
On Quantum Computing and Pseudorandomness

Thesis by

William Jason Fefferman

In Partial Fulfillment of the Requirements

Masters Degree in Computer Science

California Institute of Technology

Pasadena, California

2010

(Submitted June, 2010)

Abstract

The relationship between classically efficient verification and quantum computing is one of the

most important and least well-understood questions in the theory of computation. In particular, is

there a problem that can be solved efficiently on a quantum computer that cannot be verified? In

this thesis we give evidence that BQP 6⊂ PH , relating the classes of languages decidable with a

quantum computer to a generalization ofNP . In so doing we connect a question in pseudorandom-

ness, first studied in [BSW03] to the problem of finding an oracle relative to which BQP 6⊂ PH .

The primary technical challenge is to construct a unitary matrix, realized by an efficient quantum

circuit and whose rows are supported on nearly disjoint subsets. Using this matrix and assuming

the validity of the aforementioned question in pseudorandomness, we show an instantiation of the

Nisan-Wigderson pseudorandom generator that can be broken with quantum computers, but not

with the relevant mode of classical computation.

1

0.1 Introduction

Let Ut denote a random variable distributed uniformly on t-bit binary strings. It has long been a

goal to explicitly construct “pseudorandom generators”:

f : {0, 1}t → {0, 1}m

that stretch a short uniformly generated “seed” into a longer output string, so that f(Ut) is com-

putationally indistinguishable from Um. Further, one can ask to what degree this computational

indistinguishability is dependent on particular models of computation (with respect to existing

constructions). Here we give evidence that quantum computers can distinguish particular instanti-

ations of “pseudorandom” distributions that are provably indistinguishable from uniform by clas-

sical circuits. In so doing, we make progress on finding a relativized setting in which BQP 6⊂ PH,

an infamous question first addressed by Bernstein and Vazirani in 1993 [BV97]. In addition, we

connect this problem to that of the ”Generalized Nisan-Linial” Conjecture [Aar10b] relating such

results to a generalization of a recently proven result of Braverman [Bra10].

More formally, we refer toAC0 as the class of constant depth and-or-not circuits of polynomial

size and unbounded fan-in. We will work with the Nisan-Wigderson pseudorandom generator

against such circuits, with MAJORITY as its hard function. In particular we will need two standard

definitions:

Definition 0.1.1 ([NW94]). A set family D = {S1, S2, . . . , Sm} is an (`, p) design if every set in

the family has cardinality `, and for all i 6= j, |Si ∩ Sj| 6 p.

Definition 0.1.2 ([NW94]). Given a function f : {0, 1}` → {0, 1} and an (`, p) design D =

{S1, S2, . . . , Sm} in a universe of size t, the function NW f
D : {0, 1}t → {0, 1}m is given by

NW f
D(x) =

(
f1(x|S1), f2(x|S2), f3(x|S3), . . . , fm(x|Sm)

)
,

2

where each fi is the function f with a fixed set of its inputs negated1, and x|S denotes the projection

of x to the coordinates in the set S.

In general the function NW f
D is a PRG against a class of distinguishers as long as f is hard

on average for that class of distinguishers. The MAJORITY function on ` bits is known to be

hard for AC0 circuits, and it remains hard to compute the MAJORITY correctly on more than a

1/2 + Θ̃(`−1/2) fraction of the inputs [Smo93]. Furthermore such approximation of MAJORITY is

realized by the simple algorithm that outputs an arbitrary bit of the input. However, we make the

following conjecture:

Conjecture 1. LetD = {S1, S2, . . . , Sm} be an (`, O(1))-design in a universe of size t 6 poly(`),

with m 6 poly(`). Then for every constant-depth circuit of size at most exp(polylog(m)),

|Pr[C(Ut+m) = 1]− Pr[C(Ut, NW
MAJORITY
D (Ut)) = 1]| 6 o(1).

Note that in this work we will abuse notation slightly and refer to constant depth circuits of size

at most exp(poly logm) as “AC0”. By the standard argument from [Yao82, GM84], a distinguish-

ing circuit C with gap ε can be converted to a predictor with advantage ε/m and then a slightly

larger circuit that computes MAJORITY with success rate 1/2 + ε/m. Thus the above statement

is true for m 6 o(
√
`); if the 1/m loss from the hybrid argument can be avoided (or reduced), it

would be true for m as large as poly(`) (and even larger) as we conjecture is true. While we don’t

know how to prove this conjecture we believe it to be true and give intuition in our Conclusion,

section 0.9.

We summarize our three main results, which together make Conjecture 1 interesting and worthy

of further study:

• We make progress on finding an oracle relative to whichBQP 6⊂ PH , which is a major open

question in quantum computing. We give a new approach to resolving this question (e.g.,
1The standard setup has each fi = f ; here we need the additional freedom for technical reasons. We know of no

settings in which this alteration affects the analysis of the NW generator.

3

by proving Conjecture 1), which is formally easier than the previous approach of Aaronson

[Aar10b]. We also give a potential line of reasoning in support of this conjecture.

• We find a surprising consequence to Aaronson’s “Generalized Linial-Nisan” conjecture (for

which previously little evidence was known). In particular, we show that this conjecture

implies Conjecture 1. Thus our implication shows a possible path for proving this relativized

separation, or disproving Aaronson’s conjecture, by showing an AC0 circuit for breaking the

Nisan-Wigderson generator based on the MAJORITY function. Furthermore, our conjecture

is a natural question in pseudorandomness that is of independent interest in many other

contexts (e.g., [BSW03]).

• We generalize [Aar10b], which shows that a “forrelated” distribution can be efficiently dis-

tinguished from uniform by the quantum computer, which is possibly hard for AC0. We

show a framework for which any quantumly computable unitary gives rise to a distribution

that can be distinguished from uniform quantumly. Further, we show how, based upon this

framework, we can use it to break an instantiation of the Nisan-Wigderson pseudorandom

generator, assuming Conjecture 1.

We also note that the unitaries that form the basis of our quantum algorithms don’t seem

to resemble unitaries useful for other quantum algorithms, and show a task that gives an

“exponential” quantum speedup over the best classical algorithms. Interestingly the desired

property in these unitaries is precisely their natural extremal combinatorial properties, and

we wonder if they can be useful elsewhere.

Finally, this exponential quantum speedup mentioned above gives us other unconditional oracle

separations. [Aar10b] has shown that the classes SZK and BPPpath require exponentially many

queries to distinguish ε-almost k-wise independent distributions from uniform and therefore, our

constructions yield oracles relative to which BQP does not lie in either of these classes (and MA

as well, since MA ⊆ BPPpath), just as Aaronson’s construction does.

