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Abstract

A general review of normal mode theory as applied
to the vibration of linear damped lumped parameter bi-
lateral systems is presented. It is shown that systems
possessing classical damping may always be solved by the
method developed by Rayleigh. However, for more general
type non-classical damping the method proposed by F. A.
Foss must be used. The main differences between classical
and non-classical normal modes are noted, A non-classically
damped system which does not possess a mode type solution
is solved by La place Transform techniques.

The effect of damping on the natural frequencies
of a linear system is discussed. It is shown that In
classically damped systems increasing the damping decreases
the natural frequencies of the system. With non-classical
damping some of the natural frequencies of the damped
system may be greater than the corresponding natural
frequencies of the undamped system. From the perturbation
analysis, used in determining the effect of damping on
the natural frequencies of the system, the concept of
equivalent classical damping for non-classically damped
systems is derived,

Experimental techniques needed to determine the
mode shapes, natural frequencies, mass spring and damping

matrices of classically damped systems are presented.



By the use of the concept of equivalent classical damping
an estimate of the damping matrix in non-classical systems
may be obtained. Experimental results supporting the

theory are presented,
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Introduction

The underlying theory of normal modes was developed
to a high degree by the classical physicists and early
mathematicians., In 1753 Daniel Bernoulli introduced the
idea of superposition of motion and later in 1762-65
Lagrange developed the general theory of undamped linear
vibrating systems. Routh, in his Adams Prize Essay of
1877 and in his text Rigid Dynamics,appears to have been
one of the first to give a systematic treatment of small
oscillations using normal mode techniques. The climax in
the early development was reached by Lord Rayleigh when
he introduced the concept of the dissipation function and
thereby laid the foundations of normal modes in damped
systems,

At the turn of the century most physicists felt
that enough work had been done on the analysis of multi-
degree of freedom systems. However, with the introduction
of high speed rotating machinery and the associated pro-
blems of whirling of shafts and vibration isolation,
engineers began to analyze practical systems. As it is
extremely tedious to solve systems of greater than three
degrees of freedom exactly by hand calculators, many
iterative numerical methods were developed at this time

to rapidly approximate the normal modes of the system.



Up to this time most of the work was concerned
with what is now called classically damped systems. In
point of fact the damping was further restricted to
Rayleigh type uniform dampinge With the rapid advances
in structural dynamics initiated by the aircraft indus-
try, it was inevitable that the methods of normal modes
as used by Rayleigh would be found to be inadequate to
solve some interesting physical problems. T. K. Caughey
showed that Rayleigh's approach has much wider application
than had been supposed. K. A. Foss developed a method
of deriving normel mode solutions for systems possessing
non-classical dampinge. .

Today normal mode technigues are in cormon use in
engineering and science, Whereas in principal any linear
dynamic system may be solved by integral transform tech-
nigques the use of normal modes will greatly reduce the
computational work. In electrical lumped parameter circuit
theory the normal mode approach is rarely used whereas
in mechanical lumped parameter system this approach is
practically standard. This difference in the aprroach to
lumped parameter systems is largely due to the standardized
forms of electrical networks, e.ge., filter sections which
are much more readily treated by such specialized tech-
niques as the four pole parameter methods. IHowever,

electrical engineers use normal mode solutions in many



electro-magnetic problems, Although the theory needed

to find the normal modes of either classical or non-
classical systems has been developed there is a need to
critically analyze some of this theory and to correlate
the work of the main researches in the field. This work
attempts to point out some of the difficulties that

may arise in solving systems by the normal mode approach
particularly if these systems are non-classically damped.
As there is a great need for the development of practical
tests to determine the parameters of a linear system

some work in this area is presented. Lastly the work is
interested in the general physical effects of non-class-
ical damping and in the development of equivalent classical
systems,

This work is limited to physically realizable
passive systems. Consequently the systems considered are
bilateral as well as linear, Bilateral systems are
systems such that no unsyrmetrical coupling terms that
would violate the reciprocity theorem are introduced.
This, of course, prevents the use of the results to
either aircraft flutter or systems possessing gyroscopic

motion,



Iy
Chapter I

Not 2all methods of deriving the equations of motion
for a multi-degree of freedom system lead to expressions
which are symmetric in the co-ordinates of the system. It
is always possible, when dealing with physically realizable
passive non-gyroscopie systems, to transform a set of
unsymmetric equations of motion into a set of symmetriec.
equations. However, the use of either energy or variational
methods of derivation results directly in a symetric set
of equations. A further feature of the energy and varia-
tional methods is the possibility of selecting a set of
co-ordinates which may considerably simplify the algebraic
and numerical work involved in solving for the displace-
ments and velocities of the system.

There are many advantages in using Lagrange!'s
Equations, the anergy method most frequently encountered
In engineering analysis, to demcribe the motion of systems,
The equations of motion are derived in exactly the same
way for every possible set of co-ordinates. As only the
potential and kinetic energies are involved there is no
possibility of difficulty with the algebraiec signs of the
displacements and velocities, and there is no need to
determine the accelerations, Whereas, in fact, many of
the systems treated later may be solved by Newton's Second

Law of Motion, some difficulty could exist regarding the



5

signs of the displacements and velocities while the
acceleration of each mass would have to be determined.

To use Lagrange's Equations it is necessary to
define:

l) Holonomic System: A system such that the number of
degrees of freedom equals the required number of co-
ordinates to completely describe it.

2) Non=Holonomnic System:r A system, so constrained, that
the number of degrees of freedom is less than the
required number of co-ordinates to completely describe
it.

3) Generalized Co-ordinates Th(1n1="'$d= A set of inde-
pendent co-ordinates used to completely describe the
motion of the system,

As non=holononic systems rarely occur in practise,
this work will be restricted to holonomic systems. The
co-ordinates may be chosen in any suitable way consistent

with the geometry of the problem,

Lagrange's Eguations for a Holonomic System with n degrees

of freedom in the usual form are

d 2 v -2 () . a. (1)
d.k 51.‘ . Gl n
where T « kinetlc energy of system ¢
N N .
=2 2 MYy g (2)

ezt |\=t

and 8¢ = Generalized Force at q;
A more convenient form for ocur purpose may be obtained

by defining i = 6ic+ F:



where 8. can be expressed as a potential function, l.e.

>V
Qic = - ==k
§ 29; (3)
V = Potential Energy of system
N N . .
- £ Z %% %
-+ Z Z i)

and Fi is the non-conservative part of the generalized

force & ,
As V is independent of i; Equation (1) may be

rewritten as follows:

.8 [veovf « 2 Lr-1) = Fy

o > =, (5)
Let T-N =L , Lagrange's Function

£ Ly - A = By

or for a conservative system
(7)
é“_ 2, (L! — .Q_ (L_) = 0
dt 99, L

Derivation of Equations of lotion of multi-degree of

freedom systeme.
Consider a system of n discrete masses wm ¢

coupled together through springs and dashpots as shown




in Figure 1. Choose the generalized co-ordinates X
to specify the motion of the system. Let xi=o0 all ¢
when system is in stable equilibrium,

As this is clearly a holonomic system

i'.- :‘—x L = _E—;-t' = F‘-_
dE N H (8)
N

T % Z Mo X

where m; are the masses (=42 ..-. N
Kiy=force exerted on mi by the spring system when
Xi =X{=0 all « execept L =7, xj =, X; =0.
It should be noted that Kij = ¥Kji as can easily be
showm by performing the following two experiments:
Place system in stable equilibrium
Displaces mi so that Xg = x{ # 0
Xi =0 all | =

Holding m; so that X

1]

X: *o
Displacem, so that X, =X, zo
K"s = 0O 1+ i

PP - s . . ¢‘ i gl . v
Total energy stored in the spring system = 3 E KigXg
e=|

N
& & ZK“_‘R;‘ + Ko Xi X, (11)
=i
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How reverse sequence of the above experiment,

Place system in stable equilibrium

Displece m, so that

Xg =X, = 0
x; = © all ] *L
Holding m, so that x, =%, =« o
X= o all j 2
Displace wm: so that Xi=X; =+ o
¥ = B j#* ¢

.0

Xg = Xg =+ 0
Total energy stored in spring system

N
N
- -
=

=

—

+ Kigp %y -K-"_ (12)

The final configuration of the system is the same in
these two experiments,

As there is no energy sink the
energy stored must be the same,

Equation (11) = Equation (12)

Kei = Kie .
Similarly it may be shown that
.

Clj = C:li'

Returning to Equation (8) and on substituting Equation

(9) and

for the s

Equation (10) for L=T-V the equations of motion
system mey be written

N N
R+ 2 K%+ 2 Cujxj =F

4 IRCE L T— n (13)
J=1 1=



For simplicity of notation and elegance of pre-

sentation, matrices will be used whenever poscsible,
Define

M, B & =~ = soo o}

op\‘_o...--'o

mass matrix

| i =0
(M]= : : :

K“ vhp; “|‘ T .K‘"
Spring matrix [ % Yaa ey -0 0t Kay (15)
W- | - kg
l_ K‘\ “\l\'\.“rs § B = - K‘n
Damping matrix [C“ Ca €y - - - - -G (16)
Cauv G232 Gy -« - - -G

ey | il

Lcm an Cn‘. . T .C.nn
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" on substituting Equation (1), Equation (15) and

Equation (16) to Equation (13)

¥y o+ \ixt - ‘]&. =
(ML) + ©1 + WY = {7 —

where
f‘xl
%2
=1 a colurm vector of order
~ )'h-\ N X l
and
r "n
{
{F} = X
- a colum vector of order
"" N xlo

It shonld be noted that for a physically reali-
zable passive system [M],[\q and[Cl are symmetric
matrices. (M| and (K] are positive definite and (c] is
at least non-negative definite.

In this exarmple[M] is also a diagonal matrix,
but this is not necessarily so in all multi-degree of
freedom problems.

Now if[q is a null matrix, i.es in the absence
of viscous damping, Equation (17) reduces to

MUK~ W = (26)
To solve this set of equations by classical methods

it is necessary to first solve the inhomogenous equation



" ki)

(M1{x] «+ (K19} = o
(19)

This equation is also mown as the equation of free
vibrations of the undamped system. As some type of

vibrational motion is expected, assume

(4= {q3e"" (20)

Where{}fkis a colum vector of order N x | the elements
of which are independent of time.

On substituting Equation (20) into Equation (19)

(- rmiig « 01 gay)e""" L,

[-u‘tnl . m}{ﬁ .

(22)

For non-trivial solutions of EHquation (22)

\\X- o (] + (K] l\\ =0 (23)

Equation (23), lkmown as the frequency equation,
reduces to a poly=-nonial of degree m in w“as the deter-
minent is of order n . Cﬁ] and fkj being syrmetric and
positive definite the roots of this equation are all

real and positive. Neglecting for the present the case
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of repeated roots, there exists 2n distinet values of

w* that satisfy Equation (23)

wi = + Jw} TR T T
,/IJE" ;

Litn = -

(2l)

where the ;" 's are the roots of Equation (23).

For each distinct & there exists a vector{‘!,i}
which satisfies the following equation:

(-t - Evﬂ&‘tns =0
The vectors {ﬁf} form an linearly independent set.

In order to formalize the above procedure it is
necessary to note that as [M] and (K] are symmetric and
positive definite there exists a transformation [87] such
that

[817(m1Ce) - (M]

a diagonal matrix.

[QIT(_K‘HQ‘I = {-E] a diagonal matrix,.

(4 = Cel{awy

(25)

where{']“-"}is a colum vector of order ¥ x / with

elements 9;/6)
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On substituting Equation (25) into Equation (19)

MILa1 (o) « [lellned = o

(26)

-
Pre-multiply Equation (26) by‘;dl .

a1 el Tk ey - o (27)

(_H-S{,;\;&)\ _‘.[E]{VL(U} = O
(28)

where (M) and (R lare diagonal matrices. Zquation (28)

is now a set of uncoupled linear equatiéns of type

—_— ) —

MR te) + Ko Qi) = o (29)

with solution

- (&) = A< U.t+-BCI3th
'Ll' tn L (30)
Kii
where « = / == 1s the natural frequency of the L%

normal mode, # and 8 arc¢ arbitrary constants which may

be determined from the initial conditions.

