
 116

Appendix C

Matlab scripts for the L1 project

 117

Matlab script for profile simulation for given adhesion strength

% **********************File name: E_minimization.m**********************

% Fan Yang

% This subroutine returns the configuration parameters with the total lowest energy value

once the adhesion strength w, reduced volume Sigma, and total area A0 are specified.

function p=E_minimization(w,Sigma,A0)

%clear all

N=6000;

lambda=linspace(0.01,50,N);

cspace=linspace(-0.99,0.99,200);

% initial total area, passed to the current subroutine

% A0=4*pi*8*8; % R0=8

%Scan lambda values and store the resulting energy E, R and c in an arrays

%c1(2), R1(2) and E1(2).

for i=1:N

 %Find the minimal value of D=peliminate([-.99,0.99],lambda(i)).

 %If min is less than zero, start root searching toward both ends

 %If min is bigger than zero, no root will be found - exit with error.

 for j=1:length(cspace)

 D(j)=peliminate_x(cspace(j),lambda(i),Sigma);

 end

 [Dmin,Imin]=min(D);

 if Dmin<0

 opts=optimset('TolX',1e-10,'TolFun',1e-10);

 %Look for root to the left and right of the minimum of D(i) to find

 %roots of D

 118

 try

 c(i)=fzero(@(x) peliminate_x(x,lambda(i),Sigma),[-0.99,cspace(Imin)],opts);

 R3(i)=sqrt(A0/(pi*(lambda(i)*lambda(i)+2*(lambda(i)+sqrt(1-

c(i)*c(i)))^2/(1+c(i))+2*lambda(i)*acos(-c(i))+2*(1+c(i)))));

 E(i)=TotalE_w(R3(i),c(i),lambda(i),w);

 catch ME1

 idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

 if strcmp(idSegLast, 'ValuesAtEndPtsSameSign')

 c(i)=NaN;

 R3(i)=NaN;

 E(i)=NaN;

 end

 end

 else

 c(i)=NaN;

 R3(i)=NaN;

 E(i)=NaN;

 end

end

[E1min Imin]=min(E);

R3min=R3(Imin);

cmin=c(Imin);

lambda_min=lambda(Imin);

 p(1)=R3min;

 p(2)=lambda_min;

 p(3)=cmin;

 119

% **********************File name: peliminate_x.m**********************

% Fan Yang

% "p" denotes parameterized, meaning that the user is allowed to supply a parameter

lambda here rather than a given number.

% eliminate R3 using the area and volume constraints

function D=peliminate(c0,lambda,Sigma)

if lambda>0

V=2/3*pi*(lambda/sqrt(1-c0*c0)+1)^3*(1-c0)+pi/3*(lambda+sqrt(1-

c0*c0))^2*(lambda/sqrt(1-c0*c0)+1)*(-c0)+pi*(1+c0)*lambda*lambda+pi*c0*sqrt(1-

c0*c0)*lambda+pi*(1+c0)*(1+c0)-1/3*pi*(1+c0)^3+pi*2*lambda*asin(sqrt((1+c0)/2));

A=pi*(lambda*lambda+2*(lambda+sqrt(1-c0*c0))^2/(1+c0)+2*lambda*acos(-

c0)+2*(1+c0));

%R=V/A^(3/2)-Sigma/(6*sqrt(pi));

D=V-A^(3/2)*Sigma/(6*sqrt(pi));

else D=(4/3*pi*(1-c0)+pi/3*(1-c0*c0)*(-c0)+(1+c0)^2+1/3*(1+c0)^3)/(4*pi)^1.5-

Sigma/(6*sqrt(pi));

end

% *******************File name: TotalE_w.m*******************

% Fan Yang

% This subroutine calculates and returns the total energy for an adhered vesicle when all

configuration parameters and the adhesion energy density are provided.

function TE=TotalE_w(R,c,lambda,w)

 if lambda>1,

 120

 TE=4*pi*k*(1-c)+k*pi/sqrt(lambda^2-1)*(4*sqrt(lambda^2-1)-

2*lambda^2*atan((1+lambda*sqrt((1-c)/(1+c)))/(sqrt(lambda^2-1)))+4*c*sqrt(lambda^2-

1)+lambda^2*pi)-w*pi*lambda^2*R^2;

 elseif lambda<1,

 TE=8*pi*k+k*pi*lambda*lambda/sqrt(1-lambda*lambda)*log(((1+sqrt(1-

lambda*lambda))*(lambda+sqrt(1-c*c))/(lambda*(1-c*sqrt(1-

lambda*lambda)+lambda*sqrt(1-c*c)))))-w*pi*lambda^2*R^2;

 else

 TE=8*pi*k+2*k*pi/(1+sqrt((1-c0)/(1+c0)))-w*pi*lambda^2*R^2;

 end

Matlab scripts for confocal data processing

% Tristan Ursell - extraction of vesicle shape from confocal z-stack

% March 2009

% Vesicle Adhesion Shape Analysis

%

% Fan Yang - fitting the extracted profile to the basic shape model

clear all

close all

% file1 is a tiff stack of confocal images. There should be only one vesicle in the field of

% view. The z-stack is built such that it starts from the top of a vesicle toward the

% coverglass (adhesion zone).

