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éBS TRACT
First Part

Cylindrical specimens of Southern California granodiorite
and gabbro were creep-tested at constant torques in a high~magni~-
fication torsion apparatus, Complete creep and creep recovery
curves at room temperature were recorded for periods of abéut
10,000 minutes,

The results are represented by an empiricai equati‘oﬁ of

the form:
s = p (at+b log t)

where s is the strain, p the stress and 't the time, No evider‘l\ce‘
wés found of creep behavior suggestive of the Michelson equation,
For sbme granodiorite samples the viscosity was of the
-.order of 3 x 1015 poises. The behavior of the rocks under prevail=
ing test conditions was not appreciably different from that of other

polycrystalline materials,

Second Part

A quantitative treatment of the Benioff aftershock sequences
on the basis of the theory of viscoelasticity is given., The minimum
coefficient of viscosity found by this method is of the order of 1019

poises, in good agreement with accepted viscosity values for the

earth's crust,
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NOTATION

Some of the more frequently used symbols are given below,

dot above a symbol denotes derivation with respect to time.

M

H < a w W

F: ¢: \il: IIT,N

stress in gr/cm

strain in radians

time in minutes (First Part)

id. in days (Second Part)

torque in gr-cm

moduli of elasticity (unspecified)
modulus of rigidity in gr/cmz
twist per unit length, in radians/cm
viscosity in poises

radial distance in cm.

radius of specimen in cm,
magnification constant

crustal strain rate in radians/day
volume in cm

time (of main earthquake) in days

various functions as defined
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INTRODUCTION

When, in 1951, Professor Hugo Benioff published his first
paper on Earthquakes and Rock Creep, the question of the origin and
mechanism of earthquakes was in the stage of scientific conjecture.
Intents of proving the connection between earthquakes and astronomi-
cal, meteorological or chronological events had been shown statis-
tically unsound,

The relation of tectonic earthquakes to geologic faulting had
been known for a long time, The seismicity of the globe had been
exhaustively studied by Gutenberg and Richter, and the approximate
recurrence of shocks of a given magnitude was known for well~
covered regions such as Southern California and New Zealand, The
elastic constants of different layers of the earth's crust had been
obtained from seismic wave velocities, However, earthquakes still
remained essentially unpredictable events and there was no known
relation between one shock and the next, either in magnitude or in
time,

The Benioff aftershock theory reported its first success in
predicting the ocecurrence of an earthquake of magnitude 7.5 in a
region of relatively low seismicity in the Indian Ocean, where no
shock of that magnitude had been recorded previously, This earth-
quake {(and a smaller one preceding it by two years) occurred after a
period of quiet of 16 years (fig. 1), In some of the earthquake se-
quences studied by Benioff (1951) the aftershock strains followed

very closely a curve of the form

-aft
S=A+B(l-e ) -
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" An éxp-réssion of this form had been proposed by A, A. Michelson
(1917; 1920) for the creep recovery of many materials in torsion
teéting; :

| The lack of creep test data on igneous rocks, and the unusual
form of the Michelson equation which had not received confirmation
. from Subsequéntly published work on creep, induced Professor Ben‘—
ioff to.plan an experiment for testing the creep of igneous rocks in
torsion,

‘On the basis of the scant observations available it was ex-
pected to find very low rates of creep in these rocks, a fact which
made large instrumental magnifications essential, At the éame
tin%e, the nature of the investigation precluded the use of expensive
equipment, and made the qualities of ruggedness and some measure
of self-operation desirable.

A torsion apparatus fulfilling these requisites was designed
by Professor Benioff and built under his supervision at the work=
shops of the Seismological Laboratory. The use of this apparatus
for the purpose of determining the validity of the Michelson equation
for igneous rocks, was proi)osed to the author as a doctorate re-
search project, late in 1952,

The bulk of the experiments to be described in the following,
were carried out in the Arms Laboratory of the Geological Sciences
at California Institute of Technology, during the period between
November 1954 to April 1955, Rock specimens, photographic ma-
terials and various accessories were supplied by the Séismological

Laboratory of the Institute.

In the course of the experimental work a more challenging
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objective was always kept in mind, namely, to find a quantitative
correlation between the aftershock sequences and the creep prop~-
erties of the earth's crust, Some tentative results of this quest
are given in the last two chapters, together with the rudiments of
a mathematical treatment of aftershock curves, This treatment
. is far from exhaustive but may be of some interest in view of the
rather good agreement obtained with independent estimates of the

viscosity of the earth's crust,
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CHAPTER 1

FUNDAMENTALS OF CREEP TESTING

Al. Definitions. When a substance is subjected to an external
force it is bodilf accelerated in the direction of the force, If yéne
applie‘s also an external restraint opposing the force, the body under=-
goes a change in shape, in volume or in both, This change is known

as deformation, and its magnitude is dependent at least upon the ma-

7

terial, the external force, temperature, pressure and time,

A part of the deformation in a solid is known to occur prac-
tically instantaneously. This we shall call the elastic deformation
in an unrestricted sense (i.e, without implying anything about‘liﬁearity
of the stress-strain relation), All time~dependent deformation occur~
ring after the elastic deformation will be termed creep.
- Creep may be more in the nature of a transient or of a steady-
state deformation, This depends a great deal upon temperature and
pressure, the scales of time and strain used in the test, and the
point of view of the observer, In engineering design at ordinary
temperature creep is usually neglected altogether, or it may be em-~
bodied in a general 'factor of safety'. In metallurgy and high~tem-
perature design it is customary to distinguish a steady and a transient
component of creep; the latter is often neglected. This procedure is
increasingly being recognized as artificial in view of the evidence
of long~-duration creep tests, that the creep rate may continue to
change slowly over periods of years (Robinson 1933),

When the force acting upon the sample is released a reversed

deformation occurs, the instantaneous part of which is termed



-6

" elastic rebound, and the time-dependent part creep recovery., The

elastic rebound tends to be equal to the initial elastic deformation,
while creep recovery mostly proceeds at a slower rate than the cor-
responding direct creep. Experience also shows that a certain
amount of creep deformation is often pracfically unrecoverable,

If instead of an external force of known magnitude one im-
poses upon the sample a given deformation, the material is stressed
instantly an amount equal to the force needed to produce the same
deformation. With increasing time the stress in the sample is ob~
served to decrease to a constant value which may or may not be
zero, This variation of stress with time is known as relaxation.
The phenomena of creep, creep recovery and relaxation are signifi-
cantly interrelated and the exact form of their relationship hés re-
cently been derived for one important case (Sips, 1950),

2, Background of creep testing. Actual deformation tests

are extremely complex, The need of using different spgcimens of
a substance raises the questions of uniformity and homogeneity,
Lack of isotropy may introduce additional uncertainties in test re-
sults. All materials do also exhibit an appreciable dependence
upon previous strain history, Since all specimens subjected to
testing must have been strained previously in a way that is largely
unknown, even the best-conducted creep test cannot hope to give
more than one point in a statistical array representing the strain
properties of the material,

Nevertheless, great progress has been made since the for-

mulation by Hooke (1618) of his law of elasticity;



T
p = Es (1)

which is among the most durable linear relations in physics, Since
the development by Cauchy (1822) of the concepts of strain and stress
it has formed the basis of the important mathematical~physical
structure of the Theory of Elasticity.

A group of materials such as concrete, cast iron, rocks and
others, deviate from Hooke's Law to a certain degree, which often
is of no great consequence in technology.

The study of creep has gained great importance during the
last 50 years, paralleling the development of metallurgy. Among
the earlier tests, many were confined to the study of stress~strain-
time relations., Temperature was introduced early as an important
variable, and pressure much later, Relaxation tests are of recent
date.

Empirical creep formulas may be classified as‘follows:

a. ''constant strain rate'' formulas:
$ = f(p) : " (@)
b. 'aging' formulas:
s = f(p, t) _ (3)
c. !strain hardening" forfnulas:
s = {(p, s) (4)
The functions proposed are too varied to be discussed in detail, A
useful review will be found in Schwope and Jackson (1951), Formu-
las corresponding to the '"aging' hypothesis are very cvommon. It
had been observed at an early date (Trouton and Rankine, 1904) that

many materials at ordinary temperature often give a logarithmic
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relation:

s=a+blogt (5)
where b is approximately a linear function of stress.,
At higher temperatures the constant strain rate hypothésis
is more convenient to use, and one finds expressions such as the

""logarithmic strain rate law'':

logs=a+bp (6)
or the hyperbolic sine law (Nadai and McVetty, .1943):

$ =a sinh (bp+ c). | \ (7)

Both relations receive some measure of theoretical justification
through Eyring's theory of rate processes as applied by Kauzmann
(1941) and Nowick and Machlin (1946). A theoretical derivation of

the semi-logarithmic law (5) was given by Goranson (1940),

3. Rheological approach. Closely paralleling this empiri-
cal development is the progress of the Theory of Plaisticity, based
upon fundamental work by Saint Venant (1871) and other s. A plastic
body deforms indefinitely at a certain magnitude of stress k. Be-
low this so-called 'yield stress' the body is assumed to obey
Hooke's Law,

There is occasionally some confusion between the concepts
of plasticity and viscosity, and it may be convenient to define these
terms as they will be used here. The law of viscous flow, given by

Newton (1685);

p=ns (8)
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may be used to define ideal viscosity, It is seen that Hooke's and
Newton's laws are similar in structure; thus many solutions ob-
tained in the Theory of Elasticity (see, for instance, Love, 1934}
may be written directly for a viscous medium by replacing the
stress by its time derivative,

The ideal plastic body is defined by Saint Venant's relation:

p=k. (9)

When k = 0 we have the perfect fluid, which has no viscosity and
no strength, |

It is observed that one cannot impose on a plastic body any
stress larger than k., It is somewhat hard to see what this implies
physically; in effect it means that one may only specify an arbitrary
velocity at the point of application of the stress. If one tries to in~
crease the stress the sample deforms in such a way as to defeat
the attempt,

The Theory of Plasticity (see, for example, Pré,ger and
Hodge,; 1951) is valuable chiefly in the technology of such materials
as steel and bronze in the vicinity of the yield péint. ﬁowever, as
one increases the temperature and pressure it becomes applicable
to a great many other materials as well (Bridgman, 1952),

In 1868 Maxwell proposed a new law for a combined Hooke~
Newton substance which he used to describe the behavior of fluids

showing stress relaxation:

. 1 .
SEsPpPt—P ' (10)

3|
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which defines the state of elastico~viscosity or visco-elasticity,
Maxwell's visco~elastic substance was the first of a series of
rheological models that have been proposed, combining the prop-
erties. of elasticity, plastic.ity and viscosity (see Reiner, 1949).