4

0.2 Quantum preliminaries

The state of an n-qubit quantum system is described by a unit vector in H = (C2)⊗n, a 2n-

dimensional complex Hilbert space, endowed with the standard Hilbert-Schmidt inner product.

As per the literature we will denote the standard orthogonal basis vectors of H by {|v〉} for v ∈

{0, 1}n.

In accordance with the laws of quantum mechanics, transformations of states are described by

unitary transformations acting on H, where a unitary transformation over H is a linear transfor-

mation specified by a 2n × 2n square complex matrix U , such that UU∗ = I , where U∗ is the

conjugate transpose. Equivalently, the rows (and columns) of U form an orthonormal basis. A

local unitary is a unitary that operates only on b = O(1) qubits; i.e. after a suitable renaming of

the standard basis by reordering qubits, it is the matrix U ⊗ I2n−b , where U is a 2b × 2b unitary U .

A local unitary can be applied in a single step of a quantum computer. A local decomposition of

a unitary is a factorization into local unitaries. We say an N × N unitary is efficiently quantumly

computable if this factorization has at most poly(n) factors.

We will also need the concept of projective measurement, which given an orthonormal basis O

for H associates a value designated by a real number ri for each basis vector |vi〉 ∈ O. Suppose

our quantum system is in the state |φ〉 ∈ H. We define {Πrj} to be a collection of projection

operators, that project into the subspace spanned by the designated |vj〉 for all vj associated to the

same output value rj . When we measure our system, we obtain the respective outcome rj with

probability |Πrj |φ〉|2 and the resulting state of the system becomes
Πrj |φ〉
|Πrj |φ〉|

.

For example suppose our Hilbert space H can be decomposed into orthogonal subspaces H =

S1 ⊕ S2. When we measure {Π1,Π2} which project into the orthogonal subspaces S1 and S2,

it causes the system to collapse to Π1|φ〉/|Π1|φ〉| or Π2|φ〉/|Π2|φ〉| with probability |Π1|φ〉|2 and

|Π2|φ〉|2 respectively.

An efficient quantum circuit consists of at most poly(n) local unitaries, followed by a mea-

surement.

5

There are universal finite gate sets for which any efficiently quantumly computable unitary can

be realized (up to exponentially small error) by a poly(n)-size quantum circuit [KSV02].

In this paper, the only manner in which our algorithm will access the input string x is the

following operation, which “multiplies x into the phases”. There are three steps: (1) query with

the query register clean, which applies the map |i〉|0〉 7→ |i〉|0⊕ xi〉 (note each xi is in {0, 1}); (2)

apply to the last qubit the map |0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query again to uncompute the last qubit.

When we speak of “multiplying x into the phase” it will be linguistically convenient to speak about

x as a vector with entries from {+1,−1}, even though one can see from this procedure that the

actual input is a 0/1 vector.

(The next two paragraphs are from [FU10].)

The following lemma will be useful repeatedly. It states (essentially) that a block diagonal

matrix, all of whose blocks are efficiently quantumly computable, is itself efficiently quantumly

computable. This is trivial when all of the blocks are identical, but not entirely obvious in general.

Lemma 0.2.1. Fix N = 2n and M = 2m. Let U be an N × N block diagonal matrix composed

of the blocks U1, U2, . . . , UM , where each Ui is a N/M × N/M matrix that has a poly(n)-size

quantum circuit, a description of which is generated by a uniform poly(n) time procedure, given

input i. Then given three registers of m qubits, n − m qubits, and poly(n) qubits, respectively,

with the third register initialized to |000 · · · 0〉, there is a poly(n) size uniform quantum circuit that

applies U to the first two registers and leaves the third unchanged.

Proof. Fix a finite universal set of quantum gates, of cardinality d, each of which operates on at

most b qubits. A convenient notion will be that of an oblivious circuit, in which we fix an ordering

(say, lexicographic) on [n]b, and the steps of the circuit are identified with poly(n) cycles through

this list: when we are on step (a1, a2, . . . , ab) ∈ [n]b in one of these cycles, we operate on qubits

a1, a2, . . . , ab. Clearly, any (uniform) quantum circuit can be converted to a (uniform) “oblivious”

circuit with at most an nb blowup by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious circuits obtained in this way for the

6

various Ui. The circuit for each Ui is now a sequence

j(i) =
(
j

(i)
1 , j

(i)
2 , j

(i)
3 , . . . , j

(i)

nk

)
,

with each j(i)
` ∈ [d] specifying which gate to apply at step ` in the oblivious circuit for Ui (and be-

cause the circuit is oblivious, the qubits to which this gate should be applied are easily determined

from `). Let f : [M]→ [d]n
k be the function that maps i to the vector j(i).

Now we describe the promised efficient quantum procedure:

1. Apply the map derived from f that takes |i〉|z〉 to |i〉|z ⊕ f(i)〉, to the first and third register.

We view the contents of the third register as a vector in [d]n
k .

2. Repeat for ` = 1, 2, 3, . . . , nk: apply the “controlled unitary” that consults the `-th compo-

nent of the third register, and applies the specified gate to qubits (a1, a2, . . . , ab) of the second

register (again, (a1, a2, . . . , ab) are easily determined from ` because the circuit is oblivious).

The important observation is that this “controlled unitary” operates on only constantly many

qubits.

3. Repeat step 1 to uncompute the auxiliary information in the third register.

0.3 Motivation: Quantum Computing vs Classical Nondeter-

minism

The relation between the class of decision problems admitting efficient quantum algorithms, BQP

and the class of decision problems with (classically) efficient verification procedures, NP is a

question of vital importance and yet remains wide open. It is clear that the two classes have a

non-trivial intersection, every problem that can be solved efficiently with a classical computer can

7

both be verified efficiently and can be solved efficiently on a quantum computer. Additionally,

Shor’s famous factoring algorithm [Sho94] and other examples of hidden subgroup problems over

certain classes of groups [Hal07] demonstrate that there are also problems in this intersection not

known to be in P . However, can every problem that can solved efficiently on a quantum computer

be verified efficiently? Conversly, can every efficiently verifiable problem be efficiently solved

on a quantum computer? Frustratingly, nearly two decades after such questions were proposed

(e.g.,[BV97]), little can be said in support of either direction.

