the wave amplitude ob-
tained from resistance wave gages and that from a high-speed video recording will be
presented. This comparison showed that the resistance wave gage appears to have
adequate dynamic response to resolve the time varying water surface of the solitary
wave uscd in this investigation.) The error of varying the position of the wave gage
and the error caused by the approach of the gage to the tank bottom is also discussed

by Ramsden (1993). These errors were not found to be significant.
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4.2.2 Capacitance Wave Gage

The resistance wave gage described above cannot be used to measure the wave
amplitude for locations close to the initial shoreline and the locations above the shore-
line on the slope. When the locations are close to the shoreline the local water depth
decreases and the calibration is not possible. Also. the gages cannot be calibrated
in deeper water and then moved back, since strong boundary effects exist when the
gages are too close to the surface of the slope. For such locations, a capacitance wave
gage consisting of a single wave probe was used in the experimental investigation

combined with a special calibration procedure that will be discussed presently.

A photograph of the capacitance wave gage used is shown in Figure 4.13 and dis-
cussed by Synolakis (1987). It consists of a wave probe with the associated electronics
directly connected to the gage. The probe was made of a steel rod of 0.76 mm di-
ameter and was fit into a glass capillary tube with a 1.58 mm outside diameter. The
electronic circuit of the gage can be found in Synolakis (1986). An external oscillator
was used to drive a field effect transistor (FET), which provides current to the wave
probe. The current passed through the probe and then was converted to a voltage
signal by a current to voltage converter. During the calibration, the wave gage was
moved along the slope by changing its position and height, but the distance between
the tip of the probe and the surface of the slope was kept constant, thus, the recorded
voltage output from the electronics was changed also according to the immersion of
the probe in the water. This voltage signal was then fitted by essentially the same
method used to calibrate the resistance wave gage. Since the distance of the probe to
the surface of the slope was always maintained the same, the boundary effects were
eliminated by the calibration. The calibration process was performed in a location
with relatively deep water and then moved back to the actual measurement location.

A typical calibration curve for the capacitance wave gage is presented in Figure 4.14.
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Synolakis (1986) compared the measurement of wave amplitude on a dry bed taken
by the capacitance wave gage to that of a high-speed movie camera operated at 63.25
frames per second. Good agreement was found during run-up. but there were small
differences observed during run-down. Synolakis (1986) attributed the difference to
the difficulty of identifying the free-surface location in the movie frames because the
windows of the tank were wetted during the run-up. Differences were also found dur-
ing the present study. However, there is an additional probability that may contribute
to this error. When using a capacitance wave gage similar to the one in Figure 4.14
to measure the water amplitude on a dry bed, the lowing water runs up on the wave
probe. This can cause the wave gage to report a higher amplitude than the actual
value. This error may become important when the water velocity is large and the

water level is small. as in the run-down process.

4.3 Run-Up Gage

A unique gage was developed in the present investigation to measure the time-
history of the run-up of a solitary wave, unbroken or broken, on a plane sloping
surface. A schematic sketch of the run-up gage is presented in Figure 4.15. The run-
up gage consists primarily of a laser and a photodiode camera (LC300A, manufactured
by EG&G Reticon). The camera is identical to an ordinary camera in terms of the
optics with the exception that the photographic film is replaced by a photodiode array
capable of discriminating 1024 parts in an array length of 26.01 mm. Measurements
are obtained from the camera by determining the position of a light spot on the
array. which then defines the voltage output of the photodiode array and associated
electronics. A small adjustable mirror was located at the top of the sloping beach

with the light emitted from the laser directed at this mirror. The reflected beam was
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Figure 4.13: A photograph of the capacitance wave gage

adjusted such that it was directed down the slope, parallel to it, and somewhat less
than 0.5 mm above the surface. As the tip of the run-up tongue progressed up the
slope, the laser was reflected from its tip and focused on the photodiode array of the
Reticon camera. Based on the length of the slope imaged by the camera (about 60

cm), the precision of the position of the tip of the run-up tongue was about £0.6 mm.

The electrical output signal from the camera was a composite video signal, which
included a timing pulse and an analog signal that represented the gray scales of the
line measured along the slope. Because the intensity of the laser spot on the slope

ras much larger than the ambient light, a pulse-like signal, which showed the location
of the laser spot. can be found in the analog signal from the camera, as illustrated

in Figure 4.16. After passing through a comparator circuit and signal conditioning
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Figure 4.14: Calibration curve of the capacitance wave gage

circuit. the analog signal was converted into a pulse train, where the duty cycle
(defined as the ratio of the time the pulse equals unity to the period of the signal)
was set by the laser spot. This pulse train was then integrated to give an analog
voltage output whose amplitude is directly proportional to the time-wise length of
the duty cycle. The analog output was digitized to determine the run-up. The run-up
gage was calibrated by reflecting the laser into the camera at known positions along
the slope. A typical calibration curve is presented in Figure 4.17. There are some
limitations to the use of this instrument during the run-down process, since once
the beach is wet it is difficult to define the leading edge of the run-down by optical
reflection. The comparison of the run-up tongue measurement by this particular run-

up gage and high-speed video is presented and discussed in Chapter 5. It has been
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Figure 4.15: Sketch of the run-up gage

found that this laser run-up gage appears to have promise for certain types of wave

measurenients.

4.4 ‘Water Particle Velocity Measurement

The water particle velocity was measured using a Laser Doppler Velocimeter
(LDV) manufactured by TSI (signal processor model IFA 550 with model 9201 Col-
orburst multicolor beam separator). The frequency range of the signal processor was
1 kHz to 15 MHz, with a time resolution of the measurement 2 ns. A frequency
shift of 200 kHz between the reference heam and the scattered beam was set for the

system with a filter with the range between 100 kHz and 300 kHz. These settings
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Figure 4.16: Sketch of the working principle of the run-up gage circuit

were sufficient to measure the particle velocities of the solitary waves before and close
to breaking. Once the wave broke, air bubbles entrained in the breaking region ob-
scured the laser beam and velocity data could not be obtained. Two channels of
signal processors were available; thus, two velocity components, i.e., the horizontal
velocity and the vertical velocity can be measured. The data acquisition mode of the
LDV system was set to random, which meant that the horizontal velocity signal and
vertical velocity signal could be independently acquired during the experiments. The
signals from the processors were transmitted to a microcomputer in the form of 16-bit
parallel digital data. The microcomputer, which is IBM-AT compatible, is equipped
with “flow information display (FIND)” software by TSI. Both statistical and time-

history velocity data can be obtained directly using this software. A schematic sketch
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Figure 4.17: Calibration curve of the run-up gage

of the LDV system is shown in Figure 4.18 from the TSI LDV system manual.

The transmitting probe, which both transmits the laser beam and receives the
backscattered signal. was supported on a special platform mounted atop a tripod.
The platform could be moved in two horizontal directions by means of twin screws
and raised and lowered using an adjustment on the tripod. The horizontal coordinates
of the laser beam could be determined accurately within 0.1 mm by a scale attached
to the platform. The vertical position of the laser beam was determined by a point
gage on the wave tank. The laser probe could be rotated to align the beams with the

slope to measure the wave particle velocity parallel to the slope.

Water particle velocities were obtained at several locations ranging from the toe

of the slope to locations near the initial shoreline. The scatter beams from the LDV



77

DMA Cable
Port B

L L Port B
Signal Processor Channel 1
Computer and .o .
FIND Software X )

COLORLINK Plus

. B Multichannel Receiver Channel 2
RS-232-C Cable = o . Port A

CowomLmx
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system were focused at a position 20 em from the glass wall of the wave tank (roughly
along the centerline of the wave tank) to prevent sidewall effects. A wave gage (ca-
pacitance wave gage or resistance wave gage, depending on the local water depth of
the measurement point) was placed in the wave tank above the laser beams to simul-
taneously measure the elevation of the water surface. If the local water depth was
not deep enough to permit both the wave gage and the laser beams being at the same
position, the laser beams were positioned a very short distance behind the wave gage.
The distance was usually less than 3 mm so that. considering the horizontal length
scales of the waves, the measurement could be regarded as having been performed at

a single location.

4.5 High-Speed Video Equipment

The wave breaking process, run-up, and splash-up were recorded using two high-
speed video cameras. Both are model HR-500 Motionscope high-speed video cameras
manufactured by Redlake Camera Corporation. The camera can record and store a
sequence of video images of an event at frame rates of 60 to 500 frames per second.
with a maximum shutter speed of 1/10,000 per second. The resolution of the recording
is 480 x 420 pixels for a recording speed of 250 frames per second and 240 x 210 pixels
for a recording speed of 500 frames per second. The camera consists of a CCD camera
head, a display monitor, and a control panel. A photograph of the camera and display
monitor are shown in Figure 4.19. A memory buffer is integrated into the camera
system to store the images captured by the CCD camera. The number of frames that
can be stored in the buffer is determined by the recording speed. For example, for
500 frames per second speed, 2,048 frames (4.1 seconds of data) can be stored, while

at 250 frames per second, since the recording resolution is higher, only 512 frames
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Figure 4.19: A photograph of the high-speed video camera and display monitor

(2.0 seconds of data) cau be stored. A standard RS-170 NTSC and PAL video out (
Video and S-Video) port are available so that the images can be recorded on video
tape to be analyzed later. A typical image obtained with the high-speed video camera
is shown in Figure 4.20. The frame number and the time of the frame in milliseconds
are also displayed with the image. Other information related to the recording, such
as the recording speed, the trigger mode of the camera, and the shutter speed are

displaved and can be seen in Figure 4.20.



Figure 4.20: A typical image from the high-speed video recording

4.5.1 Sideview Recording

The wave propagation and breaking process were recorded with the high-speed
camera positioned perpendicular to the glass walls of the wave tank. A sketch of
the arrangement of the equipment is presented in Figure 4.21. A special carriage to
support the camera and lights that can be moved on the tank rails was constructed.
The carriage consisted of a steel frame resting on a movable carriage with a triangle-
shaped leg, which was about 2 m long, oriented perpendicular to the tank centerline
and extending from the side of the wave tank. The extended leg was detachable
and was bolted to the steel frame. At the end of the leg two vertical steel bars and

a horizontal steel bar were clamped. The camera head and the lights used for the
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Figure 4.21: Sketch of the experimental arrangement for sideview recording

recording were attached to these bars. A vertical bar was connected to the carriage
on the far side of the wave tank to carry lights (see Figure 4.21). The camera was
located approximately 1.5 m from the wave tank sidewall, resulting in a record area
about 50 ¢m x 60 cm. During the experiments, the carriage was normally moved at
the speed of the incident waves. This maximized the area and the time that could be

covered during one experiment.

The recording area was illuminated with three 500 Watt Lowel ViP lights; two
lights were placed near the high-speed camera. one on each side of the camera. The
other light was placed on the opposite side of the wave tank. A translucent panel was
placed on the far side of the wave tank to provide a uniformly illuminated background

and to prevent direct light on the camera.
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Fiducial marks on the glass sidewall of the water tank were used to assist in
defining the video images. Each mark was made of black tape and stuck to the
outside glass wall of the wave tank. For the non-breaking solitary wave run-up study.
a grid with lines spaced 5 cm apart was attached to the glasswall for the full test
section. Since the region of wave breaking is relatively large, only cross-shaped marks
20 cm apart were attached to the glass. Both the grid and the simple marks were
used to define the wave and to correct any image distortion due to the position of the

camera relative to the tank (see section 4.5.3).

4.5.2 Overhead Recording

The wave run-up on the sloping beach and the splash-up on the vertical wall were
also recorded using a stationary high-speed video camera. The camera was mounted
on a swivel bracket attached to the inner frame of the carriage discussed in earlier
section. A sketch of the camera arrangement is shown in Figure 4.22. Using the swivel
bracket the position and angle of the camera were adjusted such that a viewing area
of 60 ¢cm x 60 cm centered on the centerline of the wave tank could be recorded. A 500
Watt Lowel ViP light was also mounted on the carriage to provide illumination. The
angle of the light was adjusted to minimize reflections. A photograph of the high-
speed camera in the overhead position is shown in Figure 4.23. A scale was attached
to the vertical wall or the slope to provide reference for measurements. The space
between lines on the scale was 5 ¢m for the run-up study and 2 em for the vertical
wall splash-up experiments. This arrangement provided sufficient spatial precision

for the experiments.
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Figure 4.22: Sketch of the experimental arrangement for overhead recording

4.5.3 Image Processing

The images recorded on videotape were digitized using a PCT image board installed
on an IBM-AT compatible personal computer. The image board (model PIXCI-SV4)
was manufactured by EPIX Corporation, and it can capture/convert images at a speed
of 30 frames per second. The color information in the video image was digitized into
gray level intensities ranging from 0 to 255 (8 bits) for each pixel. The maximum
resolution of each image is 754 x 480 pixels for NTSC format video and 922 x 580 for
PAL format video signal. Software developed by EPIX performed the image capturing

and analysis.

It was found that the images obtained using the high-speed video were often



Figure 4.23: A photograph of the high-speed video camera in the overhead position
and the carriage used

distorted due to the combination of the viewpoint of the camera and its optics. The
distortion is quite pronounced if the axis of the camera is not perpendicular to the
wave tank sidewalls or if the observation area is too large. To accurately determine the
wave shape and locations of the run-up/splash-up, this distortion has to be eliminated
either by carefully positioning the camera or by image processing. Due to the difficulty
of accurately positioning the camera and of the requirement to maximize the area

covered, image processing was used to minimize distortion.

Considering correcting the optical distortion, a recorded frame can be viewed as
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a linear transformation from the physical coordinate system on the glass walls of the
wave tank to the new coordinate system on the image. i.e.. the recording plane of the
camera. The distortion that comes from both perspective and the optical elements of
the camera can be corrected using standard 2-D projective geometry theory. Thus. if
the homogeneous coordinates were used to represent a point, the transformation can

be expressed as :

1 s
y =M1 ¢ (4.1)
w 1

where M is the linear mapping function, (z,y,w)? represents a point in physical
coordinates, and (s.t,1)7 represents the corresponding point in image coordinates.
The quantity w is a normalization scale, where w = 0 refers to a point at infinity;
the value of (x,y) shows direction. In another word, (z/w,y/w) is the location of the

point in x-y coordinates.

The transformation function M can be obtained by considering the mapping of a
rectangle from the physical coordinates to the image coordinate as shown in Figure
4.24. The infinity point in horizontal direction ((1,0,0)T in homogeneous represen-
tation of the physical coordinate) was mapped into point h., the point of infinity in
vertical direction ((0,1,0)7) was mapped into point i; and the center of the rectangle
((0,0,1)7) was mapped to point h.. These three points were sufficient to determine

the transformation M:

10 0
(hehy,he) =M 0 1 0 (1.2)
00 1

where hg. h., hy were obtained from the coordinates of the four corner points of the
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Figure 4.24: The illustration of the mapping transformation used in the image process-

ing

rectangle in the image as:

h
h{

he

(@ % b) x (d x 7) (4.3)
(b x &) x (@ x d) (4.4)
(@ x @) x (d % b) (4.5)

where @, b. ¢. d are the vector representation of the homogeneous coordinates for the

four corner points of the rectangle. as shown in Figure 4.24.

Thus, once the location of the wave in the image was obtained. the corresponding

physical location could be calculated from Eq. 4.1. During experiments. the observa-
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tion area to be recorded was divided into several rectangles with the fiducial marks
described above and the physical locations of the rectangle corner points were mea-
sured in advance. All the points inside a rectangle in the image were calibrated by
the coordinates of the corners, the distortion caused by the optics of the camera was

then eliminated.

4.6 Vertical Wall

A vertical wall extending the entire width of the wave tank was used in the solitary
wave splash-up experiments. Tt was 90 ¢m high and 60 cm wide, and was constructed
of 1.40 cm thick lucite. The perimeter of the wall was sealed by rubber windshield
wiper blades to prevent water leakage from the gap between the wall and wave tank.
The surface of the vertical wall was carefully painted with several layers of paint so
that the surface was smooth. A scale consisting of black lines 2 cm apart was painted
on the surface. The vertical wall was mounted on an instrument carriage so that its
position on the slope could be changed between experiments. Lead weights placed on

the slope behind the vertical wall increased the rigidity of the wall.

4.7 Data Acquisition System

The voltage signal from the wave gages and the run-up gage were acquired by
a Macintosh personal computer with a MacADIOS-8ain analog-to-digital board con-
trolled with Superscope II software developed by GW Instruments. The accuracy of
the A/D conversion was £hmV over 20 V range. The maximum sampling rate of

the A/D board was 1 MHz. During the experiments, the trials were recorded with a
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sampling rate of 200 Hz. and the calibrations were recorded with the sampling rate

of 100 Hz.