A convenient way to objectivize these models is to repre-
sent them as a combination of springs, dashpots and weights
sliding on friction surfaces. In these "models' the stress is
represented by the applied force, and the strain by the displace-
ment, Thus the Maxwell model may be represented by a. spring
and a dashpot in series (fig. 2).

The same elements combined in parallel constitute the
"firmo-viscous'" model, proposed independently by Voigt anci

Lord Kelvin:
p=Es+ns . (11)

The term 'firmo-viscosity' is due to Jeffreys. This model ex-
hibits transient creep and creep recovery; the Maxwell model
gives constant-rate creep (non-recoverable) as well as stress
relaxation., It seemed natural to combine both models into 6ne,
called ''standard linear solid" (Zener, 1946) and studied by Jef-
freys (1917) and Burgers (1935).

Finally, Alfrey (1944) and other workers in the field of
organic polymers analyzed the general case of a model having
an arbitrary number of Maxwell elements in parallel, or Voigt

elements in series. This generalized viscoelastic model is
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susceptible of mathematical treatment (e.g. Biot, 1954) and is
receiving increasing practical application,

4. Creep tests. The most widely used among methods
of creep testing remains the tension test, It has been stand;rdized
by the American Society for Testing Materials (Specification
E22~4l), as well as abroad, Its great advantage is thaj: it re-
produces critical conditions of loading to which a majority of
structural parts will be subjected.

Routine tests are often required to give only relative in-
formation, leading to the acceptance or rejection of a certain
materiai. For more exact work the tensile test has an impor~
tant drawback in the phenomenon known as necking, When a
specimen is tested in tension, each increase in strain is accom-
panied by a progressive narrowing~down in localized regions
of the sample. This results in greater stress concentrations
and proportionally higher creep rates in the 'necks",’

An exact solution of the problem would require at least
current measurements of the radius of curvature at the neck
for the duration of the test. Lacking these, assumptions are
made which may lead to important errors at high stresses,

The situation is similar for compression tests, with the
added complication of buckling, However, compression tests
may be the only practical ones for sedimentary rocks or speci-
mens in which bedding or cleavage planes may be present

(D. T. Griggs, oral communication).
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Torsion tests are common to a certain extent, although

far less so than tension tests, They have the obvious advantage
that in cylindrical specimens the éhape is not altered even at
quite large strains.,

Moreover, the internal path of deformation is s_impler‘
than in tension. In the latter

", s sthe planes of shear envelop a cone and hence inter =
fere with each other, In simple shear, on the other hand, any
plane of shear retains its direction and all the atoms in the plane
retain their separation....It is natural to think that in any ac~-
tual case of shear the total disorganization must be less than
in tension, ' (Bridgman, Large Plastic Flow, p. 273).

Creep tests in tension and intorsion have been compared
-experimentally (Ludwig and Schgu, 1925; Shepherd, 1948; Bridg-
man, [952), but no differences in the behavior of the matei'ial
were found except for large strains, In these cases s?:rain hard~
ening was somewhat less pronounced in torsion, as would be
expected from the passage quoted.

The advantage of having plane strains in torsion is offset
by the fact that stresses are inhomogeneous in the section, i.e,
varying from a maximum at the surface to zero at the ‘core.
The stress distribution in the section depends upon the kind_qf
stress~strain relation which can be assumed valid for the mater-~
ials The conditions for which this problem can be solved will

be examined in the fo'llowing chapter,
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CHAPTER II

TORSION OF CYLINDRICAL BAR

- I, The superposition range. Let a constant moment of

torsion M be applied at the free end of a rod of circular cross-
sectiovn‘ (fig. 3), and let the strain S(t) at the periphery be an
experimental datum. It may be shown (Appendix I, p. 86) that
% the stress distribution in the section must be con-
stant with time, Although this conclusion is valid
for any kind of material, we shall begin by clonﬁr‘x—
ing the analysis to a certain range of stresses and

temperatures, such that Boltzmann's principle of

M \:_) superposition is valid, It was pointed out (C. H.

Fig. 3 Dix, oral communication) that Boltzmann's principle
'is exactly equivalent to assuming a linear relation bétween stress
and strain,

Such a condition may be written in the form

s(t):% [1+¢(t)} ; ) (12)

which is reduced to Hooke's Law for t = 0. The function ¢(t),
called the ''creep function', is characteristic of the material,
temperature and pressure, We also have $(0) = 0,

The moment M can be expressed (Appendix I, Eq. 85):
R

M = 27 fprzdr - (13)

0
R being the radius.of specimen.. Substituting from (12):
R

2mE

M= T (0 s(t) r% dr (14)
0
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which is exactly similar to the expression for M in the elastic
case, except for the function of time in the denominator,

The elastic torsion problem was first solved by Coulomb,

who assumed the strain to be proportional to the axiai distance,
- It has been shown (Saint Venant) that this assumption is equiva-
lent to requiring plane cross~sections to remain plane during
torsion, It is found that these conditions are verified only for
the circular cross~section,

Accordingly, we may write:
r
s(t) = S(t) R ‘ (.15)

S(f) is the maximum strain at the periphery, which is found from

experiment, Equation (14) then becomes:

_ R _
= 2TE S(t) fr3 dr . (16)
R [1+4(t)] .
0 ,
Integrating:
W 3 S(t) ' | ’
M = > ER” 1o | (17)

In actual testing it is customary to use the angle of twist per unit

length of sample as a more convenient parameter:

o(t) =§I({El _ | - (18)
o 4 _6(t) , :
M-.-%ER -I—J}W (19)

blt) = o er*o(t) -1 . (20)
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Equat;‘.ori (20) permits us to obtain the creep function from direct
 experimental data, It also répresents the time~creep relation of
a material’for a constant stress,

In fig. 2 this relation is shown for the Maxwell, Voigt and
standard linear models of solid. The derivation is found in Ap-
pendix II, With the use of Alfrey's generalized &iscoelastig model
¢(t) may be any continuously increasing function,

2, The plastic range., Let us imagine a cylindrical rod

made of ideally plastic material. If such a spécimen is sﬁbjected
to an increasing torque it will deform elastically until the yield
stress k is reached along the periphery. If the torque is increased
further a pla»stic zone will spread concentrically inwards, reach-
ing the center of the rod at infinite strains,

Thus the problem of plastic torsion is one of two domains
governed by different laws of deformation, the position of the
boundary being unknown, In the case of a circular cross-section
the problem may be solved ahalytically if one assumes two condi-
tions of continuity at the boundary. For most other sections the
geometrical form of the boundary is unknown, but a graphical or
experimental solution can be found by Nadai's sand-hill method
(1931).

Let us write the solution for the circular case (Prager

and Hodge, 1951):

3
2 3 1 k
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The presence of 0 indicates that {21) is an equilibrium condition,
No flow occurs in plastic torsion until the entire section has reached
the plastic state. The torque necessary to produce this state is only
1/3 higher than the torque upon reaching the yield point (fig. 4).- No
greater torque can be imposed uponthe sample intheory. If one
does nevertheless it may be presumed that the specimenis acceler-
ated to the point of failure. |

Inorder tointroduce creepone may postulate a Maxwell, Voigt
or Zener material having a plastic yield point; or one may imagine
a model combining plasticity and viscosity, Such a model has been
proposed by Bingham (1922) to describe the "visco-plastiéity-” of

paints:

p=k+ns . (22)

FIG. &
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The derivation of the plastic torsion formula for this material may

be readily carried out (Appendix ITI, p. 90). The solution is:

3
M :-Q%nR?’k 1 —-1—3;-(1_:-]%-)
4R o (23)

3 Rk Rk® k3

11' »
tg RO BR™ - g~ -~ 5 - =33 ) .
o E05 ET05
The first term is identical to (21}, Oo being the elastic part of the

angle of twist. The total angle is given by:

t
0:00+f0dt | _ (24)
o :
or, if n is a constant:
0 =0 +06t . (25)

The rate of angular strain is constant and proportional to the ap-
.plied torque M.,
While this model appears to be more realistic than the
purely piastic one, it has no real advantage over a vis:coelastic
model, which has no two-domain problem,

3., Non-linearity . Whenever Boltzmann's principle of

superposition ceases to apply, a problem of non-linearity is cre=-
ated, Deviations from linearity have been known for a long time, -
both in fluids and in solids, Some of the most useful empirical
creep equations (such as Eq's. (6} and (7)) are non-linear,

These equations belong to the constant-rate group which is
applied at high temperatures for which Boltzmann's principle is
not expected to apply. However, Orowan (1946) has given a

treatment of primary creep that is non-linear, being based upon



-19-
rate theory and upon Becker's theory of crystal slip (1925). Oro-~
wan's equation does not fit the experimental data and has been modi=-
fied by several authors with contradictory results,

It is felt that a lineaﬁ- approach to the creep problem may
still be preferable, particularly in low-temperature creep and,
more generally, for all those cases in which the constant strain
rate simplifiéation is not admissible. Great progress has béen
made in the field of molecular physics, particularly in dislocation
theory and thermodynamics of irreversible processes, However,
no unified theory of creep has been forthcoming, the work by
Goranson (1940) constituting an isolated attempt to the exceptién.