In [Sho94] a first step was taken to give evidence for BQP 6⊂ NP in the form of an oracle

separation, as a direct consequence of Shor’s algorithm. Let N be some integer exponential in

input length, n. The idea of this separation is to give both machines oracle access to a function,

f : [N]→ [N] promised to be either:

1. Periodic, so that ∀x f(x) = f(x+ P) for some period P < N but still exponential in n or,

2. Completely arbitrary, with no such periodicity at all.

The decision question that obtains the separation is to distinguish which of the two is the case.

Note that Shor’s algorithm implies an efficient algorithm to solve this problem in O(polylog N)

queries. However the problem is not in NP . This is because there is no polynomial length witness

that verifies that a given function is not periodic [BBBV97].

Given that we know ∃O BQPO 6⊂ NPO, the natural open question has been to strengthen

this result, separating BQP from more and more powerful classical classes. Since the best known

upper bound for BQP is P]P , we are interested in classes between NP and P]P .

In 2003, Watrous showed an oracle separating BQP from MA using the “group nonmember-

ship problem” [Wat00]. However, Babai has since shown that this problem is contained in AM

and so cannot be used to show stronger separations [BBS09]. Finding such an oracle separation

from AM or PH has remained wide open.

Since NP = MA = AM under widely believed derandomization assumptions [NW94,

8

KvM02], our failure to obtain these separations is yet another indication of our lack of under-

standing the relationship between NP and BQP .

In this paper we will find it convenient to speak exclusively about the “scaled down” version of

the problem, which is equivalent via the well-known connection between PH and AC0. In it, the

goal is to design a promise problem (rather than an oracle) that lies in (promise)-BQLOGTIME

but not a quasi-polynomial sized (promise)-AC0. We will drop the cumbersome “promise” mod-

ifiers when they are clear from context. The class BQLOGTIME is the class of languages de-

cidable by quantum computers that have random access to an N -bit input, and use only O(logN)

local-unitaries.

Definition 0.3.1 (BQLOGTIME). A language L is in BQLOGTIME if it can be decided by a

LOGTIME-uniform family of circuits {Cn}, where each Cn is a quantum circuit on n qubits. On

an (N = 2n)-bit input x, circuit Cn applies O(logN) gates, with each gate being either a query

gate which applies the map |i〉|z〉 7→ |i〉|z ⊕ xi〉, or a standard quantum gate (from a fixed, finite

basis). It is equivalent (by polynomially padding the number of qubits) to allow poly log(N) gates.

Our goal will be to design, for each input length N , a distribution on N -bit strings that can

be distinguished from the uniform distribution by a BQLOGTIME predicate, but not by an AC0

circuit. As described in Appendix 0.10, such a distribution can be easily converted to a proper

oracle O for which BQPO 6⊂ PHO.

0.4 Framework

Here we give an informal description of the main ideas necessary to achieve our separation. In

order to prove our desired separation, we need to show an oracle problem which is not in PH

as per our conjecture, yet has an efficient quantum algorithm. To do this we define the following

oracle problem:

9

MAJORITY-CHECKING : Given oracle access to a string over {±1}2t, which we think about as

divided into two strings x, z ∈ {±1}t. We will think about x as the input to the NW generator.

Then the problem is to distinguish between the following two distributions:

1. x and z are generated uniformily2 over {±1}2t, or

2. x is uniform over {±1}t and z is a vector of signs of a unitary matrix U (with entries in

{0, 1,−1})3 applied to x

Note that in case (2), each coordinate of the second string is the sign of a +1/ − 1 weighted

sum of certain coordinates of x; which is simply the MAJORITY (with a fixed pattern of inputs

negated) function applied to this subset of the coordinate of x. Thus, if we can construct a unitary

U whose row-supports form an (`, p) design D in a universe of size t, then case (2) will be the

distribution (Ut, NW
MAJORITY
D (Ut)), and case (1) will be the uniform distribution. The parame-

ters of this instantiation of the NW generator will be such that Conjecture 1 implies that it fools

quasi-polynomial sized AC0. We will show an explicit construction of such a unitary U .

Our Conjecture 1 implies that the NW generator with certain parameters fools AC0, which

is one part of the overall argument, readily implying MAJORITY-CHECKING (with respect to a

particular U) has no AC0 circuit. Clearly we also need to exhibit a BQLOGTIME algorithm that

“breaks” this instantiation of the NW generator and thus solves MAJORITY-CHECKING .

Roughly, in order to distinguish the two cases the quantum algorithm queries the x into the

phases, applying U , multiplying the second string into the phases, and measuring in the Hadamard

basis.

We want to construct U so that the rows are supported on subsets that are nearly disjoint, form-

ing an (`, p)−design where p is a constant. This is a different setting of the parameters than usual,

but in our construction we compensate for this because the number of sets in the design is also

2In fact, we will show that the quantum algorithm works even when z is distributed according to any arbitary
distribution (independent from x)

3We ignore normalization factors in this discussion.

10

small (poly(`) instead of exp(`)), and for these parameters we present a geometric construction,

where the sets are the characteristic vectors of pairs of lines in an affine plane. In prior explicit

constructions of (`, p)−designs such as [NW94, HR03] we cannot simply attach +/− signs to

make their characteristic vectors orthogonal. However, massive symmetries in this construction

allow us to assign signs to the elements of each set to achieve this pairwise orthogonality of their

characteristic vectors, which results in a matrix whose row vectors are orthogonal– giving us uni-

tarity. In our construction these set systems have only t/2 sets, so the resulting unitary will have

the required properties among half of their rows, but we show that the quantum algorithm can be

adapted so as to be resilient to this change.

In Section 0.7.2 we give a local decomposition (see Section 0.2 for the formal definition) of

these unitaries, which is necessary to have an efficient quantum algorithm.

0.5 Quantum algorithm

In this section we describe a quantum algorithm that solves MAJORITY-CHECKING with high prob-

ability. LetA be anyN×N real unitary matrix. For generality we consider any suchAmatrix, and

in section 0.7 construct a particular real unitary that is relavent for our purposes (i.e., to establish

classical hardness).

Define the random variable DA,M = (x, z) distributed on {±1}2N by picking x ∈ {±1}N

uniformly, and setting the next N bits to be z ∈ {±1}N defined by zi = sgn((Ax)i) for i 6 M

and zi independently and uniformly random in {±1} for i > M . Likewise, let X2N be the random

variable distributed over {±1}2N , so that the first half of coordinates, x is generated uniformly

at random, by flipping N unbiased random coins and z is distributed according to an arbitrary

distribution (but independently from x)4 over {±1}N .

