

**Emissive Monocupper Amidophosphine
Complexes**

-and-

**Lewis Acid-Assisted Reductive Coupling of
Carbon Monoxide**

Thesis by

Alexander J. M. Miller

In Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California
2011
(Defended November 12, 2010)

© 2011

Alexander James Minden Miller

All Rights Reserved

For my grandfathers.

Acknowledgements

During my time in Pasadena I have had the incredible fortune of being surrounded by a supportive and brilliant community of advisors, friends, students, and staff. In the interest of brevity, I can't thank everyone personally; but it takes a shocking number of people to grow a PhD from seed to fruit and I extend my gratitude to everyone who has been a part of my time at Caltech.

My first thanks must be directed at John Bercaw, who welcomed me without hesitation (as far as I know...) into his research group when I was hoping for a safe landing. John allowed me nearly limitless intellectual and creative freedom, and was always willing (OK, sometimes begrudgingly) to sit down on short notice and bounce ideas around. John's firm but *quiet* mentoring methods resonate with me; he guided our research like the group hikes he led, letting us discover the Sierras for ourselves instead of loudly leading the charge. Jay Labinger sat with me through more moments of scientific shock, confusion, and reassessment than either of us might care to admit. As I dug myself deeper into mechanistic conundrums and paradoxes, Jay was with me all the way, finding the perfect experiment to pull me out of the hole. It has been an honor to work with both of you.

Before joining John and Jay, I had a great experience in the Peters group. Jonas' enthusiasm for chemistry helped draw me to Caltech, and his support both during my time in the group and afterwards has been unwavering. It's good to have you and the group back West.

Caltech is a phenomenal academic environment, with a warmth and openness that fosters collaboration and the genesis of great ideas. My ever-expanding committee was a source of great guidance and advice on matters from optimizing synthetic strategies to contemplating career decisions. I owe great debts to my Committee Chair Brian Stoltz, as well as additional members Bob Grubbs and Theodor Agapie, who all gladly sat down with me individually and let me bounce ideas off of them. Outside of my committee, Harry Gray has been fantastic, sponsoring me as an honorary group member, and always exuding pure class. Jay Winkler and Bruce Brunschwig have both been sources of help in spectroscopic times of need.

Beyond the steering of my advisors, the amazing staff at Caltech has been instrumental in making the research possible. The NMR facilities are great and steadily reaching higher levels under the direction of David Vander Velde and Scott Ross. Dave in particular helped with 2-D, diffusion, and multinuclear NMR experiments. Mona Shahgholi and Naseem Torian in the Mass Spectrometry Facility did a great job handling air-sensitive compounds. Angelo Di Bilio guided me through an EPR GLA-ship and helped with experiments. Without Larry Henling and Mike Day, none of the crystal structures would have been obtained. Larry has spent many memorable hours patiently watching while I piddled around solving structures and learning just enough crystallography to be a danger to myself. Mike taught me the theory of crystallography, and then made sure all my poor quality data sets came out looking as good as they possibly could. Rick Gerhart was flexible when I broke a crucial piece of glassware at just the wrong time, or when I tried to design some fancy new apparatus; it was always a fun trip to the basement. As a Safety Officer I got to know Art Seiden, Larry Martinez, and Paul Carroad, who work hard to keep our labs safe

and running smoothly, and should not be forgotten. Without Rick Germond (the silky voice of the Central Warehouse), Joe Drew, and Tom Dunn all the chemistry groups would fall apart. Finally, Pat Anderson made dreaded paperwork enjoyable and the Division Office made that paperwork run smoothly: Anne Penney, Agnes Tong, and predecessors Laura Howe and Dian Buchness all deserve many thanks. Ernie catered much of my PhD affair, and Jerry and the staff at the Athenaeum served up libations.

In both research groups I have had the honor of working with brilliant chemists who doubled as talented, fun, kick ass people. A lot of my habits were formed in the Peters group, and I think most of them are good ones, thanks in particular to Dr. Bruce MacKay, who instinctively brought me under his wing as a postdoc, and Dr. Matt Whited, my “(g)lovebox mate” for a year in Box 1 and an awesome partner in chemistry and wine enthusiasm long after that. There was great leadership in the group, and Christine Thomas, Connie Lu, Mark Mehn, and Louise Berben and Xile Hu were fonts of knowledge (and entertainment), and Seth Harkins dropped by a few times to talk luminescence. Credit goes to Arjun Mendiratta for helping to keep me balanced, growing my wine habit and organizing adventures to quirky musical events. And for Halloween parties. Caroline, the brave solider who went there and back again with Jonas, has kept me in touch with the group and been a great resource and friend.

The transition between groups was seamless, and I can’t thank the Bercaw group enough for welcoming me and collaborating on great science and “good times”. I think I can safely say that fellow wanderers Valerie Scott, Paul Oblad, and Ted Weintrob got similar treatment. Dave Weinberg, my labmate, roommate, teammate, and nearly desk neighbor,

is a true legend, attacking life with a zeal that I remain in awe of. The kindness of Nilay Hazari, always available to talk science, cheer me up, and throw a ball around, will never be forgotten; nor will his ninja-like laboratory skills, as he stealthily and methodically completed project after project, inspiring the group. As I grew to a wise old graduate student age, and my habits became more and more entrenched (not to mention my need for caffeine), my good friends Ian Tonks, Steve Baldwin, and Ned West made a habit of taking a stroll for a soda precisely between 2 and 2:30 every afternoon. Those walks helped keep me sane and formed a strong bond with those fellows. Rachel Klet, my tail, evolved from a wide-eyed pupil as a first year to a trusted friend and chemical sparring partner. My collaborators on syngas chemistry were always a pleasure to work with: Paul Elowe, Aaron Wilson, Ned West, Sze-Man Yu, Amaruka Hazari, and Carl Laskowski. Lastly, I must mention the great sports teams of the Bercaw lab. Jeff Byers drafted me while I was still working for Jonas and from that time until my recent retirement the sense of team pride and effort put forth for Bearcaw Bulls basketball was inspiring, and the selfless fun-first attitude of the Cp All-Stars softball team led us to great successes. There are too many people to go into more depth here, without rambling on too long: Travis Williams, Bolin Lin, George Chen, Suzanne Golisz (football host extraordinaire!), Taylor Lenton, Ross Fu, Yan-Choi Lam, Matt Winston, and Emmanuelle Despagnet-Ayoub. Thanks to all, and all the best moving forward.

I've been fortunate to work with some great undergraduate students. They taught me as much as I taught them. Alexandra Velian and I were both first years at Caltech when we met, and I was so proud to watch her grow up as a scientist, and I'm sure she watched me develop as a mentor as well. Little Alex was a pleasure to mentor, and I won't forget the

transformation that took place as she learned to design her own experiments and interpret her own results, and *took hold* of her chemistry. Over 4 years, across two research groups, I always had a friend and colleague nearby. I'm excited to reunite with Dalina Thrift-Viveros, who I spent a shorter but similarly rewarding time working with, and see how far she has come since moving on to graduate school at the University of Washington.

None of this would be possible without my family. First and foremost, gratitude goes to my parents, who first inspired and then supported my academic pursuits. From sneaking my mother into conferences because she just *had* to see me speak, to plumbing the merits of scientific curricula at various institutions with my father, it has been a pleasure to share my science with you both. My grandparents always echoed this support; conversations and recipes from my grandmother Anne Minden helped get me through the tough times. In some ways it is that generation that I see more directly in myself: my father's father James Miller Jr. was a wordsmith and Professor of English; my mother's father Joseph Minden was a surgeon with stellar hands; I like to think I combine these genetic traits as I carry out and then write about my research. The last words go to Jillian Dempsey, the love of my life, who already feels like family, and who has made my time at Caltech enjoyable in every aspect. I am so lucky to have someone to bounce ideas off of, to take care of me when I fall ill in so many peculiar ways, and to go on adventures with all over Southern California. I can't wait for more adventures in the future.

Abstract

Two major themes are presented, in roughly chronological order: the synthesis and characterization of photoluminescent copper complexes are described, followed by studies on the selective conversion of synthesis gas (CO and H₂) to oxygenates. With the latter comprising the majority of the work, it is the subject of the introductory Chapter 1. In Chapter 2, the photoluminescent copper chemistry is introduced, and the synthesis and photophysics of monomeric amidophosphine complexes of copper is presented. The copper complexes are exceptional luminophores, with quantum efficiency up to 70% and lifetimes up to 150 μ s. In Chapter 3, homogeneous CO hydrogenation is pursued using a strategy reliant on the incorporation of pendent Lewis acidic groups into the secondary coordination sphere of a metal carbonyl complex. This design feature promotes facile C–H and C–C bond formation, with transition metal hydrides as the hydrogen source. A structure-function study investigating the specific role of the Lewis acid determined that the first C–H bond formation is not particularly sensitive to the acid, whereas the second C–H bond formation and C–C coupling are both *highly* sensitive to the length of the tether between the metal and the borane. In Chapter 4, this chemistry is extended to utilize dihydrogen *directly* as a reductant, in a “frustrated Lewis pair” (FLP) mechanism. A strong phosphazene base is too bulky to interact with the pendent borane, but can heterolytically cleave dihydrogen in concert with the borane to generate a borohydride that transforms the carbonyl ligands into a metal-bound C₂ organic fragment. In Chapter 5, Lewis acidic boranes are again employed as promoters of reductive chemistry, this time for CO₂ reduction. The same late transition metal hydrides that were employed for CO reduction,

such as $[\text{HNi}(\text{dmpe})_2][\text{BF}_4]$ ($\text{dmpe} = 1,2\text{-bis(dimethylphosphino)ethane}$), are able to reduce CO_2 gas when used in concert with the appropriate borane, affording a borane-formate adduct. In Chapter 6, the “frustrated Lewis pair” concept is extended to a different problem: the dehydrogenation of amine-boranes, which are candidates for hydrogen storage applications. Treatment of amine-boranes with the FLP ${}^t\text{Bu}_3\text{P}/\text{B}(\text{C}_6\text{F}_5)_3$ effects rapid and quantitative transfer of H_2 from the amine-borane, forming cyclic aminoborane products along with $[{}^t\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$. Appendices are provided, including early work on Brønsted acid-assisted CO reduction, speciation of trialkylborohydrides, tabulating NMR impurities in deuterated solvents of interest to the organometallic chemist, and crystallographic tables.

Table of Contents

Acknowledgements	iv
Abstract.....	ix
Table of Contents.....	xi
List of Figures	xiii
List of Tables.....	xviii
Chapter 1. Introduction: Synthesis Gas as an Alternative Fuel and Chemical Feedstock	1
Background.....	2
New strategies for homogeneous CO hydrogenation.....	9
References	12
Chapter 2. Long-lived and Efficient Emission from Mononuclear Amidophosphine Complexes of Copper.....	14
Introduction.....	15
Results and Discussion	17
Synthesis and physical characterization of [PN]Cu(L) ₂	17
Photophysical properties and comparisons	19
Understanding the luminescence mechanism	26
Conclusions	30
Experimental Section	31
References	51
Chapter 3. Lewis Acid-Assisted Reductive Coupling of Carbon Monoxide.....	53
Introduction.....	54
Results and Discussion	57
CO reductive coupling promoted by pendent boranes.....	57
Ligand effects on the reductive coupling of CO	63
Conclusions	108
Experimental Section	111
References	199
Chapter 4. Homogeneous CO Hydrogenation: Dihydrogen Activation Involves a Frustrated Lewis Pair Instead of a Platinum Complex.....	202
Introduction.....	203
Results and Discussion	204
Interaction with Lewis bases.....	204
Reductions using dihydrogen and substoichiometric platinum.....	206
Dihydrogen cleavage and delivery by a frustrated Lewis pair.....	208
Reductions catalytic in borane.	214
Conclusions	216

	xii
Experimental Section	217
References.....	240
Chapter 5. Lewis Acid-Assisted CO₂ Reduction	242
Introduction.....	243
Results and Discussion	245
Reactivity of rhenium species with CO ₂	245
Reactivity of group 9 and 10 hydrides with CO ₂	249
Conclusions	258
Experimental Section	259
References.....	285
Chapter 6. Dehydrogenation of Amine-Boranes with a Frustrated Lewis Pair	287
Introduction.....	288
Results and Discussion	289
Experimental Section	295
References.....	301
Appendix A. Investigations into Brønsted Acid-Assisted CO Reduction.....	304
Introduction.....	305
Results and Discussion	306
Conclusions	310
Experimental Section	311
References.....	316
Appendix B. Crown Ether Alteration of Triethylborohydride Speciation.....	317
Introduction.....	318
Results and Discussion	319
Conclusions	324
Experimental Section	324
References.....	326
Appendix C. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist	328
Introduction.....	329
Results and Discussion	330
Experimental Section	334
References.....	336
Appendix D. Crystallographic Tables	337
Special Refinement Details for All Structures.....	338
Chapter 2 Crystallographic Tables.....	339
Chapter 3 Crystallographic Tables.....	350
Chapter 4 Crystallographic Tables.....	380
Appendix A Crystallographic Tables	382
Appendix B Crystallographic Tables	388

List of Figures

Chapter 2

Figure 2.1. Structural representation of 2 (left) and 3 (right), with ellipsoids at 50% probability.....	18
Figure 2.2. Cyclic voltammogram of $\text{PNCu}(\text{PPh}_3)_2$ (2).....	19
Figure 2.3. Overlay of absorption spectra of $\text{PNCu}(\text{L})_2$ ($\text{L} = \text{PPh}_3$ (2), PMe_3 (3); $(\text{L})_2 = \text{dppe}$ (4)) in benzene.....	20
Figure 2.4. Excitation spectrum of 2 and normalized emission spectra of 2 , 3 , 4 , 7 , and 8	20
Figure 2.5. Oxidative quenching of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2) with 2,6-dibenzoquinone (Q).....	21
Figure 2.6. Luminescence decay traces of $[\text{MePN}]\text{Cu}(\text{PPh}_3)_2$ (7 , green), $\text{PNCu}(\text{PPh}_3)_2$ (2 , red) and $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (8 , blue) in C_6H_6 at 298 K ($\lambda_{\text{ex}} = 430$ nm).....	22
Figure 2.7. Structural representation of 7 (left) and 8 (right), with ellipsoids at 50% probability.....	23
Figure 2.8. Emission spectra of polycrystalline $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (8 ; $\lambda_{\text{ex}} = 430$ nm) at 77 K (black) and 298 K (red).....	24
Figure 2.9. Structural representations of $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (9 , left) and $[\text{PN}]_2\text{Zn}$ (10 , right) with ellipsoids at 50% probability.....	25
Figure 2.10. A: Alternate view of structural representation of 3 (see Figure 2.1 for full details). B: DFT calculated HOMO of 3 . C: DFT calculated LUMO of 3	26
Figure 2.11. Overlay of $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (9), $[\text{PN}]_2\text{Zn}$ (10), $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2).....	27
Figure 2.12. Optical Spectrum of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2) in benzene (red), diethyl ether (blue), and tetrahydrofuran (green) solvent.....	28
Figure 2.13. Overlay of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2), $[\text{MePN}]\text{Cu}(\text{PPh}_3)_2$ (7), $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (8).....	47
Figure 2.14. Overlay of $[\text{PN}]\text{Li}$ (1), $[\text{MePN}]\text{Li}$ (5), and $[\text{CF}_3\text{PN}]\text{Li}$ (6).....	48
Figure 2.15. Emission/Excitation Spectra of $[\text{PN}]\text{Li}$ (1; $\lambda_{\text{ex}} = 350$ nm)	48
Figure 2.16. Emission/Excitation spectra of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2; $\lambda_{\text{ex}} = 430$ nm)	48
Figure 2.17. Emission/Excitation spectra of $[\text{PN}]\text{Cu}(\text{PMe}_3)_2$ (3; $\lambda_{\text{ex}} = 430$ nm)	49
Figure 2.18. Emission/Excitation spectra of $[\text{PN}]\text{Cu}(\text{dppe})$ (4; $\lambda_{\text{ex}} = 430$ nm)	49
Figure 2.19. Emission/Excitation spectra of $[\text{MePN}]\text{Li}$ (5; $\lambda_{\text{ex}} = 350$ nm)	49
Figure 2.20. Emission/Excitation spectra of $[\text{CF}_3\text{PN}]\text{Li}$ (6; $\lambda_{\text{ex}} = 350$ nm)	50
Figure 2.21. Emission/Excitation spectra of $[\text{MePN}]\text{Cu}(\text{PPh}_3)_2$ (7; $\lambda_{\text{ex}} = 430$ nm)	50
Figure 2.22. Emission/Excitation spectra of $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (8; $\lambda_{\text{ex}} = 430$ nm)	50
Figure 2.23. Emission/Excitation Spectra of $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (9; $\lambda_{\text{ex}} = 430$ nm).....	51
Figure 2.24. Emission/Excitation Spectra of $[\text{PN}]_2\text{Zn}$ (10; $\lambda_{\text{ex}} = 350$ nm).....	51

Chapter 3

Figure 3.1. Structural representation (50% ellipsoids) of complex $[\text{1-E}_2][\text{BF}_4]$	58
Figure 3.2. XRD structural representation (50% ellipsoids) of complex 2-E_2	60
Figure 3.3. Structural representation (two views) of $[\text{Na} \cdot 3.5\text{THF} \cdot 0.5\text{Et}_2\text{O}][\text{3-E}_2]$, ellipsoids at 50% probability	61

Figure 3.4. Structural representation of (2-Ph₂•BEt₃)•(C₆H₅CH₃) with thermal ellipsoids at 50% probability.....	67
Figure 3.5. Structural representation of [1-M₂][B(C₆F₅)₄] , with ellipsoids shown at 50% probability	72
Figure 3.6. Structural representation of [1-M₁][OTf] , ellipsoids at 50% probability.....	74
Figure 3.7. Structural representation of 8 , ellipsoids at 50% probability.....	82
Figure 3.8. Structural representation of 11 with ellipsoids at 50% probability	97
Figure 3.9. Structural representation of [Na(THF)₃][3-M₁] with ellipsoids at 50% probability	99
Figure 3.10. Structural representation of [Na(THF)₃][3-E₁Ph₁] (left) and 13•(C₆H₅Cl)_{0.5} (right), with thermal ellipsoids at 50% probability	105
Figure 3.11. Orbital overlap diagrams for two orthogonal boroxycarbene orientations...	110
Figure 3.12. Structural representation of [Na•3Et₂O][3-E₂] . Ellipsoids are shown at 50% probability	113
Figure 3.13. Benesi-Hildebrand plot showing borane binding to formyl	125
Figure 3.14. ³¹ P{ ¹ H} NMR from -35 to 95 C	140
Figure 3.15. ¹ H NMR (formyl region) from -35 to 95 C	140
Figure 3.16. ¹ H NMR (aryl, alkyl regions from -35 to 95 C).....	141
Figure 3.17. ¹ H- ¹ H gCOSY of [5]⁻	144
Figure 3.18. ¹ H- ³¹ P gHMBC of [5]⁻ (C ₆ D ₅ Cl).....	145
Figure 3.19. ¹ H- ¹³ C gHMBC of [5]⁻	145
Figure 3.20. ¹ H- ¹³ C gHSQC of [5]⁻ (C ₆ D ₅ Cl).....	146
Figure 3.21. ¹ H NMR of 2-M₂•py	147
Figure 3.22. ¹ H- ¹ H gCOSY of 7	153
Figure 3.23. ¹ H- ³¹ P gHMBC of 7	153
Figure 3.24. ¹ H- ¹³ C gHMQC of 7	154
Figure 3.25. ¹ H- ¹³ C gHMBC of 7	154
Figure 3.26. ³¹ P{ ¹ H} NMR of reaction of [1-E₂]⁺ with [HPt]⁺ while warming.	158
Figure 3.27. ¹ H NMR of [9]⁻	160
Figure 3.28. ¹ H NMR overlay of 2-E₂ (bottom) and [9]⁻ (top).....	160
Figure 3.29. ³¹ P{ ¹ H} NMR of [9]⁻	161
Figure 3.30. ¹³ C{ ¹ H} NMR of [9]⁻	161
Figure 3.31. ¹ H- ³¹ P gHMBC of [9]⁻	162
Figure 3.32. ¹ H NMR (20 °C), hydride region, after mixing [HPt]⁺ and BEt ₃	163
Figure 3.33. ¹ H NMR (-40 °C), hydride region, after mixing [HPt]⁺ and BEt ₃	163
Figure 3.34. ³¹ P{ ¹ H} NMR of [HPt]⁺/BEt₃ from -40 to 80 °C.	164
Figure 3.35. ¹ H- ¹ H gCOSY of [3-E₂-Mn]⁻	167
Figure 3.36. ¹ H- ¹³ C gHMBC of [3-E₂-Mn]⁻	167
Figure 3.37. ¹ H- ¹³ C gHSQC of [3-E₂-Mn]⁻	168
Figure 3.38. Variable temperature ¹ H NMR of 2-M₁	177
Figure 3.39. ¹ H NMR of 11	178
Figure 3.40. ¹ H NMR of 11 (blow-up of cyclic alkyl region).	178
Figure 3.41. ¹ H{ ³¹ P} NMR of 11	179
Figure 3.42. ¹ H- ¹ H gCOSY of 11	179

Figure 3.43. $^{31}\text{P}\{^1\text{H}\}$ NMR of 11	180
Figure 3.44. $^{13}\text{C}\{^1\text{H}\}$ NMR of 11	180
Figure 3.45. ^1H NMR time course.....	183
Figure 3.46. ^1H NMR time course.....	183
Figure 3.47. ^1H – ^{31}P gHMBC NMR confirming the product as 10 – M₁P₁	184
Figure 3.48. ^1H – ^1H gCOSY of $[\mathbf{3}\text{-}\mathbf{M}_1]^-$	187
Figure 3.49. ^1H – ^{13}C gHMBC of $[\mathbf{3}\text{-}\mathbf{M}_1]^-$	187
Figure 3.50. ^1H – ^{13}C gHMBC during reaction of $[\mathbf{1}\text{-}\mathbf{M}_1]^+$ with $[\mathbf{HPt}]^+$	188
Figure 3.51. ^1H – ^{13}C gHSQC during reaction of $[\mathbf{1}\text{-}\mathbf{M}_1]^+$ with $[\mathbf{HPt}]^+$	188
Figure 3.52. Time course of reaction of $[\mathbf{1}\text{-}\mathbf{M}_1]^+$ with $[\mathbf{HPt}]^+$	189
Figure 3.53. Time course of reaction of $[\mathbf{1}\text{-}\mathbf{M}_1]^+$ with $[\mathbf{HPt}]^+$	189
Figure 3.54. ^1H – ^{31}P gHMBC of 10 – E₁	191
Figure 3.55. ^1H – ^{31}P gHMBC of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$	194
Figure 3.56. ^1H – ^1H gCOSY of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$	194
Figure 3.57. ^1H – ^{13}C gHMQC NMR of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$	195
Figure 3.58. ^1H – ^{13}C gHMBC NMR of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$	195
Figure 3.59. ^1H NMR time course of $[\mathbf{1}\text{-}\mathbf{P}_1]^+ + [\mathbf{HPt}]^+$	198
Figure 3.60. $^{31}\text{P}\{^1\text{H}\}$ NMR time course of $[\mathbf{1}\text{-}\mathbf{P}_1]^+ + [\mathbf{HPt}]^+$	199

Chapter 4

Figure 4.1. Structural representation of $[\mathbf{1}\cdot(\text{THF})_2][\text{BF}_4]$ (ellipsoids at 50% probability).	204
Figure 4.2. Time course of formation of $[\mathbf{3}]^-$ in the presence of 15 mol % $[\mathbf{Pt}]^{2+}$	209
Figure 4.3. Consumption of $[\mathbf{Pt}]^{2+}$ as it cleaves H_2 with \mathbf{P}_1 , with and without Lewis acid additives.....	209
Figure 4.4. ^1H NMR of H_2/D_2 comproportionation to HD	214
Figure 4.5. Benesi-Hildebrand plot ($1/[\text{THF}]$ vs. $1/\Delta\delta$).....	220
Figure 4.6. ^1H NMR of $[\mathbf{1}][\text{BF}_4]$ in the presence of \mathbf{P}_1 (red trace), overlaid with pure $[\mathbf{1}][\text{BF}_4]$ (blue).	225
Figure 4.7. $^{31}\text{P}\{^1\text{H}\}$ NMR of $[\mathbf{1}][\text{BF}_4]$ in the presence of \mathbf{P}_1	225
Figure 4.8. ^{11}B NMR of $[\mathbf{1}][\text{BF}_4]$ in the presence of \mathbf{P}_1	226
Figure 4.9. $^{31}\text{P}\{^1\text{H}\}$ NMR time course of H_2 splitting reaction.....	227
Figure 4.10. Log plot of consumption of $[\mathbf{Pt}]^{2+}$ during reaction with \mathbf{P}_1 and H_2	227
Figure 4.11. ^1H NMR of Pt-containing reductive coupling immediately after H_2 addition (15 mol% $[\mathbf{Pt}]^{2+}$, 4 equiv \mathbf{P}_1).	228
Figure 4.12. $^{31}\text{P}\{^1\text{H}\}$ NMR of Pt-containing reductive coupling immediately after H_2 addition.	229
Figure 4.13. ^1H NMR of Pt-containing reductive coupling after 13 days (reaction complete, 85% yield by integration).....	229
Figure 4.14. $^{31}\text{P}\{^1\text{H}\}$ NMR of Pt-containing reductive coupling after 13 days.....	230
Figure 4.15. Formation of $[\mathbf{3}]^-$ from $[\mathbf{1}][\text{BAr}^{\text{F}_4}]$, 15 mol% $[\mathbf{Pt}][\text{BAr}^{\text{F}_4}]_2$, 4 equiv \mathbf{P}_1 , 4 atm H_2	230
Figure 4.16. Time course of Pt-containing reductive coupling showing induction period (55% $[\mathbf{Pt}]^{2+}$, 5.5 equiv \mathbf{P}_1 , ~90% yield by integration to BAr^{F_4} peaks).....	231

Figure 4.17. ^1H NMR of metal-free reductive coupling immediately after H_2 addition (10 equiv P₁)	233
Figure 4.18. ^1H NMR of metal-free reductive coupling after ~ 5 days ($\sim 85\%$ yield).	233
Figure 4.19. $^{31}\text{P}\{^1\text{H}\}$ NMR of metal-free reductive coupling after ~ 5 days.	234
Figure 4.20. Time course of reaction of 1 equiv $[\mathbf{1}]^+$ and 10 equiv P₁ with H_2 (red squares) or D_2 (blue triangles).	234
Figure 4.21. Crude comparison of rates of formation of $[\mathbf{3}]^-$ with and without $[\mathbf{Pt}]^{2+}$, and varying P₁	235
Figure 4.22. Time course showing the elimination of induction period when $[\mathbf{Pt}]^{2+}$ is omitted from the reaction.	235
Figure 4.23. Time course (^1H NMR) of reduction facilitated by external Lewis acid.	238
Figure 4.24. Time course (^1H NMR) of reduction facilitated by external Lewis acid (formyl and hydride region).	238
Figure 4.25. Time course (^{31}P NMR) of reduction facilitated by external Lewis acid.	239
Figure 4.26. Time course of catalytic reduction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+$	240

Chapter 5

Figure 5.1. ^{11}B NMR spectra before CO_2 addition (red), after 2 hours (green), and after 18 hours (blue).	251
Figure 5.2. ^1H NMR of $\mathbf{1}\bullet(\text{HCO}_2)$	261
Figure 5.3. $^{31}\text{P}\{^1\text{H}\}$ NMR of $\mathbf{1}\bullet(\text{HCO}_2)$	261
Figure 5.4. ^1H NMR of $\mathbf{1}\bullet(\text{HCO}_2)$ (from $[\text{Bu}_4\text{N}][\text{HCO}_2]$).	262
Figure 5.5. Time course (^1H NMR excerpts) of reaction of $[\mathbf{1}]^+$ with $[\text{HNi}(\text{dmpe})_2]^+$ and CO_2	263
Figure 5.6. ^1H NMR of $\mathbf{1}\bullet(\text{HCO}_2)$ (pyridine).	264
Figure 5.7. $^{31}\text{P}\{^1\text{H}\}$ NMR of $\mathbf{1}\bullet(\text{HCO}_2)$ (pyridine).	264
Figure 5.8. Time course (^1H NMR alkyl region) of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ and CO_2	265
Figure 5.9. Time course (^1H NMR formate and hydride region) of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ and CO_2	266
Figure 5.10. Reaction of $[\text{HNi}(\text{dmpe})_2]^+$ and BPh_3 before CO_2 addition (bottom); 5 hours after addition (middle); 2 days after addition (top).	267
Figure 5.11. ^1H NMR of mixture of $[\text{HNi}(\text{dmpe})_2]^+$, BMes_3 , and CO_2	268
Figure 5.12. ^1H NMR (blow-up) of mixture of $[\text{HNi}(\text{dmpe})_2]^+$, BMes_3 , and CO_2	268
Figure 5.13. ^1H NMR of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $\text{B}(\text{C}_6\text{F}_5)_3$ and CO_2	269
Figure 5.14. $^{31}\text{P}\{^1\text{H}\}$ NMR of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $\text{B}(\text{C}_6\text{F}_5)_3$ and CO_2	270
Figure 5.15. ^{19}F NMR of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $\text{B}(\text{C}_6\text{F}_5)_3$ and CO_2	270
Figure 5.16. ^{11}B NMR of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $\text{B}(\text{C}_6\text{F}_5)_3$ and CO_2	271
Figure 5.17. ^1H NMR of $[\text{Bu}_4\text{N}][\text{HCO}_2\text{BR}_3]$	272
Figure 5.18. $^{13}\text{C}\{^1\text{H}\}$ NMR of $[\text{Bu}_4\text{N}][\text{HCO}_2\text{BR}_3]$	272
Figure 5.19. ^{11}B NMR of $[\text{Bu}_4\text{N}][\text{HCO}_2\text{BR}_3]$	273
Figure 5.20. Overlay (^1H NMR, formate region) of equilibrated reactions of $[\text{HNi}(\text{dmpe})_2]^+$ with CO_2 and 0 (red), 1 (green) and 10 (blue) equiv $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$	274
Figure 5.21. Comparison (^1H NMR) of equilibrated reactions of $[\text{HNi}(\text{dmpe})_2]^+$ with CO_2 and 0 (bottom), 1 (middle) and 10 (top) equiv $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$	274

Figure 5.22. Comparison $^{31}\text{P}\{^1\text{H}\}$ NMR) of equilibrated reactions of $[\text{HNi}(\text{dmpe})_2]^+$ with CO_2 and 0 (bottom), 1 (middle) and 10 (top) equiv $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$	275
Figure 5.23. ^1H NMR (formate region) after reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ and CO_2 (red); after addition of $[\text{Bu}_4\text{N}][\text{HCO}_2]$ (blue).....	276
Figure 5.24. ^1H NMR (formate region) of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ and $^{13}\text{CO}_2$ (12 hours).....	277
Figure 5.25. $^{13}\text{C}\{^1\text{H}\}$ NMR of reaction of $[\text{HNi}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ and $^{13}\text{CO}_2$ (12 hours).....	277
Figure 5.26. ^1H NMR after mixing $[\text{Ni}(\text{dmpe})_2][\text{PF}_6]_2$ with $[\text{Bu}_4\text{N}][\text{HCO}_2]$	278
Figure 5.27. $^{31}\text{P}\{^1\text{H}\}$ NMR after mixing $[\text{Ni}(\text{dmpe})_2][\text{PF}_6]_2$ with $[\text{Bu}_4\text{N}][\text{HCO}_2]$	278
Figure 5.28. ^1H NMR overlay (formate and hydride regions) of reaction of $[\text{Rh}(\text{dmpe})_2]^+$ with CO_2 and H_2 . After 3 hours (red), 24 hours (green), 4 days (blue).	279
Figure 5.29. $^{31}\text{P}\{^1\text{H}\}$ NMR of reaction of $[\text{Rh}(\text{dmpe})_2]^+$ with CO_2 and H_2 after 24 hours.....	279
Figure 5.30. ^1H NMR time course (aliphatic region) of reaction of $[\text{Rh}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$, CO_2 and H_2	280
Figure 5.31. ^1H NMR time course (formate and hydride regions) of reaction of $[\text{Rh}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$, CO_2 and H_2	281
Figure 5.32. ^{31}P NMR (partially decoupled) 18 hours after reaction of $[\text{Rh}(\text{dmpe})_2]^+$ with $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$, CO_2 and H_2	281
Figure 5.33. ^1H NMR time course of attempted catalysis in CD_3CN	282
Figure 5.34. ^1H NMR time course (over 3 days) of attempted catalysis in CD_3CN	283
Figure 5.35. ^1H NMR time course of attempted catalysis in $\text{C}_6\text{D}_5\text{Cl}$	284
Figure 5.36. ^1H NMR time course of H_2 cleavage by $[\text{Ni}(\text{dmpe})_2][\text{BAr}^{\text{F}}_4]_2$	285

Chapter 6

Figure 6.1. ^1H NMR spectrum after FLP-mediated dehydrocoupling of $\text{Me}_2\text{NH}\bullet\text{BH}_3$. Left inset is a blow-up of the borohydride ^1H NMR resonances; right inset is the ^{31}P NMR spectrum of $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$	291
Figure 6.2. ^{11}B NMR spectrum shortly after FLP-mediated dehydrocoupling of $\text{Me}_2\text{NH}\bullet\text{BH}_3$	291
Figure 6.3. ^1H NMR of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$ (enlargement inset)	297
Figure 6.4. ^{31}P NMR of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$	297
Figure 6.5. $^{31}\text{P}\{^1\text{H}\}$ NMR of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$	298
Figure 6.6. ^{19}F NMR of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$	298
Figure 6.7. ^{11}B NMR of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$, at 1 and 24 hours.....	299
Figure 6.8. ^{11}B NMR after thermolysis of $(\text{Me}_2\text{NBH}_2)_2$ and $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_3]$	301

Appendix A

Figure A.1. Structural representation of 1, ellipsoids at 50% probability	306
Figure A.2. Structural representation of 2, ellipsoids at 50% probability	307
Figure A.3. Structural representation of 7, ellipsoids at 50% probability	309

Appendix B

Figure B.1. $^{31}\text{P}\{^1\text{H}\}$ NMR spectra after reduction of [1][OTf] with KHBEt_3 (top) and $18\text{c}6/\text{KHBEt}_3$ (bottom)	319
---	-----

Figure B.2. Structural representation of KHBEt ₃ , ellipsoids at 50% probability	320
Figure B.3. Structural representation of 18c6/KHBEt ₃ , ellipsoids at 50% probability	322
Figure B.3. Packing diagrams of KHBEt ₃ (left) and 18c6/KHBEt ₃ (right), both looking down the b axis	323

List of Tables

Table 2.1. Photophysical Comparison of Cu Complexes at 298 K.....	22
Table 2.2. Data for Excited State Lifetime Measurements.....	33
Table 2.3. Stern-Volmer quenching data for 2	34
Table 2.4. Data for Quantum Yield Measurements.....	36
Table 2.5. Assorted photophysical properties of all reported complexes.....	47
Table B.1. Selected interatomic distances of KHBEt ₃	320
Table B.2. Selected interatomic distances of 18c6/KHBEt ₃	322
Table C.1. ¹ H NMR data	332
Table C.2. ¹³ C NMR data	333

Chapter 1

Introduction: Synthesis Gas as an Alternative Fuel and Chemical Feedstock

Adapted in part from:

West, N. M.; Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *Coord. Chem. Rev.* **2010**, *In press*.

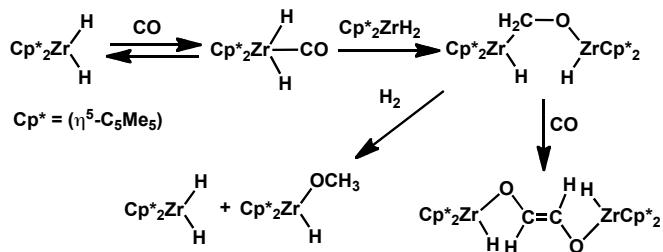
Copyright 2010 Elsevier B.V.

Chapter 1

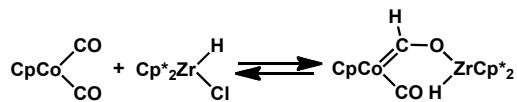
Background

Faced with political and socioeconomical pressures to move away from petroleum-derived fuels and chemicals, various alternative feedstocks are currently the focus of intense research.¹ Synthesis gas (or syngas, a mixture of H₂ and CO) is an attractive feedstock, as it is readily obtained from natural gas, coal and biomass on industrial scales—albeit at a steep energy cost due to the high temperatures required to drive the uphill reaction.² Research in the field of syngas conversion received sparks in 1902, when Sabatier reported methanation over nickel,³ and in 1926, when Fischer and Tropsch obtained liquid hydrocarbons.⁴ While syngas conversion to a variety of C₁ products, notably methanol and acetic acid, is efficient and selective (and widely practiced on an industrial scale), conversion to more complex C₂₊ products (either hydrocarbons or oxygenates) is more problematic. The main issue is selectivity: the Fischer-Tropsch reaction generates a Schultz-Flory distribution of hydrocarbons, for which the ability to select for any particular desired range of products, such as diesel, is limited. The high costs of separation or refining make the Fischer-Tropsch process economically unfeasible in most cases, but there *are* some geopolitical climates where coal- or gas-to-liquids chemistry is financially viable, and large-scale plants have come online in places such as South Africa and Malaysia.⁵ Only limited success in selective formation of higher alcohols and other oxygenates has ever been achieved.

Homogeneous catalysts, which often perform reactions faster and more selectively than their heterogeneous counterparts, are attractive alternatives to current Fischer-Tropsch technology. Homogeneous catalysts usually feature a single well-defined reactive site that can be “tuned” (by ligand design or alteration, for example) to tailor product distribution; such strategies are often guided by insights from mechanistic studies. Rational modification of heterogeneous catalysts is more difficult.


Homogeneous approaches to synthesis gas hydrogenation and oligomerization⁶ were first reported by Dupont in the early 1950s, using cobalt catalysts operating under extremely high syngas pressures (1500-5000 atm).⁷ Research efforts intensified during the oil crisis of the 1970s and early 1980s, and a number of other catalysts, including complexes of Rh, Fe, Ru, and Ir, were reported to similarly hydrogenate CO;^{6b} high pressures are still required (generally over 1000 atm) and methanol is the major product, with low yields of C₂₊ products (mostly ethylene glycol). The mildest conditions for the homogeneous reaction were found using Ru₃(CO)₁₂ as the precatalyst, at pressures as low as 100 atm, but still affording methanol as the major product.⁸

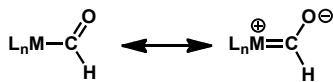
The presence of a Lewis or Brønsted acid appears to be critical to C₂₊ product formation in the homogeneous systems as well as heterogeneously catalyzed Fischer-Tropsch reactions.⁹ Ethane and higher hydrocarbons were obtained using Ir₄(CO)₁₂ in a NaCl/AlCl₃ melt;¹⁰ Os and Rh carbonyl complexes display similar reactivity in the presence of BBr₃ or AlBr₃.¹¹ Carboxylic acid solvents help direct the reactivity of Ru₃(CO)₁₂ from methanol synthesis (observed in many organic solvents) to ethylene glycol (as the diester).⁸ Rh carbonyl catalysts can give ethylene glycol selectivities up to 75% at 200-230 °C, under 2200-2400


psi of 1:1 H₂/CO, and with the addition of Lewis bases and alkali cations.^{6b,c,12} There has been little improvement of these processes since their disclosure.

The extreme conditions required for these reactions might result from the difficulty of forming the first C–H bond. Mechanistically speaking, the C–H bond-forming step could involve (kinetically disfavored) intramolecular insertion of CO into an M–H bond or intermolecular attack of a (weakly nucleophilic) metal hydride on a metal carbonyl complex. The Lewis acidic additives could promote glycol formation by facilitating the insertion of CO into intermediate M–C (or even M–H) bonds by binding to the carbonyl oxygen. In combined Rh/Ru catalysis, 10 times more Ru than Rh was required and the C₁/C₂ product selectivity displayed concentration dependence on Rh but not Ru, suggesting that Ru serves as the hydride source while CO reduction and coupling occurs on the Rh center.^{6c,13}

The mechanistic uncertainty surrounding homogeneous syngas conversion sparked interest in model compounds bearing more complex ligands. The following organometallic approaches to the development of new catalysts, spanning the periodic table, form the foundation of current syngas conversion chemistry.

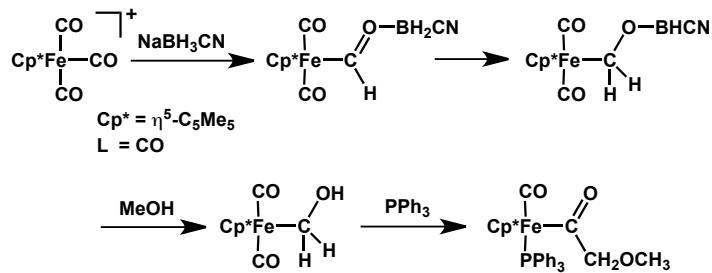
Scheme 1.1


Scheme 1.2

In a seminal contribution, Bercaw and coworkers showed that $\text{Cp}^*_2\text{ZrH}_2$ (formed by H_2 addition to a highly reducing Zr^{II} precursor) would react with CO to form methoxide or bridging ene-diolate species (Scheme 1.1). A large number of early metal and f-block systems that carry out similar transformations have since been reported,¹⁴ even though it is now well established that migratory insertion of CO into a M–H bond is highly endoenergetic.¹⁵ Rather than migratory insertion, the mechanism of CO reduction (in all but one case¹⁶) relies on the nucleophilic character of early transition metal hydrides. Early transition metal hydrides can be extremely hydridic,¹⁷ which has been exploited for a number of stoichiometric reductions of CO, such as the Zr–H reduction of a Co–CO species shown in Scheme 1.2.¹⁸ The rather less nucleophilic Cp_2NbH_3 reacts with $\text{Cr}(\text{CO})_6$, at only slightly elevated temperature, to produce ethane.¹⁹ In a report of relevance to homogeneous syngas conversion catalysis, Dombek showed that the proposed intermediate $[\text{HRu}(\text{CO})_4]^-$ can reduce $[\text{CpRe}(\text{CO})_2\text{NO}]^+$ to the corresponding formyl.²⁰

Electron-rich early metal complexes also react with CO in the absence of H_2 to give oligomerization products that could, in principle, be converted to organics. Early work on CO reductive coupling by Lippard (early transition metals)²¹ and Evans (lanthanides)²² has recently been complemented by Cloke (uranium)²³ to generate a wide range of metal-bound CO oligomers, such as ketenecarboxylate, deltate, and squarate complexes. The potent reducing agents required to activate the metals for reactivity with CO probably preclude applications for syngas conversion.

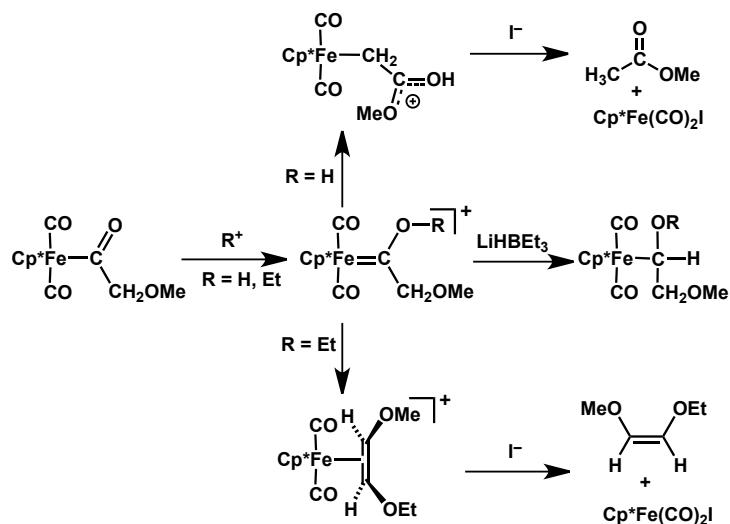
In general, early metal systems also are not viable candidates for catalytic processes involving oxygenates: extremely strong M–O bonds are invariably formed in these reactions with such electropositive metals, and these bonds cannot be cleaved to close a catalytic cycle. It is quite possible that some or all of the known catalytic reactions that produce alcohols proceed via the general M–H transfer to M–CO route; but those systems involve less nucleophilic late transition metal complexes — and probably as a result require fairly extreme conditions to induce hydride transfer (while avoiding the strong M–O bonds).


Elements from the middle of the transition series generally form much weaker bonds to oxygen, thereby avoiding one major drawback of CO reduction on early metals. While the first reported transition metal formyl complex, $[\text{Fe}(\text{CO})_4(\text{CHO})]^-$, was synthesized by addition of nucleophilic $[\text{Fe}(\text{CO})_4]^{2-}$ to formic acetic anhydride,²⁴ it quickly became clear that M–CO reduction by strong hydride sources was a general route to formyl complexes.²⁵ The most studied formyl species are of the type $\text{Cp}'\text{Re}(\text{NO})(\text{L})(\text{CHO})$ ($\text{Cp}' = \text{Cp}, \text{Cp}^*$; $\text{L} = \text{CO}, \text{PPh}_3$) formed from the carbonyl cation and a borohydride reagent.²⁶

Scheme 1.3

Two resonance structures, one best described as a formyl and the other as a carbene, contribute to the stability and reactivity of these species (Scheme 1.3). Formyl species are generally regarded as quite potent hydride donors themselves,²⁷ transferring H^- and

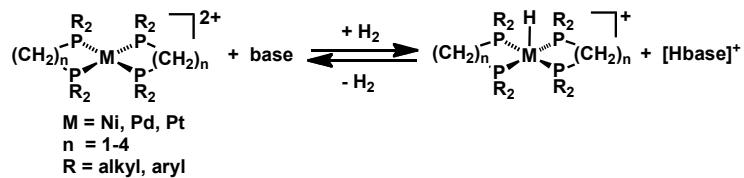
reforming M–CO; carbene species render the oxygen nucleophilic,²⁵ capable of coordinating to electrophiles.



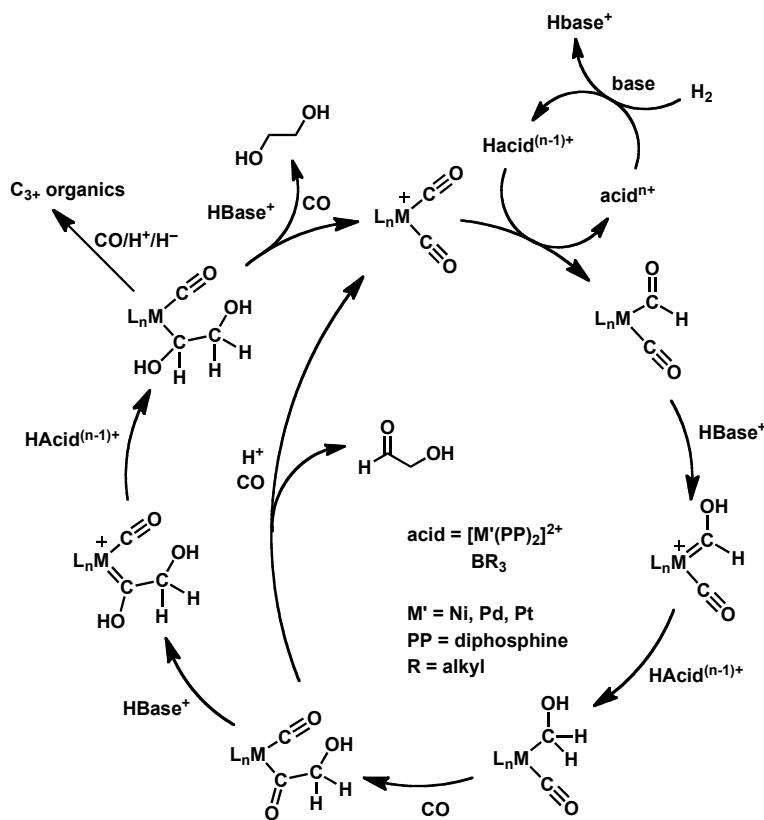
Scheme 1.4

Scheme 1.5

Coordination of an electrophile to the formyl oxygen favors reduction at carbon, and use of reagents such as NaBH₄ or LiAlH₄ can result in multiple reductions of a carbonyl ligand: after the first hydride is delivered, Lewis acidic BH₃ or AlH₃ can coordinate to the formyl oxygen, activating the ligand towards further reduction (Scheme 1.4). Species such as CpRe(NO)(CO)₂⁺ and CpFe(CO)₃⁺ can be reduced to a variety of products depending on conditions: formyl, hydroxymethyl, or methyl species (Scheme 1.5).^{26b,26d,28}

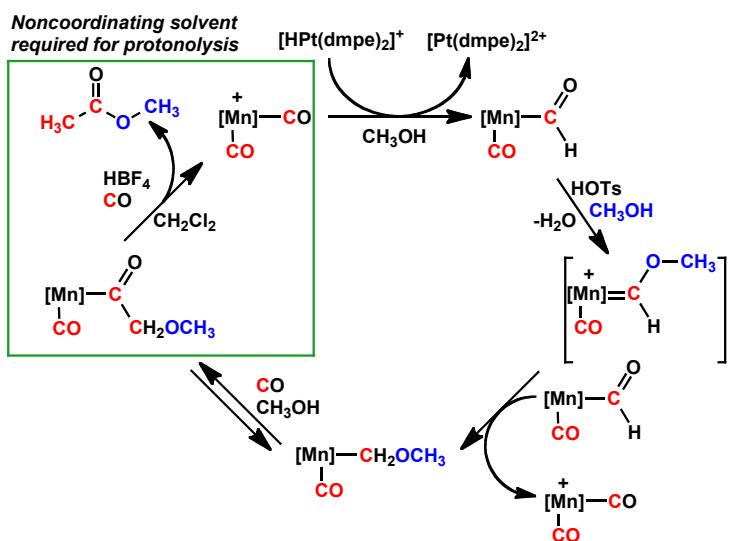

Scheme 1.6

Integration of stepwise reduction schemes, alternating strong reductants and electrophiles (Scheme 1.4) with chemistry to release reduced products from the metal (Scheme 1.6) enables stoichiometric formation of C_{2+} organics from CO and H^-/H^+ .²⁹ Such schemes remain far from catalytic, however, as the reagents for each sequential step are incompatible with each other.


Late metals can also support CO reduction chemistry, usually by a very different mechanism involving radical chemistry. A wide body of work by Wayland and coworkers is typified by the reaction of (octaethylporphyrin)rhodium hydride with CO to afford a formyl:³⁰ the net CO insertion actually results from H-atom transfer (not H^- transfer) to a metalloradical Rh-CO species.³¹ The chemistry can be modulated by alteration of the ligand and reaction conditions to selectively form Rh-CHO, Rh-C(O)-Rh, or Rh-C(O)C(O)-Rh species.³² Organic products have not been released from these systems, however; one reason could be that the very strong Rh-C bonds are hard to cleave, reminiscent of the strong M-O bonds of early metals.

New strategies for homogeneous CO hydrogenation

Clearly, selective conversion of syngas to multicarbon products under mild homogeneous conditions faces a number of hurdles, and new tactics are required in the pursuit of a catalyst. Our approach in this area was initially guided by DuBois and coworkers' discovery that bis(diphosphine) hydride complexes of late transition metals (Co, Rh, Ni, Pd, and Pt) can be surprisingly nucleophilic, and can furthermore be formed by the heterolytic cleavage of dihydrogen in concert with an appropriate base (Scheme 1.7). The choice of metal along with a number of ligand steric parameters enables the "hydricity" or hydride donor strength (ΔG_{H^-}) to be tuned along a vast continuum: from neutral Rh^I hydrides, similar in strength to "Super-hydride" ($[HBEt_3]^-$), to cationic Ni^{II} hydrides better described as acids than hydrides.



Scheme 1.7

Scheme 1.8

In conjunction with DuBois' results, the work summarized above provides fairly clear guidelines for a viable approach to selective homogeneous syngas conversion based on a two-catalyst system, where one metal complex acts as a scaffold for CO reduction, while the other delivers hydride. The metal carbonyl must be sufficiently electrophilic to accept a hydride, and the metal hydride must be sufficiently nucleophilic, but neither can be so oxophilic that strong M–O bond formation would preclude catalysis. One vision for such a cycle is shown in Scheme 1.8. A stoichiometric version of this cycle was indeed established using a fairly hydridic platinum hydride;³³ but similar to earlier work using stronger main group hydrides, the electrophilic reagents of Scheme 1.9 were incompatible with the Pt–H bond.

Scheme 1.9

In order to avoid such reactivity, we chose to add additional reactive centers. The combination of transition metal complexes with Lewis or Brønsted acids appears to be beneficial in several different ways, for example promoting both hydride transfer to CO and C–C bond forming reactions. Aiding these steps might permit the use of weaker hydrides or lower pressures of CO (to induce migratory insertion). Directly attaching the acidic center to the metal could bestow additional advantages, utilizing the chelate effect to enhance acid promotion.

With these goals in mind, we set out to synthesize bifunctional metal carbonyl complexes containing pendent alkylborane moieties, and investigate their reactivity with late transition metal hydride donors and H₂ itself. We find that Lewis acids indeed engender unique reactivity to a variety of metal centers and transformations. With a focus on CO reduction, we showed that — depending on the acid strength and length of tether — both C–H and C–C bond formation are promoted by pendent boranes. These boranes can even

participate in “frustrated Lewis pair” chemistry³⁴ (in which the acid and base are too sterically encumbered to form a traditional Lewis adduct) to utilize dihydrogen directly to reduce metal carbonyl complexes. We also show that Lewis acids can aid in another C–H bond-forming reaction, hydride transfer from a nickel hydride to CO₂. Finally, “frustrated Lewis pairs” are further explored, with studies on the dehydrogenation of potential hydrogen storage candidate amine-boranes.

References

1. World Energy Assessment Report: Energy and the Challenge of Sustainability. Program, U. N. D., Ed. United Nations: New York, 2000.
2. Navarro, R. M.; Pena, M. A.; Fierro, J. L. G. *Chem. Rev.* **2007**, *107*, 3952.
3. Sabatier, P.; Senderens, J. B. *C. R. Hebd. Séances Acad. Sci.* **1902**, *134*, 514.
4. Fischer, F.; Tropsch, H. *Ber. Dtsch. Chem. Ges.* **1926**, *59*, 830.
5. Khodakov, A. Y.; Chu, W.; Fongarland, P. *Chem. Rev.* **2007**, *107*, 1692.
6. (a) Dombek, B. D. *Adv. Catal.* **1983**, *32*, 325; (b) Marko, L. *Transition Met. Chem.* **1992**, *17*, 474; (c) Whyman, R.; Wright, A. P.; Iggo, J. A.; Heaton, B. T. *J. Chem. Soc., Dalton Trans.* **2002**, 771.
7. (a) Gresham, W. F.; Schweitzer, C. E. Homogeneous Co FT. 2534018, 1950; (b) Gresham, W. F. Homogenous Co FT-2. 2636046, 1953.
8. Dombek, B. D. *J. Am. Chem. Soc.* **1980**, *102*, 6855.
9. Maitlis, P. M.; Zanotti, V. *Chem. Commun.* **2009**, 1619.
10. (a) Demitras, G. C.; Muetterties, E. L. *J. Am. Chem. Soc.* **1977**, *99*, 2796; (b) Wang, H.-K.; Choi, H.-W.; Muetterties, E. L. *Inorg. Chem.* **1981**, *20*, 2661; (c) Collman, J. P.; Brauman, J. I.; Tustin, G.; Wann, G. S. *J. Am. Chem. Soc.* **1983**, *105*, 3913.
11. (a) Choi, H.-W.; Muetterties, E. L. *Inorg. Chem.* **1981**, *20*, 2664; (b) Lapidus, A. L.; Savelev, M. M.; Kondratev, L. T.; Yastrebova, E. V. *Izv. Akad. Nauk. SSSR, Ser. Khim.* **1981**, 1564.
12. (a) Pruett, R. L. *Ann. N. Y. Acad. Sci.* **1977**, *295*, 239; (b) Kiso, Y.; Tanaka, M.; Hayashi, T.; Saeki, K. *J. Organomet. Chem.* **1987**, *322*, C32.
13. Whyman, R.; Gilhooley, K.; Rigby, S.; Winstanley, D., In *Industrial Chemicals via C1 Processes, ACS Symposium Series No. 328*, Fahey, D. R., Ed. American Chemical Society: Washington, D. C., p 108.
14. West, N. M.; Miller, A., J. M.; Labinger, J. A.; Bercaw, J. E. *Coord. Chem. Rev.* **2010**, *In Press*.

15. Berke, H.; Hoffmann, R. *J. Am. Chem. Soc.* **1978**, *100*, 7224.
16. Fagan, P. J.; Moloy, K. G.; Marks, T. J. *J. Am. Chem. Soc.* **1981**, *103*, 6959.
17. Labinger, J. A.; Bercaw, J. E. *Organometallics* **1988**, *7*, 926.
18. Barger, P. T.; Bercaw, J. E. *Organometallics* **1984**, *3*, 278.
19. (a) Wong, K. S.; Labinger, J. A. *J. Am. Chem. Soc.* **1980**, *102*, 3652; (b) Labinger, J. A.; Wong, K. S.; Scheidt, W. R. *J. Am. Chem. Soc.* **1978**, *100*, 3254.
20. Dombek, B. D.; Harrison, A. M. *J. Am. Chem. Soc.* **1983**, *105*, 2485.
21. (a) Neithamer, D. R.; Lapointe, R. E.; Wheeler, R. A.; Richeson, D. S.; Vanduyne, G. D.; Wolczanski, P. T. *J. Am. Chem. Soc.* **1989**, *111*, 9056; (b) Carnahan, E. M.; Protasiewicz, J. D.; Lippard, S. J. *Acc. Chem. Res.* **1993**, *26*, 90.
22. (a) Evans, W. J.; Grate, J. W.; Hughes, L. A.; Zhang, H.; Atwood, J. L. *J. Am. Chem. Soc.* **1985**, *107*, 3728; (b) Evans, W. J.; Lee, D. S.; Ziller, J. W.; Kaltsoyannis, N. *J. Am. Chem. Soc.* **2006**, *128*, 14176; (c) Evans, W. J.; Davis, B. L. *Chem. Rev.* **2002**, *102*, 2119.
23. (a) Summerscales, O. T.; Cloke, F. G. N.; Hitchcock, P. B.; Green, J. C.; Hazari, N. *Science* **2006**, *311*, 829; (b) Summerscales, O. T.; Cloke, F. G. N., In *Organometallic and Coordination Chemistry of the Actinides*, Springer-Verlag Berlin: Berlin, 2008; Vol. 127, pp 87.
24. Collman, J. P.; Winter, S. R. *J. Am. Chem. Soc.* **1973**, *95*, 4089.
25. Gladysz, J. A. *Adv. Organomet. Chem.* **1982**, *20*, 1.
26. (a) Casey, C. P.; Andrews, M. A.; Rinz, J. E. *J. Am. Chem. Soc.* **1979**, *101*, 741; (b) Sweet, J. R.; Graham, W. A. G. *J. Organomet. Chem.* **1979**, *173*, C9; (c) Tam, W.; Wong, W.-K.; Gladysz, J. A. *J. Am. Chem. Soc.* **1979**, *101*, 1589; (d) Wong, W. K.; Tam, W.; Strouse, C. E.; Gladysz, J. A. *J. Chem. Soc., Chem. Commun.* **1979**, 530.
27. Wong, W.-K.; Tam, W.; Gladysz, J. A. *J. Am. Chem. Soc.* **1979**, *101*, 5440.
28. (a) Bodnar, T.; Coman, E.; Menard, K.; Cutler, A. *Inorg. Chem.* **1982**, *21*, 1275; (b) Tam, W.; Lin, G. Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. *J. Am. Chem. Soc.* **1982**, *104*, 141; (c) Lapinte, C.; Astruc, D. *J. Chem. Soc., Chem. Commun.* **1983**, 430.
29. Crawford, E. J.; Lambert, C.; Menard, K. P.; Cutler, A. R. *J. Am. Chem. Soc.* **1985**, *107*, 3130.
30. Wayland, B. B.; Woods, B. A. *J. Chem. Soc., Chem. Commun.* **1981**, 700.
31. Paonessa, R. S.; Thomas, N. C.; Halpern, J. *J. Am. Chem. Soc.* **1985**, *107*, 4333.
32. (a) Coffin, V. L.; Brennen, W.; Wayland, B. B. *J. Am. Chem. Soc.* **1988**, *110*, 6063; (b) Wayland, B. B.; Sherry, A. E.; Poszmik, G.; Bunn, A. G. *J. Am. Chem. Soc.* **1992**, *114*, 1673.
33. Elowe, P. R.; West, N. M.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2009**, *28*, 6218.
34. Stephan, D. W.; Erker, G. *Angew. Chem. Int. Ed.* **2010**, *49*, 46.

Chapter 2

Long-lived and Efficient Emission from Mononuclear Amidophosphine Complexes of Copper

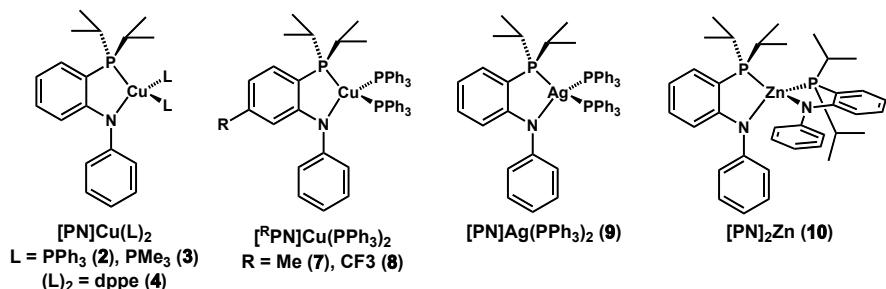
Adapted in part from:

Miller, A. J. M.; Dempsey, J. L.; Peters, J. C. *Inorg. Chem.* **2007**, *46*, 7244.
<http://dx.doi.org/10.1021/ic7009513>
Copyright 2007 American Chemical Society

Chapter 2

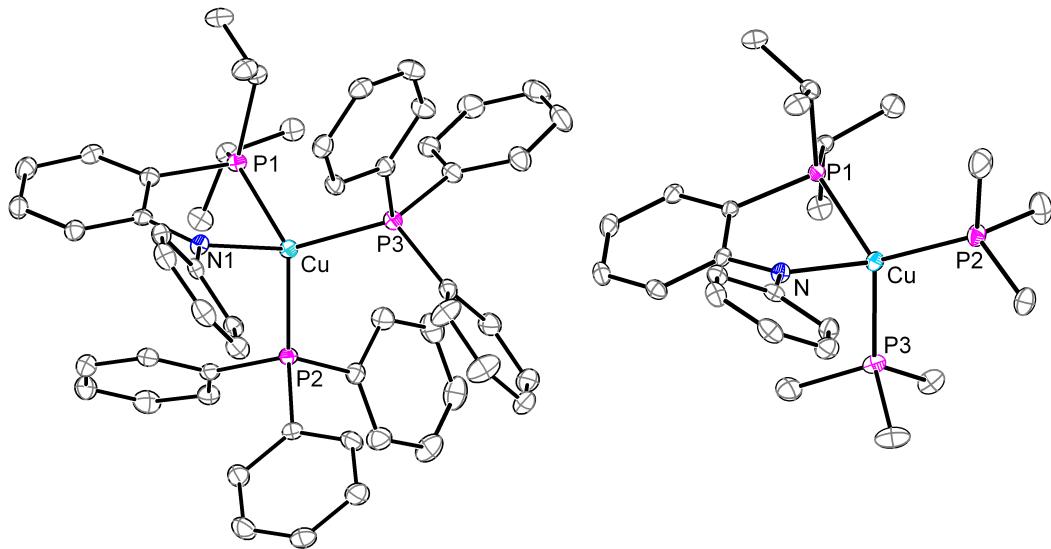
Introduction

Highly luminescent transition metal complexes are widely studied¹ due to broad interest in their use for such applications as organic light-emitting diodes (OLEDs),² biological imaging,³ photochemical catalysis,⁴ and light-driven fuel production.⁵ The best-studied luminophores are transition metal complexes of Ru, Re, and Pt. The large d-orbital splitting and high degree of spin-orbit coupling of second- and third-row transition metals are often cited as key factors in promoting excited state emission rather than non-radiative decay pathways^{1a}—but such metals are often quite expensive. A general goal is to find alternative low cost emitters that also feature high quantum yields, long lifetimes, and tunable emission. To this end, the family of aluminum complexes exemplified by AlQ₃ ((8-quinolinolato)aluminum) warrants mention; these low cost complexes are commonly used as electroluminophores in organic light-emitting diodes (OLEDs).²

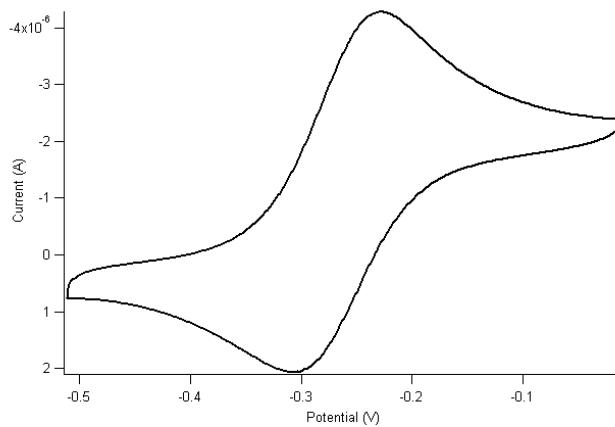

Copper luminophores⁶ have been investigated as relatively inexpensive, biologically relevant⁷ replacements for more ubiquitous Ru, Re, and Pt emitters. The most thoroughly studied Cu emitters are monomers supported by modified polypyridine and phenanthroline ligands, but these complexes often suffer from low quantum efficiencies and short luminescence lifetimes.⁷ These deficiencies were assigned to multiple excited state processes: exciplex quenching, in which solvent binds the metal, and distortion of the ligands towards a square planar configuration could both be non-radiative processes. McMillin and

coworkers have demonstrated that bulky bidentate phosphines inhibit exciplex quenching, and mixed diphosphine-phenanthroline systems feature unusually long lifetimes and promising quantum efficiency ($\tau = 16 \mu\text{s}$, $\phi = 0.16$ in solution at 298 K).⁸ Simple phosphine complexes of copper halides have also been reported,⁹ and the effect of bulky diphosphine ligands on such complexes has recently been investigated.¹⁰ While these complexes can be highly emissive in the solid state or in low-temperature solvent glasses, they display only faint, short-lived emission in solution at ambient temperatures.

The Peters group recently reported an amide-bridged dicopper complex, $\{(\text{PNP} \text{Cu}^{\text{I}} \}_{2}$ ($[\text{PNP}]^- = \text{bis}(2\text{-}(\text{diisopropylphosphino})\text{phenyl})\text{amide}$), that featured both long-lived and highly efficient emission ($\tau = 10.9(4) \mu\text{s}$, $\phi = 0.67(4)$ in THF at 298 K).¹¹ The origin of the luminescence was elusive, however: isostructural complexes—with thioether donors in place of the phosphines ($\{(\text{SNS} \text{Cu}^{\text{I}}\}_{2}$),¹² and with a phosphide bridging ligand in place of the amide ($\{(\text{PPP} \text{Cu}^{\text{I}}\}_{2}$)¹³—show essentially no luminescence. One theory was that the specific dicopper structure (in the ground and excited state) was a key factor in promoting emissive relaxation processes. The distinct luminescence behavior of $\{(\text{PNP} \text{Cu}^{\text{I}} \}_{2}$ thus motivated us to study related amidophosphine copper systems. Herein we report that *monomeric* amidophosphine copper complexes retain the general photophysical properties of $\{(\text{PNP} \text{Cu}^{\text{I}} \}_{2}$, featuring high quantum efficiencies ($0.16 < \phi < 0.70$), long lifetimes (16–150 μs), and variable emission maxima ($\sim 500\text{--}550 \text{ nm}$) in solution at 298 K.¹⁴

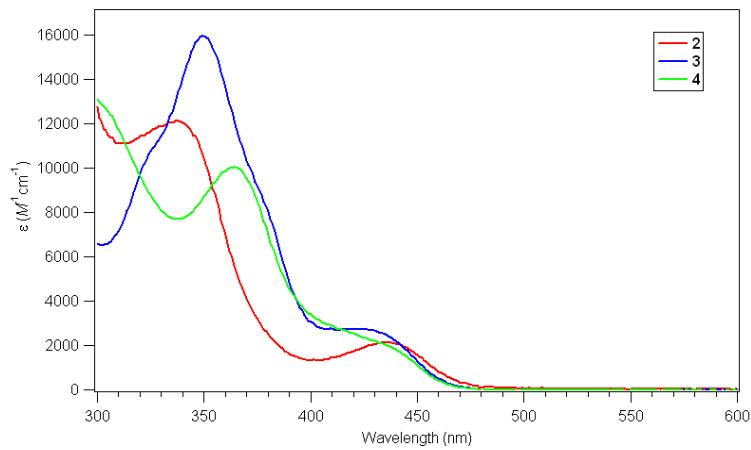

Results and Discussion

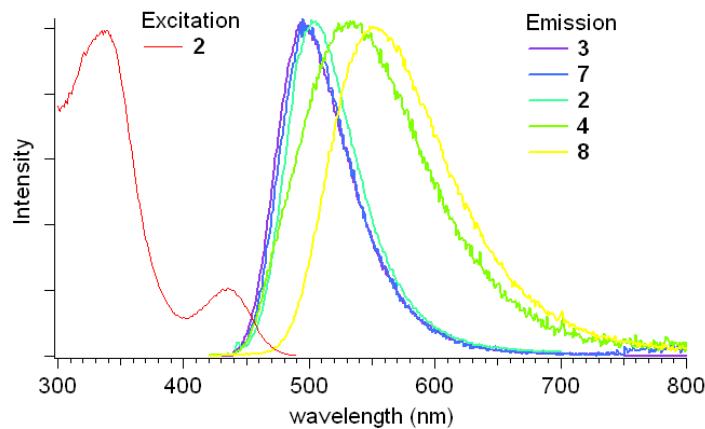
Synthesis and physical characterization of [PN]Cu(L)₂


Scheme 2.1

A set of monomeric amidophosphine complexes of copper (general type $[\text{RPN}]\text{Cu}(\text{L})_2$), silver, and zinc was assembled (Scheme 2.1). The amidophosphine ligands used herein can be readily prepared in two steps. Buchwald-Hartwig coupling provided fluorine-substituted diarylamine precursors, and nucleophilic aromatic substitution by addition of LiP^iPr_2 provided the desired ligands. The simplest precursor, 2-fluoro-diphenylamine, provides $[\text{PN}]\text{Li}$ (1), which exhibits blue luminescence when irradiated with a UV lamp and features optical transitions at 411, 354, and 286 nm. A related ligand containing phenyl rather than isopropyl substituents at phosphorous has been reported by Liang.¹⁵

Figure 2.1. Structural representation of **2** (left) and **3** (right), with ellipsoids at 50% probability. Key bond lengths (\AA) and angles ($^\circ$) for **2**: Cu–N 2.083(1), Cu–P1 2.3173(5), Cu–P2 2.3319(5), Cu–P3 3.3261(6), N–Cu–P1 83.53(4). For **3**: Cu–N 2.086(1), Cu–P1 2.2744(5), Cu–P2 2.331(5), Cu–P3 2.2690(5), N–Cu–P1 82.54(4).


Addition of Et_2O solutions of $[\text{PN}]\text{Li}$ to a stirring suspension of $\text{CuBr}\cdot\text{Me}_2\text{S}$ and the appropriate tertiary phosphine in Et_2O readily affords bright yellow Cu complexes $[\text{PN}]\text{Cu}(\text{L})_2$ (Scheme 2.1; **2**, $\text{L} = \text{PPh}_3$; **3**, $\text{L} = \text{PMe}_3$; **4**, $(\text{L})_2 = \text{dppe}$, 1,2-bis(diphenylphosphino)ethane). The expected monomeric, pseudotetrahedral structures were confirmed by X-Ray diffraction (XRD) analysis. The structures of **2** and **3** are shown in Figure 2.1; crystals of **4** suffered from severe twinning, but the overall connectivity was the same as **2** and **3**. $^{31}\text{P}\{\text{H}\}$ NMR spectra exhibited two broad resonances in a 2:1 ratio. Cyclic voltammetry of **2** shows a single reversible peak at -270 mV vs. Fc/Fc^+ (Figure 2.2), assigned to the $\text{Cu}^{\text{II}/\text{I}}$ couple.


Figure 2.2. Cyclic voltammogram of $\text{PNCu}(\text{PPh}_3)_2$ (**2**).

Photophysical properties and comparisons

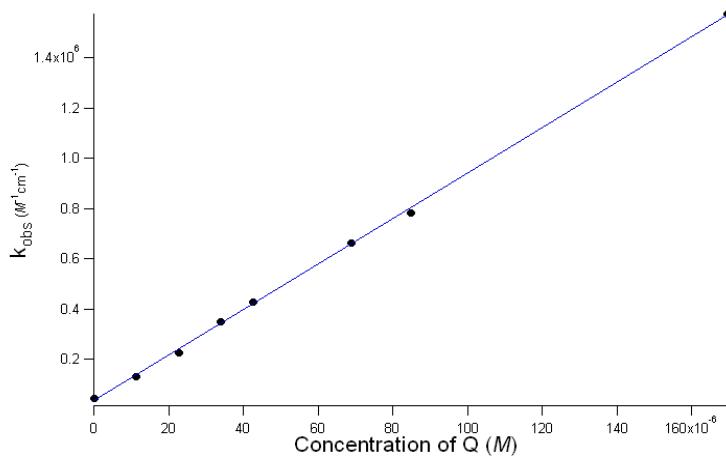

Absorption spectra of **2-4** in benzene feature similar peaks around 430 nm ($\epsilon = 2,000\text{-}2,500 \text{ M}^{-1}\text{cm}^{-1}$) and 350 nm ($\epsilon = 10,000\text{-}15,000 \text{ M}^{-1}\text{cm}^{-1}$), overlaid in Figure 2.3. Complexes **2-4** glow bright green under visible light, both in the solid state and in solution. Excitation into any absorption band leads to sharp, featureless emission at 298 K, with maxima at 504 nm for **2**, 497 nm for **3**, and 534 nm for **4** (Figure 2.4). The quantum efficiency of each complex in benzene solution at 298 K was assessed with excitation at 430 nm and 350 nm.¹⁶ Quantum yields of the present complexes vary widely depending on the auxiliary ligand, from $\phi = 0.56$ for **2**, to $\phi = 0.21$ for **3** (Table 2.1). Such high solution quantum efficiency is unique among monomeric Cu systems,¹⁷ as underscored in Table 2.1. When more polar solvents such as Et_2O or THF are employed, the luminescence efficiency is significantly attenuated, typically by $\sim 50\%$ (see Experimental Section for details).

Figure 2.3. Overlay of absorption spectra of $\text{PNCu}(\text{L})_2$ ($\text{L} = \text{PPh}_3$ (**2**), PMe_3 (**3**); ($\text{L})_2 = \text{dppe}$ (**4**)) in benzene.

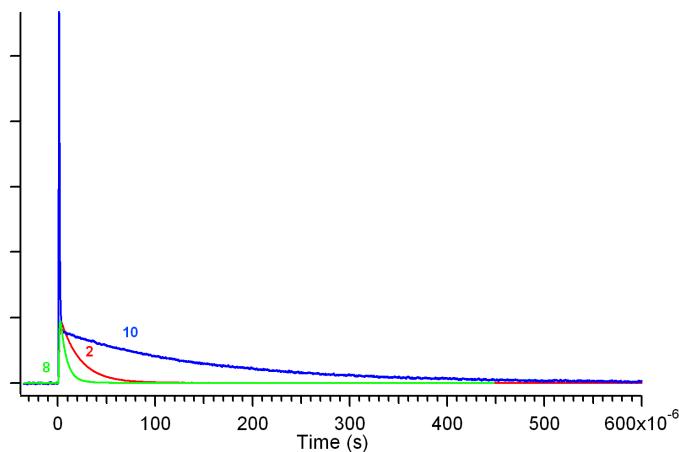


Figure 2.4. Excitation spectrum of **2** and normalized emission spectra of **2**, **3**, **4**, **7**, and **8**.

Figure 2.5. Oxidative quenching of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (2) with 2,6-dibenzoylquinone (Q). $y = 9.043 \times 10^9(x) + 36767$, $R^2 = 0.9997$

The reducing power of excited-state complex **2*** can be estimated by taking the difference between E_{00} (2.65 eV, the emission/excitation crossover point) and the ground state $\text{Cu}^{\text{II}/\text{I}}$ couple, predicting a reduction potential of -2.9 V (vs. $\text{Cp}_2\text{Fe}^+/\text{Cp}_2\text{Fe}$). The excited state of **2** is extremely reducing compared to $[\text{Ru}(\text{bpy})_3]^{2+*}$, -1.2 V, and $[\text{Cu}(2,9\text{-diphenyl-1,10-phenanthroline})_2]^{2+*}$, -1.5 V.¹⁸ A quenching experiment showed that 2,6-dibenzoylquinone oxidatively quenches **2***. A Stern-Volmer plot (luminescence decay rate vs concentration of quencher, Figure 2.5) shows a linear dependence; the slope is equal to the electron transfer rate, $k = 9.04 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, which indicates a diffusion-controlled electron-transfer process.