4, The Michelson equation, In 1919 A, A, Michelson pub-

lished the results of a series of torsion creep tests covering a

‘'wide range of substances (including lead, tin, coppe\r; aluminum,
zinc, iron, steel, quartz, glass, pitch, calcite, limestone, slate,
marble, gelatin, rubber, ebonite, bakelite and sealing wax), His

results were described by the formula:

o) 3 | |
S=F +F, (l-e )+ F,t (26)

in which
F.=C.Pe | @2

where S is the twist and P is the weight applied to produce the

torque., The formula may be represented by a mechanical model



-20~
(fig. 5) which is similar to the standard linear solid except that
it has both linear and non-linear elements,
S~ F, p The constants C, h and o for the various
-2 materials tested were published in a'second

paper (Michelson, 1920), The experimen-

tal data have remained unpublished, with

-4
SNF‘Ft zl__J és“gf’ the exception of a table of creep recovery

data for vulcanite. The dimensions of the

apparatus are relevant to the intérpreta-
FIG. 5 tion of formula (26) because it does not
contain either stress or strain explicitly, |

The apparatus is described as a horizontal frame which
accommodated cylindrical samples 12 mm in diameter at the ends.
One end of the specimen was clamped to the frame and the other
to a pulley resting on a knife edge. The diameter of the central
part of the sample was 4 mm and its length was 7.5 cm.

Due to an unfortunate misprint the diameter of the pulley
is given once as 8 cm (first paper) and once as 5 cm (second paper).
The uncertainty cannot be removed by referring to the published
constants, because of insufficient description of the materials
tested,

Test readings were made by "measuring the angular posi=
tion of the pulley by a micrometer at intervals of one minute while it
is under a constant torque' (first paper).. This seems to indicate
that the duration of tests was not very long. The published table

of data for vulcanite goes as far as 100 minutes, and it may be
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assumed that this was the order of duration for the other experi-
ments as well, If the arm of the micrometer was of the order
of diameter of the pulley, the accuracy of reading may be esti-
mated at + 10“3 radians (as compared to 10".7 in our experiments),
The unit of P is given as 100 grams, The unit of S is not given,

The aim of Michelson's experiments was chiefly a quali-
tative one in connection with his work on the rigidity of the earth
(Michelsbn, 1914, 1919), His published data do not appear to
be sufficiently detailed to afford an exact check, However, it
may be of interest to study the behavior of Eq. (26). Infig. 6
some of these curves have been plotted from constants published
in Table IV (second paper). They can be approximated by semi-
logarithmic expressions without great strain.

This agreement is lost if we plot the corr?Spondin‘g re~
covery curves, for which the '"viscous' term F3t§ should of
course be zero. In this connection we may refer to a footnote in
the second paper:

"It was found by experiment that for stresses not too
great the 'direct' curve (on applying the stress) and the 'return'
curve (on releasing) were the same; or rather, if the former is
S and the latter R then S + R = constant, "

This statement, apparently contradicting Michelson's own
conclusions as well as ordinary creep test experience, may be
taken as an indication of the sensitivity of the apparatus used.

It should be borne in mind that for most of the substé.nces tested
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by Michelsﬁn the rates of creep and of recovery were rather
small at room temperature.

It is perhaps striking that Michelson should not have
used the interferometer in these measurements. The fact could
be taken to mean that the priority attached to this particular in-
vestigation was not very great at the time. In effect, as is ap~
parent from their publication in the Journal of Geology, the
results were intended as a basis for a discussion of the inter-
ferometric measurements of the earth tides, published b?
Michelson in the same Journal (1914, 1919). In view of the dif-
ficult form of Eq, (26) it is not surprising that such a discussion
should not have taken place, In any case its importance within
the general framework of research of the great physicist may
- well have been a subordinate one,

In conclusion, the Michelson tests do not appear to give
any clear evidence of a new fundamental result having been
reached, An attempt to fit the behavior of such different ma-
terials as lead, gelatin, steel and pitch would have strained any
empirical formula we know, As a consequence, the Michelson
formula needs no less than seven different constants to describe
the behavior of a material, It remains for experiment to decide
whether this generality is meaningful in the light of ox;r present

knowledge of creep.
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CHAPTER III

TORSION TESTS IN IGNEOUS ROCKS

1. Background. The elastic properties of igneous rocks

have been investigated in connection with their use as building ma-
terials. A fairly typical stress-strain curve is reproduced on’
fig, 7. It may be observed that rocks do not génerally have a
clear yield point or a well~defined proportionality limit. |

Creep tests on igneous rocks are rare., Torsion tests
were performed by Sokoloff and Skriabin (1936) with test durations
of a2 few minutes only. Compression creep tests on diabase were
conducted by Bridgman (1949), Dynamic determinations of'v.is-—
cosity and relaxation functions of igneous ro’cks were made by
Birch and Bancroft (1938).

Work on sedimentary and metamorphic rocks is more
abundant (D. T. Griggs, 1936; 1939).

2. "Description of Apparatus. The apparatus shown in

fig. 8 was originally developed by H. Benioff and was used in

the present investigation with very few additions or modifications.

It consists of a sturdy vertical steel frame accommbda.ti'ng a

specimen 18" long, The upper end of the specimen is tightly

clamped into a 3'" opening in thé upper plate, while the lbwer end

remains free and self-aligning, This lower end is clamped into

a steel fitting which supports a dural pulley of 15 cm diameter,
Screwed to the base plate of the fi'ame are two small

pulleys on ball bearings. A steel or dural tape can élide over

these pulleys and through openings in the base plate to the yoke
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or loading beam underneath., The other ends of the tape are con-
nected to the main pulley which transmits the torque to the speci-
men,

The -r'ecording system is entirely optical. It comnsists of
a light source A (fig. 9) having a vertical slit of adjustable width,
a set of lenses B, B', B", a multiplying mirror system C and a
photographic recorder D. .

Fig. 10 represents a diagram of the mirror system. Mir-
ror a is mounted directly onto the specimen E.ﬁ(shown in éross-
section), while mirror _}_)_ remains fixed during the test, Le’;’ a be
the angle of the incident fay with the normal to mirror b; thén
the corresponding angle of the outgoing ray with the same normal

will be:
B=a+(n+1l)a | (28)

where A is the angle between the two mirrors and'n is the total
number of reflections, In the position illustrated, n = 9 and there-
fore B = a+ 10A, meaning that the angular deﬂectio—r; of the speci-
men will be multiplied by 10, The system has proved to be very
reliable, rugged and easily adjugtable by hand, It introduces no
frictional error and is independent of the exact position of the
specimen and of possible temperature changes,

The linear magnification is proportional to the optical

lever d (fig. 9), so that the total magnification is written:

K=d{n+1). ’ (29)
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The number of reflections n may be varied by adjusting the angle
of incidence and the angle between mirrors. An optical magnifi-
cation(n+ 1) = IQ was found to be practical for most tests. Ai;
(n + 1) = 12 the adjustment necessary to accommodate all reflec~
tions on the limited length of the mirrors became very delicate,
For some larger creep deformations, however, the angular mag-
nification was reduced to 8,

The system of lenses is shown diagrammatically on fig. 9
Lenses B and B' are toric with the axis in the vertical dil;'ection
and selected in such a way that their foci coincide with the slit
of the light source, and with the face of the light-sensitive paper,
respectively. Thus the rays that travel between the mirrors are
parallel, The sharp vertical image of the light source on the
" photographic paper is reduced to a luminous point by means of a
cylindrical lens B, whose axis is perpendicular to the direction
of the image. The position of lens B'' is adjustable for precise
focusing.,

The recording drum is of the same kind used in seismic
recording and accommodates a standard 30 cm wide photographic
paper. A small synchronous motor is mounted on a movable arm
which can be easily disengaged from the drum gear. The drum
speed is one revolution per hour, corresponding to a recording
speed of 1.5 cm per minute, A worm gear on the axis of the drum
provides a lateral translation of 0.1 inch per revolution. It was
found that one record could normally register four dé.ys consecu-

tively without changing.
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3. Sensitivity, In the preceding paragraphs K represented
the magnification corresponding to a given angle of twist of the
specimen at the level of the mirrors. In order to convert this to
actual strains, let us introduce the effective length L of the-
sample, measured from the level of the mirror to the upper
clamped section, and the radius R of the specimen. Then we

have
K:d(n+1)-1£— . : (30)

in cm, per radian of actual strain at the periphery of the sample.
Actually the clamped section is of larger diameter and

may be disregarded, so that the effective length L. is only mea-

sured up to the change in section. The following values of the

constants were currently used in testing:

n = 9

L =34 cm
R=%x116-—-0.555cm
d =117.6 cm

which gives a magnification ratio
K = 72,000 cm per radian of strain.
The photographic records were read to the neare.stvj-_ 0. Ol cm
(as in seismic work). This corresponds to a strain of + O, 01/K,
or+ l.4x 107 radian--a sensitivity which is quite satisfactory,
considering the economy of means with which it is achieved.
The unusual stability and trouble-free performance of

this high~sensitivity creep unit is well worth being emphasized.
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4, Limitations and sources of error. The experimental

method described, while adequate for the purpose of this investi-

gation, may present certain inconveniences for more general
applications,

An obvious disadvantage is the fact that the elastic defor-
mation could not be recorded in many cases, its size being too
large as compared to the creép deflections to be measured. A
system of double recording with different magnifications might
obviate this drawback. In our case it seemed sufficient to record
the elastic deformation whenever possible, i,e. for small torques,
The elastic modulus obtained in this fashion was consistent. .