For convenience we think of M = N initially; we analyze the general case because we will

4Note that X2N generalizes the “all-uniform” distribution, U2N , as promised.

11

eventually need to handle M = N/2.

Theorem 0.5.1. Let N = 2n for an integer n > 0, and let M = Ω(N). For every real N × N

unitary A, there is a BQLOGTIME algorithm QA that distinguishes DA,M from X2N ; i.e., there

is some constant ε > 0 for which:

|Pr[QA(DA,M) = 1]− Pr[QA(X2N) = 1]| > ε.

The algorithm is uniform if A comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of strings x, z ∈ {±1}N .

The algorithm performs the following steps:

1. Enter a uniform superposition 1√
N

∑
i∈{0,1}n |i〉 and multiply x into the phase to obtain

1√
N

∑
i∈{0,1}n xi|i〉.

2. Apply A to obtain 1√
N

∑
i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain 1√
N

∑
i∈{0,1}n zi(Ax)i|i〉.

4. Define vectorw bywi = 1√
N
zi(Ax)i. Apply theN×N Hadamard5 H to obtain

∑
i∈{0,1}n(Hw)i|i〉,

and measure in the computational basis. Accept iff the outcome is 0n.

We first argue that the acceptance probability is small in case x is distributed uniformly and z is

distributed according to an arbitrary distribution. This is a consequence of in quantum computation

to cancel the changes in sign after application of the unitary A applied to x. In particular, we will

show that we can distinguish the instantiation of the NW distribution,DA,M , from a “half-uniform”

distribution where the second half of coordinates z has all probability mass on a single string,

z̃ ∈ {±1}N . It follows that we can take any distribution on z and still distinguish the distributions.

5This is the matrix H whose rows and columns are indexed by {0, 1}n, with entry (i, j) equal to 1√
N
− 1〈i,j〉

12

Additionally, define U to be the unitary matrix obtained by multiplying the diagonal matrix

with z̃ on the diagonal by A, e.g., U is the unitary applied to the first-half of coordinates after

querying the second-half. Let uj be the sum of the jth column of U . We proceed to show that

the acceptance probability of the quantum algorithm given an uncorrelated distribution is smaller

than any constant (the acceptance probability of the quantum algorithm after the final measurement

given a NW distribution).

In this case, we are interested in the post-measurement acceptance probability, given by the

square of the mass on the 0n basis vector after step 4 in the algorithm above:

E
[
(Hw)2

0

]
=E

(1

N

N∑
i

N∑
j

z̃iai,jxj

)2
 (1)

=
1

N2
E

(∑
j

ujxj

)2
 (2)

=
1

N2
E

[∑
j,j′

ujuj′xjxj′

]
(3)

=
1

N2

∑
j,j′

E [ujuj′xjxj′] (4)

(5)

Clearly, this expectation is equal 0 if j 6= j′, thus

=
1

N2
E

[∑
j

uj
2

]
(6)

=
1

N2
·N =

1

N
6 o(1) (7)

13

Where (7) follows from unitarity.6

We next argue that the acceptance probability is large in case (x, z) is distributed as DA,M . We

are interested in analyzing the expectation value of each individual wi. Note that the w-vector is

uniformly distributed for i > M , since the corresponding entry of z is uniform. Thus for these i,

E[wi] = 0. For this reason we will be interested in i 6M . Then

E [wi] = E

[∣∣∣∣ 1√
N

(Ax)i

∣∣∣∣] = E

[∣∣∣∣∣
N∑
j

1√
N
ai,jxj

∣∣∣∣∣
]

(8)

= E


√√√√ 1

N

(∑
j

ai,jxj

)2
 (9)

=
1√
N
E

√∑
j,j′

ai,jxjai,j′xj′

 (10)

=
1√
N
E

√∑
j

ai,j2

 (11)

=
1√
N
E [1] =

1√
N

(12)

Where equality (11) follows from the same argument as the prior part of the proof (i.e., the

expectation is easily verified to be 0 unless j = j′) and (12) follows from the unitarity of A.

Then E[
∑

iwi] = M · 1√
N

= Ω(
√
N), so E[(Hw)0n] = Ω(1)

Since the random variable (Hw)0n is always bounded above by 1, we can apply Markov to its

negation to conclude that with constant probability, it is at least a constant ε (and in such cases the

acceptance probability is at least ε2). Overall, the acceptance probability is Ω(1).

6More precisely, this is a consequence of unitary matrices preserving the L2-norm. Formally, let 1 be the all-1’s
row-vector and let V be any complex unitary. Then we know ||1V ||2 = ||1||2 ⇒

∑N
j=1 |vj |2 = N

14

0.6 Classical hardness

In this section we discuss the classical difficulty in distinguishing the uniform distribution from the

NW distribution with MAJORITY as the hard function. Recall that there are no AC0 circuits that

can exactly compute the parity or MAJORITY function [FSS84]. These results by themselves are

not useful directly for our desired separation, because it is known that any quantum circuit needs

to make Ω(2n) queries to compute the parity of n bits [BBC+01]. What other tasks are hard for

AC0? Recently, Braverman [Bra10] showed that such circuits are quite limited in their ability to

distinguish uniformly distributed input bits from bits that are distributed uniformly if we look at

any small subset of the bits, but could potentially be correlated across larger scales.

Formally, let D be a discrete random variable with values over {±1}r. We give two defintions:

Definition 0.6.1. D is k-wise independent if every restriction ofD to k coordinates is uniform over

{±1}k

Definition 0.6.2. A function f : {±1}r → {±1} is ε-fooled by D if:

| Pr
x∼D

[f(x) = 1]− Pr
x∼Ur

[f(x) = 1]| < ε

Braverman recently [Bra10] proved the ”Linial-Nisan“ Conjecture:

Theorem 0.6.3. AC0 circuits of size m = poly(n), depth d = O(1), are ε-fooled by

log(m/ε)O(d2)−independence.

The proof of this theorem answered a famous conjecture of Nisan and Linial [NW94] from

1994. However, what ifD is not exactly k-wise independent but can deviate by some multiplicative

factor?

Definition 0.6.4. [Aar10b]D is ε-almost k-wise independent if for every k distinct indices i1, i2, . . . , ik ∈

[r], and every α1, α2, . . . , αk ∈ {±1} we have:

1− ε 6 Pr[Di1 = α1 ∧Di2 = α2 ∧ · · · ∧Dik = αk]

2−k
6 1 + ε.