[file1,aa]=imgetfile;

%[file1,dir]=uigetfile('*.tif','MultiSelect', 'on');

% get the number of images in the stack

N=length(imfinfo(file1));

% Pick an image in the middle of the stack and select a region about the center of the

% vesicle. The average intensity in the selected region is analyzed for each image, and it

 121

% reaches maximum when the section is focused on the adhesion patch on the bottom of

% the vesicle. N is then changed to the frame number for this section so that we only

% analyze images at or above the adhesion zone.

colormap(gray);

Im=imread(file1,floor(N/2));

imagesc(Im);

% choose the region of interest by mouse clicking

[B roi]=imcrop;

for i=1:N

 Ims=imread(file1,i);

 Ims_crop=imcrop(Ims,roi);

 mean_crop(i)=mean2(Ims_crop);

end

[C bt_ind]=max(mean_crop);

N=bt_ind;

disp(['This z-stack has ' num2str(N) ' images.']);

% The center of the vescile is determined by analyzing the sections focused in the middle

% of the vesicle where a clear circle can be obtained by thresholding. The threshold is

% determined by user selecting the bright region and the dark region. Pixels with an

% intensity bigger than that of the dark region by more than 0.95*(difference between

% dark and bright region) is used in the next step for curve fitting. The circle is fitted to

% obtained the position of the center, and the cooridinates from all centering frames are

% averaged.

% choose centering frames

startf=input('Enter initial centering frame: ');

endf=input('Enter final centering frame: ');

centN=endf-startf+1;

 122

%xy plane pixel conversion (um/px)

conv=0.1136;

% Cutoff between dark and light

C=0.95;

q1=input('Analyze brightness of all centering frames?(y/n) ','s');

if q1=='y'

 figure

 colormap(gray)

 for i=startf:endf

 disp('Choose a brightness cutoff...')

 disp(' ')

 Im=imread(file1,i);

 imagesc(Im)

 axis equal

 axis tight

 title('Choose dark region.')

 rect1=round(getrect);

 dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3));

 title('Choose light region.')

 rect2=round(getrect);

 light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));

 cut(i)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));

 clear T

 T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 T(:,:,2)=mat2gray(Im);

 123

 T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 imagesc(T)

 axis equal

 axis tight

 title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)])

 pause(1)

 end

 close

else

 figure

 colormap(gray)

 disp('Choose a brightness cutoff...')

 disp(' ')

 Im=imread(file1,startf);

 imagesc(Im)

 axis equal

 axis tight

 title('Choose dark region.')

 rect1=round(getrect);

 dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3));

 title('Choose light region.')

 rect2=round(getrect);

 light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));

 cut(startf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));

 disp('Choose a brightness cutoff...')

 disp(' ')

 Im=imread(file1,endf);

 imagesc(Im)

 124

 axis equal

 axis tight

 title('Choose dark region.')

 rect1=round(getrect);

 dark=Im(rect1(2):rect1(2)+rect1(4),rect1(1):rect1(1)+rect1(3));

 title('Choose light region.')

 rect2=round(getrect);

 light=Im(rect2(2):rect2(2)+rect2(4),rect2(1):rect2(1)+rect2(3));

 cut(endf)=(mean(mean(light))-mean(mean(dark)))*C+mean(mean(dark));

 for i=startf+1:endf-1

 cut(i)=cut(startf)+(cut(endf)-cut(startf))/centN*(i-startf);

 Im=imread(file1,i);

 clear T

 T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 T(:,:,2)=mat2gray(Im);

 T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 imagesc(T)

 axis equal

 axis tight

 title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)])

 pause(0.5)

 end

end

%Perform the center frame circle fitting

n=1;

for i=startf:endf

 125

 Im=imread(file1,i);

 [Y,X]=find(Im>cut(i));

 for j=1:length(X)