Possible errors may be analyzed as to their origin and
importance, as follows:

a) Errors due to quality of sample: In spite'of the care

taken in selecting the chunks of rock from which the samples were
cut, it \;vas found that the specimens were not homogeneous., The
inhomogeneity was apparently of minor importance in the grano=-
diorite; however, gabbro specimens showed variations in the amount
of dark minerals, and slightly greater scattering of points in the
stress-strain graph, Possibly the grain size of the gabbro was
near the limit of coarseness which can safely be used in this

type of experiment, At any rate the results were fairly consis~

tent even for the dark rock. The clean helical fractures indicated
at least that there were no major discontinuities of any kind with=-

in one sample,
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All specimens were hand-polished with grade "00'" emery
cloth in order to reduce surface irregularities, In the process of
grinding the specimens, some residual stresses are likely to be
introduced., This effect is difficult to estimate; it may be assumed
that it is relatively constant for all specimens.

b) Errors attributable to environment: Humidity variations

affect the dimensions of the photographic paper, The resulting
error, for the type of paper used, was found to be of the order of
0.3%0 or less; it may become important, however, for méasur_e-
ments at large-times (t> 1000 minutes), where it can easily be
mistaken for constant-rate creep., All instances where it was
necessary to correct for this error have been clearly indicated
on the graphs,

No appreciable effect of humidity variations was expected
on the creep behavior of igneous rocks of low porosity.

The room selected for the experiment~--a tiny, completely
closed and dark first basement room=~-proved to be practically
temperature-invariant on the evidence of recording thermometer
tests, The optical magnification system used is also quite inde-
pendent of temperature changes,

The location of the tests (Arms Hall) is rather quiet,
There i;s some low-level vibration from electric motors (thin-
sections laboratory, fan room in the sub-basement) but the fre~
quency is high., It is estimated that the site would not be ruled

out as a seismograph location. Human traffic is low at all hours.
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c) Errors due to friction. The only place where friction

might have occurred was in the ball bearings of the two small

pulleys over which the torque transmission tape ran,
The pos sibility of friction was minimized by keeping the
ball bearings clean and well oiled.

d) Errors due to end effects, The importance of prevent-

ing slippage due to insufficient tightening of the upper or iower
clamps, has been recognized at an early stage., Actual slip has
been observed in one case, with a copper specimen subje.cted to
an unusually high torque (over 260 lb-cm).

Special care was applied during the operation of clamping
the specimens, and no instance of slip has been detected. At the
low torque used in rock testing the clamping pressures were ap-
_ pé.rently adequate to prevent any slippage,

The possibility of localized plastic flow at the clarﬁped
section merits some attention. From inspection of fig. 9 it is
apparent that a zone of stress concentration may be present at P.

The particular stress situation has not been solved to our
knowledge. Thin sections (fig. 13) failed to show any evidence
of unusual strains, Moreover, no specimen showed any tendency
to fracture in the vicinity of the section of clamping.

Bridgman (1952) found that, for extreme torsion strains
combined with axial compression, the flow occurring in the larger
diameter parts of the specimen could still be disregarded. This
is all the more notable as about 97%0 of the total length of the

sample was of larger diameter, and the ratio of the diameters
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was only 8:10,
In our specimens the free length of larger diameter section
was about 3% of the total length, the ratio of diameters was
8, 75:10 and the strains wefe about 10,000 times less than those
attained by Bridgman, It seems safe to conclude that no apprec~-
iable end effects could have been present. |

e) Errors of parallax, In the derivation of the magnifica~

tion formula, Eq. (29), it is implied that the arc subtended by
the angle of twist is identical with the chord described by the
light point on the photographic paper, -

The maximum error resulting from this assumption is
easily calculated. The 1eﬁgth of the cylindrical lens B'' limits
the deflection of the light point to 5 cm on either side of the mid~
~ point of the lens, The distance to the mirror on the specimen
being 117.6 cm from the midpoint, we finti that the angle éorres-
ponding to a maximum deflection is:

tan A = 1—1,57,7 = 0. 04252

A = 2°26'05" = 0.04249 radian.

Therefore tanA-A = 0,00003
corresponding to a linear error of

A€ =0,00003 ¢ 117,6 = 0,0035 cm
which is well within the limits of reading accuracy.

f) Human error, The most important item in this category

is the error involved in reading the records. The last decimal

figure {tenths of millimeter) is estimated, and it is occasionally
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of the order of the thickness of the line on the record. In the
experiments at low torques this error is large enough to be
quite noticeable on the graphs, In these cases the points cor-
responding to the readings give an erroneous impression of
accuracy and the amount of scattering appears to be greater
than it is in reality, If all graphs are plotted to the same scale
of strains it is seen that the amount of deviation from the best
fit is equally small for all torques.

The adjustment of the apparatus is largely indepehdex}t
of the personal equation of the observer, and no error is ex-

pected from this source,
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CHAPTER 1V

TESTING PROCEDURE AND RESULTS

1. Description of specimens, Igneous rocks are brittle

materials of very low ductility. In order to obtain measurable
twist deformations it was necessary to use rather long, slender
specimens (fig. 11), requiring considerable skill and care in
their manufacture. Mr, Sandberg, formerly of the Seismological
Laboratory of the California Institute of Technology, fir st suc-
ceeded in producing such specimens; all those.used in the present
research were machined by the Wm, I. Mann Company of Mon=-
rovia, California.

The choice of the rocks to be used was determined by
qualities of homogeneity, fine grain and accessibility of the type
~ locality, Two quarried rocks, one acid and one basic, belonging
to the Southern California batholith complex, were selected.
The specimens of each rock were taken from a singlé block
which was cut into parallel prisms having the same orientation,
The rocké were furnished by the firm of Thos, Holmes and Son,
Pasadena,

2. Foster granodiorite. This fine-grained, light gray

rock is probably identical with the Descanso granodiorite, named
by W. J. Miller (1935), It has been quarried at least since 1889
and is commercially known as "Silver Gray Granite', The speci-
mens used came from the quarry of the McGilvray, Raymond
Corporation, about 13 miles NNW of Foster, San Diego Co.,

California. It occurs in massive ledges showing mainly horizontal



o 5?‘:

 Bories

AL

12

FIG.



UNSTRAINED FIG. 13 STRAINED
FOSTER GRANODICRITE

UNSTRAINED PIc, 14 STRAINED
SAN MARCUS GABEBRO



“39.
jointing, The rock may be termed leucogranodiorite because of
the small amount of dark minerals present, The average diameter
of grains is 0,5 mm for quartz and 0.3 mm for biotite,

A study of the thin section (fig., 13) yields the following
composition:

Quartz (about 40%0) showing wavy extinction,
An

Plagioclase Ab fairly altered to sericite, calcite

80 20°

and epidote,
Microcline,
Green and brown biotite, showing some chloritization,
Iron ore, very little apatite, very little sphene,
Formation of myrmekite is fairly abundant.

The structure is granular hypeutomorphic,

3. San Marcos Gabbro. This is a black medium-~grained

rock known commercially as '"Black Diamond Granite'. The type
has been named and described by F, S. Miller (19/37) énd studied by
Larsen (1948) and Hoppin and Norman (1950). The latter authors
have also described briefly the Foster granodiorite, |

The rock is a quartz~biotite-hornblende norite .originally
from the Ebony Black Diamond Granite Company quarry, located
north of Escondido Creek, about 3 miles WSW of Eséondido, San
Diego County, California, It occurs in large residual boulders
which are difficult to quarry because of absence of rift or grain,

The mineral composition is as follows (fig, 14):

Plagioclase (core Ab35 An65, outer shell about Ab40An60)

well developed tabular crystals, about 65%o0 of rock.
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Hornblende, formed at expense of augite and hypersthene.

Hypersthene and Augite.

Iron ore

Little quartz, associated with hornblende (less than 10/0).

Little biotite, interstitial (less than 1%/0). |

Small amounts of zircon and sphene,

The hornblende shows considerable chloritization,

The structure is granular hypeutomorphic, The grain
size is 1-2 mm on the average,

A specimen of San Marcos quartz~biotite-norite collected
less than a mile from the quarry was studied by F. S. Miller (1937)

who obtained the following chemical analysis:

5i 0, 47,22
Ti O2 1.60
A1203 18.18
Fe203 ' 6,14
Fe O 7.80
Mu O .18
Mg O 4.93
Ca O 10,46
NaZO 2.74
K2 O . 13
H2 O . 46
P2 O5 --
S .16
100.00

Both the Foster granodiorite and the San Marcos gabbro
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take a beautiful polish and are used mainly for monuments and

ornamental facing.

4. Testing procedure. A total of 8 specimens of Foster

granodiorite and 4 of San Marcos gabbro were tested in the tor-
sion creep apparatus, For each specimen the direct creep de-~
formation under torques from about 6000 gr-cm to failure, and
the corresponding recovery creep for zero torque were recorded.
The total duration of a combined creep and recovery test was

one week or more.