S {x} = [l ] -



1l

Thus any X: is composed of the sum of » gquantities
of type f;‘}');l't) wnere (81 =[9:'], For this reason the
colums of (@] are looked upon as vectors and {x] is
said to be a linear combination of these vectors. As
these vectors possess the property of orthogonality in
[M] and (K',\ they are cormmonly called normal modes,

From the above analysis it is immediately apparent
that a set of generalized co-ordinates will exist which
will give uncoupled equations of motion.

For let

(<] - Lellqel (32)

N
From Zquation (9) T= < Z M X (33)

(=

-5 (T "

On substituting Equation (32) into Equation (3L)

. {,lm]'[al It {5} (35)

- e (a]{nw]

(36)

Where[F‘] is diagonal,

Again as L¢) is assumed to the null matrix from
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Egquation (10)

z

N
i Z Kej e x5
M= 5 =
i=r 4=

u

- & {1 x4 (37)
=+ (oY [R]{ww)

where [K) is dlagonal.
Now on apvolying Lagrangets Equations to T andV
given by Equation (36) and Equation (37) an uncoupled

set of equations results.

Crthogonality of HNormal liodes

(kY ~ K1{5y = o (38)

Let (39)
(s = f3'fe"0

where {‘li}is the ]d nornmal mode, i.e.
a3 - (et fot, - {7

On substituting Equation (39) into Equation (38),

-
rearranging and dividing both sides by € =

o[l LY =0 (12)
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Again let

(L2)
On substituting Equation (42) into Equation (38),
rearranging and dividing both sides bf,*"e.“""lt
L =
Sorm{gty ~ KI{at = (13)

Pre-miltiply Equation (1) by | §'%
S RGN {‘LT[KH%“IS =% )
Transpose Equation (L3) and post-multiply by {‘Lﬂl
~wp { ‘l’}f[”]f{i"} * g‘l‘ﬂ“ﬂ ‘ﬂ =% ws)

ks (M) and [K]are symmetric
17 = ™)

K17 o= K]
Equgfgbn (L5) reduces to

—wr{gen gt L3R {e -

(46)

On substituting Equation (L5) from Eguation (L)

o - 3T = e e
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&y # W A & 7 (L8)

(s} [ {s! } - o v

Equation (L8) will be satisfied for all g # j provided
the roots of the fregquency equation are distinct. On
substituting Equation (4,9) into Equation (46)

{‘12}T [K} {TJJ "% 2y (50)

Equation (L,9) and fguation (50) are lmown as the ortho-
gonality conditions for the normal modes [1"’} and {1"} .

At this stage it is necessary to note that the
{1 i'}form a complete set, i.e., any {x} can be represented
as a linear combination of these N independent vectors.

In other words the normal modes span the N vector space.

Force Vibration of Undamped System:

Again assuming distinct roots of the frequency
equation, the solution to the forced vibrations of an

undamped system i1s presented

[m] {%} + [¥] {x} = {IG)} (51)
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-F,(t)
where {'F(f)} = ﬁ'ft) a coluwm veector of order x 1
: (52)
#,;(t)

F,L(t)gforce on m;, due to external forcing

system.

Let {x} =-[Q]{-2(t3} (53)

T —
where [Q] [MJ [Q] 3 [ﬂ] a diagonal matrix

[er[ KJ [Q] =[E] a diagonal matrix
Substituting Equation (53) into Zguation (51) and pre-

multiplying by [QJT

[ T[] 03+ [@) k1 (] g} =[] re)} (s

- [F] ['fl'(t)} + k] - [QJT{F @} (55)

This is a system of uncoupled equations of type

P i @) + Ky, 7 = {3‘._&)} (56)
where [Q]T [F(f) } = {GG-)} (57)
9, (€)

and {G(U}: 3,

a colum vector of orderNzx |/

jn&) . (58)
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From Equation (56 )t

21&) s \ -Zl- (z) Sin w: (t-2) d=

wi M. (59)

=]

s A Sin (ot + Ly

_—

where o; = i is the natural frequency of(60)
Mt
the i.H' mode . L, = constant phase angle of the

mode and Hi = constant coefficient of complimentary
function are both determined from initial conditionse.

Again the complete solution

{x} X [Q] {1 G)} (61)

is a linear combination of normal modes {c”t 1 >
From the above analysis 1t is evident that any
undamped system forced or free can be solved by normal
mode techniques provided the roots of the frequency
equation are distinet. The case of equal roots will

be taken up later,
Damped Systems:

Now viscous damping is introduced into the system.

The equations of motion for a linear damped system

fm]{x} +[e] {3} +[x]{x} = {r@)} . (62)
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where [(.'J is symmetric and at least non-negative definite.

As before a vibrational solution of type
) at :
[x} iy {‘i}‘ (62)-

is assumed, On substituting Equation (62)=into Eguation
(62)

<*[M1{g} &% QLe) {«;}44{+ [x] {‘i}‘&i &
(62)

To solve Egquation (63) by classical methods it

is necessary to first solve the inhomogeneous equation

L] fiff*{"& [e] {1 | ‘#*[K] {if *"({= o (6L

¢
on dividing through by .t'(

?[n] +ule]+[x] i‘;g =0 (65)
For non-trivial ‘[1}

ot~ e v |l - -

(65)

Equation (66) is the frequency equation for the
damped system., 1In general thils egquation, being a polo-

nomial of degree 2/ in ./, has 2N roots.
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For a stable system these roots, if not completely
imaginary, must contain a negative real part. In princi-
ple it 1s possible to solve this frequency equation for
the «Q- s and to calculate the corresponding {ai ; 's
and thereby form a complete solution for the free vibra-
tions of damped linear systems. The details of this
procedure willl be presented later and now a more eloquent
and simpler method will be reviewed., In passing it
should be noted that as the‘gQ"s are in general complex
the corresponding {1£]'s may have complex cormponentse
Equations of motion for free vibrations of a damped

linear system
[m1{x3 + (e {x} + [k]{x} =© (67)

As [H] and [K]are symnetric and positive definite

there exists a transformation [QJ such that

[Q]T ["1] [Q] = [P—'\] is a diagonal matrix,

[_Q]T[K] [Q] "{RJ is a diagonal matrix
where [Q] is an M/ x NV matrix., Now if [CJ is such that

[Q)T[Q] [Q] = [E_] is a diagonal matrix (68)
then it is possible to completely uncouple the above

equations of motion for

ret {x} = [a] {2(“ } (69)

where {z({.)}is a colum vector of order ¥ x /.
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On substituting Equation (69) into Equation (68)
MI(a]{5@ }+ [c][q]{'z(t)] +[x])(e]{y@) = o (70)

-
Premultiply Eguation (70) by [Q]

-l )G+ [T (@15} + [ <] [y ] -

o
(71)

=R RIGY +RIGS =0 (72)
This is a set of uncoupled equations of type

(73)

ﬁca"zl + Ty 5T Rpy =9
h

Solving for Z_(é) , assuning the ¢~ mode is underdamped
{

g 21’"71
9.6)= A 2 / ( { of 92 ) (7L)
”‘l ‘Z/ZI

where is the damped natural
ﬂ%: 4@:

frequency of the ;/® mode, /4 , {; are arbitrary

constants depending on the initial conditions.

RSN &5)
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In this case the solution consists of a linear combi-
nation of normal modes.

The above analysis is possible only if [€] is
such that the transformation which uncouples the undamped
system will also uncouple the damped system. Dr. T. K.
Caughey realizing this fact derived sufficient conditions
for [C'] such that the equations can be uncoupled as
above, Unfortunately necessary conditions on the dampe
ingmatrix have not been developed. A brief review of
Caughey's work is presented,

The equations of motion of a damped linear system

xS+ [e]{x§ + [x]{x} =0 (76)

{x} = [N]—] te (77)

wnere [N} =[M"]  is a diagonal matrix of ordernsn.

Substituting Equation (77) into Equation (76)

M G+ [N G KM el =0 o

~i
Premultiply Equation (78) by LMNJ

L VT BT )+ TN G +IN N o) o

(79)



2l

L@l + []{pY * [B){p} = © (80)
where [I] is the unit matrix of order nxn.

a=[n] [elN] (81)

R= LN]—IEK] [le (82)

As [Q] and [.K] are symmetric and positive defi-
nite it follows that [A1 anda [B] are also symmetric and
positive definite. A system that can be completely
uncoupled by the [Q) matrix as showm above is said to
possess classical normal modes and to be classically
damped,

Caughey shows that a sufficient though not necessary
condition that the original system possesses classical

normal modes is that

]2 %o 2nele] (83)

=

2/
where th are a set of arbitrary constants and [5]'

is some L/n th root of [B] » To express Equation (83)
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in terms of matrices of the original system substitute

Equation (81) and Equation (82) into Zquation (83)

-1 -1 ® it -1\ -1 'Z/N
A EIN =2 2 Que [ [K][N]:) (814)
where [N] = [\/;4—']

It is of interest to note some of the properties
of classical normal modes, If a system possesses
classical normal modes and the system is vibrating
freely in this mode, which is assumed to be underdamped,
all the m; 's pass through their points of stable
equilibrium at the same instant, This implies that for
classical normal modes the Ql !'s can be expressed as
vectors with real components. If in a classically
damped system the damping is scalarly increased through-
out the system the same normal modes exist as previously.

Should any mode be overdampmed solution of type

{x}= (Ae"(i% - Be'é‘wf){cli'} (85)

=
(’)and od& :),u‘e negative real numbers

exists,oyhere ol s
oL; 3

a.nd(ae b3 "'ﬁé“ Ht) is the solution to the (% overdanped

uncoupled equation: '

W g _.. : 4 ¥ =

Fi ;@ Qg 0+ Rigg @) = 0

. W T -

LB LB, Cu +f{Ck | &y

¢ ) L 7. o \27; .
i (1 &L




— 2 —
overdamped if _.g‘__ > K
2% i (87)

These properties of classical normal modes will
be contrasted to the properties of the normal modes of

systems which are not classically damped,

Forced Oscillations of classically damped systems:

In quite an analogous fashion to the previous
work it is possible to extend these ideas to the forced
vibration of classically damped systems,

Equation of motion of forced vibration of damped systems
m]{x} +[e]{x} +[«]{x] = {F@®)} (88)

As before let

{x} = [Q]{rbl (89)

where [M] and [K] are symmetric and positive definite

and [Q]T ["1] [Q] s [ﬂ] is a diagonal matrix of
orderN.[Q]T(_K] (@] = [R] is a diagonal matrix
of order N and as the system is classically damped

[Q]T[.CJ [Q.] 3 [C] is a diagonal matrix of

order N
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On substituting Ecquation (89) into Equation (88)
[n] [@1{y § + [l }+ I]l_I{g} ~{F®}  (o0)

T
Premultiply Equation (90) by [Q]

@ el ) @l ] e (<I(al - [QJT{F&)}%)

-
=[] {'L} +[2] {'L} +[K] {Zl =[q] [F®)] (92)
This is a system of uncoupled equations of type

7”;'2"-*2:1—'2‘2 b Za_‘-?_-—-z.(f) (93)

where [Q]T [FG)] o {G&)g

and {G("-')}is a colum vector N x | with elements 5,(1‘).
¢

Solving Equation (93)

li
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> \2
where Ki; - _gg'__(_ is the natural frequency, A;
A\

and o¢; are arbitrary constants determined from the

initial conditionse.

< {x} = [e]{p® (95)

Before going on to the discussion of more gen-
eral types of damping a brief summary may be in order.

In a classically damped system, which by definition
includes the undamped case, it is always possible to

obtain a solution of type
fu = [QJf'ﬂ (96)

where [Q] is such that it simultaneously diagonalizes
M) ,Ik] ana [e]. me colums or [Q@)are the normel
modes of the system and are the eigenvectors of ["1]‘ I[K],
for each {1"} satisfies

[,L‘.’ [M] + ["]]{11} = (97)

or

[AfI n [M']_l[@] {1,31 b (98)
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where Equation (98) is the usual form of an eigenvalue
problem. It should be noted that each {11 g may only
be determined to an arbitrary scalar multiplier and may
be reduced to a vector of order N x | with real compo-
nents when this scalar multiplier, if imaginary, is
neglected. In the next section it will be shown that
the restriction of distinect roots of the frequency
equation is not necessary for the existence of a normal
mode solution to classically damped systems,

It is interesting to note that Lord Rayleigh
stated that 1r Je]= /M) + B [ ]

,<}£? constants (99)

then the system has classical normal modes which are
of course identical with the modes of the undamped
system, However, Equation (99) may be obtained directly
from Equation (8l) which is Caughey's sufficient con-

dition for classical normal modes
o &
WM 5 abTME] T o
n=|
by letting q,u =0 all £#o0, /! ,all n+# )
Ao =

q = F
uation (100) reduces t i

ST x[[@ (<00 +£[[~1 rand |
- [E]+8 I VT
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On premultiplying and postmultiplying Equation (101)

by [N]
(00 el (v [W]= < BN+ AINIENT [DONT 1) ooy
as [N]"[/;r]

s le)= «[M + A[K] (103)

which is Rayleigh's condition for classical normal modes.
Although Rayleigh's result appears to be obvious when
expressed in matrix notation it should be remembered

that Rayleigh did not have the benefit of the use of this
concise and highly suggestive notation. As a matter of

fact Rayleigh introduced a Dissipation Function of type

NN

s 10

.D--é-z ZC‘.jx‘ * (1ol)
e=t1 0 y=/

= 4 (¥ [e]{x} (105)



31

to study damped linear systems.