4.8 Experimental Procedures

4.8.1 Measurements of the Run-Up of Solitary Waves on
Slopes

A schematic of the solitary wave run-up experiments was presented in Figure 3.1.
The origin of the coordinate system was chosen at the initial shoreline position of
the water on the slope. with the positive x axis directed offshore towards the wave
generator and y axis directed upward from the still water level. The water level in
the wave tank was measured by a point gage located at the toe of the slope, which
had an accuracy of 0.1 mm. The measurement was also performed after a series of
experiments; if necessary more water was added to the tank to keep the water depth
constant. Three computers were used during the experiments for wave generation
and data acquisition. The first computer was used to generate the solitary wave
trajectory, the second computer was used to process the data from the wave gages
and the high-speed video camera, and the third computer was used to control the

LDV system.

The initial incident wave height H/hy was determined using a resistance wave
gage described above. It was located at half of a characteristic length, L/2. of the
incident solitary wave from the toe of the slope, where L was defined in Eq. 3.25. The
wave gage was calibrated before and after the experiment. When the desired solitary
wave was generated by the wave generation system with the first computer, the data

acquisition system was also started in the second computer. An electronic signal
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was sent to the two high-speed video cameras and the third computer to trigger the
video recording and to start the LDV system data collection. A time delay ranging
from several milliseconds to tens of seconds could be set to control the high-speed
video camera depending on the camera locations; the exact value of this time delay
was determined by one or two test runs before the experiments. Therefore, once
the wave generator was started, all the data acquisition and video recording were
automatically controlled through electronic trigger signals. which were all properly

referenced to each other in time.

The time-histories of the run-up of the solitary waves on the slopes were measured
by two methods: (i) the run-up gage introduced in the previous section. It was
calibrated before each experiment. This gage was used for non-breaking solitary

ave run-up. (i) High-speed video recording. The run-up gage was not applicable
for breaking solitary wave run-up on a gentle slope since the light spot generated by
the laser reflection on the breaking wave front was too weak to be captured by the
linear camera. For this case, the high-speed camera was used to record the wave front
time-histories. The time-histories of the run-down process could not be recorded by
the high-speed video camera because the surface of the slope was already wetted by
the run-up wave; therefore, the run-down stream cannot be recognized in the images.
Thus, only the run-up portion of the time-histories was available for breaking solitary

wave run-up.

The maximum run-up of the solitary wave on the slope was also measured by two
methods: (i) high-speed video recording and (ii) visual observations plus the point
gage. The high-speed video recording can give the most accurate measurement, but
several trial runs have to be conducted before the actual measurement to determine
the recording region that covers the maximum run-up position. The visual observation

method is relatively simple. The run-up water will leave a clear intersection line
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Figure 4.25: The comparison of maximum run-up obtained from the high-speed video
and visual observations

between the wet surface and the dry bed. During the experiment, the position of
the intersection line was marked either by the placement of a small weighted marker
made of steel or by marking the slope surface directly. Then the height of the mark
with respect to the initial shoreline line was measured by a point gage. This height
was regarded as the maximum run-up of the incident solitary wave. The accuracy
of the point gage used for the purpose was within £0.1 mm. Figure 4.25 shows the
experimental data for solitary wave maximum run-up from both these methods, it
can be seen that the data from visual observation method agreed with the high-speed
video very well, thus, most of the maximum run-up data was measured by the visual

method.
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4.8.2 Measurements of the Splash-Up of Solitary Waves on

Vertical Walls

A sketch showing the arrangement for the measurement of splash-up of solitary
waves on a vertical wall is shown in Figure 4.26. The experimental setup was the same
as that of the run-up experiments on a slope except a vertical wall was mounted on
the slope. The vertical wall position on the slope could be changed to investigate the
effects of different breaking conditions on the splash-up. The splash-up was recorded
using high-speed video. If the wave contacted the vertical wall before breaking or
after breaking. the splash-up on the vertical wall was relatively small and consisted
of a run-up “water sheet”, and the whole process could be recorded by the camera.
However, when the wave broke near the position of the vertical wall the splash-up
was quite high and broke up with the drops and spray. Some fluid was even ejected
about 1 m ~ 2 m above the wall and nearly reached the ceiling of the laboratory. For
this case, the maximum height of the splash-up was estimated. A second high-speed
video camera was placed on one side of the wave tank to record the shape of wave
breaking from a sideview. These two high-speed video cameras were referenced to
each other in time so that both the wave shape and the splash-up on the vertical wall

could be obtained simultaneously.

4.8.3 Other Experimental Procedures

Approximately 15 ~ 20 minutes was allowed between two consecutive runs in the
experiments to ensure that the wave generated in the second run was not contam-
inated by the previous waves and the experiments were reproducible. During this
period of time, the wave amplitude and the wave particle velocity in the wave tank

were measured several times, the second run began only when no detectable variation
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Figure 4.26: Schematic sketch of the experimental arrangement for a solitary wave
splash-up on vertical walls

in the amplitude and velocity could be found in the measurement.

The water was chemically treated to reduce algae growth, and after changing the
tank water it was allowed to stand for at least 24 hours to purge the tank of small
suspended air bubbles. Usually after the experiments, which lasted one or two days,

all the water in the tank was replaced.
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Chapter 5 Presentation and Discussion

of Results

The results presented in this chapter are based on the experimental measurements
and numerical simulations for three cases of solitary wave run-up: (i) the non-breaking
solitary wave run-up on relatively steep slopes, (ii) breaking solitary wave run-up on
gentle slopes. and (iii) breaking solitary wave splash-up on vertical walls. In each case
the characteristics of the interaction between the wave and the slope/wall during the
run-up and splash-up process such as wave shape, time-history, and wave velocity were
measured experimentally and compared with the results from theoretical analyses for
non-breaking solitary wave run-up and numerical results from the WENO scheme for
breaking waves presented in Chapter 3. The experimental conditions of the slopes
and initial incident solitary waves for the run-up process are given in table 5.1. The
measurement of maximum run-up has also been conducted over a wide range of
water depths and wave heights for the three slopes: 1:2.08, 1:15, and 1:19.85. The

parameters of these measurements are shown in table 5.2.

The water depth in the constant depth region seaward of the toe of the slope, hg.

Type of Run-up | slope | H/ho | holem) | L/hg ‘
Non-breaking 1:2.08 1 0.163 | 21.51 | 6.23
Breaking 1:15 0.30 30.48 4.59
Breaking 1:19.85 1 0.30 | 30.48 [ 4.59

Table 5.1: Wave parameters for run-up process of solitary waves
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F

Tvpe of Run-up | Wave Tank | Slope hom}::(07:(3,7;,(1a: Hm:[/ h}%ﬂ;}
Non-breaking CST 1:2.08 | 16.30 | 21.51 | 0.02 | 0.35
Breaking CWT 1:15 7.00 | 30.48 | 0.05 | 0.45
Breaking CERC 1:15 ] 30.48 | 76.20 | 0.04 | 0.20
Breaking CWT 1:19.85 | 30.48 | 30.48 | 0.04 | 0.40

Table 5.2: Wave parameters for maximum run-up of solitary waves

is chosen to normalize all the length parameters such as wave height H, horizontal
coordinate r and vertical position y in the following discussion. The purpose of this
arrangement is to pernit the reader to quickly envision the relative wave conditions
and scales, so the results can ultimately be used with field conditions. In this frame
of reference ©* = /hy = 0 is the initial shoreline and x* = 1/s is the toe of the slope,
where the tangent of the slope angle, i.e.. tan/ = s. In this discussion, the time. t. is
normalized by the time scale parameter 1/4/g/ho and the time coordinate is plotted
from left to right; this gives a visual presentation which is the same as that of the

definition sketch, Figure 3.1.

The detailed list of experimental runs and results is presented in Appendix. For
purpose of clarity, the definition sketch of the solitary run-up presented in Chapter 3

is repeated in Figure 5.1.

5.1 Solitary Wave Characteristics

Solitary waves were used throughout this study as a model of a tsunami in na-
ture. The wave generation method proposed by Goring (1979) has been used and is
described in Chapter 4. The algorithm can be used to generate a solitary wave with

high accuracy in the laboratory.
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Figure 5.1: Definition sketch of the solitary wave run-up

To test the accuracy of the solitary wave generated in experiments, the wave
profile and the wave velocity measured in the laboratory are compared with the

corresponding theoretical data from third-order solitary wave theory.

The wave profile is presented in Figure 5.2 for a solitary wave with a relative
wave height in the constant depth portion of the wave tank of H/hy = 0.276. The
theoretical solitary wave profile obtained from a third-order theory is also included in
Figure 5.2. The wave was measured in the constant depth region seaward of the toe
of the slope with hy = 30.48 cm. The incident wave height H/hg = 0.276 is measured
at the location x/hy = 24.64, i.e. far from the toe of the slope. The ratio of the
distance from the measurement point to the wave generator paddle to hg is 32.81.
Two techniques were used in these measurements: (i) a resistance wave gage, and (ii)
high-speed videos. There is good agreement between these two experimental methods
and with the theory indicating both that the video method of obtaining the profile is
quite reliable and that the non-linear wave generation technique used produces a well
formed solitary wave in the constant depth region of the tank. Small oscillatory waves

were found in the region for t* > 5, i.e. the tail of the wave, which are due to the first-
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Figure 5.2: Comparison of high-speed video and wave gage output to the third-order
theory for solitary wave profile with H/hq=0.276. The dashed line is the third-order
theory, the solid line is the experimental data obtained from the wave gage, and the
circles are the experimental data obtained from the high-speed video

order wave generation method. The wavemaker generates the wave according to the
first-order theory. which is not an exact solitary wave form. Therefore, as the wave
propagates along the wave tank, dispersive effects and noun-linear effects transform
the wave into a soliton followed by a small oscillatory tail. The generated solitary
wave height is generally smaller than that specified in the procedure used in the wave
generation: as mentioned earlier, this is both because the generation procedure is
accurate to first-order and due to viscous effects on the free surface and the bottom

of the wave tank.

The normalized horizontal velocities and vertical velocities u* = wu/\/ghoe and
v* = v/\/ghgy of solitary waves were measured in the constant depth region of wave

tank using a LDV, and the results are presented in Figure 5.3 and Figure 5.4. The
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nmeasurements were conducted in the relatively deep wave tank at the Coastal Engi-
neering Research Center. USACE. (This wave tank denoted as CERC was described
in Chapter 4.) A water depth hy = 60.96 cm was used with an incident wave height
H/hg = 0.20. The velocities at three depths were measured: y/hg = —0.016, which is
close to the still water level; y/hg = —0.328; and y/hg = 0.148. These velocities are
compared with the third-order theoretical velocity at the still water level y/hg = 0.0.
It is seen that the measured horizontal and vertical velocities in the region above the
still water level are shown only for a small time when the four laser beams used in
the LDV were in the water; when the beams were out of the water, no data could
be obtained. All measured velocities agreed well with each other except near the
maxima (around t* = 0) where the maximum velocity decreases with depth, as would
be expected. Away from the maxima, the difference between these measurements is
small. The vertical velocities shown in Figure 5.4 were relative small compared to
the horizontal velocities especially as the bottom is approached. This demonstrated
that the assumption of a small (or negligible) vertical velocity made in shallow water
wave theory is reasonable. Since all of these measurements were obtained from sev-
eral different experiments, the reproducibility of the solitary wave generated also was

confirmed.

5.2 Non-Breaking Solitary Wave Run-up

5.2.1 Wave Amplitude and Velocity Time-Histories

A solitary wave with a relative wave height H/hg = 0.163 was used in the run-up
experiments with a water depth of 21.51 cm and a beach slope of 1:2.08. The water

surface time-histories using the WENO numerical scheme, the non-linear theory and
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Figure 5.3: Comparison of LDV measurement of horizontal velocity in CERC tank
to the third-order theory for solitary wave with H/hy=0.20. The solid line is the
third-order theory at y/hy = 0.0, the dotted line is the LDV data obtained at y/hy =
—0.328, the dash-dotted line is the LDV data obtained at y/hy = —0.016, and the
dashed line is the LDV data obtained at location y/hy = 0.148

the approximate non-linear theory presented by Synolakis (1986) are compared to
experimental results at nine locations in Figures 5.5 for this plane beach. (It is noted
that x* = 0 refers to location of the original shoreline; positive values are offshore
and negative values are onshore of that position. Therefore, x* = 2.08 is located at

the toe of the slope for this beach.)

When calculating the wave amplitude, and horizontal velocities using Eqgs. 3.45
to 3.49, the actual location (x,t) in the physical plane has to be calculated from
the transformed plane (0. A), since all the equations are explicit in terms of o and \.
These calculation can be perforined iteratively using Newton'’s method and the actual

location x. t can be obtained by the method described below: (All the calculation
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Figure 5.4: Comparison of LDV measurement of vertical velocity in CERC tank to the
third-order theory for solitary wave with H/hy = 0.20. The solid line is the third-order
theory at y/ho = 0.0, the gray dotted line is the LDV data obtained at y/hg = —0.328,
the black dash-dotted line is the LDV data obtained at y/hy = —0.016, and the dashed
line is the LDV data obtained at location y/hy = 0.148

was performed using Mathematica.) The relations between (o, ) and (x,t) are the
transformation equations, i.e., Egs. 3.48 and 3.49. If we differentiate Eq. 3.48 in

terms of o and Eq. 3.49 in terms of A, the following equations are obtained:

dx o VU u(V,, —u)

— = cotf(—= — 1
do cou (8 4 + o ) (5-1)
dt L SV _
ﬁ = C()t})’( pu — 5) (O2)

To seek the wave characteristics at a particular location (x. t), the above equations
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-an be written in difference form vielding the following expressions:

x(op N) —a” .
iy = 07— , ” -y (53)
cot3(g — \lj” (\p(,; ))
t oy, )\i —t*
)\i+1 = /\i - (—;"‘)—— (54)

where (1*.t*) is the specific location of the wave in space and time and ¢ is the
iteration index. The calculation process begins by choosing an initial value of ¢, and
A1, and substituting them into Eqs. 3.45 to 3.49 to get x(oy. A1), t(o1, A1), v and W,
U,o. If [x(oy, A}) — 2%| is less than some prescribed small quantity, the process stops.
Otherwise new values of o; and A; are calculated from Eqgs. 5.3. 5.4, and the process
continues until the required accuracy is achieved. This iteration converges very fast

in the calculations; usually in less than 10 steps the desired accuracy can be achieved.

As seen in Figure 5.5, for the locations that are near the toe of the slope, the non-
linear theory agrees quite well with the experiments especially for the portion of the
water surface-time history which corresponds to the incident wave. The differences
between the theory of Synolakis (1986), the present theory and the experiments in this
region are relatively small; this feature will be discussed later. As locations close to
the initial shoreline position, i.e., x* = (), are approached the solitary wave increases in
height and deforms. Non-linear effects cannot be neglected in that region; the present
non-linear theory appears to properly handle the non-linear effects. Shoreward of the
initial shoreline, since there is no water at those elevations until the run-up tongue
reaches that location, both the experimental and theoretical results are available only
for an abbreviated interval of time. Out of this interval, the measurement was zero
since no singnal was detected by the probe. The present non-linear theory agrees well

with the experimental data for these locations.

The numerical results for wave time-histories from the WENO scheme described
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Figure 5.5: (a)-(d) Run-up of solitary wave with H/hy = 0.163 on 1:2.08 slope.
Normalized wave amplitudes are shown as a function of normalized time at different
locations. The solid line is the numerical simulation. the dashed line is the non-linear
theory, the dash-dotted line is the approximate non-linear theory of Synolakis (1986),
and the circles are the experimental data.
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Figure 5.5: (e)-(h) (continued) Run-up of solitary wave with H/hy = 0.163 on 1:2.08
slope. Normalized wave amplitudes are shown as a function of normalized time at
different locations.
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Figure 5.5: (i) (continued) Run-up of solitary wave with H/hq = 0.163 on 1:2.08
slope. Normalized wave amplitudes are shown as a function of normalized time at
different locations.

in Chapter 3 are also presented in Figure 5.5 as solid lines. In general the numerical
results agree well with both the non-linear theory and experimental data. This is
no surprise since both the numerical scheme and non-linear theory solve the same
NLSW equations. When comparing the numerical results with the experimental
data for a specific location, the numerical solutions from the computational grid
which is the closest to the actual x coordinate are chosen for comparison. Since the
actual x-coordinate of the calculation grid changes during the computing because of
the mapping technique used in the numerical scheme, the grid closest to the actual
location will vary in the calculation. This causes small variations in the data for
the wave shape. There is also a small time-lag between the numerical data and
the experimental data for the reflected wave and the cause for that needs further

investigation.