The elastic modulus was calculated from the low torque
tests whenever the elastic deflection was small enough to bé re-
corded. For the larger torques there is always some uncertainty
as to the exact beginning of the creep component, This is due to
the fact that the creep rate in the vicinity of t = 0 bécome_s prac=-
tically infinite, there being no clear break between the elastic and
creep components of deformation. Thus the procedure of finding
the boundary of zero creep often relies upon graphical interpola~-
tion.

The use of the logarithmic time scale makes it possible
to obtain the true shape of the creep curve independently of the
amount of deformation near the origin, The semi-~logarithmic
graph may later be used as an auxiliary in interpolation. Recov-
ery tests mostly show rather clean breaks which allow exact
reading of the initial recovery deformation,

The loads must be carefully lowered by hand in order to

minimize dynamic effects. As a result, recording tends to be
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erratic during the first 10 seconds of the test,
Experience with these departures from ideal testing evolved
into the following test routine:
A. Specimen clamped in position,
B.. Mirror clamped on specimen,
C. Light spot adjusted,

D. Red lights turned on; fresh record marked and slipped
over drum,

E. Drum put in gear; light spot starts recording.

F. Loading yoke with attached weights carefully.lowered
into position,

G. nght spot (which may have wandered off the record)
is adjusted back into recording position,

F. Red lights out,

This procedure has the advantage of Irecording the exact
time of beginning of the test, The first few seconds of the test
are lost, but experience shows that there is nothing to be gained
by recording them, In any case the initial point must be gotten
by interpolation. The determination by this method is always
close and the error is not critical, since we are mainly interested

in the creep rate and its variation with time and stress,
————ace

5. General results, The experimental data are given

graphically on figs, 15 to 19 and at the end of this frolume. A
summary is given in Table 1.

Semi-logarithmic plotting is found to be very convenient
because of the tendency of the data to give straight alignments

over practically the entire range of times., This is characteristic



-ld3w
of the behavior of many materials at low temperatures and low
stresses.
The creep curves may deviate from the straight logar-~
ithmic line at small times and large times, A ''sigmoidal".

equation

o

a+

s =a+blog T

(31)

-
o+

could be used as a very close fit, However, it is seen that for
practically all of the data it is quite sufficient to use the straight

logarithmic form:

s=a+blogt . (32

The tendency of some curves to become concave upwards
at large times corresponds to a straightening out in the arithmetic
plot, i.e. an approximation to constant creep rate. This is charac~
teristic of the behavior at higher stresses and may indicate that
the principle of superposition ceases to be valid,

In order to check this assumption, experiments were
made on two copper rods of different diameter, The principle
of superposition proved to be closely valid as long as the creep
curve did not deviate substantially from Eq. (32). In the range of
"constant creep rate' the creep rate increased faster than the
stress (fig. 20).

Deviations from Eq. (32) at low times are to be expected.
This is seen clearly if one puts t = 0, Then, from Eq. (32), s = =@

whereas one should have
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which is the elastic deformation. Thus Eq. (32) cannot be used
for very small times. The discrepancy tends to increase with
stress.

A plot of strain rate against stress (fig, 16) shows that

the principle of superposition is valid over most of the range:
povs . v : (33)

The scattering seems to be due to lack of uniformity of samples;
there is no systematic deviation from linearity,

At larger stresses one expects an increase of strains
that is fastér than linear. This effect is observed but it is not
very large. Even near failure the strain rate is much nearer to

linearity than to the logarithmic law:
p ob log & | (34)

which is found in high-temperature creep of metals,

There were a few irregularities in the creep curves. The
behavior of specimen Gran. 5 is not understood, Beginning at a
rather low logarithmic rate it éttains a constant rate near
t = 1000 minutes. The creep recovery rates for the two first
gabbro specimens were too low for accurate reading. Creep re-
covery curves for specimens Gran, 3 and 5 were lost due to

failure of the light source.
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The creep curve of Gran. 7 gives a remarkable example of
brittle failure, The creep rate becomes slightly accelerated about
two hours before rupture., The actual failure is quite sudden.

The ruptured specimen is shown on fig. 12,
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CHAPTER V

CONCLUSIONS

1, Creep Properties of Rocks, Under the conditions of

the experiments the creep of the Foster granodiorite and Sah Mar-

cos gabbro may be represented closely by an equation of the form:
s=p(a+blogt) - (35)

where the constants are given as follows:

a b
- ~10 -10
Foster granodiorite 59.4 x 10 1.05 x 10
San Marcos gabbro 24.7 x 10710 0,167 x 10710

In formula (35) s is in radians, p in gr/cmz and t in minutes.

The San Marcos gabbro is found to have considerably
greater rigidity, creep resistance and brittleness than the Foster
granodiorite, The ratio of the coefficients a is about the same as
the inverse ratio of the rigidities:

G a
. gabbro _ 2.2 granod _ 2.7

grano

a gabbrd

Equation (35) is similar to the one found by Griggs (1939) for
sedimentary and metamorphic rocks in compression., The linear
relation between stress and strain is an expression of the finding
that the rocks followed Boltzmann's principle of superpositioﬁ

(on the average). If rocks behave like other crystalline materials
this condition should not be fulfilled at higher temperatures, due
mainly to the appearance of phase changes and recrystallization

processes,
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2, Viscosity of Rocks., By differentiation of formula (35)

one obtains:

we-
H
d

o

(36)

indicating that the strain rate decreases linearly with tifne. Even-
tually the strain rate may reach a constant value éc; in.th'is case
we may write the viscosity of the rock:
n= f_c_ ) (37)
P g
If the strain rate does not approach a constant value but decreases
indefinitely according to (36), the viscosity n is infinite,

In practice m is not entirely independent of the stress, In
the f‘oster granodiorite the viscosity was practically infinite at
low stresses, but at least in two specimens subjected to higher
stress a constant rate was approximated, In these cases the vis=-
cosity was of the order of n = 3 x 1015 poises, For the San Marcos
gabbro the viscosity appears to be considerably higher.

o There is a possibility of obtaining the value of n without
the use of constant-rate approximations. The method wé's given
by Sips (1950), If we have the creep equatio.n of any linear solid

(Eq. (12)):
s=R [l+¢(t):, (38)

we can obtain the relaxation function W (t) which is analogous to
$(t) for the constant-strain case, The analytical relation may be

shown to be:
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L () = =o)L (39)
1+L(¢)

where L represents the Laplace transform operator,
Since our logarithmic formula cannot be used in the form
(38) on account of its behavior near t = 0, we may approximate it

by a curve of the type:
(1 +AtY) (40)
whence

¢(t) = At™ . (41)

According to Sips, the application of (39) yields:

V(t) = En(x) - 1 (42)
where
x = -A P(n+ l)tn (43)
and
2 .
En(x) = 1 + —a + 2= toeens (44)

IMn+1) I(2n+1)
is the Mittag-Leffler function.
Once the value of y(t) is known, one may calculate the

viscosity by means of the formula given in Chalﬁter VI (Eq. 75):

o0

n =G f[l -x}r(t)] dt . (45)

0
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The Mittag-Leffler function has not been tabulated. The
relaxation function may be calculated by points, using Eq. {42)
through (44), although one may be doubtful about the accuracy of
the result in view of the approximate nature of our assumption,

Eq. (40).

3. Comparison with Michelson equation. The complete

form of the Michelson equation, Eq. (26), may be fitted to most
of the creep or recovery curves without too much strain,

In general, however, the result of the comparison with the
Michelson formula is negative, The characteristic kernel of the
equation (1 - ¢~ ¢ ﬁ) has not been found experimentally, Iﬁ par-
ticular the recovery tests were conclusive in this respect,

Additional tests on copper (fig. 20) and nylon (fig. 21)
équally failed to show any similarity of behavior with the Mich-
elson kernel, It is definitely inadequate to describe the experi-

mental data herein,

4. Geological inferences. Igneous rocks have been made

to creep experimentally at low stresses and ordinary surface
temperatures. This fact may not be surprising in itself, but if
one considers igneous rocks as the constituents of the eérth's
crust, it may be of importance to analyze the possible implications
in terms of geological processes.

The earth's crust is capable of supporting the weight of

mountain massifs up to 10 km high without any observable yielding.
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It must therefore possess an appreciable strength, The question
arises as to whether this geologic fact can be reconciled with the
experimental evidence of rock creep at ordinary temperature and
stresses.,

It should be noted firstly that the presence of low~temper-
ature creep in rocks does not imply lack of strength, any more
than it does in steel or other metals, In fact, below a certain
stress threshold the creep is logarithmic in form and soon reaches
a rate so slow that it is negligible, If this were otherwise no
structures of any kind could ever be built, since creep in a uni=-
versal feature in all construction materials,

Thus the concept of a stress threshold ("strength', ''yield
point", etc.) is indispensable, although it is important to remember
its relativity with respect to the span of time one wishes to con~-
sider. Creep deformation, even if at a diminishing rate, may
become important if the time is long enough,

Whatever the strength of the crust at depth may be, it
appears that the continued activity of orogenic forces is neces~
sary to explain why the continents have not been completely levelled
off by the combined agents of creep and erosion. An attempt to
reach an indirect conclusion as to the rate of creep deformation
in the crust, will be made in the Second Part of this thesis,

The semi~logarithmic creep law which has emerged from
the present series of tests has also been found by Benioff (1951)
in aftershock strain sequences. However, this kind of deforma-

tion is so common in creep that a correlation is not necessarily
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established,

The fact that rocks at room temperature exhibit certain
similarities to polycrystalline metals should not lead to an ex«
trapoiation following the pattern known from metallurgy. R_ocks
are not homogeneous materials but an agglomeration of grains
of different minerals, each of which has its own melting point,
elasticity and creep properties,

It is possible, however, that in large-scale deformations
the crust behaves more or less like a linear solid, The similar-
ity between aftershock sequences and laboratory creep curves
makes it seem plausible, at least, to try out such an assump-~
tion as a first approximation,

An attempt to apply this line of reasoning to the problem

of aftershock generation, will be made in the following chapters.
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PART TWO
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CHAPTER VI

THE MECHANISM OF EARTHQUAKE GENERATION

l. Fundamentals of Benioff Theory, The discovery by

Benioff (1951) of a general strain~time law which applies to after-
shocks, has opened the possibility of a quantitative approach to
the problem of earthquake generation.