Equal roots In classically damped systems:

In this section the theorems of linear algebra
of interest in vibrational analysis are presented as
well as a discussion of the case of equal roots of the
frequency equation. ©Some of the theorems have already
been used but it is felt that a formal presentation is
desirable.

As shown previcusly the determination of the
classical normal modes of a system is essentially an

eigenvalue and eigenvector problem of type
[J\‘ [n] +[»<]]{2} i (106)

A well known theorem in linear algebra can be
stated as follows:
ret [A] ana [B] ve N xN real syrmetric matrices [“X
being positive definite. Then there is a nonsingular

real matrix such that
[Q]T[H] [K] =T a unit matrix of order N x N

[RJT[GJ[RJ =‘Ep] a diagonal matrix of order N
XN . As in most practical cases [f“l] and [I(.] will be

positive definite as well as symmetric, define [QJ
as 2 matrix of order N x N such that

[e]'M][e] = T | (107)
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is the it matrix of order N
w
[e] [k][r] =[] (108)

[__B] is a diagonal matrix of order N where [R]is non-
singular, Define {p} a colum vector of order Nx |

such that
-1
{r} = [&] {1} (109)
-1
As [ﬂ] is non-singular [K] exists
o {3t=[RI{p} (110)
Substituting Equation (110) into Eguation (106)

i K[ - © -

=
Premultiply Equation (111) by [&]

[ [ [T | ) = = 2

On substituting Egquation (107) eand Equation (108)

[X"I + [D]] teh 5.2 (113)
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As [ZD] is symmetric a theorem in linear algebra
states that the eigenvalues of Equation (113) are all
real and in fact are the diagonal elements of ] .
Because [D] is similiar to [I(J, a positive definite
matrix, these eigenvalues are all negative. Again for
any pair of distinct eigenvalues A. end X there exists
corresponding eigenvectors {pt'} and {pJ} such that

{Pi} a.nd{PJ} are orthogonal. This is conslstent
with the previously derived orthogonality’ conditions
Equation (49) and Hguation (50)e Thus if the eigen=~
values are all distinet the eigenvectors form an ortho-
gonal base for the N space.

Suppose now that the eigenvalues are not all
distinct, 1.e., there exists a particular )Li'a, a root
of

ix"I +[o] ” e (11L)

with multiplicitym o It can be shown that there exists
precisely M linearly independent eigenvectors associated
with this eigenvalue }_iz of multiplicity M . These
eigenvectors need not be orthogonal, however. But by

the Gram Schmidt orthogonalization process it is possible
to construct orthonormal vectors which are linear com=

binations of these M linearly independent eigenvectors,
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But any linear combination of these eigenvectors is a
solution to Equation (113) when A'z= )t:'. Hence, each
vector of the orthonormal set derived by the Gram Schmidt
process is in fact an eigenvectore.

Thus if [M]and [K] are syrmetric and positive
definite there exists N eigenvectors which form a complete
orthogonal set. Hence, there is no difficulty attached
to equal roots of the frequency equation in classically
damped systems for the resulting set of eigenvectors
can be mede to span the complete N space., Now consider

an eigenvalue and eigenvector problem of type:
21«1 {x} =° (115)

where li are the eigenvalues. [B]is a nonsymmetric
matrix of order N x N ,{}% are the eigenvectors of
order N x | , There are N values of A which satisfy

the following equation

|

Should these eigenvalues be distinet a complete

A I ~[8] ” = O (116)

set of eigenvectors exist. For a theorem in linear

algebra states that for eash distinet eigenvalue there

exists a vector independent of all other eigenvectors.
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As there are N distinct roots there exists a set of

N independent eigenvectors. TUnfortunately, if one
eigenvalue has multiplicity, M s V, a complete set of
eigenvectors may or may not exist, The criterion for
the existence of a complete set of eigenvectors in this
case is the degeneracy of the matrix [x‘.. i 1 +l3]where

A; is the eigenvalue of multiplicity M . If the

rows of a matrix are linearly connected by mnore than
one relation the matrix is multiply degenerate and in
fact the degeneracy is N if there are N such relations,
The degeneracy of [)L-l | +B] must be equal to M , the
multiplicity of the root A; for M distinct eigenvectors

to exist corresponding to this root.

The treatment of generalized damping by the method of

K. A. Foss:

Ir [@] is sueh that it cannot be diagonalized
by the same transformation as simultaneously diagonalized
[M] and [lC] the system is said to possess non-classical
or generalized damping and the methods of solution pre-~
sented above are not applicables K. A. Foss has developed
an interesting method for treating some cases of generalized
damping. The essence of this method is to introduce a
<N space in which the equations of motion of the system

can be uncoupled. A review of Foss's method for forced



36

oscillations of linear damped systems is presented.

Equations of motion of linear damped systems:

[1{x} + [e]{x} + (] {x} = {fo)} (117)

By the introduction of a pair of 2A4x / colurm vectors

{x}
{Z} ={{x}§ (118)

_ el
SRR

and the following set of matrices of order 2N X 2N

(0] = [o] [M]

[M] [e] o
-[M) [e]
[P] E[ ["] [K] } (121)

where {X} ,{X} ,{0; a.nd{f(-t)} are colurm vectors of

order N x | associated with Equation (117). [M] ’
[K] 2nd [e] are matrices of order N x N of the original

linear damped system.
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Equation (117) can now be reduced to

[R] {#} + [P]1{z} = {F@®)} (122)

as Egquation (122) on performing the matrix multipli-
cations reduces to

[M] {x} ) A [

y + 4 =

P {xelfd | (B

-

(123)

L{{ W}

-

Equation (123) is equivalent to 2 equations.

[M] {x} - [MI{x} = {o} (121)

M)+ fe] {x} +(<1{x} = {s®} (125)

Bauation (12y) is an identity while Egquation (125) is the
original equation of motion Equation (117). To solve
Equation (123) by classical methods first solve the in-

homogeneous Eguation

(e]{zt ~[r]{2} = {0} (126)
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This is also the free vibration equation for the
damped linear system transformed to 2N space. As vibra-
tional solutions are expected

Let

{2} = < {} (127)

where {I} is a colum vector of order 2#x/ . On

substituting Equation (127) into Equation (126)
LT
< [R] {33« ** +[p]{8}e™ = o} (128)

¢
On dividing Equation (128) through by -e'é and rearrang-
ing

[,.{ [R] + [r] ]{ﬁ ={°} (129)

Equation (129) may be further reduced by premultiplying
-1
by [P.] s provided it exists, and dividing through by i

(R R .

Equation (130) is in the usual form of an eigenvalue
i
problem. That [P] exists may be seen from the follow-

ing

e P = (] -
[ 1]
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where [a ], [L] " [C.'.] and [d] are matrices of order N

=1
N If [p] exists then on using Equation (131) and

Equation (121)

[P1[F] -

[o]

4] -
[ C‘.J =

. w1 6]
_‘[c] (m] [¢][x] |

[M]

(o]
]

-
W o- L
. [p)exists as M1 and [K] exist if [M] ana [X]

are nonsingular. It is not necessary that [M] ana [K]

(132)

(133)

be nonsingular in a physically realizable system.

However, those cases where either M] o» [K] are sing-

ular, generally arise in practice from over-simplifi-

cation of the physical system, and will be neglected.

=

.
[P] [&] =

L

T
LS [o] [K]"

1

Y

° I .1

] [0 - [] (e

(134)



Lo

where [U-] is a matrix of order ZN x 2N, Substituting
Equation (12l.) into Equation (119) and rearranging to

a form more suitable for numerical work

(136)

[u]fel = - & 18]

This is an eigenvalue problem and so as [w] 15 non-

symmetric, except in the trivial case when

] ) = 1] .

[KT' [C] is a symmetric matrix

egent  [K]= [
[K]ana [C] are dlagonal matrices

2N independent eigenvectors may exist only if

frequency equation in2N

are .Z/\/riistinct roots of the

space

" W] + &[r] ” s (138)

Y.

c

T
independent vector {é} e As sbated

For cach distinet root of Equation (127)
there exists an
previously a root of multiplicity M may or may not have
M assocliated linearly independent eigenvectors. The

1
ues 4_,-. of Equation (125) nay be purely real,

*

¥ o i

eilgenva.ll
S

comnlex or purely inaginary, but for a stable system



bl

the real part of each &és_o o As [(LJ contains only real
elements the complex roots rust form sets of complex
conjugate roots. For each complex conjugate root pair
the elements of the corresponding eigenvectors are also

complex conjugates.

Orthogonality conditlions in 24 space:

Assume that [W] is such that there exists a com-
. 3 ot rer "
plete set of N eigenvectors {§ } and distinct eigen-

values %i . -
wer (2] = (8] (139)

Cn substituting Equation (139) into Zquation (126) and

z
dividing both sides by ,c"é-/

<, [e1{3} + [P1{2) = {e] (1109

2} = (3") < (1)

On substituting Equation (1li1) into Equation (126) and

¢
dividing both sides by < Le

<, 1] {3°t+ [P){3*} = {o} (142)
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o ol - - 5 2
Transpose Equation (140) and postmultiply by {Q }

< @Y R {3+ @1 (3 =0

T
- .t : -9 19 . $ ©
Premultiply Zquation (1:2) by

T -
<, {3’} [R] {8} +{&'} [P]{8"} = {o} (Ls)
On subtracting IZgquation (1lli) from Equation (1.3)

(¢ -4) B} @184 = {o} (2

|-
U
S~

TIPS R A

('Y /] (@4} = o

J# L

(146)

On substituting Equation (1LJ1)

@14 = ()

r X

Equation (1L6) and Lguation (1L7) are analogocus to the
orthogonality conditions previously obtained with class-

1 3 - o
ical normal modes,.
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Basis of Foss's method

It is well to note the whole basis of Foas'!s method

e

rests on the assumption that

{x} <

iz} = (3 =~ {2} (1:8)

where {§} is a colum vector of order ZNx ! . Fronm

Equation (1)3)

; o
{x'} . _,_‘( (4,} (119)

where {¢} is a colum vector of order N x /

€
<
{x} =< {4} (250)

On substituting Lguation (119) and Equation (150) into

Eguation (1L8)
L% 4D
{z} = L« $ (

Now not all systems are such that

2 ) bl

=
\n
o
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for take the case of a classically damped system such

the ¢ " wncoupled equation

(4 +B.t)e% (151)

Here

{x} (A, B.4) 5 8.3 i

LAx = (A, + Bt ) e 8, 8

_ (157)
B T {pd

.. in this case ( 3 {¢a}
; {4$ ¢} } <t
g | + B2 -{o;
T d
{2} = (A + Bt )e {1 (158)
\ J
It is not possible to express ILguation (158) in

the form of IHguation (151) and so Foss's mecthod does not

give a solution in this case.
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- 3.