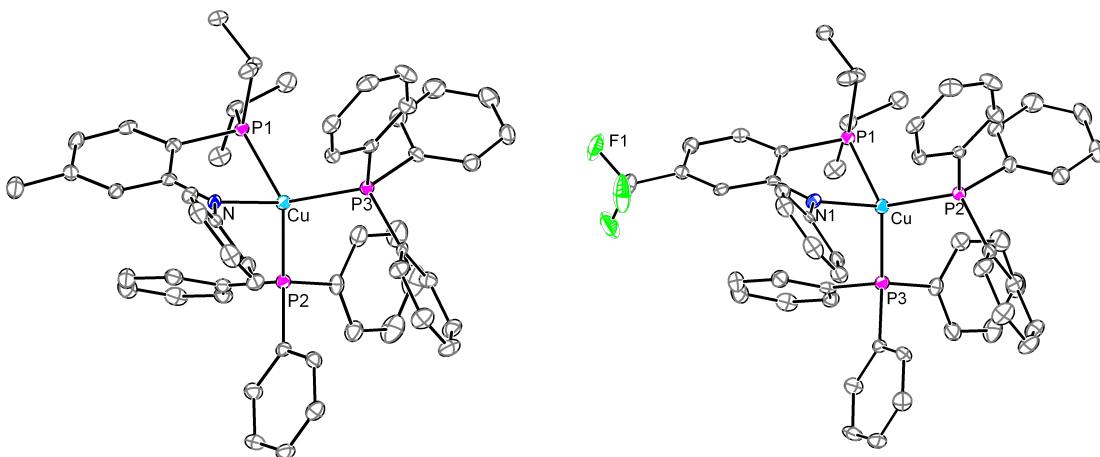
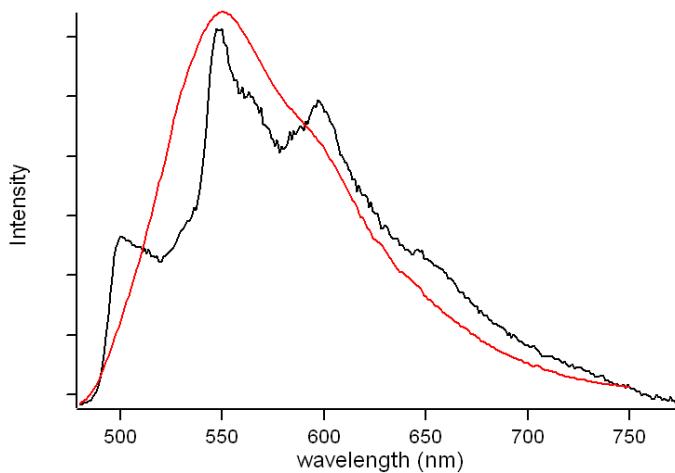
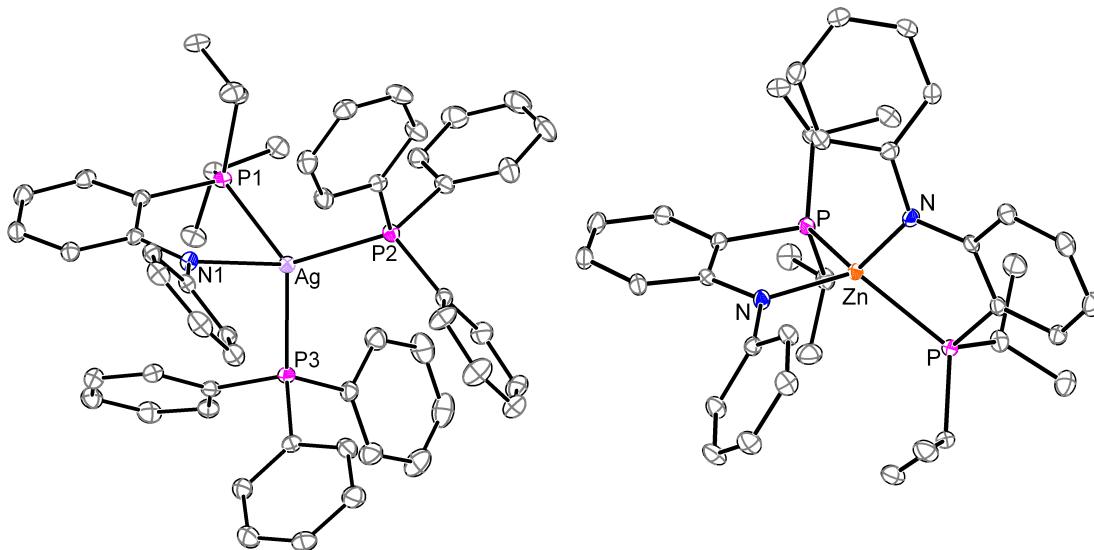

Figure 2.6. Luminescence decay traces of $^{[\text{MePN}]} \text{Cu}(\text{PPh}_3)_2$ (**7**, green), $\text{PNCu}(\text{PPh}_3)_2$ (**2**, red) and $^{[\text{CF}_3\text{PN}]} \text{Cu}(\text{PPh}_3)_2$ (**8**, blue) in C_6H_6 at 298 K ($\lambda_{\text{ex}} = 430$ nm).

Table 2.1. Photophysical Comparison of Cu Complexes at 298 K

Complex	Solvent	λ_{abs} (nm)	λ_{em} (nm)	$\phi_{\text{em}}^{\text{a}}$	τ (μs)
1	Et_2O	411	480	0.16	0.012(1)
2	C_6H_6	434	504	0.56	20.2(1)
3	C_6H_6	427	497	0.21	22.3(7)
4	C_6H_6	423	534	0.32	16.3(3)
7	C_6H_6	433	498	0.70	6.7(1)
8	C_6H_6	444	552	0.16	150(3)
$^{[\text{dbpCuPOP}]} \text{Cu}^{+}$	CH_2Cl_2	378	560	0.16	16.1
$^{[\text{dmpCudppe}]} \text{Cu}^{+}$	CH_2Cl_2	400	630	0.010	1.33
$\text{Cu}(\text{dppb})\text{PPh}_3$	Me-THF	~ 380	550	0.01	<1


a. Quantum yields from this work are reported with confidence of ± 5 on the last significant figure. b. Data reported in CH_2Cl_2 . c. Data reported in 2-methyltetrahydrofuran. dbp = 2,9-di-*n*-butyl-1,10-phenanthroline; dmp = 2,9-dimethyl-1,10-phenanthroline; POP = bis[2-(diphenylphosphino)phenyl]ether; dppb = 1,2-bis[diphenylphosphino]benzene.

Complexes **2**, **3**, and **4** show long luminescence lifetimes in benzene solutions: 20.2(1) μs for **2** (Figure 2.6 and Table 2.1), 22.3(7) μs for **3**, and 16.3(3) μs for **4**. Interestingly, and in contrast to the quantum efficiency measurements, the lifetimes of **2**–**4** in Et_2O were virtually identical to those in benzene. We observe that the luminescence decay of PMe_3 adduct **3** has two components, with a small spike indicating the decay of a shorter-lived species (<10 ns).


Figure 2.7. Structural representation of **7** (left) and **8** (right), with ellipsoids at 50% probability. Key bond lengths (Å) and angles (°) for **7**: Cu–N 2.076(2), Cu–P1 2.326(1), Cu–P2 2.3439(9), Cu–P3 2.3189(9), N–Cu–P1 82.24(7). For **8**, Cu–N 2.091(4), Cu–P1 2.347(3), Cu–P2 2.329(3), Cu–P3 2.363(3), N–Cu–P1 82.1(2).

In order to tune the emission wavelength, we prepared two [PN] ligands with donating and withdrawing groups on the arene backbone. Methyl- and trifluoromethyl-substituted amides $[\text{MePN}]Li$ (**5**) and $[\text{CF}_3\text{PN}]Li$ (**6**) were prepared analogously to **1**, with subsequent metallation in the presence of two equivalents of PPh_3 yielding $[\text{MePN}]Cu(\text{PPh}_3)_2$ (**7**) and $[\text{CF}_3\text{PN}]Cu(\text{PPh}_3)_2$ (**8**), as depicted in Scheme 2.1. Complexes **7** and **8** were fully characterized, including XRD studies (Figure 2.7). Methyl substitution does not greatly perturb the optical spectrum of **7** relative to **2**, and only a 6 nm blue shift is observed in the emission maximum (Figure 2.4). Complex **7** emits significantly brighter than **2**, with $\phi = 0.70$, but exhibits a shorter luminescence lifetime of $6.7(1)\ \mu\text{s}$.

Figure 2.8. Emission spectra of polycrystalline $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (**8**; $\lambda_{\text{ex}} = 430$ nm) at 77 K (black) and 298 K (red).

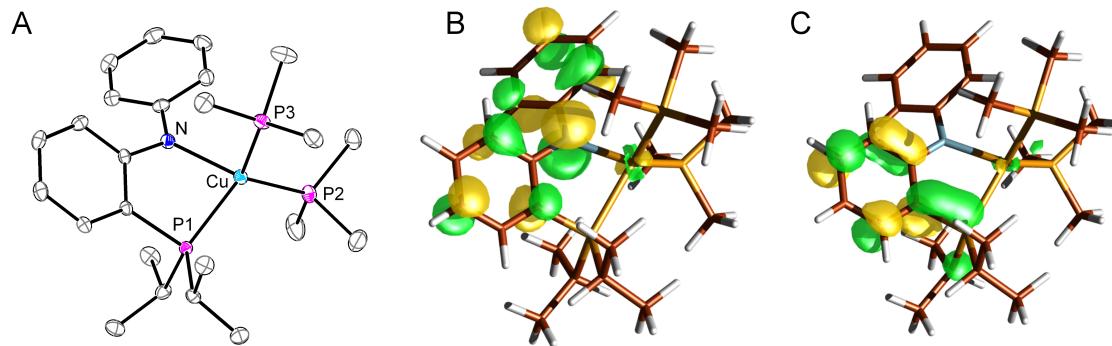
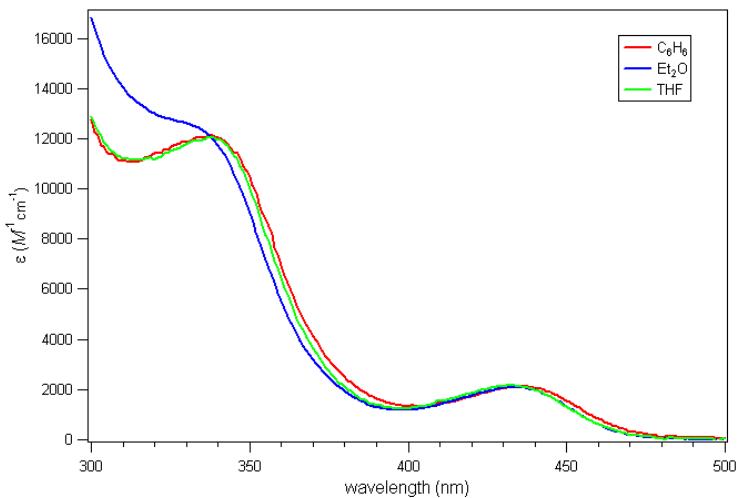

Relative to **2**, CF_3 -substitution on the ligand backbone imparts a 10 nm red shift in the optical spectrum ($\lambda_{\text{max}} = 444$ nm) for **8**, which is matched by a 48 nm red shift in the emission maximum (Figure 2.4). The quantum efficiency of **8** in benzene at 298 K, with $\phi = 0.16$, represents a substantial decrease compared to PPh_3 adducts **2** and **7**. Polycrystalline **8** displays broad emission at 298 K that closely resembles the solution data; cooling to 77 K the emission develops some structure (Figure 2.8).¹⁹ Most interesting, however, is a dramatic increase in the measured luminescence lifetime, to 150(3) μs (Figure 2.6). As for the PMe_3 adduct **3**, there is a two-component decay profile, with a much more pronounced short-lived (<10 ns) species. These decay profiles appear to reflect independent singlet/triplet emission pathways.²⁰ The triplet excited state is nearly an order of magnitude longer-lived than dbpCu(POP) ,⁸ and is to our knowledge the longest-lived monomeric Cu emitter presently known in solution at ambient temperature.

Figure 2.9. Structural representations of $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (**9**, left) and $[\text{PN}]_2\text{Zn}$ (**10**, right) with ellipsoids at 50% probability. Key bond lengths (\AA) and angles ($^\circ$): for **9**, $\text{Ag}-\text{N}$ 2.369(1), $\text{Ag}-\text{P}1$ 2.4881(4), $\text{Ag}-\text{P}2$ 2.4919(4), $\text{Ag}-\text{P}3$ 2.5028(4), $\text{N}-\text{Ag}-\text{P}1$ 76.40(3); for **10**, $\text{Zn}-\text{N}$ 1.969(2), $\text{Zn}-\text{P}$ 2.372(1), $\text{N}-\text{Zn}-\text{P}$ 85.72(4).

For comparison to the Cu complexes, **1** was added to AgOTf in the presence of two equivalents of PPh_3 in Et_2O , affording golden yellow $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (**9**). An XRD study showed an analogous geometry to copper complex **2** (Figure 2.9). Compound **9** is a rare example of a mononuclear silver amide complex. While its absorption spectrum is similar to those of **2** and **3** (Figure 2.11), its emission spectrum exhibits a very broad peak centered at 544 nm, suggesting loss of energy via structural reorganization. The luminescence is extremely attenuated relative to the corresponding Cu complexes ($\phi = 0.0010$), and it has a lifetime that is likewise much shorter (125(5) ns). Metathesis of two equivalents of **1** with ZnCl_2 , followed by filtration and crystallization, provided yellow $[\text{PN}]_2\text{Zn}$ (**10**). The tetrahedral geometry was confirmed by XRD (Figure 2.9). The optical spectrum of **10** differs substantially from the copper complexes (Figure 2.11); excitation at either absorption feature ($\lambda_{\text{max}} = 324, 390 \text{ nm}$) led to aquamarine blue emission centered at 475 nm that was

substantially less efficient and shorter lived than for the Cu complexes ($\phi = 0.088$, $\tau < 10$ ns).

Figure 2.10. A: Alternate view of structural representation of **3** (see **Figure 2.1** for full details). B: The DFT calculated HOMO of **3**. C: The DFT calculated LUMO of **3**.


Understanding the luminescence mechanism

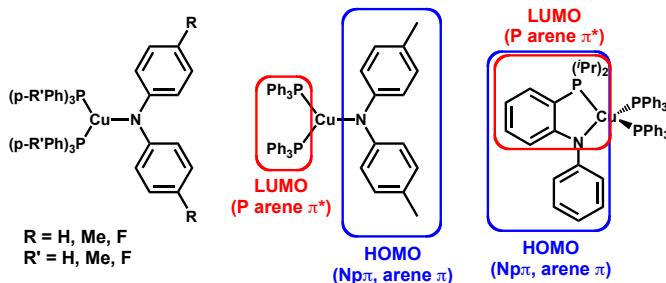
Similarities in the absorption profiles and the generality of the luminescent behavior lead us to tentatively suggest that intraligand charge transfer (ILCT) transitions are present in *all* of the compounds **1-10**. Copper appears critical to accessing the interesting long-lived triplet excited state, though, and in the absence of Cu only fluorescence is observed. DFT calculations on **3** show HOMO and LUMO orbitals consistent with excitation from the N lone pair to arene π^* orbitals. The calculation on the full molecule **3** was performed using the hybrid DFT functional B3LYP/LACVP** as implemented in the Jaguar 6.5 program package, optimized starting from the crystallographic parameters. Substantial N lone pair character (mixed with non-bonding arene π character) is present in the HOMO, and a predominantly π^* orbital (localized on the P-containing arene and perhaps involving a P σ^* orbital) is depicted in the LUMO (Figure 2.10). The frontier orbitals display very little metal

character (HOMO: 5% Cu; 2% P; 36% N; 57% C), while the HOMO-1 and HOMO-2 orbitals feature appreciably more Cu d character (HOMO-1: 45% Cu; 13% P; 21% N; 20% C; HOMO-2: 46% Cu; 23% P; 15% N; 26% C). If the DFT-predicted intraligand π - π^* transition is in fact operative, emission from this transition is manifested as short-lived fluorescence for non-copper-containing species **1**, **5**, **6**, and **10**. The more interesting Cu emitters (**2**, **3**, **4**, **7**, and **8**) seem to display both singlet and triplet emissions, indicative of additional luminescence processes. The presence of both triplet and singlet excited states is not uncommon. In a particularly similar case, a d⁰ metal shows both charge transfer (LMCT) and N lone pair to arene π^* excited states.²¹

Figure 2.11. Overlay of [PN]Ag(PPh₃)₂ (**9**), [PN]₂Zn (**10**), [PN]Cu(PPh₃)₂ (**2**).

Figure 2.12. Optical spectra of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (**2**) in benzene (red), diethyl ether (blue), and tetrahydrofuran (green) solvent.

Perhaps the simplest description of the observed Cu phosphorescence is MLCT from a Cu d-orbital to the arene π^* orbital. This explanation is inconsistent with the following data, however. First, only minor differences are observed in the absorption spectra of Cu and Ag complexes **2** and **9** (Figure 2.11)—rather than the often-striking shift in MLCT transition energy caused by moving to a 4d element.²² Additionally, there is minimal solvent dependence on the ground state absorption spectrum of **2** (Figure 2.12), while significant solvent dependence is often observed in well-defined MLCT systems.²³ Further, MLCT states generally have large Stokes shifts, but the complexes here all have small Stokes shifts (Figure 2.4).


Finally, the Cu complexes do not appear to be drastically quenched by a five-coordinate exciplex, as is typical for MLCT.⁶ If exciplex quenching played a significant role, the differences in steric bulk between **2**, **3**, and **4** might be expected to have a more significant effect on the phosphorescence lifetime. Electronic effects seem to play a more important

role when comparing **2**, **7**, and **8**, as the sterically similar (but electronically diverse) complexes have quite different lifetimes and quantum efficiencies. Given these data, we speculate that the Cu phosphorescence is derived from good orbital overlap and energetic matching between the Cu d-manifold and the ligand π^* system, which allows facile intersystem crossing to a Cu-stabilized triplet, which is inaccessible in the other complexes.

Recent work probed the temperature-dependent luminescence of vapor-deposited $\{(PNP)Cu^I\}_2$, and an E-type fluorescence mechanism was suggested.²⁴ In E-type fluorescence an emissive singlet state lies at slightly higher energy than an emissive triplet state, and thermal equilibration between the two states occurs at room temperature. This could explain the multiple emission processes observed in the closely related monocopper complexes, and helps to explain the unusual “duality” at play: the Cu complexes exhibit long lifetimes typically reserved for triplet emitters, but also feature very small Stokes’ shifts, a hallmark of singlet emitters. The solvent-dependent quantum efficiency and solvent-independent luminescence lifetimes are also consistent with this picture of multiple emissive states: perhaps the singlet state is affected by polar solvents (or spurious water therein), altering the emission intensity (which is a mixture of singlet and triplet states as a steady-state spectroscopy), while the triplet state (the only one observed in lifetime measurements) is not affected.

Another recent study investigated the sequential one-electron oxidations of $\{(PNP)Cu^I\}_2$.²⁵ The first oxidation can be thought of as an extreme model of an excited state species. These studies showed that the core structure was largely left unchanged (according to XRD studies) and that the ligand was non-innocent (according to XAS studies): the ligand-metal

core was oxidized as a whole unit, rather than oxidation being localized on the metals. These findings support a ligand-stabilized or π -centered excited state that would be unperturbed by major structural distortions, consistent with the remarkable luminescence properties.

Scheme 2.2

Conclusions

In summary, we have reported the synthesis and luminescence properties of a series of amidophosphine complexes of copper, silver, and zinc. While all of the [PN]-containing complexes are emissive, the combination of arylamido and phosphine donors engenders copper species with emission properties that are distinct relative to previously studied classes of copper emitters, allowing access to both singlet and triplet emissive states, perhaps *via* an E-type fluorescence mechanism. Further studies in the group have focused on probing the constraints of luminescence: “disconnecting” the phosphine and the amide has allowed the synthesis of a more easily tunable series of three coordinate copper bis(phosphine) copper amides (Scheme 2.2), which retain their luminescence.²⁶ Interestingly, DFT calculations show similar HOMO and LUMO pictures to complex **2** (Scheme 2.2), suggesting a related luminescence mechanism.

Experimental Section

General Considerations

All manipulations were carried out using standard Schlenk or glovebox techniques under a dinitrogen atmosphere. Unless otherwise noted, solvents were deoxygenated and dried by thorough sparging with N₂ followed by passage through an activated alumina column. Non-halogenated solvents were tested with a standard solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective oxygen and moisture removal. Deuterated solvents were degassed and stored over activated 3 Å molecular sieves prior to use. THF-*d*₈ was dried by passage over activated alumina and stored over activated 3 Å sieves prior to use. LiP(*i*Pr)₂²⁷ was prepared according to a literature procedure. All other reagents were purchased from commercial vendors and used without further purification, unless explicitly stated. Elemental analysis was carried out at Desert Analytics, Tucson, Arizona. NMR spectra were recorded at ambient temperature on a Varian Mercury 300 MHz or Inova 500 MHz spectrometer. ¹H NMR chemical shifts were referenced to residual solvent. ³¹P NMR chemical shifts are reported relative to an external standard of 85% H₃PO₄. ¹⁹F NMR chemical shifts are reported relative to either a HCF₃ (0 ppm) or C₆F₆ (-164.9) standard. UV-vis measurements were taken on a Varian Cary 50 Bio Spectrophotometer, using a quartz crystal cell with a Teflon stopper. Electrochemical analysis was performed on a CHI 600B Potentiostat/Galvanostat using a glassy carbon working electrode, a platinum wire auxiliary electrode, and a Ag/AgNO₃ (0.01 M)

reference electrode filled with THF, with reference to $\text{Cp}_2\text{Fe}/\text{Cp}_2\text{Fe}^+$ as an internal standard. X-ray diffraction studies were carried out in the Beckman Institute Crystallographic Facility on a Bruker Smart 1000 CCD diffractometer. High resolution mass spectra (HRMS) were obtained at the California Institute of Technology Mass Spectral Facility. Luminescence measurements were carried out at the California Institute of Technology's Beckman Institute Laser Resource Center.

X-ray Crystallography Procedures

X-ray quality crystals were grown as indicated in the experimental procedures for each complex. The crystals were mounted on a glass fiber with Paratone-N oil. Structures were determined using direct methods with standard Fourier techniques using the Bruker AXS software package. In some cases, Patterson maps were used in place of the direct methods procedure. Full details are provided in Appendix D.

Lifetime measurements

A solution of analyte in diethyl ether or benzene was prepared in a nitrogen-filled glovebox. The quartz cuvettes (1 cm pathlength) were charged with this solution, and sealed with a Teflon stopper. Absorption spectra were acquired both before and after measurements to ensure the sample was not photodegrading. Generally, there was an insignificant amount (<1%) of photodecomposition under the experimental conditions, although there was more pronounced degradation under prolonged irradiation. Luminescence lifetime measurements were carried out as previously described²⁸ using 8 ns pulses (at a repetition rate of 10 Hz) from a Nd:YAG laser pumped OPO (Quanta Ray Pro, Spectra Physics).

The luminescence was dispersed through a monochromator (Instruments SA DH-10) onto a photomultiplier tube (PMT) (Hamamatsu R928). The PMT current was amplified and recorded with a transient digitizer (Lecroy 9354A). Measurements were performed at 298 K with two cuvettes of analyte solution, with excitation at $\lambda_{\text{ex}} = 430$ nm for **2**, **3**, **4**, **7**, and **8**; $\lambda_{\text{ex}} = 440$ nm for **9**; and $\lambda_{\text{ex}} = 310$ nm for **1** and **10**. Emission was collected at the wavelength, λ_{em} , specified in Table 2.2. The emission decay was averaged over at least 500 laser pulses, and fit to an exponential function from which k_{obs} and τ were determined. For **3** and **8**, the short-lived portion of the bi-exponential function was below the response time of the amplifier, and is approximated < 10 ns. The Zn complex **6** also had a lifetime that was too short to quantify, and so is estimated simply as < 10 ns.

Table 2.2. Data for Excited State Lifetime Measurements.

Sample	λ_{em} (nm)	k_{obs} (s ⁻¹)	Lifetime (τ) (μs)
223 μM 1 in Et ₂ O	480	8.64x10 ⁷	0.012(1)
40.3 μM 2 in C ₆ H ₆	504	4.94x10 ⁴	20.2(1)
80.0 μM 3 in C ₆ H ₆	503	(a) 4.44x10 ⁴ (b) n/a	22.3(7) < 10 ns
77.7 μM 4 in C ₆ H ₆	533	6.15x10 ⁴	16.3(3)
49.6 μM 7 in C ₆ H ₆	504	1.50x10 ⁵	6.7(1)
57.4 μM 8 in C ₆ H ₆ ^a	555	(a) 6.76x10 ³ (b) n/a	150(3) < 10 ns
98.1 μM 9 in C ₆ H ₆ ^a	517	8.76x10 ⁶	0.125(5)

a. Sample was excited at 440 nm.

Oxidative Luminescence Quenching

Samples were prepared from two stock solutions: 34 μM **2** in C₆H₆, and a mixture of 34 μM **2** and 339 μM 2,6-dichlorobenzoquinone (DCQ). Using cuvettes with Teflon-separated 25 mL bulbs, solutions of varying concentrations were prepared in the cuvette,

with the stock solution of **2** in the bulbs. After measurements were made on the cuvette solution, the stock solution in the bulb was mixed with the cuvette solution, diluting the concentration by a half. Luminescence lifetime measurements were taken as above. The data measurements are reported in Table 2.3, and a Stern-Volmer plot of k_{obs} vs. concentration of DCQ is shown in Figure 2.5. The data is consistent with diffusion-limited electron transfer, with a rate constant, $k = 9.04 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$.

Table 2.3. Stern-Volmer quenching data for **2**.

Concentration of DCQ	$k_{\text{obs}} (\text{s}^{-1})$	Lifetime ($\tau, 1/k_{\text{obs}}$) (μs)
0 μM	4.70x10 ⁴	21.26
11.3 μM	1.34x10 ⁵	7.48
22.6 μM	2.25x10 ⁵	4.44
33.8 μM	3.51x10 ⁵	2.84
42.4 μM	4.29x10 ⁵	2.33
68.7 μM	6.65x10 ⁵	1.50
84.7 μM	7.84x10 ⁵	1.27
169.5 μM	1.57x10 ⁶	0.635

Quantum yield experiments

Emission spectra were recorded on a Spex Fluorolog-2 spectro-fluorometer. A solution of analyte or reference compound in benzene, diethyl ether, tetrahydrofuran, or acetonitrile was prepared in a nitrogen filled glovebox. Cuvettes (1 cm path length) were charged with this solution and sealed with a teflon stopper. The absorption spectra were acquired both before and after fluorescence measurements to ensure the sample was not degrading. In some cases a very minor amount (<1%) of photodecomposition was observed, with more pronounced degradation under prolonged exposure to light. Fluorescence measurements

were performed at the specified wavelength and corrected for detector response after equilibration to 298 K. The area under the curve of the emission spectrum was determined using standard trapezoidal integration methods. Quantum yields (Table 2.4) were then calculated by the methods described by Demas and Crosby^{16a} using Equation 2.1. Quinine sulfate in 0.1 *N* H₂SO₄ (ϕ = 0.54)^{16a} and [Ru(bpy)₃][PF₆]₂ in acetonitrile (ϕ = 0.075)^{16b} were used as reference standards. Quantum yields are reported with confidence of ± 5 on the last significant figure for measurements in benzene, and ± 10 on the last two significant figures for measurements in Et₂O and THF. Lithium salts of the ligands were prone to photodecomposition: **1** (10%), **5** (20%) and **6** (15%) all decomposed significantly after irradiation in the fluorimeter. The data is included here, but should be taken as a much more crude value.

$$\phi = (QR)(I / IR)(ODR / OD) (\eta^2 / \eta_R^2) \quad (2.1)$$

ϕ : quantum yield of the sample.

QR: quantum yield of reference.

I: integrated intensity of analyte.

IR: integrated intensity of reference.

ODR: optical density of the reference in absorption units.

OD: optical density of the analyte in absorption units.

η : index of refraction of the solvent in which the analyte was dissolved.

η_R : index of refraction of the solvent in which the reference was dissolved.

Table 2.4. Data for Quantum Yield Measurements.

Sample (solvent)	λ_{ex}	ϕ
1 (Et ₂ O)	430	0.16
2 (C ₆ H ₆)	430	0.56
	350	0.52
2 (Et ₂ O)	430	0.29
2 (THF)	430	0.27
3 (C ₆ H ₆)	430	0.21
	350	0.17
3 (Et ₂ O)	430	0.10
3 (THF)	430	0.05
4 (C ₆ H ₆)	430	0.31
	350	0.36
4 (Et ₂ O)	430	0.15
4 (THF)	430	0.05
5 (Et ₂ O)	430	0.12
6 (Et ₂ O)	430	0.05
7 (C ₆ H ₆)	430	0.70
7 (Et ₂ O)	430	0.55
7 (THF)	430	0.30
8 (C ₆ H ₆)	430	0.16
8 (Et ₂ O)	430	0.08
8 (THF)	430	0.07
9 (C ₆ H ₆)	430	0.00106
10 (C ₆ H ₆)	350	0.088

Preparation of complexes

2-Fluoro-diphenylamine. In the glovebox, a 200 mL Teflon-stopped high-pressure flask was charged with Pd₂dba₃ (315 mg, 0.344 mmol; dba = dibenzylideneacetone), DPPF (275 mg, 0.688 mmol; DPPF = 1,1'-bis(diphenylphosphino)ferrocene), NaO'Bu (4.62 g, 48.16

mmol), and 80 mL toluene. The reaction flask was removed from the glovebox, and 1-bromo-2-fluorobenzene (3.74 mL, 34.4 mmol) and aniline (3.14 mL, 34.4 mmol) were added by syringe under N_2 counterflow. The mixture was heated in an oil bath at 100 °C overnight. After verifying consumption of starting materials by GC–MS and ^{19}F NMR, the mixture was allowed to cool and filtered through a plug of silica, washing with copious petroleum ether to yield a light yellow solution. The solvents were removed *in vacuo*, yielding the desired product as a pale orange oil (5.49 g, 85%). **1H NMR** (C_6D_6 , 300 MHz): δ 7.15–6.95 (m, 3H, Ar–H), 6.89–6.65 (m, 4H, Ar–H), 6.5 (m, 2H, Ar–H), 5.36 (br, 1H, NH). **^{19}F NMR** (282 MHz): δ –132.5. **HRMS** (EI $^+$) m/z calcd. for $C_{12}H_{10}FN$: 187.0797. Found: 187.0796 [M $^+$], 168.0947 [M–F].

Lithium 2-(diisopropylphosphino)diphenylamide (1). To a 200 mL Teflon-stopped flask charged with 20 mL of a light brown THF solution of 2-Fluorodiphenylamine (2.20 g, 11.76 mmol), was added a 1.6 M hexanes solution of *n*BuLi (7.75 mL, 12.35 mmol), after which the mixture turned orange and was stirred for 20 minutes. After concentration to 5 mL, a 50 mL solution of LiP(*i*Pr)₂ (2.92 g, 23.52 mmol) in THF was added, and the vessel was sealed and removed from the glovebox and heated to 65 °C for 8 days, monitoring by GC–MS and ^{19}F NMR. The mixture turned dark green over time, and was blue luminescent under a UV lamp. When no remaining starting materials were detected spectroscopically, the mixture was brought back into the glovebox, and quenched with 5 mL EtOH. After addition of 40 mL petroleum ether, the reaction mixture was filtered through celite, and the solvents were removed *in vacuo*. As it was concentrated, the oily residue formed large sticky bubbles, and the mixture was repeatedly treated with

diethyl ether and then re-concentrated to control the bubbling. The residual oil was extracted with petroleum ether, and filtered through a plug of silica. Removal of solvents left a brown oil that solidified when left at ambient temperatures overnight, and was determined to be $\sim 80\%$ [PN]H by NMR, with an unknown phosphine-containing product as an impurity. Addition of *n*BuLi (7.35 mL, 11.76 mmol) to a stirring solution of the brown solids resulted in immediate precipitation of **1**, which was isolated on a sintered glass frit, and washed with copious petroleum ether, before being collected as a spectroscopically pure, thermally unstable off-white powder (2.15 g, 64%). **¹H NMR** (300 MHz, THF-*d*₈): δ 7.04 (m, 1H, Ar-H), 6.88 (m, 3H, Ar-H), 6.73 (m, 3H, Ar-H), 6.26 (t, 1H, Ar-H), 6.12 (t, 1H, Ar-H), 2.02 (m, 2H, CH(CH₃)₂), 1.11, (q, 6H, CH(CH₃)₂), 0.98 (q, 6H, CH(CH₃)₂). **³¹P{¹H} NMR** (120 MHz): δ -6.03 (q, 1P). **HRMS** (EI⁺) *m/z* calcd. for C₁₈H₂₄NP ([PN]H): 285.1646. Found: 285.1637 [M⁺], 243.1072 [M-*i*Pr], 200.0424 [M- 2 *i*Pr].

General Procedure for Cu complexes 2-4. Diethyl ether solutions (~ 3 mL) of CuBr•Me₂S and the appropriate tertiary phosphine were cooled to -35 °C. The phosphine-containing solution was added to the CuBr•Me₂S suspension and the mixture was stirred and protected from the light with aluminum foil. After 5 minutes, a cooled (-35 °C) diethyl ether solution of **1** was added slowly to the reaction mixture, and the solution turned bright yellow immediately. After 2 hours of stirring the mixture was green-yellow, and the solvent was removed *in vacuo*. Extraction with benzene, followed by filtration through celite, yielded a bright yellow solution, which was lyophilized, affording spectroscopically pure product as a yellow powder.

[PN]Cu(PPh₃)₂ (2). X-Ray quality crystals were grown from vapor diffusion of petroleum ether into a solution of **2** in diethyl ether. **¹H NMR** (C₆D₆, 300 MHz): δ 7.3 (m, 30H, P(C₆H₅)₃), 7.02 (t, 2H, Ar-H), 6.92 (t, 3H, Ar-H), 6.79 (t, 1H, Ar-H), 6.72 (t, 1H, Ar-H), 6.59 (t, 1H, Ar-H), 6.17 (t, 1H, Ar-H), 2.26 (sept., 2H, CH(CH₃)₂), 1.08 (dd, 6H, CH(CH₃)₂), .99 (dd, 6H, CH(CH₃)₂). **¹³C{¹H} NMR** (C₆D₆, 75 MHz): δ 166.41, 158.39, 136.03 (d, \tilde{J}_{PC} = 12.6 Hz), 134.61 (d, \tilde{J}_{PC} = 16.9 Hz), 133.34, 132.43, 129.81, 129.76, 129.14 (d, \tilde{J}_{PC} = 8.3 Hz), 128.93, 126.05, 119.70, 113.40 (d, \tilde{J}_{PC} = 156 Hz), 23.85 (d, \tilde{J}_{PC} = 12.31 Hz), 20.22 (d, \tilde{J}_{PC} = 10.87 Hz), 19.02 (d, \tilde{J}_{PC} = 3.0 Hz). **³¹P{¹H} NMR** (C₆D₆, 120 MHz): δ -1.2 (br, 2P), -3.7 (br, 1P). **Anal. calcd.** for C₅₄H₅₃CuNP₃ C, 74.34; H, 6.12; N, 1.61; Found: C, 74.31; H, 5.94; N, 1.60.

[PN]Cu(PMe₃)₂ (3). X-Ray quality crystals were grown from vapor diffusion of petroleum ether into a diethyl ether solution of **3**. **¹H NMR** (C₆D₆, 300 MHz): δ 7.72 (q, 1H, Ar-H), 7.4 (m, 2H, Ar-H), 7.29 (t, 2H, Ar-H), 7.2-7.0 (m, 2H, Ar-H), 6.78 (tt, 1H, Ar-H), 6.54 (t, 1H, Ar-H), 1.95 (sept., 2H, CH(CH₃)₂), 1.10 (q, 6H, CH(CH₃)₂), 1.00 (q, 6H, CH(CH₃)₂), 0.85 (br. 18H, P(CH₃)₃). **¹³C{¹H} NMR** (C₆D₆, 125 MHz): δ 163.40, 158.20, 131.80, 130.65, 128.79, 128.19, 121.20, 117.63 (d, \tilde{J}_{PC} = 34.9 Hz), 114.95, 114.07 (dd, J_{PC} = 478.5 Hz, 3.7 Hz), 22.45 (d, \tilde{J}_{PC} = 8.8 Hz), 19.63 (d, \tilde{J}_{PC} = 11.6 Hz), 18.41 (d, \tilde{J}_{PC} = 3.3 Hz), 16.63 (d, \tilde{J}_{PC} = 13.0 Hz). **³¹P{¹H} NMR** (C₆D₆, 120 MHz): δ 7.0 (br, 1P, [PN]), -46.3 (br, 2P, P(CH₃)₃). **Anal. calcd.** for C₂₄H₄₁CuNP₃ C, 57.64; H, 8.26; N, 2.80; Found: C, 57.61; H, 8.00; N, 2.84.

[PN]CuDPPE (4). Crystals used for X-Ray diffraction were grown from vapor diffusion of petroleum ether into a solution of **4** in THF. **¹H NMR** (C₆D₆, 300 MHz): δ 7.65 (q, 2H, Ar-H), 7.44 (m, 8H, DPPE), 7.2-7.1 (m, 2H, Ar-H), 7.02 (d, 12H, DPPE), 6.9 (m, 3H, Ar-H), 6.55 (m, 2H, Ar-H), 2.18 (t, 4H, DPPE), 2.08 (sept., 2H, CH(CH₃)₂), 1.15 (q, 6H, CH(CH₃)₂), 0.89 (q, 6H, CH(CH₃)₂). **¹³C{¹H} NMR** (125 MHz): δ 159.27, 136.06, 133.82 (t, J_{PC} = 8.1 Hz), 133.18, 131.53, 129.26, 129.09 (t, J_{PC} = 4.3 Hz), 124.15, 117.03, 114.20 (dd, J_{PC} = 571.3 Hz, 4.7 Hz), 68.16 (THF), 27.36 (td J_{PC} = 17.1 Hz, 5.5 Hz), 26.16 (THF), 23.09 (d, J_{PC} = 11.9 Hz), 19.89 (d, J_{PC} = 11.1 Hz), 17.97. **³¹P{¹H} NMR** (120 MHz): δ 8.7 (br, 1P, [PN]), -1.4 (br 2P, DPPE). **Anal. calcd.** for C₄₄H₄₇CuNP₃ C, 70.81; H, 6.35; N, 1.88; Found: C, 70.52; H, 6.46; N, 1.60.

2-Fluoro-5-methyl-diphenylamine. A 200 mL high-pressure reaction vessel was charged with 30 mL toluene, Pd₂dba₃ (91.7 mg, 0.10 mmol), and 2-(dicyclohexylphosphino)biphenyl (140.2 mg, 0.40 mmol). The reaction flask was then removed from the box and stirred, with the dark red mixture turning more orange. As the reaction flask was stirring, 2-Fluoro-5-methylaniline (3.01 g, 24.05 mmol), iodobenzene (4.09 g, 20.04 mmol), and dry toluene were added to a 50 mL Schlenk flask, which was then boil-degassed. After subsequent cannula transfer of the organics into the high-pressure vessel, NaOBU (2.70 g, 28.05 mmol) was added under N₂ counterflow, and the flask was sealed with a Teflon stopper. The mixture was heated to 110 °C for 20 hours, was allowed to cool to room temperature, then was filtered through a plug of silica in air, washing with copious petroleum ether (~250 mL). The solvent was removed under vacuum, yielding an orange-brown oil. The crude product was purified by column chromatography on silica gel

with petroleum ether eluent, affording the title compound as a pale yellow oil (3.01 g, 70%).

¹H NMR (CDCl₃, 300 MHz): δ 7.31 (t, 2H), 7.12 (d, 3H), 7.00 (m, 2H), 6.64 (t, 1H), 6.75 (bs, 1H, NH), 2.27 (s, 3H, -CH₃). **¹⁹F NMR** (282 MHz): δ -137.59 (s, 1F). **HRMS** (EI⁺) *m/z* calcd. for C₁₃H₁₂FN: 201.0954. Found: 201.0957 [M⁺].

[MePN]Li (5). A 10 mL THF solution of 2-fluoro-5-methyldiphenylamine (1.452 g, 5.19 mmol) was cooled to -35 °C and added to a 100 mL high pressure flask. To this vessel was added a 1.6 M solution of *n*BuLi in hexanes (3.41 mL, 5.45 mmol), dropwise with stirring. The clear colorless solution turned yellow, then orange, as it was warmed to room temperature, after which it was stirred for 2 hours. A 10 mL THF solution of LiP(iPr)₂ (1.611 g, 12.99 mmol) was added slowly to the mixture, and the vessel was sealed with a Teflon stopper, removed from the glovebox, and heated to 80 °C for 7 days. After this time, a GC-MS trace showed complete consumption of starting material and growth of one other peak corresponding to product. The flask was brought back into the glovebox, and the reaction was quenched with 5 mL EtOH, resulting in a pale green color, before removal of solvents. Filtration of the residue through silica, washing with copious petroleum ether, followed by removal of solvents in vacuo and another filtration through celite, yielded [MePN]Li as a mixture with another phosphorous-containing product (80% by ³¹P NMR integration). Addition of *n*BuLi (3.41 mL, 5.45 mmol) to a cooled (-35 °C) solution of this crude product in a solution of 10 mL petroleum ether resulted in immediate precipitation of beige solids. The mixture was stirred 2.5 hrs before collecting the solids on a frit, and washing with 60 mL petroleum ether, affording pure **5**. **¹H NMR** (THF-*d*₈, 300 MHz): δ 6.7-6.9 (m, 6H), 6.25 (t, 1H), 5.98 (d, 1H), 1.96-2.06 (m, 5H, Ar-CH₃, CH(CH₃)₂), 1.10 (dd,

6H), 0.95 (d, 6H). **³¹P{¹H} NMR** (THF-*d*₈, 120 MHz): δ -7.07 (m, 1H). **HRMS** (EI⁺) *m/z* calcd. for C₁₉H₂₆NP: 299.1805. Found: 299.1803 [M⁺], 257.1387 [M-*i*Pr], 214.0860 [M- 2 *i*Pr].

2-Fluoro-5-trifluormethyl-diphenylamine. In the glovebox, a 200 mL Teflon-stopped reaction vessel was charged with Pd₂dba₃ (44.9 mg, 0.049 mmol), 2-(dicyclohexylphosphino)biphenyl (68.7 mg, 0.196 mmol), NaOtBu (1.32 g, 13.7 mmol), and 15 mL toluene. This vessel was removed from the box, and stirred for 10 minutes, wherein the dark red mixture took on a more orange appearance. Under a purge of N₂, 2-Fluoro-4-trifluoromethyl-aniline (1.53 mL, 11.76 mmol) and iodobenzene (1.09 mL, 9.8 mmol) were added to the vessel by syringe. The mixture was then sealed with the Teflon stopper, and heated to 100 °C in an oil bath overnight. After 18 hours, the reaction was shown to be complete by GC-MS, at which point the mixture was filtered through a large plug of silica in air, and washed with copious (~200 mL) petroleum ether, yielding a pale orange solution. The solvents were removed by rotary evaporation, yielding an orange oil. Upon storage at -30 °C overnight, crystalline orange needles of pure compound were obtained (1.939 g, 78%). **¹H NMR** (CDCl₃, 300 MHz): δ 7.53 (dd, 1H), 7.4-7.33 (m, 2H), 7.2-7.05 (m, 4H), 5.82 (br NH). **¹⁹F NMR** (CDCl₃, 282 MHz): δ -58.8 (3F), -125.5 (1F). **HRMS** (FAB⁺) *m/z* calcd. for C₁₃H₉F₄N: 255.0671. Found: 255.0682 [M⁺].

[CF₃PN]Li (6). In the glovebox, 1-Fluoro-4-trifluoromethyl-diphenylamine (1.94 g, 7.63 mmol) was dissolved in 20 mL THF, and added to a 200 mL Teflon-stopped glass vessel equipped with a stirbar. The vessel was cooled to -78 °C, at which point a 1.6 M hexanes

solution of *n*BuLi (4.8 mL, 7.71 mmol) was added dropwise by syringe. The reaction mixture was allowed to warm with stirring for 30 minutes, during which time the solution darkened from pale orange to a darker orange-brown. At this point a 10 mL THF solution of LiP(*i*Pr)₂ (1.90 g, 15.33 mmol) was added to the reaction mixture, and the vessel was heated to 70 °C for 4 days, while monitoring the reaction for completion by GC–MS and ³¹P NMR. The reaction mixture, which had darkened to a red-brown, was luminescent yellow under a UV lamp. The vessel was cooled to room temperature, and was brought into the glovebox. The mixture was then quenched with 10 mL EtOH, and 10 mL of petroleum ether were added, yielding a golden-brown solution. The solvents were removed *in vacuo*. The oily residue was treated with 10 mL of diethyl ether, which was subsequently removed under reduced pressure; this procedure was repeated as necessary to reduce bubbling. The residue was extracted with petroleum ether, filtered through celite, and concentrated to a brown oil, which was left under dynamic vacuum overnight. The residue contained a mixture of [CF₃PN]H (~85-90%) and one unknown P-containing side-product (δ +4 ppm). Crude [CF₃PN]H was dissolved in 20 mL of petroleum ether, added to a 100 mL round-bottom flask, and cooled to –35 °C. A 1.6 M hexanes solution of *n*BuLi (4.8 mL, 7.71 mmol) was then added dropwise by syringe, yielding a beige precipitate. The flask was warmed to room temperature and stirred overnight, at which point the solids were collected on a sintered glass frit, and washed with 40 mL petroleum ether, yielding spectroscopically pure **6** (1.61 g, 59%). **1H NMR** (THF-*d*₈, 300 MHz): δ 7.15 (d, 1H), 7.05-6.94 (m, 3H), 6.82 (dd, 2H), 6.45 (t, 1H), 6.24 (dd, 2H), 2.09 (sept, 2H, CH(CH₃)₂), 1.14 (q, 6H, CH(CH₃)₂), 1.00 (q, 6H, CH(CH₃)₂). **³¹P{¹H} NMR** (THF-*d*₈, 120 MHz): δ –6.6 (br q, 1P).

¹⁹F NMR (THF-*d*₈, 282 MHz): δ -60.5 (s, 3F). **HRMS** (EI⁺) *m/z* calcd. for C₁₉H₂₃F₃NP: 353.1520. Found: 353.1506 [M⁺], 311.1105 [M - *i*Pr], 268.0594 [M - 2 *i*Pr], 235.0692 [M - (*i*Pr)₂P].

[MePN]Cu(PPh₃)₂ (7). Diethyl ether solutions of **5** (67.7 mg, 0.222 mmol), CuBr•Me₂S (45.6 mg, 0.222 mmol), and PPh₃ (116.3 mg, 0.444 mmol) were cooled to -35 °C. PPh₃ was added to the cold suspension of CuBr•Me₂S with stirring, and the scintillation vial was covered with aluminum foil. After 5 minutes amide **5** was added slowly, and the reaction mixture was stirred for 2.5 hrs. After removal of solvent in vacuo, the residue was extracted with benzene, filtered through celite, and lyophilized, yielding **7** in quantitative yield as a yellow powder. X-Ray quality crystals were grown from a diethyl ether solution of **7** layered with petroleum ether and cooled to -30 °C. **¹H NMR** (C₆D₆, 300 MHz): δ 7.48-7.35 (m, 12H, P(C₆H₅)₃), 7.26 (d, Ar-H), 7.2-7.1 (m), 7.08-7.0 (m, 18H, P(C₆H₅)₃), 6.86 (t, 1H, Ar-H), 6.42 (d, 1H, Ar-H), 2.11 (s, 3H, [CH₃PN]), 2.06 (sept, 2H, CH(CH₃)₂), 1.1-0.94 (m, 12H, CH(CH₃)₂). **¹³C{¹H} NMR** (C₆D₆, 75 MHz): δ 166.54, 158.34, 141.69, 135.80 (d, $\tilde{\jmath}_{PC}$ = 12.0 Hz), 134.18 (d, $\tilde{\jmath}_{PC}$ = 17.2 Hz), 132.98, 129.51, 128.87 (d, $\tilde{\jmath}_{PC}$ = 8.3 Hz), 125.88, 119.35, 114.05 (dd, $\tilde{\jmath}_{PC}$ = 75.3 Hz, 4.9 Hz), 23.51 (d, $\tilde{\jmath}_{PC}$ = 13.1 Hz), 22.15, 19.92 (d, $\tilde{\jmath}_{PC}$ = 11.2 Hz), 18.67 (d, $\tilde{\jmath}_{PC}$ = 3.7 Hz). **³¹P{¹H} NMR** (C₆D₆, 120 MHz): δ 1.1 (2P), -3.9 (1P). **Anal. calcd.** for C₅₅H₅₅CuNP₃ C, 74.52; H, 6.25; N, 1.58. Found: C, 74.42; H, 6.45; N, 1.57.

[Cr³PN]Cu(PPh₃)₂ (8). Diethyl ether solutions of **6** (97.8 mg, 0.273 mmol), CuBr•Me₂S (56.0 mg, 0.273 mmol), and PPh₃ (142.9 mg, 0.545 mmol) were cooled in scintillation vials

to -35°C . The PPh_3 solution was added to the slurry of $\text{CuBr}\bullet\text{Me}_2\text{S}$, before the vial was covered with aluminum foil and stirred for 5 minutes. Amide **6** was slowly added to the slurry via pipette, which immediately resulted in a clear yellow solution. The reaction was stirred 2 hr, at which point the solvents were removed *in vacuo*. The residues were extracted with benzene, and filtered through celite, yielding a bright yellow solution. The benzene was removed by lyophilization overnight, affording spectroscopically pure yellow powder (254.6 mg, 99%). X-Ray quality crystals were grown from a cooled (-30°C) layering of petroleum ether upon a diethyl ether solution of **8**. **1H NMR** (C_6D_6 , 300 MHz): δ 7.65 (d, 1H, [PN]Ar-H), 7.4 (m, 12H, $P(\text{C}_6\text{H}_5)_3$), 7.29 (d, 2H, [PN]Ar-H), 7.08 (t, 3H, [PN]Ar-H), 7.0 (m, 18 H, $P(\text{C}_6\text{H}_5)_3$), 6.83 (t, 1H, [PN]Ar-H), 6.76 (d, 1H, [PN]Ar-H), 1.933 (sept., 2H, $\text{CH}(\text{CH}_3)_2$), 0.977 (dd, 6H, $\text{CH}(\text{CH}_3)_2$), 0.873 (dd, 6H, $\text{CH}(\text{CH}_3)_2$). **13C{1H} NMR** (C_6D_6 , 125 MHz): δ 135.64 (d, $\tilde{J}_{\text{PC}} = 15.6$ Hz), 134.54 (d, $\tilde{J}_{\text{PC}} = 17.09$), 133.35, 129.59, 129.97 (d, $\tilde{J}_{\text{PC}} = 0.9$ Hz), 129.20 (d, $\tilde{J}_{\text{PC}} = 8.3$ Hz), 128.92 (d, $\tilde{J}_{\text{PC}} = 0.4$ Hz), 125.42, 120.57, 109.41, 106.95, 23.86 (d, $\tilde{J}_{\text{PC}} = 12.4$ Hz), 20.11 (d, $\tilde{J}_{\text{PC}} = 11.1$ Hz), 18.91 (d, $\tilde{J}_{\text{PC}} = 3.1$ Hz). **31P{1H} NMR** (C_6D_6 , 120 MHz): δ 0.19 (br, 2P, $P(\text{C}_6\text{H}_5)_3$), -3.98 (br, 1P, [PN]). **19F NMR** (C_6D_6 , 470 MHz): δ -63.4 (3F). **Anal. calcd.** for $\text{C}_{55}\text{H}_{52}\text{CuF}_3\text{NP}_3$ C, 70.24; H, 5.57; N, 1.49. Found: C, 70.10; H, 5.84; N, 1.45.

[PN]Ag(PPh₃)₂ (9). A 20 mL scintillation vial protected from the light was charged with AgOTf and 3 mL diethyl ether. To the stirring solution was added a diethyl ether solution of PPh_3 , and five minutes subsequently was added a solution of **1**. After 2 hours, the reaction mixture was filtered, and the bright yellow solution was dried *in vacuo*. Analytically pure crystals were grown from a THF solution layered with petroleum ethers, and cooled to

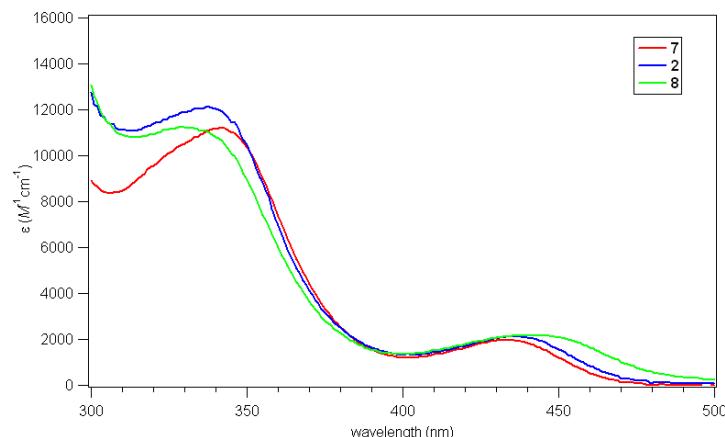
–30 °C. **¹H NMR** (C₆D₆, 300 MHz): δ 7.71 (t, 1H, Ar–H), 7.49 (d, 2H, Ar–H), 7.38 (m, 12H, P(C₆H₅)₃), 7.2–7.1 (m, 4H, Ar–H), 7.05 (m, 18H, P(C₆H₅)₃), 6.77 (t, 1H, Ar–H), 6.55 (t, 1H, Ar–H), 2.02 (sept., 2H, CH(CH₃)₂), 1.08 (q, 6H, CH(CH₃)₂), 0.93 (q, 6H, CH(CH₃)₂). **¹³C{¹H} NMR** (C₆D₆, 75 MHz): δ 159.2, 135.49 (d, \tilde{J}_{PC} = 12.9 Hz), 134.70 (d, \tilde{J}_{PC} = 17.5 Hz), 133.58, 131.82, 130.02, 129.70, 129.24 (d, \tilde{J}_{PC} = 8.59 Hz), 123.67, 116.88, 113.43 (d, \tilde{J}_{PC} = 33.2 Hz), 114.04 (d, \tilde{J}_{PC} = 342.2 Hz), 23.92 (d, \tilde{J}_{PC} = 7.44 Hz), 20.48 (d, \tilde{J}_{PC} = 12.31), 19.23 (d, \tilde{J}_{PC} = 4.87 Hz). **³¹P{¹H} NMR** (C₆D₆, 120 MHz): δ 7.7 (1P), 5.5 (2P). **Anal. Calcd.** for C₅₄H₅₃AgNP₃ C, 70.74; H, 5.83; N, 1.53. Found: C, 70.67; H, 6.03; N, 1.51.

[PN]₂Zn (10). To a THF solution of ZnCl₂ (16.0 mg, 0.1174 mmol in 3 mL) chilled to –35 °C in a scintillation vial, was added two equivalents of **1** (68.4 mg, 0.235 mmol) in 5 mL cold THF solution, while stirring. The mixture was allowed to warm to room temperature while stirring for 3 hours. The golden reaction solution was then filtered through celite, dried by evaporation, and extracted with diethyl ether. Filtration through celite, followed by washing with 2 mL ether, yielded a golden yellow solution that was layered with petroleum ether and cooled to –30 °C, affording golden crystals of analytically pure **10**. **¹H NMR** (C₆D₆, 300 MHz): δ 7.2–7.1 (m, 4H), 7.08–6.9 (m, 10H), 6.61 (t, 2H), 6.25 (m, 2H), 2.36 (sept, 4H, CH(CH₃)₂), 1.28 (q, 6H, CH(CH₃)₂), 1.18 (q, 6H, CH(CH₃)₂), 1.02 (q, 6H, CH(CH₃)₂), 0.36 (q, 6H, CH(CH₃)₂). **¹³C{¹H} NMR** (C₆D₆, 75 MHz): δ 162.87 (t, \tilde{J}_{PC} = 7.8 Hz), 154.62, 132.77 (d, \tilde{J}_{PC} = 6.4 Hz), 129.87, 124.62, 120.69, 115.14, 113.26, 107.85 (t, \tilde{J}_{PC} = 21.2 Hz), 23.46 (t, \tilde{J}_{PC} = 7.4 Hz), 21.19 (t, \tilde{J}_{PC} = 10.5 Hz), 19.35 (t, \tilde{J}_{PC} = 3.6 Hz), 18.86 (t, \tilde{J}_{PC} = 4.1 Hz), 17.96 (t, br), 16.69 (s, br). **³¹P{¹H} NMR** (C₆D₆, 120 MHz): δ –

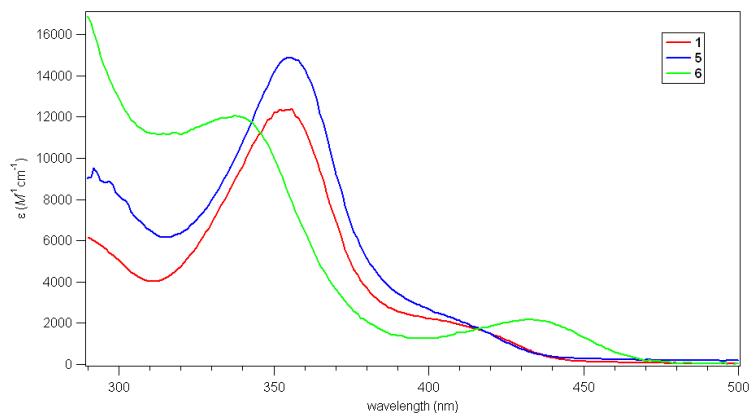
12.23 (2P). **Anal calcd.** for $C_{36}H_{46}ZnN_2P_2$ C, 68.19; H, 7.31; N, 4.42. Found: C, 68.47;

H, 7.50; N, 4.04.

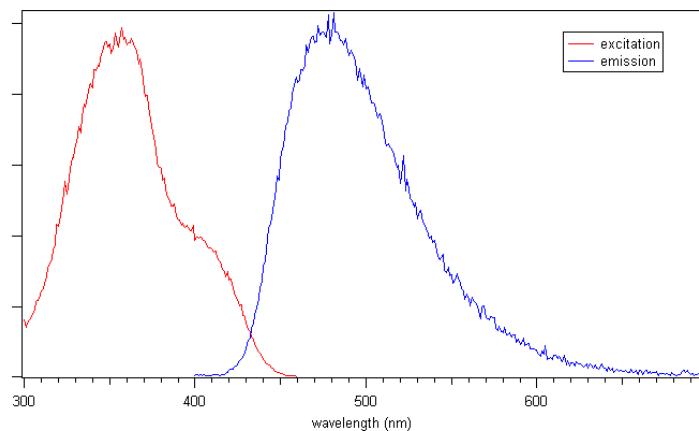
Table 2.5. Assorted photophysical properties of all reported complexes.

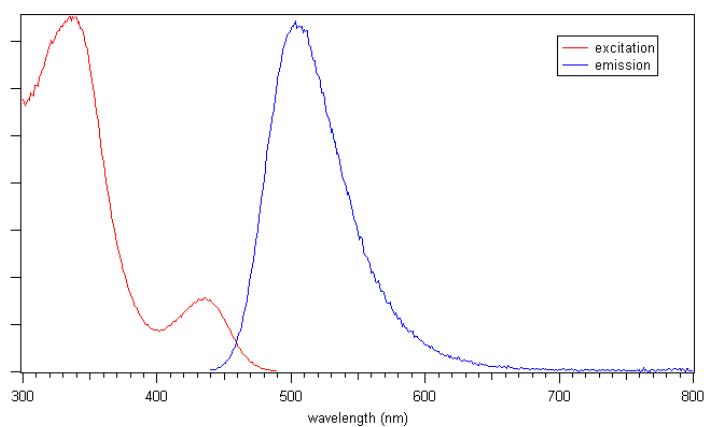

Compound	λ_{abs} (nm)	λ_{em} (nm)			Stokes Shift, Solvent (nm)	λ (cm ⁻¹) ^a
		C ₆ H ₆	Et ₂ O	THF		
1	411, 354, 298	--	480	--	69, Et ₂ O	8970
2	434, 339	504	500	504	70, C ₆ H ₆	2810
3	427, 350	497	495	501	70, C ₆ H ₆	3080
4	423, 365	534	530	555	111, C ₆ H ₆	7400
5	407, 355	--	465	--	58, Et ₂ O	4930
6	421, 354	--	550	--	129, Et ₂ O	6470
7	433, 342	498	499	506	65, C ₆ H ₆	3000
8	444, 332	552	546	563	108, C ₆ H ₆	5120
9	431, 353	544	--	--	113, C ₆ H ₆	12460
10	394, 326	473	--	--	79, C ₆ H ₆	5270

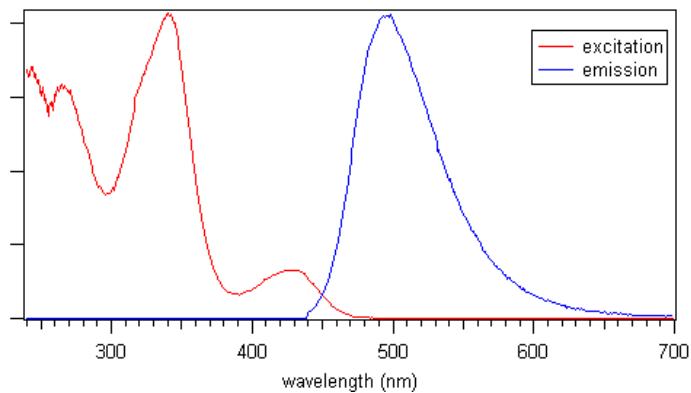
a. The reorganization energy $\lambda = (\Delta\nu_{1/2})^2 / (16RT \ln 2)$.

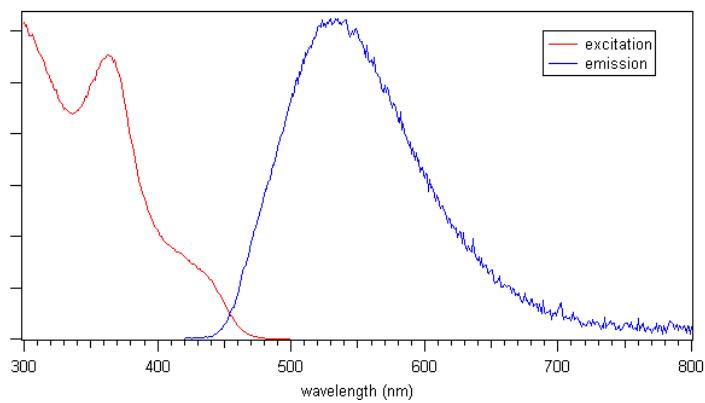

$\Delta\nu_{1/2}$ = Full width at half max.

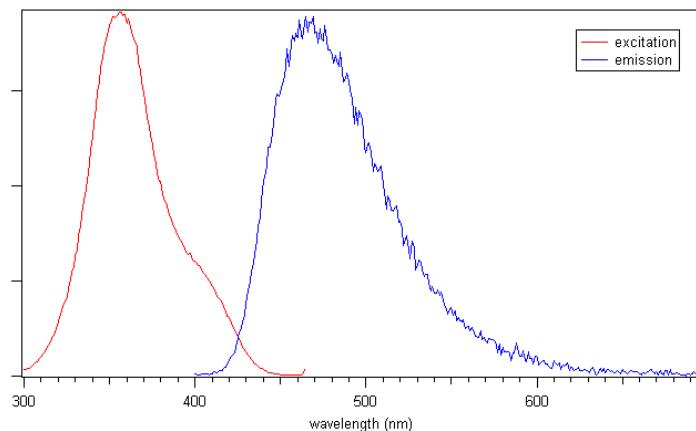
$R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1}$

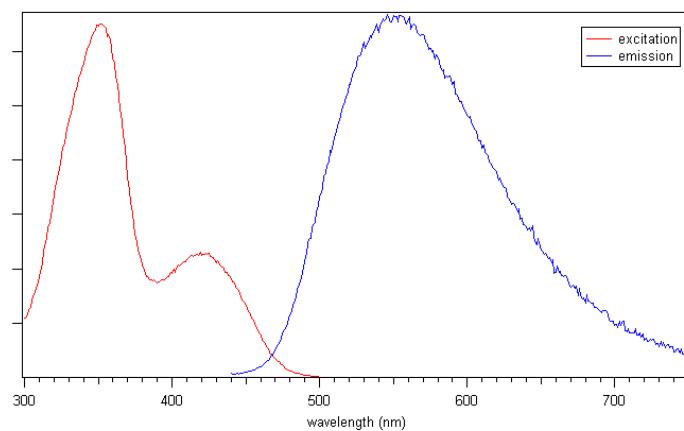

$T = 298 \text{ K}$

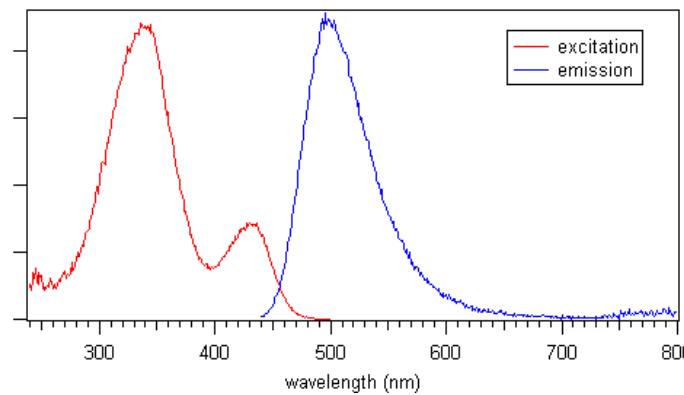

Figure 2.13. Overlay of [PN]Cu(PPh₃)₂ (**2**), [^{Me}PN]Cu(PPh₃)₂ (**7**), and [^{CF₃}PN]Cu(PPh₃)₂ (**8**).

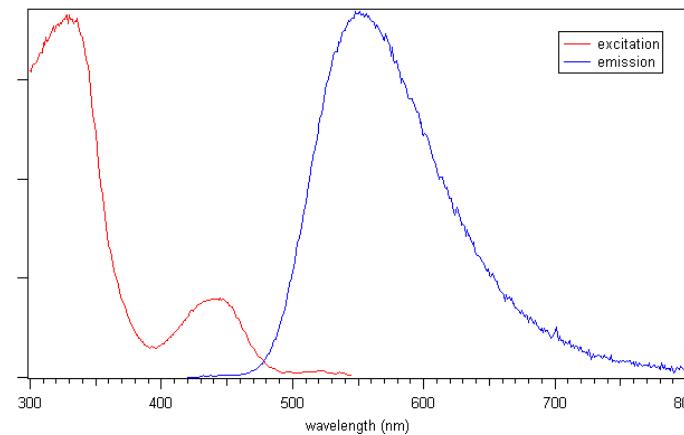

Figure 2.14. Overlay of $[\text{PN}]\text{Li}$ (**1**), $[\text{McPN}]\text{Li}$ (**5**), and $[\text{CF}_3\text{PN}]\text{Li}$ (**6**).

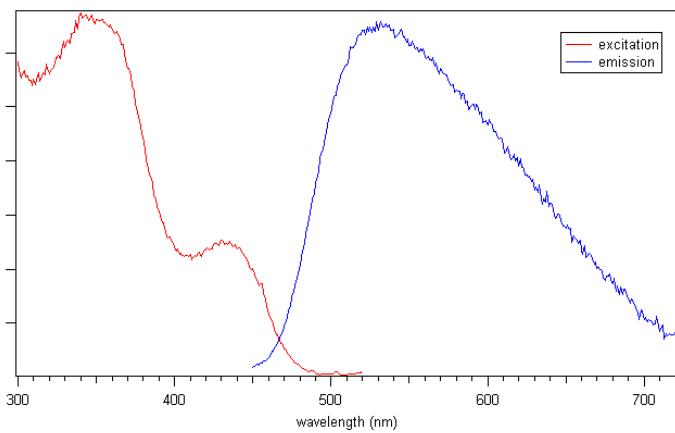

Figure 2.15. Emission/Excitation Spectra of $[\text{PN}]\text{Li}$ (**1**; $\lambda_{\text{ex}} = 350$ nm).


Figure 2.16. Emission/Excitation spectra of $[\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (**2**; $\lambda_{\text{ex}} = 430$ nm).


Figure 2.17. Emission/Excitation spectra of [PN]Cu(PMe₃)₂ (**3**; $\lambda_{\text{ex}} = 430$ nm).


Figure 2.18. Emission/Excitation spectra of [PN]Cu(dppe) (**4**; $\lambda_{\text{ex}} = 430$ nm).


Figure 2.19. Emission/Excitation spectra of [McPN]Li (**5**; $\lambda_{\text{ex}} = 350$ nm).


Figure 2.20. Emission/Excitation spectra of $[\text{CF}_3\text{PN}]\text{Li}$ (**6**; $\lambda_{\text{ex}} = 350$ nm).

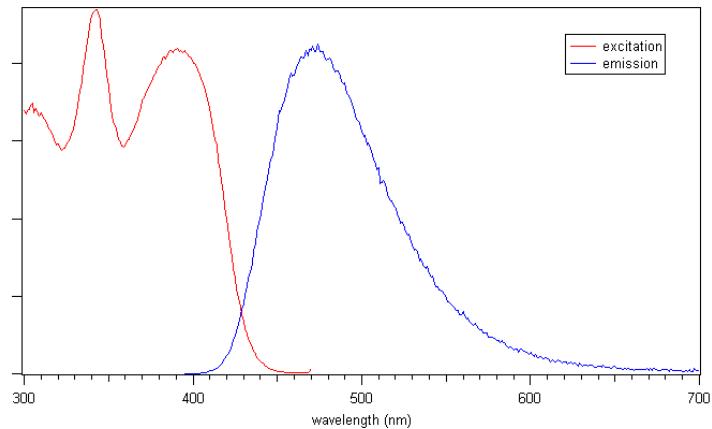

Figure 2.21. Emission/Excitation spectra of $[\text{McPN}]\text{Cu}(\text{PPh}_3)_2$ (**7**; $\lambda_{\text{ex}} = 430$ nm).

Figure 2.22. Emission/Excitation spectra of $[\text{CF}_3\text{PN}]\text{Cu}(\text{PPh}_3)_2$ (**8**; $\lambda_{\text{ex}} = 430$ nm).

Figure 2.23. Emission/Excitation Spectra of $[\text{PN}]\text{Ag}(\text{PPh}_3)_2$ (**9**; $\lambda_{\text{ex}} = 430$ nm).

Figure 2.24. Emission/Excitation Spectra of $[\text{PN}]_2\text{Zn}$ (**10**; $\lambda_{\text{ex}} = 350$ nm).

References

1. (a) Vlcek, A. *Coord. Chem. Rev.* **2000**, *200-202*, 933; (b) Bargossi, C.; Fiorini, M. C.; Montalti, M.; Prodi, L.; Zaccheroni, N. *Coord. Chem. Rev.* **2000**, *208*, 17; (c) de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. *Coord. Chem. Rev.* **2000**, *205*, 41.
2. Chen, C. H.; Shi, J. *Coord. Chem. Rev.* **1998**, *171*, 161.
3. Riegler, J.; Nann, T. *Analytical and Bioanalytical Chemistry* **2004**, *379*, 913.
4. Ciesla, P.; Kocot, P.; Mytych, P.; Stasicka, Z. *J. Mol. Catal. A: Chem.* **2004**, *224*, 17.
5. Brown, G. M.; Brunschwig, B. S.; Creutz, C.; Endicott, J. F.; Sutin, N. *J. Am. Chem. Soc.* **1979**, *101*, 1298.

6. (a) Ford, P. C.; Cariati, E.; Bourassa, J. *Chem. Rev. (Washington, D. C.)* **1999**, *99*, 3625; (b) Horvath, O. *Coord. Chem. Rev.* **1994**, *135/136*, 303; (c) Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. *Chem. Rev. (Washington, D. C.)* **1996**, *96*, 759.
7. McMillin, D. R.; McNett, K. M. *Chem. Rev.* **1998**, *98*, 1201.
8. Cuttell, D. G.; Kuang, S.-M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. *J. Am. Chem. Soc.* **2002**, *124*, 6.
9. (a) Ziolo, R. F.; Lipton, S.; Dori, Z. *Journal of the Chemical Society D: Chemical Communications* **1970**, 1124; (b) Kutal, C. *Coord. Chem. Rev.* **1990**, *99*, 213.
10. Tsuboyama, A.; Kuge, K.; Furugori, M.; Okada, S.; Hoshino, M.; Ueno, K. *Inorg. Chem. (Washington, DC, U. S.)* **2007**, *46*, 1992.
11. Harkins, S. B.; Peters, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 2030.
12. Harkins, S. B.; Peters, J. C. *J. Am. Chem. Soc.* **2004**, *126*, 2885.
13. Mankad, N. P.; Rivard, E.; Harkins, S. B.; Peters, J. C. *J. Am. Chem. Soc.* **2005**, *127*, 16032.
14. Peters, J. C.; Miller, A. J. M.; Dempsey, J. L. US Patent 7,683,183 B2. 2010.
15. Liang, L.-C.; Lee, W.-Y.; Hung, C.-H. *Inorg. Chem.* **2003**, *42*, 5471.
16. (a) Crosby, G. A.; Demas, J. N. *The Journal of Physical Chemistry* **1971**, *75*, 991; (b) Wallace, W. L.; Bard, A. J. *J. Phys. Chem.* **1979**, *83*, 1350.
17. Scaltrito, D. V.; Thompson, D. W.; O'Callaghan, J. A.; Meyer, G. J. *Coord. Chem. Rev.* **2000**, *208*, 243.
18. Armaroli, N. *Chem. Soc. Rev.* **2001**, *30*, 113.
19. Similar emission from crystalline and solution samples is consistent with unchanged structure in solution.
20. Kirchhoff, J. R.; Gamache, R. E., Jr.; Blaskie, M. W.; Del Paggio, A. A.; Lengel, R. K.; McMillin, D. R. *Inorg. Chem.* **1983**, *22*, 2380.
21. Da Re, R. E.; Jantunen, K. C.; Golden, J. T.; Kiplinger, J. L.; Morris, D. E. *J. Am. Chem. Soc.* **2005**, *127*, 682.
22. McMillin, D. R., *Physical Methods in Bioinorganic Chemistry: Spectroscopy and Magnetism*. University Science Books: Sausalito, CA, 2000.
23. Timpson, C. J.; Bignozzi, C. A.; Sullivan, B. P.; Kober, E. M.; Meyer, T. J. *J. Phys. Chem.* **1996**, *100*, 2915.
24. Deaton, J. C.; Switalski, S. C.; Kondakov, D. Y.; Young, R. H.; Pawlik, T. D.; Giesen, D. J.; Harkins, S. B.; Miller, A. J. M.; Mickenberg, S. F.; Peters, J. C. *J. Am. Chem. Soc.* **2010**, *132*, 9499.
25. Harkins, S. B.; Mankad, N. P.; Miller, A. J. M.; Szilagyi, R. K.; Peters, J. C. *J. Am. Chem. Soc.* **2008**, *130*, 3478.
26. Lotito, K. J.; Peters, J. C. *Chem. Commun.* **2010**, *46*, 3690.
27. Cowley, A. H.; Jones, R. A.; Mardones, M. A.; Nunn, C. M. *Organometallics* **1991**, *10*, 1635.
28. Wenger, O. S.; Henling, L. M.; Day, M. W.; Winkler, J. R.; Gray, H. B. *Inorg. Chem.* **2004**, *43*, 2043.

Chapter 3

Lewis Acid-Assisted Reductive Coupling of Carbon Monoxide

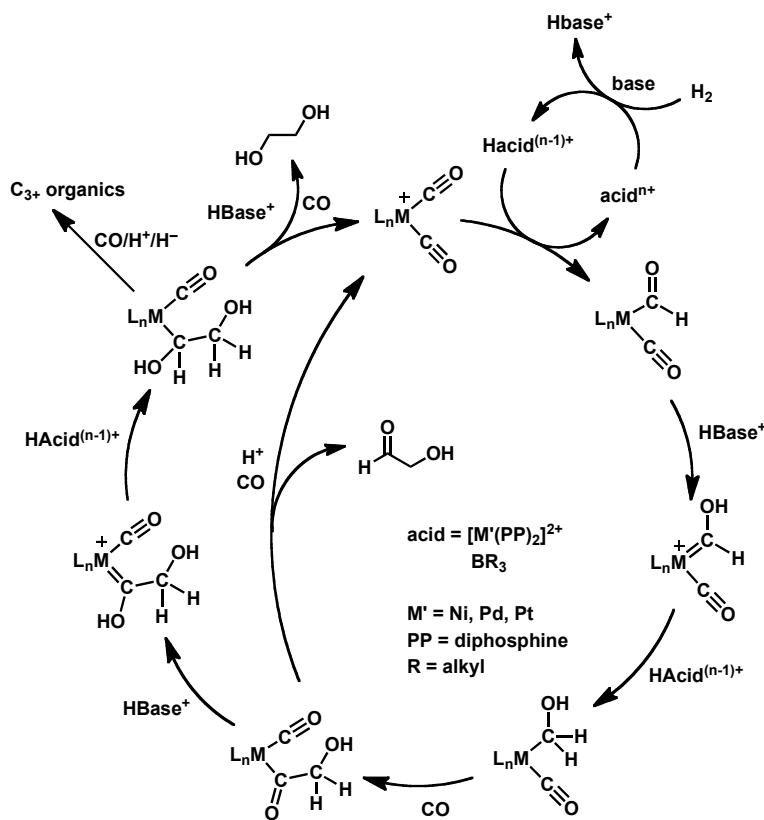
Adapted in part from:

Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2008**, *130*, 11874.

<http://dx.doi.org/10.1021/ja805108z>

—and—

Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2010**, *29*, 4499.