 Z(j)=double(Im(Y(j),X(j)));

 end

 g = @(R) sum(Z'.^n.*(R(1)-sqrt((R(2)-X).^2+(R(3)-Y).^2)).^2);

 if i==startf

 R0=[size(Im,1)/4,size(Im,1)/2,size(Im,2)/2];

 else

 R0=[r(i-1),X0(i-1),Y0(i-1)];

 end

 R=fminsearch(g,R0);

 r(i)=R(1);

 X0(i)=R(2);

 Y0(i)=R(3);

 %Plot the result

 T(:,:,1)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 T(:,:,2)=mat2gray(Im);

 T(:,:,3)=mat2gray(Im)-mat2gray(Im).*double(Im>cut(i));

 theta=0:0.01:2*pi;

 Xp=r(i)*cos(theta)+X0(i);

 Yp=r(i)*sin(theta)+Y0(i);

 imagesc(T)

 126

 hold on

 plot(Xp,Yp,'r')

 plot(X0(i),Y0(i),'bo')

 axis equal

 axis tight

 title(['Frame ' num2str(i) ' / ' num2str(i-startf+1) ' of ' num2str(centN)])

 pause(0.5)

 hold off

 clear X Y Z R T Xp Yp

end

close

Xcent=mean(X0(startf:endf));

Ycent=mean(Y0(startf:endf));

% The intensity in a shell is averaged to provide a radial intensity profile for each frame.

% determining minimum polar size

sz=size(Im);

s1=abs(sz(2)-Xcent);

s2=abs(Xcent);

s3=abs(sz(1)-Ycent);

s4=abs(Ycent);

% Establish maximum polar information radius

Rmin=round(0.9*min([s1,s2,s3,s4]));

Rminsq=Rmin^2;

% Get bin positions

clear bins

dR=0.33;

 127

bins=conv*(dR/2:dR:Rmin);

% Create data matrices

binmean=zeros(N,length(bins));

binstd=zeros(N,length(bins));

% Find the points that lie within Rmin of the vesicle center

m=0;

for j=1:size(Im,1)

 for k=1:size(Im,2)

 if ((j-Ycent)^2+(k-Xcent)^2)<Rminsq

 m=m+1;

 R(m)=sqrt((j-Ycent)^2+(k-Xcent)^2);

 RminX(m)=k;

 RminY(m)=j;

 end

 end

end

% Performing the symmetry revolution

figure;

for i=1:N

 %i=30;

 clear V

 Im=imread(file1,i);

 for j=1:m

 V(j)=Im(RminY(j),RminX(j));

 end

 % Create histogram-averaged profile

 128

 for p=1:length(bins)

 clear binvals

 %find the points in the p-th bin

 binvals=find(and(((p-1)*dR)<R,(p*dR)>=R));

 %calculate the mean of those points

 if size(binvals,2)>0

 binmean(i,p)=mean(double(V(binvals)));

 else

 binmean(i,p)=NaN;

 end

 % Calculate the STD of these points

 if length(binvals)>1

 binstd(i,p)=std(double(V(binvals)));

 else

 binstd(i,p)=NaN;

 end

 % Plot the results

 plot(R*conv,V,'k.')

 hold on

 plot(bins,binmean(i,:),'r','LineWidth',2)

 %plot(r(i),max(binmean),'go','LineWidth',2)

 plot(bins,binmean(i,:)+binstd(i,:),'Color',[1,0.7,0],'LineWidth',1)

 plot(bins,binmean(i,:)-binstd(i,:),'Color',[1,0.7,0],'LineWidth',1)

 box('on')

 xlabel('R(um)')

 ylabel('Intensity(au)')

 title(['Frame ' num2str(i) ' of ' num2str(N)])

 hold off

 end

 129

 pause(0.1)

end

close

% Create final plots

clear Z

% step size in Z direction is 0.2 micron

dZ=0.2;

Z=0:dZ:(N-1)*dZ;

Z=Z-Z(bt_ind);

Z=-Z;

% Z coordinate is modified by taking into consideration the refractive index mismatch

% using routine test_optics.

for i=1:N

 Z(i)=10^6*test_optics(Z(i)*1e-6)+Z(i); % in microns

end

colormap(hot)

surf(bins,Z,binmean,'LineStyle','none')

hold on

surf(-bins,Z,binmean,'LineStyle','none')

view([0,90])

xlabel('R(um)')

ylabel('Z(um)')

title('Mean Polar Symmetric Intensity')

axis equal

axis tight

 130

% Select points from the radial profile. Those higher than the average by more than

% 1.5*standard deviation is considered a point on the vesicle.

binmean_nor=mat2gray(binmean);

mean_v=mean2(binmean_nor);

std_v=std2(binmean_nor);

bg=mean_v+1.5*std_v;