Exnanding the orthogonality conditions

5
;31'
;.
12

matrices of the system:

From Zquation (151) and ZEquation (148)

(¢}
(41 = e

Substituting Zquation (120) and Equation (159) into

Equation (1L6)

¥4 +-Z){¢’J3 [] {#43+ {#'} [c] {‘P‘} ° (160)
*J
Again on expanding the ZnJor'tnoron 1ity condition

Equation (147)

M 3 - |

_C, L)1 [M1{e )+ {87} [] {25 = © (161)
£ #)

Cormpleote Solution of Generalized Damped ILinear Systems

by Foss's llethod:

Making use of the orthogonality conditions Iquation
(16) and Equation (147) it is now possible to construct
the complete solution to the generalized damping problem
by Ffoss's method, provided the roots of the freguency

equation are distinct,

The equation of motion in 2M space

(R]{z} + [P1{Z} = {F®)} (162)
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Let

{z} = Q{5 (163)

and {f} is a colum vector of order 2Nz / , On sub-

stituting Equation (163) into Equation (162)

IR} []{¢} + [p]1[R] {8} = {F®)} (165)

Premultiply Equation (165) by [Q.]T
T - T T
RIRIRIEY +[ [PIRI{S} =[] {F)}  (ace)
How the t:/ element of
T 0’ i
Q) [R]@] = (&'} [R]{&"} (167)
the y & element of

2] Pl @] = (&' 112"} —_—



Hence on using the orthogonality conditions Equation
] -y . - k) 1. 2 -]
(116) and ZEquation (147), Equation (166) reduces to a

set of wncouprled equations of type

B (]38 + @I [P1E BLH FFO) 100,

#TIR {23 = 2 (87 [M] {89 + 83 [c1{8% ..,

83 18- - @Y )2 + BT P1ES nry
From Equation (1).0)

ol [R){&}= - [Pj{éi} (172)

i T
n premultiplying Equation (172) by {§ }

o< BT 1R{8Y = - (8} [p] {3} (173)

On substituting Zquation (173) into Equation (169)

RS -7 & 5 = {3 {rw} ()



L8

where /Q' a scalar, is defined
g T L
£; = {3} [R]{8"} (175)

L
As the {é 's form a complete set 1t may be assumed
that {F(r)ican be expanded iIn terms of the modal vectors

ag follows

Fp=3 A, @] -

nNz=y

Premultiply Equation (176) by {ém}‘r
Y 2N T "
MR RLONED TP U S NN 4 (177)
=/

On using the orthogonality condition Eguation (1L6)

Equation (177) reduces to

B} = An {8 [R]{2™}

(178)

oL Y e
EmY[R]{8 "} —

= {37} {F0)}
R
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On substituting Equation (180) into Equation (176)

=37 BT 1oy ien hs)

=} Rn

On expanding Equation (181)

o 2 2y A [”]H’n}
{ }=Z {¢ L{f()} { Jlsz)

@ <n (M} {em} « [11¢°

n=y

;- {ot= f {4)"}&,{.;&)} [M] {+"} (183)

{{U—)} jZ” _{L};ﬁﬁ-ﬂ {-(,, (M] {'Pn}"' [c] {‘t’"} } (181)

n=/

-1
From Equation (183) on prermltiplying by [”]

fo}- > fortfrol {o7}

(185)
aN :
How {Z}:' Z: {#’1 5_,_‘
L=/

Shers j‘. 1y the
‘i f .t
i -’-é_‘f" €D (BT dz v Ae ™

solution of equations of Equation (17L

(186)



: : < @-2)
1o & [« rwpene At o
- + {e't @}
£

an T2 1 'y
(215 £ 103([< lretarea, oY) oo
w2 °
On expanding Equation (188)
2 .
x(_ < &2
=2 ([l a Y oo
n=y
On secparating out Egquation (189)

- B eteon )

2N % v(a ¢-Z) ‘(n{ n
=35 ([ TR g el oo
nsy n (-]
As a check calculat {X} from Equation (191)

5" *U%& 2){+ T e} <4, 9{1’} (358
S L i)
w7 [k,]



51

g
ta
=

e B Rl L ; . .
bstituting Equation (185) into Lquation (192)

n t 4, &2 ¢
; s ] = T -(ﬂ
(3-3% ([« wigerea) {47 o

Bouation (193) is the sanme as Equation (190) and thus
- = -

A X ¢
if the {é } 's form a complete set Foss's method does

in fact give the sclution to a generalized darmed systemn.

TE

Complex Roots and Eigenvectors give real solutions:
et

Take

.= £
'( £ +N (19]:)

T L+n
{é } and {é f are the modal colums corregponding
t0«: and £
¢ ¢
AN space

[e] {2} +[P]{2} =° (195)

+, » respectively., Igquations of motilon in

Let .é‘, :
{Z} = {%‘} (196)

On substituting Equation (196) into Equation (195)

< [ +[] | = o om
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Let
divn {+n
{2Y = ™[ 87
(198)
On substituting Equation (198) into Equation (195)

[ 1 B2+ BUEY - 03 (199

Taking complex conjugates of Equation (199) and sub=-

stituting Equation (19l)
To+n
[L;[’R] +U’1X{ b 13 1o} (200)
On comparing Equation (197) and Egquation (200)

{53‘3} o { F} (201)

On normalizing {tf‘}and [F".& Equation (201) reduces

to

{i’_uk ) {§'L+n} o

From FEquation (186)
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Taking complex conjugates of Equation (203) and sub-

stituting Equation (202)

— - . y, f'(. (- LAl
- Z -+ . ¢);'f2) +n ULL
f‘. /}: £ ne -y zl__fz * {F }{F(Z% dz (20l)

¥R Vo
From Equation (203)
7

e, Ly e2) ()
= < tn E ) th
5:'#7 A e R [" {% }{F(Z)}dz (205)

¢ N

if /';’—" . 41‘»7 (207)
~ .
— {Z(a)} = Z {§ J} A (208)

where {ZCO)}.-;{ hé:

On premultiplying ZEqt

} at t=

tion (208) by H }Lg]
) ze) = (1911 S {444 (209)
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On using the orthogonality condition Equation (1.16)
¥ T
{é‘} [R'] {Z-(o)} - {él} [Q._] {ég} Az (210)

From Equation (210)

&'} R} {z@}
(@ [e]{8%}

A=

[4

s T R{z)

acadd tem T L¥n 1B
{1 [R1{e*"}

From Equation (210)
4

7 {87} [R]{z @} y (213)
@ ez 7

By Equation (207)

):. . jc*n

.. contribution to Z(&) from { ad.(“‘n

where .,{ e e

AR

ol fEL, )

:Z»@Z;{ {ééj (215)
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-- 3 i 1 i . d . 2
contribution of .(‘ an .('t-fn to XJ

( i
X, - 202 (4.7 +_/"‘<fz{é}{dz) Z)¢;L216)

=2(15; Il%lz/tt'o,- (b +5: +8,;))*

2 AC P
Ll [/ 2| e o215 0817 02

where
lﬂ‘-lz A
o<‘. = /06 g ‘“‘J_.,
lfl.& o (217)
{f} [r@} = {8 {r@)}| e ¥
=6 e

Derivation of Caughey's conditions from Foss's ortho-

gonality conditions:

It has already been remarked that any root -C"
can be either purely real or a complex conjugate of
another root. The case of purely real roots corresponds
to overdamped vibrations and will be neglected in the
present section. If only complex conjugate roots are
considered, it is shown that the necessary and sufficient
conditions for real {47‘.} in N space is that [C'-J be
diagonalized by the same transformation as diagonalizes
[M] and [K] . Real {ﬁt} with complex roots implies

classical normal modes as discussed above.
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Orthogonality condition derived in Foss's method Equation

(160)
) e e afe o o

m = ., £ e A e
Take 2 pairs of complex conjugate roots ,( ’ ’(z-ﬁn

and a\://.-"h such that -{e = '(L'r‘f)

= L
(
The vectors § corresponding to two complex

2.

conjugate roots-{. and 'Zc'-‘n are such that
¢

(+]- i)

Now if {¢4} and {4"'} are real vectors

4= 1+

)7

From Equation (218) on letting £ = £+nr
/' > 40

(et el P e o
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On taking the complex conjugate of Equation (222)

()l B Tl e

On substracting Equation (223) from Equation (220)
J-&ﬂ e+n
Kttt firi) {477 = o (220)

as <;‘and-<f are distinct complex roots Equation (22l )

reduces to

{ }[”]{ un} (225)

Jx e

{4’J}T["‘] {4"} =j># 4 (226)

On substituting Equation (226) into Equation (218)

{@J}T[C] {‘V} =OJ¢L (227)

nd
On substituting Equation (227) into the 2 orthogonality

or

condition (Equation (161))

(g foalede iafe s

¢ ¥
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it follows that

{“‘j}T (] {‘PL} =OJ#£_ (229)

Equation (226), Equation (227) and Equation
(229) are the conditions for classical normal modes.
Hence, with distinct complex roots of the frequency
equation 2ll real modal colurms are possible only if
the system is classically damped. It should be noted
that it is possible for any two modal colurms to satisfy
Equation (226), Equation (227) and Equation (229) even
though the system 1s not classically damped., This is
so because for classically damped systems all the roots
must satisfy relations such as Equation (206), Equation

(207) and Equation (208).

Excltation of pure normal modes in classically damped

systems:

At this point it is of interest to discuss one
remarkable difference between classical and non-classical

damping. The equations of motion of linear damped systems

P16} + [0} 411453 = {o) (220)

Now examine under what conditions it is possible to



59

excite a pure normal mode. If the system is classically

damped let

{x§ = [Q]{'(,f (231)

where [Q]:[H] [G’] is a diagonal matrix of order N xN
[Q] [K] [Q] is a diagonal matrix of order N x N
[er[C] [Q] is a diagonal matrix of order N x N
On substituting Equation (231) into Equation (230) and
premultiplying by [Q]T

(][] (@} + (] [} 47 3+ [T ] [R) g doz22)

- [A] {?’}+ (2] {-”+[R_] {?,; =0 (233)
If the_jﬂ' mode has to be excited

i} - Ry} 5

where {'Lw} - ? a colunm vector of order N x |
3
Zl“ with all zero elements except (235)
o
o the jﬂ" element.,

The system of equations Equation (233) are of type

Mt Cay

L
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To satisfy Equation (235) these equations must have
solutions
ft)=02ll 1%
ni) ¥ 0
‘. - r (236)
s u 'ZL(O) = Zi(o) all CF )

but

pe} - [effjot-1rlpe @
o} [e] o} - o) oo

Equation (237)and Equation (238) give the initial
displacement and velocity distributions necessary to
excite a pure normal mode in a system with classical
damping. It may be noted that it 1s necessary to specify
both the velocity and the displacement distributions
but that the relative magnitudes of the velocities and
the displacements are arbitrary. Thus, if a system
possesses classical damping it is always possible to

excite a pure normal mode by an initial distribution

of displacements and velocitiese.
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To force excite a pure normel mode in classically damped

systems:

The equations of motion of forced vibrations of

damped systems

[]{x} + [el{x} +[<]{x} ={r @)} (239)

Let {x] o [Q] {2&)} (2L0)

On substituting Equation (2l:0) into Eguation (239) and

-
rremultiplying by [Q.]

(oI b1 [ 43} + [ [e] (143} + (6] [ [ {7} 2
=[Q]T{ F(o) }

34 b [Rlg} - [ {0} (212)

To excite the j'ﬂw normal mode assume zero initial

aity s i - i1t *
W L e
e

[Q]T{FG-)} = {e®} (243)

where {Cft)g is a colum vector of order N x [ and with

elements jt(*)
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o
g,(¢) =o0 all &= j (2Ll)
g9 () *0
then
7.6 =0 all ) (2115)
ZJ'&) % &
Thus to excite the J'Hn normal mode
o
T o
=

-
From Equation (246) as (EQ]T) exists

{F)} = ([Q]T)-'{G-(t)} (2u7)

where jJ (*) may be any function of time., It 1s interes-
ting to note that it is possible to force excite the

system to vibrate in a pure mode at a frequency other

than that of the natural frequency of the mode. However,

for a given force level tThe largest response will be
obtained from the system when the forcing frequency is

approximately the natural frequency of the mode,

Excitation of normal modes in non-classically damped

systems:



63

As was already discussed if the roots of the
frequency equation are distinct in a non-classically
damped system normal mode solutions will exist, How=-
ever, due to the non-symmetric matrices involved little
can be said in the case of repeated roots. Although a
system may not be solvable in terms of normal modes
for arbitrary initial conditions and forcing functions

a solution of type
{x} = re{&}n(® (218)

where {#} is a eigenvector, may exist for certain
initial conditions and forecing functions. In the present
context such solutions wlll be looked upon as normal mode
solutions. To discuss the excitation of pure normal
modes in non-classically damped systems it 1s necessary
to distinquish three cases corresponding to the roots
of the frequency equation

1) complex conjugate roots

2) real roots

3) equal roots,

In passing it should be noted that any physical
system may have rcots in each of these three categories,
In these cases it is necessary to apply the following

theory to each type of root separately.
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Complex conjugate roots:

In the 2N space the equations of motion are
[g]{z}+[P]1 {2} = {F)} (249)
As shown previously if the jth mode is excited
{2}, = 204 {é'i}zl-(f) (250)

In the free vibration case {F(a‘.-)} = O Equation (250)

reduces to

¢ AR X
{Z}j =2RL {él'AJ‘ (251)
On substituting Equation (216) and expanding
%] GRf 4"

“2K7 ; L2 (222)

{x} {¢FA
(1} =20 (4 {9} 47) (253)

. 3 j o €
S €tk Y (25)

From Equation (253) and Equation (25l.) the initial con-

ditions necessary to allow the system to vibrate in a
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pure normal mode are

{x) = 22¢(<; {9} 4) (255)

{x(o)} = 20/ ({4)1}4) (256)

Equation (255) and Equation (256) show that in the case

of non-=-classical damping with complex roots of the
frequency equation the relative magnitude of the initial
displacement {x(o)} and initial velocity {5((0)} necessary

to excite a pure normal mode is fixed., This should be
contrasted with the classically damped case where although
given initial displacement and velocity distributions

are necessary to excite a pure mode the relative magni-
tude of these distributions is arbitrary.