15

Then the Generalized Nisan-Linial Conjecture states:

Conjecture 2 ([Aar10b]). Let D be any random variable distributed on {0, 1}r that is 1/rΩ(1)-

almost rΩ(1)-wise independent7. Then for every constant-depth circuit C of size at mostm = 2r
o(1)

,

|Pr[C(D) = 1]− Pr[C(Ur) = 1]| 6 o(1).

We now show that certain instantiations of the NW generator, including the ones in our Con-

jecture 1, are ε-almost k-wise independent, with parameters such that the GLN conjecture implies

ours.

First, we will generalize this to the distribution NW f
D with f a generic boolean function.

Let f : {±1}n → {±1} be a boolean function, we designate the restriction R = (ρ ⊆ [n], a :

[ρ] → {±1}) as the pairing of the indices we fix and the respective values assigned to the indices

by the mapping, a. Given f and k, the maximum size of restriction set ρ, we’re interested in the

maximum bias (away from 1/2) of the function under such restrictions, where:

Definition 0.6.5. bias(f) = Pr[f(x) = 1]− 1
2

= Pr[f(x)=1]−Pr[f(x)=−1]
2

= E[f(x)]
2

Let f =
∑
S⊆[n]

f̂(S)χS be the representation of f in the fourier basis,

where each χS is the product over the variables at indices specified by the set S. Clearly

E[f] = f̂(∅) because f̂(∅) = 〈f, χ∅〉 = 1
2n

∑
x f(x).

Thus bias(f) = f̂(∅)
2

.

7One might expect to see k = poly log(r) independence rather than k = rΩ(1), in analogy with the Linial-Nisan
conjecture. Aaronson uses the stronger parameter setting (making the GLN conjecture easier) because it is sufficient
for his construction; it is for ours too.

16

We’re interested in the quantity:

Definition 0.6.6. φf (k) = maxR(|biasfR|), the maximum bias of f taken over all restrictions R,

i.e., over both the subset of variables and their assignments. Clearly φf (k) = maxR| f̂ |R(∅)
2
|

And we claim:

Lemma 0.6.7. f̂ |R(∅) = f̂(∅) +
∑

S⊆ρ[f̂(S)
∏

i∈S a(i)]

This is true simply because each fourier term fixed by the restriction becomes correlated with

the constant fourier term, f̂(∅). Note that in the monotonic case the restriction R achieving the

maximum of φf (k) is clearly the function mapping all indices of ρ to +1 and we need only max-

imize over subsets ρ but in the general case we may reach a maximum bias with mixed values of

a.

Theorem 0.6.8. Adapted from [FU10]: LetD = {S1, S2, . . . , Sm} be an (`, p) design in a universe

of size t, and f : {±1}` → {±1}. Then for every k < o(`1/4p−1/2), the jointly distributed random

variable

(C,D) = (Ut, NW
f
D(Ut))

is O(kφf (pk))-almost k-wise independent.

We will show that after conditioning on the value of up to k − 1 coordinates, the bias (away

from 1/2) of any specified k-th coordinate is at most φf (pk) which we can show for MAJORITY to

be O(pk/
√
`). Clearly we only have to worry about the case when some of the conditioned coor-

dinates are outside of the first t coordinates, since the first t coordinates are exactly independent.

To analyze this case for these coordinates in position t+ i we replace the conditioning on this co-

ordinate with those coordinates in the support of this coordinate. Namely, for each coordinate we

condition on every coordinate in the set Si of the (`, p)−design. This makes sense because these

support coordinates completely determine the t+ ith coordinate, and this is true for all coordinates

after t. Since at most p of these can affect the bias of the k-th coordinate, we compute this quantity

17

conditioning on up to p(k− 1) bits instead of (k− 1). Our proof is intrinsically combinatorial and

involves only simple calculation, while the analogous proof in [Aar10b] showing that a forrelated

distribution is almost-k-wise independent) takes a rather involved calculation to bound the measure

of a space of independent Gaussians restricted to an affine subspace, and then converts to a discrete

setting.

Proof. Fix k1 distinct indices i1, i2, . . . , ik1 ∈ [t] and k2 distinct indices j1, j2, . . . , jk2 ∈ [m] with

k1 + k2 6 k, and fix α1, α2, . . . , αk1 , β1, β2, . . . , βk2 ∈ {0, 1}.

We compute the probability

ρ = Pr[Ci1 = α1 ∧ Ci2 = α2 ∧ · · · ∧ Cik1 = αk1 ∧Dj1 = β1 ∧Dj2 = β2 ∧ · · · ∧Djk2
= βk2],

which we write as

ρ =

(
k1∏
w=1

Pr[Ciw = αw|Ci1 = α1 ∧ C2 = α2 ∧ · · · ∧ Ciw−1 = αiw−1]

)

×

(
k2∏
w=1

Pr[Djw = βj|Ci1 = α1 ∧ C2 = α2 ∧ · · · ∧ Cik1 = αik1

∧Dj1 = βj1 ∧Dj2 = βj2 ∧ · · · ∧Djw−1 = βw−1]
)
.

Clearly the first k1 terms of the product are exactly 1/2, since C is uniform on t-bit strings. Now,

consider the w-th factor, denoted ρw, in the second part of the product. The key maneuver is to

replace the conditioning on Djv (for v < w) with conditioning on Ds for s ∈ Sw ∩ Sv. This

is permissible because Djv can affect Djw only through the common elements of their associated

sets Sv and Sw. Note that because |Sw ∩ Sv| 6 p, the total number of coordinates that are being

conditioned upon is 6 pk.

Then by definition, after conditioning on at most pk coordinates:

ρw 6 1/2 + φf (pk)

18

and

ρw > 1/2− φf (pk)

so,

ρ 6 (1/2 + φf (pk))k 6 [(1/2)(1 + 2φf (pk))]k 6 2−k(1 + 2kφf (pk))

and symmetrically,

ρ > (1/2− φf (pk))k > [(1/2)(1− 2φf (pk))]k > 2−k(1− 2kφf (pk))

Corollary 0.6.9. φmajority(pk) = O(pk/
√
`), and it follows from Theorem 0.6.8, for every k <

o(`1/4p−1/2), the jointly distributed random variable

(C,D) = (Ut, NW
majority
D (Ut))

is O(kφmajority(pk)) = O(pk2/
√
`)-almost k-wise independent.