X_data=[];

Z_data=[];

weight_data=[];

for i=1:N

% The first 3 points in radial profile is not used since they came from the average of too

% few pixels.

ind=find((binmean_nor(i,4:length(bins))>max(binmean_nor(i,4:length(bins)))*.85).*(bin

mean_nor(i,4:length(bins))>bg));

 if isempty(ind)

 else

 X_data=[X_data bins(ind+3)];

 for j=1:length(ind)

 Z_data=[Z_data Z(i)];

 end

 weight_data = [weight_data binmean_nor(i, ind+3)];

 end

end

weight_data = weight_data/sum(weight_data);

plot3(X_data,Z_data,sign(X_data)*1000,'b.');

plot3(-X_data,Z_data,sign(X_data)*1000,'b.');

 131

% Now perform fitting to X_data and Z_data using basic shape model. Random initial

% conditions for the three unknown parameters are provided at the beginning of search

and the set of parameters that gives the smallest error is reported as p_final_out

fun_final=[];

p_final=[];

% Number of cycles for different random initial conditions

N_cyc=40;

for i=1:N_cyc

 % Generate four random numbers on the unit interval

 r1=rand;

 r2=rand;

 r3=rand;

 p_ini=[0.1+r1*(1-0.01) 0.1+r2*(5-0.1) -1+r3*2];

 tic

 % Search for a set of parameters that would minimize the given function

 [p_fit fun_err]=fminsearch(@(p) AdhesionError _3p(X_data,Z_data,0,p),p_ini);

 toc

 fun_final=[fun_final;fun_err];

 p_final=[p_final;p_fit];

end

[fun_final_min p_final_ind] = min(fun_final);

p_final_out = [p_final(p_final_ind, :) 0];

[x_fit z_fit] = AdhesionCurve(p_final_out);

figure;

plot(X_data, Z_data, 'rx');

hold on

plot(x_fit, z_fit, 'k.');

 132

% ****************File name: AdhesionError_3p.m*******************

function err=AdhesionError_3p(x,z,z0,p)

% This function calculates the relative mean square error between the

% "experimental" profile (x,z) and the theoretical one given by parameter

% vector p

R3=p(1);

lambda=p(2);

c=p(3);

%x: xdata vector

%z: zdata vector

Neff=length(x);

err=0;

for i=1:1:length(x)

 %Calculate the theoretical positions by calling ModelCoor subroutine

 [xtmp ztmp ifoutside]=ModelCoor(x(i),z(i),[p z0]);

 %Calculate the errors

 err=err+((x(i)-xtmp)^2+(z(i)-ztmp)^2)/(xtmp^2+ztmp^2);

 %At the junction of two regions, ignore the data points

 Neff=Neff-ifoutside;

end

err=err/Neff;

% File name: test_optics.m

% This function calculates and returns the real z-coordinate from the nominal coordinates

% by correcting for the refractive index mismatch.

function z_max=test_optics(d)

n1=1.515;

 133

n2=1.34;

NA=1.40;

alpha=asin(NA/n1);

theta1=linspace(0.01,alpha,200);

theta2=zeros(size(theta1));

tao_s=zeros(size(theta1));

tao_p=zeros(size(theta1));

phi_d=zeros(size(theta1));

P=ones(size(theta1));

% d=10*1e-6;

lambda=568e-9; % wavelength

k0=2*pi/lambda;

k2=2*pi*n2/lambda;

for j=1:1:200,

 theta2(j)=asin(n1*sin(theta1(j))/n2);

 tao_s(j)=2*sin(theta2(j))*cos(theta1(j))/sin(theta1(j)+theta2(j));

 tao_p(j)=2*sin(theta2(j))*cos(theta1(j))/(sin(theta1(j)+theta2(j))*cos(theta1(j)-

theta2(j)));

 phi_d(j)=-d*(n1*cos(theta1(j))-n2*cos(theta2(j)));

 %P(j)=sqrt(cos(theta1(j)));

end

z=linspace(-d/2,d/2,200);

I0=zeros(size(z));

h=zeros(size(z));

for k=1:1:200

 I0(k)=0;

 for j=1:1:200,

 134

I0(k)=I0(k)+P(j)*sin(theta1(j))*(tao_s(j)+tao_p(j)*cos(theta2(j)))*exp(i*(k0*phi_d(j)+k2

*z(k)*cos(theta2(j))));

 end

 h(k)=abs(I0(k))*abs(I0(k));

end

%figure

%plot(z,h);

[C I]=max(h);

z_max=z(I);

Surface Evolver sample script

/* Revisions by Ken Brakke, Feb. 26, 2010

 enabled fixed area constraint

 set facet tension to 0

 fixed bug in Evolver regarding gradient of star*sq_mean_curvature on constraints.

 wrote "gogo" procedure to illustrate evolution techniques for keeping

 the bottom vertices well groomed; particularly necessary since the

 way squared mean curvature is calculated for discrete surfaces.