Having established that a pure mode may be excited
by a suitable choice of initial conditions it is now of
interest to determine if it is possible to force excite
a pure mode,

The impossibllity of exciting a pure normal mode
in a non-classically damped systenm, d&'complex, by any
arbitrary distribution of force and zero initial condi-
tions will now be demonstrated., ZEquations of motion in

2N space

[R){z}+[F) {2} = {F&} (257)
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If the roots of the frequency equation are distinct the

¢
{é } ts form a complete set, Let

{z} = [B) {3t (258)

Cn substituting Equation (258) into Equation (257) and
T
premultiplying by [@]

3] [R) (81 133+ (& [P] [8] {7} = [B)FFe] (2591

By the orthogonality conditions Equation (16) and Equation

(117), Equation (259) reduces to
Tt - : 5
[R1{p1+[P1{g} = [8] {reer} (260)

To excite the J‘t“i mode it is necessary that

ROL LR WO LE RO At cFj, j+n  (261)
Let [<I>]T{F(t)} = {ewti (262)

where

9; (t)

few} =4 : (263)
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L
Now as the {é } 's span the 2A space

2N -
{rd}=> 3[4 {} (26l1)
{=/
ix ¥
premultiply Equation (26l.) by {é"}

LY Fel= ) 3 4 [e]{3Y (265)
On using the orthogonality conditions
(8 {ro} = g {8 [£] {3} (266)
{3} {F}

8 = = ; 6
T {8t {#} e
On substituting Equation (267) into ZEquation (26l.)

v {8} {F6)}
®f= T :
b= 2 e

Using Equation (260) on separating out the jt” equation

[~] {2} (268)

D . 5. = 9. 6
’e.yZJ- ¥ pJJZ 3 N
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But

TR SURNIRS

(270)
To= LET(R103Y L5
g = {PY{F(U} (272)

Substituting these equations into Equation (269) and

rearranging
R £ 51618 1 O | L
R ETAENE R “,15'[?\1{ b (273)

It follows from Equation (273) that if the 'ld‘ mode is

force excited

8V}
{F}T[ﬂ{y’x (273-)

all ¢ #J, [

From Equation (267) condition EZquation (273) reduces to

2,; =0 (274)
all ¢ #j}]+~

Using Equation (26l.) and Equation (27L)

fred - 5 3 toggy
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=204 & (€] {&"] (276)
As B[' = 3" “p (2?7)
From Equation (276) on expanding
LR R
53 £, (1 (#)} (166
- {os=2p1 (ﬁf [M] H’jf) (279)

i = 2025 (L] $14Y) (260)

As [M] is generally non-singular BEguation (279) reduces

{o} = 244 (éMJ}) (261)

Let é =a+cé (282)

{‘f’j}"{ﬁ}*' 63 (263)

e j
where {‘#’Rli and {‘*’IE are real vectors
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Substitute Equation (282) and Equation (283) into Equation

(281)

fol== {41 -4 (93} (28)

From Equation (28l.)
elther @ =¢ =0 (285)

or {‘P;} i} zf" H’i] (286)

Equation (285) implies that {f(#)}=0 and if tnis
equation is satisfied initial conditions are the only
possibility of exciting a pure normal mode.

Equation (286) implies that {tf?"} as given by
Equation (283) is merely a complex scalar times a real
vector, This is the case for classical damping and so
it is impossible to force excite a pure normal mode in
non-classically damped systems with complex roots to

the frequency equation.

Real Roots:

" i g -é is real then the corresponding eigenvector

L
{4’ ;is also real. Equations of motion in 2NV space

[6] {#}+ [¢] {2} = o (201)
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Now
28 =[] {1} (285)
assunming the {étg ts span the space. To excite the j*h

mode {2({')2 must have form
3

o) = 4: | (286)
.Z ?j({)
From Equation (285) dand Equation (286)
{z@)} = {@’} 7, (287)
Premultiply Equation (287) by {é"} [r]
T 4 ]
{#}[R] {z@}={&1[R] {3} (F () (288)
$'}[R]{z)
‘ZJ-(") = { _}T[ 1 3 ; (289)
J
{#'}[R] {3}
2.(0) = 0 c# (290)
L

P 5

J
{Ze} = {8 }'Zj(c’) (291)
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.9) ¥ o 1532
J

the J'*"' mode is excited.

Equation (291) on expanding

{x} = <, {cpj} 7, (o) (293)

fx(ot = {43 7. © (2911)

Again it is seen that to excite a pure normal
mode by initial conditions there is a required relation-
ship between the relative magnitude of the velocity and
displacement distributions. The impossibility of force
exclting a pure mode In non-classically darmped systenms,
with real d%., will now be demonstrated. ZEquations of

motion

[R]{Z}+ [P] {2} = {Fe)} (295)

Let

{z} = 211704 it
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On substituting Equation (296) into Equation (295) and

premultiplying by Bb]T

(81 T&] [2) {51+ [2] 1] [8)yc0) = [B1{=0}  ceom

On using the orthogonality conditions Equation (297)

reduces to

RGO P10 = B]{Fe3 (298)

This is a set of uncoupled equations and to excite the

“th

J ' mode with zero initial conditions

T
(&) {F®)} = {ew)} (299)
where
o A
{ew)}= 150 ( (300)
+ I
j/-(f) + o (301)
But

[QJT{F&)} E [[-( '1>_'lTJ [d’]T] { g’(}a; (302)
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5
where [-(4)] and [¢J " are QN X N matrices of type
s

(4]
|

[$] = { 4',-+~}" (303)
{67

On substituting Zquation (299) and Equation (303) into

Equation (302)

16 1}

few}= {18™ ko] 1 (301
:m:"'
fe¥] thef |
-
On comparing Equation (300) with Equation (30l)
| @) o, ; 305
{¢'}lfot= 5% oy (305)

where é{/ is Kroneckers delta,.
The elements of t)} may be split into two
The 2 el ts of ¢G be split into t

groups of # elements as follows:
-

(#1113
{¢’n}1{f} N  elements (306)
(#"}Hf)

( N  elements (307)

(6% {5}
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Suppose that the element 9; (¢)*0is in the first
set of N elements XEquation (306). MNow the {*L } 's,
£ =12~ being N dimensional vectors may form a come
plete set for the N space. Suppose the {fbl} 's do in

fact form a complete set. Then any
G Z e, {6} (308)
k=1
On postmultiplying Equation (308) by {;&)}
0} = 2, 44
{ feaa} = ; L 495} (el (309)

£4N [
If the {4’ }'s =) 2 Nform a complete set it is clearly
possible to satisfy Equation (305) for jgf,%-..u ¢ . But
from Equation (309) on substituting Equation (305)

L+n3T
(677 o} = 2 7, (310)

Ltn Y
s Qf/ £ © in general {¢ } {'F(‘f)z * o
(311)

t
Therefore, if the {4’ } 's (= l2-Nspan the N space
it is not possible to select {'ﬂt)} so that {&) will
have the form given by Equation (305). Thus it is not

possible to force excite a pure normal mode in non-classically
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L
damped systems with distinct real roots if the H’ }'s

2o ‘N span the N gpace,

Egual Roots:

As was mentioned previously the case of equal
roots of the frequency equation in non-classical damping
cannot be readily analyzed due to the non-symmetric

matrices involved. As [U] has form given by Equation

(135) - r |

[u] & - [(]-'[M] —[K]_'[C] -

the rank of [‘L-KIJ muist be at least N as the I matrix

(312)

in [u] is non-singular. Thus for 2N distinct eigen-
vectors in the 2N space at most N equal roots of the
frequency equation can exist, However, there is no gua-
rantee that with roots of any multiplicity M€ N a complete
set of eigenvectors will exist. It is interesting to
note that the above facts fit in rather nicely with the
classically damped system. In this system it is possible
to have N equal roots, these roots corresponding to a
solution to each uncoupled eguation in the N space, and
still obtain a normal mode solution of the type Foss
assumes, However, should a classically damped system

possess equal roots which correspond to two egqual roots
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of an uncoupled equation a normal mode solution of the

Foss type will not exlst,

Excitation of pure mode in case of equal roots:

If a complete set of eigenvectors exist in the
ZN space then the treatment of equal roots is similiar
to the cases 2lready discussed., 1If, however, the num-
ber of possible independent eigenvectors is less than
2N , the discussion given above does not apply.

It will be shown that it is possible to excite
a pure mode by initial conditions in a system with equal

roots. The equation of motion in 2N space is
[R]{z} +[P]{2} = © (313)

if ‘<¢' the repeated root is completethere exists '<¢'+N

such that

L= o (314)

(
for each .{f repeated, Solution to Equation (313)

(2} =28 {3"} A 0%

(315)
44¢' *+ o (316)

From Equation (315) if
fz(N =200 4 {3°} (317)

a normal mode solution will exist.
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Equation (317) reduces to

{x(@)} Zzél(d-:. {#L}) A (318)

fx@)} = ze2({#}) 4

(319)

Thus, if the initial conditions are given Lty Equation
(318) and Equation (319) a pure mode will be excited.

Now in the case of equal real roots a solution of type

{2} =4, {82 7 cosi

A #+ o

(321)
where-((- is real, exists, Again if

(2@} = 4 {8'} (322)

the iti mode is excited by initial conditions. Equation
(322) reduces to
; t
{x()} = 4 < {¢'} (323)

{x} = 4 §6) (324)

Unfortunately in the case of equal rocts and an incomplete

set of eigenvalues nothing can be said about the possibility

of foreced excitation of a normal mode,
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Other methods of solving generalized damping problems:

As was noted previously a normal mode solution
will always exist in classically damped systems. A
mode solution may not exist in the case of equal roots
of the frequency equation in mon-classically damped
systems.,

If a normal mode solution does in fact exist it
is always possible to solve the problem in N space with-
out transforming to the 2 M space. Equation of motion

of damped system in N space

Ml {x3+[c]{x}+ [Kl{x§ = o (325)

As a mode solution exists

x = .« A {b} (326)
On substituting Zquation (326) into Hquation (325)
X [M]{e}+ A [c]f#} +[<]{¢} = o (327)
On rearranging Equatien (327)

[fﬂ"']"’ A [QJT‘”[K]] {4’} =0 (328)
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o

For non=trivial solutions of Equation (328)

“‘:XL[""] % [C]*’[KJ}” =0 (329)

This equation reduces to a polynomial of degree 2N in
A and thus there are 2# values of A which will satisfy
the eguation. Corresponding to each 7L‘- there exlists a
{4"} such that Equation (328) is satisfied,

To determine {(b"} corresponding to a particular
K proceed as follows:

On eunand..nr- Equation (328) with A= R {é} {%]
M NCHR X, Gk o a TR € e (4
RLING, K, ?«Lrwxdcuﬂéu----,tnqc e

F

> :
: M + + #
)h' ).'CNM KNN 1
the l“i:_"_ht L_no omit row 1

r}f."‘l‘: Lieaﬂ%i" ' 7“:" TSt . {4.'1 ré (71" AL :'”La:n

L}"' Lcmk 75. w b Ky
llove colum 1 to &

(331)

| —
i
——

XM A KK, :M 1300 * Ky J@; é','(l;nmﬂiem % I

b[ N2 C N2
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This set of n-1! eguations may now be solved by Cramer's
X . " : ¢
method, For each ?\-‘- there exists a corresponding ¢

and so

{x}= [e]{y®] (332)

where [Q] is a matrix of order N x 2N formed of the modal
colurms {4)"}

{'L(t)} is a colum vector of order 2#x /

nG) = 4.2 At (333)
; fi
To complete the solution to Equation (325)it is necessary

to prescribe a value to {x(t)} and {i((t) } at some point in

time, Assume

Ix@}= §x@} at t=o (33h)
{x@&)} = §x()} at t=o (335)

On substituting Equation (33l.) and ZEgquation (335) into

Equation (333)
{(xe} =[] L@} (336)
= [¢] {ﬁa f (337)

{xe) = (] {A X% (238)
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There are 2# unlmown /4‘- 's and There are 2 equations

in these unlmowns, Equation (337) and Equation (338).