The normalized horizontal and vertical velocities u* = u/ (gho)l/ 2 and v* =
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v/(gho)"/? in these experiments werc measured in the region near the original shoreline
and offshore at normalized depths which vary with the nieasurement location; in gen-
eral, the measurements were at mid-depth. These experimental results are presented
in Figures 5.6 and are compared to the non-linear theory developed in this study. the
numerical simulation from the WENO scheme, and to the approximate non-linear
theory of Synolakis (1986). Note that there arc no predicted vertical velocities, since
the shallow water theory assumes the vertical velocities are negligible. The experi-
mental measurements for all locations, even those close to the initial shoreline, show
the vertical velocity is less than 20% of the horizontal velocity. The present non-linear
theory appears to predict the horizontal velocity reasonably well with some deviation
near the maxima for the run-up on a 1:2.08 slope. The numerical results agree with
both the experiments and the non-linear theory very well at most of the locations
except at the location x* = 0.22, where the numerical simulation predicts a shock like
discontinuity in the run-down process and thus a much higher peak velocity than the

non-linear theory.

5.2.2 Free Surface Profiles

Water surface profiles on the 1:2.08 slope are presented in Figures 5.7 at the in-
dicated non-dimensional times. The non-linear theory, the numerical simulation and
the approximate non-linear theory of Synolakis (1986) are compared to the experi-
mental results. In the initial run-up stages the difference between the two theories.
the numerical results and the experimental data is small. As the run-up proceeds, the
non-linear theory obtained in the present study appears to agree better with the ex-
perimental results than the approximate non-linear theory. This would be expected.
since the non-linear effects become more important as the run-up process proceeds.

especially during run-down, see Figure 5.7 (f) and 5.7 (g) for t* = 11.2 and t* = 12.2.
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Figure 5.6: (a)-(d) Run-up of solitary wave with H/hy = 0.163 on 1:2.08 slope.
Normalized wave velocities are shown as a function of normalized time at different
locations. The solid line is the numerical simulation, the dashed line is the non-
linear theory, the dash-dotted line is the approximate non-linear theory of Synolakis
(1986). the triangles are the experimental horizontal velocities. and the circles are the
experimental vertical velocities.
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Figure 5.6: (e) (continued) Run-up of solitary wave with H/hy = 0.163 on 1:2.08
slope. Normalized wave velocities are shown as a function of normalized time at
different locations.

respectively. For this slope, breaking did not occur during run-down. For all times
it is apparent that both theories agree reasonably well with the experimental data
as the distance offshore from the initial shoreline increases. This supports the as-
sumption that the effects of non-linearities are small and can be neglected near and
offshore of the toe of the slope. In the region near the run-up maxima (Figure 5.7
(e), t* = 10.2) the present theory tends to overestimate the amplitude of the run-up
tongue compared to the experiment. This may be due to the effect of friction and /

or the use of the meniscus to define the wave amplitude in the experiments.

Experimental data are presented in Figure 5.8 from Synolakis (1986) for the vari-
ation in water surface amplitude with distance on a plane beach inclined at a slope
of 1:19.85 along with the numerical results and the non-linear theory from this study
and the approximate non-linear theory from Synolakis (1986) for four non-dimensional

times. Since the slope was relatively gentle in those experiments. it was necessary to
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Figure 5.7: (a)-(d) Run-up of solitary wave with H/hy = 0.163 on 1:2.08 slope.
Normalized surface profiles are shown as a function of normalized distance at different
times. The solid line is the numerical simulation, the dashed line is the non-linear
theory. the dash-dotted line is the approximate non-linear theory of Synolakis (1986).
and the circles are the experimental data.
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Figure 5.7: (e)-(h) (continued) Run-up of solitary wave with H/hy = 0.163 on 1:2.08
slope. Normalized surface profiles are shown as a function of normalized distance at
different times.
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Figure 5.7: (i)-(j) (continued) Run-up of solitary wave with H/hy = 0.163 on 1:2.08
slope. Normalized surface profiles are shown as a function of normalized distance at
different times.

use a much smaller wave than was used in the present study to prevent wave breaking
during run-up, i.e., H/hy = 0.0185. For the cases shown, both theories agree well with
the experimental data. The difference between the two theories and the numerical
results is almost undetectable, since for such small relative wave height the non-linear
effects are relatively unimportant compared to those for the larger wave whose results

were shown in Figure 5.7 .
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Figure 5.8: (a)-(d) Run-up of solitary wave with H/hy = 0.0185 on 1:19.85 slope.
Normalized surface profiles are shown as a function of normalized distance at different
times. The solid line is the numerical simulation, the dashed line is the non-linear
theory, the dash-dotted line is the approximate non-linear theory of Synolakis (1986).
and the triangles are the experimental data from Synolakis (1986).
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5.2.3 Shoreline Movement and Maximum Run-Up

The normalized run-up is shown as a function of normalized time in Figure 5.9 for
run-up on a 1:2.08 slope. Experimental data are presented from two methods: the
laser run-up gage discussed earlier and high-speed video results. During the run-up
process (t* < 10). both experimental methods are in excellent agreement. During
the run-down process (t* > 10), the wave retreats so quickly that the reflected laser
spot is too weak to be captured by the photodiode camera. Therefore, only the
high-speed video recording data are shown. Both the theory from the present study
and the approximate non-linear theory predict the run-up stage very well for t* < 8.
The non-linear theory agrees better with the data in the region of the maximum
run-up than the approximate non-linear theory. The approximate non-linear theory
underestimated the run-down trough, as was seen in Figure 5.7. It can be found
that the maximum run-up obtained from the direct numerical calculations of Eq.
3.23 and Eq. 3.51 were larger than that predicted by the approximate formula, i.e..
Eq. 3.26 and Eq. 3.52, respectively. For example, the difference of the maximum
run-up between the present non-linear theory and the approximate non-linear theory
proposed by Synolakis (1986) is about 11%. but that predicted by the approximate
formula, i.e., is only 5%. This suggests that direct numerical calculation is necessary
if accurate run-up is desired. The numerical results agree with the experimental
data very well especially around the maximum run-up position, which shows that
the current numerical scheme can model the movement of the shoreline with high
accuracy. The good agreement also shows that the computation domain mapping
technique used in the numerical method is very stable and efficient in calculating the

shoreline position.

The variation of the maximum run-up with relative wave height, H/hg, is pre-

sented in Figure 5.10 for the slope of 1:2.08. Experimental results and the results of
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Figure 5.9: Run-up of solitary wave with H/hy = 0.163 on 1:2.08 slope. Normalized
shoreline position is shown as a function of normalized time. The solid line is the
numerical simulation, the dashed line is the non-linear theory, the dash-dotted line is
the approximate non-linear theory of Synolakis (1986), the circles are the experimental
data from the run-up gage, the triangles are the high-speed video recording.

the present theory, Eq. 3.52, and the results of the approximate non-linear theory,
Eq. 3.23. are shown for comparison. The non-linear theory from the present study
agrees quite well with the experimental data for the full range of the wave heights
investigated. It is noted that the differences between the results of the present theory
and those of Synolakis (1986) are small. This is to be expected, as can be seen in
Figure 5.11, where the ratio of the correction term of present non-linear theory to the
approximate non-linear theory of Synolakis (1986), R../R;. is plotted as a function

of the relative wave height, H/hg, for constant values of slope from Eq. 3.55. Figure
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Figure 5.10: Normalized maximum run-up as function of incident wave height H/hg
for a slope of 1:2.08. The solid line is the non-linear theory, the dash-dotted line is
the approximate non-linear theory of Synolakis (1986), the triangles are experimental
data at hg = 21.51cem.

5.11 shows that wave breaking limits the relative wave height of non-breaking waves
for which either of the two theories can be applied. The limit of relative wave height

for wave breaking on run-up is defined here as:

H/hy = 0.8183(cot3) 107" (5.5)

from the theoretical analysis of Synolakis (1986) by considering the Jacobian of the
Carrier and Greenspan (1958) transformation. Combining this expression with Eq.

3.55 gives the “breaking limit” curve presented in Figure 5.11. At wave breaking
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Figure 5.11: The variation of the ratio of R, to R, as a function of the relative
incident wave height and beach slope. The limit due to wave breaking suggested by

Synolakis (1986) is shown also.

the non-linear correction term varies from only about 5% to 8% for slopes from
1:200 to 1:2. respectively. However, as mentioned earlier, the approximate formulas
underestimate the maximum run-up; therefore, the correction by the present non-
linear theory is somewhat larger than that predicted by Figure 5.11. The magnitude of
the correction term is also determined by the breaking limit used. If a weaker breaking
limit is adopted, larger correction can be expected. The approach presented here
sheds light on the influence of both slope and relative wave height on the highly non-
linear run-up process. Nevertheless, for practical engineering problems the approach
of Synolakis (1986) appears to be sufficient to predict the maximum run-up of non-

breaking solitary waves.
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5.2.4 Energy Transformation in the Run-Up Process

One goal of the present research is to investigate the energy transformation and
energy dissipation during the solitary wave run-up process, especially for breaking
solitary waves in order to predict the maximum run-up from the energy considerations
alone. In this section, the energy transformation associated with non-breaking wave
run-up will be discussed. For the non-breaking solitary wave run-up. since the wave
shape and velocities are continuous for the run-up and run-down process, the total
energy of the wave should be conserved. Any cnergy loss due to the viscous effects
on the free surface and wave tank bottom which are generally small will be neglected
here. This will be verified and discussed later in the discussion of energy consideration

associated with breaking waves.

The numerical scheme developed in Chapter 3 is based on the non-linear shallow
water equations which is a depth-averaged model. This means the variation of the
horizontal velocities in the vertical direction is zero over the water depth. Thus.
the energy computation is greatly simplified. The kinetic energy, Ex., and potential

energy, Fp, can be obtained from the following expressions:

Ex = /F %p(h + n)udr (5.6)
ZE{V%[OH + h;) + (2771-_1 + hi"l)]fu,?é:r

Ep = /r %pg(h +n)*dx (5.7)
_ fi{‘%[("‘ + hi) + ;7/7;_1 + hi'l)]z&r

where T is the length of the computation domain as in Chapter 3, dz is the grid
size in  direction, and N is the total number of the grids. Adding the potential

energy and kinetic energy together. the total energy of the wave can be obtained.
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Performing this calculation during each time step of the numerical simulation. the
energy transformation and the conservation of energy during the run-up and run-
down process can be investigated. In the following discussion. the energy and volume

were non-dimensionalized by the following parameters:
E V

E" = ‘ V= — 5.8
pgh} hg (5:8)

(It is assumed that width section in the direction of the wave crest is unity thus,
the non-dimensionalized parameters used above are one order less than that for a

three-dimensional problem.)

The variation of the calculated cnergy of a solitary wave with normalized time
is presented in Figure 5.12 for H/ho=0.163 and a slope 1:2.08. The corresponding
variation of energy for a solitary wave with a wave height H/hy=0.025 on a slope 1:15
is presented in Figure 5.13. Both of these cases are for non-breaking solitary waves.
As the waves move toward the slope. the wave shape deforms as the depth decreases;
this has been described before. During the run-up process the kinetic energy decreases

and transforms to potential energy. This can be seen clearly in Figures 5.12 and 5.13.

For the non-breaking wave run-up on 1:2.08 slope, as the wave reaches the maxi-
mum run-up position, the potential energy reaches a maximum and the kinetic energy
goes to zero. This result will be used in the development of an energy balance model
later in this chapter. After that, during the run-down process, the potential energy
begins to transform to kinetic energy with the kinetic energy being equal to the po-
tential energy for #* > 13. During the whole process, both the total energy and total
volume are constant which means the mass and the energy are conserved. (Small
oscillations in volume are found numerically especially during the run-down process.

In the calculations, linear accuracy methods were used to calculate the energy and



117

0,20 1.2
015 4 1.0
0.10 |- ///‘—\\ 108
// N
3 3
= /// \\/ _ >
0.05 | =:::_—_=<:\ S == 1os
T~
~ e
~
~
~
0.00 —~ {04
-0.05 - 402
010 T T T =T T T T 0.0
0 2 4 6 8 10 12 14
t*

Figure 5.12: Calculated normalized energy of non-breaking solitary wave run-up with
H/hy=0.163 on 1:2.08 slope as a function of normalized time. The solid line is the
total energy associated with the wave, the dashed line is the potential energy, the
dash-dotted line is the kinetic energy, and the dotted line is the volume of the wave.

volume for efficiency of the computing. If higher-order methods had been used, this

oscillation should be avoided.)

For the non-breaking wave run-up on 1:15 slope shown in Figure 5.13, a relatively
large variation in volume calculation was found, and the computed kinetic energy at
the maximum run-up, i.e., t* =~ 40. was at a small positive value and not equal to zero,
which suggested either a small reflective wave may exist in the computing domain,
or the wave still has a small water particle velocity. Nevertheless, considering the
balance between kinetic energy and potential energy at the time of maximum run-up,

neglecting the kinetic energy at that time seems reasonable.
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Figure 5.13: Calculated normalized energy of non-breaking solitary wave run-up with
H/hy=0.025 on 1:15 slope as a function of normalized time. The solid line is the
total energy associated with the wave, the dashed line is the potential energy, the
dash-dotted line is the kinetic energy, and the dotted line is the volume of the wave.

5.3 Breaking Solitary Wave Run-Up

This section describes results for the run-up of breaking solitary waves on plane
beaches. For the two gentle slopes used in this study, 1:15 and 1:19.85, the incident
solitary wave breaks even for a very small wave height. i.e., H/hy ~ 0.04. Experimen-
tal results for the wave breaking characteristics such as: wave shape, shoaling, wave
celerity and, for the plunging breaker, the shape of the jet produced are presented
and compared with numerical results. The experiments show that the wave break-

ing process is such a complicated process that even sophisticated numerical models
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cannot model its details. On the contrary, if only the run-up process and maximum
run-up are of interest, the wave produced after breaking can be simplified as a prop-
agating bore which is analogous to the shock wave in gas dynamics as described in
Chapter 3. The numerical results from the non-linear shallow water wave theory and
the WENO scheme will be presented and compared to the experimental results in

this section.

5.3.1 Wave Breaking Characteristics
5.3.1.1 Wave Shape

Several types of breaking waves have been reported by other researchers: spilling.
surging. collapsing. and plunging breaking. For the slopes used in this study, most of
the waves break as plunging breakers. A photograph of a breaking solitary wave for
an incident relative wave height of H/hg = 0.30 is shown in Figure 5.14. This picture
clearly shows the shape of the wave after the breaking point (the breaking point is
defined here as when the front face of the wave crest becomes vertical.) The tip of the
jet formed by the post-breaking wave has touched the front face of the wave already

in Figure 5.14.

Figure 5.15 and Figure 5.16 show the evolution of the solitary wave during the
breaking process for incident wave heights of H/hy = 0.30 and H/hy = 0.45. respec-
tively. Both experimental results and numerical results are shown; the latter are from
Grilli et al. (1997) and will be discussed presently. A portion of this section is taken
from the discussion by Li and Raichlen (1998) of the paper by Grilli et al. (1997).
The experimental results were obtained from high-speed video recordings. The high-
speed video camera used (described in Chapter 4) operated at 250 frames per second;

this provided the required spatial and time accuracy needed. Due to the limited
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Figure 5.14: Photograph of a typical plunging breaking wave with beginning splash-
up

data storage of the high-speed video camera and hence the recording time available,
i.e., 2.1 seconds, it was necessary to repeat each wave several times with the camera
moved to cover the complete wave breaking process. Since the wave generation system
is very reproducible, i.e., the amplitudes of the waves generated during consecutive
runs differ by only about 1% , this procedure is acceptable. The images from the
high-speed video were calibrated to minimize distortion and error associated with the
optical measurement method and the wave shape was obtained from the images using
standard image processing method. The development of the plunging breaking wave
is shown clearly in these figures. As the solitary wave propagates on the slope. the
shape appears quite asymmetric and the front face of the wave steepens reaching a
vertical slope which marks the beginning of the breaking process. From this point, a
water jet is formed at the crest of the plunging wave, and this jet is projected forward
until it impinges upon the leading portion of the wave, the still water region ahead, or

the “dry” slope depending on the initial wave height of the incident solitary wave and
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the slope investigated. These define where the wave breaks relative to the original
shoreline. The shape and trajectory of the jet after breaking have implications with
regard to the ingestion of air and production of turbulence in the breaking process;

these free surface characteristics were measured carefully in the experiments.