 Revisions by Ken Brakke, Mar. 1, 2010

 Vertices along the contact line still want to go sideways too much.

 So adding a constraint guidecon to keep the contact line vertices

 on fixed radial lines. Had to re-center starting coordinates to

 135

 get nice central symmetry to start with.

 Tried different versions of star sq curvature; star_normal worked

 best, winding up with no negative eigenvalues after "gogo".

*/

gravity_constant 0

/* fix area */

quantity totalarea fixed = 5 method facet_area global

/* bending energy */

// sq_mean has problems with horns.

// quantity stnsq energy modulus 1 method sq_mean_curvature global

// star_perp has trouble convergin.

//quantity stnsq energy modulus 1 method star_perp_sq_mean_curvature global

// star_normal seems to work pretty well; at least no negative eigenvalues

// after "gogo" and hessian_seek works.

quantity stnsq energy modulus 1 method star_normal_sq_mean_curvature global

// star_eff_area comes up with a few negative eigenvalues after "gogo"

// quantity stnsq energy modulus 1 method star_eff_area_sq_mean_curvature global

/* adhesion energy */

quantity adhesion energy modulus 1 method facet_scalar_integral

scalar_integrand: -5 /* user enters adhesion energy here */

/* fix the bottom on a plane */

constraint 1 /* the table top */

formula: z = 0

// Guide lines for keeping contact line vertices spaced out.

parameter guidemult = 4 // should be doubled each refinement

constraint guidecon

formula: sin(guidemult*atan2(y,x))

vertices

1 -0.5 -0.5 0.0 constraint 1,guidecon /* 4 vertices on plane */

2 0.5 -0.5 0.0 constraint 1,guidecon

 136

3 0.5 0.5 0.0 constraint 1,guidecon

4 -0.5 0.5 0.0 constraint 1,guidecon

5 -0.5 -0.5 1.0

6 0.5 -0.5 1.0

7 0.5 0.5 1.0

8 -0.5 0.5 1.0

edges /* given by endpoints and attribute */

1 1 2 constraint 1,guidecon /* 4 edges on plane */

2 2 3 constraint 1,guidecon

3 3 4 constraint 1,guidecon

4 4 1 constraint 1,guidecon

5 5 6

6 6 7

7 7 8

8 8 5

9 1 5

10 2 6

11 3 7

2 4 8

faces /* given by oriented edge loop */

1 1 10 -5 -9 density 1

2 2 11 -6 -10 density 1

3 3 12 -7 -11 density 1

4 4 9 -8 -12 density 1

5 5 6 7 8 density 1

6 -4 -3 -2 -1 color green constraint 1 density 1 adhesion

bodies /* one body, defined by its oriented faces */

1 1 2 3 4 5 6 volume 1

 137

//1 1 2 3 4 5 6 volume 1 density 1

read

set facet tension 0

linear_metric on // for consistently normalized eigenvalues

// Initial squish to get it started better

set vertex z z*0.7

// Grooming subroutine, for bottom facets. Don't want to use vertex

// averaging on contact line vertices.

groom_size := 1;

groom := {

 fix vertices where on_constraint 1;

 unfix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0;

 refine edge where on_constraint 1 and length > groom_size;

 u; V; u; V;

 unfix vertices;

 delete edge where on_constraint 1 and length < groom_size/4;

 fix vertices vv where on_constraint 1 and sum(vv.facet, not on_constraint 1) == 0;

}

// Re-define r to automatically adjust groom_size

r :::= { guidemult *= 2; 'r'; groom_size /= 2; }

// Typical evolution. Problem is that since curvature averages over adjacent facet area,

//rim facets on the bottom want to increase in area toward the inside, since that does not

//change the angles at the contact line vertices, but does increase the area averaged over.

gogo := {

 r;

 r;

 refine edge ee where sum(ee.facet,color==green)==1;

 138

 m 0; // give it a chance to adjust volume

 g;

 g;

 optimize 0.1; // now start minimizing energy

 g;

 u;

 {g 5; groom;} 100;

 r;

 {g 5; groom; } 20;

 // try some second-order convergence

 hessian_seek; // seems happy; hessian scale near 1.

 hessian_seek;

 v;

}	