The essence of the discovery is the following: whenever
crustal strains corresponding to an aftershock sequence are
plotted against time in a cumulative diagram, the result bears
a striking resemblance to a creep recovery curve. On the basis
of this analogy, Benioff formulates the hypothesis that aftershocks
are generated by creep recovery (or elastic afterworking) of the
strained rock in the vicinity of the earthquake fault. A series
of.papers developing this idea (Benioff, 1951+) constitute the
basis for a physical theory of earthquake generation,

The strains freed by each earthquake are related to the

seismic wave energy released, by means of the equation:
1 2
E=3qGVs (46)

'V is the column of rock assumed under uniform strain s at the
instant preceding the earthquake, The elastic constant G is un-
specified and its nature depends upon the prevailing type of de~
formation. An "efficiency factor' q measures the relative amount
of elastic strain energy converted into seismic waves,

The assumptions and simplifications implied in Eq. (46)
will not be discussed in detail, It should be mentioned that in any

case, the quantities involved are known to the nearest order of
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magnitude only. For the same reason the factor q may be taken
as unity, an assumption which is probably not too far from the
truth (»H. Benioff, oral communication),
The energy E is computed from the new (1955) Gutenberg-

Richter energy relation:
log E=9.1+ 1,75 M + log (9-M) - (47)

in which M is the earthquake magnitude as defined by Richter (1935).
It is found that the aftershock graphs can be divided into
two kinds:

a) Logarithmically increasing after the equation
s=a+blogt (48)

b) Rapidly increasing and levelling off abruptly, according

to the Michelson equation (see Chapter II, p. 19):

-.'CLY—E

s=C1+C2(1-e ) . : (49)

Some aftershock sequences are discontinuous or composite,
mainly with abrupt transitions from Eq. (48) into (49). The pres-
ence of the Michelson equation is interpreted as a possible pre-
dominance of shear over compression,

In the Kern County sequence (Benioff, 1955} it was discov~
ered that the aftershocks with epicenters in the region SE to the
main fault plotted according to Eq. (48) while those to the NW

began more than a day late and followed the Michelson form
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(Eq. (49)). Had the sequence been plotted as a whole, without
discrimination of epicenters, it would have given a discontinuous,
composite graph similar to the Long Beach sequence (fig. 22).
In general it is found that the Michelson type of sequence is com-
posed of a small number of larger shocks, while the logarithmic

type features a larger amount of smaller shocks (Benioff, ibid, ).

2, Properties of aftershock sequences; The occurrence

of composite aftershock sequences and the peculiar aftershock
distribution found in the Kern County sequence, pose a problem of
some conceptual difficulty, Explanations in terms of randqm or
secondary effects appear out of the question. On the contrary,

it is likely that some basic mechanism is involved. |

Figures 22, 23 reproduce several aftershock sequences
by permission of Professor Benioff, In order to evaluaie these
seéuen'(:es we shall begin by dealing with some objections that
might possibly be raised,

In ail these graphs the strains are cumulative; therefore
no negative slopes can occur. It may be argued that 'such-a plot
éan always be fitted to an arbitrarily small number of stfaight
or curved segments,

Moreover, it is observed that the fits are ﬁot always
very close, This is to be expected in view of the uncertainﬁes
of magnitude and energy involved in the processing of the data.

Finally, the curves of best fit are not representative of

the average trend but rather of the trend of maxima of the data,
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It is clear that one has to take the maxima because they
represent the actual creep rebound which is interruptéd by per=~
iods of relative quiet and strain accumulation, However, this
could introduce a small factor of arbitrariness in the process of
selecting the maxima to be used for fitting,

All this being said, let us consider the curves in more
detail. Let us also imagine the data transferred onto a simple
arithmetic graph (fig., 24), which has the property of smoothing
out discontinuities that occur in the early part of the sequence,
Then even such composite Michelson-type sequences as the Long
Beach may be fitted rather smoothly by a logarithmic curve.

In fact, a general semi~logarithmic trend seems to be the most
conspicuous common feature in all the graphs.

o No random distribution of aftershocks will give a semi-
logarithmic sequence. If we imagine all earthquakes in a given‘
sequence mixed together and '"drawn' at random, the résulting
distribution will be nearly linear. The only way of obt aining a
semi-logarithmic distribution is by drawing the items at a
logarithmic rate. In the physical picture this ''rate! corres-
ponds to the mechanism which governs the generation of after-
shocks, Thus one may see in a simplified way how the Benioff
aftershock sequences must be related to the seismic mechanism.,

The Kern County sequence shows that this mechanism may

be different on either side of the fault. It seems plausible to
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assume that the difference is due to distinct subsidiary faulting
patterns. For example, one of the blocks may be closely frac-
tured and its creep energy be released in a swarm of small shocks;
whereas the opposite block may contain relatively few faults which
release the energy in greater 'lumps'' and possibly with some
delay within the sequence, In the latter case, the strain release
pattern becomes more complex because of secondary systems of
stress concentration, the dimensions of which are not negligible
in relation to the total earthquake zone., One may expect the re-
sulting sequence to deviate from any simple strain curve, so that
the Michelson equation would not be needed as an explanation (ex-
cept perhaps in a descriptive way). It may be noted from the
Kern County sequence that the amount of strain released is the
.same on either side of the fault; this shows that the difference

lies only in the form and not the amount of strain release.

3. Two hypotheses, A direct quantitative interpretation

of the aftershock theory is difficult because of our imperfect
knowledge of the properties of the earth’s crust, In the following
discussion this objection is always kept in mind, Our purpose

is to derive a value for the viscosity of the crust from the data
given in the aftershock sequences, This problem would become
solvable on the basis of some quantitative theory relating after-
shock sequences to the creep properties of the material. In the
absence of such a detailed theory we may resort to working hy-

potheses, two of which shall be considered here.
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Hypothesis A, The aftershock sequence represents the

pure creep recovery of the rock. This is the concept originally
developed by Benioff, It implies that the entire elastic energy
of the rock is released in the main earthquake, and that the en-
tire aftershock energy is due to creep strain,

Hypothesis B. The aftershock sequence represents a suc~

cession of creep recovery patterns alternating with jumps of
residual elastic recovery in the form of larger aftershocks, If
the residual elastic energy is taken as zero one obtains the case
of Hypothesis A, which thus may be considered a special case of
B. No fundamental opposition exists between the two hypotheses.

A reason for advancing Hypothesis B may be found in the
fact that some sequences have such a high ratio of aftershock
- strain to main earthquake strain that creep recovery along can
hardly account for it. Thus one may be led to conceive the possi~
bility of some amount of elastic energy remaining stored in the
rock after the earthquake, and being released gradually as after-
shocks.

The question is raised as to what part of such a sequence
can be attributed to creep recovery., There is no evident answer
to this problem from first princi.ples. However, many logarith-
mic aftershock graphs show a peculiar step-like structure not
unlike that of a laboratory creep recovery curve obtained by suc-
cessive decrements of load (Fig. 22). We shall assume tenta-
tively that the slope of these steps (which appears to be fairly
constant) gives a measure of the true creep rate in Hypothesis B.

Such a delay in elastic strain release is not the only
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mechanism which might reduce the creep rate from the value orig-
inally expected by Hypothesis A. Especially in a large earthquake,
the shock may be the prelude to a regional redistribution of stresses
involving some transfer of elastic energy in the direction of thg
seismic zone, It will be shown, however, that Hypothesis A gives

a sufficiently good approximation for the kind of computation at-
tempted here. |

4, Volumes and Strains in the Seismic Zone, The volume

V of strained rock is an essential quantity in our computations.
Its magnitude has been discussed and some agreement reached
in spite of widely different initial assumptions.

Bullen (1955) finds a minimum V = 6 x 1012 cm> for an
earthquake of magnitude 8,6. Benioff (1955) calculates that the
volume involved in the Kern County aftershock sequence was
about 7.6 x 1019 cm3.