The numerical results from Grilli et al. (1997) using a two-dimensional fully non-
linear potential low wave model (FNPM) are also shown in Figure 5.15 and Figure
5.16 to compare with the experimental results. The numerical model was solved by
the Boundary Element Method (BEM) and the calculation was carried up to the
point where the jet touches the water ahead. After that point since a singularity
forms at the jet contact point the computing has to be terminated. The normalized
time for each case is shown in the figure also where t* = f\/m To compare with
the numerical results of Grilli et al. (1997), the origin of time is chosen when the crest
of the wave is at the toe of the slope. (This is different from that used in the earlier
discussion where the time origin was set as the time wave crest was located one-half of
the characteristics length of solitary wave (L/2) from the toe of the slope.) Also, Grilli
et al. (1997) chose the toe of the slope as the origin of the x coordinate, and positive
x was directed shoreward. In the following, this coordinate system is adopted to
present the experimental results from the present study in order to compare directly
to the numerical results of Grilli et al. (1997). In both Figure 5.15 and Figure 5.16 it
is seen that the experimental wave profiles after breaking tend to lag that predicted
by the numerical model for the same non-dimensional times, ¢*. This may due to the
influence of bottom and sidewall friction in the experiments, which are neglected in

the inviscid non-linear theory.

In Figure 5.17 and 5.18 the shapes of the jet for the times when the tip of the
jet nearly touch the front face of the wave are shown in detail for H/hg = 0.30 and

H/hy = 0.45, respectively. It can be seen that the jet from the experiments is different
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Figure 5.15: Comparison of breaking and post-breaking wave shape obtained from
high-speed video and from numerical results of Grilli et al. (1997) for H/ho = 0.30.
The solid line is the experimental results and the dashed line is the numerical results.
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The solid line is the experimental results and the dashed line is the numerical results.
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from that in numerical results near the location of jet impact. The experinientally
defined jet is considerably thinner than its numerical counterpart. In Figure 5.19
the jet shape obtained from experiments is presented for H/hy = 0.45 for a non-
dimensional time chosen such that the location of the tip of the jet is approximately
the same as that in numerical results. This corresponds to time shift of about §t* =
0.183 and the time in the experiments is t* = 12.913 instead of 12.73 used in the
numerical results. When compared this way, the trajectories of the jet are similar but
the jet thickness from the experiments is generally about one-half of that obtained
from the numerical simulation. This difference shows that even after solving a fully
non-linear numerical model it is difficult to define the location and details of the free

surface.

The variation of the ratio of the local wave height to the incident wave height
at the constant depth portion of the wave tank, H'/H, is plotted in Figure 5.20 as
a function of the ratio of the depth in the constant portion of the tank to the local
depth, hg/h. for both the experiments and the numerical results of Grilli et al. (1997).
The region investigated in the experiments is from the shoaling region just before
breaking to a relative distance x/hy = 13.83 for H/hy = 0.3, and to x/hy = 13.89 for
Hy/hy = 0.45. As before, the experimental results were obtained from a frame-by-
frame analysis of the high-speed video. Since the crest of the wave is often somewhat
flat after wave breaking, a relatively large error may exist in defining the position of
the crest. Nevertheless, in both cases the agreement between the experiments and the
numerical theory for the shoaling, maximum wave height at breaking, and the general
collapse of the wave is very good. These good agreements demonstrate that although
the details of wave breaking are not possible to model, the global parameters such as
wave shoaling curve, and the wave profile outside of the breaking area can be obtained

relatively accurately. This “macro agreement” past breaking will be revisited in the
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Figure 5.17: Detailed comparison of breaking jet obtained from high-speed video and
numerical result at time of impact of jet in front of wave for H/hy = 0.30. The solid
line is the experimental results, the dashed line is the numerical results from Grilli et
al. (1997).

section that discusses the run-up of breaking and broken waves.

5.3.1.2 Geometry of the Jet

With plunging breaking waves, the water jet projecting ahead of the wave can
cause turbulence, energy dissipation, and the entrainment of the air bubbles when
it impacts the water surface. To gain more knowledge of the characteristics of the
plunging jet. the geometry of the jet for one case was also measured in the experi-

ments. The incident wave height of the solitary wave investigated was H/hy = 0.30,
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Figure 5.18: Detailed comparison of breaking jet obtained from high-speed video and
numerical result at time of impact of jet in frout of wave for H/hy = 0.45. The solid
line is the experimental results, the dashed line is the numerical results from Grilli et

al. (1997).

the bottom slope was 1:15. A schematic drawing of the jet of a plunging breaking
wave is illustrated in Figure 5.21. Three parameters were used to define the jet: (i)
The trajectory of the tip of the jet. This trajectory will define the motion and loca-
tion of the jet and the impact point. The distance between the tip and the breaking
point with respect to the constant water depth seaward of the slope, i.e, ((a, — )/ hy,
yi/ho) was used to represent the trajectory. (ii) The length and thickness of the jet
before impingement. The length of the jet L; was defined as the horizontal distance
from the tip of the jet to the nearest location of the wave surface which was vertical,

as shown in Figure 5.21. Two parameters were used to define the thickness of the jet;
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Figure 5.19: Detailed comparison of breaking jet from numerical result to experimen-
tal shape after shifting the latter by ot* = (0.183 at time of impact of jet on front of
wave for H/hy = 0.30. The solid line is the experimental results, the dashed line is
the numerical results from Grilli et al. (1997).

one is the thickness of the jet at the wave vertical plane, i.e, L. the other is the thick-
ness of the jet at half length of the jet, i.e, L. These two variables not only describe
the thickness of the jet but they also show how the thickness changes at different
locations. (iii) The horizontal impinging velocity of the jet. This can describe “the
strength of the impingement™, i.e., how strong the momentum exchange happens at

the impingement point.

Figure 5.22 shows the trajectory of the tip of the impinging jet. In the Figure
5.22 a curve which is denoted as the “free-falling” curve as simply the trajectory of

a free-falling jet is also shown. The initial horizontal velocity of the free-falling jet is
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Figure 5.20: Comparison of variation relative wave height on slope H'/H to the
relative water depth ho/h from experiments and from numerical results. The circles
are the experimental results for H/hy = 0.45, the triangles are the experimental
results for H/hg = 0.30, the dashed line is the numerical results from Grilli et al.
(1997) for H/hg = 0.45, the solid line is the numerical results from Grilli et al. (1997)
for H/hy = 0.30.

chosen to be the wave celerity in the constant depth region seaward of the slope, and
the initial jet tip position was chosen from the experiment. The assumption is made
here that the water particle velocity at breaking is essentially equal to the wave speed
just before the wave propagates up the slope. Thus, the trajectory can be described
as:

Yth = — 3 + Yo (5~9)

g [:L'th - :I;i,()]z
2 Cin

where (x4,,y4) 18 the theoretical location of the tip according to free-falling assump-
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Figure 5.21: Definition sketch of the jet produced by the plunging breaking wave

tion, (20.ys0) is the initial jet tip location from experiments. and ¢y, = /g(ho + H)
is the theoretical wave celerity in the constant depth region. The good agreement be-
tween the experimental results and the free-falling curve shows that once the water jet
is propelled from the breaking wave, the trajectory is the same as that of a free-falling
jet, until it impinges on the free surface. To verity this result, the horizontal velocity
of the jet tip was also calculated from the high-speed video images, and is shown
in Figure 5.23 as a function of the jet location with respect to the breaking point
(xy, — x¢)/ho. The horizontal velocity was computed by dividing the distance between
the  coordinate of the tip in consecutive images by the time interval between frames.
Because of the limits of the spatial and time accuracy of the high-speed video, the
velocity data obtained this way have a relatively large variation, especially when the
tip of the jet is close to the free surface. The shape of the tip makes the measurement
of the tip location difficult. Large variation also exists at the initial stage of the jet

because the jet dimension is very small and the error associated with obtaining the
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Figure 5.22: Trajectory of the tip of the jet produced by the plunging breaking wave.
The triangles are the experimental results, the solid line is the fitted free-falling curve.

jet tip location from the video images is relatively large. Nevertheless, it seems that
the horizontal velocity of the jet tip is almost constant over most of the jet trajectory.
The theoretical wave celerity ¢, described above is also shown in the Figure 5.23.
The results suggest that the wave velocity at breaking is of the same order as the
wave celerity in the constant depth region offshore. This has been pointed out by

other rescarchers, for example, Skjelbreia (1987).

The water velocity V;, and the angle of impact of the jet trajectory, 8,,, at impinge-
ment can be derived from the free-falling jet trajectory. If we assume the maximum
height of the wave at breaking is H, measured from the free surface where impact

will take place, the wave breaking velocity is Vi, &= ¢y,. the impingement velocity and
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Figure 5.23: Horizontal velocity of the tip of the jet produced by the plunging breaking
wave. The triangles with the dashed line are the experimental results, the solid line
is the theoretical wave celerity of the incident solitary wave in the constant depth
regiomn.

angle is:

Vin = /&, +29H, (5.10)

On = arctan[-i] (5.11)

The length of the jet with respect to the distance between the location where the
wave crest breaks. i.e., x;. and the location of the tip, wy, is shown in Figure 5.24. It
was seen that the length of the jet increases linearly as the plunging breaking wave

and the jet propagates on the slope. A linear curve from linear regression analysis is
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Figure 5.24: Horizontal length of the jet produced by the plunging breaking wave.
The triangles are the experimental results, the solid line is the fitted curve from a
linear regression analysis.

also presented in the figure as the form:

L
ZL = 0.282]
hq Ly

T 067 (5.12)

Since the velocity of the water jet tip is constant from above analysis, the wave
celerity of the plunging breaking wave is less than the jet tip velocity at the order of

incident wave height (0.282) from the linear regression analysis.

The thickness of the jet at the middle of the jet and the thickness of the jet at the
location that the plunging wave surface becomes vertical are shown in Figure 5.25. It

can be found from the experiments that both these measurement for the jet thickness
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Figure 5.25: Thickness of the jet produced by the plunging breaking wave. The
triangles are the experimental data for L., the circles are the experimental data for
Ls. The solid line and dashed line are the fitting curves from linear regression analysis
for L,, L3 respectively.

are almost constant. The thickness of the jet at the middle length, i.e, L3, is about

half of that at the base of the jet Lo.

The overall geometry of the impacting jet produced by the plunging breaking
wave was measured accurately during the experiments. These geometric parameters
which describe the jet associated with the plunging breaker can be used to model
the jet impingement process perhaps leading to a better understanding of the air

entrainment, and the energy dissipation associated with plunging breaking waves.
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5.3.1.3 Splash-Up

As the plunging breaker propagates up the slope, the jet propelled from the wave
may strike the dry bed of the slope or the water ahead of the wave depending on the
incident wave height and the slope of the beach. Figure 1.1 showed the photographs
of a case where the jet impinges on the water ahead of the wave. As the jet impinges
on the free surface ahead of the wave, a reflected jet is propelled from the impact point
and the splash-up process is initiated. The reflected jet appears not to be symmetric
with the incident jet as shown in Figure 1.1-(e), but reflects at a angle greater than
the incident angle perhaps due to the movement of the jet and plunging wave with
respect to the slope. The surface of the reflected jet is not as smooth as the incident
jet, and drops can be seen to separate from the splash-up jet. As the incident wave
moves toward the shoreline, the shape of the splash-up (reflected) jet changes and
curves back toward the incident wave, more and more water was dropped on the
incident jet in the form of spray and drops as time progresses. Finally the incident
jet breaks up and the whole reflection structure collapses into a turbulent mess with

apparent vortex generation. This process can be seen clearly in Figure 1.1-(1).(j).

Shortly after the impingement of the incident jet on the free surface the originally
smooth wave surface around the impact point becomes rough, as shown in (d) of
Figure 1.1 which suggests that a short wave is generated reversely propagating with
respect. to the incident wave. The rough area caused by this reversed wave gets larger
as the splash-up process continues, and the air entrained into the wave and jet can

be seen as the form of the bubbles in the pictures.

The splash-up process described above can be used to explain the generation of
the counter-rotating vortex proposed by Skjelbreia (1987). The stage of the reflection

process is illustrated in Figure 5.26. In this illustration, the incident jet. reflected jet,
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reverse flow under the impingement point, and the motion of the water separated from
the splash-up jet are shown diagrammatically. The direction of the flow is represented
by the arrows. Three possible vortices are illustrated here: (i) the clockwise vortex
formed by the incident jet and the reversed flow under the jet, (ii) the clockwise
vortex formed by the reflected jet from the impingement point and the reversed flow
generated by the impact of reflected jet on the water, and (iii) the vortex formed by
the flow of water separated from the splash-up which falls on the incident jet and the
water flow beneath the impingement point. This vortex is counter-clockwise rotating
as shown in the sketch and could only be formed if the jet penetrates a significant
depth of water before splash-up, which can also be found in Figure 1.1 -(i) and
(j) where the complete wave breaking and splash-up process is shown. Initially the
amount of spray and drops separated from the splash-up is small and the water depth
of impingement is small; thus, the vortex is very weak. When the wave is close to the
initial shoreline position, most of the water in the splash-up jet will fall back toward
the incident wave, and the strength of the counter-clockwise vortex increases. When
the broken wave cousisting of the incident jet, the reflected jet, and the plunging
wave behind collapses, three “large” vortical structures are left in the flow and finally
transform to smaller vortices and show evidence of energy dissipation. This discussion
has been primarily qualitative, and the existence of these vortices must be verified
by experiments directly using methods such as particle image velocimetry. Skjelbreia
(1987) used velocity measurement by Laser Doppler Velocimetry (LDV) to infer the

existence of counter-rotating vortices.

If the incident wave height of the attacking solitary wave is small, the wave breaks
up the slope near the original shoreline. Thus, the point of impingement of the jet
generated by the plunging breaking wave is located on the dry slope rather than on

the water surface. In this case, a reflected jet cannot be produced. and the incident
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Figure 5.26: The illustration sketch of the vortices generated by the plunging breaking
wave

jet and breaking wave behind the jet simply collapse after breaking. A photograph
of this kind of plunging breaking is presented in Figure 5.27 (a). For comparison, the

case of plunging breaking with splash-up is shown in Figure 5.27 (b).

The reason for the difference between wave breaking with and without splash-up is
puzzling, but perhaps it can be explained by considering two simple cases of a moving
water jet impinging: (i) on a dry inclined plate or (ii) on the surface of a quiescent pool
with a small depth. Because the scale of the jet and its Reynolds number are relatively
large, it is reasonable to neglect viscous effects and the effects of surface tension
relative to the kinematics and dynamics of the problem. Considering first the case
of a moving jet impacting a dry sloping surface, if assuming zero vorticity associated
with the jet. one can use potential theory to describe the jet-plate interaction, e.g.. see
Milne-Thomson (1968). The impingement point, considered as the center of the jet,
is a stagnation point that separates the flow running up the slope from that running

down the slope. A jet that is reflected from the bottom and directed upward is not
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generated and the run-up tongue is simply composed of the water associated with the

portion of the jet running up along the slope.

When the plunging jet impacts the surface of a small depth of water, the jet
interacts with the original still water surface before reaching the sloping bottom.
This physical process is complicated and various vortical motions are generated such
as those three types discussed earlier in the small region composed of the plunging
Jet. the water beneath the impingement point., and the base of the incoming breaking
wave. Here only a tentative explanation is proposed to describe this complex process.
When the translating jet impacts the water surface it will push a “wedge shape”
portion of water that was originally still (zero water particle velocity) forward up the
slope to form the run-up tongue. At the same time the momentum exchange between
the jet and the water up-slope redirects the jet upward and away from the slope, i.e..
prevents it from running along the slope as in the dry slope case. Since the breaking
wave and the impinging jet advance shoreward with a relatively large speed (close
to the celerity of the wave in the constant depth region), the down-slope force that
acts on the jet as it impacts the quiescent region is relatively large and the water
associated with it can be deflected upward relatively violently. Thus. the reflected
jet and splash-up is produced. (A physical process that may be analogous to this
splash-up is how the snow in the path of a snow-plow is deflected forward into the air

by the moving plow.)

Considering the difference in the breaking process between the “dry slope” break-
ing and the case of breaking in a depth of water, the development of vortices would be
very different. In the case of plunging breaking without splash-up as shown in Figure
5.27. since no reflected jet generated, one would not expect counter-rotating vortices
to be found. but this must be verified by experiments. Also, the energy dissipation

and the resulting run-up process must be different in these two cases because of the
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(b)

Figure 5.27: Photographs of two cases of the plunging breaking of solitary waves on
1:15 slope. (a). Plunging breaking without splash-up; H/hy = 0.10. (b). Plunging
breaking with splash-up; H/hg = 0.40
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difference between the impingement processes. This will be discussed later in this

chapter when the numerical and experimental run-up results are presented.

5.3.2 Breaking Solitary Wave Run-Up — Comparison with
Results from the WENO Scheme

In this section the numerical results from the WENO scheme described in Chapter
3 to treat breaking solitary wave run-up will be presented and compared to experi-

mental results.