<http://dx.doi.org/10.1021/om100638d>

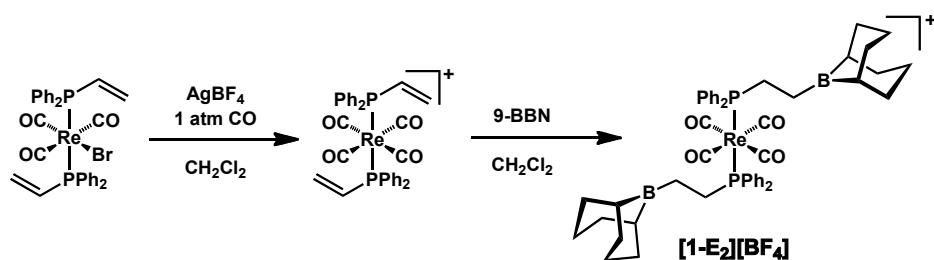
Copyright 2008 and 2010 American Chemical Society

Chapter 3

Introduction

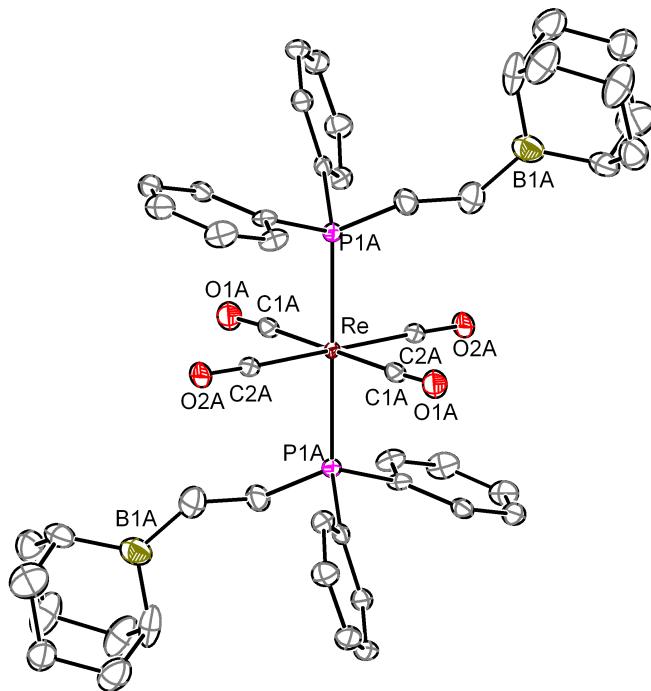
Many of the approaches under active investigation for obtaining fuels and commodity chemicals from coal, methane, or biomass follow an indirect route via synthesis gas (syngas, CO/H₂), typified by the Fischer-Tropsch (F–T) process.¹ Selective conversion of syngas to discrete multi-carbon hydrocarbons or oxygenates could offer substantial improvements over non-selective F–T.² The possibility that homogeneous catalysis might provide more promising opportunities for selective transformations has intrigued organometallic chemists for several decades.³ While sequential reduction and protonation of mid-to-late transition metal carbonyls resulted in the release of C₂ and higher organics,^{3a,4} the hydrides used are not readily obtainable from H₂ and are incompatible with the strong acids required, precluding catalysis. Some early transition metal species (and their f-block congeners) that *can* be formed directly from H₂,⁵ such as Cp*₂ZrH₂,^{3d} can effect both CO reduction and C–C coupling, but the extremely strong M–O bonds thus generated will again preclude catalysis. A few examples of homogeneous catalytic conversion of syngas to methanol and C₂ products (EtOH, ethylene glycol) have been reported, but extremely high pressures and temperatures are required.⁶

Scheme 3.1

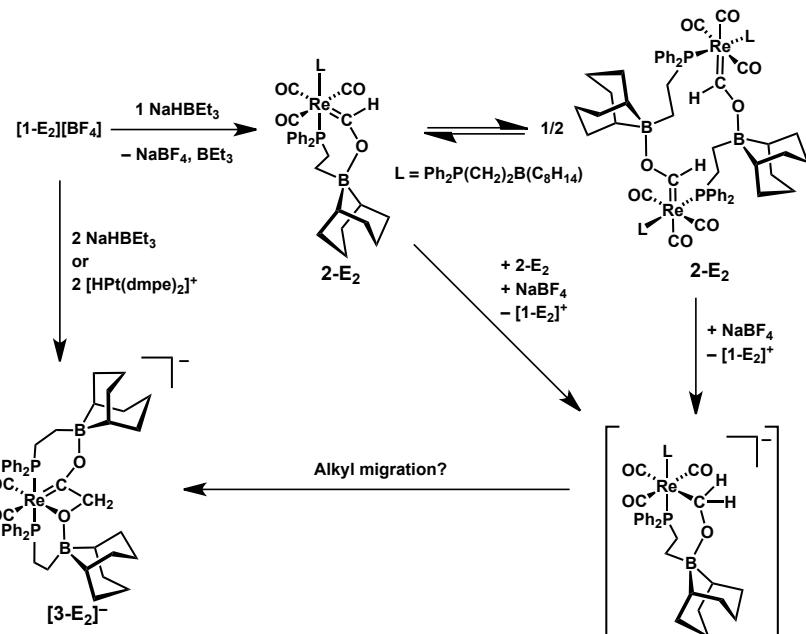

Our renewed interest in this approach⁷ was inspired by the discovery that late transition metal hydrides $[\text{HM}(\text{PP})_2]^+$ ($\text{M} = \text{Ni, Pd, Pt}$; $\text{PP} = \text{chelating diphosphine ligand}$), which may be formed directly from H_2 by heterolytic activation, can form C–H bonds by facile nucleophilic attack on metal carbonyl complexes.⁸ Because these metals should not form prohibitively strong M–O bonds, we proposed that a dual system, consisting of the late transition metal hydrogen activator along with a relatively electrophilic metal carbonyl complex (probably from the middle of the transition series, where C–H bond formation is well documented^{3b,3d,8a,9}) could lead to catalytic conversion, perhaps as shown in Scheme 3.1. We^{7b} and others¹⁰ have demonstrated stoichiometric versions of Scheme 3.1, but the various steps operate under conditions that are mutually incompatible; in particular, some

steps require very strong acids or other electrophiles that would react with hydride sources. The difficulty of forming a C–H bond from coordinated CO therefore appears to be a major obstacle to this approach; another challenge is the facile formation of a C–C bond from a reduced carbonyl species.

We have sought to address both of these challenges with a single design element: the incorporation of a Lewis acidic borane in the secondary coordination sphere of a rhenium carbonyl complex. Lewis acid promotion of reductions of organic carbonyls¹¹ and alkyl migratory insertions of coordinated CO¹² is well known; participation of Lewis acids in homogeneous catalytic CO reduction^{6a} and heterogeneous F–T chemistry¹³ has also been proposed. The additional advantage of intramolecular attachment could make conversion possible with a relatively weak acidic center, which might not be sufficiently activating as a separate promoter. We report here that this pendent Lewis acid facilitates the delivery of multiple hydride equivalents — from both main group and late transition metal hydrides — to a CO ligand, followed by spontaneous alkyl migration to form a C–C bond.

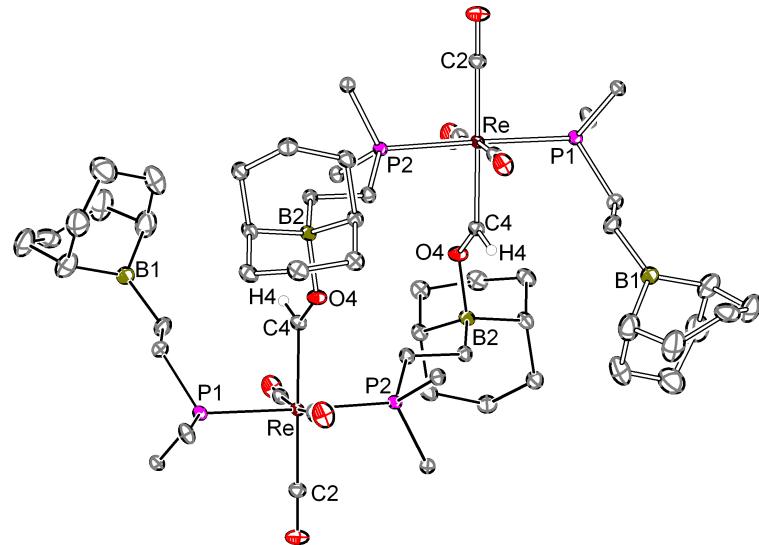

Results and Discussion

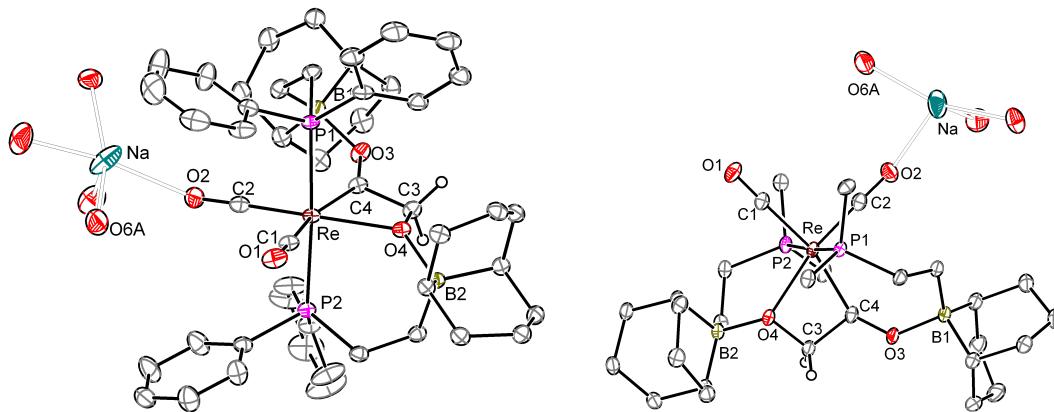
CO reductive coupling promoted by pendent boranes


Scheme 3.2

Our first attempts to incorporate a Lewis acid into the secondary coordination sphere of a transition metal carbonyl utilized a templated ligand synthesis to access a weakly Lewis acidic trialklyborane (Scheme 3.2). Commercially available diphenylvinylphosphine was metallated with $\text{Re}(\text{CO})_5\text{Br}$ at 120 °C in toluene in a sealed vessel, yielding *trans,mer*-($\text{Ph}_2\text{PC}_2\text{H}_3$)₂ $\text{Re}(\text{CO})_3\text{Br}$ as a white powder in good yield. Subsequent treatment with AgBF_4 under 1 atm of CO afforded cationic $[(\text{Ph}_2\text{PC}_2\text{H}_3)_2\text{Re}(\text{CO})_4][\text{BF}_4]$. Hydroboration with 9-BBN (9-borabicyclo[3.3.1]nonane) proceeded over 48 hours at 70 °C to afford the desired product $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))_2\text{Re}(\text{CO})_4][\text{BF}_4]$ (**[1-E₂][BF₄]**). The phosphinoborane ligand can be independently synthesized,¹⁴ but metallation is nontrivial due to thermal decomposition.

Figure 3.1. Structural representation (50% ellipsoids) of complex **[1-E₂][BF₄]**. Hydrogen atoms, BF₄ counterion, and solvent molecules of crystallization omitted for clarity. Selected bond lengths (Å) and angles (°): Re–C1A, 1.984(3); Re–C2A, 2.003(3); Re–P1A, 2.4377(8); P1A–Re–P1A#1, 180.0; C1A–Re–C2A, 86.7(1).


An X-Ray diffraction (XRD) study confirmed the expected structure of **[1-E₂][BF₄]** (Figure 3.1). As strongly donating solvents were avoided throughout the synthesis of **[1-E₂]⁺**, the boron centers in the 9-BBN groups remain three-coordinate. The IR spectrum of **[1-E₂][BF₄]** shows a single CO stretch at 1998 cm⁻¹, similar to the PPh₃ analogue **[(PPh₃)₂Re(CO)₄][BF₄]** ($\nu_{CO} = 2000$ cm⁻¹).¹⁵ CO stretching frequency can be roughly correlated with hydride acceptor ability: e.g., **[Cp*Re(CO)₂NO]⁺** ($\nu_{CO} = 2092, 2036$ cm⁻¹) readily reacts with group 10 hydrides, while **[(PPh₃)₂Re(CO)₄]⁺** ($\nu_{CO} = 2000$ cm⁻¹) does not.


Scheme 3.3

Despite similar CO stretching frequencies, the pendent borane has a strong impact on the hydride acceptor ability of $[\mathbf{1-E}_2]^+$. Addition of one equivalent of $[\text{HPt}(\text{dmpe})_2][\text{PF}_6]$ ($[\text{HPt}][\text{PF}_6]$) in either $\text{C}_6\text{D}_5\text{Cl}$ or $1,2\text{-C}_6\text{H}_4\text{F}_2$ leads to a new proton resonance at δ 13.95 and precipitation of $[\text{Pt}(\text{dmpe})_2][\text{BF}_4]_x[\text{PF}_6]_{2-x}$ ($[\text{Pt}]^{2+}$). $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+$ does not readily react with $[\text{HPt}]^+$. We attribute the downfield NMR signal to a neutral boroxycarbene such as **2-E₂** (Scheme 3.3), formed in 60-70% yield. In hopes of achieving complete conversion, one equivalent of the stronger hydride donor NaHBET_3 (1.0 M in toluene) was added to a PhCl solution of $[\mathbf{1-E}_2][\text{BF}_4]$, affording a yellow solution that showed quantitative formation of **2-E₂**, as assessed by $^{31}\text{P}\{^1\text{H}\}$ NMR, IR, and the unique ^1H NMR resonance at δ 13.95. Decomposition with formation of the starting material $[\mathbf{1-E}_2]^+$ and an unknown species took place over several days in solution. Performing the hydride addition in CD_2Cl_2 also gave the NMR signal (along with additional products that may

include Re–Cl species), and colorless crystals grew overnight. An XRD study verified that the boroxycarbene feature was present, but the structure so obtained is bimetallic, with the oxygen of the carbene on one Re interacting with the boron from the other, generating a 14-membered cycle (Figure 3.2).

Figure 3.2. XRD structural representation (50% ellipsoids) of complex **2-E₂**. Most hydrogens omitted and phenyl rings trimmed for clarity. Selected bond lengths (Å) and angles (°), **2-E₂**: Re—C4 2.118(1), C4—O4 1.253(1), O4—B2 1.612(1), Re—C4—O4 126.12(8), C4—O4—B1 126.87(8).

Figure 3.3. Structural representation (two views) of $[\text{Na} \cdot 3.5\text{THF} \cdot 0.5\text{Et}_2\text{O}] [\mathbf{3}\text{-}\mathbf{E}_2]$, ellipsoids at 50% probability. Most hydrogen atoms and carbons from disordered Na-coordinated THF (and most phenyl C atoms in top view) are omitted for clarity. Selected bond lengths (\AA) and angles ($^\circ$): Re–C4 2.0960(9), Re–O4 2.2322(7), C4–O3 1.271(1), C3–C4 1.513(1), C3–O4 1.423(1), Re–C4–O3 147.27(7), C4–C3–O4 102.79(7).

Attempts to crystallize **2-E₂** by vapor diffusion of Et₂O into a PhCl solution took days, but eventually yielded colorless plates; XRD revealed transformation to complex $[\mathbf{3}\text{-}\mathbf{E}_2]^-$ (Scheme 3.3), a novel boroxy(boroxyethyl)carbene generated by formation of a new C–C bond. The oxygen of the boroxyethyl group coordinates to Re, forming three rhenacycles of 7, 4, and 6 members; a sodium cation bound by ether molecules interacts with one of the two remaining CO ligands (Figure 3.3). The structure shown in Figure 3.3 was obtained from isolated $[\text{Na}][\mathbf{3}\text{-}\mathbf{E}_2]$, which yielded the solvate $[\text{Na} \cdot 3.5\text{THF} \cdot 0.5\text{Et}_2\text{O}] [\mathbf{3}\text{-}\mathbf{E}_2]$ from THF/Et₂O vapor diffusion. (Other solvent systems for crystallization yielded different solvates, with structures of lower quality; details in the Experimental Section).

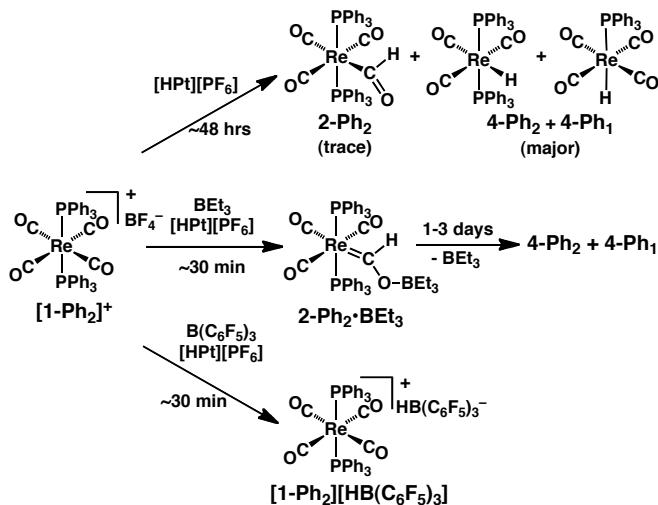
A plausible mechanism for the production of $[\text{Na}][\mathbf{3}\text{-}\mathbf{E}_2]$ begins with disproportionation of **2-E₂**, forming a boroxyalkyl via intra- or intermolecular hydride transfer (the two boroxy carbene carbons are $\sim 5 \text{ \AA}$ apart), with concomitant formation of tetracarbonyl cation $[\mathbf{1}\text{-}\mathbf{E}_2]^+$ (Scheme 3.3). Boroxyalkyl migration to CO would generate $[\mathbf{3}\text{-}\mathbf{E}_2]^-$. The

decanted supernatant after crystallization of $[\text{Na}][\mathbf{3-E_2}]$ indeed contained predominantly $[\mathbf{1-E_2}]^+$, along with some residual $[\text{Na}][\mathbf{3-E_2}]$. The reaction could also be intermolecular, as the dimer might dissociate in solution. It is notable that no additional CO or other ligand is needed to induce alkyl migration.

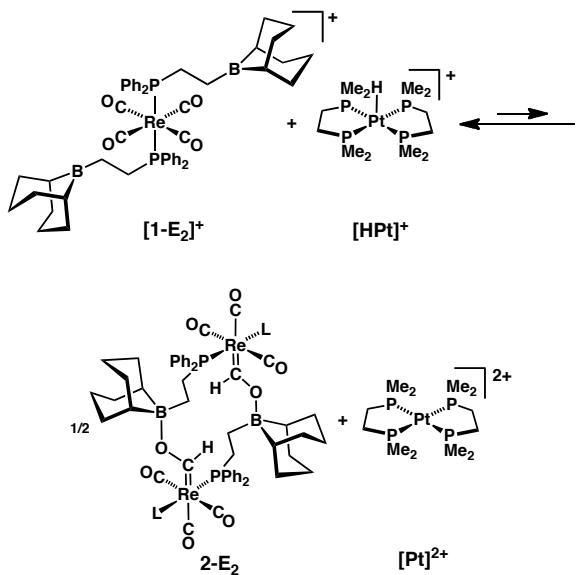
Addition of *two* equivalents NaHBEt_3 to a PhCl solution of $[\mathbf{1-E_2}][\text{BF}_4]$ resulted in the immediate precipitation of $[\text{Na}][\mathbf{3-E_2}]$ in 80-95% isolated yield. (In contrast, $[(\text{PPh}_3)_2\text{Re}(\text{CO}_4)]^+$ yields a formyl with one equivalent NaHBEt_3 ,¹⁵ but does not react further with excess borohydride.) This preparation allowed full characterization of $[\text{Na}][\mathbf{3-E_2}]$. The asymmetry shown in the crystal structure is evident by NMR as well, with two doublets (δ 12.0, 17.7) in the $^{31}\text{P}\{^1\text{H}\}$ NMR, and complex aromatic and aliphatic regions in the ^1H NMR; the $[\text{CH}_2\text{O}]$ group resonates as two doublets at δ 4.55 and 4.64. The infrared spectrum of $[\text{Na}][\mathbf{3-E_2}]$ exhibits two CO stretches at 1848 and 1933 cm^{-1} , consistent with a relatively electron rich species. The carbenoid nature of $[\text{Na}][\mathbf{3-E_2}]$ is apparent in the $^{13}\text{C}\{^1\text{H}\}$ NMR spectrum, with a characteristic doublet of doublets at 303.4 ppm.

It is noteworthy that the conversion of $[\mathbf{1-E_2}]^+$ to $[\mathbf{3-E_2}]^-$ can also be carried out with two equivalents $[\text{HPt}]^+$, in slightly lower yield (~70%). Since the Pt hydride can be preformed externally by heterolytic cleavage of H_2 in the presence of a suitable base (KOPh or tetramethylguanidine),^{8b} this transformation amounts to the net formation of a C_2 species from intermediates directly obtainable from CO and H_2 .

Ligand effects on the reductive coupling of CO


Our initial findings revealed that incorporation of a borane into the secondary coordination sphere of a Re carbonyl complex fundamentally alters reactivity by facilitating hydride transfer, permitting a group 10 transition metal hydride generated from H₂ to serve as hydride source, and promoting C–C bond formation by alkyl migration, even in the absence of a strong donor.

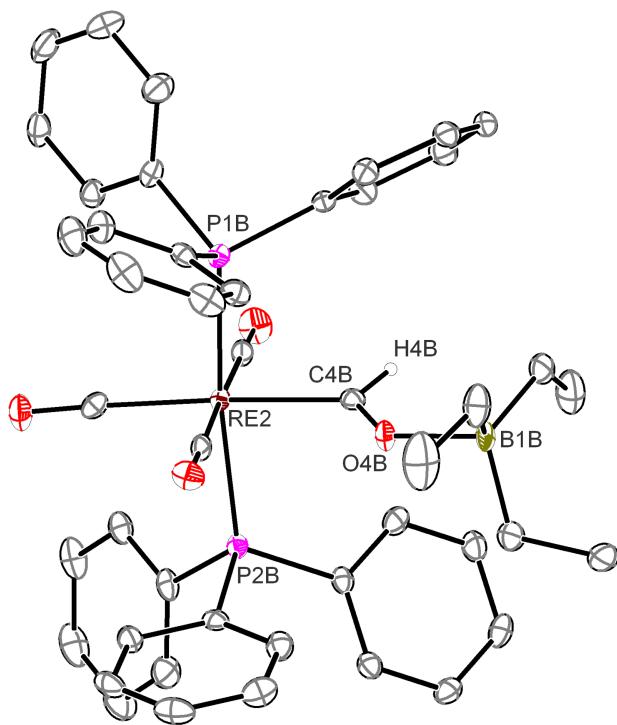
While alkylborane-based systems are probably not viable catalysts because of strong B–O bonding, they do provide an excellent framework for investigating some of the key issues arising from this approach. In particular, what factors affect how the chelate effect operates? How does reactivity depend on the length of the tether connecting the borane to the metal center? Can an external borane promote the same transformations? What happens if there is only one Lewis acid center attached instead of two? We would also like to learn something about the fundamental mechanism of this transformation: how is hydride transferred from Pt to C, and how does C–C bond formation take place? We report here on our findings.


Reduction of $[(PPh_3)_2Re(CO)_4]^+$ ($[1-Ph_2]^+$)

To further probe the role of pendent (internal) boranes, we explored the chemistry of $[(PPh_3)_2Re(CO)_4]^+$ ($[1-Ph_2]^+$) with ($[HPt]^+$; see Scheme 3.6 below for system used for abbreviations) in the absence and presence of added external Lewis acids, as summarized in Scheme 3.4. A solution of $[1-Ph_2][BPh_4]$ and $[HPt][PF_6]$ in C₆D₅Cl shows no discernible reaction over 24 hours, although it should be noted that $[1-Ph_2][BPh_4]$ is only slightly

soluble in C_6D_5Cl .^{7a} In addition, the choice of anion can play an important role in reductions using $[HPt]^+$: as previously reported, the equilibrium shown in Scheme 3.5 lies far toward the left side (unreduced $[1-E_2]^+$), but can be driven to the right by precipitation of $[Pt][BF_4]_x[PF_6]_{2-x}$.^{7c} Suspensions of $[1-Ph_2][BF_4]$ (also fairly insoluble) and $[HPt][PF_6]$ in C_6D_5Cl or THF slowly convert to a mixture of $(PPh_3)_2Re(CO)_3(CHO)$ (**2-Ph₂**; 1H NMR ReCHO, δ 15.22 in C_6D_5Cl), $(PPh_3)_2Re(CO)_3(H)$ (**4-Ph₂**) and $(PPh_3)Re(CO)_4(H)$ (**4-Ph₁**). The half-life for consumption of $[HPt]^+$ is 2-4 d, and the yield of **2-Ph₂** never exceeds $\sim 5\%$ (by NMR, relative to $[HPt]^+$). Therefore, while the unassisted transfer of a hydride from $[HPt]^+$ to $[1-Ph_2]^+$ can be observed, it appears to be thermodynamically unfavorable unless driven by precipitation of the $[Pt]^{2+}$ salt, and is kinetically so slow that decarbonylation to the Re-H products dominates, preventing formation of more than a very small amount of formyl complex.

Scheme 3.4



Scheme 3.5

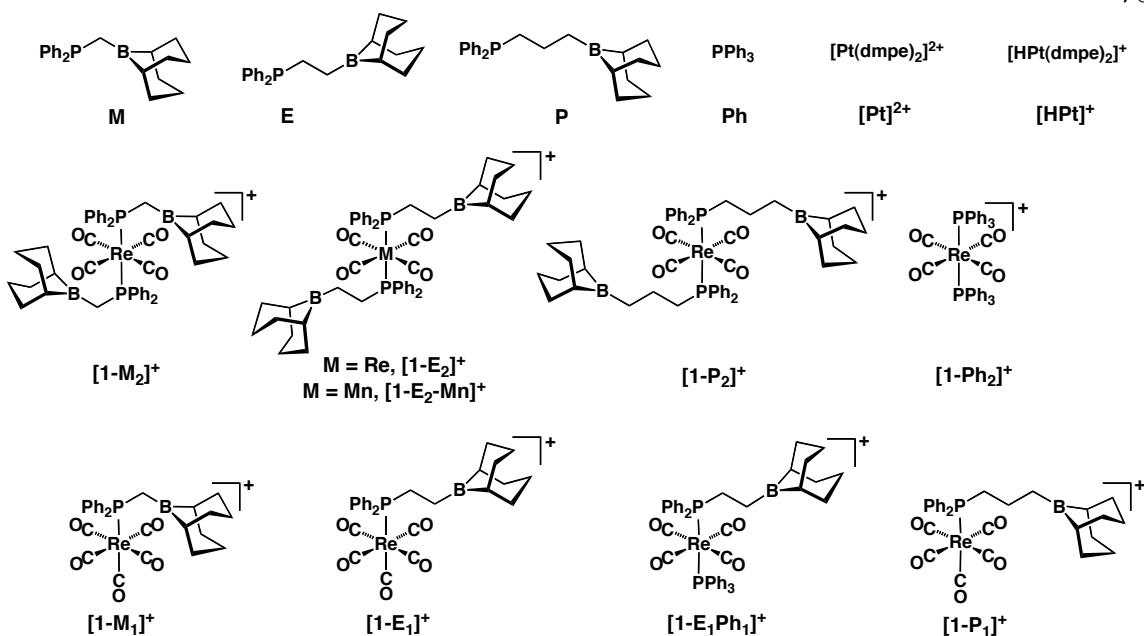
Addition of isopropyl pinacol borate, a weak Lewis acid, has no effect on the above reaction: only traces of the characteristic ¹H NMR formyl signal for **2-Ph₂** are observed, at an essentially unchanged chemical shift (ReCHO, δ 15.21) that indicates no interaction between the formyl oxygen and the boron center. In contrast, a solution of **[1-Ph₂][BF₄]** with **[Hpt][PF₆]** and two equivalents ³Bu(CH₂)₂B(C₈H₁₄) in C₆D₅Cl shows clean conversion to a formyl species in a couple of hours. (When **[1-Ph₂][BAr^F₄]** was treated with **[Hpt][PF₆]** in the presence of 2 or 10 equivalents of BEt₃ (1.0 M in hexanes), only ~1% boroxycarbene was detected, and no further reaction was observed over ~24 h, consistent with inhibition of reduction by small amounts of **[Pt][BAr^F₄]₂** in solution. The Re-CHO resonance (δ 14.60) is shifted well upfield from that observed for the Lewis acid-free reaction, and the ³¹P NMR resonance also differs (δ 14.5, vs. δ 15.8 in the absence of borane), indicating significant interaction between the borane and the formyl ligand.

Treatment of **[1-Ph₂]⁺** with NaHBET₃ gave a spectroscopically similar product which was structurally characterized by X-Ray diffraction (XRD) as the boroxy carbene (PPh₃)₂Re(CO)₃(CHOBEt₃) (**2-Ph₂•BEt₃**) (Figure 3.4). In comparison to analogous adducts of the stronger Lewis acids BF₃ and B(C₆F₅)₃,^{7b} the boroxy carbene moiety in **2-Ph₂•BEt₃** has longer B–O and Re–C bonds and a shorter C–O bond, consistent with less carbene character and a weaker B–O interaction. Accordingly, the BEt₃ can be removed under vacuum to afford **2-Ph₂**.

Complexes such as **2-Ph₂•BEt₃** can be regarded as either borane-stabilized formyls or as boroxy carbenes. There is a continuum, and M–CHO–BR₃ species are probably best considered intermediate between formyl and boroxy carbene. For simplicity, we choose to describe them as boroxy carbenes here, due to the lack of observed C=O stretch in the IR and the relatively upfield Re–CHO ¹³C chemical shift. Solid-state structures are intermediate between carbene and formyl.

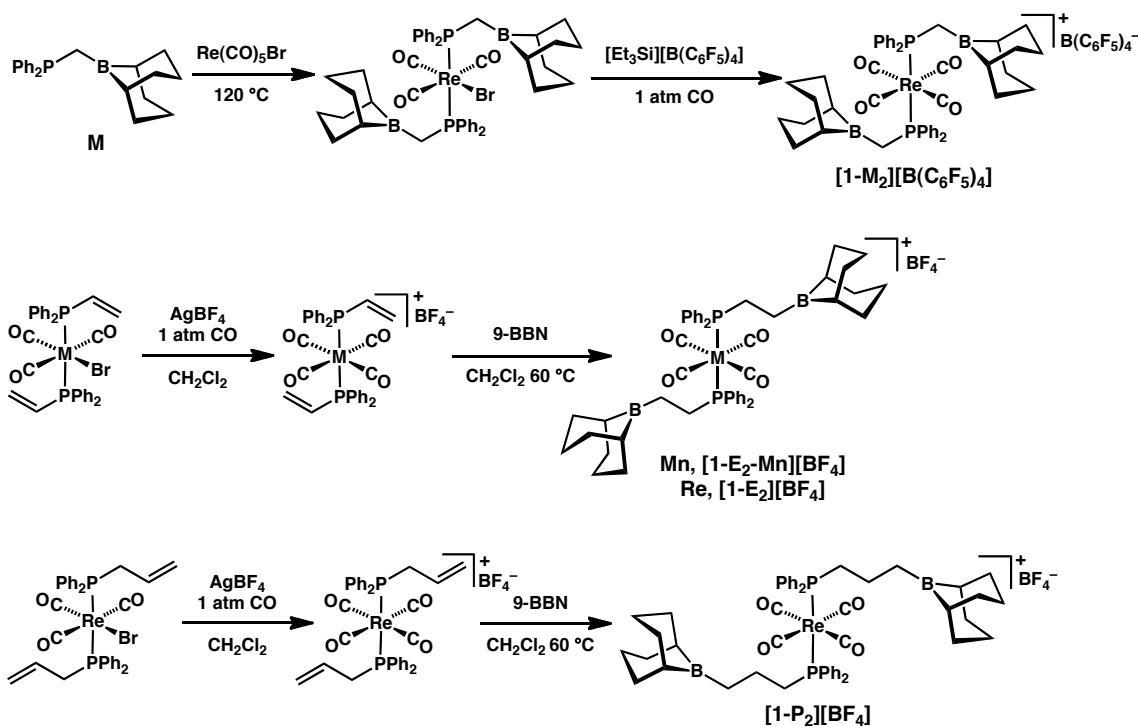
Figure 3.4. Structural representation of $(\mathbf{2}\text{-Ph}_2\bullet\text{BEt}_3)\bullet(\text{C}_6\text{H}_5\text{CH}_3)$ with thermal ellipsoids at 50% probability. Only one of the two independent molecules in the asymmetric unit is portrayed; the bond lengths and angles are similar. H-atoms (except on the carbene) and two toluene solvent molecules of crystallization are omitted for clarity. Selected bond lengths (Å) and angles (°): Re2–C4B 2.126(3), Re–CO(avg) 1.985, C4B–O4B 1.252(3), O4B–B1B 1.638(3), Re2–C4B–O4B 125.2(2), C4B–O4B–B1B 129.2(2).

On titration of $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ with a solution of ${}^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ in $\text{THF-}d_8$ the formyl ^1H NMR resonance showed a steady upfield shift, with no change in lineshape, consistent with fast, reversible adduct formation. The equilibrium constant for adduct formation was estimated from a Benesi-Hildebrand plot¹⁶ as $K_{\text{eq}} = 100 \text{ M}^{-1}$, corresponding to a free energy of B–O bond formation of 11.4 kcal mol⁻¹. Notably, ${}^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ prefers to bind to $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ over THF ($K_{\text{eq}} = 0.19 \text{ M}^{-1}$)^{7c} by roughly three orders of magnitude.

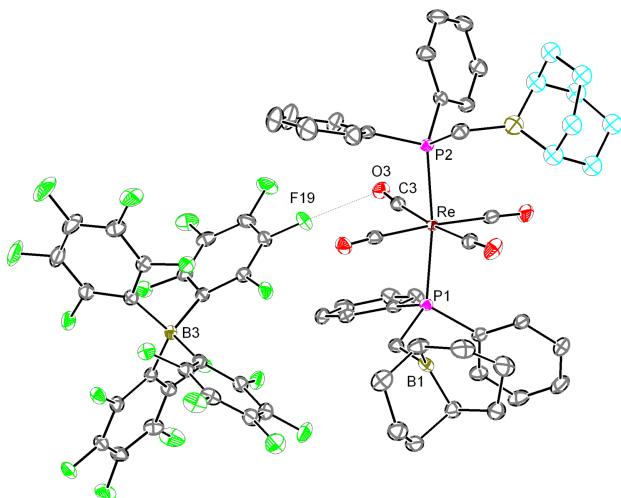

The BEt_3 -stabilized formyl **2-Ph₂•BEt₃** is somewhat longer-lived than **2-Ph₂**, but still decomposes over the course of a few days to Re–H species **4-Ph₂** and **4-Ph₁** (Scheme 3.4; decomposition times tend to vary widely, as has been observed for other formyls¹⁷). No further reduction was observed when **2-Ph₂•BEt₃** was treated with additional NaHBEt_3 or **[HPt][PF₆]**, even in the presence of excess trialkylborane.

The stronger Lewis acid $\text{B}(\text{C}_6\text{F}_5)_3$ does not promote C–H bond formation from **[1-Ph₂][BF₄]** and **[HPt][PF₆]**. Instead, hydride is transferred from **[HPt]⁺** to B, forming the stable salt **[1-Ph₂][HB(C₆F₅)₃]** along with precipitated **[Pt]²⁺**. $\text{B}(\text{C}_6\text{F}_5)_3$ forms a stable boroxycarbene when added to pre-formed $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$,^{7b} but gentle heating of **2-Ph₂•B(C₆F₅)₃** provides the same tetracarbonyl borohydride salt **[1-Ph₂][HB(C₆F₅)₃]**,¹⁸ suggesting that $[\text{HB}(\text{C}_6\text{F}_5)_3]^-$ is a weaker hydride donor than **2-Ph₂**. Similar to **2-Ph₂•BEt₃**, **2-Ph₂•B(C₆F₅)₃** shows no further reaction with hydride sources.¹⁸

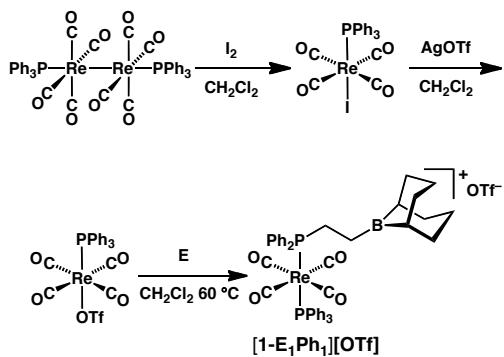
In summary, while small amounts of an unstable formyl can be generated slowly from **[1-Ph₂]⁺** and **[HPt]⁺** alone, high yields of a boroxycarbene (stabilized formyl) species were generated rapidly from **[1-Ph₂]⁺** and **[HPt]⁺** in the presence of the *appropriate* external Lewis acid. Trialkylborate Lewis acids are too weak to have an effect; the strong Lewis acid $\text{B}(\text{C}_6\text{F}_5)_3$ diverts the hydride transfer to make a stable borohydride; intermediate acid strength trialkylboranes greatly accelerate the first hydride transfer reaction, and increase the lifetime of the reduced product. However, none of the external Lewis acids promote the further reduction or C–C coupling chemistry achieved by the pendent Lewis acid in **[1-E₂]⁺**.^{7b}


Synthesis of Complexes with Pendent Boranes

Given the importance of intramolecular interactions, a structure-function study on pendent Lewis acid assistance was designed, requiring complexes in which the number of phosphinoborane ligands and the length of the hydrocarbon chain connecting P and B are varied. Complexes with one or two phosphinoborane ligands with $(CH_2)_{1-3}$ linkers were synthesized, along with a mixed complex containing one phosphinoborane and one simple tertiary phosphine ligand. A system which identifies the phosphine ligand(s) and the class of complex will be used, as depicted in Scheme 3.6. The ligands will be identified by the specific hydrocarbon linker (methylene, 1,2-ethanediyl, 1,3-propanediyl): **M** = $Ph_2PCH_2B(C_8H_{14})$, **E** = $Ph_2P(CH_2)_2B(C_8H_{14})$, **P** = $Ph_2P(CH_2)_3B(C_8H_{14})$, and **Ph** = PPh_3 . The cationic rhenium carbonyl fragment is designated **[1]⁺**, with the first reduction Re–CHO products designated **2**, and the doubly-reduced C–C coupled products designated **[3][–]**. The number of phosphine ligands dictates the number of carbonyl ligands on the metal complexes: for **[1-M₁]⁺**, **[1]⁺** = $[Re(CO)_5]^+$; for **[1-M₂]⁺**, **[1]⁺** = $[Re(CO)_4]^+$.

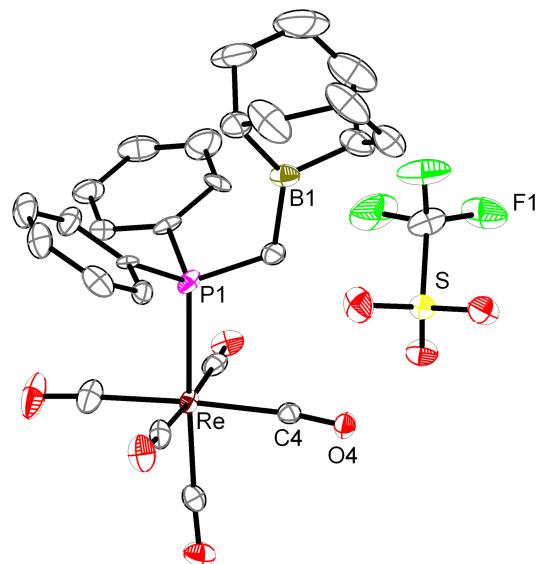

Scheme 3.6

Two routes are available for bis(phosphinoborane) complexes: prior generation of the entire ligand followed by coordination, or hydroboration of a pre-coordinated alkenylphosphine (Scheme 3.7). The ethylene-linked cation **[1-E₂][BF₄]** was described above;^{7a} the Mn analogue **[1-E₂-Mn][BF₄]** was obtained in good yield by a similar procedure, as was the complex with a propylene-linked phosphinoborane ligand (**[1-P₂][BF₄]**). Hydroboration of the allylphosphine with 9-BBN proceeded significantly more readily than the vinyl analogue, possibly reflecting reduced conjugation of the double bond with the electron-deficient metal center.


Scheme 3.7

The ligand with a methylene spacer is inaccessible by hydroboration; the reaction of $\text{Ph}_2\text{PCH}_2\text{Li}$ and $\text{ClB}(\text{C}_8\text{H}_{14})$ in cold pentane affords an insoluble white powder from which $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$ is obtained. Treatment of $\text{Re}(\text{CO})_5\text{Br}$ with two equivalents of $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$ produced *trans,mer*-($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)₂ $\text{Re}(\text{CO})_3\text{Br}$, from which halide abstraction could not be achieved with Ag^+ (which reacts with trialkylboranes)¹⁹ or Tl^+ salts; but addition of $[\text{Et}_3\text{Si}][\text{B}(\text{C}_6\text{F}_5)_4]$ ²⁰ to a $\text{C}_6\text{H}_5\text{Cl}$ solution under 1 atm CO gave the desired cation, *trans*-[($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)₂ $\text{Re}(\text{CO})_4$] $[\text{B}(\text{C}_6\text{F}_5)_4]$ (**[1-M₂][B(C₆F₅)₄]**), whose structure was confirmed by XRD (Figure 3.5). As in **[1-E₂][BF₄]**, no intramolecular $\text{CO}\cdots\text{B}$ interaction is observed (although there are close contacts between the $[\text{B}(\text{C}_6\text{F}_5)_4]$ anion and nearby CO's: O3-F19 2.867 Å, O4-F19 3.042 Å).

Figure 3.5. Structural representation of **[1-M₂][B(C₆F₅)₄]**, with ellipsoids shown at 50% probability. One of the B(C₈H₁₄) groups was disordered by a rotation around the B-C bond; only the major component (66%) is shown (represented as light blue isotropic atoms). All H atoms and a disordered dichloroethane solvent molecule of crystallization are omitted for clarity. Selected bond lengths (Å) and angles (°): Re-P1 2.4521(5), Re-P2 2.4509(5), Re-C(avg) = 1.99, P1-Re-P2 172.34(2).


Reaction of $[(\text{PPh}_3)\text{Re}(\text{CO})_5]\text{OTf}$ with $\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ seemed an obvious route to an asymmetric cation with only one Lewis acid, but under both thermal and photolytic conditions only intractable mixtures were obtained. Instead, the reaction of *trans*- $\text{Re}(\text{PPh}_3)(\text{I})(\text{CO})_4$ ²¹ with AgOTf followed by $\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ under gentle heating gives *trans*- $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})(\text{PPh}_3)\text{Re}(\text{CO})_4]\text{[OTf]}$ (**1-E₁Ph₁**) in good yield (Scheme 3.8).

Scheme 3.8

Complexes with a single phosphine ligand were synthesized starting with Re(CO)₅OTf (Scheme 3.9). Both Ph₂PCH₂B(C₈H₁₄) and Ph₂P(CH₂)₂B(C₈H₁₄)^{14a} displace triflate from Re(CO)₅OTf at 60 °C to give [(Ph₂PCH₂B(C₈H₁₄))Re(CO)₅][OTf] ([**1-M₁**][OTf]), which was characterized crystallographically (Figure 3.6), and [(Ph₂P(CH₂)₂B(C₈H₁₄))Re(CO)₅][OTf] ([**1-E₁**][OTf]), respectively. The propylene-linked analogue was obtained by reaction of Ph₂PCH₂CHCH₂ with Re(CO)₅OTf at 60 °C, affording [(Ph₂PCH₂CHCH₂)Re(CO)₅][OTf]; hydroboration with 9-BBN gave [(Ph₂P(CH₂)₃B(C₈H₁₄))Re(CO)₅][OTf] ([**1-P₁**][OTf]).

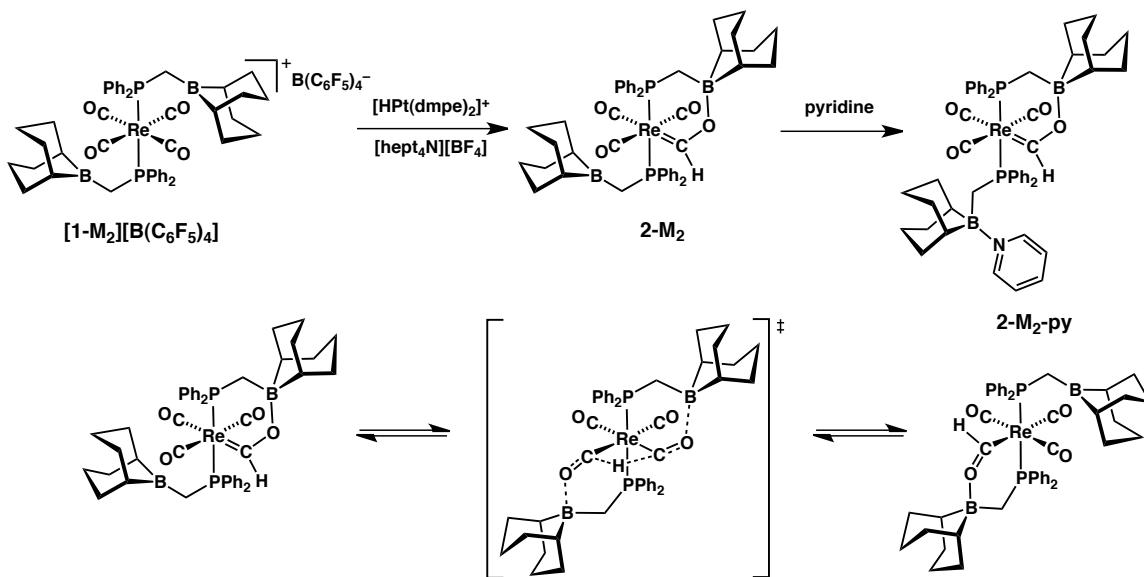

Scheme 3.9

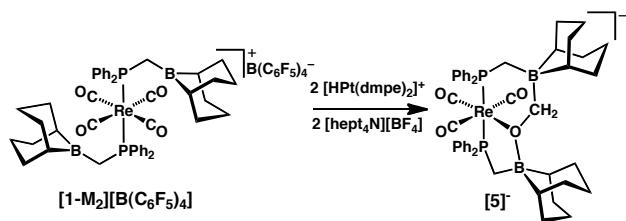
Figure 3.6. Structural representation of $[\mathbf{1-\text{M}_1}][\text{OTf}]$, ellipsoids at 50% probability. A highly disordered solvent molecule was omitted for clarity. The two phenyl groups were disordered by rotation about the P–C bond, and only the major contributor is included for clarity. Selected bond lengths (Å) and angles (°): Re–C1 2.027(2), Re–C2 2.000(2), Re–C3 2.016(2), Re–C4 2.021(2), Re–C5 1.973(2), Re–P 2.4846(5), P–Re–C5 176.54(6), C1–Re–C3 176.96(8).

Reduction of $[(Ph_2PCH_2B(C_8H_{14}))_2Re(CO)_4]^+ ([1-M_2]^+$)

[1-M₂]⁺ was readily synthesized only as the $[B(C_6F_5)_4]^-$ salt, which complicated reductions with **[HPt]⁺**: reduction with **[HPt][PF₆]** proceeded very slowly to ~90% conversion (by NMR) over 6 days. Partially soluble **[Pt] $[B(C_6F_5)_4]_2$** , visible by NMR in small amounts throughout the reaction, may inhibit reduction according to the equilibrium in Scheme 3.5 (precipitation of **[Pt]²⁺** cannot drive the reaction). To circumvent this problem, **[1-M₂] $[B(C_6F_5)_4]$** was treated with both $[hept_4N][BF_4]$ (or $NaBF_4$) and **[HPt][PF₆]** in C_6D_5Cl , which led to complete consumption of **[1-M₂]⁺** and formation of a new Re species over ~3 hours in > 95% yield (by NMR), with concomitant precipitation of **[Pt] $[BF_4]_x[PF_6]_{2-x}$** . At room temperature the ¹H NMR spectrum of the product exhibits a diagnostic triplet at δ 13.89 ($J_{PH} = 5.9$ Hz) but is otherwise broad and nondescript, while the ³¹P{¹H} NMR spectrum shows two very broad resonances. (Similar reactivity and spectroscopy was observed in THF-*d*₃). Variable temperature NMR studies showed fluxional behavior; at low temperatures both the ¹H and ³¹P NMR spectra display sharp doublets indicating nonequivalent P and CH₂ groups. These results strongly indicate the boroxy carbene structure **2-M₂** (Scheme 3.10), although we were unable to obtain an analytically pure sample. (See Experimental Section for details of the NMR and assignment; a related intramolecular boroxy carbene has been obtained for a CpFe system.²²)

Scheme 3.10

The fluxional process in **2-M₂** interconverts the two phosphinoborane ligands ($\Delta G^\ddagger = 13.6 \pm 0.2 \text{ kcal mol}^{-1}$, estimated from the coalescence temperature of 323 K). A sequence of B–O bond breaking, rotation, and B–O bond formation with the other ligand seems a plausible mechanism. $^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopy is not entirely consistent with this, however, as the CO carbon signals are very broad at room temperature, suggesting their involvement in the exchange process. Hydride transfer from a formyl to an adjacent carbonyl (Scheme 3.10, bottom) has been observed previously ($\Delta G^\ddagger = 11.7 \text{ kcal mol}^{-1}$);²³ that may be more consistent with our observations. Furthermore, treatment of **2-M₂** with up to 100 equivalents of pyridine leads to *no B–O cleavage*; only coordination of pyridine to the free B center is observed (Scheme 3.10, top), resulting in sharp NMR resonances expected for a non-fluxional product. If reversible B–O cleavage were occurring rapidly on the NMR time scale, pyridine binding might be expected to intervene. This observation stands in stark contrast to B–O bonds involving intermolecular Lewis acids as well as


phosphinoboranes with longer linkers, which are readily broken in the presence of pyridine

(*vide infra*). Similarly, carbene **2-M₂** is remarkably stable in comparison to **2-Ph₂** and **2-**

Ph₂•BEt₃: no decomposition is observed over short periods at 95 °C or weeks at room temperature.

Treatment of **[1-M₂][B(C₆F₅)₄]** with two equivalents each of **[hept₄N][BF₄]** and **[HPt][PF₆]** in THF-*d*₈ led to formation of a single new Re-containing product (~70% yield by NMR, relative to **[hept₄N]⁺**), again with precipitation of **[Pt]²⁺**. Because the presence of soluble salts such as **[hept₄N][B(C₆F₅)₄]** prevented isolation and structural determination by XRD, the product was characterized spectroscopically. Two sharp doublets are found in the ³¹P{¹H} NMR spectrum at δ 22.2 and 37.3 ($J_{PP} = 127$ Hz), and two slightly broadened doublets are also found in the ¹H NMR spectrum, δ 3.12 and 4.63 ($J_{HH} = 13.0$ Hz). The downfield ³¹P NMR shift is consistent with a 5-membered ring,²⁴ as expected for a structure analogous to the C–C coupled product **[3-E₂][–]** (Scheme 3.3), but a number of other spectroscopic features rule out this assignment, including the absence of a downfield ¹³C NMR signal for a carbene carbon, and the *mer*-tricarbonyl geometry assigned by ¹³C NMR and IR. A simple alkyl is also ruled out by the 5-membered ring structure, no observed P coupling to the CH₂ group, and no 3-coordinate ¹¹B NMR signals. All the spectroscopic data are consistent with the doubly reduced “confused” alkyl species **[5][–]** (Scheme 3.11), in which the CH₂ is bound to one B, and O is bound to Re and the other B, forming a bicyclic ring system. The very broad C signal and slightly broad H signals of the CH₂ group point to coordination to quadrupolar B; the B–O–Re fragment would provide the expected downfield ³¹P NMR shift due to a 5-membered ring; and two ¹¹B NMR signals consistent

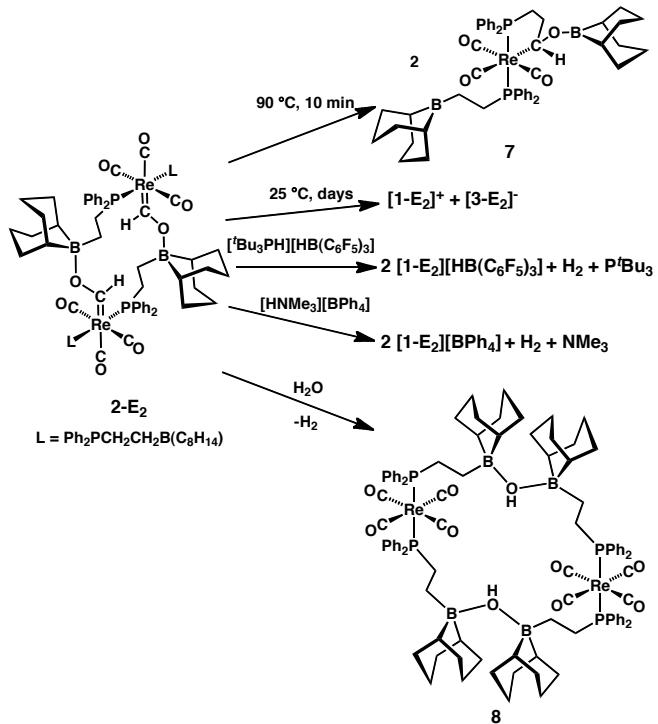
with 4-coordinate BR_4^- and $\text{BR}_3(\text{OR}')^-$ are observed. In addition, high-resolution mass spectrometry (HRMS) gives the expected mass for $[\mathbf{5}]^-$. Thus although a second reduction was facilitated by the pendent Lewis acid, an entirely different product was obtained than in the complex supported by ethylene-linked ligands: no C–C bond formation occurred, and an unusual isomerization was instead observed, presumably driven by formation of 4-coordinate B in favorable ring sizes. The pendent acid is clearly required for this transformation: whereas **2-M₂** (preformed *in situ*) reacted with $[\text{HPt}][\text{PF}_6]$ and $[\text{hept}_4\text{N}][\text{BF}_4]$ to give $[\mathbf{5}]^-$, similar treatment of **2-M₂•py** produced no observable reaction.

Scheme 3.11

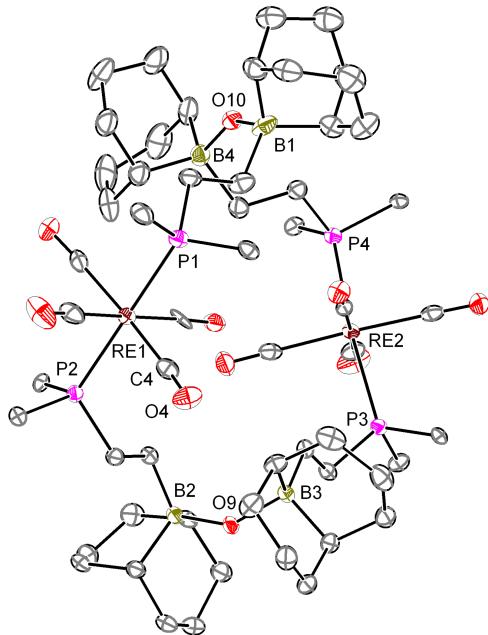
Reduction of $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))_2\text{Re}(\text{CO})_4]^+$ ($[\text{1-}\text{E}_2]^+$)

Initial studies found that treatment of $[\mathbf{1-E}_2][\text{BF}_4]$ in $\text{C}_6\text{D}_5\text{Cl}$ with one equivalent of NaHBET_3 or $[\text{HPt}][\text{BF}_4]$ affords boroxycarbene **2-E₂** (Scheme 3.3). The carbene is identified by a characteristic downfield signal in the ^1H NMR spectrum (δ 13.96) and a closely separated pair of doublets in the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum (δ 9.9). Boroxycarbene **2-E₂** spontaneously crystallizes from CD_2Cl_2 , and XRD revealed a binuclear structure in which the pendent borane from one Re center acts as an *intermolecular* Lewis acid for the other; the two carbene carbons are separated by ~ 5 Å. Pulsed gradient spin-echo (PGSE) diffusion NMR experiments²⁵ on **2-E₂**, using $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{Br}$ (**6**) as an internal standard

of similar size and shape to the proposed monomer, suggest that significant intermolecular interactions are maintained in solution. Initial measurements provided a ratio of hydrodynamic volumes of **2-E₂:6**; then excess pyridine was added to the NMR tube, and the experiment was repeated. If **2-E₂** were strictly monomeric in solution, the ratio would be expected to increase, since pyridine binding would increase the hydrodynamic volume; if **2-E₂** were strictly dimeric, the second ratio should be close to 0.5 times the first, as the monomer should have roughly half the hydrodynamic volume of the dimer. The values of the ratio were 2.34(7) before pyridine addition and 1.6(1) after; the decrease by a factor of 0.69(5) could reflect a monomer-dimer equilibrium, giving a time-averaged PGSE value.²⁶ The broad ¹H and ³¹P NMR resonances of **2-E₂** at 298 K support such a conclusion, although full variable-temperature NMR experiments could not be carried out due to the thermal instability (*vide infra*). Perhaps owing to its fluxional solution behavior, **2-E₂** is quite reactive: C₆D₅Cl solutions of **2-E₂** disproportionate (at a rate dependent on the concentration of **2-E₂**) to a 1:1 mixture of [1-E₂]⁺ and [3-E₂]⁻ (Scheme 3.12).


The same reduction chemistry is operative in THF, although the carbene is quite short-lived in this solvent: disproportionation is complete after a few minutes at room temperature, in stark contrast to the extremely stable methylene-linked analogue **2-M₂**. This rate enhancement might be due to the more polar solvent facilitating transformation to the ionic products [1-E₂]⁺ and [3-E₂]⁻, the enhanced solubility of NaBF₄ in THF (with Na⁺ being incorporated into the product), or the ability of THF to break intermolecular B–O bonds in **2-E₂**. The ³¹P{¹H} NMR signal for **2-E₂** in THF appears as a singlet (δ 10.3), probably a result of competitive borane binding by THF and formyl, implying relatively

*weak B–O bonds in **2-E₂** when compared to **2-M₂**.* The aforementioned PGSE experiment is consistent with this description, as reaction of pyridine with carbene **2-E₂** (in C₆D₅Cl) displaces the formyl group from the borane, forming an unstabilized formyl (³¹P{¹H} singlet at δ 11.7, ¹H Re–CHO signal at δ 15.21) that decomposes *without disproportionation* to give Re–H by decarbonylation (the normal pathway for formyl decomposition).^{3b}


While **2-E₂** is stable for a number of hours at room temperature in C₆D₅Cl, it decomposes as the temperature is raised: up to 40 °C, disproportionation is the main path followed, but heating at 90 °C for a few minutes converts **2-E₂** to a single new product whose ³¹P{¹H} NMR spectrum shows two doublets, δ 12.6 and 39.9 ($\mathcal{J}_{PP} = 124.8$ Hz); the uncommonly downfield-shifted doublet is consistent with a 5-membered phosphorus-containing ring.²⁴ In the ¹H NMR spectrum, the downfield carbene resonance has been replaced by a new broad resonance at δ 5.85. These observations along with 2-D NMR experiments support structure **7** (Scheme 3.12) in which a B–C bond has been cleaved, and the ethylene linker has added to the carbene carbon, giving a (boroxylalkyl)metal complex.

Boroxy carbene **2-E₂** acts as a strong hydride donor, liberating H₂ with reagents such as H₂O and [HNMe₃][BPh₄] (Scheme 3.12). In the latter case, the parent cationic tetracarbonyl [**1-E₂**]⁺ re-forms; with water the binuclear B–O(H)-B-bridged complex **8**, which contains a 20-membered ring, was formed and characterized by XRD (Figure 3.7). [Bu₃PH][HB(C₆F₅)₃], which is a potential hydride source as well as a protic reagent (and which can be formed directly, without any metal complex required, from H₂²⁷) was tested to see if further reduction and C–C coupling could be obtained with such a weak hydride.

Instead, H_2 release was observed again, and the ion pair $[\mathbf{1}\text{-E}_2][\text{HB}(\text{C}_6\text{F}_5)_3]$ was obtained, in addition to free P^tBu_3 . Thus $[\text{HB}(\text{C}_6\text{F}_5)_3]^-$ is too weak a hydride to reduce the rhenium carbonyl cation,^{7b} consistent with the stability of $[\mathbf{1}\text{-Ph}_2][\text{HB}(\text{C}_6\text{F}_5)_4]$ (Scheme 3.4) and despite the presence of a pendent acid group.

Scheme 3.12

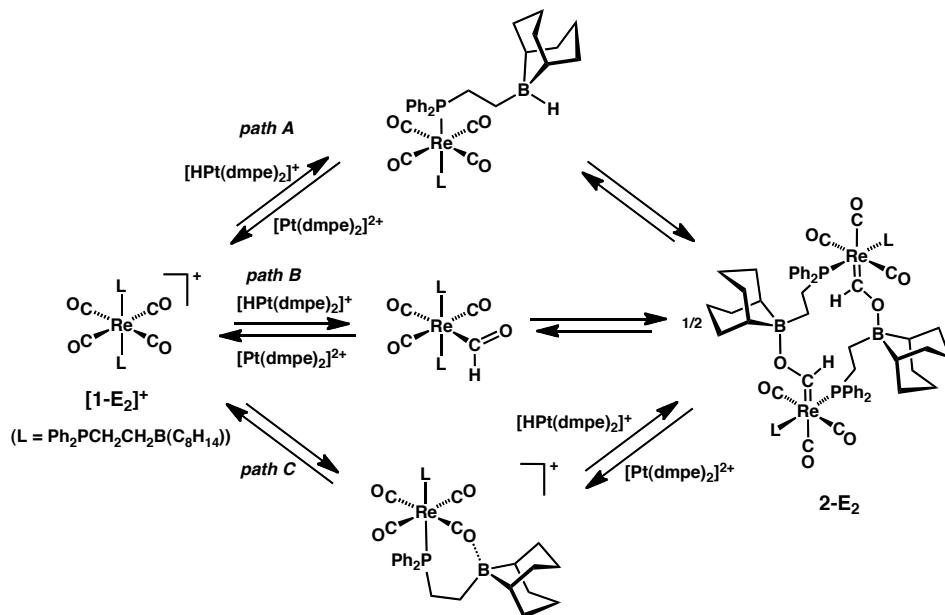


Figure 3.7. Structural representation of $8\bullet(C_6H_6)_{2.5}(C_5H_{12})_{0.5}$, ellipsoids at 50% probability. H atoms and (disordered) solvents of crystallization omitted, and Ph groups truncated for clarity. Selected bond distances (Å) and angles (°): RE1–CO(avg) 1.988, RE1–P1 2.4437(6), RE1–P2 2.4490(6), B1–O10 1.609(4), B2–O9 1.597(3), B1–O10–B4 143.0(2), B2–O9–B3 141.7(2).

Carbene **2-E₂** can be directly reduced (before disproportionation occurs) to $[\mathbf{3-E_2}]^-$ with a second equivalent of NaHB₃ or $[\mathbf{HPt}][\mathbf{BF}_4]$ (*vide supra*). In contrast to **2-E₂**, $[\mathbf{3-E_2}]^-$ is thermally stable up to 70 °C in THF solution, as well as towards further reduction with excess NaHB₃, presumably because a dianionic product would be disfavored. The B–O bonds of $[\mathbf{3-E_2}]^-$ appear to be much stronger than those of **2-E₂**; they are not cleaved by addition of pyridine. Unlike **2-E₂**, treatment of $[\mathbf{3-E_2}]^-$ with $[\mathbf{Pt}][\mathbf{BAr}^{F_4}]_2$ did not lead to any reaction, implying that its formation is essentially irreversible. $[\mathbf{3-E_2}]^-$ reacts with strong acids (HBF₄, HOTf) to give a single product before going on to multiple species, and addition of MeOTf cleanly yields a stable neutral product, but none of these have been reliably characterized.

Mechanism of C–H bond formation: Evidence for hydride shuttling.

Plausible pathways for the transfer of hydride from $[\text{HPt}]^+$ to Re–CO in $[\mathbf{1}\text{--E}_2]^+$ include (Scheme 3.13): Path A) hydride transfer to the pendent borane, followed by intramolecular hydride transfer from boron to carbon; Path B) hydride transfer from $[\text{HPt}]^+$ directly to the Re–CO fragment, yielding a formyl which is trapped by the pendent borane; Path C) transient borane coordination to a Re–CO oxygen, activating the carbon for nucleophilic attack.

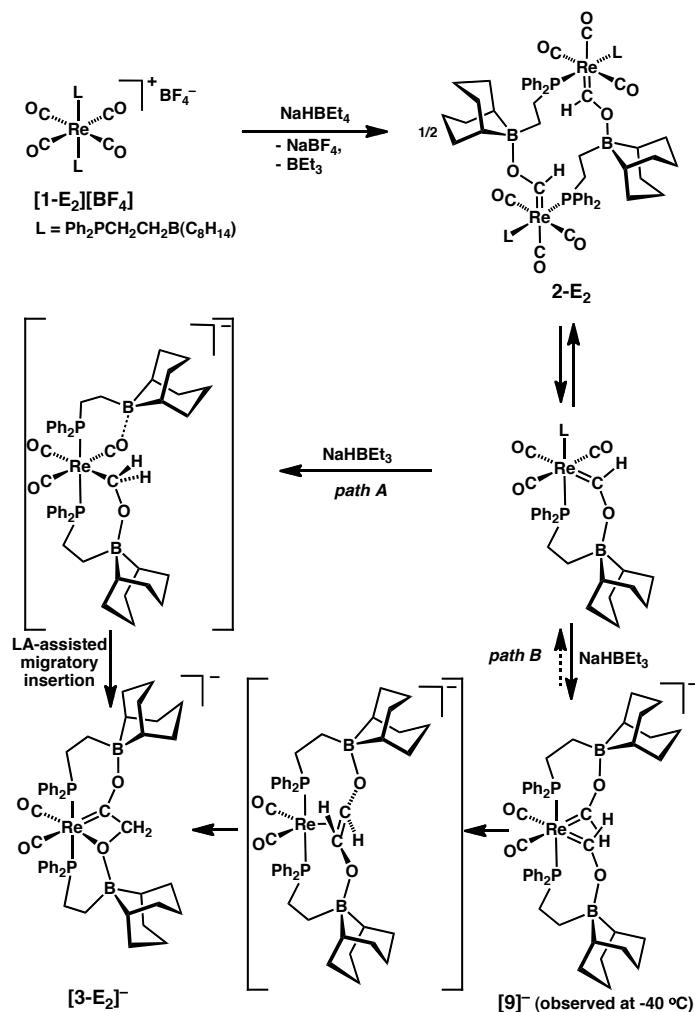

Scheme 3.13

When the reaction was monitored by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy at $-40\text{ }^\circ\text{C}$, a new broad resonance was observed at $\delta = 6$, near the sharper signal for $[\text{HPt}]^+$ at $\delta = 7$. Both signals disappear as the reaction goes on, although the broad resonance is consumed first. The appearance of a broad Pt–H signal suggests the possibility of a Pt–H–B bridged intermediate, which would be most consistent with pathway A. In further support, reaction

of $[\text{HPt}][\text{PF}_6]$ with BEt_3 led to precipitation of $[\text{Pt}][\text{PF}_6]_2$ and the appearance of a broad ^{31}P resonance at $\delta -2.4$, along with a broadened resonance for $[\text{HPt}]^+$ at $\delta -7.1$. Fluxionality was also apparent in a broad ^1H NMR signal in the hydride region at $\delta -11.7$, and a ^{11}B NMR signal at 14.8 (compare $\text{Li}[\text{Et}_3\text{BHBET}_3]$, $\delta 8.7^{28}$). At -40 °C the signals sharpened and separated into two sets. The ^{31}P NMR spectrum showed two singlets, one corresponding to $[\text{HPt}]^+$ ($\delta -7.4$, $^1\mathcal{J}_{\text{PtP}} = 2240$ Hz), and one conspicuously lacking Pt satellites ($\delta -1.6$). The ^1H NMR spectrum showed the hydride signal expected for $[\text{HPt}]^+$ ($\delta -12.02$, pent, $^2\mathcal{J}_{\text{PH}} = 29.3$ Hz, $^1\mathcal{J}_{\text{PtH}} = 694$ Hz) along with another broad doublet with Pt satellites at $\delta -3.25$ ($\mathcal{J}_{\text{PH}} = 166$ Hz, $\mathcal{J}_{\text{PtH}} = 958$ Hz), downfield of most Pt hydrides, but closer to the chemical shift expected for $[\text{HBET}_3]^-$ ($\delta \sim -0.5$) or $[\text{Et}_3\text{BHBET}_3]^-$ ($\delta \sim -2.7$).²⁸ ^{11}B NMR at this temperature showed signals for free BEt_3 and another close to that of $[\text{HBET}_3]^-$.

These observations strongly indicate that H has been transferred (partly or entirely) to B; we tentatively assign the broad Pt–H signal to $[(\text{dmpe})_2\text{Pt}–\text{H}–\text{BEt}_3]^+$ or the borane adduct $[(\text{dmpe})_2\text{Pt}(\text{HBET}_3)(\text{BEt}_3)]^+$ (Scheme 3.14), since the large \mathcal{J}_{PH} would be consistent with a phosphine *trans* to the hydride,²⁹ and the broadening with quadrupolar interaction with boron. The added bulk of the coordinated BEt_3 group(s) could favor a trigonal bipyramidal geometry; phosphines in such systems have been observed to undergo rapid interchange, leading to loss of Pt satellites in the ^{31}P NMR.³⁰ Precipitation of $[\text{Pt}]^{2+}$ is consistent with the stoichiometry required to form $[\text{Et}_3\text{BHBET}_3]^-$. The reaction of preformed $[\text{Li}][\text{Et}_3\text{BHBET}_3]$ with $[\text{Pt}]^{2+}$ afforded multiple products; the major product was $\text{Pt}(\text{dmpe})_2$, but some of the

trans hydride was also observed. Similar chemistry has been previously reported for $\text{HRh}(\text{dmpe})_2$.²⁸



Scheme 3.14

While hydride transfer between B and Pt appears facile when the $[\text{PF}_6^-]$ anion is employed, no reaction is observed when $[\text{Hpt}][\text{BAr}^{\text{F}_4}]$ is treated with BEt_3 . This difference is consistent with our previous observation that $[\mathbf{1-E}_2][\text{BAr}^{\text{F}_4}]$ is not reduced by $[\text{Hpt}][\text{BAr}^{\text{F}_4}]$ in $\text{C}_6\text{D}_5\text{Cl}$,^{7c} and suggests that an equilibrium involving hydride transfer from Pt to B could be driving the chemistry of Scheme 3.5. Furthermore, we recently reported that the combination of a suitably strong and bulky base and H_2 is sufficient to directly reduce $[\mathbf{1-E}_2]^+$,^{7c} that reduction must go through a pendent borohydride intermediate. All of this evidence supports the “hydride shuttle” mechanism of path A (Scheme 3.13), wherein formation of a small amount of trialkylborohydride is followed by rapid intramolecular carbonyl reduction. Note also that $[\mathbf{1-Ph}_2]^+$ does react with $[\text{Hpt}]^+$ to give an (unstable) formyl (*vide supra*), but that reaction is very slow and is strongly accelerated by the addition of BEt_3 , suggesting that direct transfer of hydride to carbonyl carbon as in path B is possible but much slower than the shuttle route.

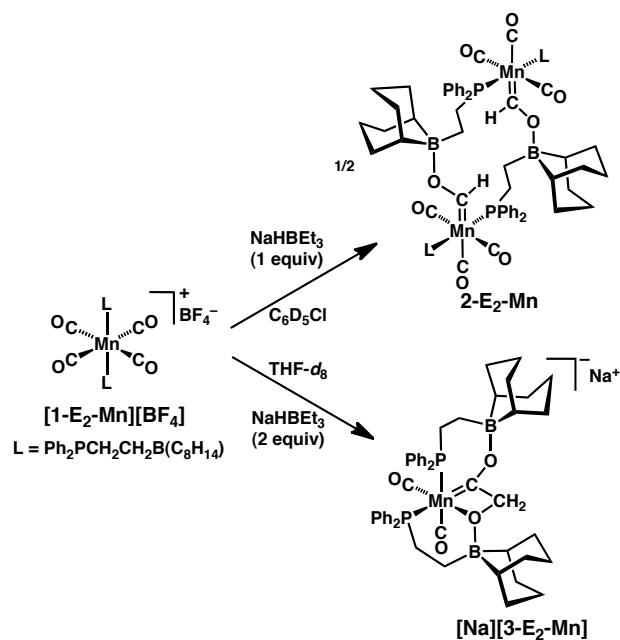
Mechanism of C–C bond formation: Evidence for a bis(carbene) intermediate.

Reaction of **[1-E₂][BF₄]** with two equivalents of NaHB₃t₃ or **[HPt][PF₆]**, or of preformed **2-E₂** with one equivalent of either reductant, affords **[3-E₂]⁻** rapidly at room temperature. The reaction is irreversible and, in contrast to the first hydride transfer, is not driven by precipitation (**[3-E₂]⁻** does precipitate from C₆D₅Cl, but remains in solution in THF-*d*₈), as evidenced by the lack of observed reaction when **[3-E₂]⁻** is treated with **[Pt][BAr^F₄]₂**. The second reduction and subsequent C–C coupling necessarily involves a number of elementary steps. The mononuclear form of **2-E₂** (accessible according to the PGSE NMR data, *vide supra*), containing intramolecular borane coordination, is proposed to be an intermediate in the transformation to mononuclear product **[3-E₂]⁻**. Two reasonable pathways for the formation of **[3-E₂]⁻** are shown in Scheme 3.15: Path A, reduction at the carbene center to give an anionic boroxyalkyl species, which undergoes Lewis acid-assisted migratory insertion; or Path B, reduction at a second CO to give an anionic bis(carbene) (or doubly stabilized bis(formyl): **[CpRe(NO)(CHO)₂]⁻** has been previously reported,^{9a,9d} species, followed by carbene coupling and hydrogen shift to give the observed product. Related hydrogen shifts have been previously observed in Fe³¹ and Mn^{7b} systems.

Scheme 3.15

Evidence for pathway B is provided by low temperature NMR studies. When one equivalent of NaHBET_3 is added to an NMR tube containing a frozen solution of 2-E_2 in $\text{C}_6\text{D}_5\text{Cl}$ and the solution is warmed to -40°C , clean conversion to a new symmetric species is observed. This species features a sharp singlet at $\delta 10.0$ in the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum, a new downfield singlet at $\delta 16.43$ in the ^1H NMR, which integrates as two protons, and only one CO resonance and one boroxycarbene resonance in the $^{13}\text{C}\{^1\text{H}\}$ NMR, all consistent with the bis(carbene) structure $[9]^-$. Upon slowly warming the sample, no new species were

observed by NMR spectroscopy; instead, the signal-to-noise decreased until essentially no signals attributable to Re species were visible, and a large amount of white precipitate was found upon removal of the tube from the probe. The precipitate was isolated and dissolved in THF-*d*₈, and NMR showed it to be **[3-E₂]⁻**.


It should be noted that the observation of **[9]⁻** in C₆D₅Cl does not necessarily rule out a migratory insertion mechanism, since bis(carbene) formation could be reversible. Migratory insertion of a carbonyl into a Re–C bond has been reported to proceed with assistance from a (much stronger) Lewis acid.³² The reduction of **[1-M₁]⁺** (*vide infra*) appears unambiguously to proceed via migratory insertion as well, but that reaction is quite slow.

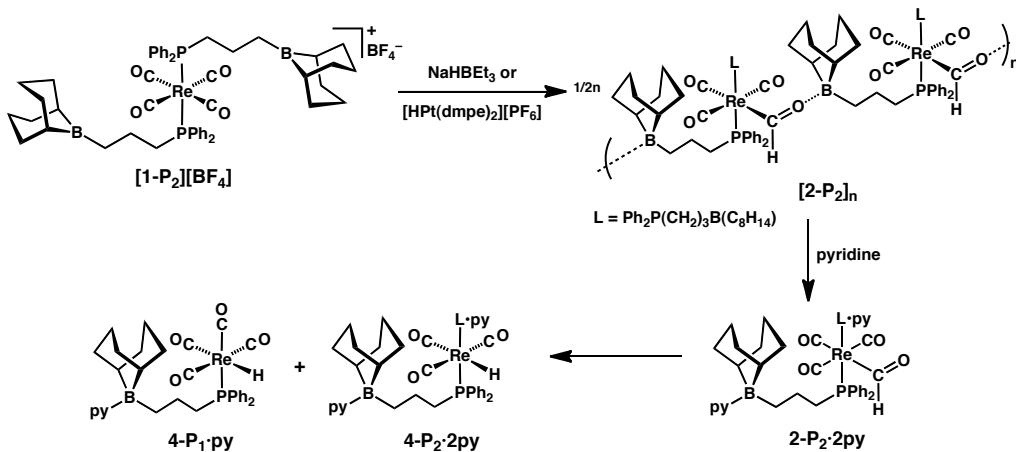
Reduction of [(Ph₂P(CH₂)₂B(C₈H₁₄)₂Mn(CO)₄]⁺ ([1-E₂-Mn]⁺)

Treatment of **[1-E₂-Mn]⁺** with one equivalent of NaHB₃Et in C₆D₅Cl showed significant conversion to a Mn–CHO species, with broad singlets at δ 13.81 (¹H NMR) and δ 61.0 (³¹P NMR). When **[1-E₂-Mn]⁺** was similarly treated with one equivalent NaHB₃Et in THF-*d*₈, a mixture of products formed, showing no downfield ¹H NMR signal (consistent with disproportionation chemistry as **2-E₂**); however, addition of two equivalents of NaHB₃Et in THF-*d*₈ led to rapid and clean conversion to a single species that exhibits NMR signals — in particular, two doublets each in the ¹H and ³¹P{¹H} NMR spectra, and correlation between the two proton doublets (δ 4.32 and 4.82) and a carbene carbon signal (δ 332) by ¹H–¹³C gHMBC spectroscopy — very similar to those of the Re C–C coupling product **[3-E₂]⁻**. Accordingly we assign the two products as **2-E₂-Mn** and **[3-E₂-Mn]⁻** (Scheme 3.16). **2-E₂-Mn** is presumed to be dimeric like the Re analog, although we have

no direct evidence for that. The $\tilde{\jmath}_{\text{PP}}$ value of 27 Hz in $[\mathbf{3\text{-E}_2\text{-Mn}}]^-$ is much smaller than that in $[\mathbf{3\text{-E}_2}]^-$, suggesting the former has *cis* phosphines (one possible isomer is drawn in Scheme 3.16). Both **2-E₂-Mn** and $[\mathbf{3\text{-E}_2\text{-Mn}}]^-$ appear to be considerably less stable than their Re analogues; attempts to isolate $[\mathbf{3\text{-E}_2\text{-Mn}}]^-$ by concentration led only to decomposition.

Treatment of $[\mathbf{1\text{-E}_2\text{-Mn}}][\text{BF}_4]$ with two equivalents $[\mathbf{HPt}][\text{PF}_6]$ in $\text{THF-}d_8$ also led to formation of $[\mathbf{3\text{-E}_2\text{-Mn}}]^-$, although the reaction did not go to completion. Manganese, an inexpensive first-row alternative to rhenium, is thus capable of effecting the same reductive coupling chemistry, albeit with decreased product stability.