Geodetical measurements across the San Andreas fault
show that the two fault blocks are moving at the rate of 2 inches
per year relatively to each other. The region of measurable
strains is confined to a 5 mile wide belt on each side of the fault,
The same order of magnitude was found in the measurements of
the extent of displacements after the San Francisco earthquake
of 1906. Benioff (1955) has calculated that the rigidity G in the
strained belt must be about nine times smaller than in the sur-
rounding country rock; this difference may be produced by a

system of fractures in the strained zone,
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The rigidity of granite fluctuates about 6 x 101 dy‘nes/cmz.
In this thesis we shall assume G = 10% dynes/cm2 for the strained

zone, which will be about the right order of magnitude,

5., Two rough checks, The rate of strain release in the

crust (as evidenced by great shallow earthquakes) was found to be
approximately constant (Benioff, 1951b). If all non-Pacific earth-
quakes are excluded, the graph is still linear (fig, 25). The data
comprise all earthquakes of magnitude 7-3/4 and over since 1904,
computed with the new magnitude~-energy equation, Eq. (47). From

this graph it appears that the annual release’

of shallow energy in the Circum-Pacific T f'ﬂ%f,
belt is of the order of 25 x 10%2 ergs/year, | '
f ;:l I ——
From Gutenberg and Richter (Seismicity, =] FAVLT
- o
pP. 22, 2nd Ed,.) one finds that the California- 3‘" | N
|
Nevada region accounts for about 2.8% of i |
this activity, say: |
FIG 26

E =7 x 102! ergs/year .

Assume for a moment that the entire strain energy of the region
is concentrated in the 10-mile wide strip along the San Andreas
fault, which is about 800 km long. If the depth of the strain zone

extends to the Mohorovicic discontinuity the volume of the zone is:

5 3 3

20
V = 800 x 17 x 35 x 1022 cm> = 4.7 x 10°Y cm

and from Eq. (46):

1
7x107 "x2 - .
s 3 10}fx4. 7:_’;1 0= 1.7 x 10 > radians per year
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The measured strain across the fault corresponds to a displace-

ment of 2 inches per year, or (fig. 26):

s=0,3 x 10'"5 radians per year .

Comparing both values of the strain it is found that they are only

half an order of magnitude apart. Moreover, the discrepancy is

in the direction to be expected from our assumption that the entire

seismicity of the California-Nevada region is concentrated along

the San Andreas fault. A second check can be made as follows:

From Eq. (47) the energy released by an earthquake of magnitude

7 is:
E = 6x 10% ergs .

In the Southern California region it takes about 11 years
to produce an earthquake of this size (Gutenberg and Richter,
Seismicity, p. 18, 2nd Ed.).

From the previous check we take the averagle strain ac-
cumulation to be roughly 10_5 radians per year, or llx 10-'5

radians for an earthquake of magnitude 7, Introducing these

values into Eq. (46) and solving for the volume we find:

21 '
6 x 10 2
V= = 1019 cm3

cm *
121 x 10~10 4 1o

-—
-—

The value agrees rather well with Benioff's estimate of 7. 6x10
for the Kern County active zone, if one considers that the Kern

County earthquake was of magnitude 7. 6.

19C

m

3
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CHAPTER VII

DERIVATION OF THE RELAXATION FUNCTION

In the preceding Chapter we have evaluated and summarily"
checked the order of magnitude of the constants involved in the af-
tershock problem. The present Chapter is concerned with estab-
lishing a mathematical formulation of this problem.

It has been shown (Part I) that Boltzmann's Principle is ap~
plicable to igneous rocks under certain laboratory conditions. The
following discussion assumes that this behavior may, in first ap-
proximation, be extended to the earth's crust and particularly, to
the material of the strained zone in which the aftershocks occur.

The most general case of such a material can be represented
by a rheological model (Fig, 27), having an arbitrarily large num-

‘ber of spring and dashpot elements connected in parallel, Our
treatment of this model is based upon work by Zener (1946), Alfrey
(1945), Simha (1942), Gross (1947) and particularly bgr Sips (1950),
whose method will be followed closely,

Let each element of our model (Fig, 27) be composed by a

spring of elastic constant o and a dashpot of viscosity constant n.

= = =

Fig. 27
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The stress-strain relation for this element will be (cf. Eq. (10),

p. 9):

ds_1 dp 1
TETE TP : (50)

Integrating and putting p(0) = 0 we obtain:
t

e KE=T) g(r)ar (5
where k = =,
n , .

In order to describe the model we may introduce a density
distribution function Nl(a, k) such that Nl(q., k) such that Nl(a, k)dadk
is the density of elements whose constants have values between q
and (a + da), and k and (k + dk). In this context the word"'density"

is taken relatively to the total number of elements, so that we have:

A K : -
// N;(e,k)da dk = 1 (52)
o] [o]

where A and K are the upper limiting values of a and k, The total

stress on the model may now be written: ‘
A K t o
plt) = ] j [ N, (a, k) a / e KE=T) 500y d«} dadk (53
o .0 o

it being understood that Nj(ak) = 0 for all a > A and k> K. Let us

now define a function
A

N(k) = f aNl(ak)da . (54)

o]

We may write Eq, (53) in the following form:

t K :
p(t)=/é(n—)[/N(k) e‘k‘t"")dk] o . (55)
o [o] '



Let now a strain As be imposed upon the material in a very short

time At beginning att = 0, Then:

As

S =T

(56)

If the sample is constrained to remain under the same deformation

As we may write the stress relaxation from Eq. (55):

At K t K :
p(t) = 53 / d'r/N(k) e KE=T) qi + / o[ /N(k)e"k(t‘”dk] dr .
o o Ak o}

(57)

Beyond At the strain rate is zero and therefore the integral van-

ishes in that region. Carrying out the integration:
K
(t) _As N(k)emkt (e kat _ 1) dk (58)
p(t) = 3¢ — % -

o

. The term in parentheses is equal to kAt plus higher-order terms

which can be neglected. Thus:
- K '
-kt :
p(t) = As / N(k) e dk . (59)

o

At time At this expression tends to
K

p(At) = As / N(k) dk } (60)

o
Since the deformation is approximately instantaneous it may be ex~

pressed by means of Hooke's Law:

p(At) = G As . (61)

Instead of the rigidity G any other elastic constant may equally well

be used. Substituting back into (60):
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K
G= /N(k) dk . (62)
) ,
Dividing Eq. (59) by Eq. (62):

K
/ N(k)e ¥tax
[e)

p(t) = GAs R (63)
- / N(k) dk
o)
It is convenient to define a ''relaxation function" y(t) such that
K
/ N(k)e Ftax |
A \
y(t) =1 - R . (64)
/ N(k)dk
o
Then Eq. (63) can be written in the familiar form:
plt) = Gas [1 - \P—(t):l (65)

which defines the stress relaxation under a constant strain As.
Let there be additional displacements Asl, ASZ, ses at times
tis ths cacns Eq. (65) then becomes:
n
p(t) =G ZO Asi [1 - \f’(t"ti)] . - (66)
15

Passing to the limit of continuous deformation:
t

olt) = G / () [1 - w(t-T) ] ar .. (67)
o]

In the case of earthquake strain accumulation at constant rate U

this equation becomes:
t

plt) =GU[1: - / NAt-T) dT:l ] (68)

(o
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In order to represent the sequence of events during oné cycle of af~
‘tershock generation we assume the origin of stress and strain att = 0,
If the main earthquake o;:curs at time T and any subsequent accumu-
lation of stress is neglected, we may write:

o <t <T— 3 s(t) =

t=T ~As =UT - s(T+¢)

t> T s(t) given; p(t) =

This sequence is represented graphically on Fig, 28 (upper part).
For t> T the 1ntegra.1 (67) may be written in three steps:.

o-ur- /,,(t-ﬂdf} for-acm)] [1-yteom |

t

+ / s(T) [ 1- \}r(t-f)jldfr . | (70)
T ;

As thé aftershock function s(t) is a datum and the strain p is eliminated,
- it'is possible by Eq. {70) to find the relaxation function 'y (t) which
represents the creep characteristics of the material,

I am indebted to Professor A. Erdelyi for suggesting the

solution to Eq. (70). Let us put:

/ W ir)dr = W) . (71)

If we substitute:
t -7 = u ’ (72)

the first integral in (70) can be written:

/ v (t=-7) d7 = - / WV (u) du = = W(t-T)+ W(t) . (73)
t
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Substituting into Eq. (70) and rearranging we obtain finally:
t

it = S 4 geomye Wit [T- S{JT’}- z / 5(7) Pie=1) dr . (74)

_ T
Eq. (74) may be solved by an iteration method already used by A,

Cauchy (1840) in the solution of differential equations. The method
consists in assuming values for W(t-T) and K].J(t-T) and construct-
ing the curve ‘P(t} by points, -

The procedure involves some degree of trial and error and
is generally laborious. About the relaxation function \fjnothing is
known except that

Wo)=0 , and
Wees) = 1.

Actually L}J may.be_z nearly unity already when the aftershock se~
~quence dies out. Moreover, LI) is a uniformly increasing function,
Once the relaxation function is determined we may immedi-

ately find the mean viscosity Ny

O

nm=c}/[1~\m)J at . | (75)

o

Formula (75) can be easily verified by referring to Eq. (64) which

may be written:
K

1= it) :é N(k) e ¥t gk . (76)

Therefore
0 K (2]

Gf{(l - v (t) ] dt =/ N(k) dk/e‘ktdt-. (77)

fo) o} O
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Integrating and writing out the function N(k) as defined in Eq. (54):
co L

Gﬁl-y(t)] dt = %Nl(o.k) dadk (78)
0 00

The right-hand integral represents the average value of 1% which
is precisely n by definition,
It is also possible to calculate the amount of energy ex-

- pended in overcoming the viscous resistance:

E, = Vin_ . ' (79)

This energy represents the heat generated in the earthquake se-~
quence,

The computation of the relaxation function has been carried
out for the Manix earthquake sequence (fig, 22),

It should be noted that the curve shown as Q/ is only one
of a number of possible curves, depending upon the assumptiohs
made in the course of computation. Thus it has been érbitr‘arily
assumed that the strain reaches zero at the end of the aftershock
sequence., This assumption gives the minimum valués for the
viscosity, as can be seen by the dashed line {fig. 28) which rep-

resents another possible solution,

2. Minimum viscosities from aftershock sequences, If we

assume that the strain reaches zero at the end of the sequence,

we may write approximately:

T
f[l-xy(t)] dt z/[l- y(t)] at ~(80)

0 0
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since T is always larger than the duration of the sequence, Now,

it is seen that:

T T
‘f[l- Y(t)} dtzT-f\'f(t)dt
0 0
(81)
=T - P(T)
From the iteration formula (Eq. 74) we 6btain, putting t = T:
= 8(T) .
W(T) = <~ - . (82)

Thus we may write the approximate expression for the viscosity:"

n=c(r -3 (83)

s(T) represents the total creep strain which is obtained from the
"aftershock graphs. The aftershock graphs reproduced here (figs.
22 and 23) have been scaled according to an older magnitude~energy
relation. In order to obtain direct strains we correct the value of

S (left-hand scale) using the new formula, Eq. (47); then we multiply

1 10194

1 : v
2 x 1019) . Putting the aftershock

through by (3GV) 2 = (3 x 10!

sequence in the form shown in fig.. 28 and changing time and strain

origins accordingly, we obtain:

s(t) = 1,85 - 0,7 log (t-T) x 107>

and for Hypothesis B:

s'(t) = 1,02 = 0,34 log (t-T) x 10°° .