5.3.2.1 Wave Amplitude and Velocity Time-Histories

The water surface time-histories at eight different locations for an incident relative
wave height H/hy = 0.263 breaking on a 1:19.85 slope are presented in Figure 5.28.
Both the numerical results from the WENO scheme and the corresponding experi-
mental results from the wave probe are shown. The eight locations shown cover the
range from the toe of the slope to locations above the initial shoreline position. The
scale of the ordinate of each part of the figure is the same so that the relative height
of the wave at different locations can be compared easily. It can be seen that as the
wave runs up the slope the wave height increases gradually and the front face of the
wave steepens because of the non-linear effects. At breaking, the front face becomes
vertical, and shoreward of this position the wave height decreases dramatically. The
numerical scheme can model this wave shoaling and decaying process well, as the
good agreement between the numerical results and experimental results demonstrate.
It is noted that at locations close to the initial shoreline position (Figure 5.28 (e) and

5.28 (1)), the numerical scheme predicts a much steeper water surface time-history
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than experiments. Since the breaking process is only represented as a sharp discon-
tinuity in the numerical model, this difference is probably due to the over-simplified
numerical modeling of the wave breaking process. Also, it has been noted before that
in the experiments the existence of the plunging jet and air entrainment associated
with the breaking wave can reduce the accuracy of the measurement from the wave
probe; this error may also contribute to the disagreement between experimental and
numerical results. Zhang (1996) showed by numerical simulation that dispersion ef-
fects may be important during the run-down process for non-breaking solitary wave
run-up. This statement may also be true for breaking solitary waves, as shown in
Figure 5.28 (b)-(d). It is seen that the numerical scheme is relatively poor in treating
the run-down process. The numerical results show the existence of a bore propagating
away from the slope. but only a somewhat undular reflected wave was recorded in
the experiments. During the experiments, it can be found that a “hydraulic jump” is
generated near the initial shoreline by the run-down water along the slope, which can
be seen in Figure 5.28 (d). The “hydraulic jump” does not propagate and essentially

generates the undular reflected wave at the end of the run-down process.

Figure 5.29 shows the water particle velocity time-histories during the run-up
process for a relative incident wave height: H/hy = 0.263. These are the same con-
ditions as shown for the wave amplitude time-histories in Figure 5.28. The velocities
were normalized by /ghy as before. The measurement was at mid-depth. Because
of the relatively low sampling rate of the LDV system used for the velocity measure-
ments, velocity measurements for locations above the position of the initial shoreline
are not available; only the locations from the toe of the slope to a location near the
initial shoreline were sampled. For the location near the toe of the slope, the numer-
ical result agrees well with the experiments. The velocity time history is similar to

the original solitary wave shape, which shows the reflection from the slope before the
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Figure 5.28: (a)-(d) Run-up of solitary wave with H/hy = 0.263 on 1:19.85 slope.
Normalized wave amplitudes are shown as a function of normalized time at different
locations. The solid line is the result of numerical simulation, the dashed line is the
experimental data from the wave probe.
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Figure 5.28: (e)-(h) (coutinued) Run-up of solitary wave with H/hy = 0.263 on 1:19.85
slope. Normalized wave amplitudes are shown as a function of normalized time at
different locations.
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run-down process must be small. (This has also been observed from water surface
observations by Synolakis (1986).) In the following section this property of breaking
solitary wave run-up will be used in developing an energy balance model to predict
the maximum run-up.) The numerical simulation overestimates the maximum veloc-
ity near that point of wave breaking, as can be seen in Figure 5.29 (b). Just after
the wave breaks, experimental data are not available in the breaking region due to
the presence of bubbles generated by the plunging jet of the breaking wave. These
bubbles obscure and scatter the laser beam of the LDV. Past the breaking point, the
“triangular shape” of the variation with time of the breaking wave velocity is seen
very clearly both in experimental and numerical results similar to the water surface
variation shown in Figure 5.28 (¢), (d) and (e). Overall, the numerical results agree
well with the experimental except in the region close to breaking. It is obvious that
the details of wave breaking are so complex that they cannot be simulated by this

simplified shock model.

5.3.2.2 Free Surface Profiles

The water surface profiles, i.e., the water surface elevation variations with distance.
for an incident wave height of H/hy = 0.30 are presented in Figure 5.30 for different
non-dimensional times. Figure 5.30 covers the full run-up and run-down process. The
numerical results from the WENO scheme presented in Chapter 3 are compared to
the experimental data of Synolakis (1986). The experimental results were obtained
from a combination of 10 ~ 12 wave probes, and the variation of the free surface
with distance at different times was constructed from the water surface time-histories
at various locations. As the wave shoals, the front face becomes steeper compared
to the rear face and the shape becomes asymmetrical, see Figure 5.30 (b) and (c).

The numerical results clearly show this trend and are confirmed by the experimental
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Figure 5.29: (a)-(d) Run-up of solitary wave with H/hy = 0.263 on 1:19.85 slope.
Normalized wave velocities are shown as function of normalized time at different
locations. The solid line is the result of numerical simulation, the triangles are the
experimental data from LDV.
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data. At t* = 10 the numerical results overestimate the maximum height of the
wave by about 10%. As time increases, the front face gets steeper and ultimately
becomes vertical, this is defined as the breaking point in the numerical model. This
occurs for 15 < * < 20. The wave height reaches a maximum value at this time
and decreases after the wave breaks. As described before, the wave probe cannot
accurately measure the details of the breaking wave front because of the air entrained
in the breaking wave. Nevertheless, the shock-like front face of the breaking wave
is found in Figures 5.30 (b) and (c¢). There appears to be a shift in z/hy of the
front face of the breaking wave between the numerical data and experimental data
as seen in Figure 5.30 (¢). Considering the violence of the wave breaking process
and the simplicity of the numerical model, this shift may either be caused by the
over-simplified model or the measurement error associated with the breaking wave or

a combination of both.

As the breaking wave propagates up the slope, it collapses near the initial shoreline
position and the wave height decreases dramatically. These processes described in
section 5.3.1 were found in the experiments, i.e., the jet formation and the creation
of the vortices and the splash-up. However away from the front tip of the wave, the
shape changes slowly. The physical length of the wave collapse region is around the
order of the initial water depth and is small compared to the characteristic length of
the solitary wave. This implies that, including the shock structure into the long wave
model, the long wave assumptions should still be valid even during the wave breaking
process. The favorable agreement between the numerical results and the experimental
results found in Figure 5.30 (d) and (e) provides additional support for the shock
model. There are some differences between the numerical data and experimental
data near the run-up tip shown in Figure 5.30 (g), (). These discrepancies may be

due to the assumption of the hydrostatic pressure distribution in the shallow water
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equations as explained by Lin et al. (1999), or simply that the shock model cannot
model the details of the complicated process of the jet and the splash-up. The tip
effects get smaller and finally disappear as the wave swashes up the slope. The
numerical results agree well with the experiments for this stage (Figure 5.30 (e) and

(f)). The maximum run-up oceurs about * = 37.

The wave run-down process begins after the wave reaches the maximum run-up.
The water retreats as the trailing edge of the solitary wave still propagates toward the
slope. This retreating stream interacts with the wave tail and creates a region of large
free surface curvature near the initial shoreline position. This interaction develops a
“hydraulic jump” near the initial shoreline as seen in Figure 5.30 (j). The hydraulic
jump is modeled as a discontinuity (shock) in the numerical method also. The sharp
angle of the water surface obtained in the numerical results shown in Figure 5.30 (k)
and (1) is not realistic. In the laboratory the front collapses and foam can be found in
this region. However, both the position of the jump and the height difference between

upstream and downstream are predicted well by the numerical method.

It can be found that the thickness of the run-down stream predicted by the nu-
nmerical method is smaller than the experimental results. The difference may be due
to a systematic error associated with the capacitance wave gages used by Synolakis
(1986). When using a wave gage to measure the height of a stream with a significant
velocity. the depth measurement is larger than the actual value because the stream
tends to run-up on the probe due to the velocity of the run-down stream. this has

been discussed in Chapter 4.
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Figure 5.30: (a)-(d) Run-up of solitary wave with H/ho = 0.3 on 1:19.85 slope. Nor-
malized wave surface profiles are shown as a function of normalized distance from the
initial shoreline at different times. The solid line is the result of numerical simulation,
the black circles are the experimental data from Synolakis (1986).
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5.3.2.3 Shoreline Movement and Maximum Run-Up

The normalized run-up is shown as a function of normalized time in Figure 5.31
for a solitary wave with H/hy = 0.30 on a 1:19.85 slope with the numerical results
compared to the experimental results. The experimental data were obtained using
the high-speed video camera. As the wave propagates up the slope, the contact line
found between the tip of the run-up tongue and the dry slope is used to locate the
actual shoreline at different times with the help of a scale attached to the surface
of the slope. Because of the limited distance the high-speed video can cover on the
slope, the experiment was repeated three times with the high-speed video camera
moved to a new location each time. In this way the run-up time-history was recorded
up to the maximum run-up. The results from different runs were assembled to give
the whole picture of the run-up process. During the run-down process, since the
slope was already wet, the contact line was indistinct and almost undetectable in the
video recording. Thus, only the run-up phase of the shoreline position is presented.
Good agreement was found between the numerical results and experiments which
shows that the WENO numerical scheme can simulate the run-up and the shoreline

position with relatively high accuracy.

The normalized maximum run-up, R/hg, is shown as a function of incident wave
height H/hy in Figure 5.32, 5.33 and 5.34 for three slopes: 1:5.67, 1:15, and 1:19.85
respectively. The experimental data for the 1:5.67 slope are from Hall and Watts
(1953). where the solitary wave was generated by the simple impulsive motion of a
vertical bulkhead. The experimental data for the 1:19.85 slope came from Synolakis
(1986) for initial water depths ranging from 6.25 cm to 38.32 cm. The data for 1:15
slope were measured by the author for the different water depths shown. The wave
generation systemn is the same for Synolakis’s (1986) data and author’s. Note that

the data for 1:15 slope presented are from two wave tanks: the CWT and the CERC
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Figure 5.31: Run-up of solitary wave with H/hy = 0.30 on 1:19.85 slope. The nor-
malized shoreline position is shown as a function of normalized time. The solid line
is the numerical results. the circles are experimental data from high-speed video.

tank. These figures show clearly that the maximum run-up is predicted well by the

WENO scheme combined with the non-linear shallow wave equations.

It was found in section 5.3.1 that the wave breaking process was quite different with
and without splash-up. In figures 5.32 to 5.34 although the maximum run-up increases
smoothly and there is no sudden increasc or decrease between the plunging breaking
without splash-up and plunging breaking with splash-up. However, the change of the
maximuin run-up with respect to the incident wave height differs significantly for the
two case of breaking, i.e., with and without splash-up. This is shown in Figure 5.35
where the incremental change in the maximum run-up with wave height of a solitary

wave on a 1:15 slope, dR/0H, is shown as a function of relative wave height, H/hy.
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Only the numerical results using the WENO scheme are shown. From experiments,
the maximum wave height H/hg of the solitary wave which breaks without splash-up
1s 0.14 for 1:15 slope. this splash-up limit line is shown in Figure 5.35 as well as the
breaking limit line proposed by Synolakis (1986), i.e., Eq. 5.5. Two lines were fitted
to the data in the two regions separated by the splash-up limit line. It can be seen
clearly that the slope of the incremental change is different in these two regions, i.e.,
the curvature of the curve R/hy vs H/hg is different. This suggests that the splash-up
and plunging incident jet may affect the global variables of the wave run-up process
such as maximum run-up, and as we have discussed, perhaps due to the different

processes of air entrainment, vortex generation, and decay.

The normalized maximum run-up, R/hg, is shown as a function of the cotangent
of the angle of the slope investigated, cot /3, in Figure 5.36. Both the data for non-
breaking and breaking solitary wave run-up are presented and separated by a line
which represents the wave breaking limit (Eq. 5.5). The maximum run-up for non-
breaking solitary wave was calculated from the non-linear theory in Chapter 3 (Eq.
3.52). and that for breaking solitary wave was obtained from the WENO numerical
model. It can be seen in Figure 5.36 that the variation of the maximum run-up
with the angle of the slope relative to horizontal is different for non-breaking solitary
waves and breaking solitary waves. In the non-breaking region. the maximum run-up
increases as the angle of the slope decreases, while for breaking waves the maximum
run-up decreases as the slope becomes gentler. This is caused by two different effects.
For non-breaking waves the energy dissipation relative to the incident wave energy is
small and the run-up is controlled by gravity. For example, consider the same relative
incident wave incident upon two different slopes. The forces that cause the run-up
on the slope, neglecting bottom friction, are opposed by the component of weight of

the run-up tongue acting parallel to and down the slope. Thus, as the slope angle
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decreases, assuming the same volume in the run-up tongue for the same incident
wave height and the two different slopes. the component of force opposing motion
up the slope decreases allowing increasing run-up. In the case of breaking waves,
this variation of the weight component with change in slope still occurs, but now the
energy dissipation associated with wave breaking becomes a significant fraction of the
incident wave energy and tends to control run-up. This can be seen in the following
argument. As the angle of the slope decreases for a given offshore wave height, the
wave will break further offshore. If one uses the bore model to describe the energy
dissipated by breaking, as the angle of the slope decreases the bore will propagate a
larger distance along the slope leading to increasing energy dissipation with decreasing
slope angle. If one accepts this model, it appears from the experiments that for the
breaking wave case, energy dissipation rather than gravity forces (weight component)
may be in control. Therefore, the converse is true for breaking waves compared to
non-breaking waves and as the angle of the slope decreases the run-up also decreases.
This will be discussed later when we treat the run-up model constructed from energy

conservation principles.

5.3.2.4 Energy Dissipation

One important effect of the wave breaking process is energy dissipation. The
relatively good agreement between the numerical results and the experimental results
for wave shape, water surface time-histories, and the maximum run-up suggests that
the shock simplification used in the numerical model can represent some effects of wave
breaking at least with regard to the global properties of the wave. Thus, taking a
bore, i.c., a moving hydraulic jump, as a model of the broken wave, we will estimate
the energy dissipation associated with wave breaking. It is realized that the wave

breaking and splash-up processes as shown in Figure 5.27 are extremely complicated.



gIEP [RJULMILISAXS
OT€ SITFURLIY O} “SHISOT [RILIDIUII [} O SI[DIL) MO[[OT] 9Y) [ITM Ul PIjOs oY [, "JYSIO oarM JUSPIOUL JO TUOTIIUNY
B SE UMOUS ST An-und wnmxew pozeuniou off I, odo[s 29°G:] 10 aakm AIe}I[os jo dn-uni wnwixey :ge'q omsrg

‘WH
S0 S0 +'0 SE°0 €0 ST0 0 S1°0 Lo s0°0 0
e S S — - - I - L 1 — c
- T To
s3nsay [ByuowIddxsyy v !
S)NS3Y [eoLIPWNN o - | L bo
- L |
e}
—
- 90
v -
- i
v? o . 80 w
v - >
s
v O
o o
-
L
. © - Tl
v o
o
©
o R



‘BlRp [ejuswuLiadxe
1R S[OCIUAS O} "S)NSAT [RILIOUWINU 9T} IR S9[II1) MO[[OY 9} I SUI[ PI[OS o1, "JYSIOY dARM JUaPIIUT JO morHuNg
B S WMOTS ST dn-unt mwnuixew pazijewiou 9], odos ¢1:] uo aavm AIeos Jo dn-ung Wnwxepy ¢e:¢ aingdi

c-.—\:
<0 SPo 0 Se°0 €0 rall) 0 S1°0 | 1) SO0 0
L . 1 1 L — L L L . ——— N - PEE— — c
. o » bO

SI[NSIY [BI2LIdWNN —o- / T

OQUAD) W 0T'9L=Y v Aﬁ |
C(OUAD) WO 96°09=Y m . «o
L (OUAD) WO TLSh=Y » Py e

[ig] %
2 OUAD) Wo §poe=4 o | 3
C (LAAD) W 8HoE=Yy v o <Qwr 0
| (LMD) uwg6rT=Y awm.»%l =
M $°0
® N\Vﬂ =

vo ,

®e o - 90
e
® O
v Yo A! L0
I

vy |

‘404 80
o OV
(6}

60




“RJRP [BILWLIAXO oIv
SOTEURLI} o1} ‘SH[NSOI [LILIDUINU O1[) 918 SO[IIID MO[[OY 9} M OUI[ PI[os oY, IS sALM JUSPLIUL JO UOTIOUN] ©
S UMOTs s1 di-Ung wniXew Pozieirion o], =odo[s ¢ GT:T U0 9svm ATeirfos Jjo dn-unt wnwixey Fe-¢ oInsrg

‘4/H
S0 sP°0 0 S€°0 £0 $T0 0 ST'0 10 S0°0 0
L I L S J— \J Q
SINSIY [EOLIdWNN] —o- g L 1o
f 0
SINSIY [RyudWLIdXH v 7 7

6
4

Yo
ov




157

N3107 2ARM JUOPIOUT JO UOIPUNY © st odors

GT:] ® WO oaem ATRIOS ® JO [ /370 WSO oaem [iim dn-und WHWIXRW o} Ul 9FURTD [RIUSWSDU] GE'G 0TI ]

€0

:-.m\:
S Al +°0 SE'0 €0 §T0 o S1°0 10 S0°0 0
L i 4 L R 1 - 1. c
dn-ysedS  jnury yeaaq
AI|”|V _ S0
dn-yseydg ynm | L Z
: . 1
dp-yseids ynoynm; =
m . 2
i OB -st
i -
! ae
4“ “
i _ t4
i i 4
@ \ M
H . (=2}
! ! =
; i §T
SINSIY [edLIdWNN v | " ”
! _ - €
- §f
v
v




158

.«QMTVQ OARM 9AT]IB[I1L aQOELSM [eIdAOS 10]

SOARM FUIYRAIG PUR SUDB[BAIG-UOU 10} of3ue odo[s Jo 10MHUN] € s© vavM AIe)0s Jo dn-unt Wiwixe[y 9¢ ¢ 9ImsI ]

dioo
09 0s or 0 (114 01 0

ywry Sunjearqg - - 8
P0=OWH —o— | .w 3
€0=0/H —v— | Pz
T0=OUu/H —»— /,M
1'0=04/H —e— ' A

_ LOT0H e _
bole




159

| ay(t)
|
|
a,(t)
‘ h
| hy p‘
i Po u:
1 Uy p
| 1

Po

L}
Mo AU e
—-—"”":

Control Volume

Figure 5.37: Schematic sketch for the discription of energy dissipation across a prop-
agating bore
Therefore, this approach to determine the energy dissipation associated with breaking

in terms of dissipation related to a bore is indeed a simplification of the process.