Scheme 3.16


Reduction of $[(Ph_2P(CH_2)_3B(C_8H_{14}))_2Re(CO)_4]^+ ([1-P_2]^+)$

Treatment of **[1-P₂][BF₄]** with one equivalent of NaHB₃Et in C₆D₅Cl appears to afford a single product in good yield by NMR spectroscopy. The ¹H NMR spectrum includes a singlet at δ 14.10, characteristic of a formyl or boroxycarbene proton. The ³¹P{¹H} NMR spectrum shows a broad singlet (δ 6.6), in contrast to the AB pattern of **2-E₂** and the widely spaced broad resonances in **2-M₂**. The same species is obtained using **[HPt]⁺**, with essentially identical NMR signals, indicating that free BEt₃ does not play a role in the broadening of the ³¹P signal.

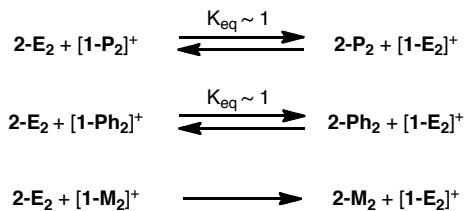
A white solid precipitates from this solution over a few hours; it is insoluble in common organic solvents and water, but can be re-dissolved by addition of excess pyridine. The resulting solution exhibits a [Re-CHO] resonance, shifted downfield by \sim 1 ppm (δ 14.99) from the original position, while the ³¹P{¹H} NMR resonance is slightly shifted (δ 6.2) and significantly sharpened; the ¹¹B{¹H} NMR shows a single resonance at δ 2.2, consistent with non-fluxional 4-coordinate boron.

Based on these results structure **[2-P₂]_n** is assigned to the initially formed soluble species (Scheme 3.17). This species presumably contains only weak B–O interactions, consistent with the shift of the formyl proton and the broadness of the ³¹P resonance (attributed to moderately fast B–O bond breaking/forming). As the linker length is increased, the chemical shift of the formyl in C₆D₅Cl moves downfield, which may indicate less B–O interaction. A similar trend is observed upon titration of (PPh₃)₂Re(CO)₃(CHO) with trialkylboranes, as the formyl shifts upfield with added borane. Complex **[2-P₂]_n**

precipitates as an oligomer; addition of pyridine re-dissolves it by coordinating to boron and breaking the B–O bonds, generating complex **2-P₂•2py**. Because the “bare” formyl **2-P₂•2py** is not stabilized by any Lewis acid interaction, it decomposes over a period of hours, resulting in two new Re–H ¹H NMR signals, one a triplet and the other a doublet, which can be assigned to **4-P₁•py** and **4-P₂•py** (Scheme 3.17), respectively. These products were not isolated; the pyridine adduct of the free ligand ($\text{Ph}_2\text{P}(\text{CH}_2)_3\text{B}(\text{C}_8\text{H}_{14})$ pyridine) was also observed by ³¹P{¹H} NMR spectroscopy.

Scheme 3.17

Treatment of **[1-P₂][BF₄]** with two equivalents of NaHBET_3 led to NMR spectra that indicated the formation of multiple asymmetric species, possibly including one or more with new C–C bonds, but they could not be separated or fully characterized. Treatment of **[1-P₂][BF₄]** with two equivalents of **[Hpt][PF₆]** gave only boroxycarbene **[2-P₂]_n** and unreacted **[Hpt][PF₆]**. This failure to undergo a second hydride addition may support our hypothesis that intramolecular facilitation is required for multiple reductions by **[Hpt]⁺**: an

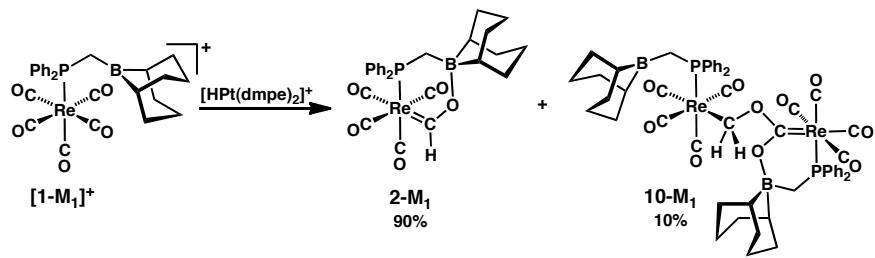

intramolecular B–O interaction in **2-P₂** would require an 8-membered ring, which is probably too large for effective stabilization.

Overview of (Ph₂P(CH₂)_nB(C₈H₁₄))₂Re complexes: Ring size effects

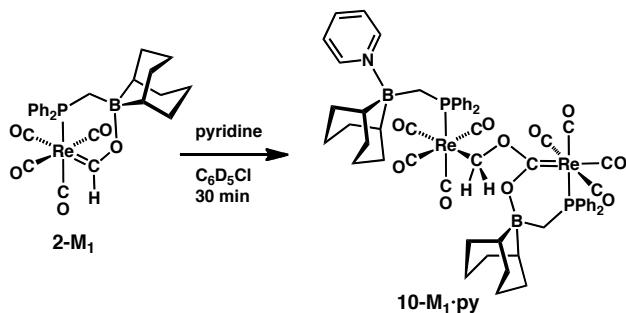
Only methylene-linked boroxy carbene **2-M₂** clearly exhibits *intramolecular* interaction of the pendent borane with the [Re–CHO] moiety, forming a favorable 6-membered ring. The corresponding 7- and 8-membered rings that would result from intramolecular coordination in the ethylene- and propylene-linked analogues are not observed; instead *intermolecular* coordination leads to a dimer or an insoluble oligomer respectively. In the absence of significant intramolecular interactions in the ethylene- and propylene-linked systems, the two boroxy carbenes are expected to exhibit similar stability and hydride strength. Indeed, mixing preformed **2-E₂** with **[1-P₂]⁺** (or **2-P₂** with **[1-E₂]⁺**) gives an equilibrium mixture (Scheme 3.18), with $K_{eq} \approx 1$. Similarly, addition of carbene **2-E₂** to simple phosphine complex **[1-Ph₂]⁺**, or of simple formyl complex **2-Ph₂** to B-linked carbonyl complex **[1-E₂]⁺**, establishes an equilibrium, also with $K_{eq} \approx 1$.

In contrast, mixing preformed **2-E₂** with the methylene-linked **[1-M₂]⁺** results in *complete* hydride transfer, giving only the intramolecularly-stabilized carbene **2-M₂**, which does not react with **[1-E₂][BF₄]**. Furthermore, **2-M₂** is able to accept a second hydride from **2-E₂**, affording the “confused” alkyl **[5]⁻** (Scheme 3.11) as the major product. Clearly the favorability of intramolecular coordination with the methylene linker effects a substantial difference in stability and reactivity. The fact that ethylene-linked boroxy carbene **2-E₂** *can* undergo a second hydride addition and C–C coupling, which in general does not appear to

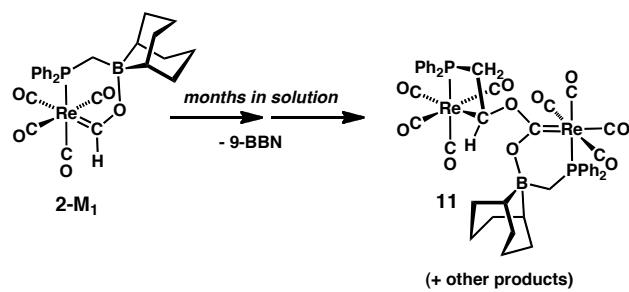
be well facilitated by external Lewis acids, is further evidence that **2-E₂** exists in solution as an equilibrium between the dimer and an intramolecularly coordinated monomer.


Scheme 3.18

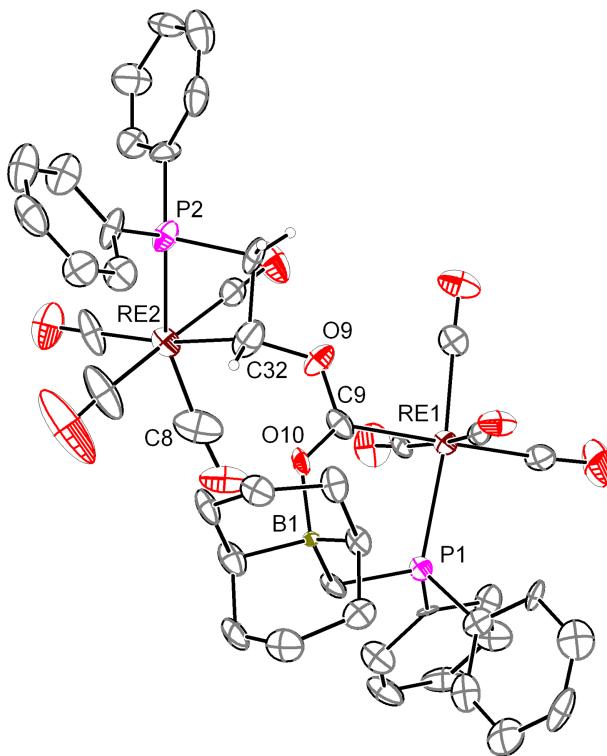
Reduction of $[(Ph_3P)Re(CO)_5]^+$ ($[I-Ph_1]^+$)


In general we would expect monophosphine rhenium pentacarbonyl cations to be more electrophilic than their bis(phosphine) counterparts, rendering them better hydride acceptors, and indeed, in contrast to $[\mathbf{1-Ph}_2]^+$, $[(PPh_3)Re(CO)_5]^+$ ($[\mathbf{1-Ph}_1]^+$) is readily reduced by $[\mathbf{HPt}]^+$ in the absence of any Lewis acid assistance.^{7b} Furthermore, precipitation of a $[\mathbf{Pt}]^{2+}$ salt is not required to drive the reaction, although reduction of $[\mathbf{1-Ph}_1][OTf]$ with $[\mathbf{HPt}][PF_6]$ (which results in precipitation of $[\mathbf{Pt}][OTf]_x[PF_6]_{2-x}$) is more rapid than that of $[\mathbf{1-Ph}_1][BAr^F_4]$ with $[\mathbf{HPt}][BAr^F_4]$ (in which case $[\mathbf{Pt}][BAr^F_4]_2$ remains in solution). One possibility for this kinetic discrepancy could be tighter ion pairing for the smaller ions, which may aid in the transfer of hydride between two cationic species. The resultant monophosphine formyl species $(PPh_3)Re(CO)_4(CHO)$ (**2-Ph₁**) is much less stable than **2-Ph₂**,^{15,33} it quickly ($t_{1/2} \sim 30$ min) de-inserts to give $Re-H$,¹⁷ and cannot easily be further reduced (unless a strong electrophile such as $MeOTf$ is added, to afford an electrophilic methoxycarbene^{7b}).

Reduction of $[(Ph_2PCH_2B(C_8H_{14}))Re(CO)_5]^+$ ($[1-M_1]^+$)


Reaction of **[1-M₁][OTf]** with one equivalent of **[HPt][PF₆]** in C₆D₅Cl gives boroxy carbene **2-M₁** as the major (~90% isolated yield) product in ~10 minutes at room temperature (Scheme 3.19). The minor (~10%) side product was tentatively assigned as an alkyl species bridging two Re centers, a hypothesis later solidified by spectroscopic analogy to related reduced monophosphine-ligated species (*vide infra*). Treatment with stronger hydrides such as NaHB₃ generally resulted in much more Re–H formation and was thus avoided. These reactions were sometimes accompanied by intense color changes consistent with reduction processes, which would labilize CO and lead to reactivity at Re itself. Similar results were obtained in CD₂Cl₂, although a slow background reaction of **[HPt]⁺** with the solvent gives some CD₂HCl. In both solvents **[Pt][OTf]_x[PF₆]_{2-x}** precipitates, but that is not a requisite driving force: treatment of **[1-M₁][BAr^F₄]** with **[HPt][BAr^F₄]** (which forms soluble **[Pt][BAr^F₄]₂**) led to complete reduction as well (albeit more slowly, as with the **[1-Ph₁]⁺** salts above; also see below). **2-M₁** exhibits the characteristic downfield ¹H NMR signal (δ 14.07, d, $^3J_{PH} = 2.5$ Hz in C₆D₅Cl); a broad ¹³C{¹H} resonance at δ 283 is attributed to the carbene carbon. In contrast to most of the other boroxy carbene studied, which show either broad or no ¹¹B resonances, **2-M₁** displays a relatively sharp ¹¹B{¹H} signal at δ 11.2, consistent with 4-coordinate boron.³⁴

Scheme 3.19


Reaction of **2-M₁** with pyridine led after \sim 30 minutes to complete disappearance of the carbene resonance and growth of a new doublet at 4.91 ($\delta_{\text{PH}} = 5.8$ Hz, 2H) in the ¹H NMR spectrum; two equal intensity singlets were observed in the ³¹P{¹H} NMR spectrum. These spectroscopic characteristics are quite similar to those of the product of **[HPt]⁺** reduction of the ethylene-linked analogue **1-E₁** (*vide infra*), as well as of the minor side product that accompanied formation of **2-M₁**; accordingly we assign it as the bridging alkyl-carbene dirhenium species **10-M₁•py** (Scheme 3.20), formed *via* disproportionation. It is noteworthy that the B–O bond of **2-M₁** can be cleaved by pyridine, in contrast to that in **2-M₂** (Scheme 3.10); perhaps the more electrophilic nature of the monophosphine complexes places more of the negative charge at C instead of O.

Scheme 3.20

By itself, **2-M₁** is quite stable in solution: there is no observable decarbonylation over a month, indicating a particularly strong B–O interaction that inhibits the normal formyl deinsertion path. This stability is far greater than **2-Ph₂**, **2-E₂**, and **2-Ph₁**, in line with that of **2-M₂**. There is eventually some decomposition after two months to a new species (Scheme 3.21), identified by XRD as the alkoxy-boroxy-carbene complex **11** (Figure 3.8), whose formation likely involves B–C cleavage to extrude 9-BBN, coupling of the methylene fragment to the formyl carbon, and addition of the resulting alkoxy oxygen to a carbonyl carbon on another Re center, although the exact mechanistic sequence is not known. **11** exhibits an unusually upfield $^{31}\text{P}\{\text{H}\}$ NMR signal, δ –54.0, typical of P in a 4-membered ring;²⁴ the alkoxyboroxycarbene $^{13}\text{C}\{\text{H}\}$ resonance is observed at δ 210.2 (d, $\mathcal{J}_{\text{PC}} = 9.4$ Hz).

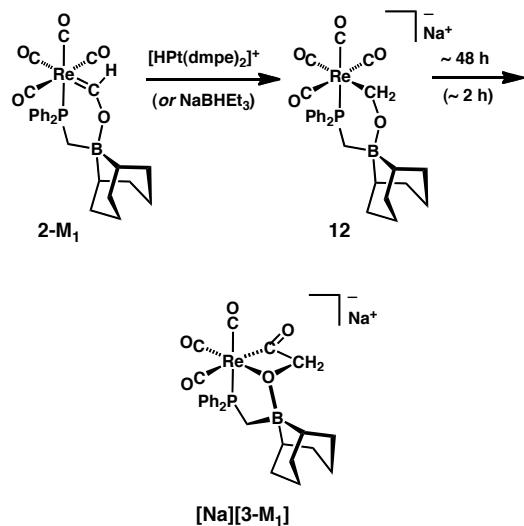
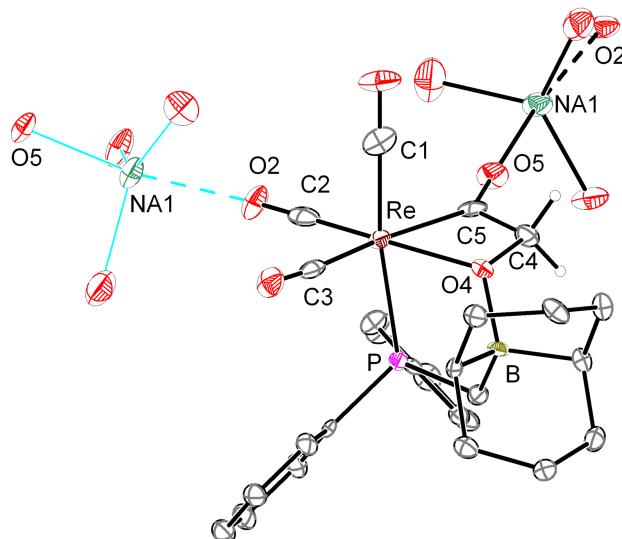

Scheme 3.21

Figure 3.8. Structural representation of **11** with ellipsoids at 50% probability. Most H atoms omitted for clarity. Selected bond distances (Å) and angles (°): Re1–C9 2.20(1) C9–O9 1.33(1), C9–O10 1.25(1), O10–B1 1.59(2), O9–C32 1.49(1), Re2–C32 2.28(1), P2–Re2–C8 159.0(5), P1–Re1–C2 172.2(4).

Addition of a second equivalent of $[\text{HPt}][\text{PF}_6]$ to **2-M₁** produces two new species over a period of hours. At early stages the major species exhibits a ^1H doublet at δ 4.54 ($^3J_{\text{PH}} = 2.6$ Hz), which in ^1H – ^{13}C and ^1H – ^{31}P gHMBC NMR experiments showed 3-bond coupling (through Re) to CO and P ligands; these and other multinuclear and multidimensional NMR experiments support assignment as the mononuclear Re alkyl complex **12**. Over 48 hours **12** is converted quantitatively (by NMR) to the second species, assigned as Re-acyl $[\mathbf{3-M}_1]^-$ (Scheme 3.22), based on (*inter alia*) the following NMR evidence: 1) an AB pattern ($J_{\text{HH}} = 16$ Hz) corresponding to geminal CH_2 protons, further coupled to an acyl carbon at 275 ppm (by ^1H – ^{13}C -gHMBC, which also shows that there is no longer any 2 or 3 bond

coupling between the CH_2 group and CO ligands); 2) a single $^{31}\text{P}\{^1\text{H}\}$ NMR resonance with a downfield shift, δ 38.1, consistent with a 5-membered ring structure,²⁴ which is weakly coupled to one of the CH_2 protons.



Scheme 3.22

It is unclear whether the migratory insertion leading from **12** to **[3-M₁]⁻** is Lewis acid-assisted (which would require B–O cleavage). Migratory insertion on Re in the absence of a Lewis acid is very rare and usually slow,^{32,35} but the reaction here *is* quite slow compared to the insertions observed following reduction of **2-E₂** and **2-E₂-Mn**. (The analogous reaction in the **2-E₁Ph₁** system is also faster; *vide infra*). Reaction of **2-M₁** with the stronger hydride NaHB₃ led to **[3-M₁]⁻** much more rapidly. Acceleration could be due to BEt₃- or Na⁺-assisted migratory insertion or product stabilization, but separate experiments probing any additive effect of BEt₃ or NaBF₄ (on **[HPt]⁺**-mediated reductions) were inconclusive.

Reduction of **[1-M₁][BAr^F₄]** using **[HPt][BAr^F₄]** resulted in a change in the rate-limiting step, as reduction of the carbene was slower than migratory insertion. Therefore, no alkyl intermediate was observed, and the reaction took about 1 week to reach completion.

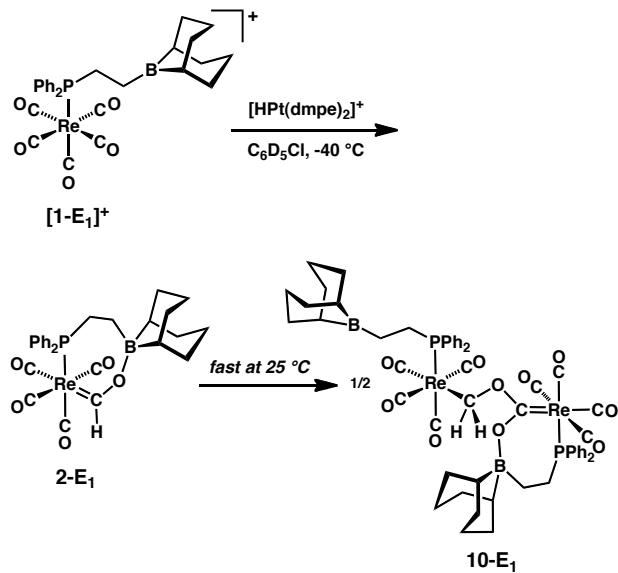
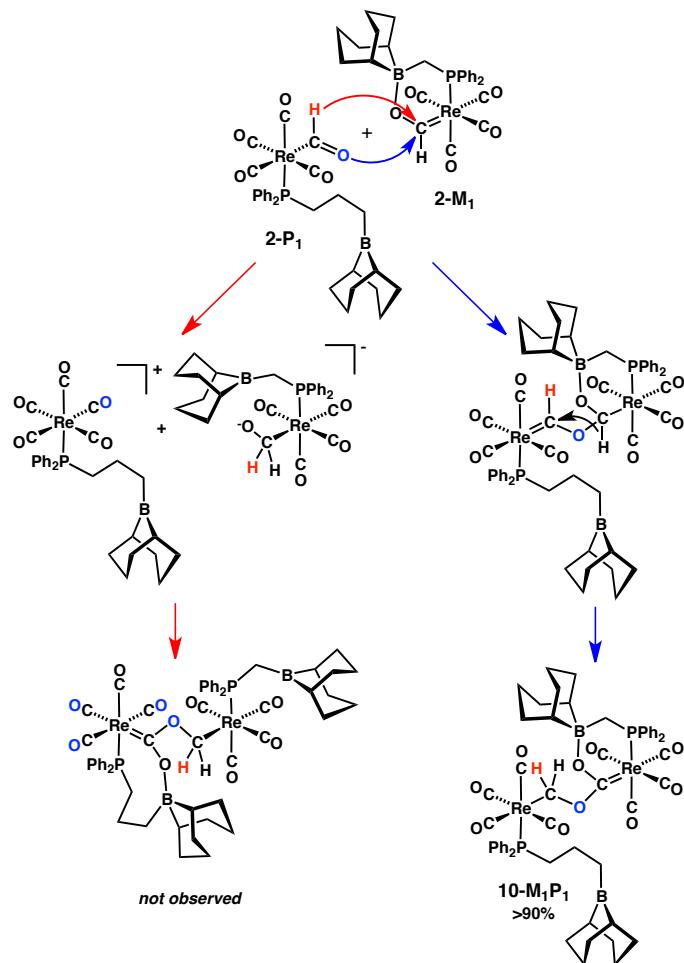
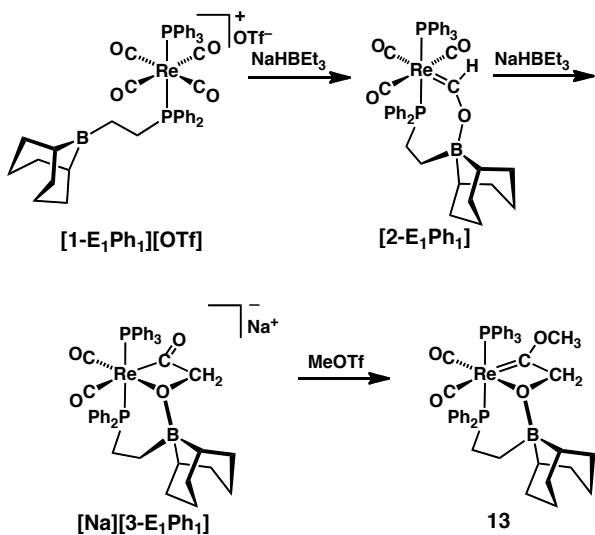

The presence of the Na⁺ counterion in the synthesis of **[3-M₁]⁻** allowed for crystallization of single crystals of **[Na(THF)₃][3-M₁]** from a cold THF/pentane mixture, with an XRD study confirming the structure assigned by NMR (Figure 3.9). A B–O bond is formed between the cyclic alkoxide and the borane in the secondary coordination sphere; the bond distances are consistent with an acyl functionality as illustrated, with a relatively short C=O distance of 1.218(5) Å. The Na⁺ counterion bridges an acyl O of one molecule and a carbonyl O of another molecule, forming a zig-zagging network in the crystal lattice.

Figure 3.9. Structural representation of **[Na(THF)₃][3-M₁]** with ellipsoids at 50% probability. Most H atoms, and C atoms of THF molecules, omitted for clarity. Selected bond lengths (Å) and angles (°): Re–C1 1.935(5), Re–C2 1.849(5), Re–C3 1.951(5), Re–C5 2.130(4), Re–O4 2.206(3), O4–C4 1.440(4), O4–B 1.575(5), C4–C5 1.532(6), C5–O5 1.218(5), O5–Na 2.238(3), O2#1–Na 2.411(3), Re–C5–O5 143.2(3).

Reduction of $[(Ph_2P(CH_2)_2B(C_8H_{14}))Re(CO)_5]^+ ([1-E_1]^+$)


The reaction of **[1-E₁][OTf]**, with one equivalent of **[HPt][PF₆]** in C₆D₅Cl proceeds readily at ambient temperature, but the expected boroxy carbene product is not observed; instead a single species is formed in good yield, whose NMR properties (in particular, a ¹H doublet at δ 5.06 ($^3J_{PH} = 6.9$ Hz, 2H); two ³¹P peaks in a 1:1 ratio, one of which correlates to ¹H δ 5.06 in ¹H-³¹P gHMBC; a ¹³C resonance at δ 209.6) are reminiscent of the dioxycarbene linkage in **11** and suggest the related structure **10-E₁** (Scheme 3.23). The expected carbene species **2-E₁** can be observed as an intermediate at low temperature: NMR spectroscopic monitoring of the reaction in a thawing C₆D₅Cl solution at -40 °C showed nearly complete conversion to a carbene species, which at 25 °C is cleanly and quickly converted to **10-E₁**.

Scheme 3.23

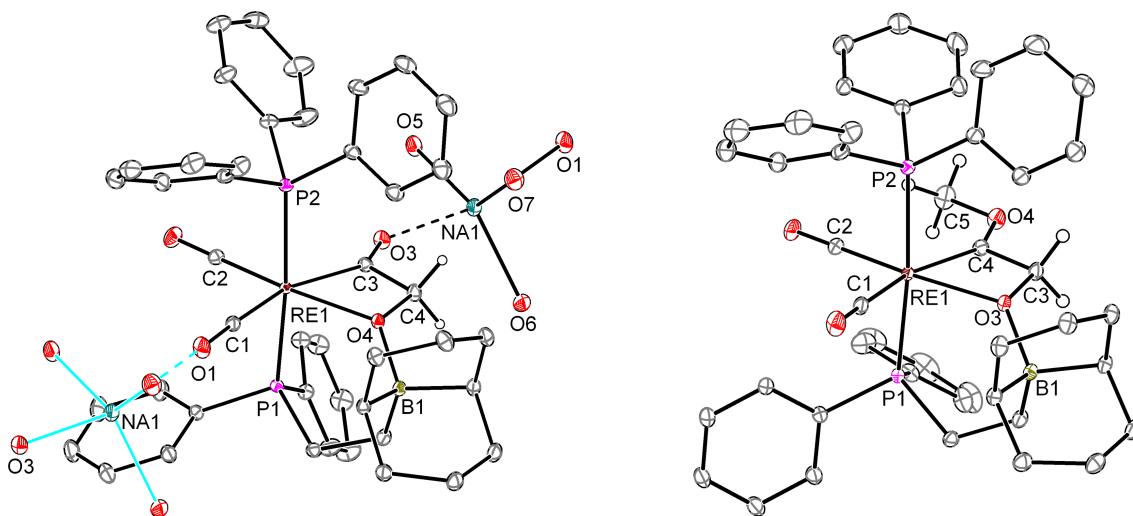

Two pathways can be envisioned for disproportionation of **2-E₁** to **10-E₁**: 1) hydride donation from one Re-CHO group (exposed by B-O cleavage) to a second Re=CHOB₃

to give a Re–CH₂O[−] fragment capable of nucleophilic attack on the M–CO of re-formed **[1-E₁]⁺**, or 2) nucleophilic attack by the O of the Re–CHO group (again exposed by B–O cleavage) on another carbene, followed by a hydride shift. The first would require breaking a bond between Re–CH₂O[−] and B, which is expected to be quite strong (recall the inability of pyridine to break the B–O bond in **[3-E₂][−]**), perhaps favoring the second. The two alternatives can be distinguished by reaction of **2-M₁** with **2-P₁**, in which the routes beginning with hydride transfer (left, Scheme 3.24) and O attack (right, Scheme 3.24) would produce different products. Only one mixed-ligand dinuclear complex, **10-M₁P₁**, in which the alkyl group is bound to the Re ligated by the propylene linked ligand, is observed by NMR (>90%), supporting the preferred nucleophilic O attack mechanism. The same mechanism is likely operating in the reaction of methylene-linked **2-M₁** with pyridine (*vide supra*), with the Lewis base inducing B–O bond cleavage, exposing a formyl O that attacks unperturbed **2-M₁** to afford the related **10-M₁**. Very similar mechanisms have been proposed for the formation of related metalloesters (lacking borane stabilization).^{9a,36}

Scheme 3.24

Reduction of $[(Ph_2P(CH_2)_2B(C_8H_{14}))_2(Ph_3P)Re(CO)_4]^+$ ($[1-E_1Ph_1]^+$)

When **[1-E₁Ph₁][OTf]** was treated with NaHBET₃ in C₆D₅Cl, a single species formed immediately, which exhibited a downfield ¹H NMR singlet, δ 13.74, and two ³¹P{¹H} NMR doublets, δ 9.3 and 15.4 ($\mathcal{J}_{PP} = 97$ Hz); but after a few minutes solids precipitated, which could be re-dissolved by adding pyridine, suggesting that the initial product is **2-E₁Ph₁** (Scheme 3.25), which rearranges to an insoluble oligomer (similar to propylene-linked **2-P₂**). No evidence of disproportionation or any other transformation of **[1-E₁Ph₁]⁺** was observed before precipitation.

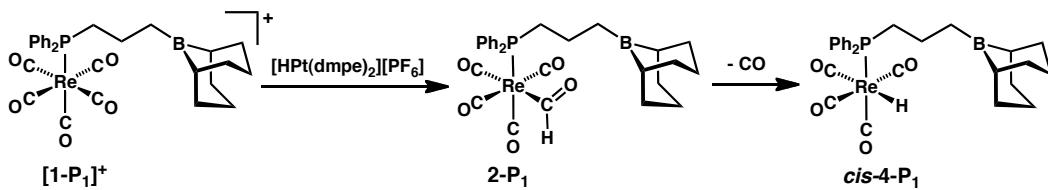


Scheme 3.25

Treatment of **[1-E₁Ph₁][OTf]** with two equivalents of NaHBET₃ in THF cleanly afforded a new reduced species whose NMR and IR data are consistent with C–C bond formation analogous to that found in **[3-E₂]⁻**, except for an IR band at 1572 cm⁻¹ suggesting structure **[3-E₁Ph₁]⁻** (Scheme 3.25), with a free acyl group (in contrast to the boroxycarbene functionality in **[3-E₂]⁻**, Scheme 3.3). **[Na(THF)₃][3-E₁Ph₁]** was crystallized and the structure confirmed by XRD (Figure 3.10); the single borane is bound to the alkoxide oxygen, leaving a free acyl whose O interacts with the sodium counterion, which also interacts with a CO of a neighboring molecule, forming long chains of repeating units in the crystal lattice. These chains are more linear than the zig-zag network of **[Na(THF)₃][3-M₁]**, due to Na⁺ bridging *trans*-disposed ligands rather than *cis*-disposed ones. The metrical parameters are also quite similar to **[Na(THF)₃][3-M₁]**.

Reaction of **[3-E₁Ph₁]⁻** with MeOTf gives the neutral methoxycarbene complex **13** (Scheme 3.25). Large yellow blocks of **13** grew from chlorobenzene solutions upon diffusion

of pentane vapors, allowing for structural characterization (Figure 3.10). A smooth trend in the Re–C and C–O bond distances, reflecting decreased acyl and increased carbene character, can be seen on comparing the “free” acyl group in the sodium salt of **[3-E₁Ph₁][−]**, 2.133(1) and 1.251(2); the boroxycarbene in the sodium salt of **[3-E₂][−]**, 2.0960(9) and 1.271(1); and the methoxycarbene in **13**, 2.0250(6) and 1.3079(7) Å, respectively. The Re–C and C–O bonds in **[3-E₁Ph₁][−]** are only ~0.02 Å shorter and longer, respectively, than that of structurally similar anionic Re-acyl species,³⁷ indicating that the O–Na interaction does not much perturb the acyl bonding. Notably, the B–O distances in these three species, which presumably are related to B–O bond strength, are quite similar — 1.593(1) (boroxycarbene) and 1.580(1) Å in **[3-E₂][−]**, 1.574(2) Å in **[3-E₁Ph₁][−]**, and 1.5897(8) Å in **13** — and shorter than the (easily broken) boroxycarbene B–O bond in **2-E₂**, 1.612(1) Å.

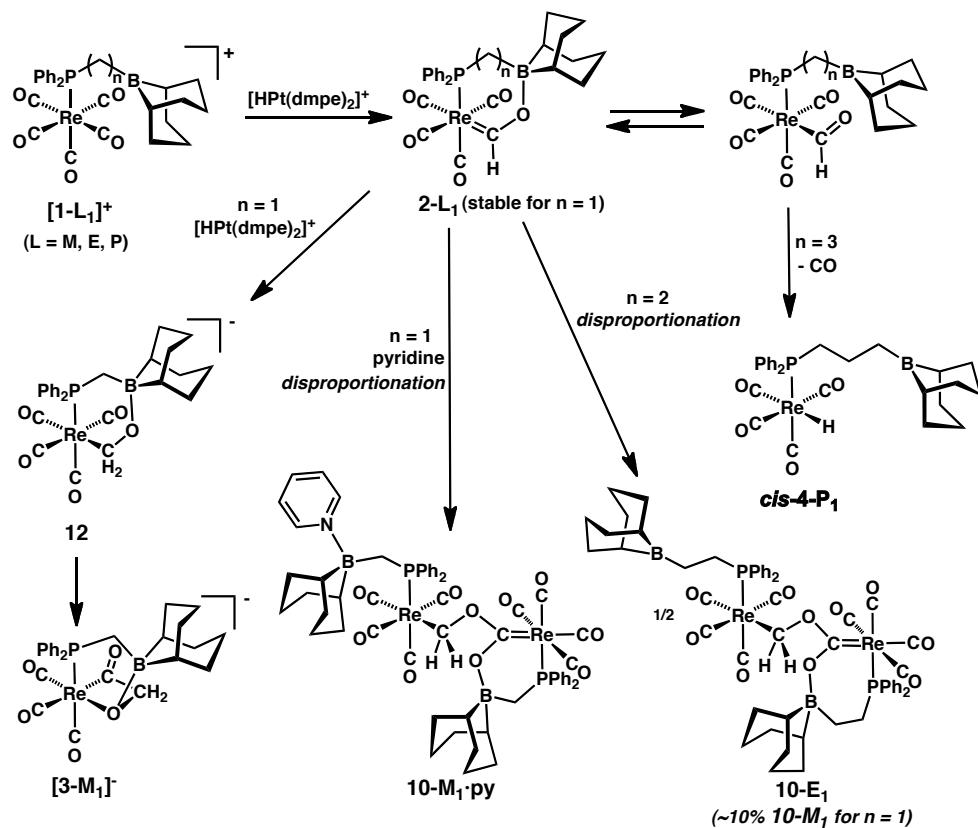

Figure 3.10. Structural representation of $[\text{Na}(\text{THF})_3][\mathbf{3\text{-E}_1\text{Ph}_1}]$ (left) and $\mathbf{13\bullet(C}_6\text{H}_5\text{Cl})_{0.5}$ (right), with thermal ellipsoids at 50% probability. Most H atoms, C atoms of THF molecules, and solvent molecules of crystallization omitted for clarity. The chlorobenzene molecule cocrystallized with 13 was disordered and sat near a center of symmetry. Selected bond distances (Å) and angles (°): $[\text{Na}(\text{THF})_3][\mathbf{3\text{-E}_1\text{Ph}_1}]$: Re–C1 1.9428(6), Re–C2 1.8799(6), Re–C3 2.1361(6), Re–O4 2.2470(5), O4–C4 1.4379(8), O4–B1 1.5731(9), C4–C3 1.5181(9), C3–O3 1.2416(8), O3–Na 2.2935(6), Re–O3–C3 143.20(5). $\mathbf{13\bullet(C}_6\text{H}_5\text{Cl})_{0.5}$: Re–C1 1.9902(6), Re–C2 1.8772(7), Re–C4 2.0250(6), Re–O3 2.2263(5), O3–C3 1.4359(8), O3–B1 1.5897(8), C3–C4 1.496(1), C4–O4 1.3079(7), O4–C5 1.457(1), Re–C4–O4 145.15(6).

In contrast to the result when two equivalents of NaHBET_3 are employed, treatment of $[\mathbf{1\text{-E}_1\text{Ph}_1}][\text{OTf}]$ with two equivalents $[\text{HPt}][\text{PF}_6]$ in $\text{THF-}d_8$ does *not* afford C–C bond formation: after initial rapid formation of the carbene species $\mathbf{2\text{-E}_1\text{Ph}_1}$, no further reaction was observed before precipitation of the carbene (which occurs over a few hours under these conditions). This may be compared to the reaction of $[\mathbf{1\text{-E}_2}][\text{BF}_4]$ with $[\text{HPt}][\text{PF}_6]$ which proceeds to $[\mathbf{3\text{-E}_2}]^-$ within a few minutes, suggesting that a major role of the second pendent Lewis acid in the latter system is to promote hydride transfer from the weaker hydride source $[\text{HPt}]^+$, besides aiding the CO insertion step. Further comparison can be made to $\mathbf{2\text{-M}_2\bullet\text{py}}$, which also effectively has only one Lewis acid, and also is not reduced

by **[HPt]⁺**. It is somewhat surprising that CO coupling proceeds so readily in the formation of **[3-E₁Ph₁]⁻** from **[1-E₁Ph₁][OTf]** and two equivalents of NaHB₃E₃, as unassisted migratory insertion is not generally observed in simple alkyl species of rhenium under such mild conditions (especially without added ligand);^{32,35} perhaps B₃E₃ (the byproduct of reduction by **[HB₃E₃]⁻**) provides the needed assistance as an external Lewis acid.

Reduction of $[(Ph_2P(CH_2)_3B(C_8H_{14}))Re(CO)_5]^+ ([I-P_I]^+$)

Treatment of 1,3-propanediyl-linked phosphinoborane cation **[1-P₁][OTf]** with one equivalent of **[HPt][PF₆]** in C₆D₅Cl gives a new species with a ¹H NMR resonance at δ 13.74, a ³¹P{¹H} resonance at δ 1.7, and a broad ¹¹B resonance at δ 85. The ¹¹B chemical shift indicates 3-coordinate boron,³⁴ suggesting the unstabilized formyl structure **2-P₁** (Scheme 3.26). Consistent with this formulation, and unlike all of the other [Re-CHO] species with pendent boranes reported here, **2-P₁** undergoes CO loss and Re-H formation over a period of several hours, similar to the behavior of (PPh₃)Re(CO)₄(CHO) (**2-Ph₁**). A small amount (<5% by NMR) of an additional species, possibly an alkyl, formed initially and remained through the reaction, but no C-C coupling was observed before complete decomposition, even with excess **[HPt][PF₆]**. Apparently an 8-membered ring is too large for intramolecular stabilization of the formyl; the absence of any effective intermolecular stabilization may reflect lower basicity of the formyl O for this monophosphine complex, compared to the bis(phosphine) complexes where dimeric and oligomeric species are observed.

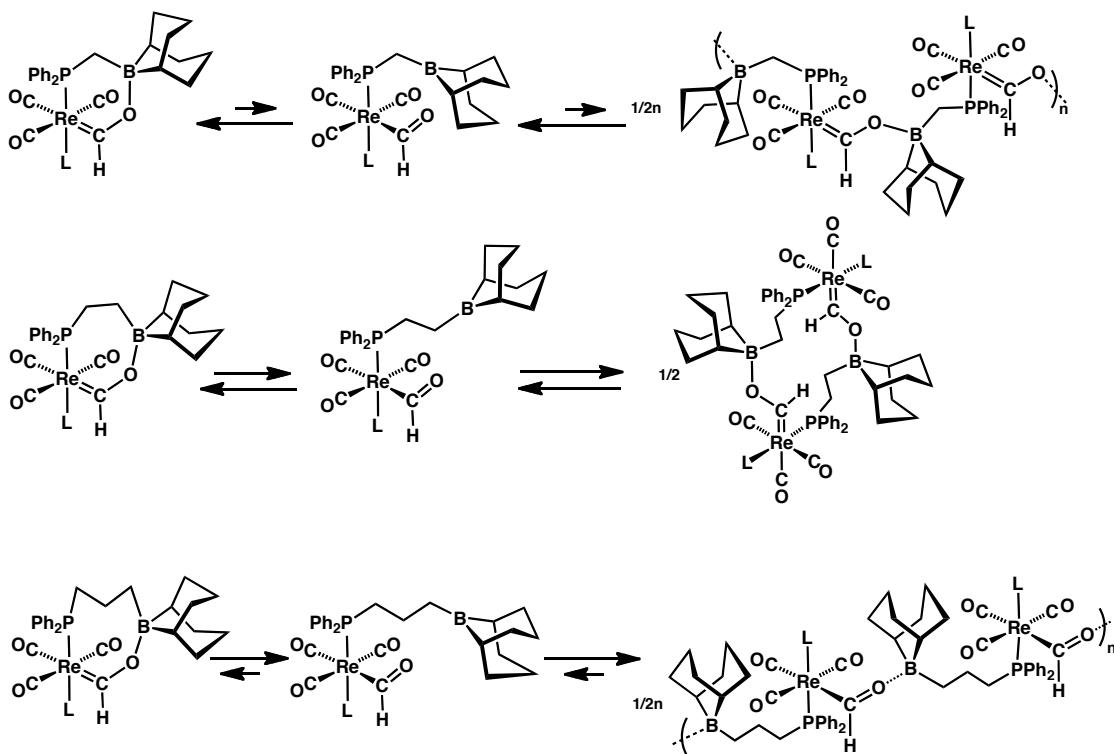


Scheme 3.26

Overview of $(Ph_2P(CH_2)_nB(C_8H_{14}))Re$ complexes: Ring size effects

The effect of changing chelate ring size is summarized in Scheme 3.27; remarkably, each system exhibits different reduction chemistry. With a methylene spacer, boroxy carbene **2-M₁** is stable, and can be further reduced by **[HPT]⁺** to undergo C–C coupling; with an ethylene spacer, the less stabilized **2-E₁** rapidly disproportionates to dinuclear alkyl **10-E₁** (which *does not* undergo spontaneous C–C coupling); with a propylene spacer, neither stabilization *nor* novel reactivity of the Re–CHO species is observed, and the formyl rapidly decarbonylates, similar to borane-free systems.¹⁵ Addition of pyridine to **2-M₁** disrupts the B–O bond and leads to **10-M₁•py**, a product very similar to that obtained in the ethylene-linked case, showing that under appropriate conditions the selectivity can be tailored.

The chain-length effect may be attributed to the relative stability of the intramolecular B–O interaction; the 6-membered ring in **2-M₁** is quite favorable, and the resulting stable boroxy carbene readily undergoes further reduction. For **2-E₁** there is an apparently rapid equilibrium between free formyl and boroxy carbene (an intramolecular 7-membered ring), leading to disproportionation; the potential 8-membered ring in **2-P₁** is not at all favorable, and the species behaves as a simple, unstabilized formyl.



Scheme 3.27

Conclusions

Appending a trialkylborane moiety in the secondary coordination sphere of transition metal carbonyl complexes enhances CO reduction and C–C bond formation. The precise nature of the Lewis acid additives has a large impact on the reductive coupling of CO. External trialkylborane additives can facilitate reduction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+$ by $[\text{Hpt}]^+$ and stabilization of the resultant formyl, but no further reduction or C–C bond formation is observed. To achieve the latter transformation, intramolecular interaction between boron and oxygen appears to be required, which is possible when the phosphine ligand contains a pendent alkylborane. We hypothesize that the size of the ring formed by intramolecular B–

O interaction determines speciation, as shown in Scheme 3.28: shorter chain lengths give smaller, more stable rings, giving monomeric boroxy carbones, while longer chain lengths give larger rings, which are destabilized, leading to either more formyl character (little interaction) or *intermolecular* interactions being dominant (with the pendent borane from one molecule binding oxygen on another). The monomeric species which contain *intramolecular* borane coordination appear to be readily reduced by $[\mathbf{HPt}]^+$ (although bis(phosphine) complexes require a second pendent acid to shuttle the Pt–H), while oligomeric or externally borane-coordinated species do not show reductive coupling chemistry. This could be due to a geometric change of the boroxy carbene, imposed by the rigid ring structure (Figure 3.11). When the geometry is constrained in the P–Re plane, the backbonding is competing with 3 CO ligands, whereas the more favored geometry, essentially 90° out of plane, only competes with 2 CO ligands. This subtle change would render the chelated boroxy carbene more electrophilic, and perhaps more prone to nucleophilic attack.

Scheme 3.28

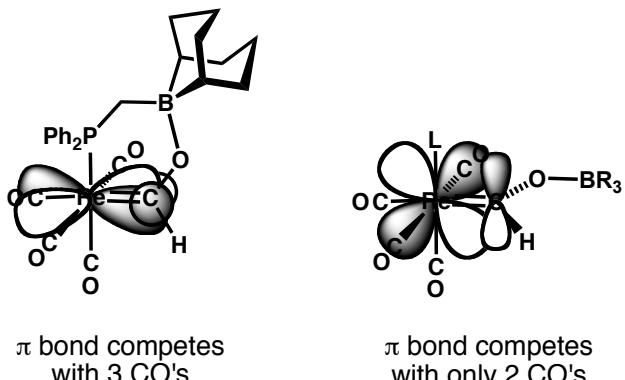


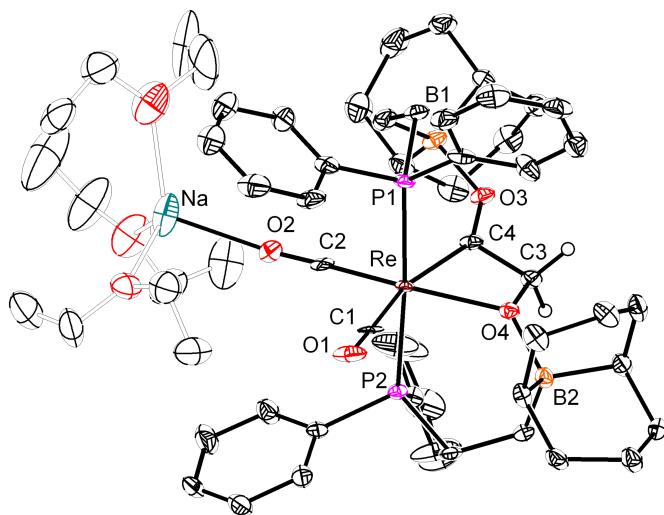
Figure 3.11. Orbital overlap diagrams for two orthogonal boroxycarbene orientations.

The number of Lewis acids is also important. Reductive coupling in systems with only one Lewis acid was observed in only two cases ($[1-\mathbf{M}_1]^+$ and $[1-\mathbf{E}_1\mathbf{Ph}_1]^+$), although in the case of the less electrophilic bis(phosphine) complex, strong hydride sources were required. This implies that the C–C bond forming step does not require Lewis acid-assistance, and may be

driven more by ring-strain arguments. A second acid is required to shuttle a hydride from Pt to B in the case of bis(phosphine) complexes, if $[\text{HPt}]^+$ is used as the reductant.

We have identified key requirements for successful integration of pendent boranes, and have a preliminary understanding of the key steps of Lewis acid facilitated CO hydrogenation. The number of Lewis acids and their strength are both important factors, and having a favorable ring size for intramolecular B–O coordination is essential. Work still remains in understanding the mechanistic subtleties of this system, and in closing the cycle on rhenium by liberating the organic fragment.

Experimental Section


General Considerations

All air- and moisture-sensitive compounds were manipulated using standard vacuum line or Schlenk techniques, or in a glovebox under a nitrogen atmosphere. Under standard glovebox conditions, petroleum ether, diethyl ether, benzene, toluene, and tetrahydrofuran were used without purging, such that traces of those solvents were in the atmosphere, and could be found intermixed in the solvent bottles. When non-coordinating (ether-free) conditions were necessary, the glovebox was purged before use, and separate, rigorously ether-free solvent bottles were used. The solvents for air- and moisture-sensitive reactions were dried over sodium benzophenone ketyl, calcium hydride, or by the method of Grubbs.³⁸ All NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc.

Benzene-*d*₆ was distilled from sodium benzophenone ketyl or titanocene. Dichloromethane-*d*₂ and chlorobenzene-*d*₅ were distilled from calcium hydride and run through a small column of activated alumina. Tetrahydrofuran-*d*₈ was purchased in a sealed ampoule, and dried by passage through activated alumina. Unless noted, other materials were used as received. Re(CO)₅Br was purchased from Strem Chemicals, Inc. Re(CO)₅OTf,³⁹ *trans*-Re(PPh₃)(CO)₄I,²¹ *trans*-[(PPh₃)₂Re(CO)₄][BF₄],¹⁵ Ph₂P(CH₂)₂B(C₈H₁₄),^{14a} Cl-9-BBN,⁴⁰ Ph₂PCH₂Li,⁴¹ ⁷Bu(CH₂)₂B(C₈H₁₄),⁴² [Pt(dmpe)₂][PF₆]₂ ([**Pt**][PF₆]₂),^{8a} and NaBAr^F₄⁴³ (BAr^F₄ = [B(C₆H₃(3,5-(CF₃)₂)]₄) were synthesized according to literature procedures. Elemental analyses were performed by Robertson Microlit Laboratories, Madison, NJ or Desert Analytics, Tuscon, AZ. ¹H and ¹³C NMR spectra were recorded on Varian Mercury 300, 400-MR, INOVA-500 or -600 MHz spectrometers at room temperature, unless indicated otherwise. Chemical shifts are reported with respect to residual internal protio solvent for ¹H and ¹³C{¹H} spectra. Other nuclei were referenced to an external standard: H₃PO₄ (³¹P), 15% BF₃•Et₂O/CDCl₃ (¹¹B), CFCI₃ (¹⁹F), all at 0 ppm. High resolution mass spectra (HRMS) were obtained at the California Institute of Technology Mass Spectrometry Facility.

X-ray Crystallography Procedures

X-ray quality crystals were grown as indicated in the experimental procedures for each complex. The crystals were mounted on a glass fiber with Paratone-N oil. Structures were determined using direct methods with standard Fourier techniques using the Bruker AXS software package. In some cases, Patterson maps were used in place of the direct methods procedure. Full details are provided in Appendix D.

Figure 3.12. Structural representation of $[\text{Na} \cdot 3\text{Et}_2\text{O}][\mathbf{3}\text{-E}_2]$. Ellipsoids are shown at 50% probability. Most hydrogen atoms omitted for clarity. Selected bond lengths (\AA) and angles ($^\circ$): Re–C2, 1.858(6); Re–C1, 1.955(5); Re–C4, 2.101(5); Re–O4, 2.227(3); Re–P2 2.4153(15); Re–P1 2.4188(15). O1–C1, 1.164(6); O2–C2, 1.167(6); O2–Na1 2.279(5); O3–C4, 1.264(6); O3–B1, 1.601(7); O4–C3, 1.426(5); O4–B2, 1.588(7); C3–C4, 1.510(7); C4–Re–O4, 63.84(17); O3–C4–Re, 147.1(4); C3–C4–Re 97.5(3).

Synthesis and reductive coupling of [1-E₂]/[BF₄]

(Ph₂PC₂H₃)₂Re(CO)₃Br. A 100 mL Teflon-stoppered tube was charged with 2.15 g (5.30 mmol) Re(CO)₅Br, 40 mL toluene, and a stirbar. A 10 mL toluene solution of diphenylvinylphosphine (2.25 g, 10.60 mmol) was added to the reaction vessel, at which point it was sealed and heated at 120 °C. The reaction was monitored by obtaining ³¹P{¹H} NMR spectra of aliquots. After 5 days the reaction was complete, and the flask was allowed to cool to room temperature. Solvents were removed on a Schlenk line, leaving a white powder. The vessel was brought back into the glovebox, and the solids collected on a fritted glass funnel, washing with Et₂O. The spectroscopically pure white powder was collected and dried, yielding 3.52 g (90%) of (Ph₂PC₂H₃)₂Re(CO)₃Br. **¹H NMR** (500 MHz, CD₂Cl₂): δ 5.25 (m, 2H, Ph₂C₂H₃), 5.99 (br dd, $J_{\text{HH}} = 20$ Hz; $J_{\text{PH}} = 36$ Hz, 2H, Ph₂C₂H₃),

7.17 (m, 2H, $\text{Ph}_2\text{C}_2\text{H}_3$), 7.46 (br s, 12H, $\text{Ph}_2\text{C}_2\text{H}_3$), 7.65 (br s, 8H, $\text{Ph}_2\text{C}_2\text{H}_3$). **$^{31}\text{P}\{^1\text{H}\}$**

NMR (CD_2Cl_2 , 121 MHz): δ -1.1. **$^{13}\text{C}\{^1\text{H}\}$** **NMR** (CD_2Cl_2 , 126 MHz): δ 128.9 ($\text{Ph}_2\text{PC}_2\text{H}_3$), 130.8 ($\text{Ph}_2\text{PC}_2\text{H}_3$), 130.9 ($\text{Ph}_2\text{PC}_2\text{H}_3$), 133.8 (t, $\mathcal{J}_{\text{PC}} = 22.5$ Hz, $\text{Ph}_2\text{PC}_2\text{H}_3$), 133.9 ($\text{Ph}_2\text{PC}_2\text{H}_3$), 134.8 (t, $\mathcal{J}_{\text{PC}} = 22.9$ Hz, $\text{Ph}_2\text{PC}_2\text{H}_3$), 190.2 (br t, CO), 192.2 (br t, $\mathcal{J}_{\text{PC}} = 8.4$ Hz, CO). **IR** (toluene) ν_{CO} , 2036, 1955, 1902 cm^{-1} .

[($\text{Ph}_2\text{PC}_2\text{H}_3$)₂ $\text{Re}(\text{CO})_4$][BF_4]. To a 60 mL Teflon-stoppered tube were added 0.518 g (2.680 mmol) AgBF_4 , 1.509 g (2.048 mmol) $(\text{Ph}_2\text{PC}_2\text{H}_3)_2\text{Re}(\text{CO})_3\text{Br}$, 15 mL CH_2Cl_2 , and a stirbar. Without allowing the mixture to stir, the flask was sealed, removed from the glovebox, and immediately frozen in liquid N_2 . The headspace was removed, and the flask was filled with 1 atm CO while warming to ambient temperature with stirring. The reaction was protected from light using aluminum foil while it was stirred. After 13 hours, the mixture was degassed by boiling the solvent at reduced pressure, brought into the glovebox, and filtered through celite, washing with 4 mL CH_2Cl_2 . The colorless solution was evaporated to dryness, yielding a white powder that was triturated in THF (10 mL) for 90 minutes before collecting the solids on a fritted glass filter. The solids were washed with ether, and the white powder was collected and dried under vacuum to yield 1.31 g (79%) of $[(\text{Ph}_2\text{PC}_2\text{H}_3)_2\text{Re}(\text{CO})_4][\text{BF}_4]$. If residual Ag-containing salts are present, the white powder will become colored upon prolonged light exposure, and subsequent reactions with boranes will yield dark solutions and Ag metal. If the material becomes colored, it can be extracted in CH_2Cl_2 , filtered, and the solvents removed to yield a white powder, with minimal mass loss ($\sim 1\%$). Analytically pure material was obtained by growing crystals from $\text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}$ vapor diffusion. **^1H NMR** (CD_2Cl_2 , 300 MHz): δ 5.39 (dd, 2H, $\mathcal{J}_{\text{HH}} = 17.8$; $\mathcal{J}_{\text{PH}} = 21.1$ Hz,

$\text{Ph}_2\text{PC}_3\text{H}_3$), 6.20 (dd, 2H, $\tilde{\jmath}_{\text{HH}} = 12.1$; $\tilde{\jmath}_{\text{PH}} = 41.2$ Hz, $\text{Ph}_2\text{PC}_2\text{H}_3$), 6.95 (ddd, 2H, $\tilde{\jmath}_{\text{HH}} = 11.0$, 16.9 Hz; $\tilde{\jmath}_{\text{PH}} = 27.9$, $\text{Ph}_2\text{PC}_2\text{H}_3$), 7.45-7.55 (m, 8H, $\text{Ph}_2\text{PC}_2\text{H}_3$), 7.56-7.66 (m, 12H, $\text{Ph}_2\text{PC}_2\text{H}_3$). **$^{13}\text{C}\{^1\text{H}\}$ NMR** (CD_2Cl_2 , 125 MHz): δ 130.2 (t, $\tilde{\jmath}_{\text{PC}} = 5.5$ Hz, $\text{Ph}_2\text{PCHCH}_2$), 131.0 (t, $\tilde{\jmath}_{\text{PC}} = 28.0$ Hz, $\text{Ph}_2\text{PCHCH}_2$), 132.6 (t, $\tilde{\jmath}_{\text{PC}} = 24.5$ Hz, $\text{Ph}_2\text{PCH}_2\text{H}_3$), 132.8 ($\text{Ph}_2\text{PCH}_2\text{H}_3$), 132.8 (t, $\tilde{\jmath}_{\text{PC}} = 5.9$ Hz, $\text{Ph}_2\text{PCH}_2\text{H}_3$), 134.1 ($\text{Ph}_2\text{PCH}_2\text{H}_3$), 185.2 (t, $\tilde{\jmath}_{\text{PC}} = 7.5$ Hz, $\text{Re}(\text{CO})_4$). **$^{31}\text{P}\{^1\text{H}\}$ NMR** (CD_2Cl_2 , 121 MHz): δ -1.37. **IR** (CH_2Cl_2) ν_{CO} , 2005 cm^{-1} .

Anal. calcd. for $\text{C}_{32}\text{H}_{26}\text{BF}_4\text{O}_4\text{P}_2\text{Re}$: C, 47.48; H, 3.24. Found: C, 47.56; H, 3.46; N, <0.05.

[($\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})_2\text{Re}(\text{CO})_4\text{][BF}_4$)] (1-E₂**)**[BF₄]** (**1-E₂**)**[BF₄]**).** A glovebox was purged for 10 minutes before dissolving 0.660 g (0.811 mmol) **2** in 4 mL ether-free CH_2Cl_2 . Solid 9-BBN dimer (0.594 g, 4.87 mmol, 6 equivalents of monomer) was added to the Teflon-stoppered flask, and the mixture was stirred, and an additional 2 mL CH_2Cl_2 was added. The flask was sealed, removed from the box, and heated to 70 °C. After 64 hours, the reaction was cooled to room temperature, pumped into the glovebox, and filtered, leaving some black and silver solids. The colorless solution was concentrated under vacuum to 1 mL of solvent, and 15 mL ether-free petroleum ether was added. The mixture was triturated for 1 hour, and the white powder was collected on a fritted glass filter. The powder was washed with petroleum ether, collected, and dried *in vacuo*, yielding 0.720 g (84%) analytically pure **[1-E₂][BF₄]**. X-Ray quality crystals were grown from a solution of **[1-E₂][BF₄]** in CH_2Cl_2 layered with petroleum ether at -35 °C. **^1H NMR** (CD_2Cl_2 , 300 MHz): δ 1.14 (br m, 4H, 9-BBN), 1.33 (br m, 4H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{BR}_2$), 1.55 (m, 8H, 9-BBN), 1.66 (m, 4H, 9-BBN), 1.8-1.75 (m, 12H, 9-BBN), 2.95 (br m, 4H,

Ph₂PCH₂CH₂BR₂), 7.5-7.65 (m, 20H, Ph₂PR). **³¹P{¹H} NMR** (CD₂Cl₂, 121 MHz): δ 0.25 ppm. **¹¹B{¹H} NMR** (CD₂Cl₂, 160 MHz): δ -1.0 (s, BF₄⁻), 87.7 (br s, 9-BBN). **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 21.0, 23.5, 28.8 (t, J_{PC} = 15.5 Hz), 32.0, 33.7, 130.2, 132.3, 132.5, 132.9 (t, J_{PC} = 25.9 Hz), 185.8 (br t, J_{PC} = 7.2 Hz, CO). **¹⁹F{¹H} NMR** (CD₂Cl₂): δ -153.2. **IR** (CH₂Cl₂): ν _{CO}, 1998 cm⁻¹. **Anal. calcd.** for C₄₈H₅₆B₃F₄O₄P₂Re: C, 54.72; H, 5.36. Found: C, 54.45; H, 5.40; N, <0.05.

Boroxy carbene 2-E₂. Rhenium cation [1-E₂][BF₄] (0.084 g, 0.0798 mmol) was dissolved in 1 mL C₆D₅Cl, and 79.8 μ L (0.0798 mmol) of a toluene solution of NaHBET₃ (1.0 M) was added by syringe. The mixture turned clear yellow immediately. At low concentrations (<0.02 mmol) the carbene is stable for ~18 hours before disproportionation products become apparent. Isolation was not possible, as concentration led to increased rates of disproportionation. **¹H NMR** (C₆D₅Cl, 300 MHz): δ 0.5 (br s), 1.5-2.0 (br m), 2.5 (br m), 2.7 (br m), 7.2 (br m), 7.7 (br m), 13.96 (br s). The spectrum also contained toluene (2.23 s, 7.05-7.25 m) and BEt₃ (1.0 t, 1.2 q). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 9.0 (br d). The broad doublet is attributed to two doublets with very close chemical shifts, such that the outer pair of signals has been reduced into the noise of the ³¹P spectrum.

Disproportionation of 2-E₂. Following the above synthesis of 2-E₂, an aliquot was inspected by ¹H NMR spectroscopy, showing complete conversion to carbene 2-E₂. A vapor diffusion was carried out, with Et₂O diffusion into the remaining reaction mixture. After 1 hour, some solids had crashed out. The pale yellow Et₂O/C₆D₅Cl mixture was decanted and cooled in a separate vial to -35 °C. After two days, colorless plates of [Na][3-

E₂] formed, which were identified by XRD. NMR spectroscopy of the undiffracted crystals was consistent with the structure, and matched the large-scale preparation of [Na][**3-E₂**]. NMR of the solids yielded from evaporation of the mother liquor showed predominantly starting cation [**1-E₂**]⁺, with some residual [Na][**3-E₂**].

Reaction of [1-E₂][BF₄] with 1 equiv [HPt(dmpe)₂][PF₆]. A J-Young NMR tube was charged with 17.0 mg (0.016 mmol) [**1-E₂**][BF₄], 10.3 mg (0.016 mmol) [HPt(dmpe)₂][PF₆], and 0.5 mL C₆D₅Cl in a glovebox. The tube was sealed and vigorously shaken, providing a slightly cloudy yellow solution. After 15 minutes, NMR revealed ~65% conversion to **2-E₂**. After 4 days, carbene **2-E₂** had begun to disproportionate to [**3-E₂**]⁻ and [**1-E₂**]⁺. The reaction was similarly carried out in 1,2-C₆H₄F₂, and NMR studies showed the same product in similar conversion.

Boroxy(boroxyethyl)carbene [Na][3-E₂]. A 1.0 M solution of NaHBET₃ in toluene (0.695 mL, 0.695 mmol, 2 equiv) was added dropwise by syringe to a stirring colorless solution of [**1-E₂**][BF₄] (0.3662 g, 0.348 mmol, 1 equiv) in 5 mL PhCl. The reaction mixture turned yellow and clarified after 1 equiv was added, and immediately precipitated to form a thick slurry as the second equiv was added. The mixture was stirred 1 hr, at which point 2 mL each of Et₂O and pet. ether were added, and the solvents all removed. The pale yellow solids were triturated briefly with 3 mL of pet. ether and collected by filtration. The solids were washed with 10 mL Et₂O, then extracted with 5 mL THF. The THF was removed *in vacuo* to afford [Na][**3-E₂**] as a pale yellow powder (0.280 g, 88%). If residual NaBF₄ or other minor impurities (between 0-20%) were present, the crude product

was crystallized from 1,2-Difluorobenzene / pet. ether layer at -35°C to yield pale yellow crystals. X-Ray quality crystals were grown from THF/Et₂O vapor diffusion. **¹H NMR** (500 MHz, THF-*d*₈): 0.29 (br s, 1H, BBN), 0.61 (m, 1H, BBN), 0.8-1.0 (m, 2H, BBN), 1.1-1.38 (m, 4H, BBN), 1.42 (br s, 5H, BBN), 1.56 (br s, 5H, BBN), 1.63-1.72 (m, 5H, BBN), 1.8 (br, 5H, BBN), 2.18 (m, 1H, Ph₂PCH₂CH₂BBN), 2.83 (m, 2H, Ph₂PCH₂CH₂BBN), 3.02 (m, 1H, Ph₂PCH₂CH₂BBN), 4.55 (d, $\tilde{\jmath}_{\text{HH}} = 15.5$, 1H, Re=C(OBBN)CH₂OBBN), 4.64 (d, $\tilde{\jmath}_{\text{HH}} = 16.1$, 1H, Re-C(OBBN)CH₂OBBN), 7.0-7.4 (m, 14H), 7.53 (m, 2H), 7.62 (t, 2H), 7.89 (t, 2H). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): 12.0 (d, $\tilde{\jmath}_{\text{PP}} = 144$ Hz, 1P), 17.7 (d, $\tilde{\jmath}_{\text{PP}} = 145$ Hz, 1P). **¹³C{¹H} NMR** (THF-*d*₈, 125 MHz): 12.7, 15.6, 26.5, 26.6, 27.1 (d, $\tilde{\jmath}_{\text{PC}} = 23.7$ Hz), 27.3, 31.3 (d, $\tilde{\jmath}_{\text{PC}} = 29.8$ Hz), 31.9, 32.2, 32.7, 33.0, 34.7 (d, $\tilde{\jmath}_{\text{PC}} = 17.1$ Hz), 35.1 (d, $\tilde{\jmath}_{\text{PC}} = 17.1$ Hz), 96.6 (Re=C(OBBN)CH₂OBBN), 128.0 (dd, $\tilde{\jmath}_{\text{PC}} = 8.9, 24.9$ Hz), 128.6 (t, $\tilde{\jmath}_{\text{PC}} = 8.6$ Hz), 129.0 (d, $\tilde{\jmath}_{\text{PC}} = 9.7$ Hz), 129.2, 129.9, 132.3 (d, $\tilde{\jmath}_{\text{PC}} = 8.3$ Hz), 133.7 (t, $\tilde{\jmath}_{\text{PC}} = 8.8$ Hz), 135.2 (d, $\tilde{\jmath}_{\text{PC}} = 11.5$ Hz), 138.7 (d, $\tilde{\jmath}_{\text{PC}} = 37.0$ Hz), 142.4 (d, $\tilde{\jmath}_{\text{PC}} = 46.4$ Hz), 143.3 (d, $\tilde{\jmath}_{\text{PC}} = 31.0$ Hz), 143.8 (d, $\tilde{\jmath}_{\text{PC}} = 46.0$ Hz), 203.4 (t, $\tilde{\jmath}_{\text{PC}} = 9.2$ Hz; CO), 211.4 (dd, $\tilde{\jmath}_{\text{PC}} = 5.86, 9.2$ Hz; CO), 303.4 (dd, $\tilde{\jmath}_{\text{PC}} = 7.8, 11.4$ Hz; Re=C(OBBN)CH₂OBBN). **IR** (THF): ν_{CO} , 1848, 1933 cm⁻¹. **HRMS** (FAB⁻) m/z calcd. for C₄₈H₅₈O₄P₂B₂Re: 969.3554. Found: 969.3539 [M⁻], 791.2480 [M-(CO)CH₂(BBN)]. Elemental analysis yielded widely variable results based on triplicate analysis. Calcd. for C₅₂H₇₀O₅P₂B₂ReNa(5•Et₂O): C, 58.49; H, 6.61. Found: C, 57.43/59.34/60.07 (Avg. 58.95); H, 6.13/6.42/6.41(Avg. 6.32); N, 0.33/0.28/0.20.

Reaction of [1-E₂][BF₄] with 2 equiv [HPt(dmpe)₂][PF₆]. A J-Young NMR tube was charged with 16.8 mg (0.0159 mmol) [1-E₂][BF₄], 20.5 mg (0.0319 mmol)

[**HPt(dmpe)₂**][PF₆], and 0.5 mL C₆D₅Cl. The tube was sealed and vigorously shaken, providing a slightly cloudy yellow solution. After 30 minutes ³¹P NMR revealed a mixture of [**3-E₂**]⁻:**2-E₂** in a 2.8:1 ratio. After 3 hours, the ratio settled to 4.2:1, along with some unknown Re products. The total yield of C–C coupled product was 67%.

Reductions of trans-[$(PPh_3)_2Re(CO)_4]^+$ ($[I-Ph_2]^+$)

Synthesis of [HPt(dmpe)₂][PF₆] ([HPt][PF₆]). While the published literature procedure is serviceable,^{8a} certain alterations improved the yield in our hands. In particular, the reaction was run more dilute to ensure that all [HPt]⁺ remained in solution, and the use of EtOH (which appeared to decompose [HPt]⁺ reasonably quickly) was avoided. A 500 mL round bottom flask was charged with 1.96 g (2.49 mmol) [Pt(dmpe)₂][PF₆]₂, 200 mL acetonitrile, and a stir bar. With the acetonitrile solution stirring, 0.189 g (4.99 mmol, 2 equiv) NaBH₄ (as a 10 wt% mixture in basic alumina) was added as a solid. The mixture was stirred for ~12 hours, filtered through a fine frit, and the filtrate was dried under vacuum to afford an off-white powder. The crude material contained only [HPt][PF₆] and excess NaBH₄. The desired [HPt][PF₆] was extracted with 15 mL C₆H₅Cl, and filtered away from the insoluble white NaBH₄. The solvent was removed from the filtrate under vacuum, and the very pale yellow solids were washed with 3 x 5 mL Et₂O to afford 1.414 g (88% yield) spectroscopically pure [HPt][PF₆]. This procedure provided material with spectroscopic characteristics that matched the published values well, and also matched samples of [HPt][PF₆] prepared using the literature procedure.

Reaction of [HPt][PF₆] with CD₂Cl₂. A J-Young NMR tube was charged with 16 mg (0.0234 mmol) [HPt][PF₆] and ~0.5 mL CD₂Cl₂. The tube was sealed and monitored by ¹H and ³¹P{¹H} NMR spectroscopy over 1 week. Colorless crystals of [Pt]Cl₂ formed in the tube over the course of the week, and spectroscopic analysis revealed steady disappearance of the hydride resonances of [HPt]⁺ (−11.62, pent, $\tilde{\jmath}_{\text{PH}} = 29.4$ Hz, $\tilde{\jmath}_{\text{PtH}} = 705$ Hz) with concomitant growth of a peak at 2.98 (pent, $\tilde{\jmath}_{\text{HD}} = 1.6$ Hz) assigned to CHD₂Cl.

Reaction of [HPt(dmpe)₂][PF₆] with [(PPh₃)₂Re(CO)₄][BPh₄]. A J-Young NMR tube was charged with 7.4 mg (0.0116 mmol) solid [HPt(dmpe)₂][PF₆] and 13.2 mg (0.0116 mmol) [(PPh₃)₂Re(CO)₄][BPh₄]. Chlorobenzene-*d*₅ was added to the tube, and the mixture was shaken vigorously for 3 minutes. Some of the Re did not dissolve. The reaction was monitored by ¹H and ³¹P{¹H} NMR. The solution ratio of starting materials was roughly 2:1 Pt–H:Re⁺. There was no observed reaction over time: neither formation of a formyl or other reduced CO species nor any consumption of the [HPt(dmpe)₂][PF₆] was observed.

Reaction of [HPt(dmpe)₂][PF₆] with [(PPh₃)₂Re(CO)₄][B(3,5-C₆H₃(CF₃)₂)₄] and BEt₃. A resealable J-Young NMR tube was charged with 21.4 mg (0.0127 mmol) [(PPh₃)₂Re(CO)₄][B(C₆H₃(3,5-(CF₃)₂))₄], 8.1 mg (0.0127 mmol) [HPt(dmpe)₂][PF₆], and 0.5 mL C₆D₅Cl. The tube was sealed and shaken; NMR studies showed that no reaction had occurred. The tube was returned to the glovebox, where 25 μ L (0.025 mmol, 2 equiv) BEt₃ was added by syringe. After 20 minutes, a small formyl peak at 13.9 ppm, integrating to ~1% conversion, was observed. The peak did not change over 3 hours, at which point

another 100 μL (0.1 mmol, 8 equiv) BEt_3 was added. No further changes were observed, and the conversion to formyl remained at roughly 1%.

Reaction of excess NaHBET_3 with $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]\text{[BF}_4]$. 27.2 μL (0.027 mmol)

NaHBET_3 (1.0 M in toluene) was added dropwise to a slurry of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]\text{[BF}_4]$ in ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ with vigorous stirring. After 5 minutes, the solution was transferred to an NMR tube, and examined by ^1H and $^{31}\text{P}\{^1\text{H}\}$ NMR. The known formyl complex $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ was observed, and no precipitation or spectral evidence for further reactivity was noted. Over a few hours the formyl decomposed with generation of Re–H peaks (as expected for the unstabilized formyl).

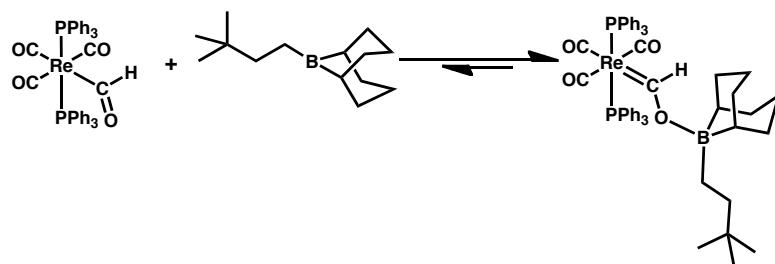
Reaction of $[\mathbf{1-Ph}_2]\text{[BF}_4]$ with $[\mathbf{HPt}]\text{[PF}_6]$. A J-Young NMR tube was charged with 7.9 mg (0.0087 mmol) $[\mathbf{1-Ph}_2]\text{[BF}_4]$, 5.6 mg (0.0087 mmol) $[\mathbf{HPt}]\text{[PF}_6]$, and ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$. After 1 hour, a small resonance for formyl $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ (**2-Ph₂**) was observed at δ 15.22. After ~ 35 hours, a mixture of $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{H}$ and $(\text{PPh}_3)\text{Re}(\text{CO})_4\text{H}$ was observed, which grew as the $[\mathbf{HPt}]^+$ was consumed. The reaction was monitored for 7 days, during which time the formyl did not accumulate to any significant extent; eventually only the two Re–H species remained.

Reaction of $[\mathbf{1-Ph}_2]\text{[BF}_4]$ with $[\mathbf{HPt}]\text{[PF}_6]$ in presence of $\mathbf{B(OR)}_3$. A ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ solution of 6.3 mg (0.0329 mmol) isopropyl pinacol borate was added to 10.9 mg (0.0169 mmol) $[\mathbf{HPt}]\text{[PF}_6]$, and the solution was then added to 15.4 mg (0.0169 mmol) $[\mathbf{1-Ph}_2]\text{[BF}_4]$. The resulting slurry was added to a J-Young NMR tube, and monitored by ^1H and ^{31}P NMR. The reaction proceeded slowly, with small amounts of formyl persisting over

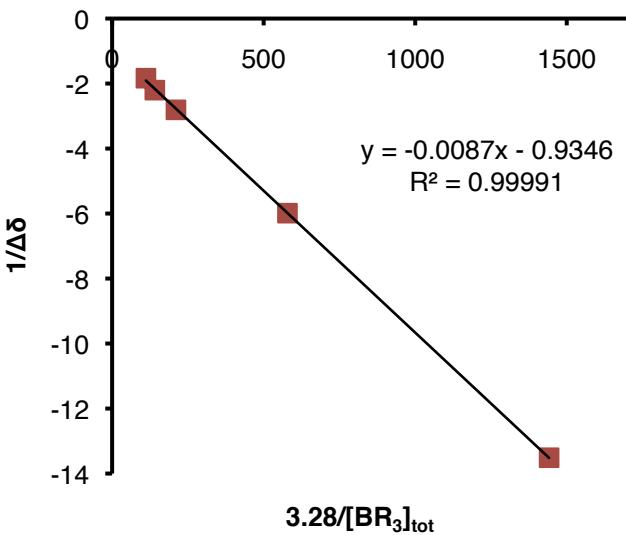
the course of 6 days and large amounts of Re–H species being formed. Significant variation in the ratio of Re hydride species formed was observed in multiple experiments. The rate of the reaction was roughly the same as that with no added acid.

Reaction of [1-Ph₂][BF₄] with [HPt][PF₆] in presence of B(C₆F₅)₃. A vial was charged with 17.9 mg (0.0197 mmol) [1-Ph₂][BF₄], 10.1 mg (0.0197 mmol) B(C₆F₅)₃, and 12.6 mg (0.0197 mmol) [HPt][PF₆]. C₆D₅Cl (\sim 0.6 mL) was added to the vial, and the slurry was moved to a J-Young NMR tube, where it was shaken well. NMR spectroscopy revealed complete consumption of [HPt]⁺ and small amounts of [Pt]²⁺ in solution (with the majority precipitating), affording only one Re-containing species, assigned as [(PPh₃)₂Re(CO)₄][HB(C₆F₅)₃]. The same reactivity was observed when 2 equiv B(C₆F₅)₃ were added. **¹H NMR** (C₆D₅Cl, 300 MHz): δ 7.19–7.29 (m, 12H), 7.32–7.40 (m, 8H). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 4.2. **¹⁹F NMR** (C₆D₅Cl, 282 MHz): δ –134.19 (m, 6F), –161.32 (t, J_{FF} = 20.5 Hz, 3F), –165.77 (m, 6F). **¹¹B NMR** (C₆D₅Cl, 160 MHz): with 2 equiv added B(C₆F₅)₃, δ \sim 0 (br), consistent with exchange between B(C₆F₅)₃ and [HB(C₆F₅)₃][–]. **IR** (C₆D₅Cl): ν_{CO} 2003 (s); ν_{BH} 1644 (m), ν_{CF} 1514 (m), 1466 (s).

NMR Scale Reaction of [1-Ph₂][BF₄] with [HPt][PF₆] in presence of trialkylborane. A \sim 0.6 mL C₆D₅Cl solution of 6.3 mg (0.0300 mmol) ¹Bu(CH₂)₂B(C₈H₁₄) was added to 9.7 mg (0.00152 mmol) [HPt][PF₆], and the mixture was added to 13.8 mg (0.0152 mmol) solid [1-Ph₂][BF₄]. The reaction mixture was transferred to a J-Young NMR tube, and monitored by multinuclear NMR. After 15 minutes, high conversion to a boroxycarbene species (δ 14.60) was observed; the reaction was complete within 3 hours.


