116

Appendix C
Matlab scripts for the L1 project

117

Matlab script for profile simulation for given adhesion strength

% **********************Flle name: E minimization.m**********************
% Fan Yang

% This subroutine returns the configuration parameters with the total lowest energy value

once the adhesion strength w, reduced volume Sigma, and total area A0 are specified.

function p=E_minimization(w,Sigma,AQ)

%clear all

N=6000;
lambda=linspace(0.01,50,N);
cspace=linspace(-0.99,0.99,200);

% initial total area, passed to the current subroutine

% A0=4*pi*8*8; % R0O=8

%Scan lambda values and store the resulting energy E, R and c in an arrays
%c1(2), R1(2) and E1(2).
for i=1:N

%°Find the minimal value of D=peliminate([-.99,0.99],lambda(i)).

%If min is less than zero, start root searching toward both ends

%If min is bigger than zero, no root will be found - exit with error.

for j=1:length(cspace)

D(j)=peliminate_x(cspace(j),lambda(i),Sigma);
end
[Dmin,Imin]=min(D);

if Dmin<0

opts=optimset('TolX',1e-10,'TolFun',1e-10);
%Look for root to the left and right of the minimum of D(i) to find
%roots of D

118

try
c(i)=fzero(@(x) peliminate x(x,lambda(i),Sigma),[-0.99,cspace(Imin)],opts);
R3(1)=sqrt(A0/(pi*(lambda(i)*lambda(i)+2*(lambda(i)+sqrt(1-
c(1)*c(1)))"2/(1+c(i))+2*lambda(i)*acos(-c(1))+2*(1+c(1)))));
E(i)=TotalE_w(R3(i),c(i),lambda(i),w);
catch MEI
idSeglLast = regexp(ME1.identifier, '(?7<=:)\w+§', 'match’);
if strcmp(idSegLast, 'ValuesAtEndPtsSameSign')
c(i)=NaN;
R3(i)=NaN;
E(i)=NaN;
end

end

else
c(i)=NaN;
R3(i)=NaN;
E(i)=NaN;

end

end

[Elmin Imin]=min(E);
R3min=R3(Imin);
cmin=c(Imin);

lambda_min=lambda(Imin);

p(1)=R3min;
p(2)=lambda_min;
p(3)=cmin;

119

% **********************Flle name: peliminate_x'm**********************

% Fan Yang
% "p" denotes parameterized, meaning that the user is allowed to supply a parameter
lambda here rather than a given number.

% eliminate R3 using the area and volume constraints

function D=peliminate(c0,lambda,Sigma)

if lambda>0

V=2/3*pi*(lambda/sqrt(1-c0*c0)+1)"3*(1-c0)+pi/3*(lambda+sqrt(1-
c0*c0))"2*(lambda/sqrt(1-c0*c0)+1)*(-c0)+pi*(1+c0)*lambda*lambda+pi*c0*sqrt(1-
c0*c0)*lambda+pi*(1+c0)*(1+c0)-1/3*pi*(1+c0)"3+pi*2*lambda*asin(sqrt((1+c0)/2));
A=pi*(lambda*lambda+2*(lambda+sqrt(1-c0*c0))"2/(1+c0)+2*lambda*acos(-
c0)+2*(1+c0));

%R=V/A(3/2)-Sigma/(6*sqrt(pi));

D=V-A”~(3/2)*Sigma/(6*sqrt(pi));

else D=(4/3*pi*(1-c0)+pi/3*(1-c0*c0)*(-c0)+(1+c0)"2+1/3*(1+c0)"3)/(4*pi)"1.5-
Sigma/(6*sqrt(pi));

end

% *******************Fﬂe name: TotalE_W.m*******************

% Fan Yang
% This subroutine calculates and returns the total energy for an adhered vesicle when all
configuration parameters and the adhesion energy density are provided.

function TE=TotalE_w(R,c,Jambda,w)

if lambda>1,

120

TE=4*pi*k*(1-c)+k*pi/sqrt(lambda’2-1)*(4*sqrt(lambda”2-1)-
2*lambda’2*atan((1+lambda*sqrt((1-c)/(1+c)))/(sqrt(lambda”2-1)))+4*c*sqrt(lambda’2-
1)+lambda”2*pi)-w*pi*lambda”2*R"2;

elseif lambda<l1,

TE=8*pi*k+k*pi*lambda*lambda/sqrt(1-lambda*lambda)*log(((1+sqrt(1-
lambda*lambda))*(lambda+sqrt(1-c*c))/(lambda*(1-c*sqrt(1-
lambda*lambda)+lambda*sqrt(1-c*c)))))-w*pi*lambda”2*R"2;

else
TE=8*pi*k+2*k*pi/(1+sqrt((1-c0)/(1+c0)))-w*pi*lambda”2*R"2;

end

Matlab scripts for confocal data processing

% Tristan Ursell - extraction of vesicle shape from confocal z-stack
% March 2009