The mass conservation and momentum conservation equations for a bore are the
same as the non-linear shallow water equations written in conservative form, i.e.,
Eqgs. 3.58 and 3.59. except there is a discontinuity (a bore) in the domain to be
considered. The rate of energy dissipation associated with a bore has been analyzed
by Stoker (1957): for completeness his solution is presented herein. Considering a
section enclosed by ag(t) < x(t) < ay(t) such that the region is composed of a fixed
mass, Stoker (1957) sought to analyze the energy dissipation across the bore (see

Figure 5.37). The integrated forms of the shallow water equations (Eqs. 3.58 and
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3.59) for the domain sketched in Figure 5.37 arc as follows:

d (t)
dt Jap(t)

d ay(t) 10 g
T pln+ hjude = / pody — / pidy
at, ap(t) J —ho J—hy

pln+h)ydr = 0 (5.13)

1 , 1 ‘
= agp(f]() + h/())z — 59/)(7]1 + h])2 (514)

where ag(f). ay(t) are the vertical planes upstream and downstream of the water col-
winn that contains the bore., n;, p;. h; are the wave amplitude, pressure and water
depth at the vertical planes, respectively. In the Eq. 5.14, the shallow water assump-
tion of a hydrostatic pressure distribution, p = gp(n — y), has been used to derive the

equation.

For continuous flow without a bore, i.e., a propagating wave without rapid chang-
ing shape. the encrgy equation can be derived directly from considerations of mass
and momentum conservation. Thus, energy is conserved for the non-breaking solitary
wave run-up, as shown before. However, the law of the conservation of energy does
not hold across a bore. Theoretically fluid particles may gain or lose energy crossing
the discontinuity. Since there is no energy source in the bore, the water particles
cannot gain energy when crossing the bore, and energy must be lost. This inequality
will be enforced in the following discussion to get a unique physically possible solution
for the problem. For the same water column considered above, the integral form of

energy equation is:

dE d  [mw u?  pg
— = — n+h)— + =2(n+ h)?dr
o pr - [+ h) + (0 + ) Jda}
m o
+ / prudy — / Potody (5.15)
. —hl - -‘h()
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where the first term in the equation on the right-hand side is the total energy change
within the water column including kinctic energy and potential energy. the second
term and third term respectively are the work done by the environment upon the

water column at the vertical plane ai(t), ao(t).

For the limiting case where the length of the control volume, i.e., ag(t) — a;(t).
tends to zero, the following relations between the physical variables across the bore

can be obtained from Eqs. 5.13 and 5.14:

plm + ha)vr — plno + ho)rg = 0 (5.16)
1 . 1 .
p(n + hy)ugoy — p(no + ho)ugvy = 59/)(7/0 + ho)? — ggp(m +hi)? (5.17)
where
Vg = Uy —f (518)
v o= u—& (5.19)

are the relative upstream and downstream velocities with respect to the bore propa-

gation speed & and:
d(I/()(f) . d(ll(t)

dt dt

Using these relations and assuming a hydrostatic pressure distribution. Eq. 5.15
becomes:

dee 1 _ 1, _ _ _ _
o= 5P1UTL = §P0U0’”O + Pror — Povo + Pruy — Potho (5.21)

where the quantities p; and p; are analogous to density and pressure in gas dynamics

and are defined as:

pi = plni+ i) (5.22)
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_ Pg 2 g _o .
o= =+ h)T = =p 5.23
p 5 (m: + hy) 2" (5.23)

Eliminating the variables v; and replacing p; with p; the energy dissipation rate

in Eq. 5.21 can be expressed in the simple form:

dE mg (po—p)’

_—= 5.24
dt P Apo; ( )

where m is the mass flux across the bore:
m = [)—1171 = [70’1)() (525)

It can be seen that energy is not conserved unless py = py. i.e., the flow is continu-
ous. If a bore exists in the flow domain, energy must be dissipated by the turbulence
produced at the front of the bore. As stated before, wave breaking during run-up is
assumed to be modeled as a propagating bore. Thus the rate of energy loss in the

breaking wave run-up, i.e., dF/dt, can be obtained from Eq. 5.24.

The energy dissipation equation, Eq. 5.24. can be simplified further by solving for
the bore propagation speed E . Since the laws of mechanics are invariant with respect
to axes moving at constant velocities, one of the three velocities in the problem wuy,
uyp, or € can always be assumed to be zero without loss of generality. For example, if
the upstream velocity ug = 0, from Eqs. 5.16, 5.17 the speed of the bore propagation

can be written as :

29 gm 1 .
= (] + = 5.26
#= 204 (5.20)

Substituting Eq. 5.26 into Eq. 5.24, the energy dissipation rate across a bore can

be expressed as the function of the water depths across the bore:
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dE 1 (do + 1) 1
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o
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where d; = h; + 7; is the total water depth.

If the energy dissipation rate D in Eq. 5.27 is integrated over time from the start
of the breaking process to the time of bore collapses T,. (The time T, is defined as
the end of the wave breaking for the run-up process.) The total energy dissipated

can be obtained as:

(do + dy)

T T

c 11 'q .
FEp = Ddt = ~pgldy — di)?[: V24t .
" /o T (

(@21
[\]
oC

The WENO scheme presented in Chapter 3 solves the mass and momentum conser-
vation equations across the shock; the energy conservation equation is automatically
solved according to the above analysis. The total energy in the domain is calculated
directly by integrating the potential energy and kinetic energy over the computing
domain, i.e.. Equations 5.6, 5.7. By comparing the value of the total energy at the

time of the maximum run-up to the initial energy associated with the incident solitary

wave. an estimation of the total energy dissipated by wave breaking can be obtained.

Figure 5.38 is the result of the calculated energy of a solitary wave with wave height
H/hy=0.30 which runs up a 1:15 slope. The energy and volume were normalized as
in Eq. 5.8. It can be seen that as the wave propagates up the slope, the normalized
kinetic energy decreases and potential energy increases since some kinetic cnergy is
transformed into potential energy. A slight increase in total energy was found during
the initial stage of the calculation and needs further investigation. Nevertheless,
the total energy is still approximately conserved before wave breaking since no bore

exists in the domain. When t* ~ 8 the wave breaking process begins, both kinetic

energy and potential energy decrease, but the rate of decrease is slightly different



164
from the computational results. This energy dissipation process stops when the wave
reaches the initial shoreline position. which begins the run-up process at t* &~ 18. The
total energy is again conserved as the kinetic energy decreases and potential energy
increases. The wave reaches the maximum run-up position around t* = 30, where the
potential energy reaches maximum value also. The kinetic energy at this position is
very small, as seen in Figure 5.38. This small amount of energy may be associated
with the mild reflected wave from the slope or the small and negligible water particle
velocity assciated with the run-up tongue and will be discussed later. Past this point.,
the potential energy decreases and the kinetic energy increases as the water begins to
run down the slope. The total volume associated with the wave is also presented in
Figure 5.38 and it is found that the volume is constant for the run-up and run-down
process. which shows the mass is conserved in the computing although slight variation

1s seen which is probably due to computational errors.

The total energy dissipation for the breaking solitary wave run-up can be obtained
by comparing the total energy at the maximum run-up position, i.e., t* = 30 in Figure
5.38. to the total energy in the incident wave, which can be calculated theoretically.
Figure 5.39 shows the dissipated energy calculated this way as a function of incident
wave height, H/hg. for given slopes. Figure 5.40 shows the ratio of the dissipated
energy due to breaking, Fpg, to the energy associated with the incident wave, EI,
as function of incident wave height, H/hq, for given slope. Five slopes ranging from
1:5.67 to 1:50 were investigated. It can be seen that as the incident wave height
increases, the portion of the incident energy which is dissipated increases. For the
1:5.67 slope, wave breaking first occurs when H/hy = 0.137 according to the breaking
criterion proposed by Synolakis (1986), the numerical results confirmn this in that the
energy dissipation is almost zero for H/hy < 0.15. The energy dissipation on more

gentle slopes is larger than that on the steep slope for the same incident wave height.
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Figure 5.38: Calculated normalized energy of breaking solitary run-up with
H/hy=0.30 on 1:15 slope as a function of normalized time. The solid line is the
total energy associated with the wave, the dashed line is the potential energy. the
dash-dotted line is the kinetic energy, and the dotted line is the volume of the wave.
For example, almost 40% of the incident encrgy will be dissipated on a 1:15 slope for
incident solitary wave with H/hg = 0.30, but only 5% on 1:5.67 slope. The energy
dissipation predicted by the numerical model for 1:50 slope is larger than one would
expect, i.e., almost 70% of the incident energy will be dissipated in the process even
for a relative small incident wave height such as H/hy = 0.2; these results may need

further investigation in the future research.

The calculated energy dissipation of solitary waves breaking on a slope obtained
from Figure 5.39 was used to find an empirical formula to model this dissipation. The

following equation obtained from linear regression analysis represents this relation of
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Figure 5.39: Energy dissipation for breaking solitary run-up as a function of relative
incident wave height. Numerical results.

energy dissipated by breaking to the incident wave height and slope reasonably well:

Egp
pgh

| =

(M)

= 0.7(cot3) (5.29)
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Figure 5.41 shows the comparison of this empirical formula with the numerical
results which were used to obtain Eq. 5.29. The abscissa is the numerical results
and the ordinate is the prediction from the empirical formula with a line of identity
shown. From the figure. the empirical formula appears to fit the data reasonably well;

the relatively larger error appears to be for the 1:5.67 slope.
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Figure 5.40: Ratio of dissipated energy to the incident wave energy for breaking
solitary wave run-up as a function of relative incident wave height. Numerical results.

The relatively good agreement between the numerical results of the WENQO scheme
and the experimental results should be investigated further, since the bore structure
used to model the wave breaking process in the numerical model considerably sim-
plifies the physical process it represents. One possible reason for the good agreement
when using this simplified model may be due to the relatively large length scales of
both the incident wave and the run-up process compared to the length scale of the
wave breaking region. In other words. although the wave breaking process is complex
and difficult to be fully understood, the region that it affects is actually small (at the

order of water depth). Thus, from this “macroscopic view”, the wave breaking can
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Figure 5.41: The energy dissipation of breaking solitary wave run-up: Comparison
between numerical results and the empirical formula Eq. 5.41.

be regarded as a sharp discontinuity or an energy sink. In addition, the equations
defining the numerical model correctly represent mass and momentum conservation
across the breaking wave. If the mass and momentum exchange across the disconti-
nuity are treated correctly, then, like the hydraulic jump or the dam-break problem,
one should be able to obtain the global parameters of the characteristics of the wave

run-up process such as the maximum run-up and the wave amplitude time-histories

with reasonable confidence.
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5.3.3 Breaking Solitary Wave Run-Up — An Exploration of

Energy Conservation

In this section the results of an exploratory study of the energy conservation
associated with the maximum run-up of breaking solitary waves will be presented.
The thoughts which are developed here are base on what we will refer to as "the

energy balance model”.

In the previous sections we have proposed a theoretical solution for non-breaking
solitary waves run-up on linearly varving slope and a numerical method to calculate
the run-up of breaking solitary waves. These methods are complicated to use for
prediction purposes. They either require a relatively long computation time or neglect
some effects which may be potentially important according to the local bathymetry
of the coast or special properties of the attacking tsunami. To overcome some of
these problems, an energy balance model has been developed based simply on energy
conservation considerations during the run-up process. Thus. it doesn’t neglect such
effects as non-linearities, dispersive effects, etc. The maximum run-up predicted is

confirmed to some extent by experimental results.

In the following discussion the incident wave energy involved in the run-up process
is specified and a general energy balance equation is presented. This equation assumes
that the wave shape at the maximum run-up position is self-similar and the potential
energy at this position is a function of the maximum run-up and the volume of the
incident solitary wave. (These assumptions were confirmed by experiments as well
as by the numerical model developed in the last section.) The empirical expression
for energy dissipation during wave breaking developed in last section will be used to
account for the energy loss. Based on this energy conservation model and the energy

dissipation model based on a bore representation of wave breaking, a maximum run-
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Figure 5.42: Definition sketch of the energy balance model for breaking solitary wave
run-up

up prediction is presented.

5.3.3.1 Energy Conservation Considerations

Figure 5.42 shows the sketch of the problem investigated. Once the solitary wave
is produced either by the wave generator in experimental conditions or by earthquake,
landslide, etc, in nature, the wave with wave height H propagates towards the beach
with inclination angle /3, runs up on the beach to a maximum run-up R, and then the
run-up tongue retreats and produces the major reflected wave propagating offshore.
(There is also a minor reflected wave which occurs during the run-up process due to

wave-slope interaction.)



171

Consider the control volume, V. shown in Figure 5.42. The control volume is se-
lected in such a way that all the wave motion has been included in the control volume
V. The wave motion and velocity at the seaward boundary of V'is so small that both
the mass and momentum influx at that boundary can be neglected although theoret-
ically the wave length of the solitary wave extends to infinity. The left boundary of V
includes the initial shoreline and the maximum run-up position on the slope. There-
fore, all the run-up and run-down process is confined to the chosen control volume.
This guarantees that there is no mass and momentum flux out of the control volume

V.

The energy inside the control volume is analyzed next. As mentioned above, there
is no mass or momentum flux at either the left or the right boundary; therefore, the
work done by the environment at the left and right boundaries of the system defined
in the control volume is zero. The energy transformation from the initial time t to
the time 7, is investigated. The initial time f; is defined as the time that the solitary
wave has the crest at position Xj. ( X is half of the characteristics length of the
solitary wave (L/2) offshore of the toe of the slope, and L is defined in Eq. 3.25.) The
final time t; is chosen as the moment that the run-up tongue reaches its maximum
position on the slope. All the energy terms involved in the run-up process and the
energy conservation equation are shown in Figure 5.43 and discussed below. The
relative magnitude of each energy term is represented approximately by the width of

the arrow in Figure 5.43.

Initially all the energy inside the control volume V is contained in the incident
solitary wave, i.e., both the kinetic energy and potential energy. This is denoted as

E;. One form of the theoretical solitary wave shape and velocity up to the first-order
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Figure 5.43: Hlustration sketch of the energy balance model
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accuracy are presented before and are repeated here for completeness:

H
n(r.t) = Hsech®(y| —=(x —ct)) (5.30)
3h3
cn
ulx. f — r“ 1
ula, t) T (5.31)
¢ = +glho+ H) (5.32)

By integrating these and related expressions from —oc to oc the total volume, ki-

netic energy and potential energy of a solitary wave with wave height H are obtained:

V = / pnda (5.33)

16 45 1
= P[TS‘hSH]Z

oC nel
Ex = / p(n+h,0)idx (5.34)
ipg s 4pg
A9 e, Ao

3V3 15v/3
Ep = / 20+ ho)ds (5.35)

Ay io

4pg
PJH}

3
2
3V3 ‘o

Where kinetic energy and potential energy with respect to the incident solitary
wave height are shown in Figure 5.44. It can be found that the kinetic energy is
almost equal to the potential energy if the incident wave height is not too large. To
simplify the discussion the following equation for the kinetic and potential energies is
used:

4pg .
Ex~ Ep = 3\”%}{5/2; 3/2 (5.36)

The error associated with the above simplification is less than 7% even for a
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Figure 5.44: The potential and kinetic energy of solitary wave. The normalized energy
is shown as function of incident wave height H/hg. The solid line is the kinetic energy,
the dashed line is the potential energy.

relatively large wave height of H/hy = 0.40.