NMR parameters of the ~2:1 mixture of $^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$: **2-Ph₂** (reversible adduct formation leads to chemical shifts dependent on the amount of borane present). The product displayed spectral parameters very similar to the product of reduction of **[1-Ph₂][BF₄]** with 1 equiv NaHB₃ (1.0 M in toluene). **¹H NMR** (C₆D₅Cl, 300 MHz): δ 0.91 (s, $^t\text{BuCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$, 18H), 1.15-1.38 (m, $^t\text{BuCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$, 16H), 1.59 (br m, $^t\text{BuCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$, 4H), 1.65-1.95 (m, $^t\text{BuCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$, 24H), 7.07-7.21 (m, PPh₃, 12H), 7.58-7.64 (m, PPh₃, 8H), 14.60 (s, Re-CHO, 1H). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 14.5.

Synthesis of *mer,trans*-(PPh₃)₂Re(CO)₃(CHO) (2-Ph₂). A 20 mL scintillation vial was charged with 95 mg (0.083 mmol) *trans*-[(PPh₃)₂Re(CO)₄][BPh₄] and 5 mL THF. With stirring, 83 μL (0.083 mmol) LiHB₃ (1.0 M in THF) was added dropwise, during which time the colorless solution turned yellow. The reaction was stirred for 5 minutes, filtered, and the solvents concentrated to 1 mL under vacuum. A layer of 2 mL pentane was added, and the mixture placed in the freezer at -35 °C. A yellow powder formed overnight, which contained a mixture of **2-Ph₂** and LiBPh₄. Another 10 mL pentane was added to the mother liquor of the first crystallization, which upon cooling yielded a second crop of powder, which yielded ~30 mg pure **2-Ph₂** (45% yield). As previously reported, the product reacts with CH₂Cl₂ and was sparingly soluble in most solvents; an IR spectrum (KBr/nujol mull) matched the literature values well.¹⁵


Single crystals of the BEt₃ adduct **2-Ph₂•BEt₃** were obtained in a separate reaction by adding 10 equiv BEt₃ (1.0 M in hexanes) to a THF solution of **2-Ph₂** (prepared as above),

which was then layered 1:1 with pentane and cooled to -35°C . Long colorless needles suitable for XRD needles grew over a few days.

Titration of **2-Ph₂ with **¹Bu(CH₂)₂B(C₈H₁₄)**.** The equilibrium constant for adduct formation between formyl **2-Ph₂** and a **¹Bu(CH₂)₂B(C₈H₁₄)** (Scheme 3.29) was carried out by titration, with monitoring by ¹H NMR. Due to the insolubility of **2-Ph₂**, an internal standard was used to quantify the concentration. A sample of 15.2 mg (0.0185 mmol) was weighed and 0.6 mL THF-*d*₈ was added. The slurry was filtered into a J-Young NMR tube, and a 2.8 mg crystal (0.0106 mmol) 18-crown-6 was added to the tube. An initial NMR spectrum showed 1.01:1.00 18-crown-6:formyl, and the concentration of Re was determined to be 17.5 mM. Aliquots of a 1.0 M solution of **¹Bu(CH₂)₂B(C₈H₁₄)** in THF-*d*₈ were then added: 0.13, 0.33, 0.89, 1.33, and 1.68 equiv. The chemical shift change of the formyl was recorded at each concentration of borane, and a Benesi-Hildebrand-type analysis¹⁶ gave a linear plot of $1/\Delta\delta$ vs. $1/[\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})]$ (Figure 3.13), providing an estimate of the equilibrium constant of Scheme 3.29, $K_{\text{eq}} = 100 \text{ M}^{-1}$ favoring adduct formation. A correction was made for the background equilibrium of THF binding the borane, as less borane would be available to interact with the formyl.

Scheme 3.29

Figure 3.13. Benesi-Hildebrand plot showing borane binding to formyl.

Synthesis of Complexes with Pendent Boranes

Synthesis of Crude $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$. A slurry of 1.42 g (6.87 mmol) $\text{Ph}_2\text{PCH}_2\text{Li}$ in 50 mL pentane was frozen in the cold well of a glovebox. As the slurry thawed, a thawing 20 mL pentane solution of Cl-9-BBN was added. The mixture was allowed to warm with stirring, and was stirred for 18 hours. White solids remained throughout the reaction, which were collected on a frit, and washed with 3 x 5 mL THF. The solids were dried, giving 1.97 g (6.15 mmol, 90%) of white powder assigned as oligomeric $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$. These solids are insoluble in common organic solvents. The crude phosphinoborane ligand could be used at this stage, but better results were obtained when the ligand was treated successively with pyridine and $\text{BF}_3\bullet\text{Et}_2\text{O}$, as follows.

Synthesis of $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})\bullet\text{pyridine}$. A 20 mL scintillation vial was charged with 0.756 g (2.36 mmol) $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$, in the form of crude white insoluble solids as described above. A stirbar and 10 mL toluene was added, giving a thick white slurry. A 5

mL toluene solution of 0.242 g (3.07 mmol) pyridine was added, and over a few minutes the slurry steadily became less cloudy, although there were still some solids that did not dissolve over the course of the reaction. After 6 hours, the cloudy reaction mixture was filtered, and the filtrate evaporated to dryness *in vacuo*. The white solids were washed with 3 x 4 mL pentane, and dried to give 0.700 g (1.75 mmol, 74%) white microcrystalline Ph₂PCH₂B(C₈H₁₄)•pyridine. The pyridine adduct was soluble in most organic solvents (except pentane). **¹H NMR** (THF-*d*₈, 500 MHz): δ 1.14-1.25 (m, 3H, Ph₂PCH₂B(C₈H₁₄)), 1.38 (d, $\mathcal{J}_{\text{PH}} = 4.7$ Hz, 2H, Ph₂PCH₂B(C₈H₁₄)), 1.38-1.44 (m, 2H, Ph₂PCH₂B(C₈H₁₄)), 1.60 (m, 3H, Ph₂PCH₂B(C₈H₁₄)), 1.73-1.79 (m, 2H, Ph₂PCH₂B(C₈H₁₄)), 1.90 (m, 2H, Ph₂PCH₂B(C₈H₁₄)), 2.16 (br m, 2H, Ph₂PCH₂B(C₈H₁₄)), 7.07 (m, 6H, Ph₂PCH₂B(C₈H₁₄)), 7.20 (m, 4H, Ph₂PCH₂B(C₈H₁₄)), 7.35 (t, $\mathcal{J}_{\text{HH}} = 7.0$ Hz, 2H, *m*-C₅H₅N), 7.75 (t, $\mathcal{J}_{\text{HH}} = 7.6$ Hz, 1H, *p*-C₅H₅N), 8.45 (d, $\mathcal{J}_{\text{HH}} = 5.2$ Hz, 2H, *o*-C₅H₅N). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ -17.1. **¹¹B NMR** (THF-*d*₈, 160 MHz): δ -0.2. **¹³C{¹H} NMR** (THF-*d*₈, 125 MHz): δ 23.30 (br), 25.57, 25.84, 31.24, 33.35, 126.29 (*m*-C₅H₅N), 127.97 (*p*-Ph), 128.53 (d, $^3\mathcal{J}_{\text{PC}} = 6.3$ Hz, *m*-Ph), 133.45 (d, $^2\mathcal{J}_{\text{PC}} = 19.2$ Hz, *o*-Ph), 140.57 (*p*-C₅H₅N), 144.86 (d, $^1\mathcal{J}_{\text{PC}} = 18.2$ Hz, *ipso*-Ph), 146.57 (*o*-C₅H₅N). **HRMS** (FAB⁺): m/z calcd. for C₂₆H₃₁BNP: 399.2287. Found: 399.2284 (M⁺), 320.1907 (M-C₅H₅N), 200.1611 (M-Ph₂PCH₂).

Synthesis of Ph₂PCH₂B(C₈H₁₄). A 20 mL scintillation vial was charged with 615 mg (1.5 mmol) Ph₂PCH₂B(C₈H₁₄)•pyridine, 18 mL Et₂O, and a stirbar. With stirring, 195 μ L BF₃•OEt₂ was added dropwise by syringe. As the BF₃•OEt₂ was added, fluffy white precipitates formed, eventually giving a thick white slurry. After stirring for 20 minutes, the solids were collected on a frit, and washed with 3 x 5 mL Et₂O, and 4 x 4 mL CH₂Cl₂,

yielding 369 mg (1.15 mmol, 77%) $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$. This material was quite insoluble, precluding full characterization, but yielded clean metallation reactions. **Anal. Calcd.** for $\text{C}_{21}\text{H}_{26}\text{BP}$: C, 78.77; H, 8.18. Found: C, 78.52; H, 8.45.

Synthesis of *mer,trans*-($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)₂ $\text{Re}(\text{CO})_3\text{Br}$. A pressure vessel equipped with a Teflon valve was charged with 1.33 g (4.16 mmol, 2 equiv) $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$, 0.85 g (2.08 mmol, 1 equiv) $\text{Re}(\text{CO})_5\text{Br}$, 30 mL toluene, and a stirbar. The vessel was sealed and heated to 120 °C with stirring. The two mostly-insoluble white powders dissolved quickly upon heating, and the solution turned pale yellow as the reaction proceeded. After 18 hours, the reaction mixture was cooled and degassed under vacuum. After backfilling with argon the vessel was sealed and re-heated to 120 °C. After 4 days the mixture was cooled, degassed, put under argon, and re-heated again. After heating for another 48 hours, the reaction mixture was allowed to cool, and the solvents were removed to dryness, yielding 2.2 g crude product (90% pure by NMR). The crude material was purified by crystallization from a toluene/pentane mixture at -35 °C. **¹H NMR** (CD_2Cl_2 , 500 MHz): δ 1.21-1.29 (m, 8H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 1.64-1.84 (br m, 20H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 2.94 (m, 4H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 7.35-7.43 (m, 12H, Ph), 7.65 (m, 8H, Ph). **³¹P{¹H} NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ 8.2. **¹³C{¹H} NMR** (CD_2Cl_2 , 126 MHz): δ 24.08 ($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 27.05 (br t, ($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 32.34 (br, ($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 34.72 ($\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 128.81 (m, (*m*- $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 130.33 ((*p*- $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 132.47 (m, (*o*- $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 139.04 (m, (*ipso*- $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$)), 192.77 (t, $\mathcal{J}_{\text{PC}} = 8.5$ Hz, CO), 192.87 (t, $\mathcal{J}_{\text{PC}} = 6.8$ Hz, CO). **¹¹B NMR** (CD_2Cl_2 , 160 MHz): δ 67.8 (v br). **IR**

(CD₂Cl₂): 2012 (w), 1958 (vs), 1899 (s) cm⁻¹. **Anal. Calcd.** for C₄₅H₅₂B₂BrO₃P₂Re: C,

54.56; H, 5.29. Found: C, 54.39; H, 5.05.

Synthesis of *trans*-[(Ph₂PCH₂B(C₈H₁₄))₂Re(CO)₄][B(C₆F₅)₄] ([1-M₂][B(C₆F₅)₄]).

A 20 mL scintillation vial was charged with 0.145 g (0.157 mmol) [Ph₃C][B(C₆F₅)₄] and 5 mL C₆H₅Cl. To the stirring solution was added 25.1 μ L (0.157 mmol) Et₃SiH dropwise. The orange-brown mixture was stirred for 25 minutes, after which time the mixture was added to a 60 mL Teflon-stoppered pressure vessel charged with a suspension of 0.156 g (0.157 mmol) *mer,trans*-(Ph₂PCH₂B(C₈H₁₄))₂Re(CO)₃Br in 5 mL C₆H₅Cl. The vessel was sealed, removed from the box, and the contents frozen in a liquid nitrogen bath. After two freeze-pump-thaw cycles, 1 atm CO gas (treated by passage through a column of activated Mn oxide and sieves) was introduced to the vessel. The reaction vessel was sealed and stirred overnight. After \sim 12 hours, the mixture had a lighter, more yellow color. At this time the vessel was degassed, and the solvents were concentrated *in vacuo* to 2 mL. Treatment with 10 mL pentane prompted immediate precipitation of copious amounts of pale yellow solids. After stirring a few hours, the solids were collected on a frit, and washed with more pentane. The solids were dried, affording 0.228 g (90%, 0.141 mmol) spectroscopically pure [1-M₂][B(C₆F₅)₄]. X-Ray quality crystals were obtained by crystallization from 1,2-dichloroethane / pentane mixtures. **¹H NMR** (CD₂Cl₂, 500 MHz): δ 0.95 (m, 4H), 1.35-1.43 (m, 8H), 1.48 (br, 4H), 1.63-1.75 (m, 12H), 3.24 (m, 4H), 7.54 (s, 20H). **³¹P{¹H} NMR** (CD₂Cl₂, 202 MHz): δ -13.7. **¹³C{¹H} NMR** (CD₂Cl₂, 125 MHz): δ 22.97, 31.51 (br), 34.00, 35.48, 124.5 (v. br, *ipso*-C₆F₅), 130.07 (t, \mathcal{J}_{PC} = 5.3 Hz, *m*-Ph), 131.62 (t, \mathcal{J}_{PC} = 5.6 Hz, *o*-Ph), 132.44 (t, \mathcal{J}_{PC} = 1.0 Hz, *p*-Ph), 135.27 (dd, \mathcal{J}_{PC} = 25.9, 26.7

Hz, *ipso*-Ph), 136.88 (dm, $\tilde{\jmath}_{\text{PF}} = 241.4$ Hz), 138.82 (dm, $\tilde{\jmath}_{\text{PF}} = 245.7$ Hz), 148.74 (dm, 239.1 Hz), 186.37 (t, $\tilde{\jmath}_{\text{PC}} = 7.4$ Hz). **11B NMR** (CD_2Cl_2 , 160 MHz): δ 88.6 (br), -16.8 (BAr^{F}_4). **IR** ($\text{C}_6\text{D}_5\text{Cl}$): 1998 cm^{-1} . **HRMS** (TOF ES $^+$): m/z calcd for $\text{C}_{46}\text{H}_{52}\text{B}_2\text{O}_4\text{P}_2\text{Re}$: 939.3102. Found: 939.3076.

Synthesis of *mer,trans*-($\text{Ph}_2\text{PCHCH}_2$)₂ $\text{Mn}(\text{CO})_3\text{Br}$. A 100 mL Teflon-stoppered pressure vessel was charged with 1.612 g (5.86 mmol) $\text{Mn}(\text{CO})_5\text{Br}$, 2.49 g (11.7 mmol) diphenylvinylphosphine, 25 mL toluene, and a magnetic stirbar. The orange solution with some undissolved solids was sealed and heated to 120 °C, and the mixture darkened, with almost all of the solids dissolved. After 24 hours, the reaction mixture was allowed to cool to room temperature, during which time yellow powder precipitated and brown crystals grew, leaving an orange solution. The solids were collected on a frit, and washed with 10 mL toluene and 10 mL pentane, and then dried under vacuum. When the brown crystals were pulverized, they yielded yellow powder. Drying the powder afforded 2.48 g (66%) *mer,trans*-($\text{Ph}_2\text{PCHCH}_2$)₂ $\text{Mn}(\text{CO})_3\text{Br}$. **1H NMR** (CD_2Cl_2 , 500 MHz): δ 5.18 (t, $\tilde{\jmath} = 17.6$ Hz, 2H, $\text{Ph}_2\text{PCHCH}_2$), 6.01 (dd, $\tilde{\jmath} = 12.0, 35.2$, 2H, $\text{Ph}_2\text{PCHCH}_2$), 7.24 (m, 2H, $\text{Ph}_2\text{PCHCH}_2$), 7.47 (br, 12H, 2H, $\text{Ph}_2\text{PCHCH}_2$), 7.68 (br, 8H, $\text{Ph}_2\text{PCHCH}_2$). **31P{1H} NMR** (THF-*d*₈, 121 MHz): δ 49.0. **13C{1H} NMR** (CD_2Cl_2 , 126 MHz): δ 128.77 (t, $\tilde{\jmath}_{\text{PC}} = 4.7$ Hz), 130.03, 130.72, 133.87 (t, $\tilde{\jmath}_{\text{PC}} = 4.8$ Hz), 134.01 (m), 135.23 (m), 217.21 (br m, *trans*-CO), 223.39 (CO). **IR** (CH_2Cl_2): ν_{CO} 2039 (w), 1954 (s), 1912 (m) cm^{-1} . **HRMS** (FAB $^+$): m/z calcd for $\text{C}_{31}\text{H}_{26}\text{BrMnO}_3\text{P}_2$: 641.9921. Found: 641.9866.

Synthesis of *trans*-[(Ph₂PCHCH₂)₂Mn(CO)₄][BF₄]. A 100 mL Teflon-stoppered pressure vessel was charged with 1.515 g (2.35 mmol) *mer,trans*-(Ph₂PCHCH₂)₂Mn(CO)₃Br, 0.596 g (3.06 mmol) AgBF₄, and a stirbar. 40 mL of CH₂Cl₂ was added, and the vessel was sealed and protected from light. The reaction mixture was boil-degassed, and 1 atm CO was introduced to the vessel. The dark orange turbid mixture was stirred for 20 hours, at which point it was boil-degassed to remove excess CO, and filtered through celite, affording a bright yellow solution. The filtrate was dried *in vacuo*, affording 1.6 g (100%) of yellow product. **¹H NMR** (CD₂Cl₂, 500 MHz): δ 5.40 (t, J = 18.8 Hz, 2H, Ph₂PCHCH₂), 6.30 (dd, J = 10.9, 40.5 Hz Ph₂PCHCH₂), 7.02 (m, 2H, Ph₂PCHCH₂), 7.55-7.65 (m, 20H, Ph₂PCHCH₂). **³¹P{¹H} NMR** (CD₂Cl₂, 121 MHz): δ 44.2. **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 130.29 (dd, J_{PC} = 2.1, 51.8 Hz), 130.32 (m, *o*-Ph₂PCHCH₂), 131.33 (dd, J_{PC} = 2.2, 46.8 Hz), 132.87 (m, *m*-Ph₂PCHCH₂), 132.91, 134.12, 211.3 (br, CO). **IR** (CH₂Cl₂): ν _{CO} 2003 cm⁻¹. **HRMS (FAB⁺)**: m/z cald for [C₃₂H₂₆MnO₄P₂]⁺: 591.0687. Found: 591.0672, 563.0756 (−CO).

Synthesis of *trans*-[(Ph₂P(CH₂)₂B(C₈H₁₄))₂Mn(CO)₄][BF₄] ([1-E₂-Mn][BF₄]). A 20 mL scintillation vial was charged with 641 mg (0.945 mmol) *trans*-(Ph₂PCHCH₂)₂Mn(CO)₄][BF₄], and 20 mL CH₂Cl₂ was added. If any residual silver salts were present, as black insoluble solids, the solution was filtered. The solution was added to a 100 mL Teflon-stoppered pressure vessel, to which was then added 692 mg (5.67 mmol) 9-BBN and a stirbar. The yellow solution turned dark orange quickly. The reaction vessel was sealed and moved to a 60 °C oil bath, where it was heated with stirring for 10 days. At this time the reaction was allowed to cool to room temperature, and the mixture was filtered

through celite, giving a bright yellow solution. The filtrate was concentrated to 3 mL, and 15 mL pentane was added, producing an orange oil with yellow solution above it. The solvent was decanted from the oil, and the oil was washed with 3 x 5 mL pentane, and then dried under vacuum, giving 700 mg (80%) crude **[1-E₂-Mn][BF₄]**, ~90% pure by NMR spectroscopy. Further purification was achieved by dissolving the solids in 7 mL toluene, and letting the solution stand overnight, which yielded analytically pure yellow polycrystalline **[1-E₂-Mn][BF₄]** (460 mg, 53%). **¹H NMR** (THF-*d*₈, 300 MHz): δ 0.54 (m, 4H), 0.70 (4H), 1.23 (m, 4H), 1.48 (16H), 1.68 (m, 4H), 2.74 (m, 4H), 7.52 (m, 12H), 7.71 (m, 8H). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ 51.5. **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 20.83 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 23.51 (Ph₂PCH₂CH₂B(C₈H₁₄)), 28.14 (dd, $\tilde{\gamma}_{PC}$ = 2.8, 28.6 Hz, Ph₂PCH₂CH₂B(C₈H₁₄)), 31.91 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 33.71 (Ph₂PCH₂CH₂B(C₈H₁₄)), 130.30 (m, *m*-Ph), 131.91 (dd, $\tilde{\gamma}_{PC}$ 1.7, 47.6 Hz, *ipso*-Ph), 132.25 (m, *o*-Ph), 132.54 (*p*-Ph), 212.18 (br, CO). **¹¹B NMR** (CD₂Cl₂, 160 MHz): δ -1.2 (BF₄), 86.9 (br, -B(C₈H₁₄)). **¹⁹F NMR** (CD₂Cl₂, 282 MHz): δ -152.5 (br). **IR** (THF): ν_{CO} 1995 cm⁻¹.

Synthesis of *mer,trans*-(Ph₂PCH₂CHCH₂)₂Re(CO)₃Br. A 60 mL Teflon-stoppered pressure tube was charged with 741 mg (1.82 mmol) Re(CO)₅Br, 825 mg (3.64 mmol, 2 equiv) Ph₂PCH₂CHCH₂, 15 mL toluene, and a stirbar. The tube was sealed, removed from the glovebox, and heated to 120 °C. After 5 days, the reaction was cooled to ambient temperature, degassed to remove liberated CO, and brought into a glovebox. All solvents were removed under vacuum, the solids were washed with 25 mL pentane, and collected on a frit. The white powder was dried, giving 1.28 g (1.59 mmol, 88%) pure *mer,trans*-(Ph₂PCH₂CHCH₂)₂Re(CO)₃Br. **¹H NMR** (CD₂Cl₂, 300 MHz): δ 3.62 (m, 4H,

Ph₂PCH₂CHCH₂), 4.85 (dd, ⁴J_{PH}=1.8 Hz, ³J_{HH}=17.3 Hz, 2H, Ph₂PCH₂CHCH₂), 4.98 (dd, ⁴J_{PH}=1.7 Hz, ³J_{HH}=10.3 Hz, 2H, Ph₂PCH₂CHCH₂), 5.63 (m, 2H, Ph₂PCH₂CHCH₂), 7.40-7.48 (m, 12H, Ph₂PCH₂CHCH₂), 7.56-7.65 (m, 8H, Ph₂PCH₂CHCH₂). **³¹P{¹H} NMR** (CD₂Cl₂, 121 MHz): δ -0.9 (s). **¹³C{¹H} NMR** (CD₂Cl₂, 125 MHz): δ 35.88 (t, ¹J_{PC} = 14.4 Hz, Ph₂PCH₂CHCH₂), 120.53 (t, ³J_{PC} = 5.4 Hz, Ph₂PCH₂CHCH₂), 128.76 (t, ³J_{PC} = 4.7 Hz, *m*-Ph₂PCH₂CHCH₂), 130.58 (t, ²J_{PC} = 2.6 Hz, Ph₂PCH₂CHCH₂), 130.68 (br t, ³J_{PC} < 1 Hz, *p*-Ph₂PCH₂CHCH₂), 133.36 (t, ³J_{PC} = 5.0 Hz, *o*-Ph₂PCH₂CHCH₂), 135.21 (t, ¹J_{PC} = 23.3 Hz, *ipso*-Ph₂PCH₂CHCH₂), 190.38 (t, ²J_{PC} = 6.7 Hz, CO *trans* to Br), 192.25 (t, ²J_{PC} = 8.5 Hz, CO). **IR (CD₂Cl₂):** ν _{CO}, 2060, 1958, 1899 cm⁻¹. **Anal. Calcd.** for C₃₃H₃₀BrO₃P₂Re: C, 49.38; H, 3.77. Found: C, 49.32; H, 3.38.

Synthesis of *trans*-[(Ph₂PCH₂CHCH₂)₂Re(CO)₄][BF₄]. An 80 mL Teflon-stoppered pressure vessel was charged with 1.2 g (1.49 mmol) *mer,trans*-(Ph₂PCH₂CHCH₂)₂Re(CO)₃Br, 0.378 g (1.94 mmol, 1.3 equiv) AgBF₄, 20 mL CH₂Cl₂, and a stirbar. The mixture started to become cloudy. The vessel was quickly sealed and removed from the glovebox, whereupon it was frozen in liquid nitrogen. Two freeze-pump-thaw sequences were followed by addition of 1 atm CO. The vessel was sealed (at room temperature), protected from light, and stirred overnight (8-12 hours). The reaction mixture was then boil-degassed on a Schlenk line, and brought into a glovebox. The mixture was filtered through celite and dried, giving 0.832 g (0.99 mmol, 67%) of off-white solids, of ~95% purity (³¹P NMR). This crude material was crystallized from CH₂Cl₂/pentane to afford 0.55 g (0.657 mmol, 44%) white *trans*-[(Ph₂PCH₂CHCH₂)₂Re(CO)₄][BF₄]. **¹H NMR** (CD₂Cl₂, 300 MHz): δ 3.56-3.66 (m, 4H), 5.12-5.32 (m, 4H), 5.34-5.49 (m, 4H), 7.44-7.62

133

(m, 20H). **³¹P{¹H} NMR** (CD₂Cl₂, 121 MHz): δ –5.7. **¹³C{¹H} NMR** (CD₂Cl₂, 151 MHz). δ 38.99 (t, $^1J_{PC}$ = 16.0, Ph₂PCH₂CHCH₂), 123.89 (t, $^3J_{PC}$ = 6.1 Hz, Ph₂PCH₂CHCH₂), 127.97 (t, $^2J_{PC}$ = 2.6 Hz, Ph₂PCH₂CHCH₂), 130.15 (t, J_{PC} = 5.2 Hz, *m*-Ph₂PCH₂CHCH₂), 132.39 (t, J_{PC} = 5.2 Hz, *o*-Ph₂PCH₂CHCH₂), 132.63 (br t, J < 2 Hz, *p*-Ph₂PCH₂CHCH₂), 132.6 (t, J_{PC} = 25.2 Hz, *ipso*-Ph₂PCH₂CHCH₂), 185.22 (t, $^2J_{PC}$ = 7.5 Hz, Re–CO). **¹⁹F NMR** (CD₂Cl₂): δ –152.5. IR (CD₂Cl₂): ν_{CO} , 2004 cm^{–1}. **HRMS** (TOF ES⁺): m/z calcd. for C₃₄H₃₀O₄P₂Re: 751.1179. Found: 751.1177 (M⁺).

Synthesis of *trans*-[(Ph₂P(CH₂)₃B(C₈H₁₄))₂Re(CO)₄][BF₄] ([1-P₂][BF₄]). A 60 mL Teflon-stoppered pressure vessel was charged with 239 mg (0.285 mmol) *trans*-[(Ph₂PCH₂CHCH₂)₂Re(CO)₄][BF₄], 69.6 mg (0.576 mmol) 9-BBN, and 15 mL CH₂Cl₂. A stirbar was added, and the vessel was sealed and the reaction vessel was heated to 60 °C. After 8 hours, the reaction mixture was cooled, and returned to the glovebox. After filtration, the solvent was removed to give 301 mg (0.278 mmol, 97%) crude white [1-P₂][BF₄]. The purity of this material was >95% (assessed by ¹H and ³¹P NMR), and was used without further purification. If protic impurities appear to be present, [1-P₂][BF₄] can be treated with TMSCl (10 equiv. in CH₂Cl₂). After stirring for one hour, the mixture was filtered, the solvents removed, and the white solids washed with pentane. Crystallization from THF/pentane layer (–35 °C) afforded spectroscopically pure material. **¹H NMR** (CD₂Cl₂, 500 MHz): δ 1.15 (m, 4H), 1.46 (br, 4H), 1.5–1.6 (m, 16H), 1.75–1.85 (m, 12H), 2.76 (br, 4H), 7.50–7.54 (m, 8H), 7.58 (m, 12H). **³¹P{¹H} NMR** (CD₂Cl₂, 202 MHz): δ –4.3. **¹¹B{¹H} NMR** (CD₂Cl₂, 160 MHz): –0.5 (BF₄), 88.5 (Ph₂P(CH₂)₃B(C₈H₁₄)). **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 20.31, 23.64, 29.0 (br), 31.5 (br), 33.61, 36.28 (t, J_{PC} = 15.5

Hz), 130.1 (t, $\tilde{\jmath}_{\text{PC}} = 5.2$ Hz), 132.2 (t, $\tilde{\jmath}_{\text{PC}} = 5.2$ Hz), 132.16 (t, $\tilde{\jmath}_{\text{PC}} = 5.4$ Hz), 132.43, 132.85 (dd, $\tilde{\jmath}_{\text{PC}} = 25.7, 26.5$ Hz), 185.58 (t, $\tilde{\jmath}_{\text{PC}} = 7.4$ Hz). **IR** (CH_2Cl_2): ν_{CO} , 1999 cm^{-1} . **HRMS** (TOF HR-ESI $^+$): Calcd for $\text{C}_{50}\text{H}_{60}\text{B}_2\text{O}_4\text{P}_2\text{Re}$: 995.3802. Found: 995.3804.

Synthesis of $[(\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_5]\text{[OTf]} ([\mathbf{1}\text{-M}_1]\text{[OTf]})$. Either isolated or in situ generated $\text{Re}(\text{CO})_5\text{OTf}$ could be used in this synthesis. A representative experiment did not isolate $\text{Re}(\text{CO})_5\text{OTf}$, which was formed by adding 800 mg (3.1 mmol, 1.25 equiv) solid AgOTf to a 30 mL stirring solution of 1.01 g (2.50 mmol) $\text{Re}(\text{CO})_5\text{Br}$ in CH_2Cl_2 . The mixture was protected from light and allowed to stir for 6 hours, over which time a large amount of precipitates formed. The mixture was filtered into a 100 mL Teflon-stoppered glass pressure vessel charged with 800 mg (2.50 mmol, 1 equiv) $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$. The vessel was sealed after addition of a stirbar and removed from the glovebox and heated to 60 °C. After 5 days heating, the reaction was allowed to cool to ambient temperature, returned to the glovebox, where it was filtered, and the solvent removed from the clear colorless filtrate under vacuum to give white solid $[\mathbf{1}\text{-M}_1]\text{[OTf]}$ in 93% purity. The material was washed with 5x15 mL Et_2O , and dried in vacuo to give analytically pure $[\mathbf{1}\text{-M}_1]\text{[OTf]}$ (1.45 g, 74%). **¹H NMR** (CD_2Cl_2 , 300 MHz): δ 0.92-1.01 (m, 2H), 1.37-1.44 (m, 6H), 1.65-1.75 (m, 6H), 3.37 (d, 11.7 Hz, 2H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 7.58-7.65 (m, 10H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$). **³¹P{¹H} NMR** (CD_2Cl_2 , 121 MHz): δ -14.7. **¹⁹F NMR** (CD_2Cl_2 , 282 MHz): δ -78.1. **¹³C{¹H} NMR** (CD_2Cl_2 , 125 MHz): δ 22.95, 29.66 (br d, $\tilde{\jmath}_{\text{PC}} = 24.3$ Hz), 33.91, 35.11 (br), 121.61 (q, $\tilde{\jmath}_{\text{FC}} = 321$ Hz, CF_3SO_3^-), 130.37 (d, $\tilde{\jmath}_{\text{PC}} = 10.8$ Hz), 131.91 (d, $\tilde{\jmath}_{\text{PC}} = 10.6$ Hz), 132.89 (d, $\tilde{\jmath}_{\text{PC}} = 2.6$ Hz), 133.08 (d, $\tilde{\jmath}_{\text{PC}} = 53.1$ Hz), 175.9 (v. br d, axial CO), 179.3 (br, equatorial CO). **¹¹B{¹H} NMR** (CD_2Cl_2 , 160 MHz): δ 88.3. **IR** ($\text{C}_6\text{D}_5\text{Cl}$):

ν_{CO} , 2156 (w), 2099 (w), 2041 (vs) cm^{-1} . **Anal. Calcd.** for $\text{C}_{27}\text{H}_{26}\text{BF}_3\text{O}_8\text{PReS}$: C, 40.76;

H, 3.29. Found: C, 40.49; H, 3.16.

Synthesis of $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_5]\text{[OTf]} ([\mathbf{1-E_1}]\text{[OTf]})$. A glass pressure vessel with a Teflon valve was charged with 0.402 g (0.844 mmol) $\text{Re}(\text{CO})_5\text{OTf}$, 0.282 g (0.844 mmol) $\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$, 15 mL CH_2Cl_2 and a stirbar. The phosphinoborane did not fully dissolve. The flask was sealed and heated to 60 °C. After 15 minutes, all of the ligand had dissolved. After 48 hours, the reaction mixture was cooled to ambient temperature, at which point the vessel was pumped into the glovebox. The solution was filtered, and the solvents removed, giving a white powder: 0.670 g (0.827 mmol, 98% yield) of pure $[\mathbf{1-E_1}]\text{[OTf]}$. **$^1\text{H NMR}$** (CD_2Cl_2 , 600 MHz): δ 1.15 (m, 2H), 1.34 (m, 2H), 1.57–1.63 (m, 4H), 1.69 (br, 2H), 1.78–1.88 (m, 6H), 2.99 (m, 2H), 7.54–7.58 (m, 4H), 7.62–7.64 (m, 6H). **$^{31}\text{P}\{^1\text{H}\} \text{NMR}$** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ 0.14 (s). **$^{19}\text{F NMR}$** ($\text{C}_6\text{D}_5\text{Cl}$, 282 MHz): δ –78.0. **$^{11}\text{B}\{^1\text{H}\} \text{NMR}$** (CD_2Cl_2 , 160 MHz): δ 86.5 (br, s). **$^{13}\text{C}\{^1\text{H}\} \text{NMR}$** (CD_2Cl_2 , 126 MHz): δ 20.8 (br), 23.51, 27.5 (d, $\tilde{J}_{\text{PC}} = 29.8$), 32.0, 33.7, 121.6 (q, $\tilde{J}_{\text{FC}} = 321$ Hz, CF_3SO_3^-), 130.5 (d, $\tilde{J}_{\text{PC}} = 10.6$), 130.6 (d, $\tilde{J}_{\text{PC}} = 52.6$), 132.5 (d, $\tilde{J}_{\text{PC}} = 9.9$ Hz), 133.1 (d, $\tilde{J}_{\text{PC}} = 2.5$ Hz), 175.8 (br s, CO), 179.0 (br s, CO). **IR (CD_2Cl_2):** ν_{CO} , 2156 (m), 2096 (w), 2064 (vs) cm^{-1} ; ν_{SO} , 1274 cm^{-1} ; ν_{CF} , 1161 cm^{-1} . **HRMS (TOF ES⁺):** m/z calcd for $[\text{C}_{27}\text{H}_{28}\text{BO}_5\text{PRe}]^+$: 661.1331. Found: 661.1349.

Synthesis of $trans\text{-}[(\text{PPh}_3)(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_4]\text{[OTf]} ([\mathbf{1-E_1Ph_1}]\text{[OTf]})$. A 20 mL scintillation vial was charged with 819 mg (1.19 mmol) $trans\text{-}(\text{PPh}_3)\text{Re}(\text{CO})_4\text{I}$ and 10 mL CH_2Cl_2 . Solid AgOTf (382 mg, 1.49 mmol, 1.25 equiv) was

added, and the reaction mixture was stirred for 2 hours with protection from light. The resulting cloudy mixture was filtered through celite to give a clear, pale yellow solution. A 100 mL Teflon-stoppered pressure tube was charged with the filtrate, and a solution of 398 mg (1.19 mmol) $\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ in 5 mL CH_2Cl_2 was added, along with a stirbar. The tube was sealed, removed from the glovebox, and heated in an oil bath to 60 °C for 24 hours. After the allotted time, the reaction was cooled to ambient temperature and returned to the box. The reaction mixture was filtered and the solvent were removed *in vacuo*, giving 1.21 g (1.15 mmol, 97%) pure white **[1-E₁Ph₁][OTf]**. **¹H NMR** (CD_2Cl_2 , 500 MHz): δ 1.10-1.18 (m, 2H), 1.34 (dd, $\mathcal{J} = 10.2, 16.4$, 2H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 1.52-1.62 (m, 4H), 1.68 (br s, 2H), 1.77-1.88 (m, 6H), 3.00 (dd, $\mathcal{J} = 7.3, 15.6$, 2H $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 7.46-7.52 (m, 6H), 7.54-7.62 (m, 19H). **³¹P{¹H} NMR** (CD_2Cl_2 , 121 MHz): δ 0.6 (d, $\mathcal{J}_{\text{PP}} = 80.6$ Hz, 1P), 5.7 (d, $\mathcal{J}_{\text{PP}} = 80.0$ Hz, 1P). **¹⁹F NMR** (CD_2Cl_2 , 282 MHz): δ -77.9. **¹¹B{¹H} NMR** (CD_2Cl_2 , 160 MHz): δ 88.5. **¹³C{¹H} NMR** (CD_2Cl_2 , 125 MHz): δ 20.97 (br, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 23.51, 28.68 (d, $\mathcal{J}_{\text{PC}} = 30.6$ Hz $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 32.0 (br), 33.71, 121.55 (q, $\mathcal{J}_{\text{CF}} = 320$ Hz, CF_3SO_3^-), 129.72 (d, $\mathcal{J}_{\text{PC}} = 10.5$ Hz), 130.07 (d, $\mathcal{J}_{\text{PC}} = 11.0$ Hz), 130.20, 132.26 (dd, $\mathcal{J}_{\text{PC}} = 2.1, 22.1$ Hz), 132.35 (d, $\mathcal{J}_{\text{PC}} = 9.8$ Hz), 132.54 (dd, $\mathcal{J}_{\text{PC}} = 2.4, 12.2$ Hz), 132.76, 133.23 (d, $\mathcal{J}_{\text{PC}} = 11.3$ Hz), 133.81 (d, $\mathcal{J}_{\text{PC}} = 11.0$ Hz), 185.96 (t, $\mathcal{J}_{\text{PC}} = 7.5$ Hz, CO). **IR (CH₂Cl₂):** ν_{CO} , 2000 cm⁻¹. **HRMS (TOF ES⁺):** m/z cald for $\text{C}_{44}\text{H}_{43}\text{BO}_4\text{P}_2\text{Re}$: 895.2297. Found: 895.2271.

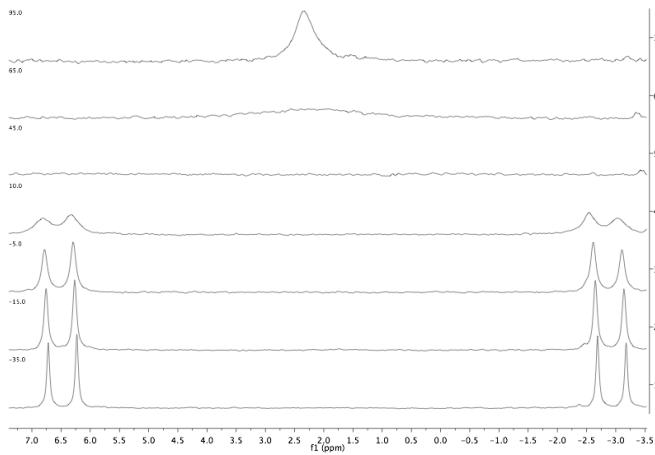
Synthesis of [Ph₂PCH₂CHCH₂Re(CO)₅][OTf]. A $\frac{1}{4}$ cup glass pressure vessel fitted with a Teflon valve was charged with 0.247 g (1.09 mmol) allyldiphenylphosphine ($\text{Ph}_2\text{PCH}_2\text{CHCH}_2$), 0.518 g (1.09 mmol) $\text{Re}(\text{CO})_5\text{OTf}$, 1 Tbs CH_2Cl_2 , and a stirbar. The

vessel was sealed and heated to 60 °C for 11 hours with stirring, after which time the vessel was cooled to ambient temperature, and moved to a glovebox. The colorless solution was filtered, and the solvents removed *in vacuo*, affording 0.730 g (1.04 mmol, 95%) spectroscopically pure white powder. **¹H NMR** (CD₂Cl₂, 300 MHz): δ 3.68 (dd, $J_{HH} = 5.8$ Hz, $J_{PH} = 10.34$ Hz, 2H, Ph₂PCH₂CHCH₂), 5.25-5.5 (m, 3H, Ph₂PCH₂CHCH₂), 7.5-7.67 (m, 10H, Ph₂PCH₂CHCH₂). **³¹P{¹H} NMR** (CD₂Cl₂, 121 MHz) δ : -5.0 (br s). **¹⁹F NMR** (CD₂Cl₂, 282 MHz): δ -79.4. **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 37.41 (d, $J_{PC} = 31.2$ Hz, Ph₂PCH₂CHCH₂), 121.60 (q, $J_{FC} = 321.1$ Hz, [CF₃SO₃]⁻), 124.85 (d, $J_{PC} = 12.8$ Hz, Ph₂PCH₂CHCH₂), 127.09 (d, $J_{PC} = 5.9$ Hz, Ph₂PCH₂CHCH₂), 130.37 (d, $J_{PC} = 52.7$ Hz, *ipso*-Ph₂PCH₂CHCH₂), 130.49 (d, $J_{PC} = 10.8$ Hz, *m*-Ph₂PCH₂CHCH₂), 132.51 (d, $J_{PC} = 10.2$ Hz, *o*-Ph₂PCH₂CHCH₂), 133.24 (d, $J_{PC} = 2.5$ Hz, *p*-Ph₂PCH₂CHCH₂), 175.68 (br d, $J_{PC} = 38$ Hz, axial CO), 178.69 (br s, eq. CO). **IR** (CD₂Cl₂): ν_{CO} , 2157 (m), 2098 (w), 2048 (vs) cm⁻¹; ν_{SO} , 1270 (m) cm⁻¹; ν_{CF} , 1161 (w) cm⁻¹. **HRMS** (FAB⁺): m/z calcd. for [C₂₀H₁₅ReO₅P]⁺: 553.0215. Found: 553.0222 (M⁺), 525.0161 (M-CO), 497.0260 (M-2CO), 469.0208 (M-3CO).

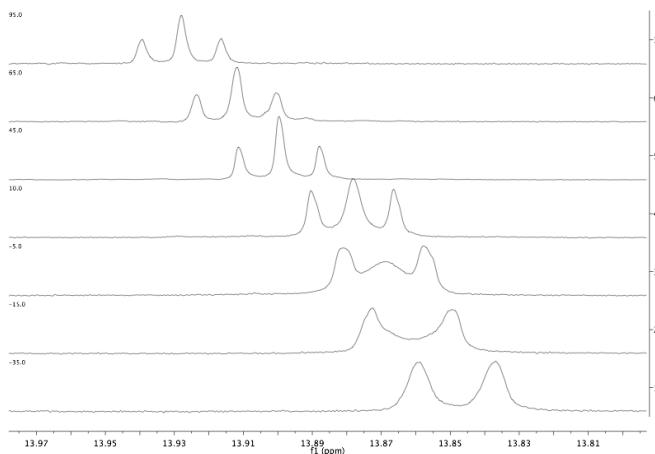
Synthesis of [(Ph₂P(CH₂)₃B(C₈H₁₄)Re(CO)₅][OTf] ([1-P₁][OTf]). A 20 mL glass pressure vessel fitted with a Teflon valve was charged with 0.710 g (1.01 mmol) [Ph₂PCH₂CHCH₂Re(CO)₅][OTf], 0.124 g (1.01 mmol) 9-BBN, 5 mL CH₂Cl₂, and a magnetic stirbar. The vessel was sealed, removed from the box and heated to 60 °C for 12 hours. After this time the clear colorless solution was cooled to ambient temperature, brought back into the glovebox, and filtered. Removal of solvents from the filtrate yielded 0.747 g (0.91 mmol, 90%) of a white powder, which was ~95% pure by ¹H NMR, with the

other 5% being unreacted starting material. Treatment under the same conditions with slightly more 9-BBN gave spectroscopically pure **[1-P1][OTf]** after washing with pentane. Analytically pure material was obtained by crystallization from a THF solution layered (1:1) with pentane at -35°C . **^1H NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 300 MHz): δ 1.08 (br m, 2H), 1.48 (br m, 8H), 1.70 (br m, 6H), 1.84 (br s, 2H), 2.82 (br m, 2H), 7.16-7.23 (m, 2H), 7.26-7.33 (m, 4H), 7.45-7.54 (m, 4H). **$^{31}\text{P}\{^1\text{H}\}$ NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ -6.2. **^{19}F NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 282 MHz): δ -78.2. **$^{13}\text{C}\{^1\text{H}\}$ NMR** (CD_2Cl_2 , 125 Hz): δ 20.3, 23.6, 26.1, 29.0 (br), 31.6 (br), 33.6, 34.6 (d, $\tilde{\jmath}_{\text{PC}} = 30.0$ Hz), 121.6 (q, $\tilde{\jmath}_{\text{FC}} = 321.0$ Hz, SO_3CF_3^-), 130.5 (d, $\tilde{\jmath}_{\text{PC}} = 53.5$ Hz), 130.5 (d, $\tilde{\jmath}_{\text{PC}} = 10.7$ Hz), 132.2 (d, $\tilde{\jmath}_{\text{PC}} = 10.2$ Hz), 133.1 (d, $\tilde{\jmath}_{\text{PC}} = 2.2$ Hz), 175.8 (br, axial CO), 178.9 (br, equatorial CO). **$^{11}\text{B}\{^1\text{H}\}$ NMR** (CD_2Cl_2 , 160 MHz): δ 87.4. **IR** (CH_2Cl_2): ν_{CO} , 2156 (m), 2095 (w), 2047 (vs) cm^{-1} . **Anal. Calcd.** for $\text{C}_{29}\text{H}_{30}\text{BF}_3\text{O}_8\text{PReS}$: C, 42.29; H, 3.74. Found: C, 42.08; H, 3.74.

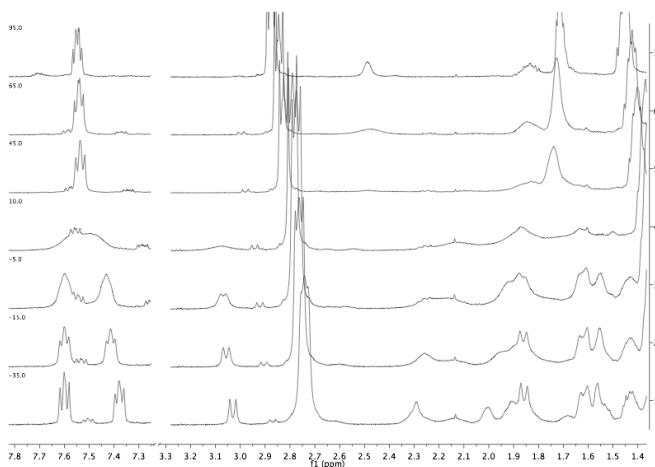
General procedure for preparation of BAr^{F_4} salts of rhenium complexes. The appropriate rhenium cation, bearing either a BF_4^- or OTf counter anion, was dissolved in CH_2Cl_2 solution (affording roughly 20 mM concentration) with stirring. Solid NaBArF_4 (1 equiv relative to Re complex) was added, and the mixture stirred for at least 2 hours. Following filtration, the solvents were removed from the filtrate *in vacuo* to afford powders or oils of the rhenium BAr^{F_4} salts. If the product was oily, it was triturated with pentane to give a powder, and the pentane was removed under vacuum. Yields were essentially quantitative, and spectroscopic analysis correlated very favorably with the BF_4^- or OTf starting materials, indicating that the structure had not changed. **^{19}F NMR** unequivocally showed removal of BF_4^- or OTf , and incorporation of BAr^{F_4} anion.


Reductions of *trans*- $[(Ph_2PCH_2B(C_8H_{14}))_2Re(CO)_4][B(C_6F_5)_4]$ ($[1-M_2][B(C_6F_5)_4]$)

NMR-scale Reaction of $[1-M_2][B(C_6F_5)_4]$ with 1 equiv [HPt][PF₆]. To a stirring ~ 0.6 mL C₆D₅Cl solution of 31.3 mg (0.0194 mmol) $[1-M_2][B(C_6F_5)_4]$ was added 12.4 mg (0.0194 mmol) [HPt][PF₆]. Monitoring by NMR spectroscopy showed a slow reaction, with $\sim 50\%$ conversion after 12 hours, $\sim 70\%$ conversion after 24 hours, and $\sim 90\%$ conversion after 6 days.


Reaction of $[1-M_2][B(C_6F_5)_4]$ with 1 equiv [HPt][PF₆] in the presence of [Na][BF₄]. A 20 mL scintillation vial was charged with 103.0 mg (0.0637 mmol) $[1-M_2][B(C_6F_5)_4]$, 35.0 (0.319 mmol, 5 equiv) NaBF₄, and 2 mL C₆H₅Cl. With stirring, 49.0 mg (0.0764, 1.2 mmol) [HPt][PF₆] was added slowly as a solid. The mixture turned yellow and developed precipitates over a few minutes, and was stirred overnight. The reaction mixture was filtered, and the solvent removed from the filtrate under vacuum. The solids were extracted with C₆H₆, filtered, and the solvents removed from the filtrate to afford 59 mg (99%) **2-M₂** as a pale yellow powder in $\sim 95\%$ purity ([HPt]⁺ was the other observed species, along with small amounts of residual C₆H₅Cl). **¹H NMR** (C₆D₆, 300 MHz): δ 1.49 (br, Ph₂PCH₂B(C₈H₁₄)), 1.88 (br, Ph₂PCH₂B(C₈H₁₄)), 7.16 (Ph₂PCH₂B(C₈H₁₄), 12H), 7.53 (br, Ph₂PCH₂B(C₈H₁₄), 8H), 13.96 (t, $J_{PH} = 6.0$ Hz, Re-CHO, 1H). **³¹P{¹H} NMR** (C₆D₆, 121 MHz): δ -2 (br, 1P), 6.0 (br, 1P). **IR** (heptane): ν_{CO} 1999 (s), 1950 (s), 1938 (s) cm⁻¹.

NMR-scale reaction of $[1-M_2][B(C_6F_5)_4]$ with 1 equiv [HPt][PF₆] in the presence of [hept₄N][BF₄]. A small vial was charged with 29.1 mg (0.0180 mmol) $[1-M_2][B(C_6F_5)_4]$, 17.7 mg (0.0360 mmol, 2 equiv) tetraheptylammonium tetrafluoroborate,


and ~ 0.6 mL C₆D₅Cl. With stirring, 11.6 mg (0.0180 mmol, 1 equiv) **[HPt][PF₆]** was added as a solid. The mixture was moved to a J-Young tube, and allowed to sit for about 3 hours, at which point NMR spectroscopy showed near complete conversion to the desired boroxycarbene. As in the isolated product, at room temperature many resonances were quite broad, including the ³¹P NMR. Variable temperature NMR studies were therefore undertaken.

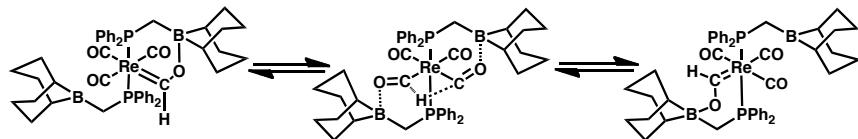
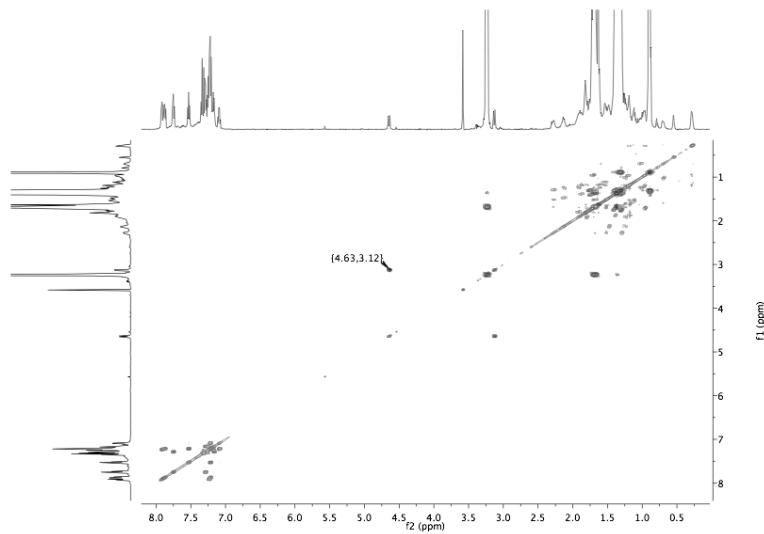

Figure 3.14. ³¹P{¹H} NMR from -35 to 95 C.

Figure 3.15. ¹H NMR (formyl region) from -35 to 95 C.

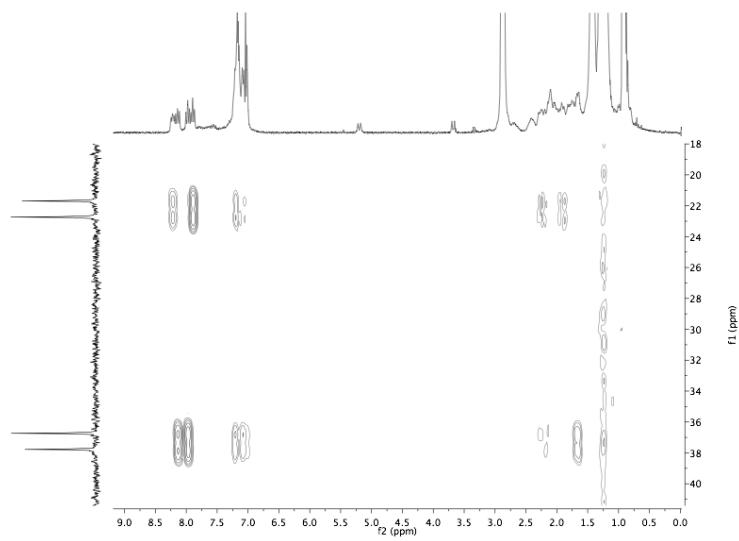
Figure 3.16. ^1H NMR (aryl, alkyl regions from -35 to 95 $^\circ\text{C}$).

Scheme 3.30

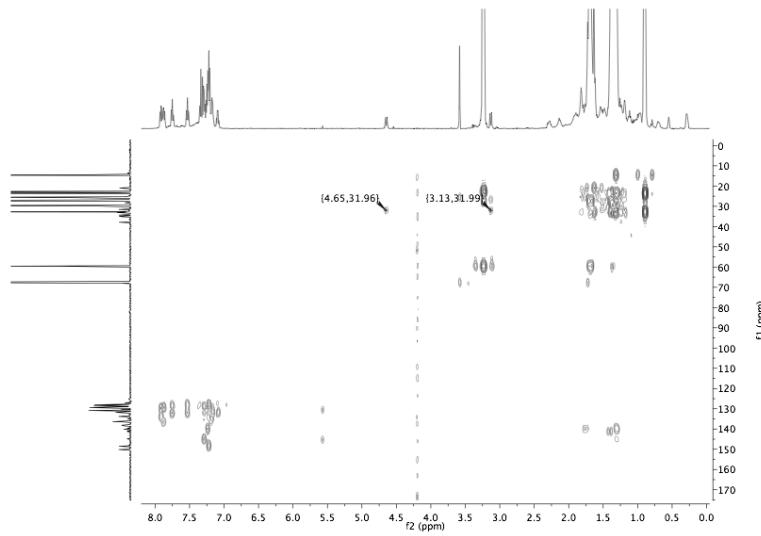
Variable temperature NMR studies of **2-M₂** between -35 $^\circ\text{C}$ and $+95$ $^\circ\text{C}$ in $\text{C}_6\text{D}_5\text{Cl}$ revealed fluxional processes. The ^{31}P NMR spectrum of **2-M₂** displays two sharp doublets (δ -2.9 , $^2J_{\text{PP}} = 99.1$ Hz; δ 6.5 , $^2J_{\text{PP}} = 99.2$ Hz) at low temperatures, which coalesce into a singlet (δ 2.3) at ~ 50 $^\circ\text{C}$. The ^1H NMR spectrum shows similar sharpening upon cooling to -35 $^\circ\text{C}$, with two sharp doublets at δ 3.07 ($J_{\text{PH}} = 12.1$ Hz) and δ 1.87 ($J_{\text{PH}} = 13.1$ Hz) emerging for two inequivalent CH_2 groups on the ligands. Near 50 $^\circ\text{C}$ these doublets coalesce into one broad singlet, consistent with the fluxional processes that give a more symmetric ligand environment. Interestingly, the carbene proton triplet collapses into a doublet as it is cooled, δ 13.85 , $J_{\text{PH}} = 11.1$ Hz. This is consistent with a static structure with *intramolecular* coordination of one pendent borane to the carbene oxygen, in contrast to ethylene-linker-containing complex **2-E₂**, which has intermolecular coordination and is


dimeric. The restricted rotation of the carbene affords favorable angles for P–H coupling to the phosphinoborane that is binding the oxygen, while the other phosphine has an undetectable coupling constant due to the unfavorable coupling angles. The phosphine resonance at δ –2.9 is assigned as the intramolecularly coordinated phosphinoborane, due to the slight upfield shift consistent with a 6-membered ring structure, and from ^1H – ^{31}P gHMBC correlation to the carbene proton, as well as the downfield-shifted methylene protons of that ligand (also consistent with a constrained ring geometry).

From the coalescence temperature the barrier for the fluxional process can be estimated, $\Delta G^\ddagger = 13.6 \pm 0.2 \text{ kcal mol}^{-1}$. The exact process that creates equivalent ligand environments could be B–O bond breaking, rotation, and B–O bond formation with the other ligand. $^{13}\text{C}\{^1\text{H}\}$ NMR spectroscopy is not entirely consistent with this, however, as the CO carbons are very broad at room temperature, implicating exchange of H between the various CO groups of the complex. Further, treatment of carbene **2**–**M₂** with up to 100 equivalents of pyridine leads to *no B–O cleavage*, contrasting the easily broken B–O bonds of external Lewis acids and other linkers. If B–O cleavage were occurring rapidly on the NMR time scale, pyridine binding would be expected to be favored. Transfer of hydride from a formyl to an adjacent carbonyl ligand has been observed before, and that process, which would lead to broadening of CO signals in the ^{13}C NMR, is consistent with our observations (Scheme 3.30).²³


NMR-scale Reaction of [1–M₂][B(C₆F₅)₄] with 2 equiv [HPt][PF₆] in the presence of [hept₄N][BF₄]. To a stirring \sim 0.6 mL THF-*d*₈ solution of 35.4 mg (0.0219 mmol) **[1–M₂][B(C₆F₅)₄]** was added 28.1 mg (0.0438 mmol, 2 equiv) **[HPt][PF₆]** partwise

slowly. The mixture was stirred for an addition 5 minutes before being transferred to a J -Young NMR tube and monitored by NMR spectroscopy. In the first few hours mainly boroxycarbene **2-M₂** was observed, in addition to the asymmetric doubly-reduced product. The tube was affixed to a rotating motor to ensure good mixing, and spun overnight, at which point only doubly-reduced **[5]⁻** and unreacted **[HPt]⁺** were observed. A \sim 70% yield of **[5]⁻** from **2-M₁** was established by two methods, i) simple NMR integration of Re species relative to **[hept₄N]⁺** (assuming a constant amount of **[hept₄N]⁺** in solution) and ii) integration against an internal standard (capillary containing **P(2,4,6-C₆H₂Me₃)₃**). No other Re-containing products were observed in solution or when the precipitates were extracted with **CD₃CN** (only **[Pt]²⁺** precipitated). Spectroscopic analysis was consistent with an anionic “confused” alkyl species, containing 2 B–O bonds. Separation from the ammonium salts proved challenging, limiting identification to solution methods. Very similar reactivity was observed when **C₆D₅Cl** was used as the solvent. **¹H NMR** (THF-*d*₈, 600 MHz): δ 0.28 (br, 2H), 0.54 (br, 1H), 0.69 (br, 1H), 1.1-1.9 (m, overlapping with **[hept₄N]⁺**), 2.13 (m, 1H), 2.27 (m, 1H), 3.12 (br d, $\mathcal{J}_{\text{HH}} = 13.0$, 1H), 4.63 (br d, $\mathcal{J}_{\text{HH}} = 13.2$ Hz, 1H), 7.20-7.35 (m, 12H), 7.52 (t, $\mathcal{J} = 8.3$ Hz, 2H), 7.74 (t, $\mathcal{J} = 8.5$ Hz, 2H), 7.85-7.92 (m, 4H). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ 22.3 (d, $\mathcal{J}_{\text{PP}} = 127.5$ Hz, 1P), 37.3 (d, $\mathcal{J}_{\text{PP}} = 128.4$ Hz). **¹³C{¹H} NMR** (THF-*d*₈, 151 MHz): δ 21.00 (br), 23.32, 25.94, 26.81, 26.87, 27.07, 28.24 (br), 31.50 (d, $\mathcal{J}_{\text{PC}} = 16.7$ Hz, **Ph₂PCH₂B(C₈H₁₄)**), 33.07 (d, $\mathcal{J}_{\text{PC}} = 16.1$ Hz, **Ph₂PCH₂B(C₈H₁₄)**), 34.14, 34.34, 34.94, 35.20, 37.88, 82.2 (v br, **Re–O–CH₂–BR₃**), 125.3 (v br, *ipso*-**B(C₆F₅)₄**), 127.86, 127.98 (d, $\mathcal{J}_{\text{PC}} = 9.0$ Hz), 128.59 (d, $\mathcal{J}_{\text{PC}} = 9.2$ Hz), 128.66, 128.29, 129.69, 131.73 (d, $\mathcal{J}_{\text{PC}} = 8.9$ Hz), 131.83 (d, $\mathcal{J}_{\text{PC}} = 9.5$ Hz), 133.86 (d, $\mathcal{J}_{\text{PC}} = 11.1$ Hz), 136.31 (d, $\mathcal{J}_{\text{PC}} = 11.3$ Hz).


Hz), 137.28 (dm, $\tilde{\jmath}_{\text{FC}} = 247.4$ Hz, B(C₆F₅)₄), 139.28 (d, $\tilde{\jmath}_{\text{FC}} = 243.6$ Hz, B(C₆F₅)₄), 139.68 (d, $\tilde{\jmath}_{\text{PC}} = 41.7$ Hz), 141.10 (d, $\tilde{\jmath}_{\text{PC}} = 45.7$ Hz), 144.80 (d, $\tilde{\jmath}_{\text{PC}} = 37.8$ Hz), 148.17 (d, $\tilde{\jmath}_{\text{PC}} = 36.6$ Hz), 149.33 (d, $\tilde{\jmath}_{\text{FC}} = 240.0$ Hz, B(C₆F₅)₄), 197.36 (t, $\tilde{\jmath}_{\text{PC}} = 8.3$ Hz, CO), 198.27 (t, $\tilde{\jmath}_{\text{PC}} = 8.9$ Hz, CO), 199.91 (t, $\tilde{\jmath}_{\text{PC}} = 4.2$ Hz, CO). **IR** (C₆D₅Cl): ν_{CO} 2020 (w), 1932 (s), 1867 (m) cm⁻¹. **HRMS (TOF MS ES⁻)**: m/z calcd for C₄₆H₅₄B₂O₄P₂Re, 941.3259. Found, 941.3212.

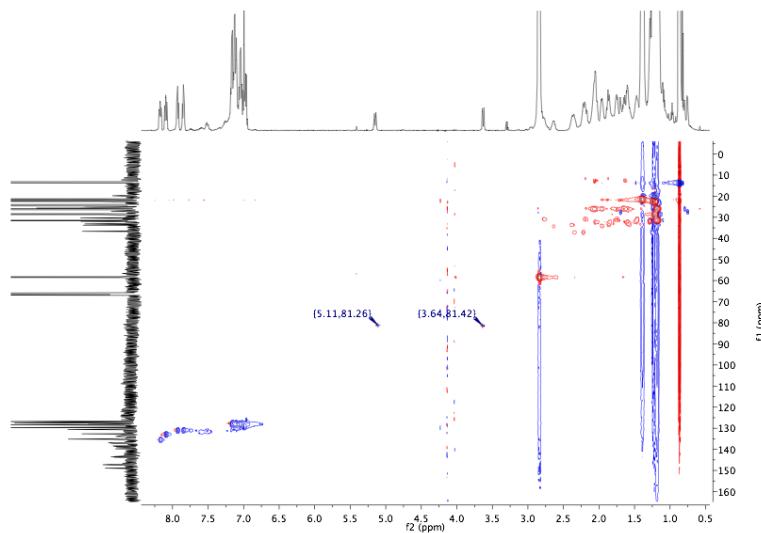

Figure 3.17. ¹H-¹H gCOSY of [5]⁻. Correlation between Re—OCH₂—OBR₃ protons highlighted.

Figure 3.18. ^1H - ^{31}P gHMBC of $[5]^-$ ($\text{C}_6\text{D}_5\text{Cl}$).

Figure 3.19. ^1H - ^{13}C gHMBC of $[5]^-$. Correlation between $\text{Re}-\text{OCH}_2-\text{OBRe}$ and $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$ highlighted.

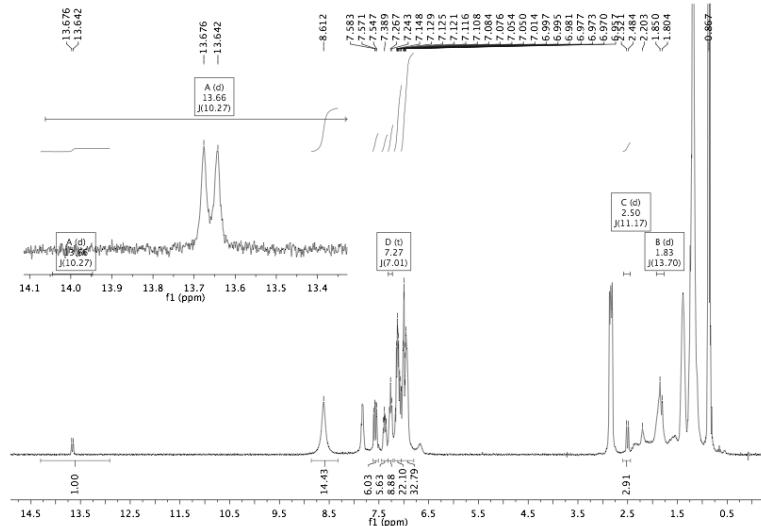


Figure 3.20. ^1H – ^{13}C gHSQC of $[\mathbf{5}]^-$ ($\text{C}_6\text{D}_5\text{Cl}$). Correlation between $\text{Re}-\text{OCH}_2\text{BR}_3$ and $\text{Re}-\text{OCH}_2\text{BR}_3$ is highlighted.

Reaction of 2-M₂ with pyridine. A vial was charged with 39.6 mg (0.0245 mmol) $[\mathbf{1}\text{--M}_2]\text{[B(C}_6\text{F}_5)_4]$, 24.0 mg (0.0490 mmol) tetraheptylammonium tetrafluoroborate, and ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$. Solid $[\text{HPt}]\text{[PF}_6]$ (15.7 mg, 0.0245 mmol) was added in portions to the $\text{C}_6\text{D}_5\text{Cl}$ solution with stirring, and the contents were added to a J-Young NMR tube. The tube was mixed by rotary motor overnight, at which point NMR spectroscopy showed clean conversion to boroxy carbene **2-M₂**. The NMR tube was returned to the glovebox, and the contents of the tube were poured onto an internal standard, 20 mg (0.0228 mmol) $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{Br}$. The mixture was filtered into a J-Young NMR tube, and NMR studies were carried out (there was no reaction or interaction with the $\text{Re}-\text{Br}$). Later, pyridine (6 μL , 0.0735, 3 equiv) was added. Instead of the expected B–O bond cleavage and downfield shift of the $\text{Re}-\text{CHO}$ peak, a doublet at essentially unchanged chemical shift was observed. The ^1H NMR resonances sharpened and were consistent with two inequivalent ligands (two $\text{Ph}_2\text{PCH}_2\text{BR}_2$ groups). Two sharp ^{31}P NMR resonances were observed. Even with

addition of a few drops (~ 100 equiv) pyridine, no significant spectral change was observed.

Based on comparisons to the boroxycarbene spectra, the product is assigned as intramolecularly coordinated boroxycarbene with the second pendent borane binding pyridine. The spectral characteristics are quite similar to the low temperature spectra of **2-M₂** in the absence of pyridine, suggesting an analogous structure. **¹H NMR** (C₆D₅Cl, 300 MHz): δ 1.4-2.5 (br, m, Ph₂PCH₂B(C₈H₁₄)), 1.83 (d, 13.7 Hz), 2.50 (d, 11.2 Hz), 6.9-7.1 (m, pyridine and Ph), 7.27 (br t, $\tilde{J} = 7.01$, pyridine), 7.39 (m, 6H, Ph), 7.58 (m, 6H), 8.61 (br, pyridine), 13.66 (d, $J = 10.3$ Hz, Re-CHO). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 2.56 (d, $\tilde{J}_{PP} = 96.0$ Hz, 1P), 7.41 (d, $\tilde{J}_{PP} = 95.8$ Hz, 1P).

Figure 3.21. ¹H NMR of **2-M₂•py**.

Pulsed Gradient Spin-Echo Diffusion NMR Studies on 2-E₂

¹H NMR pulsed gradient spin-echo (PGSE) NMR measurements were performed using the standard echo pulse sequence on a Varian INOVA 500 MHz spectrometer at 298.15 K without spinning. The gradient shape was rectangular, with gradient length 2-4.2 ms, and

the gradient strength was varied during the experiment. The spectra were processed with 2.0 Hz line broadening, and single exponential fits of selected resonances provided values for the diffusion coefficient D_t . The experimental diffusion coefficient was used to obtain values of hydrodynamic radii and volumes using Chen's modification⁴⁴ of the Stokes-Einstein equation (3.1):

$$D_t = \frac{kT}{c\pi\eta r_H}$$

$$c = \frac{6}{1 + 0.695 \left(\frac{r_{\text{solv}}}{r_H} \right)^{2.234}} \quad (3.1)$$

$c = 6$ is the Stokes-Einstein equation.

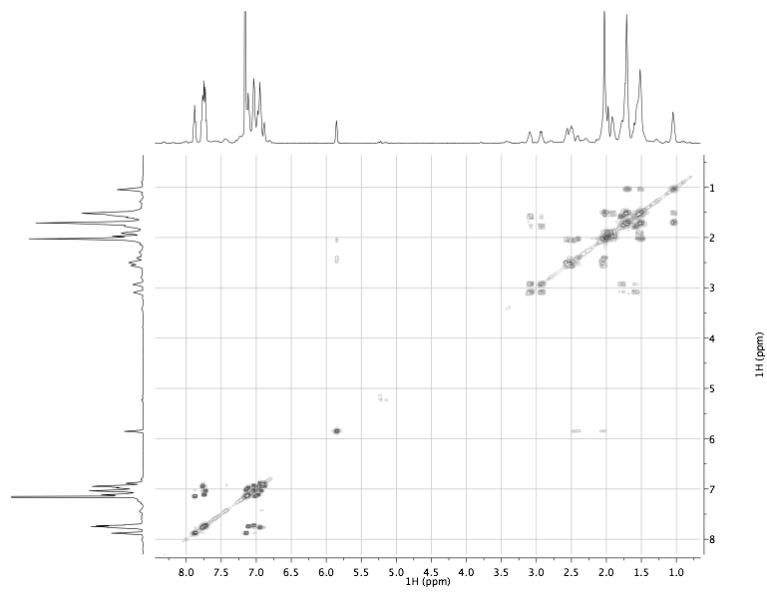
The measurements were carried out in C₆D₅Cl (an atypical solvent for diffusion studies), due to low solubility of **2-E₂** in nonpolar solvents, reactivity with halogenated alkane solvents such as CD₂Cl₂, and interaction of the borane groups with strong donor solvents such as CD₃CN. The value for r_{solv} (2.69 x 10⁻¹⁰ m)⁴⁵ in equation 3.1 is that of C₆H₅Cl, a reasonably good approximation. The viscosity, η (0.008 Pa s⁻¹)⁴⁶ is that of C₆D₅Cl. The classical Stokes-Einstein equation has $c = 6$, whereas the Chen modification corrects for molecules that are not much larger than the solvent they are in. As expected for a moderately sized organometallic molecule, the experimental values of c were not 6, but varied from roughly 5.75-5.85. The molecules were assumed to be roughly spherical, and no further corrections were applied.

The PGSE NMR experiments were carried out in two phases, one with unknown aggregation, the other assumed to be strictly monomeric, and the size of the species compared. First, an NMR tube was charged with a C₆D₅Cl solution of **2-E₂** and (PPh₃)₂Re(CO)₃Br (**6**) (internal standard of similar size and shape). The **2-E₂** solution was prepared either A) *in situ* (by treating **[1-E₂][BF₄]** with 1 equiv NaHB₃E₃), or B) by dissolution of crudely isolated **2-E₂** (by precipitation of a C₆H₅Cl solution as prepared *in situ*, collection on a frit, and drying under vacuum). ¹H and ³¹P{¹H} NMR experiments confirmed that **2-E₂** and **6** were the major species. A ¹H PGSE NMR experiment was carried out on this mixture, under which conditions the speciation of **2-E₂** was in question. After the first PGSE experiment was complete, the tube was returned to a nitrogen-filled glovebox, and an excess of pyridine (3-12 equiv) was added by syringe, and the tube sealed. ¹H and ³¹P{¹H} NMR experiments confirmed that **2-E₂** had been converted to the bis(pyridine) adduct **2-E₂•(pyridine)₂**, which has a significantly downfield-shifted formyl resonance, and a single ³¹P resonance. There was no change in chemical shift or lineshape of **6** upon addition of pyridine, confirming that no interaction occurs with the internal standard. The excess pyridine appeared close to the expected shift of free pyridine in C₆D₅Cl,⁴⁷ indicating any exchange of bound and free pyridine must be slow on the NMR time-scale. A second ¹H PGSE NMR experiment was then carried out, and in these conditions the Re formyl was assumed to be strictly monomeric.

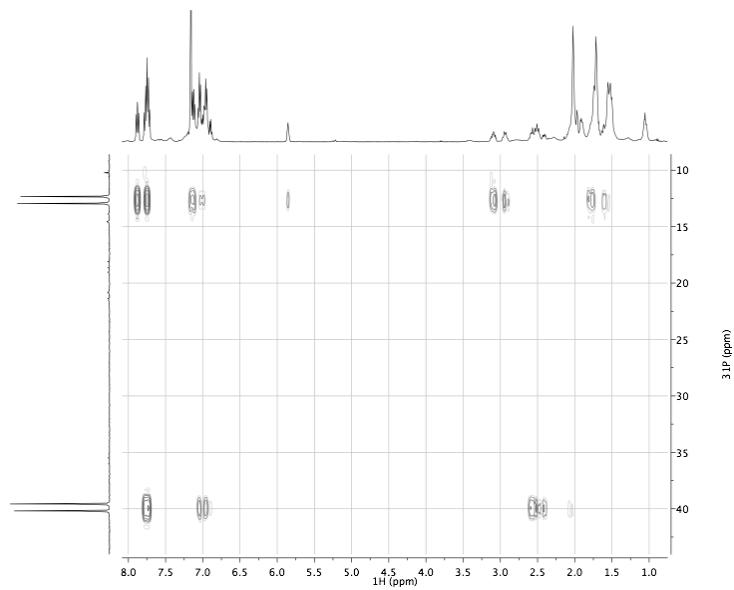
The data was processed as described above, providing D_t values for all species in the presence and absence of pyridine. The number of units in an aggregate, N , can be calculated by comparing the ratio of the hydrodynamic volumes of **2-E₂•(pyridine)₂:6** ($N =$

1) and **2-E₂:6** (N unknown). Hydrodynamic volumes were calculated using equation 3.1.

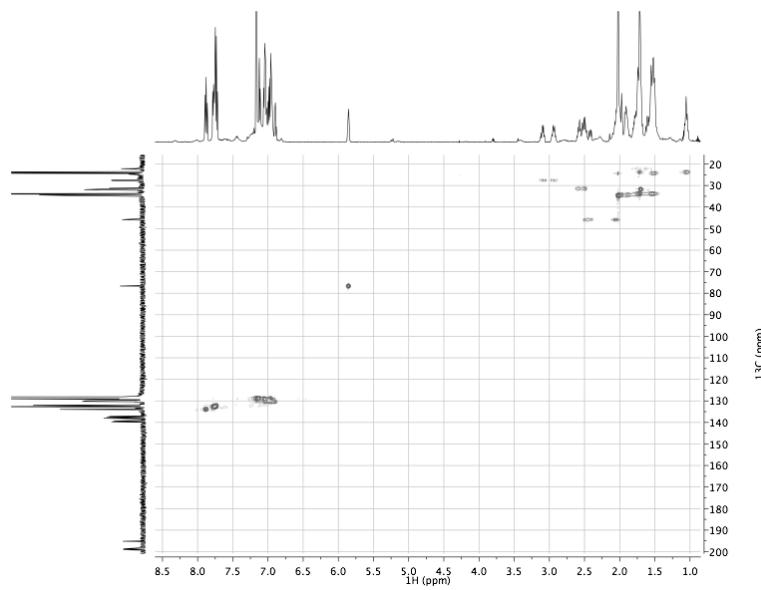
The ratio of hydrodynamic volumes of **2-E₂:6** was *1.5(1) times larger* than the ratio of hydrodynamic volumes of **2-E₂•(pyridine)₂:6**. For a monomeric species $N = 1$, while for a dimeric species (as observed by XRD) $N = 2$. The data in this case are intermediate between 1 and 2 units, reflecting significant intermolecular aggregation in solution; a simple monomeric system would have N very close to 1, and probably *less than* 1, due to the increased size of a bis(pyridine) adduct. The intermediate value of N , and the broad signals of **2-E₂** observed in ¹H NMR spectra at room temperature, are consistent with a *fluxional monomer-dimer equilibrium*, occurring rapidly on the NMR time-scale. The D_t value of a rapidly equilibrating mixture is reflective of the equilibrium distribution, as a time-weighted average of the equilibrating species.²⁶ Variable-temperature NMR experiments showed a subtle sharpening of the ¹H and ³¹P resonances of **2-E₂** at low temperatures, but warming the solution led to decomposition, confounding complete analysis.