% Vesicle Adhesion Shape Analysis

%

% Fan Yang - fitting the extracted profile to the basic shape model
clear all

close all

% filel is a tiff stack of confocal images. There should be only one vesicle in the field of
% view. The z-stack is built such that it starts from the top of a vesicle toward the
% coverglass (adhesion zone).

[file],aa]=imgetfile;

%[filel,dir]=uigetfile('*.tif','MultiSelect', 'on');

% get the number of images in the stack

N=length(imfinfo(file1));

% Pick an image in the middle of the stack and select a region about the center of the

% vesicle. The average intensity in the selected region is analyzed for each image, and it

121

% reaches maximum when the section is focused on the adhesion patch on the bottom of
% the vesicle. N is then changed to the frame number for this section so that we only
% analyze images at or above the adhesion zone.
colormap(gray);
Im=imread(file1l,floor(N/2));
imagesc(Im);
% choose the region of interest by mouse clicking
[B roi]=imcrop;
for i=1:N
Ims=imread(filel,1);
Ims_crop=imcrop(Ims,roi);
mean_crop(i)=mean2(Ims_crop);
end
[C bt_ind]=max(mean_crop);

N=bt ind;

disp(['This z-stack has ' num2str(N) ' images.']);

% The center of the vescile is determined by analyzing the sections focused in the middle
% of the vesicle where a clear circle can be obtained by thresholding. The threshold is
% determined by user selecting the bright region and the dark region. Pixels with an
% intensity bigger than that of the dark region by more than 0.95*(difference between
% dark and bright region) is used in the next step for curve fitting. The circle is fitted to
% obtained the position of the center, and the cooridinates from all centering frames are

% averaged.
% choose centering frames
startf=input('Enter initial centering frame: ');

endf=input('Enter final centering frame: ');

centN=endf-startf+1;

122

%xy plane pixel conversion (um/px)

conv=0.1136;

% Cutoff between dark and light
C=0.95;

ql=input('Analyze brightness of all centering frames?(y/n) ','s");

if ql=="y'

figure

colormap(gray)

for i=startf:endf
disp('Choose a brightness cutoff...")
disp(' ")
Im=imread(filel,i);
imagesc(Im)
axis equal
axis tight
title("Choose dark region.")
rectl=round(getrect);
dark=Im(rect1(2):rectl(2)+rectl(4),rectl(1):rectl(1)+rectl(3));
title("Choose light region.")
rect2=round(getrect);

light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));
cut(i)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));
clear T

T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));
T(:,:,2)=mat2gray(Im);

123

T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

imagesc(T)
axis equal
axis tight
title(['Frame ' num2str(i) ' /' num2str(i-startf+1) ' of ' num2str(centN)])
pause(1)
end
close
else
figure
colormap(gray)
disp('"Choose a brightness cutoff...")
disp(' ")
Im=imread(filel,startf);
imagesc(Im)
axis equal
axis tight
title("Choose dark region.")
rectl=round(getrect);
dark=Im(rect1(2):rectl(2)+rectl(4),rectl(1):rectl(1)+rectl(3));
title("Choose light region.")
rect2=round(getrect);

light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));

cut(startf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));

disp('"Choose a brightness cutoff...")
disp(' ")
Im=imread(file1l,endf);

imagesc(Im)

124

axis equal

axis tight

title("Choose dark region.")

rectl=round(getrect);
dark=Im(rect1(2):rect1(2)+rectl(4),rectl(1):rectl(1)+rectl(3));
title('Choose light region.")

rect2=round(getrect);

light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));

cut(endf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));

for i=startf+1:endf-1
cut(i)=cut(startf)+(cut(endf)-cut(startf))/centN*(i-startf);