The solitary wave will propagate towards and run up the slope. As the wave
travels towards the slope, because of the non-linear effects, the wave height increases
and therefore some of the kinetic energy is transformed into potential energy. Thus,
the kinetic energy decreases and the potential energy increases slowly as the wave
propagates up the slope. At the position of maximum run-up, the potential energy
reaches a maximum while the kinetic energy is a minimum and has a value close
to zero. This process was seen clearly in Figure 5.12 for non-breaking solitary wave
run-up and Figure 5.38 for breaking solitary wave run-up and has been discussed

previously. After the maximum run-up is reached the run-down process begins with
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a decrease in the potential encrgy and a corresponding increase in kinetic energy.

During propagation a portion of the energy will be reflected from the slope and a
portion of the energy is dissipated. The dissipation is caused by several mechanisms:
friction at the bottom of the wave tauk, friction at the free surface, i.e., between the

air and the wave. and most important, wave breaking:

Ep=FEpr+ FEpp+ Ep (5.37)

In Eq. 5.37 Ep is the total dissipated energy, Frp is the encergy dissipated by the free
surface friction between air and water, Erp is the energy dissipated by the bottom

friction. and Eg is the energy dissipation associated with wave breaking.

Keulegan (1948) has analyzed the rate of loss of energy due to viscous shear with

the laminar boundary layer beneath the solitary wave on a smooth surface, and found:

dE 4 a9 pdH
= = PRV
dt \/ﬁpg 0 dr
4 4., 9 5 ,, .
— m(g)l/lpyl/zg(,/4H7/4 (538)

where in Eq. 5.38 the energy dissipation rate due to bottom friction was proportional
to the attenuation in wave height dH/dx. Naheer (1978) also investigated the energy
dissipation and viscous damping of solitary waves propagating in a constant depth
over a rough bottom, and the viscous dissipation and attenuation were found to be
small compared to the energy associated with the incident wave. Clearly, for breaking
solitary wave run-up on the slope, the majority of energy dissipation is due to wave
breaking. This is especially true in experiments where the wave tank bottom and the
slope surface are smooth. For rough beaches and other conditions such dissipations

probably cannot be neglected, and corresponding empirical formulae can be used in
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the energy balance model to represent these. Nevertheless, in the following discussion
the dissipation caused by friction will be omitted for simplicity. Therefore, assuming
the energy dissipation is caused mainly by wave breaking, then in Eq. 5.37 Ep =~ E3.
Thus. the energy equation for the run-up process at an arbitrary location on the slope

shoreward of breaking can be expressed as:

E; = Ex + Ep+ Eg + Ep (5.39)

where E and Ep are the kinetic and potential energies, respectively, Ep is the energy
dissipation associated with wave breaking, and Ep is the energy associated with the

reflection.

The reflected wave associated with run-up mentioned in the literature usually
refers to the reflected wave arising both from the reflected wave from the slope be-
fore the wave reaches the maximum run-up and the wave generated by the run-down
process. However, the reflected wave used in the energy balance consideration here
only refers to the wave which is reflected from the slope before the water sheet on
the slope reaches the maximum run-up position. A time-history of the solitary wave
run-up process is presented in Figure 5.45 (denoted as water time-history without
eliminating the run-up tongue in the figure) for a wave gage located half of charac-
teristic length of solitary wave (L/2) offshore of the toe of the slope. The initial wave
height of the solitary wave is H/hy = 0.28, the slope of the beach is 1:15, and the
water depth in the constant depth region before the slope is hy = 30.48 cm. The
portion of the water surface time-history between line A and line B in the figure is
the reflection used in this discussion. and the reflection associated with the run-down
generated wave extended from line B to the end of the recording, i.e., t* > 20. It can
be seen that the specific reflected wave used in this discussion only comprises a small

portion of the total reflected wave system. Therefore, the energy associated with it
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is much smaller. A series of experiments were conducted in the lab to measure this

portion of the energy which is labeled Ep in Figure 5.43.

Figure 5.46 shows the experimental arrangement used to measure the reflected
wave energy. The difference between this setup and that used for measuring run-up
discussed earlicr lies in the arrangement of the slope. Instead of the relatively long
slope used for wave run-up measurement, the slope used in the reflection measurement
only extends from the wave tank bottom to the initial shoreline position. A collection
box with water level lower than that in the wave tank is arranged shoreward of the
end of the slope. Thus, when the incident solitary wave runs up the slope. the portion
of the wave which would normally comprise the run-up tongue and hence the run-
down tongue will flow over the end of the slope and be captured in the collection
box. Therefore. only the reflected wave which is due to the wave-slope interaction,

Eg. will be recorded by the offshore wave gage.

The measured water surface time-history from a wave gage using this experimental
setup is also shown in Figure 5.45 (denoted as water time-history after eliminating
the run-up tongue). The location of the wave gage was the same as that in regular
run-up measurement. It can be seen clearly that the reflected wave from the slope is
very small compared to the wave generated by the run-down from the slope. Another
wave gage was located at the toe of the slope to measure the profile of the reflected
wave and also the maximum height of the reflected wave height. Figure 5.47 shows
this maximum height as function of incident wave height for solitary wave run-up.
From Figure 5.47 we can see that even for a incident solitary wave with wave height
H/hy = 0.45, the relative maximum reflected wave height before the run-down process
is less than 0.03. For such a small wave, the linear wave theory is applicable to
calculate the wave properties such as wave celerity, wave energy etc. For example,

the time-history measurement can be converted into spatial measurement according
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Figure 5.45: The experimental wave time-history for solitary wave run-up with
H/hy = 0.28. The solid line is the normalized wave amplitude after eliminating of the
run-up tongue, the dashed line is the wave amplitude obtained without eliminating
the run-up tongue.

to linear theory, the wave energy including potential energy and kinetic energy can be
computed by integrating this spatial wave signal over the wave record. i.e, Eqs. 5.6

and 5.7. By doing this. the energy associated with the reflection Eg can be obtained

and it was found that Er ~ 0 compared to the incident wave energy.

The kinetic energy Fg associated with the water movement at the time of max-
imum run-up is also very small. This kinetic energy comes from the wave energy
associated with the run-up tongue on the slope. It was found from numerical simula-
tions that the water particle velocity of the run-up tongue at the maximum run-up is

very small. Grilli and Svendsen (1989) calculated the non-breaking run-up on a slope
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Figure 5.46: Sketch of the experimental setup used to measure the wave reflection

using the BEM method and found the kinetic energy in the run-up tongue at the
time of the maximum run-up is almost equal to zero. The numerical results using the
WENO scheme presented earlier, i.e., Figure 5.12, 5.13 and 5.38, also shows that the
kinetic energy at the time of maximum run-up is very small. Therefore, the kinetic
energy term in the energy conservation equation, Eq. 5.39, at the time of maximum

run-up, is neglected. ie., i ~ 0.

In the following discussion the remaining terms in equation 5.39, i.e., Fy and Ep
are treated. From these discussions a simple and reasonably accurate prediction of
the maximum run-up of breaking solitary waves is presented. This is contrasted to

the numerical model, which although more accurate, is more difficult to apply.
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Figure 5.47: Maximum reflected wave height for breaking solitary wave run-up after
climinating the run-up tongue as a function of relative incident wave height

5.3.3.2 Potential Energy

If the potential energy. Ep in Eq. 5.39, can be modeled correctly, the energy loss
caused by wave breaking can be obtained from the energy equation, or conversely,
if the energy dissipation can be modeled, the potential energy can be obtained. In
this section, the empirical formula which was obtained using the WENO numerical
model presented earlier (Eq. 5.29) is used to model the dissipated energy due to wave
breaking. Using dimensional analysis a relationship between the maximum run-up
for a breaking solitary wave and the potential energy at the time of maximum run-up

is proposed.

Dimensional analysis will be used as an aid to model the potential energy at the
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time of maximum wave run-up. K. The dependent variables for this run-up process
are grouped into three categories: (i) the incident wave parameters: the wave height
H. the water depth in the constant depth region hy, and the total volume of the wave
V. (ii) the angle of the slope [ and the maximum run-up of solitary wave on the
slope R. and (iii) physical constants: the acceleration of gravity ¢ and the density of

the water, p. Writing this as an expression in functional form:
f(Ep.H hg, V. R.cot3.p.g) =0 (5.40)

where Ep is the potential energy at the time of maximum run-up.

Choosing the variables hq. p and g as the independent physical variables, we obtain

the following expression:

E RV H
—P.s = F(—. 5,5 cot3) (5.41)
pghi ho hg ho
(Only two-dimensional run-up is considered here and the width of the section is

assumed to be unity and non-dimensional, thus, the dimensional parameters above

such as the volume of the water are one order less in length scale.)

The relation among the non-dimensional variables in Eq. 5.41 can only be obtained

from numerical simulations or experiments.

To calculate the potential energy at the time of the maximum run-up, the shape
of the full run-up tongue has to be determined. Figure 5.48 shows profile of the
run-up tongue shape at the time of maximum run-up determined experimentally for
a solitary wave: H/hg = 0.30 on 1:15 slope. (These data were obtained using high-
speed video.) As mentioned earlier, the experiments were repeated several times with

the camera moved to new location to cover the full length of the run-up tongue.
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There are some deviations in the data obtained from the two recordings probably due
to a small variation in the generated waves for such set of data. These data were
integrated numerically to get the potential energy for this example. To reduce the
error associated with the numerical integration. the order of the numerical integration
accuracy is chosen such that for a change in the integration greater than 1%. the
order of the integration is increased by 1. It was found that fourth-order polynomial
fitting is adequate for the numerical integration. The data of run-up tongue shape
from Synolakis (1986) shown in Figure 5.30 were also used to calculate the potential
energy at maximum run-up for the 1:19.85 slope. These two data sets were used to
verify the potential energy obtained using the numerical WENO scheme. The results
are shown in Figure 5.49 for 1:15 slope and Figure 5.50 for 1:19.85 slope. Agreement

between the numerical results and the experiments is relatively good.

An assumed form of the functional relation described by Eq. 5.41 is taken as:

Ep RV

pghd ah,() h3 (5.42)

the quantity « is a constant called the shape factor. In Eq. 5.42 | it has been
assumed that the potential energy is independent of the slope angle cot. and not
directly related to the initial wave height H/hy except as it relates to the total volume

of the wave, V.

Knowing Ep, R. and V. Eq. 5.42 can be solved for shape factor, a. Figure
5.51 shows the values of shape factor obtained from the numerical simulations. The
results from three slopes ranging from 1:15 to a very gentle slope of 1:50 are shown.
For 0.05 < H/hy < 0.5 the shape factor, «, is about 0.12. Therefore. in the following

discussion « is chosen to as 0.12.
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Figure 5.48: The shape of the run-up tongue of breaking solitary wave on 1:15 slope
with wave height H/hy = 0.30

5.3.3.3 Prediction of Maximum Run-Up

Equation 5.29 presented in last section is used to model the energy dissipation due
to wave breaking during the solitary wave run-up process. When Eq. 5.29 and the
expression for the potential energy at the maximum run-up. i.e., Eq. 5.42 along with
« = (.12 are substituted into the energy balance equation (Eq. 5.39), by doing some
simple algebraic manipulations, the following expression for the maximum run-up of
a breaking solitary wave can be obtained:

EI—EB

R =
o oV
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Figure 5.49: The normalized potential energy at maximum run-up for 1:15 slope as
a function of relative incident wave height
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(5.43)

where « is a constant which slightly changes with slope and was found to best fit
Eq. 5.43 to the data to be:
a; = 1.11(cot3) 1% (5.44)

Eq. 5.43 will be used to predict the maximum run-up of a breaking solitary
wave based on energy conservation considerations and the results will be compared
to both the numerical results from the WENO scheme and experimental results. It
seems that Egs. 5.43 and 5.44 derived from the energy balance model can predict the

trend of the maximum run-up as function of incident wave height reasonably well.
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Figure 5.50: The normalized potential energy at maximum run-up for 1:19.85 slope
as a function of relative incident wave height (Experiment from Synolakis (1986))

Figures 5.52. 5.53, 5.54 show the variation of the maximum run-up with incident
wave height for 1:5.67 slope. 1:15 slope and 1:19.85 slope. respectively. It can be seen
that Eq. 5.43 can model the maximum run-up for a wide range of incident wave
height 0 < H/hy < 0.35. For incident wave heights greater than 0.40, the energy
dissipation formula. i.e., Eq. 5.41 appears to overestimate the energy dissipation,
thus, the maximum run-up predicted by the energy balance model is somewhat less

than that obtained from the numerical model.
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Figure 5.51: The shape factor of solitary wave run-up tongue at maximum run-up as
a function of relative incident wave height. Numerical results

5.4 Breaking Solitary Wave Run-Up on Vertical
Walls

In this section, the experimental and numerical results of breaking solitary wave
run-up (splash-up) on a vertical wall positioned at different locations on a 1:19.85
slope are presented. (This section is taken from the paper by Li. Raichlen, and Lee

(2000b)).

Splash-up resulting from the interaction between the wave and the wall usually
consists of sheet flow for small relative wave heights, but for extreme waves it is

composed of both sheet flow and spray and drops which break away from the splash-
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up tongue and can travel significantly higher than would the sheet splash-up. The
numerical results from the WENO scheme described in Chapter 4 was applied only
to the sheet How process. However, experimental data are presented for the spray

and drops where applicable.

The experimental arrangement for the solitary wave splash-up on a vertical wall
was shown in Figure 4.26. As mentioned earlier, experiments were conducted using
a movable vertical wall mounted at various positions on a plane beach with a slope
of 1:19.85. Therefore. for a solitary wave with a given relative wave height offshore,
H/hg. either a non-breaking. an incipient breaking, or a post-breaking (broken) wave
can be caused to impinge on the wall. Data for three offshore relative wave heights
are presented in Figure 5.55 where the abscissa is the ratio of the distance between
the vertical wall and the original shoreline, i.e., 2. to the offshore depth, hy. Positive
values indicate distances offshore of the shoreline and negative distances are shoreward
of the shoreline. The ordinate, R/H, is the ratio of the maximum splash-up on the
wall with respect to the original water surface, R, to the incident wave height, H. The
position where breaking occurs for each of the three relative incident wave heights
is indicated by the arrows on the abscissa. When the wall is at its most seaward
location, i.e., x,/hy = 19.85, the wall is located essentially at the shoreward extent
of the constant depth portion of the tank. Thus, as would be expected, for a relative
height of H/hy = 0.10 the splash-up relative to the incident wave height is about two
from the theoretical analysis and experiments (see Byatt-Smith (1971) and Ramsden
(1993)). For that wall location as the relative wave height offshore increases, the
splash-up becomes greater than two due to increasing non-linear effects. As the
wall is moved onshore, but to positions seaward of the location of wave breaking,
the splash-up increases significantly. For example, for a relative offshore height of

H/hy = 0.43 the splash-up on the wall increases by a factor of three as the wall is
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Figure 5.55: Variation of splash-up with the vertical wall location relative to the
shoreline. bottom slope 1:19.85

moved from the toe of the slope to a location just seaward of wave breaking. It will
be shown later that this increase is associated with the increasing slope of the front
face of the wave as it shoals while propagating up the beach. However, it the wall
is located some distance shoreward of the breaking location the relative splash-up
decreases dramatically. This is due to the collapse of the wave shoreward of breaking
with a resultant decrease in both the wave height and the slope of the front face of

the wave compared to that when the wall is located near where the wave breaks.