The orthogonality relations of generalized damped systems

in y space:

The equations of motion in AN space

(] G5 [ b+ [k ) = (539)
Let {X}= {¢j},c7‘jf (34:0)
On substituting Equation (3lL0) into Equation (339)

X {8} [ e[ ) = (312)
ror {x} = {243 (342)
On substituting Equation (342) into Equation (339)

N e [e] fo + 8] = o i)
Transpose Equation (343 and postmultiply by

(3Ldy)

! ¢} [ J {d; J* )\Libi}T[er{d’j} {6 [k ]T{qr, T
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3

As [MJ ,[GJ and [p(] are symmetric, Equation (3l;)

reduces to

3 YT LT Y 18w o

o premltiplying Boustiten (59 vy {§°)

2 (T 83+ x, 15[t} 1T T 19 =
On subtracting Equation (346) from Equation (345)
(2-1) (2T B3OS [e] 8% -

0n aividing throvgh by (A, - Aj)

(W T} +{e Tl #} =0

Multiply Equation (3L5) by

adé] (I 8o Tl A e T4 - o
Multiply Equation (346) by )L.L

AN GITGNY lj{¢£}T 1683+ 0,18 [<118} = 0

(3L5)

(346)

(347)

(34.8)

(349)

(350)
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Subtracting Equation (350) from Equation (3L9)

<% j LT f
(AL DET IR0 ) Y- o5
Dividing Equation (351) by

AT} 1) =0 ()

Equation (348) and Equation (352) have been derived
previously by expanding the orthogonality conditions
in 2V space associated with Foss's method.

To solve the forced vibration problem it is much
simpler to use Foss's method than tc solve the problem
in N space. The main advantage of using # space for
the solution of the homogeneous equation is that the
matrices are of order ¥ x A , whereas, in 2# space the
order of the matrices is 2¥ x 2¥, 1In dealing with
systems with many degrees of freedom this consideration
may be important, especlally when using a limited storage

digital computer,

Integral Transform Technigues:

Until Foss developed his method for handling
generalized damping most non-classically damped systems
were solved by transform methods. Although straight-

forward iIn application the use of transform technigues
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leads to tedious algebraic work, If a system does not
possess a mode solution it may be very difficult to
obtain a solution without the use of transform methods.
In the next section a system that does not possess a
mode solution will be solved by Laplace transform, the
integral transform technique most freguently used in

engineering analysis,

Numerical Examples to Illustrate Some of the Theory

Developed Above:

In a later section of this thesis two fully worked
examples of classically and non-classically damped systems
will be presented. Here, a few examples of systems that

highlight some of the above theory, are given.
Example 1:

Non=-classically damped system with degrees of

freedome Equation of motion

AL L s L] (353)
o %) - 2,0 b sllx) o

Here

[M] = e (354)
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[] = (353)

(€]~

o (356)

Let [Q] be the matrix of order 2 x 2 which simultan-
M, K

eously diagonalizes (M] ana [K]. 1t is easy to show

that

~|+\/_2— l-~/3— 1

/] = (357)

MK
] | ]

s I g wddz =110

2
sl Sidsl el = W (358)

From Equation- (358) it is seen that this system possesses
non-classical damping. In the notation used previously
(=] I
[w] = B 7 (359)
-[x] (M k] [e]

where [©] and I are matrices of order 2x 2 . From

Equation (355)

[K]-'= % [f : } (360)



To determine £
[u] {#} = 3 {8} (361)

where {é} is a modal colum of order4 x | , From

Equation (361)

191 ) fg] =

Let Z = A (363)

On substituting Equation (359), Equation (360) and Equation

(363) into Equation (362)

r"A o \ o 171 )
o -A (o] |
2 _L 24X o | {46} =0 (36L)
T A e ot
z 2 %
_ B9
From Equation (36l.) for non-trivial {@}
-A o) | (@) ;
o =) © '
i
ol ok =EE=A B = 0
n=-= ° (365)
w L =i -1-
zZ T2 2 A
L ]

Equation (365) reduces to

4
22 + 71’ +?z12+6'/“’ =0 (366)
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There are four roots to Equation (366)

A= =F, =i, =l (367)
- i e du 63
&5 ,{..—-.. {’ /) /J - (368)

Thus this system has a root of multiplicity three of

the frequency equation. As the system is non-classical,

a mode solution may not exist, The following calculations
show that only two independent eigenvectors are possible

and thus the system does not possess a mode solution.

From Eguation (36lL)

—A - ; OT '\
o -A o & a { }
B el ek e ) T (369)
. "2
% TR TR ke
where
|

(370)

Taking A=-:1 and on performing the matrix multiplication

Eguation (369) reduces to

l + L o
g % & o :
o~ 371)
3ot 5[ o
sk g
7°% -% =
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For Equation (371) to held it is easy to verify that

the following values of a , & and € are required.

e (372)
Zow =
(373)
e =8
(37L)
| H,
s Rt 3 b=, (375)
o A{O} A=-1

=1
Thus there 1s only one eigenvector corresponding to the
root, A= -1, of rultiplicity three.

Similarly it may be shown that the eigenvector

corresponding to the root A=- Xz is
[

-1
= 4
{4’}_% i (376)

| %

Therefore in this system only two inderendent

modal colums can be obtained and in general a mode
solution 1is not possible., It is of interest to pursue

some of the properties of this example a little further.

The equation of motion of a damped system in N space

M) {x}+[c]{x}+[K]{x} =0 (377)

As {x}={‘1i}1‘(‘-é is a solution (378)
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substituting Equation (378) into Eguation (377)

<7 (1) g+ £ [l {g}+[K] {g} =0 (379)

™ )
Premultiply Equation (379) by {1%

CH I G < BT T = e e

Now in classically damped systems Equation (380) which
is a quadratic in A% gives the two values of da.which
correspond to the eigenvector iqf} e In the present
system it will be shown that equations of type Eguation
(388) bring in an extraneous root which does not satisfy
the frequeney equation and hence is not an eigenvalue.
Substitute Equation (35l.), Equation (355) and Equation
(356) and

|
{41 = {o} (361)
into Equation (380) and on simplifying
2
L 2L+ 1e0 (382)
From Equation (382) AL, i, =l (383)

Similiarly on substituting Equation (35l1), Equation
(355) and Equation (356) and

iy = {4} (384)
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into Equation (380) and on simplifying

2
24 +74L *¢ =0 (385)

From Equation (385)

Moy & i~ (386)

-2

N

The root, ,(=-34, which does not satigfy the frequency

equation,

I (o] & =¥ £ =)
(387)

is extraneous in this case,

Example 2:

——

This example is a case of a non-classically damped
system with 2 degrees of freedom and 2 egual roots of
the frequency equation. As there are only 2 equal roots
in this case the theory presented above predicts that a
mode solution may be possible. However, as is shown
below a mode solution does not in fact exist. The eguation

of motion

[m) ¥ }+ [ {x}+[x] {x} = o (388)
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In this case let

[ o

[M] = (389)
Cl
[ q =3

[K]: (390)
o R

GE & = (391)
_-’ %

The matrix of order 2 x 2 that simultaneously diagonalizes

matrices [M] and [K] is

. T
2 2
= (392)
[Q]m
L = 2

It is easy to show that

[Q]::K [C] [Q]M,r. is not a diagonal matrix

and therefore this system is non-classically damped. In
the notation previously used

o o T 1

(u] =

4y s (393)
IGECRNENG
From Equation (390)
4 3
[K]ﬂ = iﬁ (39L)
2

3 |
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To determine A solve the frequency equation

[W] -xI]] =0 (395)

On substituting Equation (389), Equation (391) and Equation

(39l1) intoc HEquation (395) and expanding

27,14** 27,{’4 A #IA *+7 =0 (396)
==Y, Yo, ~ 12 (397)
Z

This 1s a system with a root, A=-%, of multiplicity
2 and on performing similiar calculations to those of

Example 1, it can be shown that

ey
A Ml

is the uniqué nomalized eigenvector corresponding to
this root. As there are less then 4 distinct eigen-

vectors in this case a mode solution will not existe.
Example 3:

As an illustration of the use of transform teche
nigues in solving multi-degree of freedom systems the
solution to Example 1 which cannotrbe solved by the nor-
mal mode approach is now presented, Here Laplace transform

is used,
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Given

fG),- =<t4>= f)=0 tco (398)

Define -(f(f) =/; -"d}[(f)a/z.‘ = 7[_§o)

(399)
,° complex as the Laplace transform of 7[('5) . It can
be shown
i [P iz
@)= T e’ £ (1400)
F i bt

Equation (}00)is lmown as the Inversion Formula., In
Equation (399) P 1s a complex variable, p= @+ {w,with
the real part sufficiently large that the integral exists.
In Equation (l400) the integral is a line integral in the
complex plane carried out on the contour shown in Figure
2. The contour is parallel to the imaginary axis, but
with Ychosen sufficiently large that the contour 1s to
the right of all singularities (poles and branch points
of 7f;') )e The reason for this is that the integral
represents zero for ¥< o which can easily be shown by
closing the contour with a large sémi-circle on the left
and using Cauchy !'s theorem. For ¢ {o it is necessary
to evaluate Equation (lt00) by the standard complex inte-

gration techniques.
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Solution by Laplace Transform lMethod:

Equations of motion in W space

[M]{x}+[e]{x}¢(k]{x} =0 (1101)

where [MJ 3 [CJ and [K] are given by Equation (35l),
Equation (355) and Equation (356) respectively. Taking

Laplace transforms of Equation (L.0l) noting

L%} = o< P} - {2 (402)

= p{%} - {x@} (1403)

wnere X} = L {*} (40l )
< B = 2 %} -, {x@} - {x@} (1,05)
{8} - p [0} - P} "

where {X(O)} and {X(O)} are the initial conditions at

t=0.

p2[M] {x b 4 [e]{x}+[x] {x} =
o [M] {x@ j+[e]{x}+[m] {x()} (407)

On rearranging Equation (1.07)

[ A0 A} el e b o) ot
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On substituting Equation (35L), Egquation (355) and Equation

(356) into Equation (L408)

P+ 4 -P-1 PR . .
X[ = RO+ X (09
—P -1 FTEIT 43 i P+D
From Equation (1.09)
azv 41l =Pl | [rez -1
Yi= Xe)
{ X.k —p-1 P+ TIP3 = 43
(L10)
Pre2p sl -P-1 7
+ X (o)
== P+ 3P+3
From Equation (410)
PRS- 5745 P
&-ﬂ _ : . X(o)} +
@+ (P+2) P+l PSPt +EPHT
Pr+3P + 1 Pt (Ll-ll)
1 X ()
L.P +|)!(?+L) P+ P"-O-'.'.P'{"
To evaluate {x'ﬁ it is necessary to lmow
¥ +ieo
-1 [ | Pt {
= —_— d
"[- (P+ (P +2) arm i € (72 (P+1) v (412)
Y-teo

By Cauchy's Theorem it can be shown that
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e a Pt | d_.P
L g —=—
= (p+0*(p+2) o (p+0’(7+2)
_ w (L13)
¥-t®
=2mt ZResidues in®
where |'is contour shown in Figure 2, D is domain en-
closed by I" and the line joining y-o To 'y + i &

By Jordan's lemma it is easy to show that

pE 1 d -
€ T =P L
f (P+D3( p+2) (k)
By well known techniques it is possible to evaluate the
e 7
residues at the poles of U5 o oy . For this

particular function there are singular points at P =

and p=-=2 e :
Resvdis den 4 12" ordler 5"'3“1"” ,oovnt

at P=-2 = _ g-2¢ (L15)
Residue due to 3% order singular point at p=—1
N o +1) (L16)

On using Equation (LL13), Equation (Lll), Equation (L115)

and Equation (L116)

¥+tLa
g e?e : Ap =
. (pTRR) o (1L217)
i zWL[-e'Zt+ e (4t -c —:))
el [ -ze (L18)
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Using the well=lmown result

(=

_’ ”[(P)" td a(ﬂ /—z’j

(1L19)

N

=t
g g *)/:?P*'z) V= 1/ 2,3 can be evaluated
Pl

from Equation (418) and on substituting these functions

of £ into the inversc Laplace tr'ansform of Equation

(411) e 2 (18742) 28T & (Yt Pe2t 42
X(o)
fx}= o
P73 Se-1) ~2e4e (tes)
LT TGt SR ) (120)
) X(0)
% 1) £5n™

As a check on previous work
* I !
{x()} = U;{kco)} = u (121)

] -t
[ r 2 as shown previously.