Im=imread(filel,i);

clear T
T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));
T(:,:,2)=mat2gray(Im);
T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

imagesc(T)
axis equal
axis tight
title(['Frame ' num2str(i) ' /' num2str(i-startf+1) ' of ' num2str(centN)])
pause(0.5)
end

end

%Perform the center frame circle fitting
n=1;

for i=startf:endf

125

Im=imread(file1,1);

[Y, X]=find(Im>cut(i));

for j=1:length(X)
Z(j)=double(Im(Y(j),X()));

end

g=@(R) sum(Z' n.*R(1)-sqrt(R(2)-X).*2+(R(3)-Y).*2))."2);

if i==startf
RO=[size(Im,1)/4,size(Im,1)/2,size(Im,2)/2];
else
RO=[r(i-1),X0(i-1),YO0(-1)];

end

R=fminsearch(g,R0);

r(i)=R(1);
X0(@H=R(2);
YO(i)=R(3);

%Plot the result
T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));
T(:,:,2)=mat2gray(Im);
T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

theta=0:0.01:2*pi;
Xp=r(i)*cos(theta)+X0(i);

Yp=r(i)*sin(theta)+YO0(i);

imagesc(T)

126

hold on

plot(Xp,Yp,'r")

plot(X0(i),YO0(1),'bo")

axis equal

axis tight

title(['Frame ' num2str(i) ' /' num2str(i-startf+1) ' of ' num2str(centN)])
pause(0.5)

hold off

clear XYZRTXp Yp
end

close

Xcent=mean(XO0(startf:endf));
Y cent=mean(Y O(startf:endf));

% The intensity in a shell is averaged to provide a radial intensity profile for each frame.
% determining minimum polar size

sz=size(Im);

sl=abs(sz(2)-Xcent);

s2=abs(Xcent);

s3=abs(sz(1)-Ycent);

s4=abs(Ycent);

% Establish maximum polar information radius
Rmin=round(0.9*min([s1,s2,s3,s4]));
Rminsq=Rmin"2;

% Get bin positions
clear bins

dR=0.33;

127

bins=conv*(dR/2:dR:Rmin);

% Create data matrices
binmean=zeros(N,length(bins));

binstd=zeros(N,length(bins));

% Find the points that lie within Rmin of the vesicle center
m=0;
for j=1:size(Im,1)
for k=1:size(Im,2)
if ((j-Ycent)"2+(k-Xcent)*2)<Rminsq
m=m-+1;
R(m)=sqrt((j-Ycent)*2+(k-Xcent)"2);
RminX(m)=k;
RminY (m)=j;
end
end

end

% Performing the symmetry revolution
figure;
for i=1:N

%1=30;

clear V

Im=imread(file1,1);
for j=1:m
V(§)=Im(RminY (j),RminX(j));

end

% Create histogram-averaged profile

128

for p=1:length(bins)
clear binvals
%find the points in the p-th bin
binvals=find(and(((p-1)*dR)<R,(p*dR)>=R));
%calculate the mean of those points
if size(binvals,2)>0
binmean(i,p)=mean(double(V(binvals)));
else
binmean(i,p)=NaN;

end

% Calculate the STD of these points
if length(binvals)>1
binstd(i,p)=std(double(V(binvals)));
else
binstd(i,p)=NaN;

end

% Plot the results

plot(R*conv,V,'k.")

hold on

plot(bins,binmean(i,:),'r',' LineWidth',2)
%plot(r(i),max(binmean),'go','LineWidth',2)
plot(bins,binmean(i,:)+binstd(i,:),'Color',[1,0.7,0],'LineWidth',1)
plot(bins,binmean(i,:)-binstd(i,:),'Color',[1,0.7,0],'LineWidth', 1)
box('on')

xlabel('R(um)")

ylabel('Intensity(au)")

title(['Frame ' num2str(i) ' of ' num2str(N)])

hold off

end

129

pause(0.1)
end

close

% Create final plots
clear Z
% step size in Z direction is 0.2 micron
dz=0.2;
7=0:dZ:(N-1)*dZ;
7=7-7(bt_ind);
7=-7;
% Z coordinate is modified by taking into consideration the refractive index mismatch
% using routine test_optics.
for i=1:N
Z(1)=10"6*test_optics(Z(1)*1e-6)+Z(i); % in microns

end

colormap(hot)

surf(bins,Z,binmean,'LineStyle','none")
hold on

surf(-bins,Z,binmean,'LineStyle','none")

view([0,90])

xlabel('R(um)")

ylabel('Z(um)")

title('Mean Polar Symmetric Intensity")
axis equal

axis tight

130

% Select points from the radial profile. Those higher than the average by more than
% 1.5*standard deviation is considered a point on the vesicle.