The uncertainty in the hydrodynamic volumes obtained from PGSE NMR experiments is significant; therefore no quantitative analysis was undertaken. The qualitative results are quite certain, however: the intermediate values for the speciation of **2-E₂** are reproducible under two different conditions (two runs of each experiment A and B) and are *inconsistent* with a strictly *monomeric solution structure* (in which case **2-E₂•(pyridine)₂:6** would be expected to be slightly *larger* than **2-E₂:6**). Furthermore, the observed *reactivity* of **2-E₂** is also consistent with a monomer-dimer equilibrium.

Reactivity Studies of 2-E₂


Reaction of 2-E₂ with pyridine. As part of a diffusion NMR experiment, 26.0 mg (0.0247 mmol) **[1][BF₄]** was treated with 24.7 μ L (0.0247 mmol) NaHB₃ (1.0 M in toluene) by syringe in \sim 0.6 mL C₆D₅Cl to form carbene **2**. 21.6 mg (0.0247 mmol) (PPh₃)₂Re(CO)₃Br was added as an internal standard, and an NMR was taken. Roughly 45 minutes later, 6.0 μ L (0.0741 mmol, 3 equiv) pyridine was added by syringe, and the reaction was monitored by NMR. High initial conversion to one formyl product was observed, followed by slow decomposition to Re–H species over a few days. **¹H NMR** (C₆D₅Cl, 500 MHz): δ 0.48 (br m, 4H), 0.96 (br, 4H), 1.33 (6H), 1.57 (2H), 1.67 (4H), 1.8–2.0 (br m, 18H), 6.92 (pyridine), 7.20 (pyridine), 7.44 (m, 8H), 8.09 (pyridine), 15.21 (s, 1H, Re–CHO). **³¹P{¹H} NMR** (C₆D₅Cl, 202 MHz): δ 11.8 (s).

Thermolysis of 2-E₂. A vial was charged with 53.2 mg (0.051 mmol) cation **[1-E₂][BF₄]** and 0.5 mL C₆D₅Cl. 50.5 μ L NaHB₃ (1.0 M in toluene) was added dropwise to afford carbene **2-E₂** as a pale yellow solution. The solution was transferred to a J-Young NMR tube and the carbene was formed quantitatively as assessed by NMR spectroscopy. The tube was submerged in a 90 °C oil bath for 30 minutes, after which time ¹H and ³¹P{¹H} NMR showed \sim 80% conversion to a new species as a mixture with \sim 10% each **[1-E₂]⁺** and C–C coupled product **[3]⁻**. The tube was brought into a glovebox, filtered, and the solvents removed under vacuum. The solids were extracted with benzene, filtered, and the solvents were removed, yielding 41 mg (0.042 mmol, 84%) ligand-activated product **7**, in \sim 90% purity. The product could be fully characterized by multinuclear NMR studies, but the undesired product was not further purified. **¹H NMR** (C₆D₆, 500 MHz): δ 1.01–1.09


(m, 3H), 1.4-1.6 (m, 12H), 1.6-1.8 (m, 12H), 1.9-2.1 (m, 12H), 2.4-2.6 (m, 3H), 2.94 (m, 1H), 3.09 (m, 1H), 5.85 (br m, 1H), 6.9-7.1 (m, 12H), 7.75 (dt, $\mathcal{J} = 9.1, 17.9$ Hz, 6H), 7.88 (t, $\mathcal{J} = 7.9$ Hz, 2H). **$^{31}\text{P}\{\text{H}\}$ NMR** (C_6D_6 , 202 MHz): δ 12.6 (d, $^2\mathcal{J}_{\text{PP}} = 124.8$ Hz, 1P), 39.9 (d, $^2\mathcal{J}_{\text{PP}} = 124.8$ Hz, 1P). **$^{13}\text{C}\{\text{H}\}$ NMR** (C_6D_6 , 125 MHz): δ 22.2 (br, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 23.78, 24.33, 24.8 (br), 27.61 (d, $^1\mathcal{J}_{\text{PC}} = 27.2$ Hz, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 31.38 (d, $^1\mathcal{J}_{\text{PC}} = 31.3$ Hz, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH(OBR}_2\text{)Re}$), 31.93, 33.78, 33.84, 34.41, 34.64, 45.87 (dd, $\mathcal{J}_{\text{PC}} = 14.4, 5.3$ Hz, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH(OBR}_2\text{)Re}$), 76.66 (dd, $\mathcal{J}_{\text{PC}} = 7.0, 2.2$ Hz, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH(OBR}_2\text{)Re}$), 128.81 (d, $^3\mathcal{J}_{\text{PC}} = 9.3$ Hz, *m*-Ph), 128.90 (d, $^3\mathcal{J}_{\text{PC}} = 9.3$ Hz, *m*-Ph), 129.08 (d, $^3\mathcal{J}_{\text{PC}} = 9.7$ Hz, *m*-Ph), 129.12 (d, $^3\mathcal{J}_{\text{PC}} = 9.5$ Hz, *m*-Ph), 129.93 (d, $^4\mathcal{J}_{\text{PC}} = 1.8$ Hz, *p*-Ph), 130.17 (d, $^4\mathcal{J}_{\text{PC}} = 1.9$ Hz, *p*-Ph), 130.25 (d, $^4\mathcal{J}_{\text{PC}} = 1.9$ Hz, *p*-Ph), 130.32 (d, $^4\mathcal{J}_{\text{PC}} = 2$ Hz, *p*-Ph), 132.07 (d, $^2\mathcal{J}_{\text{PC}} = 10.5$ Hz, *o*-Ph), 132.67 (d, $^2\mathcal{J}_{\text{PC}} = 11.0$ Hz, *o*-Ph), 132.68 (d, $^2\mathcal{J}_{\text{PC}} = 10.2$ Hz, *o*-Ph), 133.99 (d, $^2\mathcal{J}_{\text{PC}} = 9.9$ Hz, *o*-Ph), 137.37 (d, $^1\mathcal{J}_{\text{PC}} = 43.6$ Hz, *ipso*-Ph), 137.71 (d, $^1\mathcal{J}_{\text{PC}} = 45.7$ Hz, *ipso*-Ph), 137.90 (d, $^1\mathcal{J}_{\text{PC}} = 44.5$ Hz, *ipso*-Ph), 139.54 (d, $^1\mathcal{J}_{\text{PC}} = 42.2$ Hz, *ipso*-Ph), 195.17 (t, $^2\mathcal{J}_{\text{PC}} = 9.3$ Hz, Re-CO), 198.65 (t, $^2\mathcal{J}_{\text{PC}} = 5.7$ Hz, Re-CO), 199.12 (t, $^2\mathcal{J}_{\text{PC}} = 9.4$ Hz, Re-CO). **$^{11}\text{B}\{\text{H}\}$ NMR** (C_6D_6 , 160 MHz): δ 54.9, 88.0. Assignments were made using ^1H - ^{31}P gHMBC, ^1H - ^{13}C gHMQC, ^1H - ^{13}C gHMBC, and ^1H - ^1H gCOSY 2-D NMR experiments.

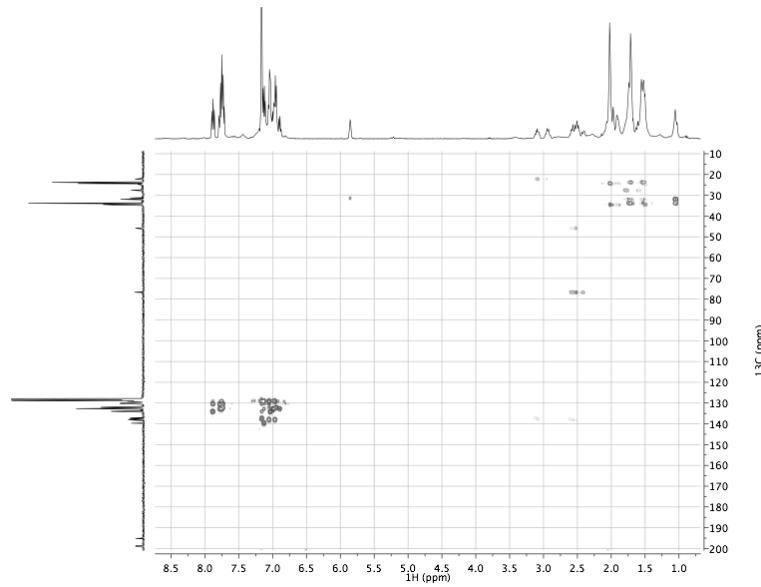

Figure 3.22. ^1H - ^1H gCOSY of **7**.

Figure 3.23. ^1H - ^{31}P gHMBC of **7**.

Figure 3.24. ^1H - ^{13}C gHMQC of **7**.

Figure 3.25. ^1H - ^{13}C gHMBC of **7**.

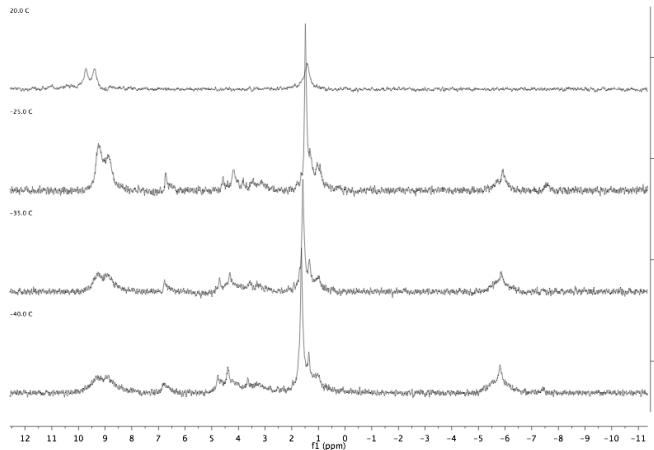
Reaction of **2-E₂ with H₂O.** Carbene **2-E₂** was prepared in the usual manner by dropwise addition of 21.8 μL (0.0218 mmol) NaHB₃E₃ (1.0 M in toluene) to a rapidly stirring C₆D₅Cl solution of 23.0 mg (0.0218 mmol) cation **[1-E₂]⁺**. ^1H and $^{31}\text{P}\{^1\text{H}\}$ NMR studies showed clean formation of the carbene. 30 minutes after preparation, 0.4 μL

(0.0218 mmol) degassed deionized H₂O was added by syringe. After addition, the solution immediately began bubbling, the yellow color of the carbene bleached, and some precipitates formed. A ³¹P{¹H} NMR experiment showed one prominent singlet at δ 1.4, in a similar location as the cation **[1-E₂]⁺** (δ 0.3), along with minor impurities. The ¹H NMR spectrum showed complete consumption of the carbene resonance at δ 13.96, and a conspicuous resonance for H₂ gas at δ 4.49. The rest of the spectrum was rather broad and non-descript, but matched the spectrum of crystals obtained from a separate reaction of carbene **2-E₂** with wet CO.

Reaction of 2-E₂ with [Me₃NH][BPh₄]. Carbene **2-E₂** was prepared in the usual manner by dropwise addition of 21.2 μ L (0.0212 mmol) NaHB₃E₃ (1.0 M in toluene) to a rapidly stirring C₆D₅Cl solution of 22.3 mg (0.0212 mmol) **[1-E₂][BF₄]**. After stirring for 3 minutes, the mixture was added to a J-Young NMR tube already charged with 8.0 mg (0.0212 mmol) [Me₃NH][BPh₄]. Although the acid is not very soluble, and some solids remained at the bottom of the tube, the yellow color of the carbene disappeared and bubbles were observed. The single ³¹P{¹H} NMR signal at δ 0.5 (s) and ¹H NMR pattern is indicative of a symmetric cationic bisphosphine tetracarbonyl species. Although a small amount of carbene remained after 30 minutes, no remaining carbene was detected 24 hours later. Hydrogen was observed in the ¹H NMR spectrum.

Reaction of 2-E₂ with [*t*Bu₃PH][HB(C₆F₅)₄]. Boroxycarbene **2-E₂** was prepared in the usual manner by dropwise addition of 17.3 μ L (0.0173 mmol) NaHB₃E₃ (1.0 M in toluene) to a rapidly stirring C₆D₅Cl solution of 18.2 mg (0.0173 mmol) **[1-E₂][BF₄]**. After

stirring for 3 minutes, the mixture was added to a J-Young NMR tube already charged with 12.4 mg (0.0173 mmol) $[\text{Bu}_3\text{PH}][\text{HB}(\text{C}_6\text{F}_5)_4]$. The tube was sealed and shaken, and bubbles immediately started forming, along with a bleach of the yellow color of the carbene. A ^1H NMR experiment showed a peak for H_2 gas at δ 4.49, and aryl and $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$ resonances at similar – but slightly different—chemical shifts from $[\mathbf{1-E_2}][\text{BF}_4]$. A very broad peak near δ 4 is consistent with a BH functionality, and the presence of $[\text{HB}(\text{C}_6\text{F}_5)_3]$ was further confirmed by ^{19}F NMR, δ –133.0, –164.3, –167.0. A $^{31}\text{P}\{^1\text{H}\}$ NMR experiment showed two singlets: free P^tBu_3 at δ 62.1 and a rhenium species at δ 0.3, in the same location as $[\mathbf{1-E_2}][\text{BF}_4]$. Thus we assign the product as closely related to cation **1**, $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))_2\text{Re}(\text{CO})_4][\text{HB}(\text{C}_6\text{F}_5)_4]$. Heating at 50 °C for one week resulted in no discernable reaction. Elevated temperatures (135 °C) led to decomposition of the ligands, including the presence of cyclooctene.


NMR-scale reaction of $[\text{Na}][\mathbf{3-E_2}]$ with $[\text{Pt}][\text{BAr}^{\text{F}}_4]_2$. To a \sim 0.6 mL THF- d_8 solution of 21.0 mg (0.0199 mmol) $[\mathbf{1-E_2}][\text{BF}_4]$ was added 39.9 μL (0.0399 mmol, 2 equiv) NaHBEt_3 (1.0 M in toluene) dropwise with stirring. The mixture was filtered into a J-Young NMR tube, and NMR spectroscopy showed clean formation of $[\mathbf{3-E_2}]^-$. The tube was returned to the glovebox, and the contents poured onto 88.6 mg (0.0199 mmol) $[\text{Pt}][\text{BAr}^{\text{F}}_4]_2$, which was dissolved and the reaction mixture returned to the tube. NMR spectroscopic monitoring revealed no detectable reaction of $[\mathbf{3-E_2}]^-$ or formation of $[\text{HPt}]^+$ over 24 hours.

Reaction of [Na][3-E₂] with MeOTf. To a 5 mL toluene suspension of 35.8 mg (0.0341 mmol) [Na][3-E₂] was added 3.9 μ L (0.0341 mmol) MeOTf by syringe, with stirring. The reaction mixture was stirred 30 minutes, filtered, washing with 0.5 mL toluene and 1 mL pentane, affording clear yellow filtrate (white solids left on filter). The solvents were removed under vacuum, giving 27 mg (80%) yield of yellow product. **¹H NMR** (THF-*d*₈, 300 MHz) showed a characteristic pair of doublets at 3.97 (d, J_{HH} = 18.8 Hz) and 4.61 (d, J_{HH} = 18.8 Hz), along with a singlet at 3.18 (3H) for the new methyl group. Integration of the crowded alkyl and aryl regions was not satisfactory, however. **³¹P NMR** (THF-*d*₈, 300 MHz) showed only one product, 5.5 (d, J_{PP} = 110.2 Hz) and 14.1 (d, J_{PP} = 109.7 Hz). Crystallographic characterization, which would determine which oxygen was methylated, has been thus far elusive, and the material was not further purified or characterized.

Mechanistic Studies on the Reduction of [1-E₂]⁺

Reaction of [1-E₂][BF₄] with [HPt][PF₆] at -40 °C. A J-Young NMR tube was charged with a ~0.2 mL C₆D₅Cl solution of 22.4 mg (0.0213 mmol) [1-E₂][BF₄]. The solution was frozen in a liquid nitrogen cooled cold well in the glovebox. A ~0.1 mL layer of C₆D₅Cl was added, and the tube was cooled to freeze the solvents again. Finally, a layer of ~0.3 mL C₆D₅Cl solution of 13.6 mg (0.0213 mmol) [HPt][PF₆] was added, and the solution frozen. The tube was sealed, removed from the glovebox, and inserted into a dry ice / acetone bath to keep the contents of the tube frozen. Meanwhile, the NMR probe was cooled to -40 °C. The tube was allowed to just start to thaw, at which point it was shaken vigorously for a few seconds, and then inserted into the -40 °C probe. NMR spectra were

obtained at various times and temperatures, with the temperature slowly being raised to 0 °C, at which point the reaction was complete. In separate experiments a broad ^{31}P signal at δ -5.9, slightly downfield of $[\text{HPt}][\text{PF}_6]$ (δ -7.2) was always observed (sometimes an additional sharp peak for $[\text{HPt}][\text{PF}_6]$ was observed), appearing to be an intermediate of hydride transfer from Pt to $[\mathbf{1-E}_2]^+$. A set of two doublets at δ 1.15 ($J_{\text{PP}} = 71$ Hz) and δ 4.5 ($J_{\text{PP}} = 75$ Hz) were also observed, which disappeared at roughly the same rate as the broad hydride signal.

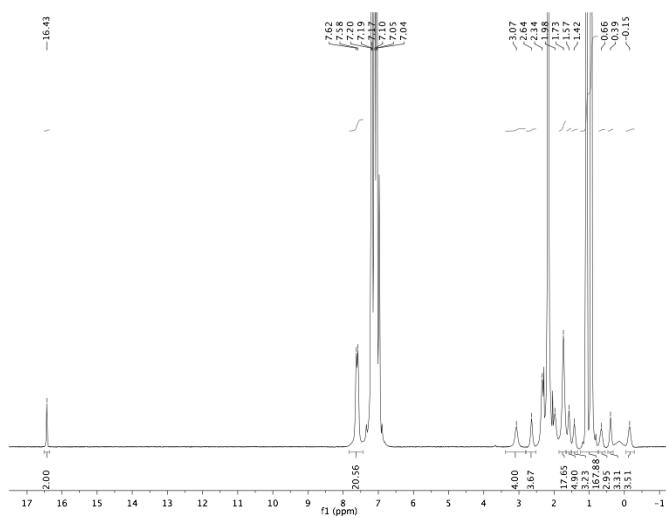
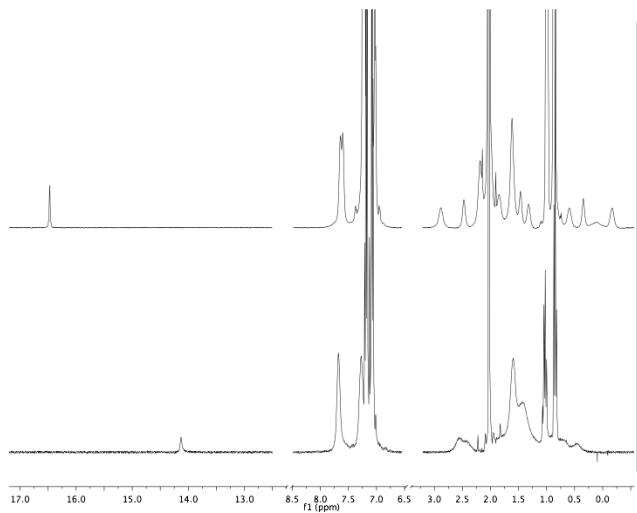
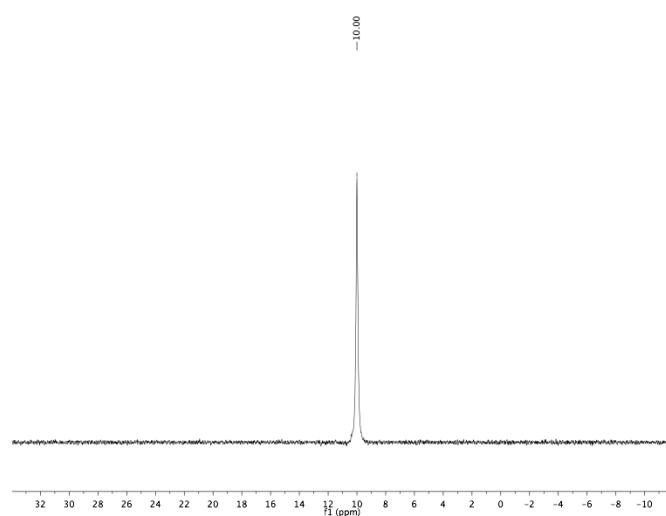
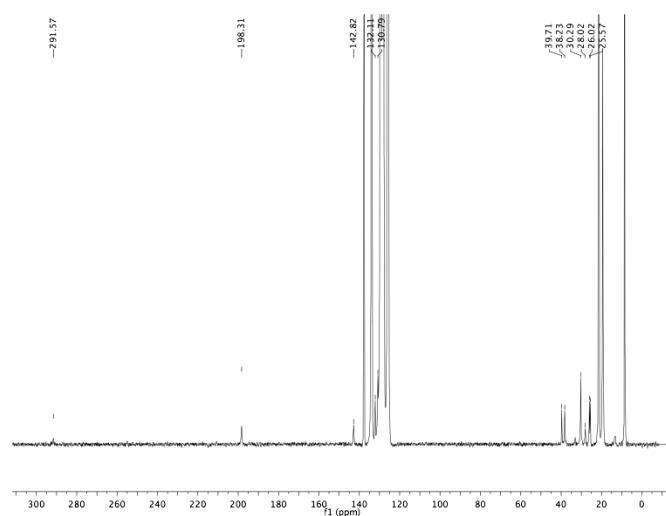


Figure 3.26. $^{31}\text{P}\{^1\text{H}\}$ NMR of reaction of $[\mathbf{1-E}_2]^+$ with $[\text{HPt}]^+$ while warming.


Reaction of $[\mathbf{1-E}_2][\text{BF}_4]$ with 2 equiv NaHBET_3 in $\text{C}_6\text{D}_5\text{Cl}$ at -40 °C.

Boroxy carbene **2-E₂** was formed by dropwise addition of 28.4 μL (0.0284 mmol) NaHBET_3 (1.0 M in toluene) to a rapidly stirring \sim 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ solution of 29.9 mg (0.0284 mmol) $[\mathbf{1-E}_2][\text{BF}_4]$. ^1H and ^{31}P NMR spectroscopy after formation of **2-E₂** showed essentially quantitative conversion to the desired boroxy carbene. The NMR tube (J-Young) was returned to the glovebox, and placed in a liquid nitrogen cooled well to freeze the contents. A small amount (\sim 100 μL) of $\text{C}_6\text{D}_5\text{Cl}$ was layered on top, and the contents were frozen


again. Finally, 28.4 μ L (0.0284 mmol) NaHB₃E₃ (1.0 M in toluene) was added to the tube, and the contents were frozen. The tube was sealed and removed from the box, and inserted into a dry ice / acetone bath to keep the contents frozen. Meanwhile, the NMR spectrometer probe was cooled to -40 °C. The tube was removed from the cold bath and allowed to just start to thaw, at which point the tube was shaken vigorously, and re-frozen. The tube was then inserted into the pre-cooled (-40 °C) probe while still frozen, and was allowed to thaw in the probe. Upon thawing, a single Re-containing species was observed by multinuclear NMR experiments, characterized spectroscopically as the anionic bis-boroxycarbene species [9]⁻. The species was quite stable at -40 °C, but as the probe was warmed to 0 °C the intensity of the signals of [9]⁻ steadily decreased until no Re-containing products were present in solution. Ejecting the NMR tube showed large amounts of pale yellow precipitates; extraction with THF-*d*₈ proved these solids to be the ultimate double-reduction product [3-E₂]⁻. Spectroscopic characterization of [9]⁻: **¹H NMR** (C₆D₅Cl, 500 MHz, -40 °C, all peaks were broad): δ -0.15 (4H), 0.39 (4H), 0.66 (2H), 1.42 (2H), 1.57 (4H), 1.73 (16H), 1.98 (2H), 2.34 (2H), 2.64 (4H), 3.07 (4H), 7.58 (10H), 7.62 (10H), 16.43 (2H). **³¹P{¹H} NMR** (C₆D₅Cl, 202 MHz, -40 °C): δ 10.0 (s). **¹³C{¹H} NMR** (C₆D₅Cl, 126 MHz, -40 °C): δ 13.35 (br), 25.57, 26.02, 28.02 (br), 30.29, 38.23, 39.71, 130.79, 132.11, 142.82 (br m; other aromatic peaks are obscured by toluene and C₆D₅Cl peaks), 198.31 (m, Re-CO), 291.57 (Re-CHO).


Figure 3.27. ^1H NMR of $[\mathbf{9}]^-$.

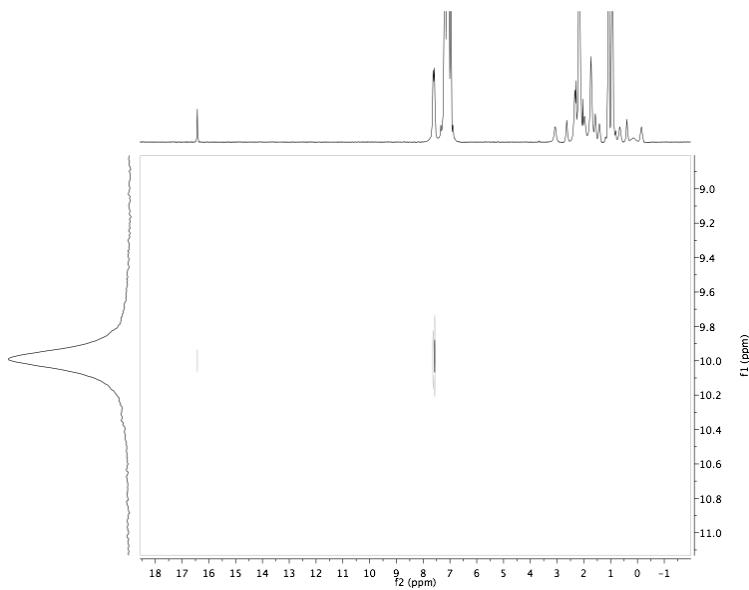

Figure 3.28. ^1H NMR overlay of $\mathbf{2}\text{-E}_2$ (bottom) and $[\mathbf{9}]^-$ (top).

Figure 3.29. ${}^{31}\text{P}\{{}^1\text{H}\}$ NMR of $[\mathbf{9}]^-$.

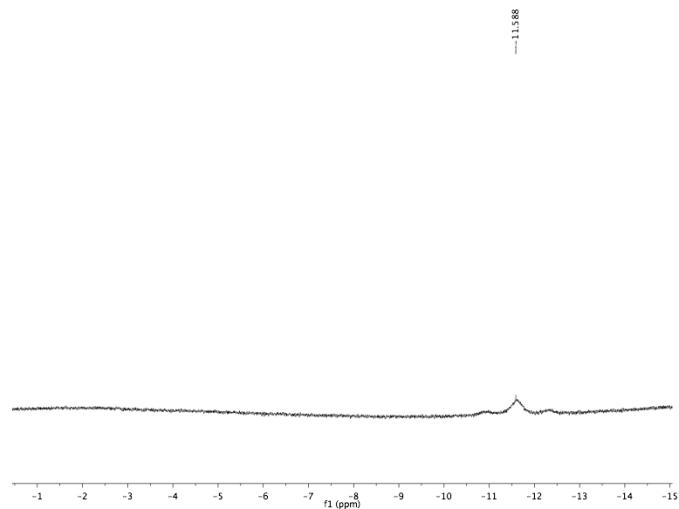


Figure 3.30. ${}^{13}\text{C}\{{}^1\text{H}\}$ NMR of $[\mathbf{9}]^-$.

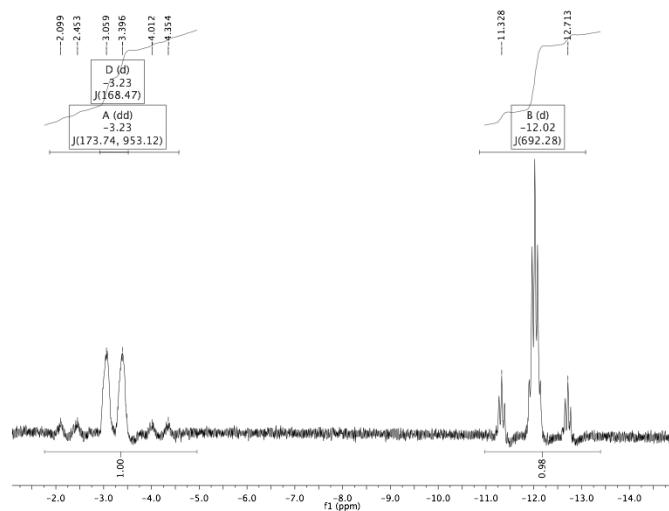


Figure 3.31. ^1H – ^{31}P gHMBC of $[\mathbf{9}]^-$.

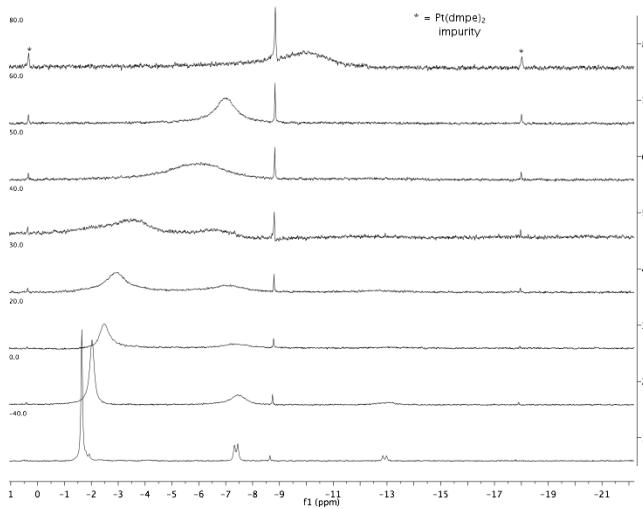

Reaction of $[\text{HPt}(\text{dmpe})_2]\text{[PF}_6]$ with BEt_3 . A J-Young NMR tube was charged with 23.5 mg (0.0366 mol) $[\text{HPt}]\text{[PF}_6]$ and ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$. $36.6 \mu\text{L}$ (0.0366 mmol) BEt_3 (1.0 M in hexanes) was added by syringe, which prompted some precipitation. The tube was removed from the box and variable temperature NMR experiments were undertaken, showing dynamic fluxional spectra that changed with temperature. At room temperature only a broad signal for $[\text{HPt}]^+$ was observed in the ^1H NMR spectrum at -11.7 . Upon cooling to -40 °C that signal sharpened into a pentet and an additional broad doublet at -3.23 ($\mathcal{J}_{\text{PH}} = 165$ Hz, $\mathcal{J}_{\text{PtH}} = 952$ Hz) was observed. The latter signal is consistent with a bridging Pt–H–B species. Similar results were obtained when $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$ was used in place of BEt_3 . The $^{31}\text{P}\{^1\text{H}\}$ NMR showed broad signals at -7.3 and -2.4 . Cooling to -40 °C led to sharpening of the signals: -7.3 ($\mathcal{J}_{\text{PtP}} = 2230$ Hz) and -1.6 (slightly broadened, no Pt coupling observed).

Figure 3.32. ^1H NMR ($20\text{ }^\circ\text{C}$), hydride region, after mixing $[\text{HPt}]^+$ and BEt_3 .

Figure 3.33. ^1H NMR ($-40\text{ }^\circ\text{C}$), hydride region, after mixing $[\text{HPt}]^+$ and BEt_3 .

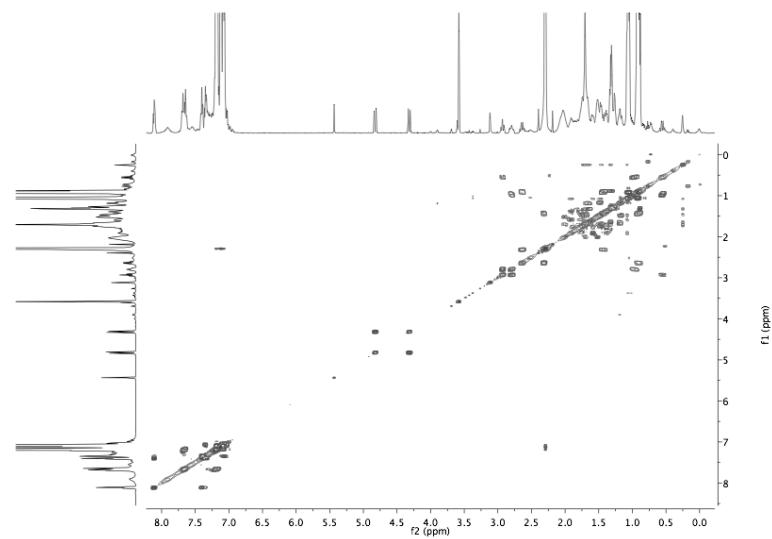
Figure 3.34. $^{31}\text{P}\{^1\text{H}\}$ NMR of $[\text{HPt}]^+/\text{BEt}_3$ from -40 to 80 $^\circ\text{C}$.

Reaction of $[\text{HPt}][\text{BAr}^{\text{F}_4}]$ with BEt_3 . A J-Young NMR tube was charged with 21.5 mg (0.0158 mmol) $[\text{HPt}][\text{BAr}^{\text{F}_4}]$ and ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$. 15.8 μL (0.0158 mmol) BEt_3 (1.0 M in hexanes) was added by syringe, and the tube was sealed. No precipitation was observed upon addition of the borane. NMR spectroscopy revealed no detectable change in line shape or chemical shift of the hydride.

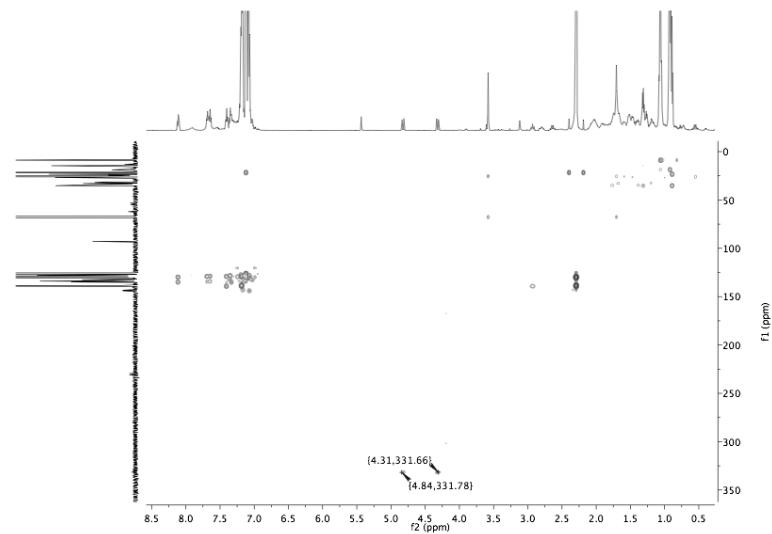
Reaction of $[\text{Li}][\text{Et}_3\text{BHBHET}_3] + [\text{Pt}]^{2+}$. A small vial was charged with ~ 0.6 mL $\text{THF-}d_8$, 25.5 μL (0.0255 mmol) BEt_3 (1.0 M in hexanes), and 25.5 μL (0.0255 mmol) LiHBET_3 (1.0 M in $\text{THF-}d_8$). The mixture was added to solid $[\text{Pt}][\text{PF}_6]_2$, and the reaction mixture transferred to a J-Young tube. NMR spectroscopy showed that $\text{Pt}^0(\text{dmpe})_2$ was the major product (consistent with observed bubbling, presumably of H_2), with the other P-containing product being a singlet at $\delta = 0.7$ with no Pt satellites. The ^1H NMR was mostly obscured by hexanes and THF, but the diagnostic broad doublet (-3.58 , d, $\mathcal{J}_{\text{PH}} = 170$ Hz)

was observed in the reaction of $[\text{HPt}]^+$ with boranes was observed, consistent with the bridging borohydride perhaps playing a role in the reaction.

Reduction of trans- $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_3\text{H}_{14})_2\text{Mn}(\text{CO})_4]/[\text{BF}_4]$ ($[\text{I-E}_2\text{-Mn}]/[\text{BF}_4]$)


Reaction of $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ with 1 equiv NaHBET_3 . To a rapidly stirring solution of 32 mg (0.034 mmol) $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ in ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ was added 34 μL (0.034 mmol) NaHBET_3 (1.0 M in toluene). The solution darkened slightly, and the mixture was transferred to an NMR tube. Spectroscopic analysis revealed conversion to a putative boroxycarbene species (^1H NMR δ 13.81, $^{31}\text{P}\{^1\text{H}\}$ NMR δ 61.0.). This species was not further characterized. When the reaction was run in $\text{THF-}d_8$, only a mixture of starting material and doubly reduced species (see below) was observed, indicating fast disproportionation is operative.

Reaction of $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ with 1 equiv $[\text{HPt}(\text{dmpe})_2]^+$. To a stirring solution of 17.6 mg (0.0191 mmol) $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ was added 12.2 mg $[\text{HPt}][\text{PF}_6]$ partwise as a solid. The mixture was stirred for two minutes before being transferred to a J-Young NMR tube, at which time NMR spectroscopic analysis showed a mixture of the same boroxycarbene as in the preceding reaction, and cation starting material.


Reaction of $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ with 2 equiv NaHBET_3 . To a rapidly stirring solution of 37 mg (0.040 mmol) $[\text{1-E}_2\text{-Mn}][\text{BF}_4]$ in ~ 0.6 mL $\text{THF-}d_8$ was added 80 μL (0.080 mmol, 2 equiv) NaHBET_3 (1.0 M in toluene). The color of the reaction mixture changed from pale yellow to orange over the course of the addition, and became cloudy. The mixture was filtered through a sintered glass filter into an NMR tube, and the resulting spectra revealed

one major asymmetric species. Some impurity, with small, broad resonances, was apparent. Attempts to isolate and purify the material were met with failure, as removal of solvents and redissolution in THF showed marked decomposition. The nature of this decomposition remains unknown. The general structure of the product, containing a C–C bond and *cis*-oriented phosphines, was deduced by multinuclear and multidimensional NMR techniques.

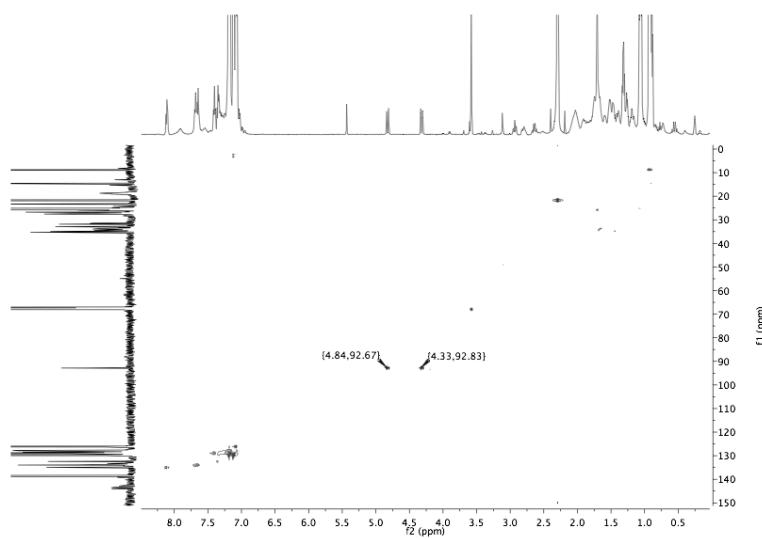

¹H NMR (THF-*d*₈, 600 MHz): δ 0.25 (1H), 0.55 (dd, J = 13.8, 27.7 Hz), 1.1-2.0 (m, overlapping with THF-*d*₈), 2.64 (dd, J = 13.0, 24.7 Hz, 1H), 2.8 (m, 1H), 2.93 (t, J = 13.3 Hz, 1H), 4.32 (d, J_{HH} = 16.6 Hz, 1H), 4.82 (d, J_{HH} = 16.6 Hz, 1H), 7.34 (m, 2H), 7.40 (t, J = 7.1 Hz, 2H), 7.64 (t, J = 8.1 Hz, 2H), 7.68 (m, 2H), 8.11 (t, J = 8.4 Hz, 2H). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ 52.8 (d, J_{PP} = 27.0 Hz), 60.1 (d, J_{PP} = 26.8 Hz). **¹³C{¹H} NMR** (THF-*d*₈, 151 MHz): δ 13.05 (br), 15.38 (br), 23.35, 26.74, 27.25 (br), 27.55, 31.48 (d, J_{PC} = 26.5 Hz), 31.87, 32.95, 33.61 (br), 33.92, 34.13 (d, J_{PC} = 14.2 Hz), 34.45 (br), 34.85, 34.98, 35.20, 92.85 (Mn=C(O–)CH₂O–), 127.77 (d, J_{PC} = 8.0 Hz), 127.94 (d, J_{PC} = 8.3 Hz), 128.13, 128.47 (d, J_{PC} = 8.0 Hz), 128.64, 129.63, 132.45 (d, J_{PC} = 7.4 Hz), 133.93 (d, J_{PC} = 8.2 Hz), 134.20 (d, J_{PC} = 8.7 Hz), 134.92 (d, J_{PC} = 10.5 Hz), 139.15 (d, J_{PC} = 25.9 Hz), 142.99 (d, J_{PC} = 37.0), 143.44 (d, J_{PC} = 20.0 Hz), 143.9 (d, J_{PC} = 38.3 Hz), 229.49 (dd, J_{PC} = 15.0, 17.8 Hz, CO), 231.11 (dd, J_{PC} = 23.6, 30.6 Hz, CO), 331.45 (m, Mn=C(O–)CH₂O–). **IR** (THF). 1935 (m), 1852 (s) cm^{–1}. A broad stretch at 1902 cm^{–1} appeared to be an impurity.

Figure 3.35. ^1H - ^1H gCOSY of $[\mathbf{3}\text{-E}_2\text{-Mn}]^-$.

Figure 3.36. ^1H - ^{13}C gHMBC of $[\mathbf{3}\text{-E}_2\text{-Mn}]^-$.

Figure 3.37. ^1H – ^{13}C gHSQC of $[\mathbf{3}\text{-E}_2\text{-Mn}]^-$.

Reaction of $[\mathbf{1}\text{-E}_2\text{-Mn}][\text{BF}_4]$ with 2 equiv $[\mathbf{HPt}][\text{PF}_6]$. To a stirring ~ 0.6 mL THF- d_8 solution of 27.7 mg (0.030 mmol) was added 38.5 mg (0.060 mmol, 2 equiv) $[\mathbf{HPt}][\text{PF}_6]$ slowly as a solid. The solution darkened from yellow to orange with precipitation. After 30 minutes a mixture of C–C bond formed product $[\mathbf{3}\text{-E}_2\text{-Mn}]^-$, starting cation, and unreacted $[\mathbf{HPt}]^+$ were observed, closely resembling the spectra obtained using NaHBET_3 . Some minor variability in the chemical shifts is expected when changing the cation from Na^+ to $[\mathbf{Pt}]^{2+}$ or $[\mathbf{HPt}]^+$. Interestingly, the reaction did not proceed to completion overnight, possibly because monocationic $[\mathbf{HPt}]^+$ was favored as the countercation over insoluble $[\mathbf{Pt}]^{2+}$.

Reduction of trans- $[(\text{Ph}_2\text{P}(\text{CH}_2)_3\text{B}(\text{C}_8\text{H}_{14})_2\text{Re}(\text{CO})_4]/[\text{BF}_4]$ ($[\mathbf{1}\text{-P}_2]/[\text{BF}_4]$)

Reaction of $[\mathbf{1}\text{-P}_2][\text{BF}_4]$ with 1 equiv NaHBET_3 . A scintillation vial was charged with 40.7 mg (0.0376 mmol) cation $[\mathbf{1}\text{-P}_2][\text{BF}_4]$ and 0.5 mL $\text{C}_6\text{D}_5\text{Cl}$. With rapid stirring, 37.6 μL (0.0376 mmol) NaHBET_3 (1.0 M in toluene) was added dropwise. The colorless solution

turned yellow. The reduced species synthesized *in situ* in this manner was stable for ~ 24 hours, after which time a significant amount of white precipitates had formed. The formyl could be characterized by NMR spectroscopy in the presence of toluene and BEt_3 from the borohydride reagent. **^1H NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 300 MHz): δ 1.36 (br, 12H), 1.7-2.1 (br m, 24H), 2.65 (br, 4H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), (7.0-7.2 m, toluene obscures $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$ peak), 7.5 (m, 8H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 14.09 (s, 1H, Re-CHO). **$^{31}\text{P}\{^1\text{H}\}$ NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ 6.7 (br). **$^{13}\text{C}\{^1\text{H}\}$ NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 125 MHz): 19.4 (br), 20.3, 24.7, 26.4, 28.7 (br), 32.9, 128.6 (t, $\tilde{\jmath}_{\text{PC}} = 4.6$ Hz), 130.3, 132.0 (t, $\tilde{\jmath}_{\text{PC}} = 4.4$ Hz), 136.4 (br m, *i*-Ph), 194.0 (m, Re-CO), 196.4 (m, Re-CO), 282.7 (v. br, Re-CHO).

The solids that precipitate over time are assigned as oligomeric isomers of the same compound. While these solids are insoluble in most common organic solvents, they do dissolve upon addition of pyridine, giving a formyl complex wherein the pendent boranes are bound by pyridine. This species was characterized by NMR, but decomposition ($\sim 80\%$ Re-H after 18 hours) precluded isolation. **^1H NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 300 MHz): δ 1.00 (br, 6H), 1.36 (br, 8H), 1.6-2.1 (br m, 22H), 2.47 (m, 4H), 7.47 (m, 8H), 8.12 (4H, BR_3 -*p*), 15.00 (1H, Re-CHO). Some aryl peaks are obscured by toluene. **$^{31}\text{P}\{^1\text{H}\}$ NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ 6.2.

Reaction of $[\mathbf{1-P}_2][\text{BF}_4]$ with 2 equiv NaHBEt_3 . A variety of hydride sources and conditions were screened, and after workup there were always at least two products. A representative preparation involved dissolving 120 mg (0.110 mmol) cation **[1-P₂][BF₄]** in 2

mL C₆H₅Cl with stirring, followed by dropwise addition of 110 μ L (0.110 mmol, 1 equiv) NaHB₂Et₃ (1.0 M in toluene). The mixture was stirred briefly, then allowed to stand for 10 minutes. After filtration, to the yellow solution was added 38 mg (0.105 mmol, 0.95 equiv) dibenzo-18-crown-6, followed by another (0.110 mmol, 1 equiv) NaHB₂Et₃ (1.0 M in toluene), dropwise by syringe. The clear yellow solution was stirred for two hours, filtered again, and the solvents removed *in vacuo*. After washing with Et₂O, the solids were extracted in THF and the solvents removed *in vacuo*. The crude THF fraction included a number of products, including two doublets in the ¹H NMR at δ 4.63 (\mathcal{J}_{HH} = 17.3 Hz) and 4.78 (\mathcal{J}_{HH} = 16.8 Hz), similar to those observed in other C–C bond-formed products. Isolation of the desired product was unsuccessful, however.

NMR-scale Reaction of [1-P₂][BF₄] with 1 equiv [HPt][PF₆]. Under a nitrogen atmosphere, 28.5 mg (0.026 mmol) cation [1-P₂][BF₄] was dissolved in 0.5 mL C₆D₅Cl in a 10 mL scintillation vial with stirring. Solid [HPt]⁺ (16.9 mg, 0.026 mmol) was added as a solid portionwise. After stirring for ten minutes, the cloudy solution was filtered through microporous glass into an NMR tube, and spectra acquired, showing relatively high conversion to carbene 2-P₂ (spectroscopic details above) in ~90% yield by ³¹P integration.

Reaction of [1-P₂][BF₄] with 2 equiv [HPt][PF₆]. 19.3 mg (0.017 mmol) [1-P₂][BF₄], 22.9 mg (0.0357 mmol, 2 equiv) [HPt]⁺, 4.5 mg (0.017 mmol) 18-crown-6, and 2.9 mg (0.017 mg) NaPF₆ were added to a small vial, and dissolved in C₆D₅Cl. The mixture was transferred to a J-Young NMR tube, and the reaction was monitored by ¹H and ³¹P NMR. After initial formation of carbene 2-P₂, no further reduction was observed over 3

days. The crown ether and NaPF₆ were added in an attempt to favor formation of soluble coupled products. In a separate experiment, only cation [1-P₂][BF₄] and 2 equiv [HPt]⁺ were mixed, and the same results were observed.

Equilibrium Studies of Bis(phosphine) Complexes

Reaction of 2-E₂ with [Pt][PF₆]₂. To a stirring solution of 22.2 mg (0.021 mmol) [1-E₂][BF₄] in ~0.6 mL C₆D₅Cl was added 21 μ L (0.021 mmol) NaHBET₃ (1.0 M in toluene) dropwise by syringe. After stirring for a roughly one minute, the pale yellow solution was transferred to a J-Young NMR tube that had been charged with 16.5 mg (0.021 mmol) [Pt(dmpe)₂][PF₆]₂. The white Pt salt did not appear to dissolve. Monitoring by NMR showed no reaction over 24 hours.

Reaction of 2-M₂ with [1-E₂]⁺. Boroxy carbene 2-M₂ was prepared by addition of solid [HPt][PF₆] (12.4 mg, 0.0194 mmol) to a stirring 0.6 mL C₆D₅Cl solution of 31.3 mg (0.0194 mmol) [1-M₂][B(C₆F₅)₄] and 8 mg (0.075 mmol, 3.75 equiv) NaBF₄. The mixture was transferred to the a J-Young NMR tube, and monitored by multinuclear NMR spectroscopy. After 22 hours, all [1-M₂]⁺ had been converted to 2-M₂ in good yield. Once the reaction had run to completion, the contents of the NMR tube were, under a N₂ atmosphere, filtered through sintered glass onto 20.4 mg (0.0194 mmol) solid [1-E₂][BF₄]. NMR spectroscopy showed only unreacted 2-M₂ and [1-E₂]⁺ over 4 hours.

Reaction of 2-E₂ with [1-M₂]⁺. Boroxy carbene 2-E₂ was prepared by dropwise addition of 21.8 μ L (0.0218 mmol) NaHBET₃ (1.0 M in toluene) to a stirring ~0.6 mL C₆D₅Cl solution of 23.0 mg (0.0218 mmol) [1-E₂][BF₄]. ¹H and ³¹P NMR spectroscopy

showed clean conversion to **2-E₂**. The tube was returned to the glovebox, where it was poured onto 36.6 mg (0.0227 mmol, 1.04 equiv) **[1-M₂]⁺**. Multinuclear NMR spectroscopy revealed complete hydride transfer had occurred, with no **2-E₂** remaining, and instead a mixture of **2-M₂**, unreacted **[1-M₂]⁺**, and **[1-E₂]⁺**. The observed hydride transfer is consistent with the preceding experiment in which the reverse reaction did not proceed to any appreciable extent.

Reaction of 2-E₂ with [1-P₂]⁺. Boroxycarbene **2-E₂** was prepared by dropwise addition of 25.6 μ L (0.0256 mmol) NaHB₃Et (1.0 M in toluene) to a stirring \sim 0.6 mL C₆D₅Cl solution of 27.0 mg (0.0256 mmol) **[1-E₂][BF₄]**. After stirring for 5 minutes after hydride addition, the solution was added to solid **[1-P₂][BF₄]**, and the mixture was transferred to a J-Young NMR tube. After 30 minutes, ¹H and ³¹P{¹H} NMR spectroscopy revealed a mixture of all possible constituents, **[1-E₂]⁺**, **2-E₂**, **[1-P₂]⁺**, and **2-P₂**, in similar quantities. The ³¹P NMR signals of **2-P₂** and **[1-E₂]⁺** were slightly broadened, and the Re-CHO signal of **2-P₂** in the ¹H NMR was significantly broadened, possibly signifying an intermolecular interaction between these species. The precise speciation is unknown, as probably fluxional, involving different species coordinating to the Re-CHO oxygen. Due to the broadness and uncertainty in ³¹P NMR delay times, rigorous integration was not pursued; K_{eq} \sim 1 was obtained by ³¹P NMR integration. The equilibrium mixture was stable for at least 4.5 hours.

Reaction of 2-P₂ with [1-E₂]⁺. Boroxycarbene **2-P₂** was prepared by dropwise addition of 26.4 μ L (0.0264 mmol) NaHB₃Et (1.0 M in toluene) to a stirring \sim 0.6 mL C₆D₅Cl

solution of 28.5 mg (0.0264 mmol) **[1-P₂][BF₄]**. The solution was added to a J-Young NMR tube and multinuclear NMR spectroscopy showed clean conversion to **2-P₂**. The tube was returned to the glovebox, the contents poured onto 27.8 mg (0.0264 mmol) solid **[1-E₂][BF₄]**, and the reaction mixture returned to the NMR tube. After 30 minutes, an equilibrium mixture of all the constituents was achieved (**[1-E₂]⁺**, **2-E₂**, **[1-P₂]⁺**, and **2-P₂**). The spectra were essentially the same as in the preceding reaction, with K_{eq} again roughly 1 (³¹P NMR integration). The equilibrium mixture was stable for at least 3.5 hours.

Reaction of 2-E₂ with [1-Ph₂][BAr^F₄]. A vial was charged with 25.2 mg (0.0239 mmol) **[1-E₂][BF₄]** and ~0.6 mL C₆D₅Cl. With stirring, 15.3 mg (0.0239 mmol) **[HPt][PF₆]** was added as a solid, partwise. The colorless solution turned yellow with precipitation and was stirred for ~10 min, after which time the reaction mixture was added to 40.3 mg (0.0239 mmol) solid **[1-Ph₂][BAr^F₄]**. NMR spectroscopy revealed a mixture of all the possible constituents, in roughly equal parts, with a estimated $K_{eq} \sim 1$. As in the case of **2-P₂**, **2-Ph₂** showed shifted resonances in the ¹H NMR (Re-CHO) and ³¹P NMR, with the ³¹P NMR signal for **[1-E₂]⁺** being broadened, perhaps suggesting some interaction of **2-Ph₂** with one of the pendent boranes.

Reaction of 2-Ph₂ with [1-E₂][BF₄]. To a stirring solution of 41.4 mg (0.0246 mmol) **[1-Ph₂][BAr^F₄]** in C₆D₅Cl was added 24.6 μ L (0.0246 mmol) NaHB₃Et₃ (1.0 M in toluene) dropwise. The mixture turned yellow and was stirred for 5 min, then added to 25.9 mg (0.0246 mmol) **[1-E₂][BF₄]**. The mixture was transferred to a J-Young tube and shaken well. NMR spectroscopy showed a mixture of both Re-CHO species and both cations, in

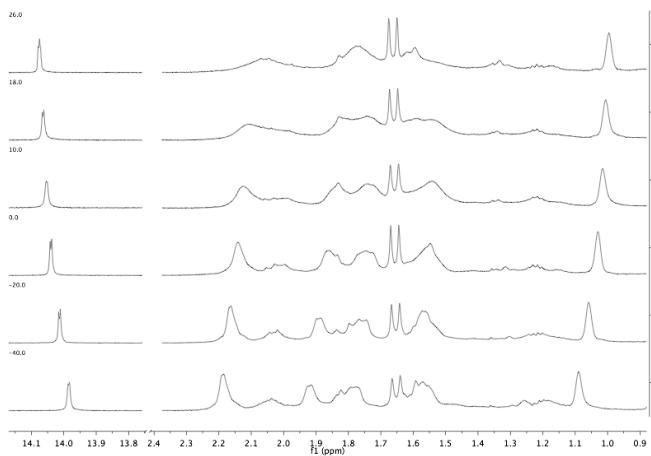
roughly equal amounts, giving a rough $K_{eq} \sim 1$. As in the preceding reaction, the resonances of **2-Ph₂** did not match previous syntheses exactly, suggesting some interaction with the pendent boranes of **[1-E₂]⁺**.

Reaction of 2-E₂ with 2-M₂. Boroxy carbene **2-E₂** was first prepared, by addition of 21.0 mg (0.0327 mmol) solid **[HPt]⁺** to a stirring \sim 0.6 mL C₆D₅Cl solution of 52.8 mg (0.0327 mmol) **[1-M₂][B(C₆F₅)₄]** and 16.0 mg (0.0327 mmol) tetraheptylammonium tetrafluoroborate. The solution was transferred to a J-Young NMR tube, and was allowed to react overnight. A few days later, boroxy carbene **2-E₂** was prepared by dropwise addition of 32.7 μ L (0.0327 mmol) NaHB₃Et₃ (1.0 M in toluene) to a stirring \sim 0.4 mL C₆D₅Cl solution of 34.5 mg (0.0327 mmol) **[1-E₂][BF₄]**. The preformed **2-M₂** was returned to the glovebox (NMR spectroscopy showed no decomposition during the days after preparation), and the contents of the tube were poured onto the solution containing **2-E₂**. The reaction mixture was filtered through sintered glass into a J-Young NMR tube, and multinuclear NMR spectra were obtained, showing high conversion to the further reduced confused alkyl **[5]⁻** and cation **[1-E₂]⁺** (resulting from hydride transfer from **2-E₂**). A small amount of carbene **2-E₂** remained, along with small amounts of residual **[HPt]⁺** from the synthesis of **2-M₂**.

Reduction of [(PPh₃)Re(CO)₅][OTf] ([1-Ph₁][OTf])

Reaction of [1-Ph₁][OTf] with 1 equiv [HPt][PF₆]. A small vial was charged with 16.7 mg (0.0225 mmol) **[1-Ph₁][OTf]** and \sim 0.6 mL C₆D₅Cl. With stirring, 14.4 mg (0.0225 mmol) **[HPt][PF₆]** was slowly added, and the reaction mixture transferred to a J-

Young NMR tube. After 20 minutes, ^1H NMR spectroscopy revealed a mixture of \sim 2:1 formyl:hydride, which converted almost entirely to hydride after 1.5 hours (\sim 1:21 formyl:hydride). All formyl was consumed after 4 hours.


Reaction of [1-Ph₁][BAr^F₄] with 1 equiv [HPt][BAr^F₄]. A J-Young tube was charged with 31.3 mg (0.0215 mmol) **[1-Ph₁][BAr^F₄]**, 29.2 mg (0.0215 mmol) **[HPt][BAr^F₄]**, and \sim 0.6 mL C₆D₅Cl. Monitoring by NMR spectroscopy revealed no detectable reaction after 15 minutes, and only partial conversion to **2-Ph₁** after 3 hours. After 30 hours, complete conversion to the Re hydride *trans*-(PPh₃)Re(CO)₄H [^1H NMR δ -4.65 (d, $J_{\text{PH}} = 22.5$ Hz); $^{31}\text{P}\{^1\text{H}\}$ NMR δ 15.7] was observed.

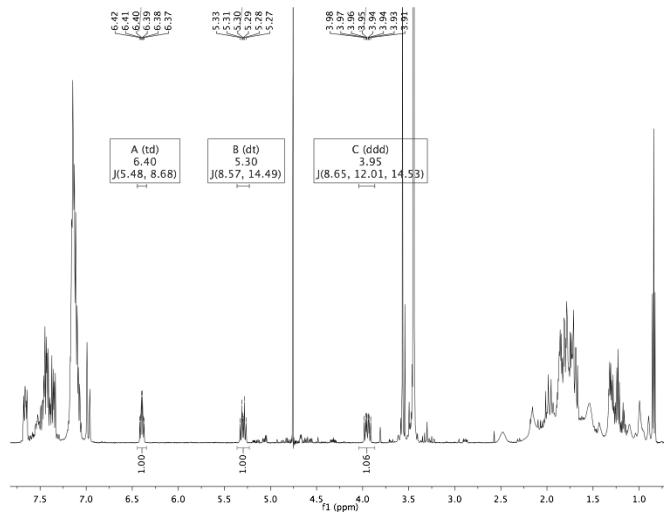
Reduction of [(Ph₂PCH₂B(C₈H₁₄))Re(CO)₅]/[OTf] ([1-M₁]/[OTf])

Reaction of [1-M₁][OTf] with 1 equiv [HPt][PF₆]. A 20 mL scintillation vial was charged with 99.1 mg (0.124 mmol) **[1-M₁][OTf]** and 2 mL C₆H₅Cl. With rapid stirring, 79.8 mg (0.124 mmol) **[HPt][PF₆]** was added in \sim 10 mg portions slowly over \sim 5 minutes. The mixture was allowed to stir overnight, at which point it was filtered through celite (washing with 1 mL C₆H₅Cl and 2 mL pentane), and the solvents were removed under vacuum. The oily residue was triturated briefly with pentane and the solvents were again removed under vacuum. The white solids were extracted with 5 mL pentane, filtered, and the solvents removed under vacuum to give 70 mg (87%) \sim 95% pure **2-M₁**. The side product was an Re-CH₂-containing species (δ 5.18 d, $J_{\text{PH}} = 6.3$ Hz) which had spectral characteristics (^{31}P NMR, δ -8.9 (1P), 2.3 (1P)) similar to more completely characterized dirhenium alkyl-dioxycarbene species **10-E₁**. **^1H NMR** (C₆D₆, 300 MHz): δ 1.16 (br, 2H,

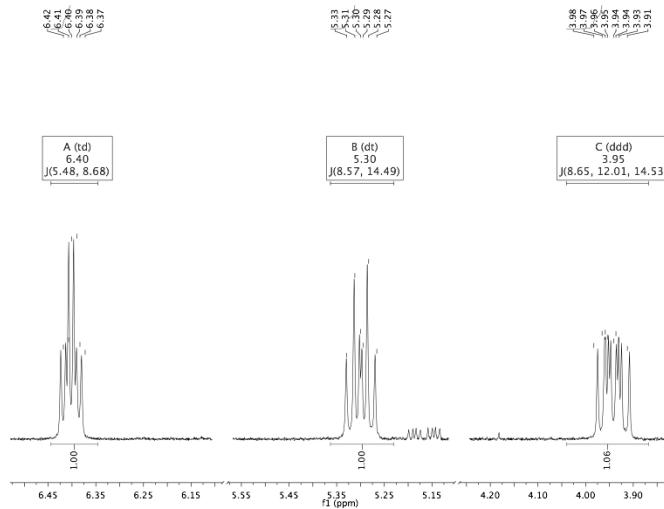
Ph₂PCH₂B(C₈H₁₄)), 1.3-1.8 (br, Ph₂PCH₂B(C₈H₁₄)), 1.65 (d, $\tilde{J}_{\text{PH}} = 12.9$ Hz, Ph₂PCH₂B(C₈H₁₄)), 2.02 (br, Ph₂PCH₂B(C₈H₁₄)), 2.30 (br, Ph₂PCH₂B(C₈H₁₄); integration of all broad peaks from 1.3-2.6 is 16H as expected), 6.89-6.98 (m, 6H, Ph₂PCH₂B(C₈H₁₄)), 7.25-7.32 (m, 4H, Ph₂PCH₂B(C₈H₁₄)), 13.72 (d, J_{PH} = 2.5 Hz, 1H, Re-CHO). **³¹P{¹H}** **NMR** (C₆D₆, 121 MHz): δ -0.2. **¹³C{¹H}** **NMR** (C₆D₆, 125 MHz): δ 14.76 (br), 25.41 (br), 26.90 (br), 31.54 (br), 32.49 (br), 128.77 (d, $\tilde{J}_{\text{PC}} = 9.9$ Hz), 130.31 (d, $\tilde{J}_{\text{PC}} = 1.9$ Hz), 132.02 (d, $\tilde{J}_{\text{PC}} = 10.4$ Hz), 137.75 (d, $\tilde{J}_{\text{PC}} = 46.8$ Hz), 186.93 (br, eq. COs), 189.80 (br, axial CO), 282.48 (br, Re-CHO). **¹¹B** **NMR** (C₆D₅Cl, 160 MHz): δ 11.2. **IR** (heptane): ν_{CO} 2096 (m), 2003 (s), 1975 (s), 1945 (m), ν_{CHO} 1517 cm⁻¹. **IR** (CH₂Cl₂): 2097 (m), 2000 (s), 1972 (s), 1942 (sh), 1507 cm⁻¹.

Variable temperature NMR experiments were undertaken as some of the -B(C₈H₁₄) resonances were broad. As the probe was cooled, the broad -B(C₈H₁₄) resonances sharpened significantly but otherwise remained relatively featureless. The carbene proton shifted slightly with temperature, although the coupling constant remained \sim 2 Hz at all temperatures. The broad ¹¹B NMR resonance disappeared at low temperatures. The broadening could be due to B-O de-coordination, as further evidenced by the reactivity of **2-M₁** with pyridine (see below).

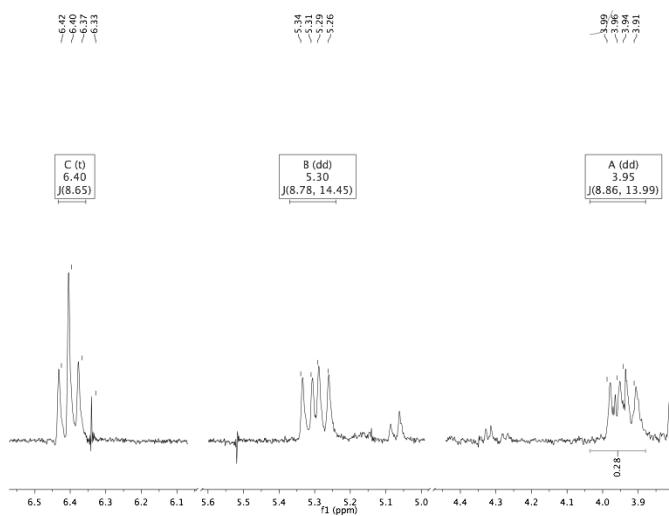
Figure 3.38. Variable temperature ^1H NMR of **2-M₁**.

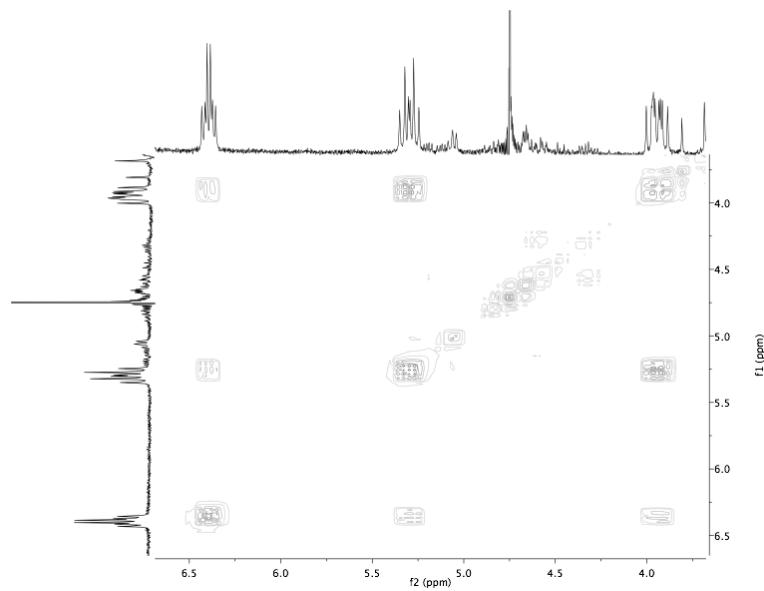

Decomposition of **2-M₁ to **11**.** While searching for ideal conditions to reduce **[1-M₁][OTf]**, a J-Young tube was charged with 19.3 mg (0.0242 mmol) **[1-M₁][OTf]**, 4.0 mg (0.031 mmol) $\text{NaHB}(\text{OMe})_3$, and \sim 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$. The mixture turned yellow and was monitored by NMR spectroscopy, which showed conversion to two products in a \sim 2:1 ratio, with the major product being the boroxycarbene **2-M₁**. The product distribution was largely stable for weeks, but after 1 month NMR spectra showed nearly complete consumption of the carbene and formation of a new species containing three diagnostic multiplets at 3.94, 5.30, and 6.39. A separate reaction was carried out in $\text{C}_6\text{H}_5\text{Cl}$ under similar conditions, from which the solvents were removed under vacuum, followed by extraction with pentane and crystallization from slow pentane evaporation. Crystals grew only after a few months, and turned out to be the decomposition product. Although the reaction was fairly clean, the undesired product was not isolated or purified, and was only characterized as a mixture in the NMR experiments and by X-Ray crystallography. Partial NMR spectroscopic details: **$^1\text{H NMR}$** ($\text{C}_6\text{D}_5\text{Cl}$, 500 MHz): 3.95 (ddd, $\mathcal{J}_{\text{HH}} = 8.7$ Hz, 14.5 Hz, $\mathcal{J}_{\text{PH}} = 12.0$ Hz, $\text{Ph}_2\text{PCH}_2\text{C}(\text{O}^-)(\text{H})-\text{Re}$), 5.30 (dt, $\mathcal{J}_{\text{HH}} = 8.6$ Hz, $\mathcal{J}_{\text{PH}} = 14.5$ Hz,

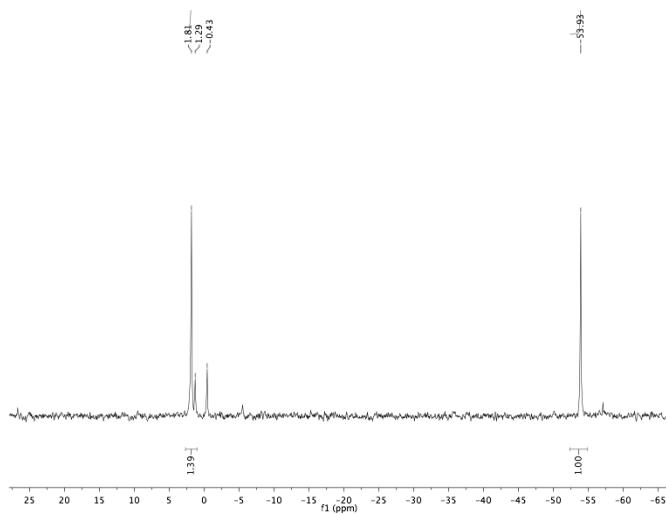
Ph₂PCH₂C(O-)(H)-Re), 6.40 (td, $J_{HH} = 8.7$ Hz, $J_{PH} = 5.5$, Ph₂PCH₂C(O-)(H)-Re).


³¹P{¹H} NMR (C₆D₅Cl, 121 MHz): -54.0 (1P), 1.8 (1P, 4-membered ring). ¹³C{¹H}

NMR (C_6D_5Cl , 75 MHz): 44.13 ($\delta_{PC} = 6.3$ Hz, $Ph_2PCH_2C(O-)(H)-Re$), 52.24 ($\delta_{PC} = 39.3$


Hz, Ph₂PCH₂C(O⁻)(H)-Re), 210.20 (d, $\mathcal{J}_{PC} = 9.4$ Hz, Re=C(O⁻)O-C(R)H-Re).


Figure 3.39. ^1H NMR of 11.


Figure 3.40. ^1H NMR of **11** (blow-up of cyclic alkyl region).

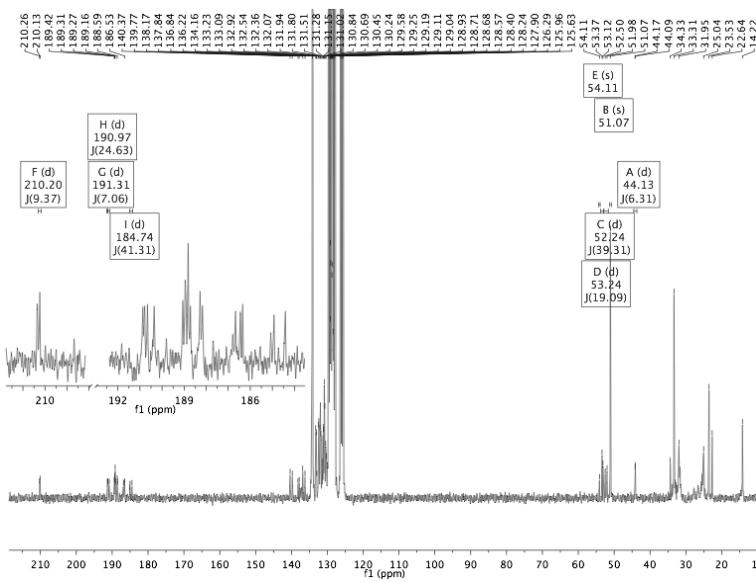

Figure 3.41. $^1\text{H}\{^{31}\text{P}\}$ NMR of **11**.

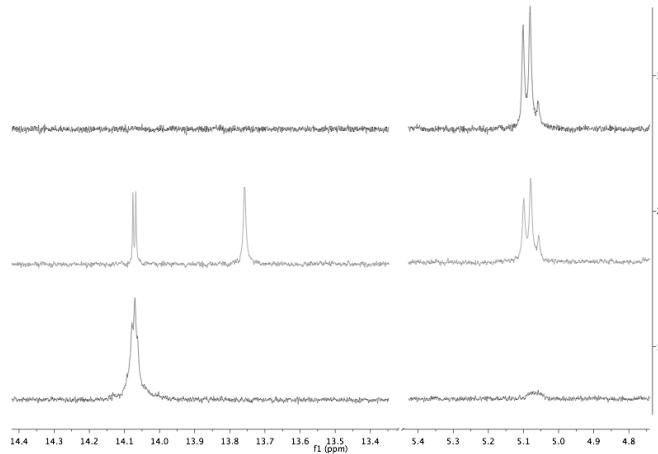
Figure 3.42. ^1H - ^1H gCOSY of **11**.

Figure 3.43. $^{31}\text{P}\{^1\text{H}\}$ NMR of **11**.

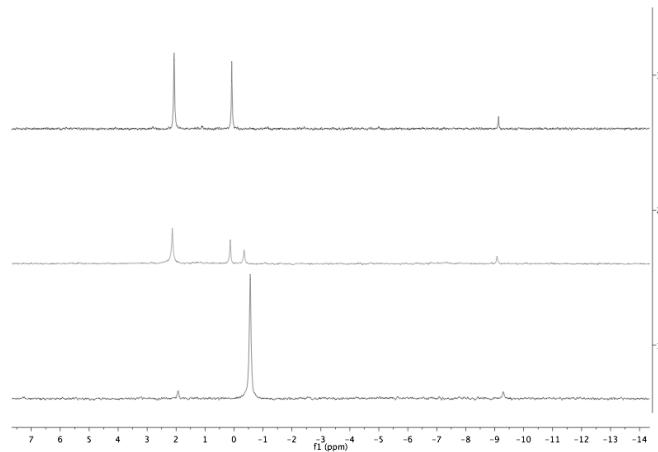
Figure 3.44. $^{13}\text{C}\{^1\text{H}\}$ NMR of **11**.

Reaction of $[1\text{-M}_1][\text{BAr}^{\text{F}}_4]$ with $[\text{HPPt}][\text{BAr}^{\text{F}}_4]$. Reaction of 2-M₁ with pyridine.

A small vial was charged with 38.0 mg (0.0254 mmol) **[1-M₁][BAr^F₄]** and ~0.6 mL C₆D₅Cl. With stirring, 34.5 mg (0.0254 mmol) **[HPt][BAr^F₄]** was added as a solid, and the mixture was transferred to a J-Young NMR tube and monitored by NMR spectroscopy. After about 30 minutes, only a small resonance for **2-M₁** was observed. The reaction slowly


proceeded over \sim 24 hours, eventually consuming all $[\mathbf{HPt}]^+$ and affording spectra matching previous syntheses of **2-M₁** (using OTf/PF₆ salts).

To the tube containing **2-M₁** was added 4 μ L pyridine (0.0503 mmol, 2 equiv), and the tube was sealed and shaken to mix. NMR spectroscopy revealed consumption of the carbene with formation of a new bridging alkyl species. Multinuclear NMR spectroscopy was very similar to analytically characterized **10-E₁** (see below), confirming the analogous structure **10-M₁•py**. For **10-M₁•py**: **¹H NMR** (C₆D₆, 300 MHz): δ 0.92 (br, 2H, Ph₂PCH₂B(C₈H₁₄)), 1.17 (br, 4H, Ph₂PCH₂B(C₈H₁₄)), 1.71 (br m, 6H, Ph₂PCH₂B(C₈H₁₄)), 1.81 (d, $J_{PH} = 13.0$ Hz, 2H Ph₂PCH₂B(C₈H₁₄)), 1.9-2.2 (br m, 12H, Ph₂PCH₂B(C₈H₁₄)), 2.32 (d, $J_{PH} = 11.5$ Hz, 2H, Ph₂PCH₂B(C₈H₁₄)), 2.39 (br, 4H, Ph₂PCH₂B(C₈H₁₄)), 5.05 (d, $J_{PC} = 5.7$ Hz, 2H, Re-CH₂O-), 6.22 (br, 2H, pyridine), 6.55 (br, 1H, pyridine), 6.9-7.0 (m, 12H, Ph), 7.31 (m, 4H, Ph), 7.48 (m, 4H, Ph), 7.72 (br, 2H, pyridine). **³¹P{¹H} NMR** (C₆D₆, 121 MHz): δ -4.4 (1P), 2.4 (1P). **¹³C{¹H} NMR** (C₆D₆, 126 MHz): 15.08 (d, $J_{PC} = 11.8$ Hz, Ph₂PCH₂B(C₈H₁₄)), 24.41 (Ph₂PCH₂B(C₈H₁₄)), 25.57 (Ph₂PCH₂B(C₈H₁₄)), 26.22 (br, Ph₂PCH₂B(C₈H₁₄)), 27.18 (d, $J_{PC} = 10.6$ Hz, Ph₂PCH₂B(C₈H₁₄)), 30.45 (Ph₂PCH₂B(C₈H₁₄)), 32.01 (Ph₂PCH₂B(C₈H₁₄)), 32.85 (Ph₂PCH₂B(C₈H₁₄)), 33.16 (Ph₂PCH₂B(C₈H₁₄)), 54.39 (d, $J_{PC} = 6.1$ Hz, Re-CH₂O-C(O)-Re), 125.07 (pyridine), 128.34 (d, $J_{PC} = 9.3$ Hz, *m*-Ph₂PCH₂B(C₈H₁₄)), 128.64 (d, $J_{PC} = 9.8$ Hz, *m*-Ph₂PCH₂B(C₈H₁₄)), 129.85 (d, $J_{PC} = 1.9$ Hz, *p*-Ph₂PCH₂B(C₈H₁₄)), 130.00 (d, $J_{PC} = 2.1$ Hz, *p*-Ph₂PCH₂B(C₈H₁₄)), 132.35 (d, $J_{PC} = 10.4$ Hz, *o*-Ph₂PCH₂B(C₈H₁₄)), 132.47 (d, $J_{PC} = 10.0$ Hz, *o*-Ph₂PCH₂B(C₈H₁₄)), 137.36 (d, $J_{PC} = 42.1$ Hz, *ipso*-Ph₂PCH₂B(C₈H₁₄)), 138.77 (d, $J_{PC} = 46.1$ Hz, *ipso*-Ph₂PCH₂B(C₈H₁₄)), 139.39 (pyridine), 145.85 (pyridine), 184.89 (d, $J_{PC} =$


41.7 Hz, CO *trans* to P), 187.82 (d, $\tilde{\gamma}_{PC}$ = 8.5 Hz, 2 CO), 188.98 (d, $\tilde{\gamma}_{PC}$ = 45.5 Hz, CO *trans* to P), 189.41 (d, $\tilde{\gamma}_{PC}$ = 8.4 Hz, CO), 189.81 (d, $\tilde{\gamma}_{PC}$ = 6.7 Hz, CO), 191.08 (d, $\tilde{\gamma}_{PC}$ = 9.0 Hz, 2 CO), 211.60 (d, γ_{PC} = 9.4 Hz, Re—CH₂O—C(O)—Re). **IR** (C₆D₆): ν_{CO} 2095 (m), 2082 (m), 1997 (br s), 1960 (br s), 1935 (br s) cm⁻¹.