Let |Sw| = `, and the bit Dw is the MAJORITY (with certain inputs negated) of the specified `

coordinates of C. Without conditioning, we could compute Pr[Dw = 1] by

1

2`
·
∑̀

r=d`/2e

(
`

r

)
.

We want to compute instead ρw, which is the same probability conditioned on up to pk of the

coordinates of C. The maximum value of ρw is thus

ρw 6
1

2`
·

∑̀
r=d`/2e−pk

(
`

r

)
.

19

Using Stirling’s Approximation we obtain
(
`
r

)
6 O(2`√

`
) for all r, so we get the upper bound of

ρw 6
1

2
+O(pk/

√
`).

and symmetrically

ρw >
1

2
−O(pk/

√
`).

The corollary now follows from Theorem 0.6.8, taking φmajority(pk) = O(pk/
√
`).

Corollary 0.6.9 immediately implies that MAJORITY-CHECKING has exponential classical query

complexity. To show this we cite a theorem of Aaronson:

Theorem 0.6.10. Lemma 20 from [Aar10b]: Suppose a probability distribution D over oracle

strings is δ-almost k-wise independent. Then no bounded-error postselected classical machine

running in less than k-steps can distinguish D from the uniform distribution with bias larger than

2δ.

Since we have already demonstrated a quantum algorithm solving MAJORITY-CHECKING with

constant queries, we have given an example of a problem with an “exponential quantum speedup”

over randomized classical computation.

0.7 Unitary matrices with large, nearly-disjoint row supports

Note that this section is largely verbatim from [FU10]. In this section we construct unitary matrices

A with the additional property that all or “almost all” of the row supports are large and have

bounded intersections. Define S(A, i) to be the support of the ith row of matrix A. We also

show that these unitaries are efficiently quantumly computable. This is the final part of our main

result: the distribution DA,M (it will turn out that M will be half the underlying dimension) is

20

distinguishable from uniform by a BQLOGTIME algorithm by Theorem 0.5.1, and at the same

time DA,M can be seen as an NW distribution that by Conjecture 1 fools quasi-polynomial size

AC0 (see Section 0.8 for the precise statement).

0.7.1 The paired-lines construction

We describe a collection of q2/2 pairwise-orthogonal rows, each of which is a vector in {0,+1,−1}q2 .

We identify q2 with the affine plane Fq × Fq, where q = 2n for an integer n > 0. Let B1, B2 be an

equipartition of Fq, and let φ : B1 → B2 be an arbitrary bijection. Our vectors are indexed by a

pair (a, b) ∈ Fq ×B1, and their coordinates are naturally identified with Fq × Fq:

va,b[x, y] =

 −1 y = ax+ b

+1 y = ax+ φ(b)
(13)

Notice that v(a, b) is−1 on exactly the points of Fq×Fq corresponding to the line with slope a and

y-intercept b, and +1 on exactly the points of Fq × Fq corresponding to the line with slope a and

y-intercept φ(b). So each v(a, b) is supported on exactly a pair of parallel lines. Orthogonality will

follow from the fact that every two non-parallel line-pairs intersect in exactly one point, as argued

in the proof of the next lemma.

Lemma 0.7.1. The vectors defined in Eq. (13) are pairwise orthogonal, and their supports form a

(2q, 4) design.

Proof. Consider (a, b) 6= (a′, b′). If a = a′ then the supports of v(a, b) and v(a, b′) are disjoint.

Otherwise a 6= a′ and there are exactly four intersection points (obtained by solving linear equa-

tions over Fq):

• (x = (b′−b)/(a−a′), y = ax+b) = (x = (b′−b)/(a−a′), y = a′x+b′), which contributes

(−1) · (−1) = 1 to the inner product, and

21

• (x = (b′−φ(b))/(a− a′), y = ax+φ(b)) = (x = (b′−φ(b))/(a− a′), y = a′x+ b′), which

contributes (+1) · (−1) = −1 to the inner product, and

• (x = (φ(b′)− b)/(a− a′), y = ax+ b) = (x = (φ(b′)− b)/(a− a′), y = a′x+φ(b′)), which

contributes (−1) · (+1) = −1 to the inner product, and

• (x = (φ(b′)−φ(b))/(a−a′), y = ax+φ(b)) = (x = (φ(b′)−φ(b))/(a−a′), y = a′x+φ(b′)),

which contributes (+1) · (+1) = 1 to the inner product.

The sum of the contributions to the inner product from these four points is zero. The computation

of the support size is straightforward.

0.7.2 A local decomposition

We new describe an q2 × q2 unitary matrix that is efficiently quantumly computable and has the

(normalized) vectors v(a, b) from Eq. (13) as q2/2 of its q2 rows. We recall that q = 2n for an

integer n > 0.

Proposition 0.7.2. The following q × q unitary matrices are efficiently quantumly computable:

• The DFT matrix F with respect to the additive group of Fq.

• The inverse DFT matrix F−1 with respect to the additive group of Fq.

• The q× q unitary matrix B with 1√
2
(Iq/2| − Iq/2) as its first q/2 rows, 1√

4
(Iq/4| − Iq/4|Iq/4| −

Iq/4) as its next q/4 rows, 1√
8
(Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8) as its next q/8

rows, etc... and whose last row is 1√
N

(1, 1, 1, . . . , 1).

Proof. The first two matrices are well-known to be efficiently quantumly computable. For the last

one we make use of the Hadamard matrix

H =
1√
2

 1 −1

1 1

 .

22

Let Bi be the q × q identity matrix with its lower right 2i × 2i submatrix replaced by the matrix

H ⊗ I2i−1 . Each Bi is efficiently quantumly computable by Lemma 0.2.1. It is then easy to verify

that B = B1B2B3 · · ·Bn.

Lemma 0.7.3. Let α be a generator of the multiplicative group of Fq. For c ∈ Fq, let Dc denote

the q × q diagonal matrix

1
√
q
· diag

(√
q, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
,

and let D′c denote the q × q diagonal matrix

1
√
q
· diag

(
0, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
.

Then the q2×q2 matrixD whose (i, j) block (with i, j ∈ Fq) equalsDij if i = j andD′ij otherwise,

is efficiently quantumly computable.

Proof. Consider the q2 × q2 block-diagonal matrix that has as its (k, k) block the matrix whose

(i, j) entry is (−1)Tr (ijαk) for k ∈ {1, 2, . . . , q − 1} and whose (0, 0) block is Iq. Each such block

except the (0, 0) block is the DFT matrix F with its rows (or equivalently, columns) renamed

according to the map j 7→ jαk. The F matrix is efficiently quantumly computable and the map

j 7→ jαk is classically and reversibly (and thus quantumly) efficiently computable. Thus each

q × q block is efficiently quantumly computable. By Lemma 0.2.1 the entire matrix is efficiently

quantumly computable.