binmean nor=mat2gray(binmean);

mean_v=mean2(binmean_nor);

std_v=std2(binmean_nor);

bg=mean v+1.5*std v;

X data=[];
Z data=[];
weight data=[];
for i=1:N
% The first 3 points in radial profile is not used since they came from the average of too
% few pixels.
ind=find((binmean_nor(i,4:length(bins))>max(binmean_nor(i,4:length(bins)))*.85).*(bin
mean_nor(i,4:length(bins))>bg));
if isempty(ind)
else
X data=[X_data bins(ind+3)];
for j=1:length(ind)
Z data=[Z data Z(1)];
end

weight data = [weight data binmean_nor(i, ind+3)];

end
end

weight data = weight data/sum(weight data);

plot3(X data,Z data,sign(X data)*1000,'b.");
plot3(-X data,Z_data,sign(X data)*1000,'b.");

131

% Now perform fitting to X data and Z data using basic shape model. Random initial
% conditions for the three unknown parameters are provided at the beginning of search

and the set of parameters that gives the smallest error is reported as p_final out

fun_final=[];
p_final=[];

% Number of cycles for different random initial conditions

N _cyc=40;

for i=1:N_cyc
% Generate four random numbers on the unit interval
rl=rand;
r2=rand;
r3=rand;
p_ini=[0.1+r1*(1-0.01) 0.1+r2*(5-0.1) -1+r3*2];
tic
% Search for a set of parameters that would minimize the given function
[p_fit fun_err]=fminsearch(@(p) AdhesionError 3p(X data,Z data,0,p),p ini);
toc
fun_final=[fun_final;fun_err];
p_final=[p_final;p fit];

end

[fun final minp final ind] = min(fun_final);
p_final out=[p final(p final ind, :) 0];
[x_fit z fit] = AdhesionCurve(p_final out);
figure;

plot(X data, Z data, 'rx');

hold on

plot(x_fit, z_fit, 'k.");

132

% ****************Flle name: AdheSiOHEITOI'_?)p.m*******************
function err=AdhesionError 3p(x,z,20,p)

% This function calculates the relative mean square error between the

% "experimental" profile (x,z) and the theoretical one given by parameter

% vector p

R3=p(1);

lambda=p(2);

c=p(3);

%x: xdata vector

%z: zdata vector

Neff=length(x);

err=0;

for i=1:1:length(x)
%Calculate the theoretical positions by calling ModelCoor subroutine
[xtmp ztmp ifoutside]=ModelCoor(x(i),z(1),[p z0]);
%Calculate the errors
err=err+((x(1)-xtmp)"2+(z(1)-ztmp)"2)/(xtmp”2+ztmp"2);
%At the junction of two regions, ignore the data points
Neff=Neft-ifoutside;

end

err=err/Neft;

% File name: test _optics.m

% This function calculates and returns the real z-coordinate from the nominal coordinates

% by correcting for the refractive index mismatch.

function z_max=test_optics(d)

nl=1.515;

133

n2=1.34;

NA=1.40;

alpha=asin(NA/n1);
thetal=linspace(0.01,alpha,200);
theta2=zeros(size(thetal));

tao s=zeros(size(thetal));
tao_p=zeros(size(thetal));
phi_d=zeros(size(thetal));
P=ones(size(thetal));

% d=10*1e-6;

lambda=568e-9; % wavelength

k0=2*pi/lambda;

k2=2*pi*n2/lambda;

for j=1:1:200,
theta2(j)=asin(nl*sin(thetal(j))/n2);
tao_s(j)=2*sin(theta2(j))*cos(thetal(j))/sin(thetal(j)+theta2(j));
tao_p(j)=2*sin(theta2(j))*cos(thetal(j))/(sin(thetal(j)+theta2(j))*cos(thetal(j)-

theta2(j)));
phi_d(j)=-d*(n1*cos(thetal(j))-n2*cos(theta2(j)));
%P(j)=sqrt(cos(thetal(j)));

end

z=linspace(-d/2,d/2,200);
10=zeros(size(z));
h=zeros(size(z));
for k=1:1:200

10(k)=0;

for j=1:1:200,

134

10(k)=10(k)+P(j)*sin(thetal(j))*(tao_s(j)+tao_p(j)*cos(theta2(j)))*exp(i*(kO*phi_d(j)+k2
*z(k)*cos(theta2(j))));

end

h(k)=abs(10(k))*abs(10(k));

end

%figure

%plot(z,h);