Reaction of **2-M₁ with **2-P₁** (Crossover Experiment).** To a stirring \sim 0.6 mL C₆D₅Cl solution of 19.3 mg (0.0240 mmol) **[1-M₁][OTf]** was added 15.6 mg (0.0240 mmol) **[HPt]⁺** partwise as a solid. The solution was transferred to a J-Young NMR tube, and showed \sim 90% conversion to **2-M₁** by NMR spectroscopy. The side product was the bridging alkyl as discussed in the synthesis of **2-M₁**. Meanwhile, **2-P₁** was prepared by addition of 15.6 mg (0.0240 mmol) solid **[HPt]⁺** to 20.0 mg (0.024 mmol) **[1-P₁][OTf]** with stirring. After one minute of stirring, the contents of the tube containing **2-M₁** were poured into the vial containing **2-P₁**, and the reaction mixture was filtered into a J-Young NMR tube. After \sim 20 minutes, a mixture of both Re—CHO species and a bridging alkyl-metallocester species were observed. After 3 hours, no Re—CHO species remained, and the major species (\sim 90%) was identified by ¹H—³¹P gHMBC NMR as **10-M₁P₁**, with the minor product being the initially formed impurity containing only 1C ligands. The 2-D NMR shows correlation of the CH₂ group to the ³¹P signal at 0.1, which also correlates to two multiplets in the ¹H NMR at 2.46 and 1.56, belonging to the **P** ligand, and confirming that the CH₂ is bound the same metal as the **P** ligand. The other ³¹P signal of the major species and the impurity overlap at 2.1 ppm (the amount of impurity stayed roughly the same through the reaction). This resonance correlates to Ph protons and a doublet at 1.75, consistent with the other Re of both bimetallic species being ligated by **M**. As discussed in

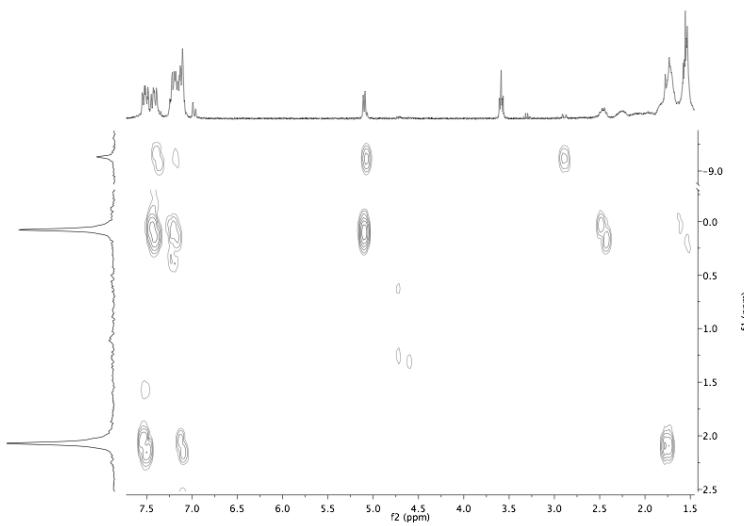

the text, this assignment allows for the mechanistic pathway of formation of the bridging alkyl to be identified as nucleophilic attack by oxygen.

Figure 3.45. ^1H NMR time course. Bottom spectrum is **2-M₁** before addition of **2-P₁** (poor shimming due to solid Pt²⁺ salts formed during reaction). Middle spectrum is \sim 20 minutes after addition of **2-P₁** (after filtration). Top spectrum is upon completion of the reaction.

Figure 3.46. ^1H NMR time course. Bottom spectrum is **2-M₁** before addition of **2-P₁**. Middle spectrum is \sim 20 minutes after addition of **2-P₁** (after filtration). Top spectrum is upon completion of the reaction.

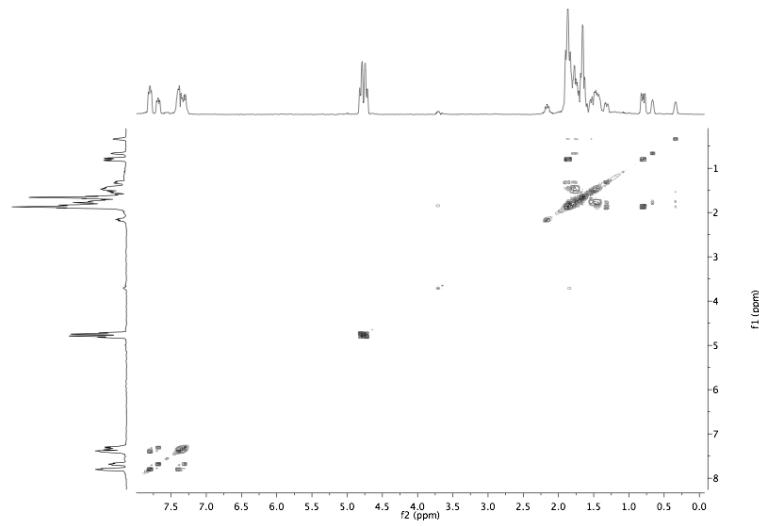
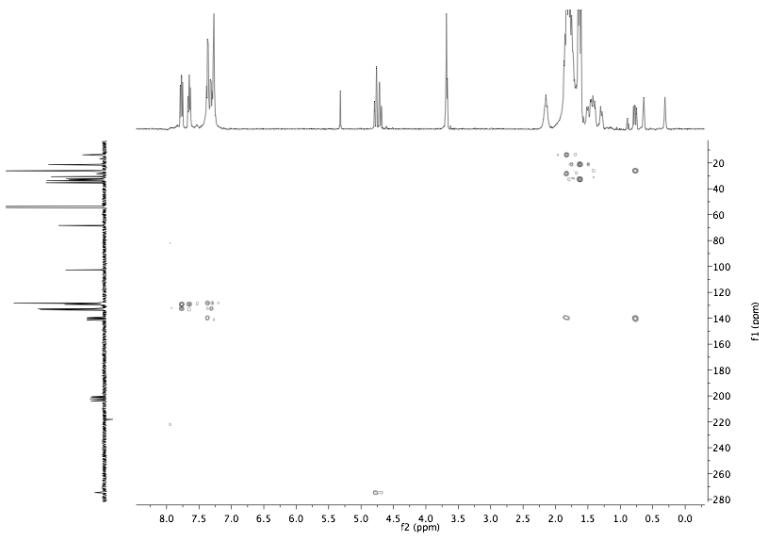
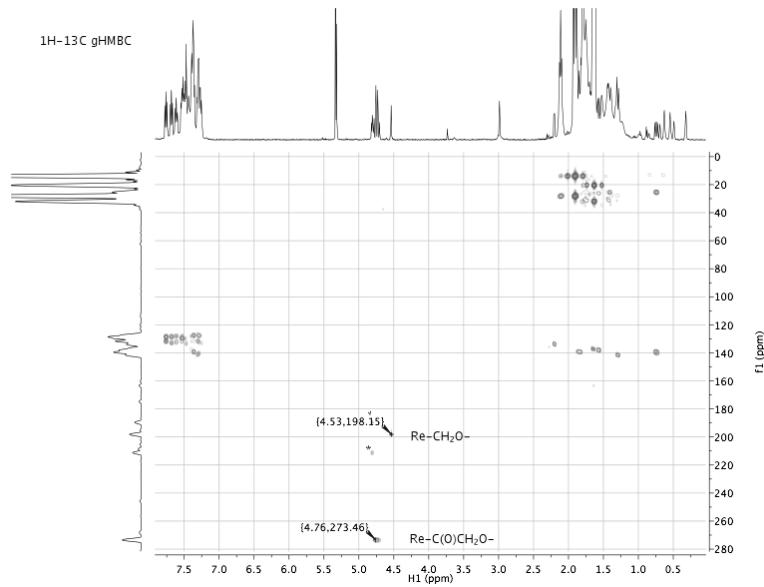
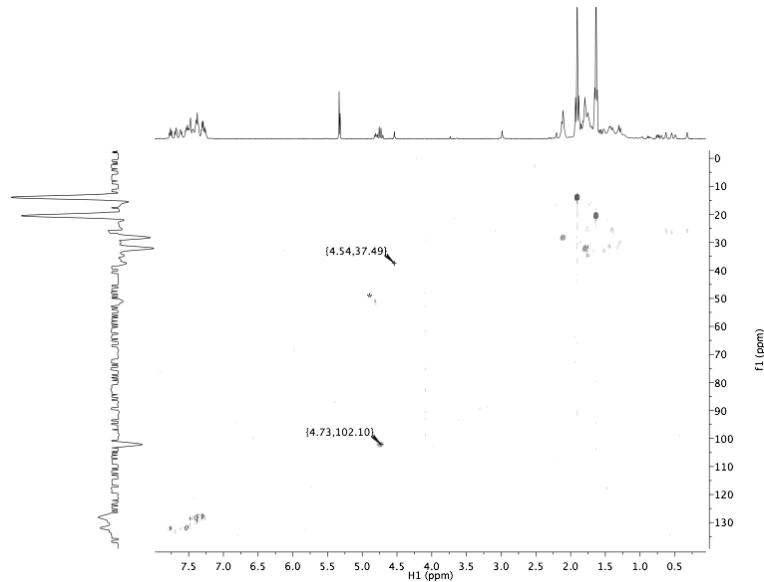


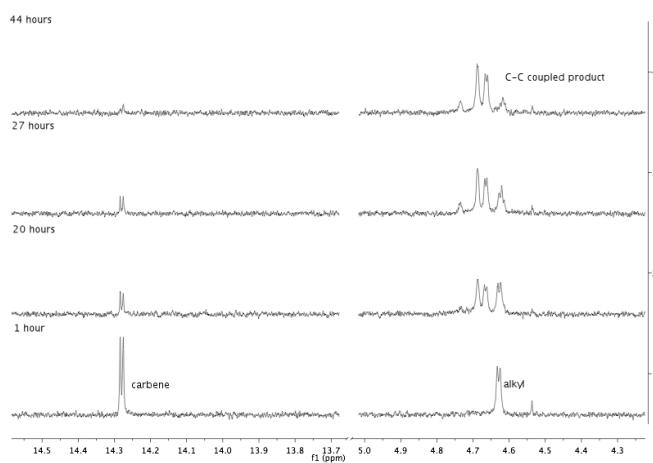
Figure 3.47. ^1H – ^{31}P gHMBC NMR confirming the product as **10-M₁P₁**.


Reduction of $[(\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_5]\text{[OTf]}$ ([1-M₁][OTf]) with 2 equiv hydride. A number of conditions, including changes in hydride source, solvent, anion, and countercation were varied. The results were generally similar; depending on the countercation of the product ($[\text{HPt}]^+$, $[\text{Pt}]^{2+}$, etc) the peaks shifted subtly, including the Re–C(O)CH₂O– group, the two doublets of which were sometimes more well resolved than others (moving to a singlet with Na^+ present). Typical procedure using two equiv $[\text{HPt}]\text{[PF}_6]$: to a stirring \sim 0.6 mL C₆D₅Cl solution of 26.5 mg (0.0333 mmol) **[1-M₁][OTf]** was added 21.3 mg (0.0333 mmol, 1 equiv) $[\text{HPt}]\text{[PF}_6]$ partwise as a solid. The reaction was allowed to stir for 15 minutes, at which point the reaction mixture was filtered into a small vial charged with another 21.3 mg (0.0333 mmol, 1 equiv) of $[\text{HPt}]\text{[PF}_6]$. Despite measuring 1 equiv of hydride, \sim 2 equiv was actually delivered, as the filtration left some carbene behind. The mixture was then transferred to a J-Young tube, and monitored by multinuclear NMR spectroscopy. After 20 minutes, carbene **2-M₁** was essentially the only Re species, but after 2.5 hours a mixture of **2-M₁**, and two new species were observed,

identified as a Re alkyl and as the migratory insertion product $[\mathbf{3}\text{-M}_1]^-$. After 2.5 hours, there was more alkyl present than the final product (^1H NMR δ 5.14 (d, $J_{\text{PH}} = 1.9$ Hz); $^{31}\text{P}\{^1\text{H}\}$ NMR δ 3.4). After 24 hours, the starting carbene had been almost entirely consumed, and the major species was the acyl. After 48 hours, the reaction was complete, with only the acyl and residual $[\mathbf{HPt}]^+$ remaining. 2D NMR experiments were performed on a reaction carried out in CD_2Cl_2 , which contained a mixture of $[\mathbf{3}\text{-M}_1]^-$, the alkyl intermediate, and small amounts of bridging alkyl impurities. Details of the crucial correlations that led to the structural assignment of the products are supplied by the appropriate figures. Typical procedure using NaHBEt_3 : To a stirring ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ solution of 21.1 mg (0.0265 mmol) $[\mathbf{1}\text{-M}_1]\text{[OTf]}$ was added 17.0 mg (0.0265 mmol) $[\mathbf{HPt}]\text{[PF}_6]$ slowly as a solid. The mixture turned yellow with precipitation while it was allowed to stir for 10 minutes. After 10 minutes, the mixture was filtered through sintered glass, and 26.5 μL NaHBEt_3 (1.0 M in toluene) was added dropwise. Use of the stronger hydride source led to a much faster reaction, with complete conversion to in 2.5 hours. The ^1H and ^{31}P resonances were at approximately the same chemical shift, but were dramatically broadened relative to the $[\mathbf{HPt}]^+$ reactions. Addition of pyridine directly following NaHBEt_3 (in a separate experiment) led to a moderate decrease in reaction rate, and a sharpening of the signals, suggesting BEt_3 is leading to broadening, and perhaps rate enhancement. Single crystals suitable for X-Ray diffraction were grown from this latter experiment, from a THF/pentane mixture at -35 °C. Characterization of acyl product $[\mathbf{3}\text{-M}_1]^-$: **1H NMR** (mix of $[\mathbf{Pt}]^{2+}$ and $[\mathbf{HPt}]^+$ salts, which obscure some $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$ resonances, THF- d_8 , 600 MHz): δ 0.43 (br, 1H, $\text{Ph}_2\text{PCH}_2\text{B}(\text{C}_8\text{H}_{14})$), 0.63 (br, 1H,


Ph₂PCH₂B(C₈H₁₄)), 0.71 (dd, $\tilde{J}_{\text{PH}} = 9.8$ Hz, $\tilde{J}_{\text{HH}} = 14.4$ Hz, 1H, Ph₂PCH₂B(C₈H₁₄)), 1.29 (m, 1H), 1.37-1.43 (m, 3H), 1.53 (m, 1H), 4.64 (dd, $\tilde{J}_{\text{PH}} = 1.9$ Hz, $\tilde{J}_{\text{HH}} = 15.1$ Hz, 1H, Re-C(O)CH₂O-), 4.71 (d, $\tilde{J}_{\text{HH}} = 15.0$ Hz, 1H, Re-C(O)CH₂O-), 7.17-7.25 (m, 4H, Ph), 7.30 (m, 2H, Ph), 7.69 (m, 2H, Ph), 7.75 (m, 2H, Ph). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ – 5.9 ($\tilde{J}_{\text{PtP}} = 2214$ Hz, [HPt]⁺), 34.9 ($\tilde{J}_{\text{PtP}} = 2184$ Hz, [Pt]²⁺), 38.8 (s, Re). **¹³C{¹H} NMR** (CD₂Cl₂, 126 MHz): δ 13.79 (br, [Pt(Me₂PCH₂CH₂PM₂)₂]²⁺), 21.34 (m, [HPt(Me₂PCH₂CH₂PM₂)₂]⁺), 26.14 (Ph₂PCH₂B(C₈H₁₄)), 26.37 (br, overlapping (Ph₂PCH₂B(C₈H₁₄)), 28.41 (br, [Pt(Me₂PCH₂CH₂PM₂)₂]²⁺), 30.61 (Ph₂PCH₂B(C₈H₁₄)), 32.21 (Ph₂PCH₂B(C₈H₁₄)), 32.88 (m, [HPt(Me₂PCH₂CH₂PM₂)₂]⁺), 33.78 (Ph₂PCH₂B(C₈H₁₄)), 35.38 (Ph₂PCH₂B(C₈H₁₄)), 102.67 (ReC(O)CH₂O-), 128.38 (d, $\tilde{J}_{\text{PC}} = 9.4$ Hz, *m*-Ph₂PCH₂B(C₈H₁₄)), 128.40 (d, $\tilde{J}_{\text{PC}} = 9.3$ Hz, *m*-Ph₂PCH₂B(C₈H₁₄)), 129.34 (d, $\tilde{J}_{\text{PC}} = 1.5$ Hz, *p*-Ph₂PCH₂B(C₈H₁₄)), 129.53 (d, $\tilde{J}_{\text{PC}} = 1.3$ Hz, *p*-Ph₂PCH₂B(C₈H₁₄)), 132.63 (d, $\tilde{J}_{\text{PC}} = 11.2$ Hz, *o*-Ph₂PCH₂B(C₈H₁₄)), 133.49 (d, $\tilde{J}_{\text{PC}} = 10.7$ Hz, *o*-Ph₂PCH₂B(C₈H₁₄)), 139.78 (d, $\tilde{J}_{\text{PC}} = 40.5$ Hz, *ipso*-Ph₂PCH₂B(C₈H₁₄)), 141.17 (d, $\tilde{J}_{\text{PC}} = 39.2$ Hz, *ipso*-Ph₂PCH₂B(C₈H₁₄)), 200.79 (d, $\tilde{J}_{\text{PC}} = 53.3$ Hz, CO *trans* to P), 202.26 (d, $\tilde{J}_{\text{PC}} = 7.6$ Hz, CO), 203.87 (d, $\tilde{J}_{\text{PC}} = 8.3$ Hz, CO), 274.74 (d, $\tilde{J}_{\text{PC}} = 12.0$ Hz, ReC(O)CH₂O-). **¹¹B NMR** (CD₂Cl₂, 160 MHz): δ 6.5 (br). **IR** (CH₂Cl₂): ν_{CO} 1997 (s), 1906 (s), 1861 (s), $\nu_{\text{C=O}}$ 1615 (m). **HRMS (TOF MS ES⁻)**: Calcd for C₂₆H₂₈BO₅PRE, 649.1311. Found, 649.1325.


Figure 3.48. ^1H – ^1H gCOSY of $[\mathbf{3}\text{-M}_1]^-$.


Figure 3.49. ^1H – ^{13}C gHMBC of $[\mathbf{3}\text{-M}_1]^-$.

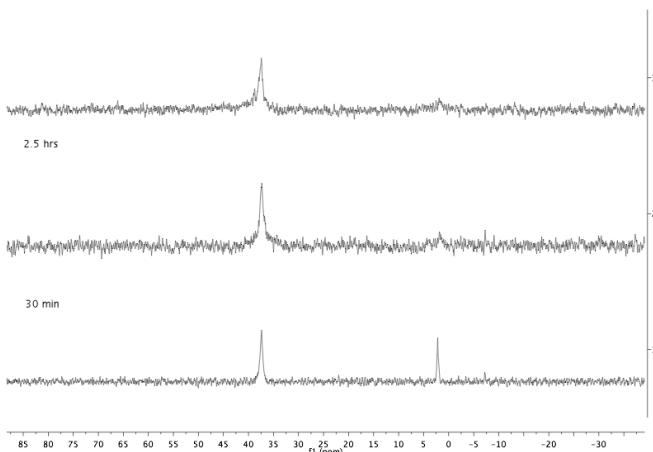
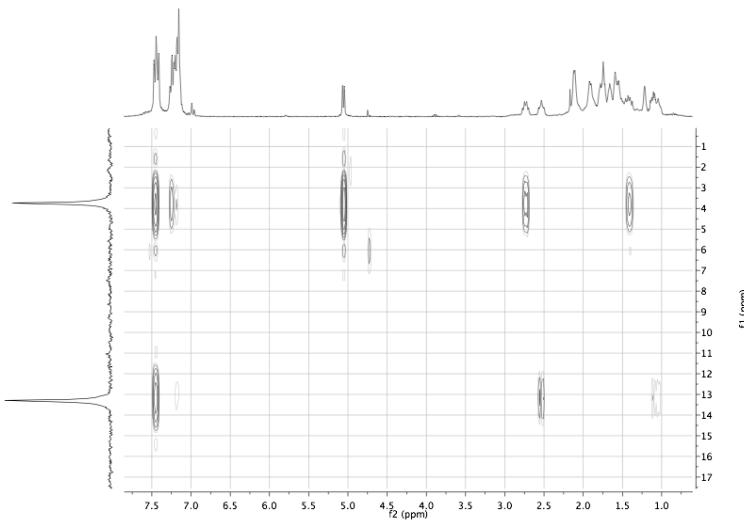

Figure 3.50. ^1H - ^{13}C gHMBC during reaction of $[\mathbf{1-M}_1]^+$ with $[\mathbf{HPt}]^+$. Mixture of boroxyalkyl, $[\mathbf{3-M}_1]^-$; bridging alkyl impurity marked with star.

Figure 3.51. ^1H - ^{13}C gHSQC during reaction of $[\mathbf{1-M}_1]^+$ with $[\mathbf{HPt}]^+$. Mixture of boroxyalkyl, $[\mathbf{3-M}_1]^-$; bridging alkyl impurity marked with star.

Figure 3.52. Time course of reaction of $[1\text{-M}_1]^+$ with $[\text{HPt}]^+$ (2 equiv $[\text{HPt}]^+$ in $\text{THF}-d_8$).


Figure 3.53. Time course of reaction of $[1\text{-M}_1]^+$ with $[\text{HPt}]^+$ (1 equiv $[\text{HPt}]^+$, 1 equiv NaHBET_3).

Reductions of $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_5]/[\text{OTf}]$ ($[1\text{-E}_1]/[\text{OTf}]$)

Reaction of $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_5]\text{[OTf]}$ with $[\text{HPt}]\text{[PF}_6]$.

To a stirring solution of 27.5 mg (0.034 mmol) $[1\text{-E}_1]\text{[OTf]}$ in ~ 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ was added 24.0 mg (0.037 mmol) $[\text{HPt}(\text{dmpe})_2]\text{[PF}_6]$ as a solid in small portions. After stirring for a minute, the reaction mixture was added to a J-Young NMR tube. After 20 minutes, essentially quantitative conversion to a new species was observed, identified as

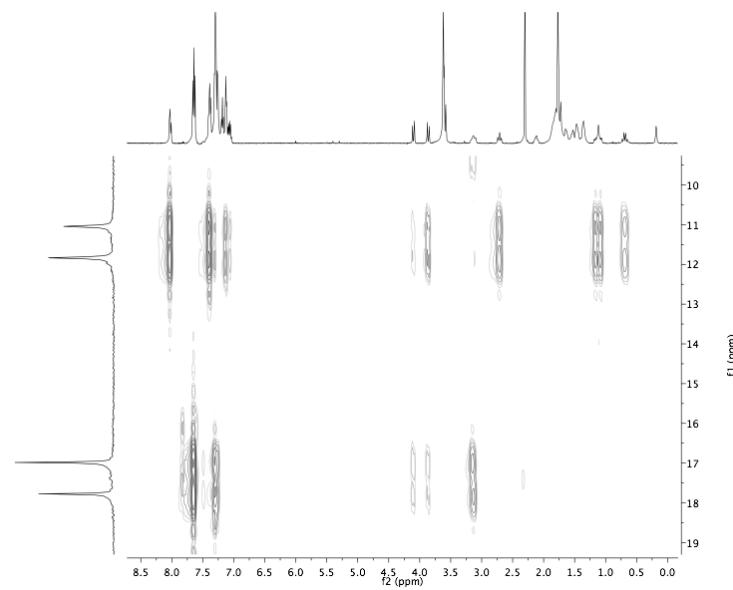
dinuclear bridging alkyl-dioxycarbene **10-E₁**. Filtration followed by removal of solvents gave analytically pure white solids. **¹H NMR** (600 MHz, C₆D₅Cl): δ 1.04-1.11 (m, 4H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.21 (br, 2H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.41 (m, 2H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.53-1.58 (m, 6H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.65 (br, 2H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.70-1.77 (m, 6H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.90 (m, 4H, Ph₂PCH₂CH₂B(C₈H₁₄)), 2.11 (m, 6H, Ph₂PCH₂CH₂B(C₈H₁₄)), 2.54 (m, 2H, Ph₂PCH₂CH₂B(C₈H₁₄)), 2.73 (m, 2H, Ph₂PCH₂CH₂B(C₈H₁₄)), 5.05 (d, $J_{\text{PH}} = 6.9$ Hz, 2H, Re-CH₂O-), 7.14-7.20 (m, 8H, Ph₂PCH₂CH₂B(C₈H₁₄)), 7.24 (m, 4H, Ph₂PCH₂CH₂B(C₈H₁₄)), 7.45 (m, 8H, Ph₂PCH₂CH₂B(C₈H₁₄)). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 3.7 (1P), 13.3 (1P). **¹³C{¹H} NMR** (C₆D₅Cl, 125 MHz): 13.95 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 20.59 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 23.16 (Ph₂PCH₂CH₂B(C₈H₁₄)), 23.91 (d, $J_{\text{PC}} = 17.4$ Hz, Ph₂PCH₂CH₂B(C₈H₁₄)), 25.39 (Ph₂PCH₂CH₂B(C₈H₁₄)), 25.87 (d, $J_{\text{PC}} = 27.8$ Hz, Ph₂PCH₂CH₂B(C₈H₁₄)), 26.97 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 31.34 (br, Ph₂PCH₂CH₂B(C₈H₁₄)), 32.78 (Ph₂PCH₂CH₂B(C₈H₁₄)), 33.21 (Ph₂PCH₂CH₂B(C₈H₁₄)), 49.88 (d, $J_{\text{PC}} = 6.6$ Hz, Re-CH₂O-), 128.69 (d, $J_{\text{PC}} = 9.6$ Hz, Ph), 130.51 (d, $J_{\text{PC}} = 24.9$ Hz), 132.17 (d, $J_{\text{PC}} = 9.6$ Hz), 132.21 (d, $J_{\text{PC}} = 9.6$ Hz), 133.49 (d, $J_{\text{PC}} = 44.9$ Hz), 135.59 (d, $J_{\text{PC}} = 46.3$ Hz), 184.98 (d, $J_{\text{PC}} = 44.0$ Hz, CO), 187.23 (d, $J_{\text{PC}} = 8.4$ Hz, CO), 187.68 (d, $J_{\text{PC}} = 6.9$ Hz, CO), 187.69 (d, $J_{\text{PC}} = 7.6$ Hz, CO; overlap with preceding peak leads to one broad doublet), 188.27 (d, $J_{\text{PC}} = 48.2$ Hz, CO), 189.94 (d, $J_{\text{PC}} = 9.4$ Hz, CO), 209.61 (d, $J_{\text{PC}} = 10.5$ Hz, Re-C(O-BR₃)OCH₂-). **IR** (C₆D₅Cl): ν_{CO} , 2090 (w), 2084 (w), 2013 (s), 1997 (s), 1965 (s), 1939 (s) cm⁻¹. **Anal. Calcd.** for C₅₄H₅₈B₂O₁₀P₂Re₂: C, 49.02; H, 4.42. Found: C, 48.74; H, 4.32.

Figure 3.54. ^1H – ^{31}P gHMBC of **10-E₁**.

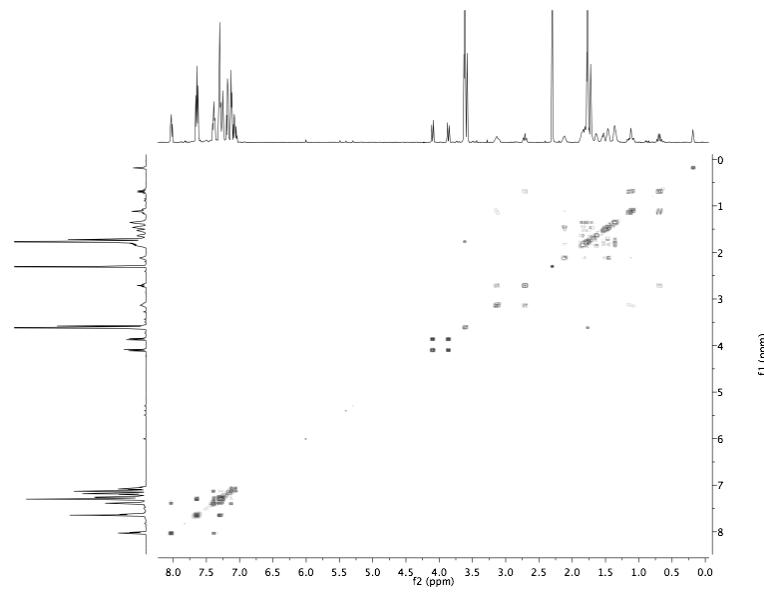
Low temperature monitoring of the reaction of [1-E₁][OTf] with [HPt][PF₆].

A J-Young tube was charged with 25.8 mg (0.0318 mmol) cation **[1-E₁][OTf]**. Roughly 0.1 mL C₆D₅Cl was added, dissolving the cation. The tube was placed in a cold well chilled with liquid nitrogen, freezing the solution. A small amount of C₆D₅Cl was layered atop the frozen solution as a buffer, and the contents again were frozen. Roughly 0.3 mL of a C₆D₅Cl solution of 20.4 mg (0.0318 mmol) **[HPt][PF₆]** was added to the tube, which was then sealed and the contents frozen again. The tube was then removed from the box and the contents kept frozen in a dry ice/ acetone bath. At the NMR spectrometer, the tube was removed from the bath, and warmed until just thawing, at which point it was vigorously shaken and inserted into the probe (held at 25 °C). NMR spectra were acquired over ~30 minutes. Initial, spectra showed a mixture of starting materials and a carbene. Shortly thereafter the starting materials were consumed and a mixture of the carbene intermediate and the final alkyl product were observed. Over a few minutes at room temperature the carbene disappears, giving way to alkyl species **10-E₁** as the only observed

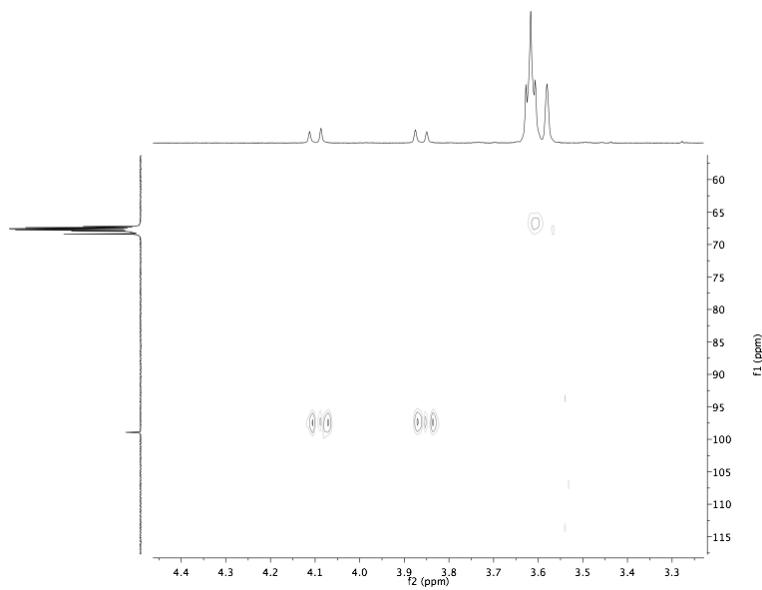
product, as monitored by $^{31}\text{P}\{^1\text{H}\}$ NMR. Carbene NMR data: **1H NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 500 MHz, -40 °C): δ 0.66 (br), 0.96 (br), 1.32 (br), 1.5-2.1 (br m), 2.32 (br), 7.00 (br), 7.1-7.3 (br m), 7.52 (br), 13.75 (br, Re-CHO). **31P{1H} NMR** ($\text{C}_6\text{D}_5\text{Cl}$, 202 MHz, -40 °C): δ 7.4 (s).


Reductions of trans-[(PPh₃)(Ph₂P(CH₂)₂B(C₈H₁₄))Re(CO)₄]/[OTf] ([1-E₁Ph₁]/[OTf])

Reaction of trans-[(PPh₃)(Ph₂P(CH₂)₂B(C₈H₁₄))Re(CO)₄][OTf] ([1-E₁Ph₁][OTf]) with 1 equiv NaHBET₃. Attempts to monitor the reduction of **[1-E₁Ph₁][OTf]** by a single hydride were thwarted by the precipitation of the product only a few minutes after reaction. A vial charged with 23.7 mg (0.0227 mmol) **[1-E₁Ph₁][OTf]** and ~ 0.6 mL THF-*d*₈ was stirred rapidly, and 22.7 μL NaHBET₃ (1.0 M in toluene) was added dropwise. After ~ 10 minutes, significant precipitates had formed, and NMR spectroscopy revealed a mixture of boroxy carbene [^1H δ 13.42, $^{31}\text{P}\{^1\text{H}\}$ δ 9.3 ($\mathcal{J}_{\text{PP}} = 97$ Hz) and 15.4 ($\mathcal{J}_{\text{PP}} = 97$ Hz)] and Re-H (-4.94 , d, $\mathcal{J}_{\text{PH}} = 22.6$ Hz). The large coupling constant of the Re-H signal suggests it *trans*-(PPh₃)Re(CO)₄H, probably formed from a small amount of *trans*-Re(CO)₄I remaining from the synthesis of **[1-E₁Ph₁][OTf]** (and not from decarbonylation, which would give a *cis*-hydride exclusively). No further reduction products were observed before complete precipitation of the boroxy carbene, suggesting that disproportionation is at least slower than precipitation in THF (significant disproportionation of **2-E₂** is observed in 15 minutes in THF).


Reaction of trans-[(PPh₃)(Ph₂P(CH₂)₂B(C₈H₁₄))Re(CO)₄][OTf] ([1-E₁Ph₁][OTf]) with 2 equiv NaHBET₃. 0.130 g (0.125 mmol) **[1-E₁Ph₁][OTf]** was dissolved in 2 mL THF with stirring. To the rapidly stirring clear colorless solution was

added dropwise 250 μ L NaHB₃ (1.0 M in toluene). The solution turned bright yellow as the addition proceeded. The mixture was allowed to stir for 17 hours (note: NMR scale reactions showed the reaction is complete within minutes), after which time the solvents were removed. A small amount (<1 mL) of benzene was added to the oily residues before drying again. The crude mixture was washed with benzene, and extracted with THF. Removal of the THF filtrate *in vacuo* yielded 0.098 g (0.1 mmol, 85%) C–C coupled acyl anion **[3-E₁Ph₁]⁻**. Analytically pure single crystals suitable for X-Ray diffraction were grown from vapor diffusion of pentane into a THF solution of [Na]**[3-E₁Ph₁]**. **¹H NMR** (THF-*d*₈, 600 MHz): δ 0.19 (1H), 0.69 (q, $\tilde{J}_{\text{PH}} = 13.7$ Hz, 1H), 1.12 (m, 2H), 1.4 (m, 2H), 1.5 (m, 2H), 1.53 (m, 1H), 1.64 (m, 1H), 1.7-1.9 (m, 5H), 2.1 (m, 1H), 2.71 (br t, $\tilde{J}_{\text{PH}} = 14.0$ Hz, 1H), 3.1 (m, 1H), 3.86 (d, $\tilde{J}_{\text{HH}} = 15.3$ Hz), 4.10 (d, $\tilde{J}_{\text{HH}} = 15.3$ Hz), 7.11-7.14 (m, 4H), 7.23-7.33 (m, 10H), 7.39 (dd, $J = 7.5, 10.5$ Hz, 4H), 7.64 (m, 5H), 8.03 (t, $J = 8.4$ Hz, 2H). **³¹P{¹H} NMR**. δ 11.4 (d, $\tilde{J}_{\text{PP}} = 159.7$ Hz, 1P), 17.4 (d, $\tilde{J}_{\text{PP}} = 159.8$ Hz, 1P). **¹¹B{¹H} NMR**. No signal observed apart from borosilicate in Varian probe. **¹³C{¹H} NMR** (THF-*d*₈, 125 MHz): δ 13.63 (br), 26.09 (d, $\tilde{J}_{\text{PC}} = 23.8$ Hz, Ph₂PCH₂CH₂BR₂), 26.74, 27.16, 32.32, 32.87, 34.76, 34.85, 98.93, 128.00 (d, $\tilde{J}_{\text{PC}} = 8.9$ Hz, *m*-Ph₂PCH₂CH₂BR₂), 128.35 (d, $\tilde{J}_{\text{PC}} = 9.2$ Hz, *m*-Ph₂PCH₂CH₂BR₂), 128.44 (d, $\tilde{J}_{\text{PC}} = 9.2$ Hz, *m*-PPh₃), 128.59 (d, $\tilde{J}_{\text{PC}} = 1.5$ Hz, *p*-Ph₂PCH₂CH₂BR₂), 129.52 (d, $\tilde{J}_{\text{PC}} = 1.4$ Hz, *p*-PPh₃), 129.86 (d, $\tilde{J}_{\text{PC}} = 1.3$ Hz, *p*-Ph₂PCH₂CH₂BR₂), 132.50 (d, $\tilde{J}_{\text{PC}} = 9.0$ Hz, *o*-Ph₂PCH₂CH₂BR₂), 135.31 (d, $\tilde{J}_{\text{PC}} = 10.6$ Hz, *o*-PPh₃), 135.35 (d, $\tilde{J}_{\text{PC}} = 9.8$ Hz, *o*-Ph₂PCH₂CH₂BR₂), 137.33 (dd, $\tilde{J}_{\text{PC}} = 38.5, 2.1$ Hz, *ipso*-Ph₂PCH₂CH₂BR₂), 139.85 (d, $\tilde{J}_{\text{PC}} = 40.8$ Hz, *ipso*-PPh₃), 142.99 (d, $\tilde{J}_{\text{PC}} = 46.4$ Hz *ipso*-Ph₂PCH₂CH₂BR₂), 203.58 (dd, $\tilde{J}_{\text{PC}} = 8.9, 9.6$ Hz, Re–CO), 210.16 (dd, $\tilde{J}_{\text{PC}} = 5.9, 7.2$ Hz,


Re–CO), 297.45 (dd, $J_{PC} = 10.6, 12.0$, ReC(O)CH₂OBR₃). **IR** (THF): ν_{CO} , 1934, 1841; ν_{acyl} 1572 cm^{−1}. **Anal. Calcd.** for C₄₄H₄₅BNaO₄P₂Re: C, 57.46; H, 4.93. Found: C, 57.56; H, 4.95.

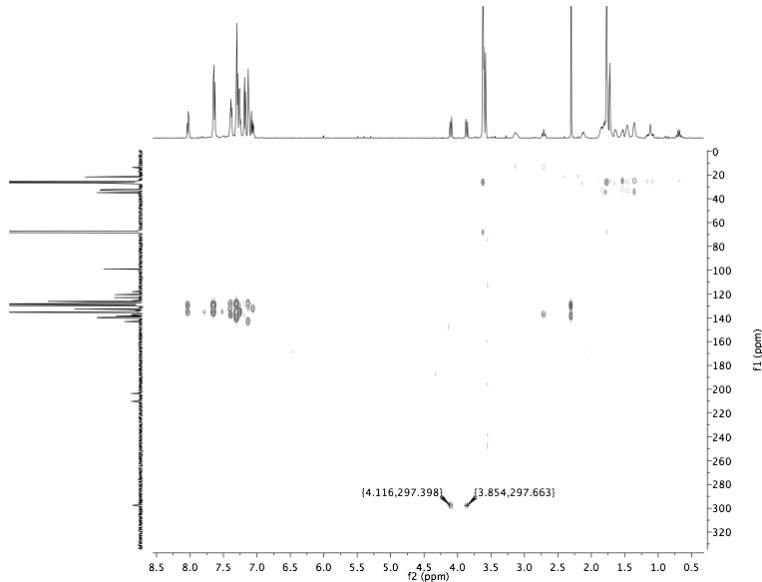

Figure 3.55. ^1H – ^{31}P gHMBC of $[\mathbf{3}\text{-E}_1\text{Ph}_1]^-$.

Figure 3.56. ^1H – ^1H gCOSY of $[\mathbf{3}\text{-E}_1\text{Ph}_1]^-$.

Figure 3.57. ^1H - ^{13}C gHMQC NMR of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$ showing correlation between Re-C(O)CH₂O⁻ and Re-C(O)CH₂O⁻.

Figure 3.58. ^1H - ^{13}C gHMBC NMR of $[\mathbf{3}\text{-}\mathbf{E}_1\mathbf{Ph}_1]^-$ with 2-bond correlation to acyl carbon highlighted.

Reaction of $\text{trans-}[(\text{PPh}_3)(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))\text{Re}(\text{CO})_4]\text{[OTf]}$ ([1-E₁Ph₁][OTf]) with 2 equiv [HPt][PF₆] (with and without triethylborane).

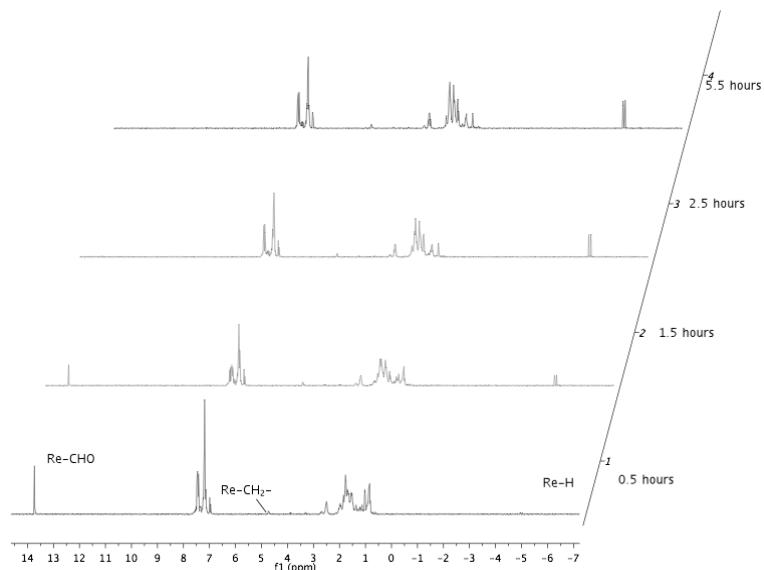
A vial was charged with 31.9 mg (0.0306 mmol) $[\mathbf{1}\text{-}\mathbf{E}_1\mathbf{Ph}_1]\text{[OTf]}$ and \sim 0.6 mL THF-*d*₈. With

stirring, solid **[HPt][PF₆]** (39.2 mg, 0.0611, 2 equiv) was added, and the mixture was transferred to a J-Young NMR tube. Before monitoring by NMR could begin, most of the Re-containing material had precipitated as boroxy carbene (see above). No further reduction or C–C bond formation products were observed by NMR or when the precipitates were extracted with pyridine.

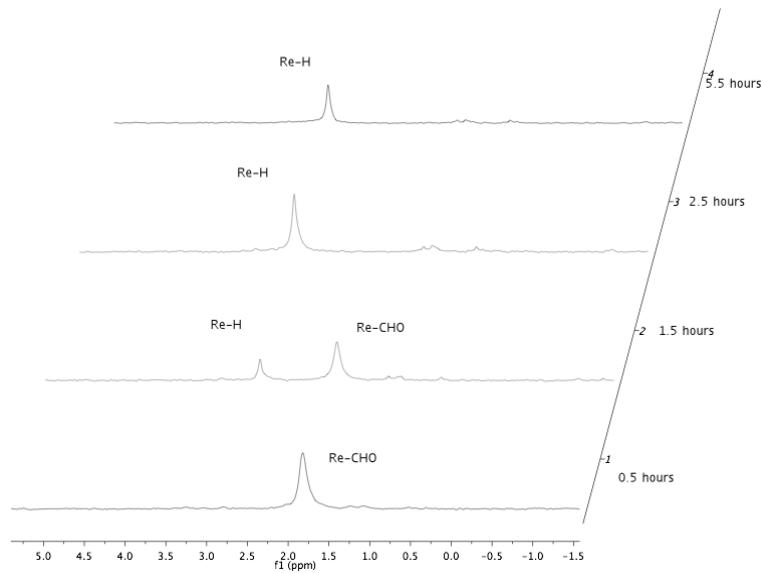
Separate experiments were carried out under similar conditions, only with 1 and 10 equiv BEt₃ (1.0 M in hexanes) added after the hydride had been added to the Re. Precipitation still occurred, although in the case of 1 equiv, trace C–C coupled products were observed after ~4 hours.

Reaction of [Na][(PPh₃)(Ph₂P(CH₂)₂B(C₈H₁₄))Re(CO)₂(C(O)CH₂O—)] with MeOTf. A 20 mL scintillation vial was charged with 55.3 mg (0.0485 mmol) [Na(THF)₃]**[3-E₁Ph₁]** and 2 mL C₆H₅Cl. With stirring, 5.5 μ L (0.0485 mmol) MeOTf was added by syringe. The reaction was stirred overnight (NMR studies show reaction to be complete in as little as 30 minutes, however), at which time it was filtered, washed with C₆H₆, and the solvent removed from the filtrate under vacuum, affording 33 mg (0.0362 mmol, 75%) **12** as a yellow powder. Single crystals (large yellow blocks) were grown from vapor diffusion of pentane into a C₆H₅Cl (or C₆H₆) solution of **12**. **¹H NMR** (C₆D₆, 500 MHz): δ 1.00 (br, 1H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.24 (m, 1H Ph₂PCH₂CH₂B(C₈H₁₄)), 1.31 (br, 1H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.66-1.77 (m, 1H, Ph₂PCH₂CH₂B(C₈H₁₄)), 1.96-2.47 (m, 12H, Ph₂PCH₂CH₂B(C₈H₁₄)), 2.74 (m, 1H, Ph₂PCH₂CH₂B(C₈H₁₄)), 2.80 (3H, Re=C(OCH₃)CH₂O—), 3.30 (m, 1H, Ph₂PCH₂CH₂B(C₈H₁₄)), 6.8-6.9 (m, 2H,

Ph₂PCH₂CH₂B(C₈H₁₄)), 6.99 (m, 4H, *Ph₂PCH₂CH₂B(C₈H₁₄))*), 7.08 (m, 9H, *PPh₃*), 7.65 (m, 2H, *Ph₂PCH₂CH₂B(C₈H₁₄))*), 7.71 (m, 6H, *PPh₃*), 7.84 (m, 2H, *Ph₂PCH₂CH₂B(C₈H₁₄))*).


³¹P{¹H} NMR (C₆D₆, 202 MHz): δ 5.7 (d, ${}^2J_{PP} = 114.2$ Hz, 1P), 13.5 (d, ${}^2J_{PP} = 114.3$ Hz, 1P). **¹³C{¹H} NMR** (C₆D₆, 126 MHz): δ 15.00 (br), 24.39 (br), 24.90 (br), 26.06 (Ph₂PCH₂CH₂B(C₈H₁₄)), 26.51 (Ph₂PCH₂CH₂B(C₈H₁₄)), 27.96 (d, $J_{PC} = 26.1$ Hz, Ph₂PCH₂CH₂B(C₈H₁₄)), 32.00 (Ph₂PCH₂CH₂B(C₈H₁₄)), 32.25 (Ph₂PCH₂CH₂B(C₈H₁₄)), 34.05 (Ph₂PCH₂CH₂B(C₈H₁₄)), 34.51 (Ph₂PCH₂CH₂B(C₈H₁₄)), 66.55 (Re=C(OCH₃)CH₂O-), 90.99 (Re=C(OCH₃)CH₂O-), 128.55 (d, $J_{PC} = 9.1$ Hz, *m*-Ph₂PCH₂CH₂B(C₈H₁₄)), 128.74 (d, $J_{PC} = 9.7$ Hz, *m*-PPh₃), 130.36 (*p*-PPh₃), 130.79 (d, $J_{PC} = 8.7$ Hz, *p*-Ph₂PCH₂CH₂B(C₈H₁₄)), 133.72 (d, $J_{PC} = 9.2$ Hz, *o*-Ph₂PCH₂CH₂B(C₈H₁₄)), 133.86 (d, $J_{PC} = 10.7$ Hz, *o*-PPh₃), 136.73 (d, $J_{PC} = 45.2$ Hz, *ipso*-PPh₃), 144.75 (d, $J_{PC} = 46.6$ Hz, *ipso*-Ph₂PCH₂CH₂B(C₈H₁₄)), 203.43 (br t, $J_{PC} \sim 7.9$ Hz, CO), 209.03 (br t, $J_{PC} \sim 9.9$ Hz, CO), 307.18 (br, Re=C(OCH₃)CH₂O-). **IR** (C₆H₆): ν_{CO} , 1989, 1857 cm⁻¹. Anal. calcd. for C₄₅H₄₈BO₄P₂Re: C, 59.27; H, 5.31. Found: C, 59.54; H, 5.26; N, <0.02.

Reductions of [(Ph₂P(CH₂)₃B(C₈H₁₄))Re(CO)₅]/[OTf] ([1-P₁]/[OTf])


Reaction of [1-P₁][OTf] with [HPt][PF₆]. A 10 mL scintillation vial was charged with 24.6 mg (0.0299 mmol) [1-P₁][OTf], which was dissolved in ~0.6 mL C₆D₅Cl. To the stirring solution was added 19.2 mg (0.0299 mmol) [HPt]⁺ as a solid portionwise. After stirring for a couple minutes, the mixture was transferred to a J-Young NMR tube, and monitored by ¹H and ³¹P{¹H} NMR. After 30 minutes, the ratio of formyl: Re-H was 1.00:0.03. After 1.5 hours, the ratio was 1.00:0.61. After 2.5 hours the ratio was 1.00:28.68. After 5.5 hours, all of the formyl was consumed. During the course of the reaction what

appeared to be a Re-alkyl ($4.72, d, J_{PH} = 6.6$ Hz) was present; the small (~ 10 %) amount remained constant over the course of the reaction. NMR spectra data for Re-CHO species: **$^1\text{H NMR}$** ($\text{C}_6\text{D}_5\text{Cl}$, 300 MHz): δ 0.89 (br, 2H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 1.04 (br, 2H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 1.52-1.86 (m, 12H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 1.98 (m, 2H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 2.51 (m, 2H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 7.19 (m, 6H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 7.42-7.49 (m, 4H, $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{CH}_2\text{B}(\text{C}_8\text{H}_{14})$), 13.71 (1H, Re-CHO). **$^{31}\text{P}\{^1\text{H}\} \text{NMR}$** ($\text{C}_6\text{D}_5\text{Cl}$, 121 MHz): δ 1.7.

In a separate reaction, 5.2 mg (0.0063 mmol) **[1-P₁]⁺**[OTf] was dissolved in 0.5 mL CH_2Cl_2 and treated with 4.1 mg (0.0063 mmol) **[HPt]⁺**[PF₆⁻]. The reaction mixture was transferred to a solution IR cell for analysis, which showed nearly complete reaction to a formyl species (small amounts of residual starting material were observed). **IR** (CH_2Cl_2): ν_{CO} 2100 (m), 2018 (m), 1983 (s), 1939 (sh), ν_{CHO} 1508 cm^{-1} .

Figure 3.59. $^1\text{H NMR}$ time course of **[1-P₁]⁺** + **[HPt]⁺**.

Figure 3.60. $^{31}\text{P}\{^1\text{H}\}$ NMR time course of $[\mathbf{1}\text{-P}_1]^+ + [\text{HPt}]^+$.

References

1. (a) Khodakov, A. Y.; Chu, W.; Fongarland, P. *Chem. Rev.* **2007**, *107*, 1692; (b) Rofer-DePoorter, C. K. *Chem. Rev.* **1981**, *81*, 447.
2. World Energy Assessment Report: Energy and the Challenge of Sustainability. Program, U. N. D., Ed. United Nations: New York, 2000.
3. (a) Cutler, A. R.; Hanna, P. K.; Vites, J. C. *Chem. Rev.* **1988**, *88*, 1363; (b) Gladysz, J. A. *Adv. Organomet. Chem.* **1982**, *20*, 1; (c) Herrmann, W. A. *Angew. Chem. Int. Ed.* **1982**, *21*, 117; (d) Wolczanski, P. T.; Bercaw, J. E. *Acc. Chem. Res.* **1986**, *13*, 121.
4. Brown, S. L.; Davies, S. G. *J. Chem. Soc., Chem. Commun.* **1986**, 84.
5. (a) Evans, W. J.; Grate, J. W.; Doedens, R. J. *J. Am. Chem. Soc.* **1985**, *107*, 1671; (b) Fagan, P. J.; Moloy, K. G.; Marks, T. J. *J. Am. Chem. Soc.* **1981**, *103*, 6959; (c) Gambarotta, S.; Floriani, C.; Chiesivilla, A.; Guastini, C. *J. Am. Chem. Soc.* **1983**, *105*, 1690; (d) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. *J. Am. Chem. Soc.* **1978**, *100*, 2716; (e) Miller, R. L.; Toreki, R.; LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D.; Roe, D. C. *J. Am. Chem. Soc.* **1993**, *115*, 5570; (f) Werkema, E. L.; Maron, L.; Eisenstein, O.; Andersen, R. A. *J. Am. Chem. Soc.* **2007**, *129*, 2529; (g) Shima, T.; Hou, Z. *J. Am. Chem. Soc.* **2006**, *128*, 8124.
6. (a) Demitras, G. C.; Muetterties, E. L. *J. Am. Chem. Soc.* **1977**, *99*, 2796; (b) Dombek, B. D. *Adv. Catal.* **1983**, *32*, 325.

7. (a) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2008**, *130*, 11874; (b) Elowe, P. R.; West, N. M.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2009**, *28*, 6218; (c) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2010**, *132*, 3301.
8. (a) Miedaner, A.; DuBois, D. L.; Curtis, C. J.; Haltiwanger, R. C. *Organometallics* **1993**, *12*, 299; (b) Curtis, C. J.; Miedaner, A.; Ellis, W. W.; DuBois, D. L. *J. Am. Chem. Soc.* **2002**, *124*, 1918; (c) DuBois, M. R.; DuBois, D. L. *Chem. Soc. Rev.* **2009**, *38*, 62.
9. (a) Casey, C. P.; Andrews, M. A.; McAlister, D. R.; Rinz, J. E. *J. Am. Chem. Soc.* **1980**, *102*, 1927; (b) Casey, C. P.; Neumann, S. M. *J. Am. Chem. Soc.* **1976**, *98*, 5395; (c) Collman, J. P.; Winter, S. R. *J. Am. Chem. Soc.* **1973**, *95*, 4089; (d) Tam, W.; Wong, W.-K.; Gladysz, J. A. *J. Am. Chem. Soc.* **1979**, *101*, 1589.
10. Crawford, E. J.; Bodnar, T. W.; Cutler, A. R. *J. Am. Chem. Soc.* **1986**, *108*, 6202.
11. Yamamoto, H., *Lewis acids in organic synthesis*. Wiley-VCH: Weinheim ; New York, 2000.
12. (a) Butts, S. B.; Holt, E. M.; Strauss, S. H.; Alcock, N. W.; Stimson, R. E.; Shriver, D. F. *J. Am. Chem. Soc.* **1979**, *101*, 5864; (b) Butts, S. B.; Strauss, S. H.; Holt, E. M.; Stimson, R. E.; Alcock, N. W.; Shriver, D. F. *J. Am. Chem. Soc.* **1980**, *102*, 5093; (c) Grimmett, D. L.; Labinger, J. A.; Bonfiglio, J. N.; Masuo, S. T.; Shearin, E.; Miller, J. S. *J. Am. Chem. Soc.* **1982**, *104*, 6858; (d) Labinger, J. A.; Miller, J. S. *J. Am. Chem. Soc.* **1982**, *104*, 6856; (e) Labinger, J. A.; Bonfiglio, J. N.; Grimmett, D. L.; Masuo, S. T.; Shearin, E.; Miller, J. S. *Organometallics* **1983**, *2*, 733.
13. Maitlis, P. M.; Zanotti, V. *Chem. Commun.* **2009**, 1619.
14. (a) Fischbach, A.; Bazinet, P. R.; Waterman, R.; Tilley, T. D. *Organometallics* **2008**, *27*, 1135; (b) Vergnaud, J.; Grellier, M.; Bouhadir, G.; Vendier, L.; Sabo-Etienne, S.; Bourissou, D. *Organometallics* **2008**, *27*, 1140.
15. Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. O. *Organometallics* **1989**, *8*, 498.
16. (a) Baldwin, S. M.; Bercaw, J. E.; Brintzinger, H. H. *J. Am. Chem. Soc.* **2008**, *130*, 17423; (b) Benesi, H. A.; Hildebrand, J. H. *J. Am. Chem. Soc.* **1949**, *71*, 2703; (c) Rose, N. J.; Drago, R. S. *J. Am. Chem. Soc.* **1959**, *81*, 6138.
17. (a) Narayanan, B. A.; Amatore, C.; Kochi, J. K. *Organometallics* **1987**, *6*, 129; (b) Narayanan, B. A.; Amatore, C. A.; Kochi, J. K. *Organometallics* **1984**, *3*, 802; (c) Sumner, C. E.; Nelson, G. O. *J. Am. Chem. Soc.* **1984**, *106*, 432.
18. Elowe, P. R. The Selective Oligomerization of Ethylene Using Chromium Diphosphine Catalysts and The Synthesis and Reactivity of Group 7 Carbonyl Derivatives Relevant to Synthesis Gas Conversion. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 2009.
19. (a) Brown, H. C.; Verbrugge, C.; Snyder, C. H. *J. Am. Chem. Soc.* **1961**, *83*, 1001; (b) Brown, H. C.; Hébert, N. C.; Snyder, C. H. *J. Am. Chem. Soc.* **1961**, *83*, 1001; (c) Brown, H. C.; Snyder, C. H. *J. Am. Chem. Soc.* **1961**, *83*, 1002.
20. Lambert, J. B.; Zhang, S.; Ciro, S. M. *Organometallics* **1994**, *13*, 2430.
21. Ingham, W. L.; Coville, N. J. *Organometallics* **1992**, *11*, 2551.

22. Kubo, K.; Nakazawa, H.; Nakahara, S.; Yoshino, K.; Mizuta, T.; Miyoshi, K. *Organometallics* **2000**, *19*, 4932.

23. Luan, L.; Brookhart, M.; Templeton, J. L. *Organometallics* **1992**, *11*, 1433.

24. Garrou, P. E. *Chem. Rev.* **1981**, *81*, 229.

25. Li, D. Y.; Keresztes, I.; Hopson, R.; Williard, P. G. *Acc. Chem. Res.* **2009**, *42*, 270.

26. (a) Cohen, Y.; Avram, L.; Frish, L. *Angew. Chem. Int. Ed.* **2005**, *44*, 520; (b) Macchioni, A.; Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D. *Chem. Soc. Rev.* **2008**, *37*, 479.

27. (a) Stephan, D. W.; Erker, G. *Angew. Chem. Int. Ed.* **2010**, *49*, 46; (b) Welch, G. C.; Stephan, D. W. *J. Am. Chem. Soc.* **2007**, *129*, 1880.

28. DuBois, D. L.; Blake, D. M.; Miedaner, A.; Curtis, C. J.; DuBois, M. R.; Franz, J. A.; Linehan, J. C. *Organometallics* **2006**, *25*, 4414.

29. Miedaner, A.; Raebiger, J. W.; Curtis, C. J.; Miller, S. M.; DuBois, D. L. *Organometallics* **2004**, *23*, 2670.

30. Lin, W. B.; Wilson, S. R.; Girolami, G. S. *Inorg. Chem.* **1997**, *36*, 2662.

31. Crawford, E. J.; Lambert, C.; Menard, K. P.; Cutler, A. R. *J. Am. Chem. Soc.* **1985**, *107*, 3130.

32. Lindner, E.; von Au, G. *Angew. Chem. Int. Ed.* **1980**, *19*, 824.

33. Tam, W.; Lin, G.-Y.; Gladysz, J. A. *Organometallics* **1982**, *1*, 525.

34. Eaton, G. R. *J. Chem. Ed.* **1969**, *46*, 547.

35. (a) McKinney, R. J.; Kaesz, H. D. *J. Am. Chem. Soc.* **1975**, *97*, 3066; (b) Casey, C. P.; Scheck, D. M. *J. Am. Chem. Soc.* **1980**, *102*, 2723; (c) Casey, C. P.; Jones, W. D. *J. Am. Chem. Soc.* **1980**, *102*, 6154; (d) Warner, K. E.; Norton, J. R. *Organometallics* **1985**, *4*, 2150; (e) Martin, B. D.; Warner, K. E.; Norton, J. R. *J. Am. Chem. Soc.* **1986**, *108*, 33.

36. (a) Casey, C. P.; Andrews, M. A.; McAlister, D. R. *J. Am. Chem. Soc.* **1979**, *101*, 3371; (b) Berke, H.; Weiler, G. *Angew. Chem. Int. Ed.* **1982**, *21*, 150.

37. (a) Djukic, J. P.; Dotz, K. H.; Pfeffer, M.; De Cian, A.; Fischer, J. *Inorg. Chem.* **1998**, *37*, 3649; (b) Lenhart, P. G.; Lukehart, C. M.; Sotiropoulos, P. D.; Srinivasan, K. *Inorg. Chem.* **1984**, *23*, 1807; (c) Padolik, L. L.; Gallucci, J. C.; Wojcicki, A. *J. Am. Chem. Soc.* **1993**, *115*, 9986.

38. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

39. Schmidt, S. P.; Nitschke, J.; Trogler, W. C.; Huckett, S. I.; Angelici, R. J. *Inorg. Synth.* **1989**, *26*, 113.

40. Brown, H. C.; Kulkarni, S. U. *J. Organomet. Chem.* **1979**, *168*, 281.

41. Schore, N. E.; LaBelle, B. E. *J. Org. Chem.* **1981**, *46*, 2306.

42. Hirano, K.; Yorimitsu, H.; Oshima, K. *Org. Lett.* **2005**, *7*, 4689.

43. Yakelis, N. A.; Bergman, R. G. *Organometallics* **2005**, *24*, 3579.

44. Chen, H.-C.; Chen, S.-H. *J. Phys. Chem.* **1984**, *88*, 5118.

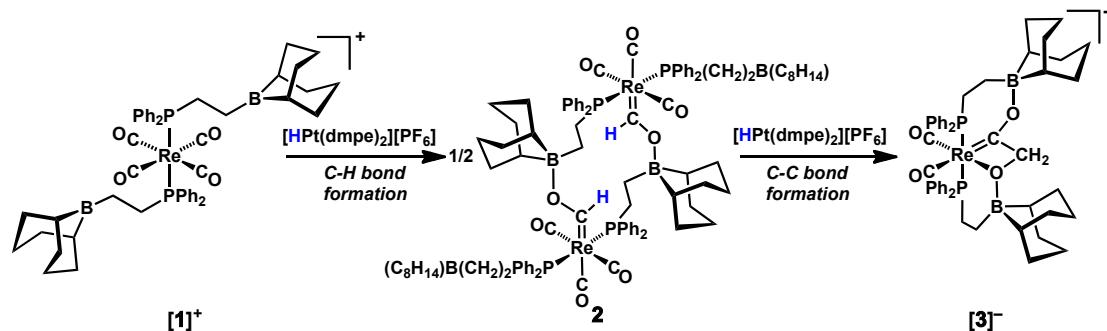
45. Gabler, T.; Paschke, A.; Schuurmann, G. *J. Chem. Eng. Data* **1996**, *41*, 33.

46. Wolfram Alpha (www.wolframalpha.com).

47. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176.

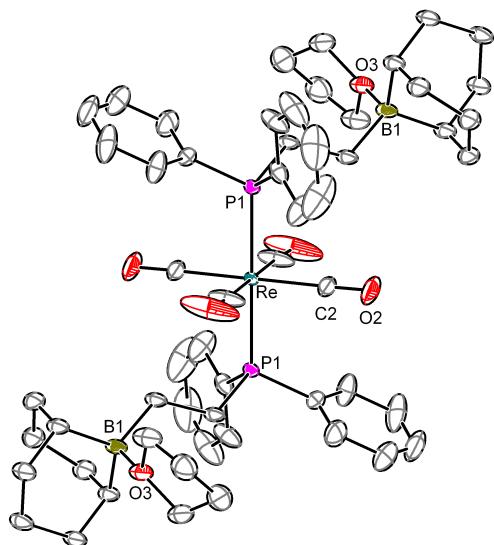
Chapter 4

Homogeneous CO Hydrogenation: Dihydrogen Activation Involves a Frustrated Lewis Pair Instead of a Platinum Complex


Adapted in part from:

Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2010**, 132, 3301.
<http://dx.doi.org/10.1021/ja100574n>
Copyright 2010 American Chemical Society

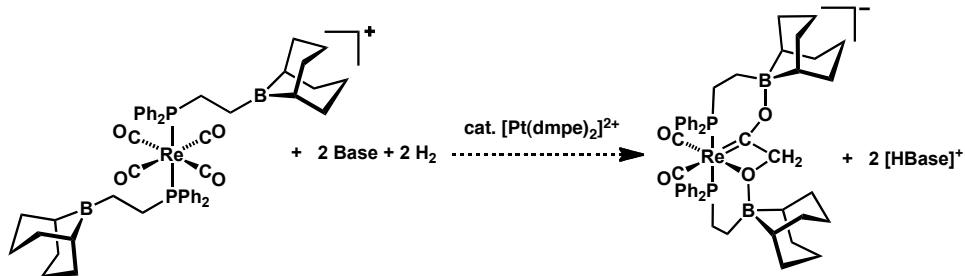
Chapter 4


Introduction

Since the oil crisis of the 1970s there has been interest in developing selective, homogeneously catalyzed conversion of synthesis gas (syngas; CO/H₂) to valuable hydrocarbons and oxygenates, as an alternative to the nonselective Fischer-Tropsch (F-T) process.¹ Our approach to homogeneous CO hydrogenation involves a multicomponent catalyst system, consisting of a metal carbonyl complex where CO is coordinated and activated, a late transition metal complex that heterolytically cleaves H₂ to form a nucleophilic metal hydride,² and a (Lewis or Brønsted) acid site to promote hydride transfer to CO and/or C–C bond formation steps.³ A stoichiometric example was achieved using the carbonyl cation $[(\text{Ph}_2\text{P}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14}))_2\text{Re}(\text{CO})_4][\text{BF}_4]$ (**[1][BF₄]**), which features pendent Lewis acidic borane moieties that facilitate hydride transfer from $[\text{HPt}(\text{dmpe})_2][\text{PF}_6]$ (**[HPt][PF₆]**; dmpe = 1,2-bis(dimethylphosphino)ethane) as well as further reduction and C–C bond formation (Scheme 4.1).^{3b,c}

Scheme 4.1

The transformation of Scheme 4.1 used preformed $[\text{HPt}]^+$. In principle it could be carried out with H_2 and catalytic amounts of $[\text{Pt}(\text{dmpe})_2]^{2+}$ ($[\text{Pt}]^{2+}$, Scheme 4.2), but the strong bases (conjugate acid $\text{p}K_a > 23$ in MeCN^4) that are required in order to produce $[\text{HPt}]^+$ from H_2 are very likely to attack the carbonyls and/or interact strongly with the Lewis acid sites, disrupting the intended pathway. Instability of the resultant formyl species has also confounded related efforts,⁵ but Lewis acids can greatly stabilize reduced CO species.

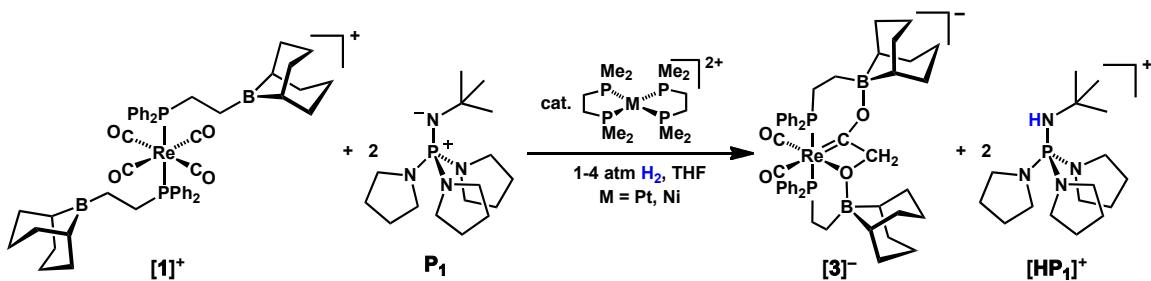

Figure 4.1. Structural representation of $[\mathbf{1} \cdot (\text{THF})_2][\text{BF}_4]$ (ellipsoids at 50% probability), with BF_4 group and hydrogen atoms omitted for clarity. Selected bond distances (\AA): $\text{Re}-\text{C1}$ 1.983(1), $\text{Re}-\text{C2}$ 1.990(1), $\text{Re}-\text{P1}$ 2.4324(2), $\text{O1}-\text{C1}$ 1.127(2), $\text{O2}-\text{C2}$ 1.135(2), $\text{O3}-\text{B1}$ 1.683(2).

Results and Discussion

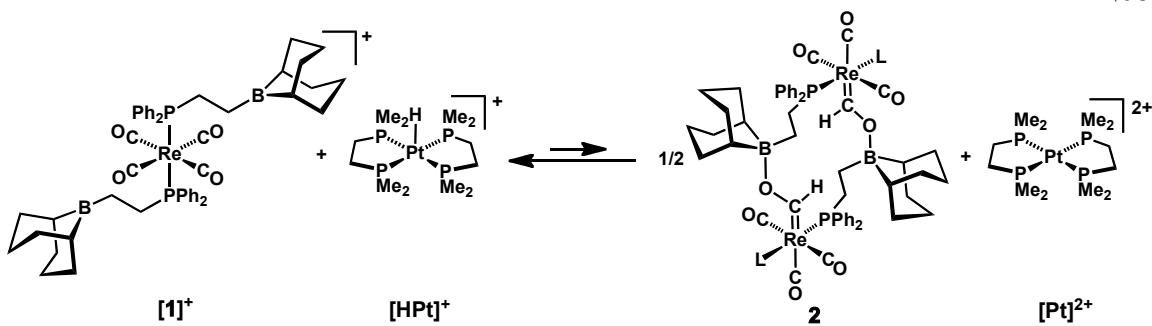
Interaction with Lewis bases

The weak Lewis base THF coordinates to $[\mathbf{1}][\text{BF}_4]$ at boron only weakly and reversibly, and does not interfere with the chemistry of Scheme 4.1. The K_{eq} of THF adduct formation with one of the pendent boranes was determined to be 0.19(2) M^{-1} by NMR

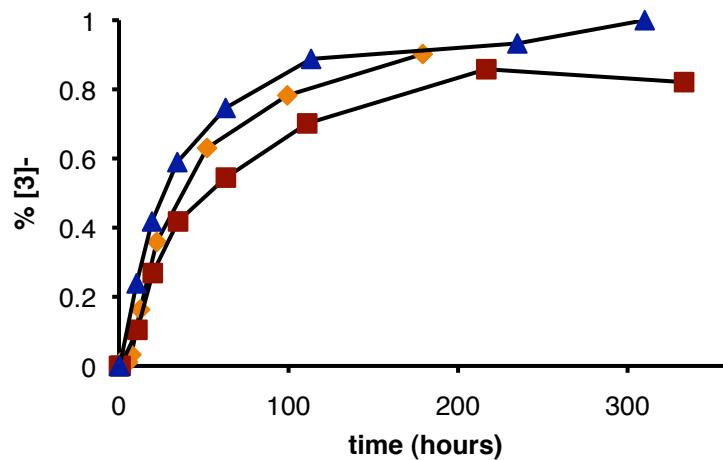
titration experiments (presumably, the K_{eq} for binding to the second borane is similar, but the bis(THF) adduct would be only a minor contributor). Consistent with the weak binding, $[\mathbf{1} \cdot (\text{THF})_2][\text{BF}_4]$, which was characterized crystallographically (Figure 4.1), readily loses THF on exposure to vacuum. On the other hand, addition of two equivalents pyridine resulted in strong Lewis pair adduct formation, evidenced by a substantial upfield shift of the ^{11}B resonance of $[\mathbf{1}][\text{BF}_4]$ and complete inhibition of the reaction of $[\mathbf{1}][\text{BF}_4]$ with $[\mathbf{HPt}][\text{PF}_6]$. Interestingly, however, addition of two equivalents of the stronger Lewis base NEt_3 to $[\mathbf{1}][\text{BF}_4]$ shifts the ^{11}B NMR resonance only slightly, indicating minimal interaction, and $[\mathbf{HPt}][\text{PF}_6]$ does reduce $[\mathbf{1}][\text{BF}_4]$ to $[\mathbf{3}]^-$ in the presence of added NEt_3 . This observation suggested to us that $[\mathbf{Pt}]^{2+}$, in combination with a strong but sterically bulky Lewis base, might catalyze H_2 activation and hydride transfer to a carbonyl of $[\mathbf{1}]^+$ (Scheme 4.2).


Scheme 4.2

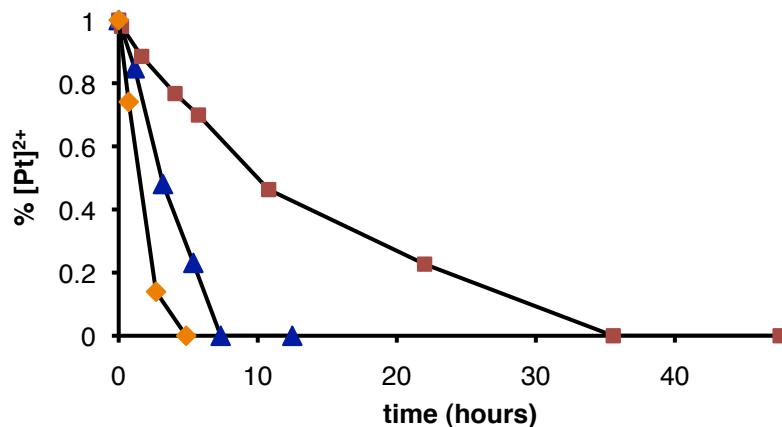
The bulky, strong phosphazene base $^3\text{BuNP}(\text{pyrrolidinyl})_3$ (**P1**)⁶ seemed a promising candidate. Addition of two equivalents **P1** to a solution of $[\mathbf{1}][\text{BF}_4]$ causes only slight changes in chemical shift and lineshape in ^1H , ^{31}P and ^{11}B NMR resonances, indicating weak, reversible interaction. Consequently, $[\mathbf{1}][\text{BF}_4]$ was smoothly reduced by $[\mathbf{HPt}][\text{PF}_6]$ in THF in the presence of **P1**, albeit with concomitant precipitation of $[\mathbf{Pt}][\text{PF}_6]_2$.


Reductions using dihydrogen and substoichiometric platinum.

The insolubility of $[\mathbf{Pt}][\text{PF}_6]_2$ in THF necessitated a change from $[\text{BF}_4]$ and $[\text{PF}_6]$ salts to the more solubilizing $[\text{BAr}^{\text{F}_4}]$ anion (BAr^{F_4} = tetrakis(3,5-trifluoromethylphenyl)borate) before attempting catalysis. Gratifyingly, $[\mathbf{1}][\text{BAr}^{\text{F}_4}]$ underwent reductive coupling to form $[\mathbf{3}]^-$ in the presence of substoichiometric amounts of $[\mathbf{Pt}][\text{BAr}^{\text{F}_4}]_2$, along with excess \mathbf{P}_1 and H_2 . Presumably steric repulsion prevents \mathbf{P}_1 from tightly binding the borane or attacking the carbonyl, even though $[\mathbf{HP}_1]^+$ has a $\text{p}K_{\text{a}}$ of 28.4 in MeCN,⁷ making \mathbf{P}_1 a far stronger base than pyridine (which deactivates the system by binding the borane) and similar to KOPh ($\text{p}K_{\text{a}}$ 26.6⁸), which reacts irreversibly with $[\mathbf{1}][\text{BF}_4]$. Furthermore, as expected for such a strong base,⁴ THF solutions of \mathbf{P}_1 and $[\mathbf{Pt}][\text{BAr}^{\text{F}_4}]_2$ readily react with H_2 to afford $[\mathbf{HP}_1][\text{BAr}^{\text{F}_4}]$ and $[\mathbf{HPt}][\text{BAr}^{\text{F}_4}]$, with $t_{1/2} \sim 10.2$ h.


When an NMR tube was charged with cation $[\mathbf{1}][\text{BAr}^{\text{F}_4}]$, 4 equivalents \mathbf{P}_1 , and 15 mol% $[\text{Pt}(\text{dmpe})_2][\text{BAr}^{\text{F}_4}]_2$ in THF- d_8 , no significant reaction was observed; subsequent introduction of 1-4 atm H_2 led to formation of $[\mathbf{HP}_1][\text{BAr}^{\text{F}_4}]$ and $[\mathbf{HPt}][\text{BAr}^{\text{F}_4}]$ over a few hours. Curiously, no reduction of $[\mathbf{1}]^+$ was seen as the hydride built up; but after this induction period, the doubly-reduced C–C coupled anion $[\mathbf{3}]^-$ formed in high yield over a few days at 23 °C (Scheme 4.3).