Again if

o= b= 7]

(422)

2L
{X} . £ as shown previously.

It is easy to see from the form of {X} as given

by Equation (L420) that mode solutions do not in general
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exist as

{x} + [q] {-Z&)}
where [Q] is any matrix of order 2 x 4 and {? (1‘.)} is a
colum vector of order 4 x /) .

If the above system is force excited it is necesssary
to determine the solution to the inhomogenous equation by
transform methods. 1In principle this is similar to the
homogeneous case and the solution is not presented. In
passing it may be noted that one advantage of transform
methods is that the initial conditions must be incorporated
into the calculations before any solution is obtained.

This is not so with other methods of solution where it is
necessary to solve first the homogeneous problem with
the given initial conditions and then the inhomogeneous

problem with zero initial conditions.
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Chapter ITI

Effect of Damping on the Natural Frequencies

of Linear Dynamic Systems 3

An analysis is presented of the effect of weak
damping on the natural frequencies of linear dynamic
systems. It is shown that for certain damping matrices,
some of the damped natural fregquencies of a dynamic system
nay be larger than the corresponding frequencies for the

undamped systems.

Introduction

(8)
In his Doctoral thesis, Berg considered the

vibration of a dynamic system with generalized linear
damping, and showed numerically that the damped natural
frequency of the lower mode was larger than the corres-
ponding frequency of the undamped system.

It is well known that in a single degree of
freedom system, the damped natural freguency is always
less than the undamped natural frequency. In the case
of multi-degree of freedom systems with classical normal
modes(l) it may be shown that the damped natural fre-

quencies are always less than, or equal to, the corresponding

# The author is indebted to Dr. T. K. Caughey for suggest-
ing the analytical approaches used in this chapter.
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undamned frequencies,

Here it is intended to study the effects of weak
damping on the natural frequencies of linear dynamic
systems, and to show under what conditions Berg's anoma-

lous results are obtained.

Anglysis:

The equations of motion of an N degree of freedom
linear dynamic system with lumped parameters may be

written in matrix notation as:

[m] {%}+ [e] {x}+ [x] {x} = {f@®] (423)

For passive systems the N x N matrices [M] and,[K] are
syrmetric and positive definite, and the matrix[xj is
symmetric and non-negative definite. Consider the
homogeneous system obtained by setting{ﬁag}=oin Equation
(423).

[M] {% b+ [ {x}+[K] {x} = 0 (42L)

Classical Normal Modes:

The system defined by Equation (Li2ly) péssesses
classical normal modes, iIf and only if the matrix [CJ
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is diagonalized by the same transformation which simul-

taneously diagonalizes [l"!] and[K] . Let

{x}= [a]{yt (425)

where [Q] is the normalized matrix which simultaneously

diagonalizes [M] and [KJ 1 1R [QJ is such that classi-
T

cal normel modes exist, then [Q] [CJ [Q] = [C]

a diagonal matrix with elements
. i i
¢, = {1‘} [c]{3'} (1426)

If Equation (l125) is substituted into Equation (L2l)
Y
and then premultiplied by [Q] s there results the system

of equations:
"_'. 230 & ) =
"W St e (127)

where

A-fft {4} )
JRRSICRIS I
IO

At
L (R

(4.28)

Let vz_(t) = E (429)
L L
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Then

e \* (130)
2%

wd = Ju] - (-"_f-)z < w, (431)
E= L2 N

Thus, if a system possesses classical normal modes, the

damped natural frequencies are always less than, or

equal to, the corresponding undamped frequencies,

lon-Classical Normal HModes:

If the matrix [CJ s in Eguation (L42l) is such
that it cannot be diagonalized by the transformation
which simultaneously diagonalizes [Pd and [K] , the
system is said to possess non-classical normal modes
and must be treated by Foss's method(B).

To analyze the effect of weak damping on the

frequencies in this case, rewrite Equation (42li) in the

following manner:

M) {x}+efe]{x}+[x]{x} =0 (132)

where € 1s a small parameter, the problem can now be
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{x} - &nx,’l"t (433)

Substituting Equation (1.33) into Equation (L32)

I [ [ - o

(L34)
Lot ¢ = ¢ +& ¥ +€%0" (135)
R ¥ ln+£ﬁﬂ+ct/ﬂ e

N

where clfon and 7\N are the nth eigenvector and eigen-
value for the undamped problem, € = 0 , Inserting
Equation (L.35) and Egquation (l.36) into Equation (L32),
leads to the following system of egquations on separating

out the various orders in

(A:[”]“‘ [KD (#}-° (1:37)

O [T+ [} D" =~ [MIa k2 [e]Die™} (1,38)

(X [n]+[k]){e" =“<(f‘:*2"u\/~)[ml*/‘.kj{¢n} (139)

-Caa r M+ [€]) {17}
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From these eguations, the perturbations of various orders

may be calculated,

Zeroth Order Soluticns:

The zeroth order solutions are obtained from

Equation (L437)

(250 ~ €Y'} = (140)

n=142, ..-.- ¥
Since M\ ana X\ are symmetric and positive definite:
1) f} < 0 all~ , That is, the eigenvalues
are purely imaginary.
2) The{b"'i's are real,
3) The {.*’“]S'S are orthogonal in (M) ana (Kl .
mat 1 (@ T8 = o £ 44
In the analysis which follows it will be assumed

for simplicity that the A, 's are distinet.

First Order Perturbations:

The first order perturbations are obtained from

BEquation (L38)

CACIIS IR R R G RN N O LR (TS

In order to evaluate the first order perturbations, express
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{“}"“‘g in terms of the{¢j}'s. Thus

N

{r}=> a;{’} ingi

" i

T
" 3 ook £
Premultiply Equation (LlL1l) by {CP }

R TR K17 =
2n A 8-, AT e )

Now

{47 [M]{"} = 5,.{8"F [M] {4"1 = 5, (L)

where 20, =0 Z *n
is EKronecker's deltae.

"}
The {.d) may be normalized such that

"} M {4} = / (1)
AL Baisis N

If in Eguation (lj0), n is replaced by £ and the result-
1 ¥ ] 4 3

ing equation transposed, and then postmultiplied by

‘[‘fnf : Then

/\i {¢¢§r{M] {.Yn §+{¢,_}T [K] {'f’"} =0 (Ll6)
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Hence, Equation (Ll13) becomes:

Q3 AT TP = ~(2A, /) 50, BT 0

It A % A, te L *n

IR~ 5o 1N e

n

T £ = »n s then

fom = 1 A8 [0} o

Now premultiply Equation (LL2) by fdJC}T[M]

Thus
{4"}T Ml {47} = 2—-. a,.ﬁcb ‘}T [M] W} (150)
Thus iﬂan&
anc 'y ‘H’ ‘}T[M] {*’“}
. T (L51)
B i é)u = ; : ankz ALZ {4"} [011{4)71}

The quantity Q_'mis found from the normalization condi-

tion

{J)-n}T[MJ{C-Bn} P (L52)
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Hence, & ,,= ©O i D3]

n J
Therefore, if ¥ can be expanded in terms of &

ey - 2 o <{¢j}T[c']{¢"}) {4} (51)

J:l

]
Where the symbol Z denotes summation of the indicated

values of_j y omitting the term for which J = I .

Second Order Perturbations:

Having determined the first order perturbations,
the second order terms may be found in a similar manner,

Let

0
5
i
.rqu

b 4 (155)
Uf-‘=!

Using the same technlicue as used above:

e et | TN e

o e v (46
D i el L)
J'::I
n = L
4, - A8T [M]{e"} = /; ZN: &,,jz (157)

B B
o S~

S

n

I -

I
~

v, = ;3_; ({cb"f[c'] {¢“9+Vz R "Xj" <{¢3}T[c']{4>"}) (L58)
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Eigenvectors in Damped Systems:

The eigenvectors for the damped system are to

L]
terms of order & -

3 = P+ EY 20"+ B(2")

n y J 2 X J
ci>+e,§ anj¢+5 E 43/.45
J:I o =1
Where C%y is given by Equation (I51) and Equation (L52),

(459)

Il

/%7. is given by Equation (1L56) and Equation (L,57).

Some Interesting Properties of Equation (Li59)

13 TP ths matiix 10 [is mash ks B oiEtE c1sstoal

normal modes, then

{ ¢j}T[C'J {$r} =0 n#/ (1160)

Hence, L
a?f':o J= A2, v N
n.:;;;;;!....... N L
£ (L61)
5w |
ST = 9" (162)

That is, the eigenvectors are identical with those for
the undamped problem.

2) If the matrix [CJis non-classical, then in general

{¢j}T [c1{¢7} * o (463)
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Now A‘- = [-7 e, (L6l)

A 4;“ L - 2Oy (real vector) * Ez(real vector) (L65)

Thus, the eigenvectors are, in general, complex.

Eigenvalues in Damped Systems:

The eigenvalues for the damped system are to

=z
terms of order & ":

3= Aa- STy ey 18 ?EW}) 2

“ Z 2o (1l e

Now A\ = /-, @,
n
fn=

B L T e A (1L67)
R
- s @i w oy

Damped Natural Freguencies:

The damped natural frequency for the system is
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given by: - . e
wng=wn {5 5 (Y [T D (47 )
N ; /! > (469)
R GIGIIN TGy

The o(5¢)term arises due to the fact that the 3o order

-—

term in )l,, is purely real.

Some Interesting Properties of Egquation (l169):

1) EP [C’]is such as to admit classical normal modes:
Then
!T
(el =8 oy
mus vy e, - H, (WYY w0

Hence, «) ; < (L71)
Equation (4471) is in agreement with Equation (LL31).
2y It [C'J 15 non-classical, then, in general
#le]{et #0 n %)

If in Equation (469) " is set equal to N . Now

Gl Wl o Do wws POy B i besd ) w,
2
& w:-uj 2 O

(472)

R DM (1| L [CRETA
(@)

From Equation (472) it will be 'seen” that

}
™ S w,, (L473)
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If n=1 then “{j""‘"n JEn

=il 3 (I ()
PAGICIDS

(47h)

B & 3

2?3 (@187 (o —w)
>({¢ [c]{4>)

Then w7, and Berg's anomalous result is proved.

(475)

Conclusions:

From the above analysis the following conclusions

may be drawn:

1)

2)

3)

In a linear dynamic system with weak damping, the
damped natural frequency of the highest mode is
always less than, or equal to, the undamped frequency,
no matter what form of damping matrix is used.

The damped natural frequency of the lowest mode may
be higher than the corresponding undamped freguency,
depending on the choice of damping matrix.

In a system with classical normal modes, the damped
natural frequencies are always less than, or equal
to the corresponding undamped frequencies.

Example: To illustrate the results of the above

analysis, consider the following system:
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o o o |
[e]= |0 Gk 50
CRCIET

Undamped Systems:

For the undamped system
]
)
{¢']= /z{?'_} w,= 0 5366

=1

{¢ﬂ‘=éki{ o.} ¢%==.A¢/¢Z/¢

{¢3}=%2 {-‘CE w, = TS TIS?

W

(L76)

(W77)

(L78)

Using Equation (l169), the damped natural frequencies are!