We have (from the graph) s(T) = 4.0 x 10™°

The main earthquake strain (Mag. 6.2)is 2.23 x 10-2

Total accumulated strain 6. 23 x 10"'5
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corresponding to a time of accumulation

6.23 x 10~

T = T

The strain rate is U = 10™° radian/year = 2,74 x 10™° rad, /day
T = 2275 days .
For Hypothesis A we have (Eq. (83))

4,0 x 103

40x 107y 60400 = 7.05 x 1018 poises.
2. 74 P

11
m, = 107" (2275 -

The factor 86400 is a conversion factor of days into seconds,
For Hypothesis B we obtain
s'(T) = 0,34 log 1000 = 1,02 x 10~

3
ng = 1011 (2275 - _1_%3%9- 86400 = 1,32 x 1017 poises.
Hypothesis B gives slightly higher values, Let us repeat the

.same calculation for the Nevada sequence (fig. 23). We obtain:

T= 11,750 days
§(T) = 18.8 x 10™° (Hypothe sis A)
sY(T) = 2.8 x 107> (Hypothesis B)

Np = 4,23 x 1019 poises

ng ® 9.25 x 1019 poises

The differences between the two hypotheses are not impor~
tant or consistent enough to afford any conclusion.,

It has been pointed out already that the values of the vis~
cosity obtained by this method are minimum values, However,
the error introduced by assuming zero strains at the end of the

sequence will hardly be more than one or two orders of magnitude,
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This estimate is made on the basis of actual trial-and-~error com-
putations, such as gave the dashed curve in fig, 23.

' The determination of the viscosity of the earth's crust is

a major problem in geophysics. Current estimates, includin;g
Haskell's calculation for the post-glacial uplift of Fenno~scandia,
are reviewed by Gutenberg (1951), The average estimate for the
viscosity is:

ns 1020 - 1022 poises,

These values are in excellent agreement with our general
results, obtained exclusively through the use of the Benioff after~

shock theory,

3. Conclusiong, It has been shown how a method of quan-

‘titative analysis based upon the viscoelastic theory can be applied
to aftershock sequences., Due to the lack of strain measuremehts
in earthquake zones the problem is still indeterminate; and dnly
rough results can be obtained, It is probable, however, that a
procedure essentially similar to the one outlined heré may even-
tually provide a tool for computing crustal strain pattex.'nsvfrom
aftershock data.

Some of the geophysical problems amenable to this approach
would be:

l. Study of the viscosity of the crust and its geographical
and depth variations.,

2, The question of local heat generation due to earthquakes,

and its possible relation to volcanism.,
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3. The problem of stress-strain behavior of the subcrustal
material and its influence on the mechanism of deep~focus earth-
quakes,

.4.. An analysis of isostasy based upon actual stress patterns
produced by the mountainous overburden.

5. Regional seismicity studies on the basis of strain accumu-
lation, and prediétion of earthquakes,

At present many of the fundamental data available for such
calculations are still very imperfect; however, we hope .to have
shown that the Benioff Theory can provide numerically consistent
results even at this stage. In addition, the theory could furnish a
basis for devising model experiments of great value in connection
with some of the problems outlined above,

It would be interesting to find out how the assumption of
linearity contained in the viscoelastic approach affects the results,
Some clues might be obtained from suitable high-pressure experi-
ments in metals, since ''the observed behavior of rock.s...i_s in all
respects consistent with that of metals and some other solids"
(Griggs in "Colloquium on Flastic Flow', 1951), This remark,
which applied chiefly to sedimentary and metamorphic x;ocks, may
now be extended to include some igneous rocks in the range of

testing conditions described,
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APPENDIX I

In a uniform bar of circular cross section let p(r, t) be the
stress at points of distance r to the center of the section subjected
to a cdnstant torque M.

The moment necessary to balance p over an annular séction

of radius r and width dr is:
dM = 27 rdr » p{r,t) r . (84)

Integrating over the section:
R

M = Z-rr/ plr,t) v dr . (85)

o

Since M is a constant we may write

R
dM _ op(r,t) 2 -
-a-{-— = ZT}' '——aT—-—-—-— r dr =0 . (86)
(o]

In order for the integral to va:nish, the derivative of p must change
signs at least once within the limits of integration, This implies
the existence of non-uniform’properties in the section, such as may
be caused by differential strain hardening, heat generation or other
strain-dependent effects.

In the present experiments we are limited to very small
strains so that these differential effects rhay be considered negligible,

Thus we have approximately:

op(r,t) _
£l =0 . (87)

Strictly speaking, this equation is true only for non-dissipative sys-

tems (e, g. for the ideal elastic case).
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APPENDIX II

1, Maxwell solid,

Let r be the radial distance of any
point in the section and let 6 be the rate of angular strain of the

sample per unit length, Then:

s:rfédt (88)

gives the strain at the point of distance r at the instant t.
The Maxwell equation (Eq. 10):
. 1 1
S =

degenerates under constant load into Newton's equation, because

p = 0 (see Appendix I):

N
Hi

-

S|

(89)

Differentiating Eq. (88) above with respect to time, and equating

with (89) we have: \

On an annular surface of radius r and width dr we have
dM:nré)cZTrrdrxr . (91)
Integrating over the section:
R
M:Znnéfr3dr=%r—nGR4. (92)
0
Since M is constant é must be constant also, Thus:
- & B
8 = 5t + E
and: $(t) = %t .
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2, Voigt solid, The Voigt equation (Eq. 11):

p=Es+n3

may be easily integrated as follows:

-E//t :
(1-2 Ty (94)

wn
n
=l

For any given instant t, Eq. (94) is identical with Hooke's law,
We may therefore write directly the moment-twist equation in the

form of Eq. ((19):

0
M =%ER4 "“-—%‘T (95)
l=e n
and:
- Ey
no
o(t) = -e : (96)

3. Standard linear solid, The stress-strain equation of

the standard linear solid is:

Es+né=p+-:-;/pdt (97)

which may be integrated as follows:
' E
1

= |
s=p[(§-%u1—e )+%J (98)

e

where \ = TEZO

Again, one can write the moment-twist equation directly:

T4 o(t)

(99)
-E/,qt) +£

1 n
('E -7\—)(1-e N
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“E/t (100)
! t-1
D )(l-e )t g
¢(t) = (1 = ==
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APPENDIX III

‘The Bingham equation for a plastic-viscous body is (Egq. 22):

p=k+né .

In any section of a twisted bar of such a material there will be an
elastic core of radius p and a plastic-viscous periphery. If 0 is
the angular strain rate per unit length of sample, the strain rate
at the surface is equal to Ré, whereas at the elastic boundary the

strain rate is zero. At any radius r > p we have then:

. _R 0 (r-p)
S——ET (101)

since in any linear solid the strain rate must be a linear function
of the radius,

Substituting (101) into the Bingham equation:
“R-p : (102)
At this point it is convenient to introduce a stress function F

(Prager and Hodge, 1951) such that

oF
-5 =P - (103)

The function F is defined over the entire cross-section and
it is conventionally zero along the contour of the section. For all

r > p the stress function will be:

nRé(x-p)°

The value of the integration constant is found from the condition

that Fp vanish at the contour:
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cz-ﬂR__gz(B;ﬂ_kR . (105)

For all r < p the stress function has the well-known form for the

elastic case (Prager and Hodge, ibid.):

Fe=-%EOor2+C' . (106)

In order to make the problem solvable we assume:

a) continuity of the stress function at r = p:
Fp(p) =F_(p)
which gives the value of the constant of integration C':

2 0
C'= 3EQp” + 3}?— (R-p) + kK(R-p) . (107)

b) continuity of stresses at r = p:

OFolp)  OF(p)

-

or or
which gives:
Cx A

"0

Now that the position of the boundary is determined we can inte-~

grate the stress function over the cross-section to find the torque M:

R
M:ZdeA=4wardr (109)
A 0

R

o}
M .
H»[F(grdr%-f]?prdr. (110)
0 P

Carrying out the integration one finally obtains:

or:
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3
2 3 1 k
M= ? ™ R. k ]l = ——-—3—- (ET-)
4R o
(111)
n . .3 R% RK® k>
+ nR O (3R” =~ ol - )
3 o EZOE E3Oi

which is identical with Eq. (23).
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