[C I]=max(h);

z_max=z(]);

Surface Evolver sample script
/* Revisions by Ken Brakke, Feb. 26, 2010
enabled fixed area constraint
set facet tension to 0
fixed bug in Evolver regarding gradient of star*sq_mean_curvature on constraints.
wrote "gogo" procedure to illustrate evolution techniques for keeping
the bottom vertices well groomed; particularly necessary since the

way squared mean curvature is calculated for discrete surfaces.

Revisions by Ken Brakke, Mar. 1, 2010
Vertices along the contact line still want to go sideways too much.
So adding a constraint guidecon to keep the contact line vertices

on fixed radial lines. Had to re-center starting coordinates to

135

get nice central symmetry to start with.
Tried different versions of star sq curvature; star normal worked

best, winding up with no negative eigenvalues after "gogo".
*/
gravity constant 0
/* fix area */
quantity totalarea fixed = 5 method facet area global
/* bending energy */
// 'sq_mean has problems with horns.
/I quantity stnsq energy modulus 1 method sq_mean_curvature global
// star_perp has trouble convergin.
//quantity stnsq energy modulus 1 method star perp sq mean_curvature global
// star_normal seems to work pretty well; at least no negative eigenvalues
// after "gogo" and hessian_seek works.
quantity stnsq energy modulus 1 method star normal sq mean_curvature global
// star_eff area comes up with a few negative eigenvalues after "gogo"
// quantity stnsq energy modulus 1 method star_eff area sq mean_ curvature global
/* adhesion energy */
quantity adhesion energy modulus 1 method facet scalar integral
scalar_integrand: -5 /* user enters adhesion energy here */
/* fix the bottom on a plane */
constraint 1 /* the table top */
formula: z=0
// Guide lines for keeping contact line vertices spaced out.
parameter guidemult =4 // should be doubled each refinement
constraint guidecon

formula: sin(guidemult*atan2(y,x))

vertices
1 -0.5-0.50.0 constraint 1,guidecon /* 4 vertices on plane */

2 0.5-0.50.0 constraint 1,guidecon

136

3 0.5 0.50.0 constraint 1,guidecon
4 -0.5 0.50.0 constraint 1,guidecon
5-05-051.0
6 05-0.51.0
7 05 0.51.0
8 -0.5 0.51.0

edges /* given by endpoints and attribute */
1 12 constraint 1,guidecon /* 4 edges on plane */
2 23 constraint 1,guidecon

3 34 constraint 1,guidecon

4 41 constraint 1,guidecon

556

6 67

7 78

8 85

9 15

10 26

11 37

248

faces /* given by oriented edge loop */
1 110-5 -9 density 1

2 211-6-10 density 1

3 312-7-11 density 1

4 4 9-8-12 density 1

5 56 7 8density 1

6

-4 -3 -2 -1 color green constraint 1 density 1 adhesion

bodies /* one body, defined by its oriented faces */
1 123456 volume 1

137

//1 123456 volume 1 density 1

read
set facet tension 0
linear _metric on // for consistently normalized eigenvalues
// Initial squish to get it started better
set vertex z z*0.7
/I Grooming subroutine, for bottom facets. Don't want to use vertex
// averaging on contact line vertices.
groom_size := 1;
groom := {
fix vertices where on_constraint 1;
unfix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0;
refine edge where on_constraint 1 and length > groom_size;
u; Vi Vi
unfix vertices;
delete edge where on_constraint 1 and length < groom_size/4;

fix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0;

}

// Re-define r to automatically adjust groom_size

r:::= { guidemult *=2; 't'; groom_size /=2; }

// Typical evolution. Problem is that since curvature averages over adjacent facet area,
//rim facets on the bottom want to increase in area toward the inside, since that does not

//change the angles at the contact line vertices, but does increase the area averaged over.

g0go = {
r
r

refine edge ee where sum(ee.facet,color==green)==1;

138

m 0; // give it a chance to adjust volume

g

g

optimize 0.1; // now start minimizing energy
g

u;

{g 5; groom;} 100;

L

{g 5; groom; } 20;

// try some second-order convergence
hessian_seek; // seems happy; hessian scale near 1.
hessian_seek;

v;