Scheme 4.3


The observed induction period was unexpected, since **[HPt][PF₆]** reacts with **[1][BF₄]** quickly and in high yields;^{3b} this turns out to be a consequence of the choice of counterion. The seemingly innocuous substitution of **[BAr^F₄]** for **[BF₄]/[PF₆]** to keep **[Pt]²⁺** soluble in THF has the unintended effect of *completely inhibiting* the stoichiometric reaction of **[1][BAr^F₄]** with **[HPt][BAr^F₄]**. Hydride transfer thus appears to be an equilibrium that lies far towards unreacted **[1]⁺** (Scheme 4.4), but can be pushed towards carbene **2** by precipitation of **[Pt][BF₄]_x[PF₆]_{2-x}**, as in our original report.^{3b} Indeed, when carbene **2** was independently prepared in C₆D₅Cl and **[Pt][BAr^F₄]₂** was added, **[1]⁺** and **[HPt]⁺** formed rapidly. The presence of **[Pt][BAr^F₄]₂** thus inhibits reduction of **[1]⁺** to **[3]⁻**, according to the equilibrium in Scheme 4.4, accounting for the induction period. Hydride transfer cannot proceed until all **[Pt]²⁺** is converted to **[HPt]⁺**. A measurable equilibrium could not be established because of the limited solubility of **[Pt][BAr^F₄]₂** in C₆D₅Cl and the instability of carbene **2** toward irreversible disproportionation in THF. Nonetheless, the equilibrium could be inferred by driving it completely to one side or the other under various conditions.

Scheme 4.4**Dihydrogen cleavage and delivery by a frustrated Lewis pair.**

The above observations appeared consistent with catalytic H₂ activation by **[Pt][BAr^F₄]₂** and reduction of **[1]⁺** to **[3]⁻** by **[HPt][BAr^F₄]**, proceeding only after all of the **[Pt][BAr^F₄]₂** has been converted to hydride. However, additional observations did not seem to support our hypothesis. While changing the catalyst loading altered the length of the induction period as expected, it did not significantly change the *rate* of reduction of **[1]⁺** to **[3]⁻** (Figure 4.2). Furthermore, **[Ni(dmpe)₂][BAr^F₄]₂** appeared to catalyze reduction of **[1]⁺** by H₂ with rates similar to the Pt analog — despite the observation that **[HNi(dmpe)₂][PF₆]** *does not react* with **[1][BF₄]**. Finally, **[HPt]⁺** formed markedly *faster* under the catalytic conditions ($t_{1/2} \sim 2.8$ h) than in the absence of **[1]⁺** ($t_{1/2} \sim 10.2$ h) (Figure 4.3).

Figure 4.2. Time course of formation of $[3]^-$ in the presence of 15 mol % $[\text{Pt}]^{2+}$ (red squares), 55 mol % $[\text{Pt}]^{2+}$ (orange diamonds), and 5 mol % $[\text{Ni}]^{2+}$ (blue triangles). Between 4 and 5.5 equiv phosphazene base were used in each case (non-pseudo first order).

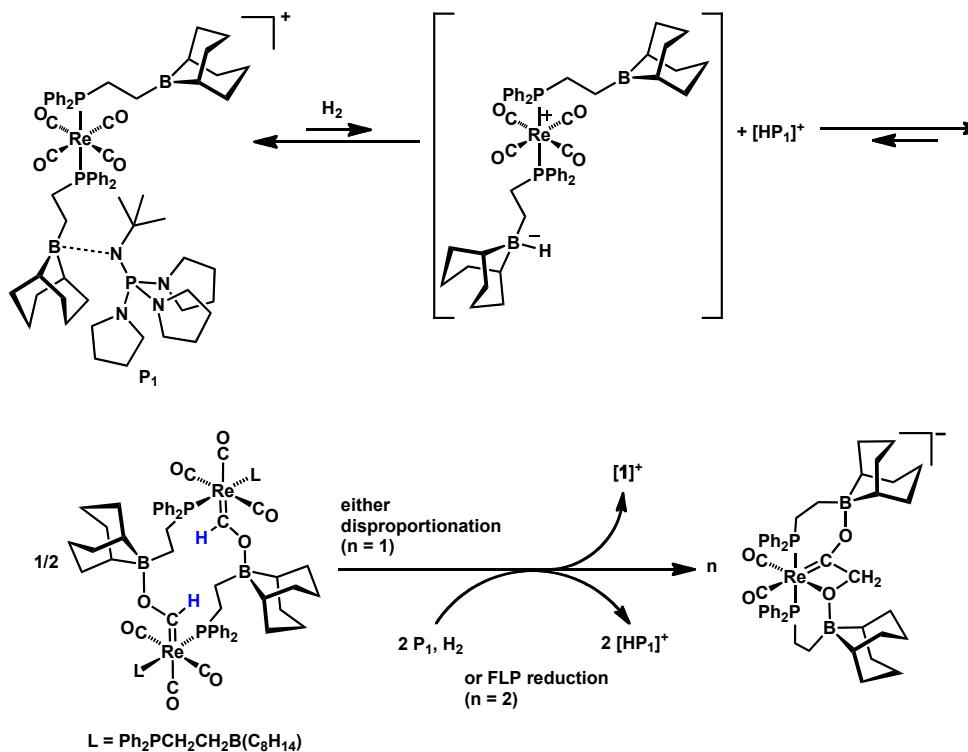
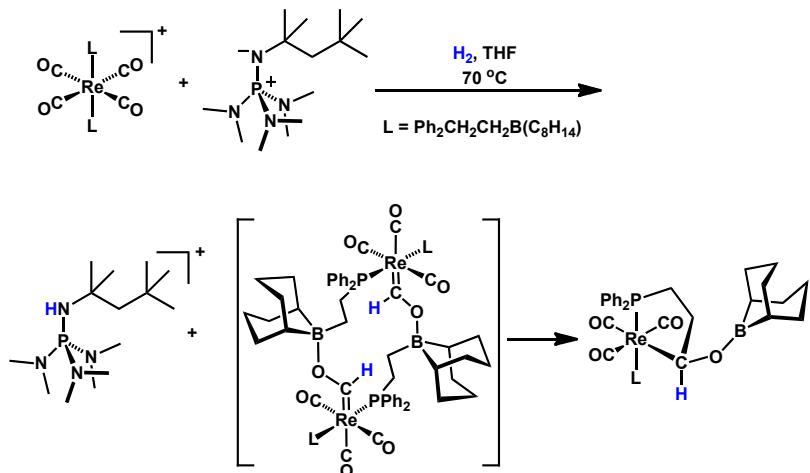


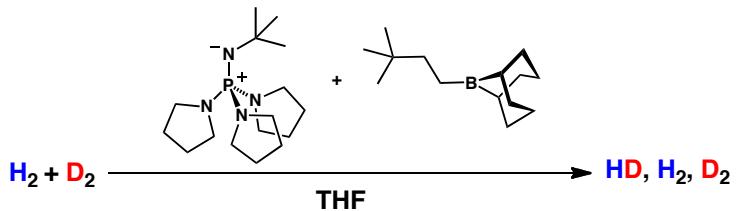
Figure 4.3. Consumption of $[\text{Pt}]^{2+}$ as it cleaves H_2 with \mathbf{P}_1 , with and without Lewis acid additives. Red squares, 1 equiv $[\text{Pt}]^{2+}$, 10 equiv \mathbf{P}_1 , no $[\mathbf{1}]^+$; blue triangles, 1 equiv $[\text{Pt}]^{2+}$, 10 equiv \mathbf{P}_1 , 1.8 equiv $[\mathbf{1}]^+$; orange diamonds, 1 equiv $[\text{Pt}]^{2+}$, 10 equiv \mathbf{P}_1 , 4 equiv $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$.

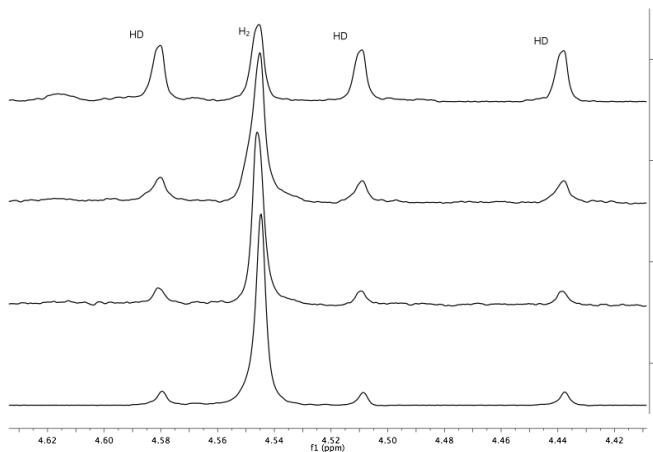
These observations suggest the possibility of activation of H_2 and reduction of $[\mathbf{1}]^+$ by some species that does not involve the group 10 metal “catalyst” at all. When a mixture of $[\mathbf{1}][\text{BArF}_4]$ and \mathbf{P}_1 – *but no Pt complex* – was exposed to H_2 , reduction to $[3]^-$ began immediately, with no induction period, and proceeded to high yields (~92% after 8 days) of

[3]⁻, with concomitant formation of [HP₁]⁺. We propose that in our “catalytic” reaction H₂ cleavage and hydride delivery is actually mediated by a “frustrated Lewis pair” (FLP). FLPs consist of sterically demanding Lewis acids and bases that cannot form stable Lewis pairs;⁹ they have been found to carry out a number of interesting transformations,¹⁰ most notably the cleavage of H₂¹¹ and metal-free hydrogenation of bulky imines¹² by a number of B(C₆F₅)₃/base pairs. Here the FLP would consist of **P₁** and the BBN group appended to the ligands of [1]⁺.


According to this proposal the (net stoichiometric) reaction proceeds as shown in Scheme 4.5. First, FLP-mediated H₂ cleavage generates small equilibrium amounts of the conjugate acid of **P₁** and a pendent borohydride (not observed), which can rapidly transfer H⁻ to CO to afford **2**. The subsequent transformation involves disproportionation of **2** to give [3]⁻ and [1]⁺ (rapid in THF relative to the reduction by H₂) and/or reduction of **2** to [3]⁻ by another FLP-mediated H₂ cleavage and hydride transfer involving the second appended borane. The small amounts of **2** usually observed at early reaction times are consistent with this mechanism; other minor impurities were also observed, especially when large a excess of **P₁** was used.

Scheme 4.5


A number of observations support our revised proposal of FLP mediation. Firstly, the Lewis acid and base are both essential: the Lewis acidity can be quenched with two equivalents of pyridine (which coordinate tightly to the boron centers of $[\mathbf{1}]^+$), and under these conditions no formation of $[\mathbf{3}]^-$ under H_2 is observed; if the Lewis base **P1** is removed from the system, $[\mathbf{1}]^+$ alone is not reduced under H_2 alone. Addition of D_2 instead of H_2 resulted in >95% deuterium incorporation at the expected site in $[\mathbf{3}]^-$ ($=\text{C}(\text{O}-)\text{CD}_2\text{O}-$), confirming that dihydrogen is the source of hydride. The rate of reduction did not change much between H_2 and D_2 (small kinetic isotope effect). The rate of reduction of $[\mathbf{1}]^+$ does increase with increasing amounts of **P1**, such that with 20 equivalents **P1** ~70% yield of $[\mathbf{3}]^-$ was obtained after 22 h. Without the need to dissolve $[\mathbf{P}t]^{2+}$, the requirement to use the solubilizing $[\text{BAr}^{\text{F}}_4]$ anion was lifted, and indeed $[\mathbf{1}][\text{BF}_4]$ is readily reduced by H_2 in the presence of **P1**.


in similar fashion. If spurious $[\text{Pt}]^{2+}$ was involved, addition of $[\text{BF}_4]$ would likely cause precipitation and reduce activity; no such effect is observed.

The accelerated formation of $[\text{HPt}][\text{BAr}^{\text{F}_4}]$ in the “catalytic” reaction (Figure 4.3) is also understandable under the revised mechanistic hypothesis, if H_2 activation is faster by the FLP than by $[\text{Pt}]^{2+}$ and **P1**. The FLP would cleave H_2 to give first borohydride and then **2**, as in Scheme 4.5; but before irreversible formation of $[\text{3}]^-$ could occur, the fast equilibrium in Scheme 4.4 would take over, with $[\text{Pt}]^{2+}$ abstracting a hydride to produce $[\text{HPt}]^+$. The Lewis acid is the key feature of $[\text{1}]^+$ that enables this acceleration: addition of $^7\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ (**4**, a Lewis acid of similar structure and strength as those in $[\text{1}]^+$) to mixtures of $[\text{Pt}]^{2+}$ and **P1** under H_2 also accelerated formation of $[\text{HPt}]^+$ (Figure 4.3). The reaction rates are broadly consistent with the proposed mechanism, as stoichiometric formation of **2** by NaHBET_3 and production of $[\text{HPt}]^+$ by hydride abstraction from **2** are both much faster processes than the heterolytic cleavage of H_2 by $[\text{Pt}]^{2+}$ and **P1**. This alternate pathway for formation of $[\text{HPt}]^+$ (as opposed to direct heterolytic cleavage of H_2 in conjunction with **P1**) explains the rate enhancement in the presence of $[\text{1}]^+$.

Scheme 4.6

Substitution of the phosphazene base for a bulkier — but less basic — analogue led to diminished reactivity. Hydride transfer only occurred upon mild heating ($70\text{ }^{\circ}\text{C}$), consistent with diminished basicity (by 1-2 units); but at elevated temperatures the boroxycarbene intermediate **2** is not stable. Instead, the major Re-containing product was a ligand-activated variant of **2** (Scheme 4.6); the same product is obtained when **2** is formed *in situ*, and subsequently heated (See Chapter 3). The choice of Re carbonyl is also critical. Both phosphazene bases react (in the absence of H_2) with less sterically protected metal carbonyls, such as $[(\text{PPh}_3)\text{Re}(\text{CO})_5]^+$ and $[\text{Cp}^*\text{Re}(\text{CO})_2(\text{NO})]^+$, presumably by nucleophilic attack at $\text{Re}-\text{CO}$.

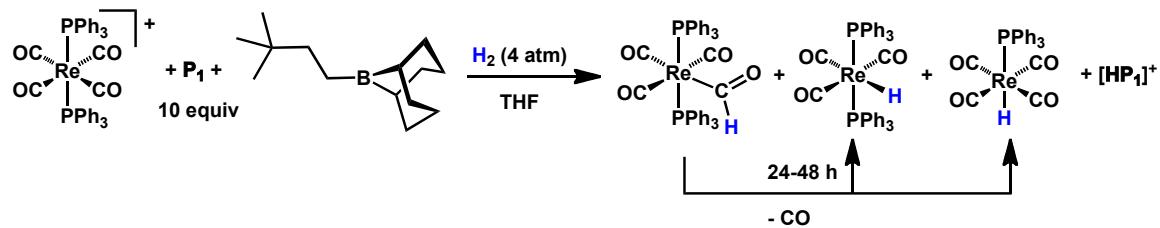
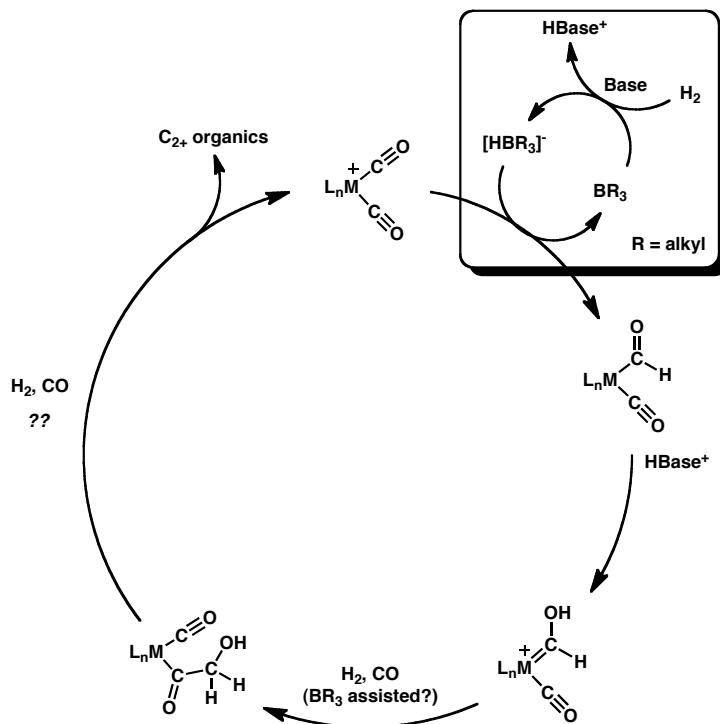
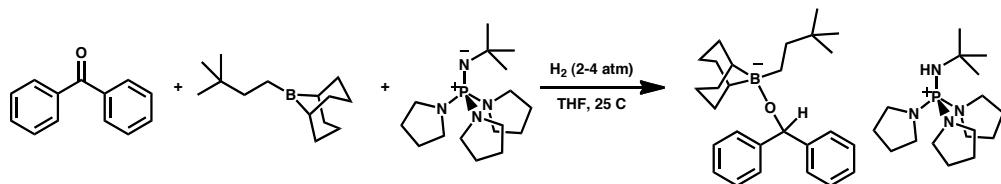

Scheme 4.7

Figure 4.4. ^1H NMR of H_2/D_2 comproportionation to HD, monitored at 30 minutes, 24 hours, 2 days, 12 days.


Reductions catalytic in borane.

The mechanism proposed in Scheme 4.5 suggests that an external borane could mediate a similar hydride transfer from H_2 to CO. A metal-free FLP was generated by mixing $^1\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ (**4**) and **P₁**. No reaction of **4/P₁** with H_2 was observed by NMR, but the pair does catalyze isotopic comproportionation of H_2 and D_2 to HD, implicating reversible H_2 activation with an equilibrium that lies far towards the FLP. H_2 activation was also implicated from the rapid formation of $[\text{HPt}]^+$ in the presence of **4/P₁** (Figure 4.3). Estimates extrapolated from previous calculations¹³ suggest that H_2 cleavage by such a FLP should be close to thermoneutral.

Scheme 4.8


The **4/P₁** FLP was next investigated for intermolecular hydride transfer ability (Scheme 4.8). A solution of cation $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+[\text{BAr}^{\text{F}_4}]$ (the unadorned analogue of $[\mathbf{1}]^+$), 10 equivalents **P₁**, and one equivalent **4** in THF-*d*₈ under an H₂ atmosphere showed good conversion ($\sim 70\%$ after 24 h at 23 °C) to $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$, along with $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{H}$ and $(\text{PPh}_3)_2\text{Re}(\text{CO})_4\text{H}$, the products of decarbonylation of the relatively unstable formyl complex¹⁴ (formyl:hydride, 1.0:0.7).

Scheme 4.9

The lability of trialkylborane adducts of $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ (Chapter 3) suggested that H₂ reductions *catalytic* in borane might be feasible. Indeed, mixtures of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+[\text{BAr}^{\text{F}_4}]$, 10 equivalents **P₁**, and 0.2 equivalents $^3\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ (**4**) in THF-*d*₈ under an H₂ atmosphere produced a mixture of Re-CHO and Re-H species. After 18 hours, conversion to 6% formyl and 7% hydrides was observed; the amount of

formyl remained roughly constant over one week, while the amount of hydride steadily increased. Upon complete consumption of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]\text{[BAr}^{\text{F}_4}\text{]}$, 52% yield of a mixture of Re–CHO and Re–H species (1:25 ratio) was observed, indicating 2.6 turnovers in **4** (Scheme 4.8). The mediocre yield of formyl and hydride products, as compared to the high 92% yield of $[\text{HP1}]^+$, perhaps indicates additional uncharacterized reduction processes ongoing. The modest *catalytic* utilization of dihydrogen as a CO reductant nonetheless represents an important proof-of-principle of the proposed two catalyst cycle, involving a FLP catalyst instead of platinum one (Scheme 4.9). As underscored in Chapter 3, however, external trialkylboranes are unsuitable for promoting the steps beyond initial hydride transfer. No further reduction or C–C coupling steps were observed; those transformations require the assistance of a pendent Lewis acid in **1** $^+$. Further limitations are provided by the very weak acidity of $[\text{HP1}]^+$, which would have to protonate a reduced CO species in order to represent complete transfer of H_2 , and allow catalytic transfer in both borane and base.

Scheme 4.10

Conclusions

The simple metal-free pair **4/P1** constitutes the first example of a trialkylborane-derived FLP that activates H_2 . Such FLPs appear quite different from those previously reported: their equilibrium constants for formation lie much further towards free H_2 rather than the

[HP₁]⁺/borohydride salts, but they provide a borohydride (generated directly from H₂) that is significantly more potent than the commonly used [HB(C₆F₅)₃]⁻. This novel FLP has allowed the use of dihydrogen directly to reduce rhenium-bound CO to a C₂ organic fragment. The implementation of an external FLP demonstrates that this novel type of FLP may be generally applicable in hydride transfers to CO ligands and, perhaps, a wider variety of substrates that require strong hydride donors, directly utilizing H₂ as hydride source. In fact, preliminary investigations suggest that treatment of benzophenone with **4/P₁** and H₂ produces a reduced species, probably containing a B–O bond (Scheme 4.10).

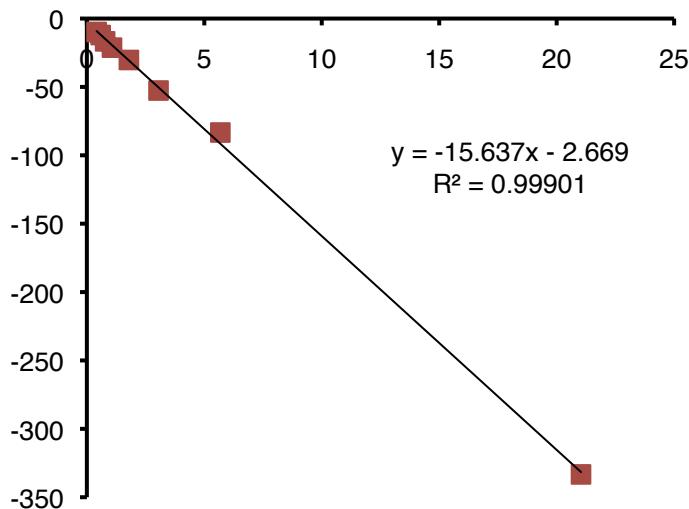
Experimental Section

General Considerations

All air- and moisture-sensitive compounds were manipulated using standard vacuum line or Schlenk techniques, or in a glovebox under a nitrogen atmosphere. Under standard glovebox conditions, petroleum ether, diethyl ether, benzene, toluene, and tetrahydrofuran were used without purging, such that traces of those solvents were in the atmosphere, and could be found intermixed in the solvent bottles. The solvents for air- and moisture-sensitive reactions were dried over sodium benzophenone ketyl, calcium hydride, or by the method of Grubbs.¹⁵ All NMR solvents were purchased from Cambridge Isotopes Laboratories, Inc. Chlorobenzene-*d*₅ (C₆D₅Cl) and dichloromethane-*d*₂ (CD₂Cl₂) were freeze-pump-thaw degassed three times before being run through a small column of activated alumina. Tetrahydrofuran-*d*₈ (THF-*d*₈) was purchased in a sealed ampoule, and

dried by passage through activated alumina. Unless noted, other materials were used as received. **[1][BF₄]^{3b}** and **[(PPh₃)₂Re(CO)₄][BF₄]¹⁴** were prepared according to literature procedures; treatment with one equivalent NaBAr^{F₄} in CH₂Cl₂ afforded anion exchange to yield **[1][BAr^{F₄}]** and **[(PPh₃)₂Re(CO)₄][BAr^{F₄}]** essentially quantitatively, after filtration and removal of solvents. **[Pt(dmpe)₂][PF₆]₂¹⁶** **[HPt(dmpe)₂][PF₆]¹⁶** **[Ni(dmpe)₂][BF₄]₂¹⁷** **[HNi(dmpe)₂][PF₆]¹⁶** **¹Bu(CH₂)₂B(C₈H₁₄)¹⁸** and **KOPh⁴** were synthesized by literature methods. **tert**-Butylimino-tri(pyrrolidino)phosphorane (**P₁**) and **tert**-Octylimino-tris(dimethylamino)phosphorane (**tOctP₁**) were purchased from Sigma-Aldrich. All other materials were readily commercially available, and used as received. ¹H and ¹³C NMR spectra were recorded on Varian Mercury 300 MHz, or Varian INOVA-500 or 600 MHz spectrometers at room temperature, unless indicated otherwise. Chemical shifts are reported with respect to residual internal protio solvent for ¹H and ¹³C{¹H} spectra. Other nuclei were referenced to an external standard: H₃PO₄ (³¹P), 15% BF₃•Et₂O/CDCl₃ (¹¹B), CFCl₃ (¹⁹F), all at 0 ppm.

X-ray Crystallography Procedures


Colorless single crystals of **[1•(THF)₂][BF₄]** suitable for X-Ray diffraction were grown by vapor diffusion of pentane into a THF solution of **[1][BF₄]**. The crystals were mounted on a glass fiber with Paratone-N oil. Structures were determined using direct methods with standard Fourier techniques using the Bruker AXS software package. In some cases, Patterson maps were used in place of the direct methods procedure. There was some disorder in the BF₄ group, as discussed in the crystallographic details section, but

connectivity was unambiguously established as a bis-THF adduct. Full details are given in Appendix D.

Adduct formation between THF and [1]/[BF₄]

A J-Young Teflon-stoppered NMR tube was charged with 43.9 mg (0.0417 mmol) [1][BF₄] and ~0.6 mL CD₂Cl₂. Initial ¹H and ¹¹B NMR spectra were recorded. The tube was returned to the glovebox, and 3.4 μ L (0.0417 mmol, 1 equiv) THF was added by syringe. After collecting ¹H and ¹¹B NMR spectra, the procedure was repeated, adding THF to give 3, 5, 9, 13, 17, 25, and 33 equivalents relative to [1]⁺.

A Benesi-Hildebrand-type analysis¹⁹ was performed according to a previously described derivation.²⁰ The THF dependence on chemical shift of the ¹¹B resonance and several ¹H resonances were recorded, and a Benesi-Hildebrand plot of 1/[THF] vs. 1/ $\Delta\delta$ was obtained (Figure 4.5), where $\Delta\delta$ is the change in chemical shift between each addition of THF. The very broad ¹¹B resonance gave a satisfactory fit, but the CH₂ resonances in the ¹H NMR fit Benesi-Hildebrand relation better. The slope = 1/[($\Delta\delta$)(K_{eq})], allowing K_{eq} for formation of the adduct with one of the pendent borane arms to be calculated. K_{eq} = 0.19(2) M⁻¹.

Figure 4.5. Benesi-Hildebrand plot ($1/[\text{THF}]$ vs. $1/\Delta\delta$) showing chemical shift dependence on added THF.

Synthetic Procedures and Reactions

Preparation of $[\text{Pt}(\text{dmpe})_2]\text{[BAr}^{\text{F}}_4\text{]}_2$. The procedure for the preparation of $[\text{Pt}(\text{dmpe})_2]\text{[PF}_6\text{]}_2$ was followed,³ except that the intermediate $[\text{Pt}(\text{dmpe})_2]\text{[Cl]}_2$ was treated with $\text{NaBAr}^{\text{F}}_4$ rather than $[\text{NH}_4]\text{[PF}_6\text{]}$. In a glovebox, a 100 mL round bottom flask was charged with 1 g (2.7 mmol) $\text{Pt}(\text{COD})(\text{Cl})_2$, 0.8 g (5.3 mmol) 1,2-bis(dimethylphosphino)ethane, and 30 mL acetonitrile. The reaction mixture was stirred overnight. After \sim 12 hours, the acetonitrile was removed *in vacuo*, and the solids were dissolved in 40 mL of water. To the colorless solution was added 4.7 g (5.3 mmol) $\text{NaBAr}^{\text{F}}_4$ as a solid, and the slurry was stirred for \sim 24 hours. The solids were collected by filtration through a sintered glass frit, and washed with 70 mL CH_2Cl_2 , leaving behind white solids, which were collected and dried to afford 1.17 g (0.5 mmol, 25%) $[\text{Pt}(\text{dmpe})_2]\text{[BAr}^{\text{F}}_4\text{]}_2$. The product was spectroscopically very similar to $[\text{Pt}(\text{dmpe})_2]\text{[PF}_6\text{]}_2$. **$^1\text{H NMR}$** ($\text{THF-}d_8$, 300 MHz): δ 1.96 (m, $^3\mathcal{J}_{\text{PtH}} = 27.7$ Hz, 24H, $\text{Me}_2\text{PCH}_2\text{CH}_2\text{PM}_2$), 2.30 (m, 8H,

Me₂PCH₂CH₂PM₂), 7.59 (8H, BAr^F₄), 7.80 (16H, BAr^F₄). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ 33.6 (s, $^1J_{\text{PtP}} = 2109$ Hz).

Preparation of [HPt(dmpe)₂][BAr^F₄]. To a stirring 10 mL CH₂Cl₂ solution of 102.8 mg (0.16 mmol) [HPt(dmpe)₂][PF₆] was added solid NaBAr^F₄ (142.1 mg, 0.16 mmol). The suspension was stirred for 6 hours, then filtered through celite, washing with 2 mL CH₂Cl₂. The filtrate was dried *in vacuo*, affording 194 mg (0.14 mmol, 89%) spectroscopically pure [HPt(dmpe)₂][BAr^F₄]. The product was spectroscopically very similar to [HPt(dmpe)₂][PF₆]. **¹H NMR** (C₆D₅Cl, 300 MHz): δ -11.94 (p, $^2J_{\text{PH}} = 29.8$ Hz, $^1J_{\text{PtH}} = 700.9$ Hz, 1H, HPt), 1.16 (m, $^3J_{\text{PtH}} = 22.7$ Hz, 24H, Me₂PCH₂CH₂PM₂), 1.22 (m, 8H, Me₂PCH₂CH₂PM₂), 7.61 (4H, BAr^F₄), 8.23 (m, 8H, BAr^F₄). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ -8.0 (s, $^1J_{\text{PtP}} = 2234$ Hz). **¹⁹F NMR** (C₆D₅Cl, 282 MHz): δ -62.3.

Preparation of [Ni(dmpe)₂][BAr^F₄]₂. A slurry of 358 mg (0.358 mmol) [Ni(dmpe)₂][BF₄]₂ in 10 mL CH₂Cl₂ was treated with 635 mg (0.717, 2 equiv) solid NaBAr^F₄. The mixture was stirred \sim 12 hours, then filtered, giving a yellow filtrate with plenty of light yellow solids remaining on the fritted funnel. The filtrate was dried under vacuum, giving a low (20%) yield of pure [Ni(dmpe)₂][BAr^F₄]₂, which was identified by comparison of NMR resonances to the previously reported [BF₄] salt. **¹H NMR** (THF-*d*₈, 300 MHz): δ 1.82 (m, 24 H, Me₂PCH₂CH₂PM₂), 2.29 (m, 8H, Me₂PCH₂CH₂PM₂), 7.58 (8H, BAr^F₄), 7.79 (m, 16H, BAr^F₄). **³¹P{¹H} NMR** (THF-*d*₈, 121 MHz): δ 45.3. **¹⁹F NMR** (THF-*d*₈, 282 MHz): δ -66.

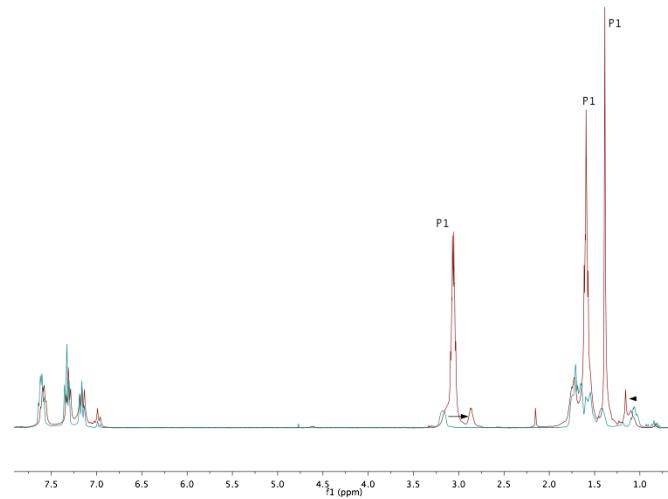
NMR Scale Reaction of KOPh with [1][BF₄], and subsequent attempted

reduction with [HPt]⁺. A J-Young NMR tube was charged with 22.4 mg (0.021 mmol) [1][BF₄], 11.3 mg (0.085 mmol) KOPh, and ~0.6 mL THF-*d*₈. Some fine precipitates were visible, although the bulk of the KOPh (mostly insoluble in THF) seemed to dissolve. NMR analysis after 20 minutes revealed complete conversion to a new symmetric species (³¹P δ 2.1). IR spectroscopy (THF solution) showed a single CO stretch at 1990 cm⁻¹ (s), shifted slightly from 1998 cm⁻¹ in [1][BF₄], consistent with a tetracarbonyl structure (PhO⁻ stretches were observed at 1585 and 1490 cm⁻¹). ¹¹B NMR showed a broad resonance at δ -0.1, but neither a downfield resonances consistent with 3-coordinate boron, nor a [BF₄]⁻ resonance was observed. Taken together, these data are consistent with phenoxide addition to the borane of [1]⁺ to give a zwitterionic borate species, which would be anionic (accounting for the slight IR shift to lower energy). There is no IR or NMR evidence of attack at a carbonyl. Nonetheless, addition of 14 mg (0.022 mmol) [HPt][PF₆] to this mixture resulted in no detectable reaction, confirming that no Lewis acid-assisted reduction takes place.

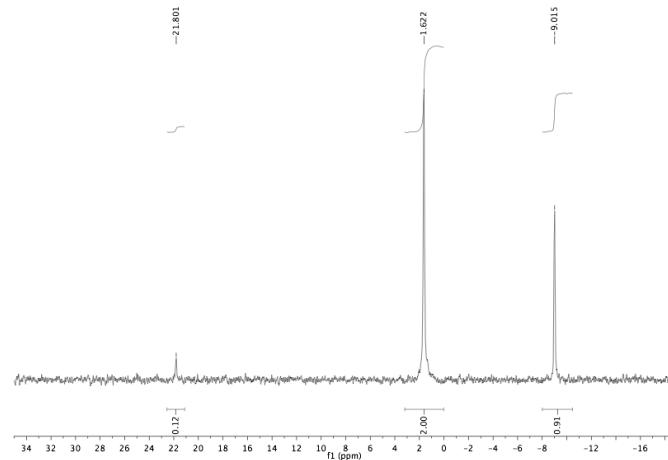
NMR scale reaction of [1][BF₄] with [HPt][PF₆] in THF-*d*₈. A small vial was charged with 30 mg (0.029 mmol) [1][BF₄] and ~0.6 mL THF-*d*₈. With stirring, 18 mg (0.029 mmol) [HPt][PF₆] was added as a solid, portionwise. The mixture, containing some precipitates, was transferred to an NMR tube, and NMR spectra showed partial conversion (~50%) to a formyl species, which disproportionated overnight to give [3]⁻ and [1]⁺. The viability of THF as a solvent medium for Lewis acid-assisted reductions was thus established.

NMR scale reaction of [1][BF₄] with pyridine, and attempted reaction with

[HPt][PF₆]. A J-Young NMR tube was charged with 27.7 mg (0.026 mmol) [1][BF₄] and ~0.6 mL C₆D₅Cl. Pyridine (4.2 μ L, 0.052 mmol, 2 equiv) was added by syringe, and the tube was sealed. Multinuclear NMR spectroscopy was consistent with strong adduct formation: a new set of pyridine resonances, distinct from free pyridine, was observed by ¹H NMR; the CH₂ protons of [1]⁺ shifted upfield by ~1 ppm; the ³¹P resonance of [1]⁺ shifted slightly (δ 2.1, vs. δ 1.3 for pure [1][BF₄] in C₆D₅Cl); and the ¹¹B resonance of [1]⁺ shifted upfield. The resonance was far enough upfield to be obstructed by the large borosilicate signal due to glass construction in the probe. The tube was returned to the glovebox, and the reaction mixture was poured onto 16.6 mg (0.026 mmol, 1 equiv) solid [HPt][PF₆]. The solution was returned to the tube, and monitored by NMR. No reduction to **2** or **[3]⁻** was observed, nor was any consumption of [HPt][PF₆] seen after 24 hours. **¹H NMR** (C₆D₅Cl, 500 MHz) of pyridine adduct: δ 0.42 (br s, 2H), 0.84 (br s, 2H), 1.3 (m, 3H), 1.47 (m, 1H), 1.6 (m, 4H), 1.79 (m, 2H), 1.90 (m, 2H), 2.26 (br m, 2H), 7.17 (t, J = 7.3 Hz, 2H, pyridine), 7.25 (t, J = 7.46, 4H, Ph₂PCH₂CH₂B(C₈H₁₄)), 7.38 (m, 6H, Ph₂PCH₂CH₂B(C₈H₁₄)), 7.67 (t, J = 7.4 Hz, 1H, pyridine), 8.25 (d, J = 5.5 Hz, 2H, pyridine). **¹¹B NMR** (C₆D₅Cl, 500 MHz): δ 0.0 ([BF₄]⁻). **³¹P{¹H} NMR** (C₆D₅Cl, 121 MHz): δ 2.1.


Addition of NEt₃ to [1][BF₄]; Reduction of [1][BF₄] by [HPt][PF₆] in the

presence of NEt₃. Two separate experiments were carried out. First, [1][BF₄] and NEt₃ were mixed to determine whether strong adduct formation would occur. A J-Young NMR tube was charged with 25.5 mg (0.024 mmol) [1][BF₄], 4.9 mg (0.048 mmol, 2 equiv) NEt₃,


and \sim 0.6 mL CD_2Cl_2 . The tube was sealed and ^1H , ^{11}B , and $^{31}\text{P}\{^1\text{H}\}$ NMR were acquired, showing minimal interaction between NEt_3 and $[\mathbf{1}]^+$.

Next, reduction was attempted in the presence of NEt_3 . A small vial was charged with 23.4 mg (0.022 mmol) $[\mathbf{1}]\text{[BF}_4]$ and \sim 0.6 mL $\text{THF-}d_8$. NEt_3 (6.2 μL , 0.044 mmol, 2 equiv) was added by syringe, and the mixture was stirred for 1 minute, after which time solid $[\mathbf{HPt}]\text{[PF}_6]$ (31 mg, 0.048 mmol, 2.2 equiv) was added. The colorless solution quickly turned bright yellow. The reaction mixture was transferred to an NMR tube, and ^1H and ^{31}P NMR spectra revealed complete conversion of $[\mathbf{1}]^+$ to $[\mathbf{3}]^-$, along with some unreacted $[\mathbf{HPt}]^+$ (as an excess was present).

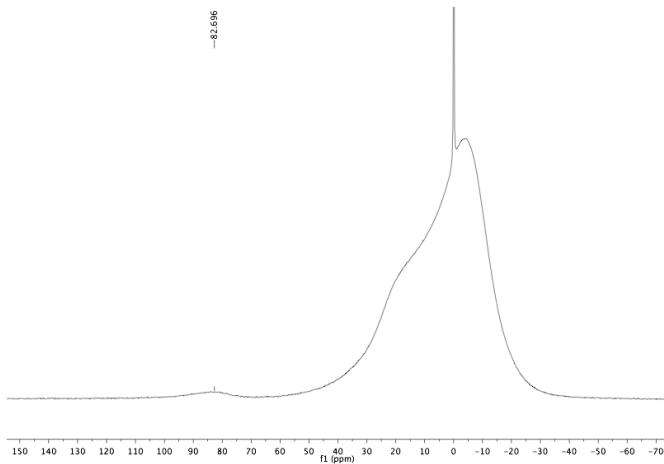

Addition of \mathbf{P}_1 to $[\mathbf{1}]\text{[BF}_4]$; Reduction of $[\mathbf{1}]\text{[BF}_4]$ by $[\mathbf{HPt}]\text{[PF}_6]$ in the presence of \mathbf{P}_1 . Two separate experiments were carried out. First, the stability of $[\mathbf{1}]\text{[BF}_4]$ to \mathbf{P}_1 was established. In a glovebox, 20.2 mg (0.019 mmol) $[\mathbf{1}]\text{[BF}_4]$, 6.0 mg (0.019 mmol) \mathbf{P}_1 , and \sim 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$ were combined in a J-Young NMR tube. The tube was sealed, and the reaction monitored over a few days. Shifts were observed in some resonances of the ^1H NMR spectrum (Figure 4.6); a shift was also observed in the ^{11}B NMR spectrum, to δ 82.7 (from δ 87.7 in pure $[\mathbf{1}]\text{[BF}_4]$, but still \sim 80 ppm from normal 4-coordinate region.); only a very minor shift was noted in the $^{31}\text{P}\{^1\text{H}\}$ NMR, to δ 1.7 (pure $[\mathbf{1}]\text{[BF}_4]$, δ 1.3 in $\text{C}_6\text{D}_5\text{Cl}$). The lack of broadening indicates that any interaction is fast and reversible on the NMR timescale, and the minor shifts indicate that the equilibrium lies towards no interaction. Very minor (1-2%) degradation was observed over 2 days.

Figure 4.6. ^1H NMR of $[\mathbf{1}][\text{BF}_4]$ in the presence of \mathbf{P}_1 (red trace), overlaid with pure $[\mathbf{1}][\text{BF}_4]$ (blue).

Figure 4.7. $^{31}\text{P}\{^1\text{H}\}$ NMR of $[\mathbf{1}][\text{BF}_4]$ in the presence of \mathbf{P}_1 (peak at 21.8 is small amount of $[\mathbf{H}\mathbf{P}_1]^+$).

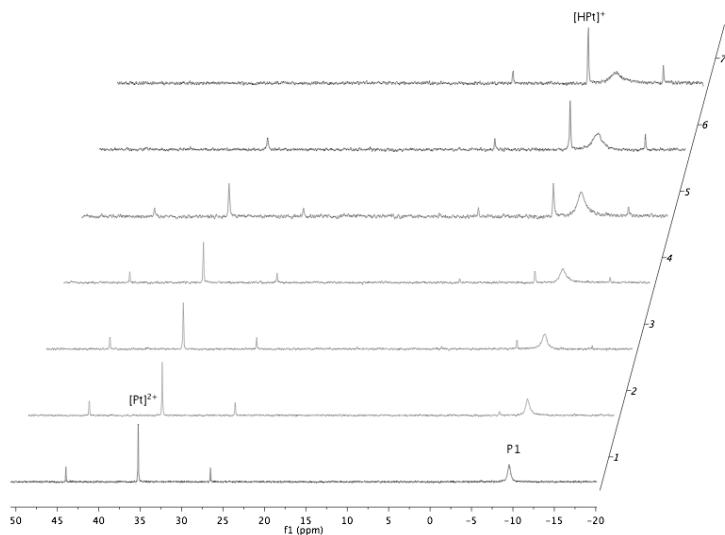
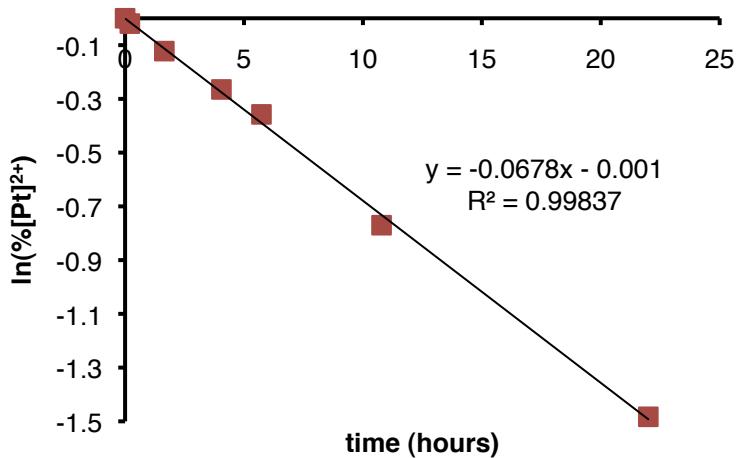
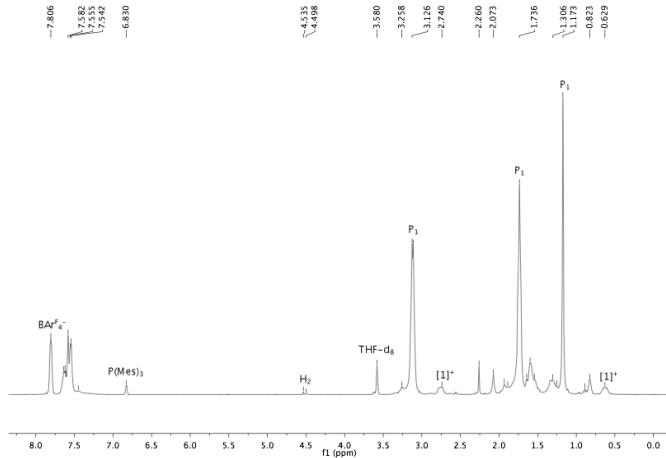


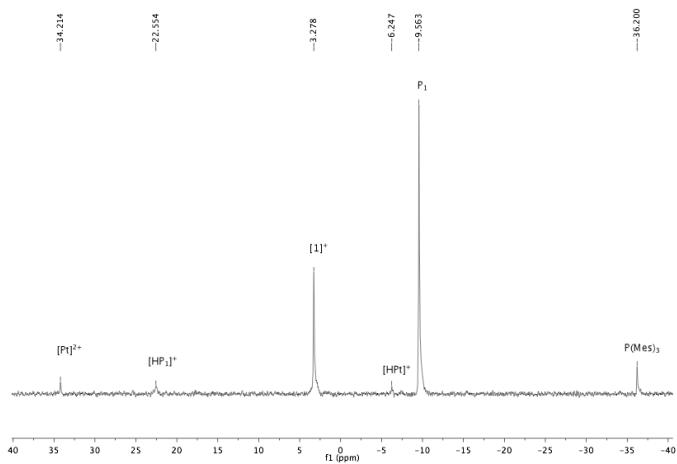
Figure 4.8. ¹¹B NMR of **[1][BF₄]** in the presence of **P₁** (sharp peak is **[BF₄]⁻**).


To establish whether **[1]⁺** could be reduced by **[HPt]⁺** in the presence of **P₁**, a J-Young NMR tube was charged with 27.3 mg (0.026 mmol) **[1]⁺**, 8.1 mg (0.026 mmol) **P₁**, 16.6 mg (0.026 mmol) **[HPt]⁺**, and ~0.6 mL THF-*d*₈. The tube was sealed and shaken to mix. The solution turned yellow, and after 30 minutes, the major product was **2**, along with **[3]⁻** and unreacted **[1]⁺** (**[1]⁺:2:[3]⁻** of 1.0:3.2:1.2). Essentially all **[HPt]⁺** had reacted already. After 4 hours, **2** had mostly disproportionated to **[3]⁻** and **[1]⁺** (**[1]⁺:2:[3]⁻** of 1.0:0.3:1.2).

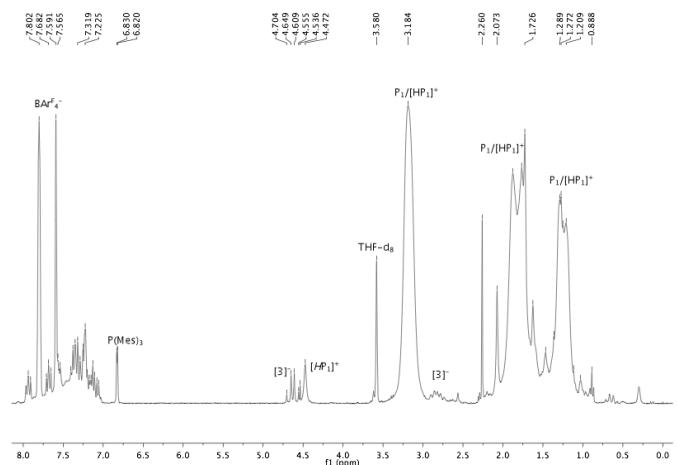
Heterolytic cleavage of H₂ with [Pt][BAr^F₄]₂ and P₁. A J-Young Teflon-sealed NMR tube was charged with 16.4 mg (0.0074 mmol) **[Pt][BAr^F₄]₂**, 23.1 mg (0.074 mmol, 10 equiv) **P₁**, and ~0.6 mL THF-*d*₈. The tube was degassed by two freeze-pump-thaw cycles, and ~3 atm H₂ (~0.2 mmol, ~30 equiv) was condensed into the tube at 77 K. The tube was sealed, carefully thawed, and monitored by ¹H and ³¹P NMR. Clean first order transformation of **[Pt][BAr^F₄]₂** into **[HPt][BAr^F₄]** was observed, along with formation of **[HP₁][BArF₄]**. The phosphazene ³¹P NMR signal broadened during the course of the

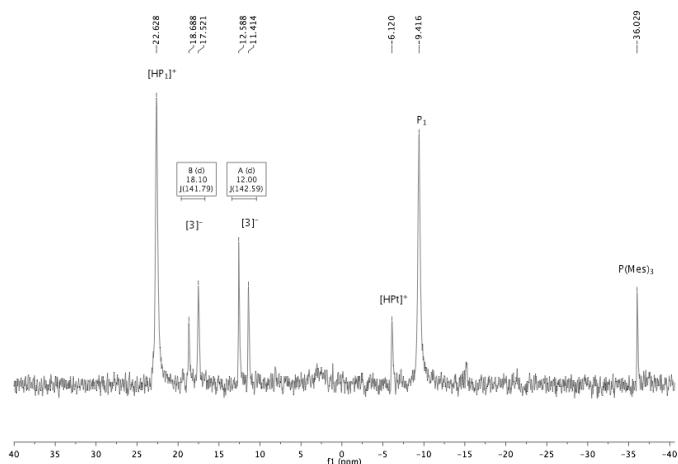
reaction, presumably due to exchange with the generated $[\text{HPt}]^+$ (not observed). The half-life for the reaction was found to be 10.2 hours.

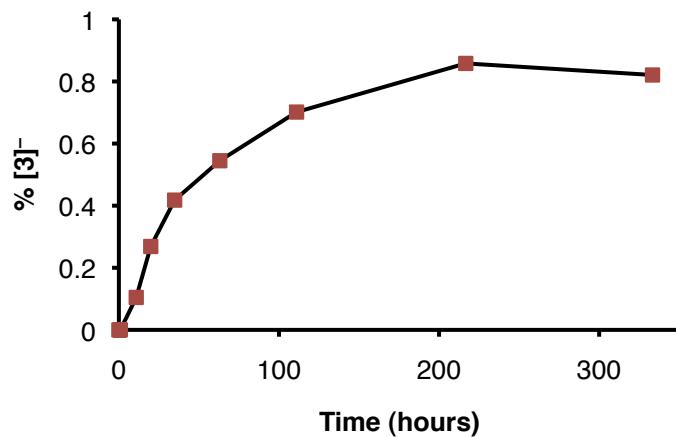

Figure 4.9. $^{31}\text{P}\{^1\text{H}\}$ NMR time course of H_2 splitting reaction.


Figure 4.10. Log plot of consumption of $[\text{Pt}]^{2+}$ during reaction with **P1** and H_2 .

General Procedure for Metal-Added H_2 Reductions. A J-Young Teflon-sealed NMR tube was charged with ~ 0.03 mmol $[\mathbf{1}][\text{X}]$ ($\text{X} = \text{BF}_4$ or BAr^{F_4}), $\sim 0.06\text{-}0.60$ mmol (2-20 equiv) **P1**, $\sim 0.003\text{-}0.015$ (0.1-0.5 equiv) $[\text{M}(\text{dmpe})_2]^{2+}$ ($\text{M} = \text{Ni, Pt}$), and ~ 0.6 mL THF-


d_8 . The tube was sealed, and NMR spectra (^1H , $^{31}\text{P}\{^1\text{H}\}$) were obtained. The tube was degassed by two freeze-pump-thaw cycles, and between 1 and 4 atm H_2 was added by introducing an atmosphere of H_2 at either 298 or 77 K. The tube was affixed to a slowly spinning motor to ensure good mixing, and the reaction was monitored periodically by ^1H and ^{31}P NMR. Precise yields were measured by integration to a solution of $\text{P}(\text{Mes})_3$ ($\text{Mes} = 2,4,6$ -trimethylphenyl) in $\text{THF}-d_8$ in the J-Young tube in a coaxial capillary, with a range from 85-95% depending on conditions.


Figure 4.11. ^1H NMR of Pt-containing reductive coupling immediately after H_2 addition (15 mol% $[\text{Pt}]^{2+}$, 4 equiv \textbf{P}_1).


Figure 4.12. $^{31}\text{P}\{^1\text{H}\}$ NMR of Pt-containing reductive coupling immediately after H_2 addition.

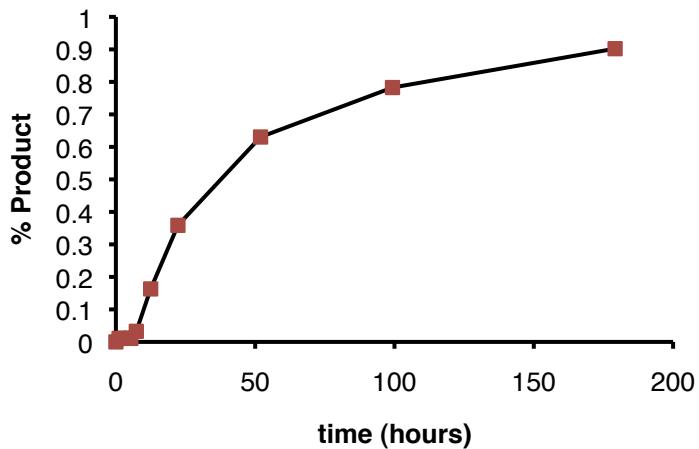

Figure 4.13. ^1H NMR of Pt-containing reductive coupling after 13 days (reaction complete, 85% yield by integration).

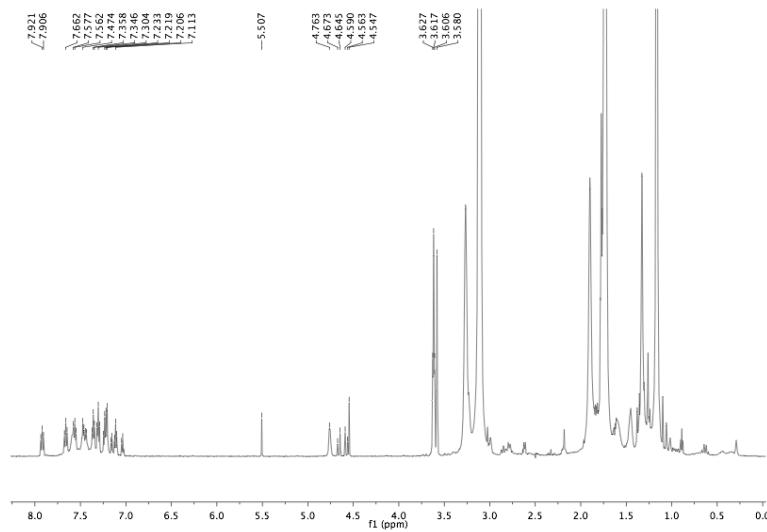
Figure 4.14. $^{31}\text{P}\{^1\text{H}\}$ NMR of Pt-containing reductive coupling after 13 days.

Figure 4.15. Formation of $[\mathbf{3}]^{\mathbf{-}}$ from $[\mathbf{1}][\text{BAr}^{\mathbf{F}_4}]$, 15 mol% $[\mathbf{Pt}][\text{BAr}^{\mathbf{F}_4}]_2$, 4 equiv \mathbf{P}_1 , 4 atm H_2 .

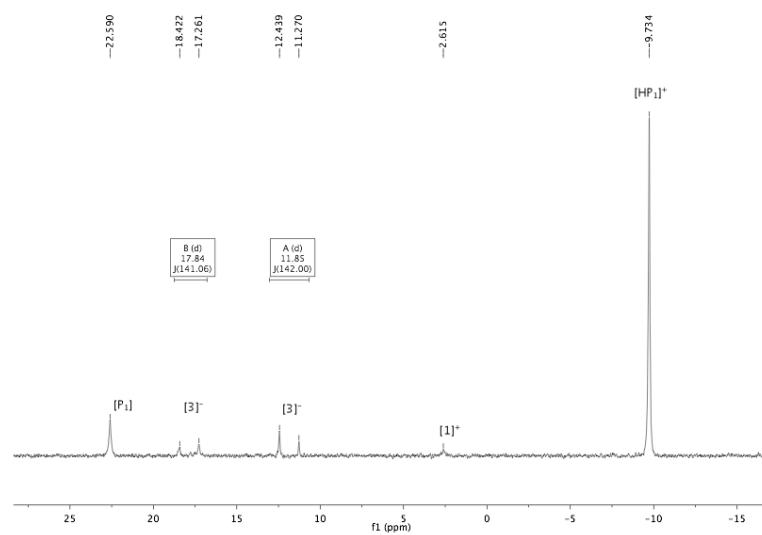
Figure 4.16. Time course of Pt-containing reductive coupling showing induction period (55% $[\text{Pt}]^{2+}$, 5.5 equiv **P₁**, \sim 90% yield by integration to BAr^{F_4} peaks).

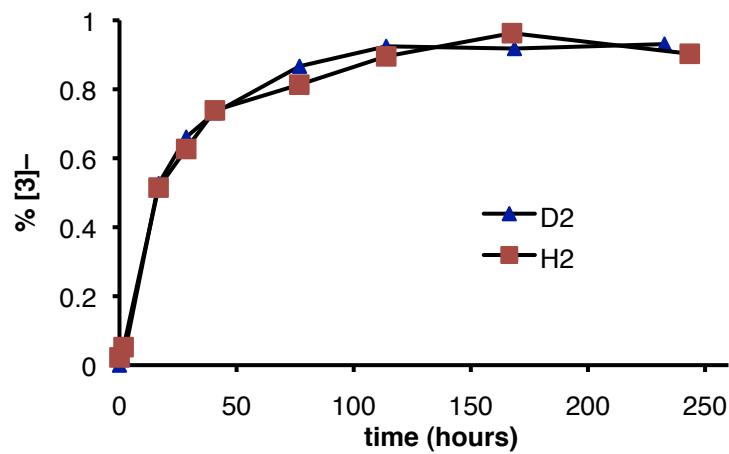
Reaction of **[1][BAr^F₄] with **[HPt][BAr^F₄].** A vial was charged with **[1][BAr^F₄]** (36.3 mg, 0.020 mmol) and **[HPt][BAr^F₄]** (27.0 mg, 0.020 mmol). To the vial was added \sim 0.6 mL $\text{C}_6\text{D}_5\text{Cl}$, which dissolved the solids, and the reaction mixture was transferred to a J-Young NMR tube. Periodic NMR spectra were acquired, which showed no discernable reaction over more than 24 hours.**

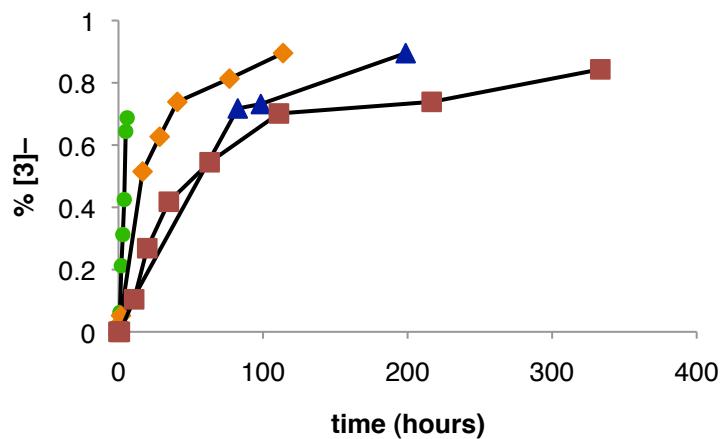
Reaction of **[1][BF₄] with **[HNi(dmpe)₂][PF₆].** A J-Young NMR tube was charged with 21.6 mg (0.021 mmol) **[1][BF₄]**, 20.7 mg (0.041 mmol) **[HNi(dmpe)₂][PF₆]**, and \sim 0.6 mL $\text{THF-}d_8$. Over 48 hours no discernable reaction took place, with only the starting materials visible by NMR spectroscopy.**


Reaction of **2 with **[Pt][BAr^F₄]₂.**** Carbene **2** was prepared in the usual manner by dropwise addition of NaHBET_3 (24.9 μL of a 1.0 M in toluene solution) into a rapidly stirring $\text{C}_6\text{D}_5\text{Cl}$ solution of **[1][BF₄]** (26.2 mg, 0.025 mmol). The mixture was transferred to an NMR tube, and NMR studies showed essentially quantitative formation of **2**. The tube

was returned to the glovebox and 85 mg (0.037 mmol) **[Pt][BAr^F₄]₂** was added. The tube was sealed and shaken vigorously. Subsequent NMR studies showed complete conversion to **[1][BAr^F₄]** and **[HPt][BAr^F₄]**.


General Procedure for Metal-Free H₂ Reductions. A J-Young NMR tube was charged with ~0.03 mmol **[1][X]** (X = BF₄ or BAr^F₄), ~0.06-0.60 mmol (2-20 equiv) **P₁**, and ~0.6 mL THF-*d*₈. The tube was sealed, and NMR spectra (¹H, ³¹P{¹H}) were obtained. The tube was degassed by two freeze-pump-thaw cycles, and between 1 and 4 atm H₂ was added by introducing H₂ at either 298 or 77 K. The tube was affixed to a slowly spinning motor to ensure good mixing, and the reaction was monitored periodically by ¹H and ³¹P NMR. When D₂ was used instead of H₂, all ¹H and ³¹P signals were observed *except for the CH₂ group* of **[3]**, verifying deuterium incorporation at that position and confirming that dihydrogen is the sole source of hydride. Precise yields were measured by integration to a solution of P(Mes)₃ (Mes = 2,4,6-trimethylphenyl) in THF-*d*₈ in the J-Young tube in a coaxial capillary. Conditions: ~4 mM **[1][BF₄]**, 10 equiv. P₁, ~3 atm H₂ (or D₂), giving yields of 92% for both H₂ and D₂. Integration to the protons of **[BAr^F₄]** gave similar yields (85-90%), except when 20 equiv P₁ was added, when a reduced (70%) yield was obtained. Preliminary experiments with D₂ suggested a small kinetic isotope effect.


Figure 4.17. ¹H NMR of metal-free reductive coupling immediately after H₂ addition (10 equiv **P1**). Minor CH₂Cl₂ impurity remains unchanged throughout the reaction; **P1** is left off-scale to show the Re-containing species.


Figure 4.18. ¹H NMR of metal-free reductive coupling after ~5 days (~85% yield).

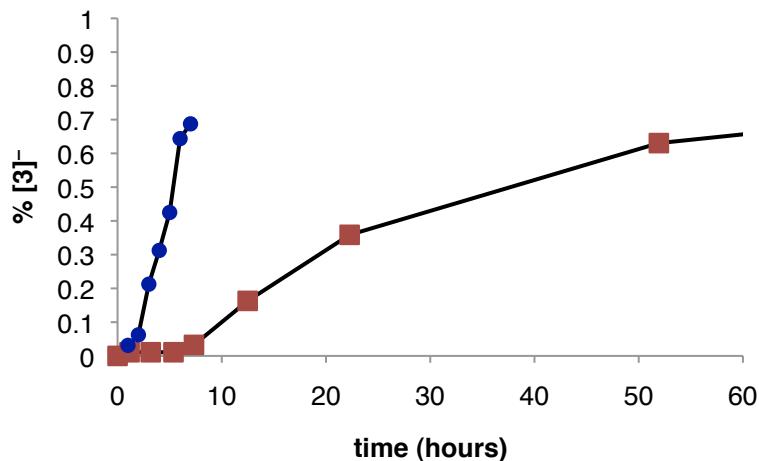
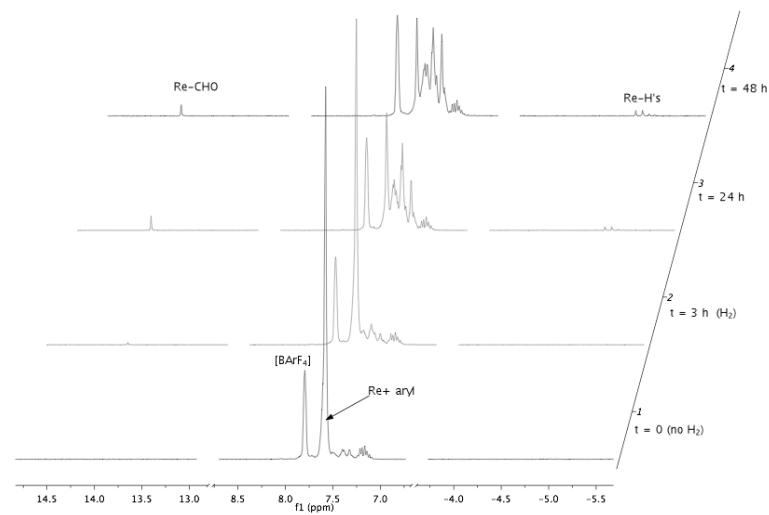

Figure 4.19. $^{31}\text{P}\{^1\text{H}\}$ NMR of metal-free reductive coupling after ~ 5 days.

Figure 4.20. Time course of reaction of 1 equiv $[\mathbf{1}]^+$ and 10 equiv \mathbf{P}_1 with H_2 (red squares) or D_2 (blue triangles).

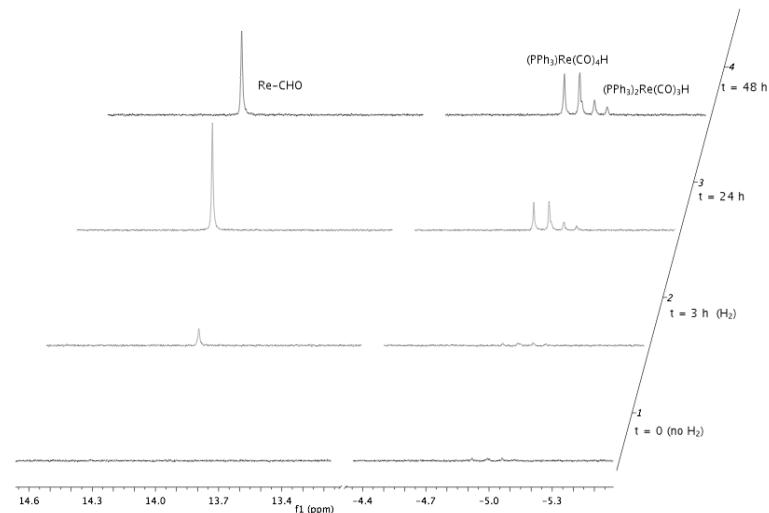
Figure 4.21. Crude comparison of rates of formation of $[3]^-$ with and without $[\text{Pt}]^{2+}$, and varying \mathbf{P}_1 . Red squares, 4 equiv \mathbf{P}_1 (and 15 mol % $[\text{Pt}]^{2+}$); blue triangles, 4 equiv \mathbf{P}_1 ; orange diamonds, 10 equiv \mathbf{P}_1 ; green circles, 20 equiv \mathbf{P}_1 .

Figure 4.22. Time course showing the elimination of induction period when $[\text{Pt}]^{2+}$ is omitted from the reaction.

NMR scale reaction of $[\mathbf{1}][\text{BF}_4]$ with H_2 . A J-Young Teflon-sealed NMR tube was charged with 12.2 mg (0.012 mmol) $[\mathbf{1}][\text{BF}_4]$ and ~ 0.6 mL $\text{THF}-d_8$. The tube was submerged in liquid nitrogen, and the headspace was evacuated, and refilled with H_2 , affording $\sim 2\text{-}3$ atm H_2 . The tube was sealed and the reaction monitored by ^1H and ^{31}P NMR. No reaction was discernable over a number of days.


H₂/D₂ Equilibration Experiments. A J-Young Teflon-sealed NMR tube was charged with ~30 mg (0.1 mmol) **P₁** and 0.6 mL THF-*d*₈. After two freeze-pump-thaw cycles a 1:1 mixture of H₂:D₂, freshly mixed in a 500 mL bulb, was introduced while the tube was cooled to 77 K. The tube was sealed and the solution carefully thawed, and the reaction monitored by NMR. No HD peak was observed after 24 hours.

In a typical experiment, a J-Young NMR tube was charged with 31.2 mg (0.10 mmol) **P₁**, 20.6 mg (0.10 mmol) ^tBu(CH₂)₂B(C₈H₁₄), and ~0.6 mL THF-*d*₈. The tube was sealed and moved from the glovebox to a vacuum line, where it was subjected to two freeze-pump-thaw cycles, at which point a 1:1 H₂:D₂ mixture (freshly mixed in a 500 mL bulb) was introduced at 77 K. After carefully thawing the reaction mixture, the reaction was monitored by ¹H NMR. After 30 minutes a significant amount of HD (HD:H₂) was observed, which slowly increased. After two days, the ratio of HD:H₂ was 0.46:1.00. Another spectrum was taken 10 days later, showing complete equilibration (HD:H₂, 1.98:1.00) occurred at some point between 2 and 12 days from the start of the reaction.


Reaction of [1][BF₄] with ^{tOct}P₁ under H₂. A J-Young NMR tube was charged with 24.2 mg (0.0230 mmol) [1][BF₄]. A ~0.6 mL THF-*d*₈ solution of 33.4 mg (0.114 mmol, 5 equiv) *tert*-Octylimino-tris(dimethylamino)phosphorane (^{tOct}**P₁**) was added to the tube, which was sealed and monitored by multinuclear NMR spectroscopy. Initial spectra showed no reaction. The reaction was put under ~3 atm H₂, and after 6 hours no reaction was observed. The tube was heated to 70 °C, and after 24 hours, the major product was a ligand activated species formed from **2**.

Reaction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}}_4]$ with \mathbf{P}_1 under H_2 . A J-Young NMR tube was charged with 40.6 mg (0.024 mmol) $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}}_4]$, and a \sim 0.6 mL THF- d_8 solution of 75 mg (0.24 mmol, 10 equiv) \mathbf{P}_1 . Before addition of H_2 , initial NMR spectra were acquired, which showed a small amount of Re–H species (\sim 7%), attributed to adventitious water (which could lead to hydroxide attack at Re–CO and elimination of CO_2 to give Re–H). The tube was freeze-pump-thawed twice, and H_2 was introduced at 77 K (2-4 atm). The tube was affixed to a slowly spinning motor to ensure good mixing, and the reaction monitored periodically by NMR spectroscopy. The amount of Re–H species remained essentially constant over more than 48 hours.

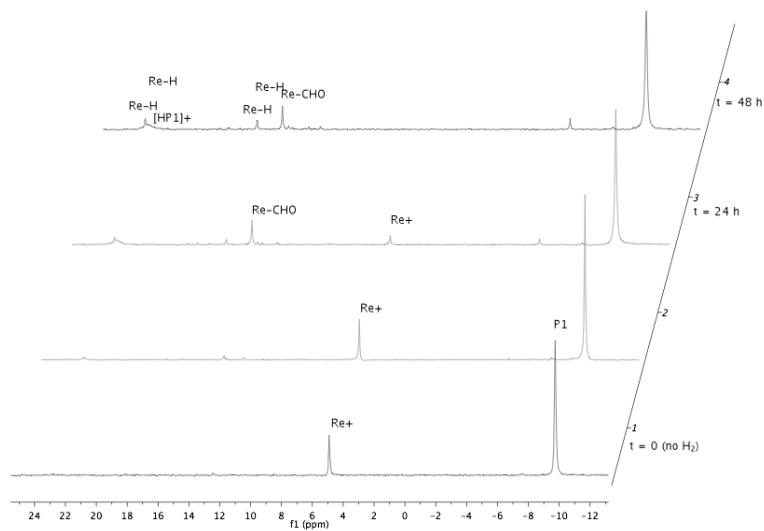

Reaction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}}_4]$ with the frustrated Lewis pair $\mathbf{P}_1 / {}^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$ under H_2 . A J-Young NMR tube was charged with 41.8 mg (0.025 mmol) $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}}_4]$, and a \sim 0.6 mL THF- d_8 solution of 78 mg (0.25 mmol, 10 equiv) \mathbf{P}_1 and 5.1 mg (0.025 mmol, 1 equiv) ${}^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$. As in the absence of Lewis acid, a small amount (\sim 2%) of Re–H species was initially formed, as above. The tube was freeze-pump-thawed twice, and H_2 was introduced at 77 K (2-4 atm). After careful thawing, the tube was slowly rotated on a motor to mix, and was monitored by NMR spectroscopy. After a few hours, \sim 8% formyl was present; after 24 hours \sim 70% conversion to a mixture of Re formyl and hydride species was observed (formyl:hydride, 1.0:0.67), and after 48 hours \sim 80% conversion to the mixture of $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$, $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{H}$, and $(\text{PPh}_3)\text{Re}(\text{CO})_4\text{H}$ was observed (formyl: hydride, 1.0:1.37). After 48 hours all Re starting material had been consumed, and the other 20% Re comprised a few minor uncharacterized products.

Figure 4.23. Time course (^1H NMR) of reduction facilitated by external Lewis acid.

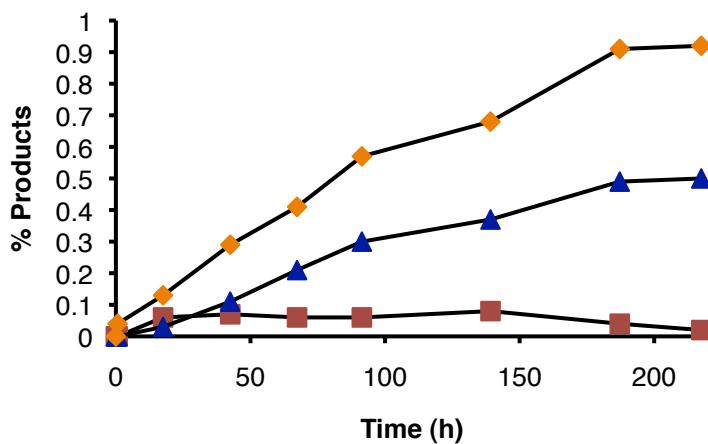

Figure 4.24. Time course (^1H NMR) of reduction facilitated by external Lewis acid (formyl and hydride region).

Figure 4.25. Time course (^{31}P NMR) of reduction facilitated by external Lewis acid.

Catalytic reduction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}_4}]$ with **P1 / $^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$**

under H_2 . A J-Young NMR tube was charged with 104.2 mg (0.0618 mmol) $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4][\text{BAr}^{\text{F}_4}]$, 96.5 mg (0.309 mmol, 5 equiv) **P1**, 12.4 μL (0.012 mmol, 0.2 equiv) $^t\text{Bu}(\text{CH}_2)_2\text{B}(\text{C}_8\text{H}_{14})$, and 0.6 mL $\text{THF}-d_8$. The tube was placed under ~ 4 atm H_2 and monitored by NMR. Integration against the BAr^{F_4} protons established that 6% $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$ formed over the first 18 hours, and that level was roughly maintained through the reaction, while the amount of hydride steadily increased to 54% yield over 8 days. The total amount of hydride transferred from H_2 to Re represents 2.6 turnovers in borane.

Figure 4.26. Time course of catalytic reduction of $[(\text{PPh}_3)_2\text{Re}(\text{CO})_4]^+$, monitored by NMR. Red squares, $(\text{PPh}_3)_2\text{Re}(\text{CO})_3(\text{CHO})$; blue triangles, sum of $(\text{PPh}_3)_2\text{Re}(\text{CO})_3\text{H}$ and $(\text{PPh}_3)\text{Re}(\text{CO})_4\text{H}$; orange diamonds, $[\text{HP1}]^+$.

References

1. (a) Dombek, B. D. *Adv. Catal.* **1983**, 32, 325; (b) Maitlis, P. M.; Zanotti, V. *Chem. Commun.* **2009**, 1619.
2. DuBois, M. R.; DuBois, D. L. *Chem. Soc. Rev.* **2009**, 38, 62.
3. (a) Elowe, P. R.; West, N. M.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2009**, 28, 6218; (b) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2008**, 130, 11874; (c) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. *Organometallics* **2010**, 29, 4499.
4. Curtis, C. J.; Miedaner, A.; Ellis, W. W.; DuBois, D. L. *J. Am. Chem. Soc.* **2002**, 124, 1918.
5. Ellis, W. W.; Miedaner, A.; Curtis, C. J.; Gibson, D. H.; DuBois, D. L. *J. Am. Chem. Soc.* **2002**, 124, 1926.
6. (a) Schwesinger, R.; Schlemper, H. *Angew. Chem. Int. Ed.* **1987**, 26, 1167; (b) Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H. *Chem. Ber.* **1994**, 127, 2435.
7. Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I. A. *J. Org. Chem.* **2005**, 70, 1019.
8. Izutsu, K., *Acid-Base Dissociation Constants in Dipolar Aprotic Solvents*. Blackwell Scientific Publications: Boston, 1990; p 166.
9. Brown, H. C.; Schlesinger, H. I.; Cardon, S. Z. *J. Am. Chem. Soc.* **1942**, 64, 325.

10. (a) Stephan, D. W. *Org. & Biomol. Chem.* **2008**, *6*, 1535; (b) Stephan, D. W. *Dalton Trans.* **2009**, 3129; (c) Stephan, D. W.; Erker, G. *Angew. Chem. Int. Ed.* **2010**, *49*, 46.
11. (a) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. *Science* **2006**, *314*, 1124; (b) Welch, G. C.; Stephan, D. W. *J. Am. Chem. Soc.* **2007**, *129*, 1880; (c) Geier, S. J.; Gille, A. L.; Gilbert, T. M.; Stephan, D. W. *Inorg. Chem.* **2009**, *48*, 10466.
12. (a) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. *Angew. Chem. Int. Edit.* **2007**, *46*, 8050; (b) Chase, P. A.; Jurca, T.; Stephan, D. W. *Chem. Commun.* **2008**, 1701.
13. Rokob, T. A.; Hamza, A.; Papai, I. *J. Am. Chem. Soc.* **2009**, *131*, 10701.
14. Gibson, D. H.; Owens, K.; Mandal, S. K.; Sattich, W. E.; Franco, J. O. *Organometallics* **1989**, *8*, 498.
15. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.
16. Miedaner, A.; DuBois, D. L.; Curtis, C. J.; Haltiwanger, R. C. *Organometallics* **1993**, *12*, 299.
17. Berning, D. E.; Noll, B. C.; DuBois, D. L. *J. Am. Chem. Soc.* **1999**, *121*, 11432.
18. Hirano, K.; Yorimitsu, H.; Oshima, K. *Org. Lett.* **2005**, *7*, 4689.
19. (a) Benesi, H. A.; Hildebrand, J. H. *J. Am. Chem. Soc.* **1949**, *71*, 2703; (b) Rose, N. J.; Drago, R. S. *J. Am. Chem. Soc.* **1959**, *81*, 6138.
20. Baldwin, S. M.; Bercaw, J. E.; Brintzinger, H. H. *J. Am. Chem. Soc.* **2008**, *130*, 17423.