The variation of the relative splash-up. R/H . with relative incident wave height,
H/hy. is presented in Figure 5.56 for eleven different wall locations varying from the

toe of the sloping beach to shoreward of the shoreline. In upper portion of Figure 5.56
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Figure 5.56: Variation of location of wave breaking and splash-up with relative inci-
dent wave height

the location of breaking is also shown as a function of relative incident wave height,
H/hg, with the ordinate expressed as x,/hg at breaking, where x;, was denoted as the
horizontal location of wave breaking point measured from the initial shoreline. For
the limits of experiments, i.e., 0.1 < H/hy < 0.45, it can be seen that the location of
the breaking wave is: 1 < (23/h0)pcanin ; < 6, Le.. one to six depths offshore of the
shoreline. Thus. referring to upper portion of Figure 5.56. for waves with a relative
wave height of H/hy = 0.1, except for the two most shoreward locations of the wall,
the splash-up is caused by non-breaking waves. In general, it appears that for each

relative wave height. H/hg, the further the wall is located offshore of the position of

wave breaking the smaller the relative splash-up.
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The maximum splash-up is presented in Figures 5.57 (a), (b), and (¢) as a function
of the relative incident wave height for three different wall locations: x,,/hy=19.85.
9.03. and 0.0, respectively. The numerical results obtained using the WENO scheme
described in Chapter 3 are also presented. The three cases shown correspond to:
the toe of the slope, the original shoreline, and a location midway between these
two. For the vertical wall located at the toe of the slope and at the mid-point,
l.e.. half-way between the toe of the slope and the original shoreline, the waves are
not breaking before they impinge on the wall. However. for the wall located at
the shoreline (x,./hyp=0.0) the waves break seaward of the wall at different distances
depending upon the incident wave heights. see upper portion of Figure 5.56. The
numerical results are compared to the experiments for each case, and the agreement is
reasonable for the experiments corresponding to the non-breaking waves. Theoretical
results from Byatt-Smith (1971) for the case of a solitary wave propagating in a
constant depth and impinging on a vertical wall are also shown in Figure 5.57 (a).
These results agree well both with the experimental data and the numerical results of
this study. For the larger incident waves and a wall location further up the slope the
wave is either near breaking or breaking before impinging on the wall. In Figure 5.57
(b) where the wave shoals. but does not break before striking the wall, the numerical
model agrees reasonably well with the experimental results. When the wave splash-up
is composed of spray and drops one would not expect the numerical model to predict
the maximum splash-up, as can be seen in Figure 5.57 (b) for H/hy = 0.36. In Figure
5.57 (c) agreement with the theory appears reasonable for a relative wave height of
H/hg = 0.1 and for H/hy > 0.36. The former is a case of a wave of small amplitude
breaking about one depth, i.e., ho, seaward of the wall. The latter corresponds to
waves which have broken some distance from the wall and impinge on the wall as
a collapsed broken wave. In between these limits, i.e.. for 0.1 < H/hy < 0.36, the

impingement is more violent and drops and spray are formed and agreement with
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the theory would not be expected. It is in this region that the detailed kinematics of
the wave at breaking must be important in defining the splash-up, and these details

cannot be defined by the non-linear shallow water theory.

The splash-up of a wave on the vertical wall, R/H, is shown as a function of
normalized time, t* = t4/g/hg in Figures 5.58 and 5.59 for two cases for a wall position
of x,,/hy = 11.56: (i) a wave nearly breaking before reaching the vertical wall (H/hy =
0.296). and (ii) a wave which has broken already before reaching the wall (H/hy =
0.374). Favorable agreement is found between the results of the WENO numerical
model and the experiments for the sheet splash-up showing that the numerical scheme
‘an model both the waves shoaling but not breaking before impinging on a vertical
wall and waves which break on the 1:19.85 slope and the splash-up process associated
with broken waves impinging on the wall. In the latter case the wave breaks and then

collapses as it propagates shoreward before striking the wall.

The experiments have suggested that the maximum local water particle acceler-
ation of the incident wave at the time the wave just reaches the wall may be more
important in defining the extent of the splash-up than the maximum water particle
velocity at that instant. From the non-linear shallow water theory. the water particle

acceleration is equivalent to the local wave slope as shown in the following:

Du

Ty = + Uy, = —gn, (5.45)

Where Du/Dt is the water particle acceleration, and 7, represents the wave slope.
Therefore, the maximum wave front slope at the instant that the wave reaches the

vertical wall was chosen to represent the wave particle acceleration.

We use a length scale for the deforming and breaking wave which incorporates

the maximum slope of the front face of the wave just as it impinges on the vertical
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Figure 5.57: Variation of the splash-up with relative incident wave height for various
wall locations. solid line is the present numerical results, dashed line is the theoret-
ical results of Byatt-Smith (1971), Solid triangle is the solid sheet splash-up, hollow
triangle is the drop and spray splash-up.



196

wn
-
=]
—_
% N
(3
<
N
n

Figure 5.58: Variation of splash-up with time. H/hy = 0.296, x,,/hy = 11.56. Open
circles with line with line are experiments, solid line is the numerical theory.

wall. (The use of this front face slope was first proposed by Hammack (1972) to
define a more meaningful Ursell number for a breaking or broken long wave.) The
length scale used is the ratio of the wave height to the maximum slope on the front
face of the wave. i.e., H/(ldn/dx|)maer. The dramatic increase in the splash-up. as
seen in Figure 5.55, as the wall location approaches the position on the sloping beach
where the wave breaks is probably due to the increase in the slope of the front face
of the wave as it shoals and then impinges on the wall. The variation of the ratio
of the relative splash-up. R/H. with time that is normalized by using this length
scale, tlgH/|dn/ d:z:\,,m,]l/ 2 as determined from experiments is presented in Figure
5.60 for a range of relative incident wave heights. All cases are for a wall position

of x,/hy = 11.56, and from Figure 5.56 it is seen that the wave impinging on the
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Figure 5.59: Variation of splash-up with time, H/hy = 0.374, x,/ho = 0.0. Open
circles are experiments, solid line is the numerical theory.

wall is unbroken for this wall location. The variation of the maximum splash-up with
relative offshore wave height was also shown in Figure 5.56 for this location. The
abscissal parameter appears to be reasonable in shifting the time-histories so that the

non-dimensional times of the maxima are in nominal agreement.

The maximum splash-up on the wall, R/H. is shown in Figure 5.61 as a function
of the maximum front face slope |dn/dx|.. for various wall locations, x,,/hg. and
offshore relative wave heights, H/hy. A well-defined linear fit to the data is seen

independent of the wall location and the initial relative wave height:

R dn ,
— = 4.73|—maz 5.46
h/() ld{l?| (0 ())
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Figure 5.60: Splash-up time-history for solitary waves; wall location x,,/hg = 11.56

If the wave breaks on the slope just in front of the vertical wall, it appears that this
relationship is violated and large splash-up occurs consisting of drops and spray along
with a relatively ill-defined water sheet following the drops and spray. (This effect can
be seen in Figure 5.61 for large water surface slopes.) Although the data still appear

to follow the trend associated with smaller wave-face slopes, the data are scattered.
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Chapter 6 Conclusions

The objective of this study has been to investigate some aspects of solitary wave

run-up on a smooth plane sloping beach.

The process of non-breaking solitary wave run-up was investigated theoreticzﬂly
by proposing a new higher order solution to the well-known shallow water equations.
Experiments were performed in the laboratory to measure the surface profile, wave
time-histories, water particle velocities, and maximum run-up. These experimen-
tal data were compared to the theoretical results and good agreement was found.
The run-up of breaking solitary waves was studied experimentally and numerically.
A finite-difference numerical model that solved the fully non-linear shallow water
equations including a bore structure was developed and used to simulate the break-
ing solitary wave run-up. This numerical model was validated by the experimental
measurements. A simple empirical formula used to predict the maximum run-up of
breaking solitary wave run-up from energy conservation considerations was presented
and discussed in this study. The special case of breaking solitary wave run-up on a
gentle slope and then splash-up on a vertical wall at various locations with respect

to the slope was also studied experimentally and numerically,

The following major conclusions were drawn and they are divided into categories

corresponding to the main areas of this investigation:
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6.1 Non-Breaking Solitary Wave Run-Up on Beaches

1. The non-linear theory developed herein agrees well with the experimental data
corresponding to the run-up on a relatively steep slope (1:2.08) as well as on
a more gentle slope (1:19.85). The agreement is good for both the water sur-
face time-histories, the spatial water surface profiles, and the horizontal water
particle velocities that were obtained at several locations during the run-up

process.

2. The present non-linear theory provides a somewhat better prediction of various
aspects of the run-up process than the approximate non-linear theory presented
earlier by Synolakis (1986). The improvement in accuracy of this prediction
from the present non-linear theory compared to the approximate non-linear
theory is at the order of 10% based on the wave breaking limit chosen. This
indicates that the assumptions made by Synolakis (1986) in his approximate
non-linear theory are reasonably satisfactory for most engineering applications
especially for small slopes where the breaking wave height is significantly less

than that for steep slopes such as those investigated here.

3. A unique laser-photodiode camera experiment arrangement was developed in
connection with this study to measure the time-history of the tip of the run-up
tongue of a solitary wave, which was non-breaking, as it progressed up the slope.
The results obtained with this run-up gage agreed well with other measurement

and provided a simple and reliable way of measuring run-up time-histories.
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6.2 Breaking Solitary Wave Run-Up on Beaches

6.2.1 Plunging Jet and Splash-Up

1.

o

The jet generated by the plunging breaking wave has the trajectory of a simple
free-falling jet with the horizontal velocity equal to the solitary wave celerity in

the constant depth region.

The point where the plunging jet touched the slope determines the resulted
splash-up. If the jet impinges on a dry slope. no splash-up occurs and the
plunging breaker simply collapses. If the impingement point is located on the
free surface ahead of the jet, splash-up including a reflected jet is formed which
further increases the turbulence and energy dissipation associated with wave

breaking.

Clockwise and counter-clockwise vortices may be generated by the impinging
plunging jet and the reflected jet associated with the splash-up when the jet

impinges on the front face of a breaking wave or on the still water surface.

The plunging jet kinematics generated by a breaking solitary wave are similar

to those generated by breaking periodic waves.

6.2.2 Numerical Model

1.

The numerical method developed in this study to predict the run-up of breaking
waves provides a somewhat simple and reasonably good prediction of various
aspects of the run-up process. The results agree well with the experimental
data corresponding to the run-up on a relatively steep slope (1:2.08) as well as

on a gentle slope (1:19.85).
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The numerical method is stable. simple to implement and requires relatively

small computational resources.

The numerical results for the “global parameters™ of solitary wave run-up such
as the maximum run-up and the wave profile agree reasonably well with the
experiments for both wave breaking conditions. i.e., wave breaking with and

without rigorous splash-up.

The detailed characteristics of wave breaking process such as plunging jet and

splash-up cannot be described by the numerical model.

6.2.3 Energy Balance Model

1.

S

The energy dissipation associated with wave breaking is estimated using the
numerical model and this was verified by the experimental measurement of po-

tential energy at maximum run-up, and the incident and reflected wave energy.

The reflected wave energy resulting from the wave-slope interaction for the slope
investigated is negligibly small comparing to the incident wave energy associated

with the solitary wave.

The fairly good agreement of the energy balance model with experiments in-
dicates that the bore model which is used to describe energy dissipation is

reasonable.

The energy balance model appears to be useful to predict the run-up of exper-

imental plunging breaking solitary waves.
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6.3 DBreaking Solitary Wave Splash-Up on Vertical

Walls

1. The position of the vertical wall on the slope is of critical importance to the

maximum splash-up as it relates to the location of wave breaking.

2. The numerical approach proposed appears to predict the time-history of the
sheet splash-up well both for non-breaking waves and for waves which break

seaward of the wall location.

3. The maximum slope of the front face of the wave upon impingement of the wave
on the wall is important in defining the maximum sheet splash-up as well as

the trend for splash-up composed of drops and spray.

6.4 Future Research Considerations

Three possible future research directions can be recommended here:

1. The numerical model developed in this study has the potential to be extended

to study three-dimensional breaking wave run-up.

2. It appears that plunging jet and the resulted splash-up are important to un-
derstand the wave breaking kinematics and the energy dissipation process. A
numerical model, similar to that used by Lin, chang. and Liu (1999), solves the
Navier-stokes equation and uses VOF method to advect free surface. could lead
to promising results of jet and also the maximum run-up of solitary waves. This
type of numerical model, if tested and validated by the experimental results,

can provide a more accurate description of the wave breaking process.
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3. To obtain more information about the wave breaking and run-up process. more
experimental measurements such as water particle velocity measurements using

digital particle imaging velocimetry (DPIV) have to be conducted.
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Appendix

Experimental Data

Table A-1: Experimental Maximmum Run-Up of Non-Breaking Solitary Waves

ho(cm)  Wave Tank cot/s H/hg R/hy
21.51 CST 2.08 0.026 0.050
21.51 CST 2.08 0.063 (0.148
21.51 CST 2.08 0.071 0.172
21.51 CST 2.08 0.089 0.221
21.51 CST 2.08 0.108 0.273
21.51 CST 2.08 0.113 0.304
21.51 CST 2.08 0.135 0.362
21.51 CST 2.08 0.147 0.415
21.51 CST 2.08 0.164 0.443
21.51 CST 2.08 0.174 (0.496
21.51 CST 2.08 0.198 (.566
21.51 CST 2.08 0.201 0.575
21.51 CST 2.08 0.230 0.690
21.51 CST 2.08 0.236 0.694
21.51 CST 2.08 0.258 0.773
21.51 CST 2.08 0.271 0.846
21.51 CST 2.08 (.281 0.889

21.51 CST 2.08 0.288 0.889
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ho(cm)  Wave Tank  cotfd H/hy R/hy
21.51 CST 2.08 0.307 0.974
21.51 CST 2.08 0.316 1.033
21.51 CST 2.08 0.322 1.075
21.51 CST 2.08 0.339 1.132

Table A-2: Experimental Maximum Run-Up of Breaking Solitary Waves

ho(cm)  Wave Tank  cotd H/hg R/hy
24.98 CWT 15.0 0.048 0.152
24.98 CWT 15.0 0.094 0.288
24.98 CWT 15.0 0.140 0.384
24.98 CWT 15.0 0.186 0.467
24.98 CWT 15.0 0.203 0.500
24.98 CWT 15.0 0.231 0.542
24.98 CWT 15.0 0.274 0.607
24.98 CWT 15.0 0.317 0.672
24.98 CWT 15.0 0.364 0.739
30.48 CWT 15.0 0.036 0.125
30.48 CWT 15.0 0.034 0.125
30.48 CWT 15.0 0.053 0.198
30.48 CWT 15.0 0.071 0.267

30.48 CWT 15.0 0.082 0.291
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ho(em)  Wave Tank  cot3 H/hg R/hy
30.48 CWT 15.0 0.107 0.342
30.48 CWT 15.0 0.126 0.380
30.48 CWT 15.0 0.146 0.414
30.48 CWT 15.0 0.165 0.450
30.48 CWT 15.0 0.183 0.481
30.48 CWT 15.0 0.201 (.511
30.48 CWT 15.0 0.218 0.538
30.48 CWT 15.0 (.234 0.572
30.48 CWT 15.0 0.332 0.705
30.48 CWT 15.0 (.343 0.718
30.48 CWT 15.0 0.357 0.745
30.48 CWT 15.0 0.371 0.761
30.48 CWT 15.0 0.387 0.775
30.48 CWT 15.0 0.394 0.797
30.48 CWT 15.0 0.408 0.821
30.48 CWT 15.0 0.418 0.836
30.48 CERC 15.0 0.042 0.122
30.48 CERC 15.0 0.079 0.251
30.48 CERC 15.0 0.095 0.298
30.48 CERC 15.0 0.109 0.321
30.48 CERC 15.0 0.136 0.382
30.48 CERC 15.0 0.157 0.419
30.48 CERC 15.0 0.177 0.456
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ho(em)  Wave Tank  cotf3 H/hy R/hy
30.48 CERC 15.0 0.202 0.497
45.72 CERC 15.0 0.019 0.0563
45.72 CERC 15.0 0.038 0.134
45.72 CERC 15.0 0.056 0.206
45.72 CERC 15.0 0.070 0.264
45.72 CERC 15.0 0.099 0.347
45.72 CERC 15.0 0.110 0.372
45.72 CERC 15.0 0.134 0.415
45.72 CERC 15.0 0.156 0.448
45.72 CERC 15.0 0.174 (0.482
45.72 CERC 15.0 0.200 0.514
60.96 CERC 15.0 0.040 0.150
60.96 CERC 15.0 0.078 0.287
60.96 CERC 15.0 0.102 0.350
60.96 CERC 15.0 0.102 0.351
60.96 CERC 15.0 0.120 (0.394
60.96 CERC 15.0 0.141 0.436
60.96 CERC 15.0 0.162 0.477
60.96 CERC 15.0 0.181 0.510
60.96 CERC 15.0 0.202 0.541
76.20 CERC 15.0 0.039 0.159
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ho(cm)  Wave Tank  cot3 H/hg R/hqg
76.20 CERC 15.0 0.080 (.296
76.20 CERC 15.0 (0.104 0.349
76.20 CERC 15.0 0.124 0.394
76.20 CERC 15.0 0.146 0.439
76.20 CERC 15.0 0.167 0.478
76.20 CERC 15.0 0.191 (.515
76.20 CERC 15.0 0.198 0.527
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