If we index columns by (i, i′) ∈ (Fq)2 and rows by (j, j′) ∈ (Fq)2, then the desired matrix

D is the above block-diagonal matrix with the order of the two indexing coordinates for the rows

transposed, and the order of the two indexing coordinates for the columns transposed.

Theorem 0.7.4. The q2×q2 matrix (Iq⊗B)·(Iq⊗F)·D ·(Iq⊗F−1), which is efficiently quantumly

computable, has the vectors v(a, b) from Eq. (13) as q2/2 of its rows8.

8To be precise, these are the v(a, b) with respect to some equipartition B1, B2 and some bijection φ.

23

Proof. Let Sc be the q×q permutation matrix Sc that (when multiplied on the right) shifts columns,

identified with Fq, by the map x 7→ x + c. Let J be the all-ones matrix. The main observation is

that

FDcF
−1 =

1
√
q
Sc −

√
q − 1

q
J,

and that

FD′cF
−1 =

1
√
q
Sc −

1
√
q
J.

Thus the final matrix has in its (i, j) block (with i, j ∈ Fq) the matrix

B ·
(

1
√
q
Sij −

√
q − 1

q
J

)

if i = j, and

B ·
(

1
√
q
Sij −

1
√
q
J

)
otherwise. Observe that BJ has all zero entries except for the last row, so in particular, the first

q/2 rows of the (i, j) block are (1/
√

2q)(Iq/2| − Iq/2)Sij . Therefore the q/2 rows of the entire

q2 × q2 matrix corresponding to the top halves of blocks (i, j) as j varies, give the vectors v(i, b)

for b ∈ B1, if we identify columns with Fq×Fq as follows: columns of the j-th block are identified

with {j}×Fq, and within the j-th block,B1 is the first q/2 columns andB2 is the next q/2 columns

(and the bijection φ maps the element associated with the b-th column to the element associated

with the (b+ q/2)-th column).

Then, as i varies over Fq, we find all of the vectors from Eq. (13) as the “top-halves” of each

successive set of q rows of the large matrix.

0.8 Putting everything together

Let A be the matrix of Theorem 0.7.4, and set N = q2 and M = N/2. By Theorem 0.5.1, there is

a BQLOGTIME algorithm that distinguishes DA,M from U2N , solving MAJORITY-CHECKING .

24

By Lemma 0.7.1, the first M rows of A have supports forming a (2
√
N, 4)-design D. It is also

clear that for i 6M , the (N+i)-th bit ofDA,M computes MAJORITY (with a fixed pattern of inputs

negated) on those among the first N bits that lie in S(A, i). Thus DA,M is exactly the distribution

(UN , NW
MAJORITY
D (UN)) followed by N/2 additional independent random bits (which can have

no impact on the distinguishability of the distribution from uniform). Thus by Conjecture 1, no

constant-depth, quasi-polynomial-size circuit can distinguish DA,M from U2N , which completes

the argument.

Unfortunately the standard NW argument fails, which is why we must rely on Conjecture 1.

The standard argument defines 2N + 1 “hybrid” distributions DA,M = H0, H1, . . . , H2N = U2N ,

that interpolate between DA,M and U2N . Given a distinguishing circuit C : {0, 1}2N → {0, 1} for

which

|Pr[C(DA,M) = 1]− Pr[C(U2N) = 1]| > ε,

we argue that for some i

|Pr[C(Hi) = 1]− Pr[C(Hi+1) = 1]| > ε/M

by the triangle inequality (and here we are making the additional observation that H0 = H1 =

· · · = HN and HN+M+1 = HN+M+2 = · · · = H2N so the gap of ε must be spread over only

M differences). From here, we obtain a next-bit-predictor with advantage ε/M and hardwire at

most M lookup tables of size 2p, to obtain a circuit of size |C|+O(2N) +O(2pM) that computes

MAJORITY (on 2
√
N bits) with success probability 1/2+ε/M . The problem is that this advantage

over random guessing is not sufficient to obtain a contradiction for the function MAJORITY , which

can be computed easily with success probability 1/2 + Ω(N1/4), for the parameters coming from

the unitary A from Theorem 0.7.4.

Even if we had a unitary whose rows formed an (`, p)-design with better parameters, the stan-

dard argument fails. This is because it must be that ` 6 N , and yet we must also have M �
√
N

for DA,M to be even statistically noticably different from uniform. But the trivial circuit that out-

25

puts an arbitrary bit of the input succeeds with probability 1/2 + Ω(1/
√
`) which is larger than the

1/2 + ε/M that comes out of the standard NW argument above.

0.9 Conclusion

As a result of our work and the work of [Aar10b] the Generalized Nisan-Linial conjecture yields

two separate relativized settings in which quantum computers can efficiently solve problems out-

side of the polynomial hierarchy. Our proof that the Generalized Nisan-Linial Conjecture implies

Conjecture 1 also gives us a nontrivial connection between two seemingly unrelated problems

in circuit complexity– either the “hybrid loss” incurred by the standard “distinguishability im-

plies predictability” argument [Yao82] can be avoided, or else AC0 circuits are able to distinguish

“approximate” (polylog N)-wise independence from uniformly distributed bits, even though it is

known they cannot distinguish exact (polylog N)-wise independence. This gives both a new hope

for proving a fundamental problem in quantum computing, or alternatively a completely new ap-

proach for disproving a natural conjecture about the classes of distributions that fool AC0 circuits9

Both MAJORITY-CHECKING in this paper and FOURIER-CHECKING [Aar10b] give rare ex-

amples of oracle problems that can be solved in a constant number of quantum queries, yet re-

quires exponential classical query complexity. Thus, these give rare examples of oracle problems

where the quantum algorithm obtains an exponential speedup over classical computation. This is a

stronger separation than from Recursive Fourier Sampling, the candidate problem proposed for the

separation in [BV97]. It is known that this speedup can only be quasi-polynomial (i.e., O(nlog n))

[Aar02].

We believe Conjecture 1 to be true, and offer the following intuition. For simplicity, let’s

assume that the distributions we are trying to distinguish are N2 copies of the random variable

D where D = (UN ,majority(UN)), and N2 independent copies of the random variable UN+1

9Note that very recently the GLN has been proven false, as a counterexample is known for depth 3 AC0 circuits
[Aar10a]. Despite this, the conjecture remains open for depth 2 circuits, and our implication may still be useful to
study the GLN at this depth.

26

distributed uniformly on N + 1 bits. This is the result of taking the NW construction where the

underlying subsets are completely disjoint. Here, unlike the prior setting, it seems that a hypo-

thetical distinguisher must look at each block separately, since they are completely independent

of each other. Now the AC0 circuit can collect a “noisy bit” from each block which gives some

information about whether it is distributed according to D or UN+1– in the case of the former each

bit is 1 with probability 1/2 + Θ(1/
√
N) and the latter case the probability is 1/2. Note that to use

this information to make a decision, it seems a distinguisher must aggregate these noisy bits across

the N2 copies– presumably this involves a task which itself is hard for AC0.

However, it is worth noting that any proof of Conjecture 1 will need to respect a tension intrinsic

in obtaining our desired separation. Most known lower bounds against AC0 circuits are proven by

showing that there is no low-degree approximating real polynomial, which by results of Razborov

and Smolensky e.g., [Smo93] we know every AC0 circuit has. However, every quantum algorithm

that computes a function f : {±1}n → {±1} using T -queries to f has a real polynomial p of

degree 2T so that |f(x)−p(x)| 6 o(1), ∀x ∈ {±1}n [BBC+01]. Thus to prove our conjecture that

AC0-circuits are fooled by such classes of distributions we cannot use any method that pertains

exclusively to low-degree polynomials. This highlights a reason this problem is so notorious and

likely needs dramatically new ideas for resolution.

27

Bibliography

[Aar02] Scott Aaronson. Quantum lower bound for recursive fourier sampling. Electronic Col-

loquium on Computational Complexity (ECCC), (072), 2002.

[Aar10a] S. Aaronson. A counterexample to the Generalized Linial-Nisan conjecture. ECCC

Report 109, 2010.

[Aar10b] Scott Aaronson. Bqp and the polynomial hierarchy. In Leonard J. Schulman, editor,

STOC, pages 141–150. ACM, 2010.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh V. Vazirani.

Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–1523,

1997.

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.

Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

[BBS09] László Babai, Robert Beals, and Ákos Seress. Polynomial-time theory of matrix groups.

In Michael Mitzenmacher, editor, STOC, pages 55–64. ACM, 2009.

[Bra10] Mark Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM, 57(5),

2010.

[BSW03] Boaz Barak, Ronen Shaltiel, and Avi Wigderson. Computational analogues of entropy.

In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, RANDOM-

28

APPROX, volume 2764 of Lecture Notes in Computer Science, pages 200–215. Springer,

2003.

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM J. Comput.,

26(5):1411–1473, 1997.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[FU10] Bill Fefferman and Chris Umans. On pseudorandom generators and the bqp vs ph prob-

lem. Manuscript, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,

28(2):270–299, 1984.

[Hal07] Sean Hallgren. Polynomial-time quantum algorithms for pell’s equation and the princi-

pal ideal problem. J. ACM, 54(1), 2007.

[HR03] Tzvika Hartman and Ran Raz. On the distribution of the number of roots of polynomials

and explicit weak designs. Random Struct. Algorithms, 23(3):235–263, 2003.

[KSV02] A.Y Kitaev, A.H Shen, and M.N Vyalyi. Quantum and Classical Computation. AMS,

2002.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponen-

tial size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.,

31(5):1501–1526, 2002.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,

49(2):149–167, 1994.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factoring on a

quantum computer. In Leonard M. Adleman and Ming-Deh A. Huang, editors, ANTS,

volume 877 of Lecture Notes in Computer Science, page 289. Springer, 1994.

29

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In FOCS, pages

130–138. IEEE, 1993.

[Wat00] John Watrous. Succinct quantum proofs for properties of finite groups. In FOCS, pages

537–546, 2000.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-

stract). In FOCS, pages 80–91. IEEE, 1982.

0.10 Converting a distributional oracle problem into a stan-

dard oracle, from [FU10]

Let D1 = {D1,n}, D2 = {D2,n} be ensembles of random variables over 2g(n)-bit strings (and as-

sume g(n) 6 poly(n) is injective and easily computable) for which BQLOGTIME can distinguish

the two distributions but a quasi-polynomial AC0 cannot. Then when D1 and D2 are viewed as

distributions on (truth-tables of) oracles, there is a BQP oracle machine that distinguishes the two

distributions, but no PH oracle machine can distinguish them. Specifically, we have that there

exists a BQP oracle machine A for which

Pr[AD1(1n) = 1]− Pr[AD2(1n) = 1] > ε

while for every PH oracle machine M ,

Pr[MD1(1n) = 1]− Pr[MD2(1n) = 1] 6 δ,

and we have ε > δ for sufficiently large n > n0.

We now convert the distributions on oracles into a single oracle O for which BQPO 6⊂ PHO.

Let L be a uniformly random unary language in {1}∗. For each n, if 1n ∈ L, sample a 2g(n)-bit

string x from D1 and define oracle O restricted to length g(n) so that x is its truth table; otherwise

30

sample a 2g(n)-bit string x from D2 and define oracle O restricted to length g(n) so that x is its

truth table. Fix an enumeration of all PH machines. Note that for any fixed PH oracle machine

M we can find an input length nM so that:

Pr[AO(1nM) = L(1nM)] = (1/2) · Pr[AD1(1nM) = 1] + (1/2) · Pr[AD2(1nM) = 0] > 1/2 + ε/2

Pr[MO(1nM) = L(1nM)] = (1/2) · Pr[MD1(1nM) = 1] + (1/2) · Pr[MD2(1nM) = 0] 6 1/2 + δ/2

Now, there is a “gap” in the quantum and classical acceptance probabilities (because ε > δ),

so there exists a particular oracle O for which the corresponding quantum and classical machines

disagree on input 1nM . Fix this choice of oracle up to this input length, and look the next fixed

machine M ′. By the same argument, we can find some nM ′ > nM so that there exists a new oracle

O′ (with O as a prefix) for which AO′(1nM′) 6= MO′(1nM′)

Because there at most a countably infinite number of PH machines, we can keep applying this

argument, finding some fixed oracle obtaining the separation for all machines. Note that we can

ensure that each successive length differs sufficiently from the prior length so that each machine

cannot query inputs of the next largest length, and oracles at shorter lengths can be hardcoded.

31