=
Rl =0 BELR? > w,

Wbt = $#s 3973 < e, r
6({3':/ ~ /. FLL F6 < «, E

(4.79)

The exact values obtained by solving Eguation (L76) are:
=

@, ) = /A BTG

Gy = 1/ FHetTE

(1.80)
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Comparison of Equation (479) and Equation (LL80) shows
excellent numerical agreement. It shculd be noted that,
the damped natural frequency of the first mode is higher
than that for the undamped system, while the damped fre-
quencies for the second and third modes are lower than

the corresponding values for the undamped system.
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Chapter 3

Experimental Investigations

In experimental work it is often desirable to
exclte a system predominantly in a pure mode. Frequently,
the exact parameters of the system are not kmown and
hence, it is not possible to set up a force distribution
that will excite a pure mode, However, the following
iterative procedure for selecting the force distribution
can be applied to classically demped systems. If the
natural frequencies of the system are well separated
this procedure will converge rapidly to a force distri-
bution that will excite a pure mode,

Equation of motion in N space

[M]{5f+[e] {¥}+[<] {x} = {Fw} (1481)

where {F(t)}is an arbitrary force distribution. Let

{et= [n]{x} (182)

where [“J - [/ﬁ ]
[M] is a diagonal matrix.

£P} is a colum veector of order Nx /[ .

From Eguation (1.82)

{xf = [“]_I{P} (483)
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Substitute Equation (483) into Equation (li81) and pre-

=¥
rmultiply by [n]

[] 1M (183 1] [ N {3 (I < (] r o)

(LL8L)
¥ - -1
Let [_E—]:("]l[e] ["] a symmetric matrix 5
=1_71. 7 P a symetric and positive égfgz)iite
(K] =[] (<} [n] ;

matrix, Substituting Equation (485) into Equation (L3lL)

and simplifying

b+ [ e} + [ {p} = (] {F e} (:56)
ret {P§ = [*I{S$ (187)

where as the system is classically damped
T
[Q] [-E] [Q] = [C] a diagonal matrix
[Q]T[E] [Q] - [K] a diagonal matrix

On substituting Equation (LL87) into Equation (4186) and

premultiplying by [Q]

1 154+ [e] {5} [K]U [QJ "] {Feo (1:88)

Lot ; £ L ja , (1:89)

On uting Equation (I189) into Egquation (4488) and

rearranging

/a[-w& et ) (R]] fe “la] [n] fF} W90
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From Equation (1.90)

f: [z('w) } [Q]T[“J_'{E’(t)} (1:91)
mere {F)}= RLFr}e

()= [z <ol /]
From Equation (/;87) and Equation (1482)

§=D] {x} = [ {f} (1:92)
: M -] [ {f}

From Equation (L91)
3! p e Al (wt
fx}=re[n] (] [wdorl[e] [n] {F®}« (1:93)

Now let an iterative procedure be set up such that
fro}= RL{Few}e ™
o
2 cwt
where {F(t)}ﬁ is any arbitrary force distribution
made up of forces which have the same frequency &«

{Fe} - [M]{x}

where_{xe}is the response of the system to
(R} = (] {x,...3

where {xﬂ-l} is the response of the system to {F“_jf)}

From Equation (493) on using th? iterative procedure
-1 ! -
{x} =[] [ [Zr] [&] [M] [M] [] [=t=)

[QT [nj'{p‘-(t) b (19%)
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wor (] [ = (]

= [._'__] a diagonal matrix  (495)
M..

e [ = 2

But (@] [H] [a] = [QJ (1 [~] (]
BRI M P - 1

oo ([ 6T) = (T )&

e [h]"‘ [ Q]T (497)

[h] being a diagonal matrix. From Equation (492) and

(496)

Equation (4193) it is seen that [M] is diagonalized by
-1
[Q] [Y'l:( e It is easy to show that [K] and[CJ
are also diagonalized by [Q] [“] « Therefore,
=1
the colums of [Q] ["J are the normal modes of the
system. On substituting Equation (4196) into Equation

(49L.)

éwl  (),98)

{x} = 24 (] Rl =] ][] 7}

\ -th
But [ Z (w) ]:?.s a diagonal matrix whowme (¢ element is

S ETIE Y T (499)

(23
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-—

where §..= «,; is the natural frequehcy of the i
w

mode. On continuing on with the iterative procedure,

fx3= 24 0] (@] (z]" [a] [n] Fbe

vov £ F@}e ““ grn] [a] [a]e

fx}=Re{x}e’

where {¢} is a colurm vector of order Nx 7 ,

tuting Equation (501) into Equation (500)

71=[n] (el [3) {a}

From Equation (LL99) if

l—'wz“'cwa "‘c.u | ‘-—w ‘tw?y#aj/,
all j+ ¢

Equation (502) reduces to

- (1) i)

(500)

(501)

Substi-

(502)

(503)

(50l.)

wmere 12} ={a} ([n] [Q])— ¢ Bcolum of <[n a])

ﬂormq1 mode,
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From Equation (50L.)

] — gqn]" [Q])(_ (505)

tconstant
As shown above the convergence of this iterative pro-

cedure is conditional on Egquation (503) being satisfied.

I al) ij are approximately the same value thes
condition may be reduced to
e
/4 (506)
all j 4 ¢

From Equation (506) it can be seen that if the
natural frequencies of the system are well separated
from one another the above iterative procedure will con-
verge on the mode corresponding teo that natural freguency

w,; nearest the forecing frequency «/ .,

To experimentally determine the mass matrix:

The equations of motion of a classically damped
system excited by an impulse forcing function

[M]{xj+[e]{x}+ [k] ix}= {sF} (507)

where {9 F} is a column vector of order W x / , the

elements of which are impulses of amplitude al. .
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ret {%} = [a]{)‘} (508)

Substitute Equation (508) into Equation (507) and
Drenul"ml by [Q]
[Q1 (] [R]{f 1+0=] (e ] {5} [Q] [<T[al{§{-

(<] [57) (509)

Equation (509) is a set of uncoupled equations of type

% éz’i j;' + /?,‘g j‘. = {“A }T{é"‘} (510)

where {‘it} is the ith normal mode. Now {Ci}-?é’:} .
the forcing function of the 'L'H‘ uecoupled equation,
is merely a sum of impulses. Suppose the system has
zero veloclity before the application of the distribu-
tion of impulses: From Eguation (508) if

{)‘((o)} ={O}

{j(")fo"' {o} at t= 0

From Equation (510) after the application of the im-

pulses

{3"’} (511)
at t= 0,

$@_-

(512)

] {f(a)} o G:er[m] [Q])-’[Q]T{é»f}
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From Equation (508)

fiot_-[a) (o] ' ([ ) 157
S OREL

Hence, if the velocity of the system is measured

(513)

immediately after the application of the impulse force,
the mass matrix can be determined by using Equation

(513). From Equation (513)

[M]{x@} = {s5¢} 3

In [”] there are N*olements.

Allowing for mutual masses there are N* unlmowms
Mij in Equation (51l.). Each particular force distri-
bution {QF} gives rise to N equatiocns as in Equation
(51). Hence, to completely specify ['1] it is necessary

to perform N experiments of the type described above.

To experimentally determine the spring matrix | Kl -

If a spring mass system is acted on by a static
force distribution the inertia and damping terms may
be omitted from the equation of motion

[<]{x} - {7} (519

where {F} is the static force distribution.
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Now to apply this force distribution it is necessary
to slowly vary the force on each mass until the desired
force distribution is achieved. If the force is applied
instantaneously, then the problem is not a static one
as treated here, but a dynamic one. However, in actual
fact, if a steady force distribution is rapidly .applied
to the gystem, the solution for large time tends to the
static solution as the vibrational motion is damped out.

From Equation (515)

ix} = [<] (¢} (516)

From Equation (516) it can be seen that it is possible
to determine (K] provided N distinct experiments are
carried out. It may be noted that as {F} is a colum
vector in N space it is possible to specify N independent
force distributions.

It was shown above that with a series of experi-
ments the natural frequencies, the normal modes, the
mass matrix and the spring matrix can be determined for
any classically damped system. The impulse test for
determining the mass matrix is not of great practical
significance, because of the measuring difficulties.
However, it is possible to get an estimate of mass matrix
lmowing the natural frequencies, mode shapes and spring

matrix of a lightly damped system.
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For w (517)
But K
s ) ' (518)

as {¢}} ,[ﬁ<] and w; are lkmown an estimate of the

value of ‘ﬂ%[ can be made,

(7] = (@] [M] [a] (519)

But

- M) =[] [ ] ([Q]?j' (520)

Later a technique will be presented to correct

for the damping of the system.

Non=-classical Systems:

It should be noted that the experiments described
above for determining the spring matrix can be used with
either classical or non-classical systems. However, the
experiments for determining the mass matrix have been
justified in the case of classical systems only. Here
it will be shown that a similar set of experiments are
in fact sufficient to determine the mass matrix of a non-
classical system.

Equations of motion of matrix of non-classically damped
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system in 2 W space:

(R]{Z}+[P]{2} = {F&>} (521)

- {reo}= H?(I)}J (522)

Let {f(t)} be a distribution of impulses of magnitude
~F. o Agssume that a mode solution is possible.
L

Let

{z} - [#] {5} (523)

Substitute Equation (523) into Equation (521) and pre-

miltiply by [$)

(8] (] (8){F 1+ (6] [P) [8144) = [8frc0} (s

Equation (52l1) is a set of uncoupled equations of type

K 2
R, § + Py § = 104{f] (525)
Now as {7[} is an impulse force distribution

j(O) - {H{f} (526)
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providedj(a) = O (527)
" -
. T T
+{f@} - (@lleltel) (&1 28)
+
From Equation (523) and Eguation (528)

(2o} - @ @ (&) 1)
- (] {r}

-1
provided LR]  exists. But

o] [M]
[QJ [m] [C]:{ (530)

It is easy to show that

- L PE 5
] [el Ml [m]
['4 [ [o] (531)

(529)

On reducing Equation (529)

-

{%©) } & [mj'{,c } (532)
{k(o)} = O (533)

Equation (532) is exactly analogous to that previously
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obtained in the case of classical systems. Hence it is
possible to determine LM] from a series of N independent

experiments,

Determination of damping in classically damped systems:

The essential feature of a classically damped
system is the reduction of the equations of motion tc a
set of N uncoupled equations in the transformed plane,

Consider such an uncoupled equation,.

7 f +é.,)‘%42‘2; - £ 6 (530)

73 &
i

where /
L@ =28 Fe °° (535)
L B
Let j = L Az (536)
On sufbstituting Equation (536) into Equation (53L)
/Z' ('w'z/’:Z‘. -‘/qz *éw C-:‘)‘"‘ ) (536-)
A= S ‘ (537)
(‘wa/’g.‘. */C{-é *(w C:;)

'E-/,(?T. (538)
w" ’/w.z: & & wg %. é_-é.

&

) (539)
& Eles
(7 -B%)+ 2: 8k
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where A= w Ve el

G = '{‘/"‘//Ty;?

= -CI-“ .

o /2 [y i

For simplicity let .
i

It is of interest to caleculate the locus of 4

considered as a complex number with amplitudel r?‘ and

plane cf) .
A= l/ l,t “#
(540)
= X+ f:y
where X = I A l@os¢
= ' A ’J;”q"
On rationalizing the denominator of Eguation (539)
A= (1-8%)—2; 87 (511)
(-0 + 487 y*
From Equation (51.0)
=2 = '5»
% - B*)*> +4 8>y > it
P -2 d ) (54.3)
(/- 82> £ LGy >
From Equation (5l2) and Equation (543)
Xz - jz— o / (5lds)

(r=A) "+ oy
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Substituting Equation (543) into Equation (5l})

a—+ B e s j
Ay V28 (545)

L xEeyt s Ykt * Ta BV = iy (HE)

() (4,4//,#)%: {55 )" (547)

The geometrical interpretation of Equation (5L7)
is a circle drawn in the &x , ,é} plane of radius Y4/

end with center at (o, - Y4y ) . Noting that

A il

wa § = wf

It is easy to see that Equation (5..7) represents
a circle in the velocity plane. Thus the polar plot of
the velocity response over the entire frequency range
O — ==, of an uncoupled eguation of motion is a
circle. The angle of lag & (F)in this plot is the plane
angle between the response and the forcing function.

Should a multi-degree of freedom system be vibra-
ting in a pure mode then the velocity response locus of
any mass is a circle. For assume that the system is

-
vibrating in the ¢ Anormal mede,

~ el

.j‘ —-—'([ /z :
(547)
f= o Ty

o/
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- [ {f} (548)

Wwhere {X} is the response of the, [Q] is the matrix
whose columms are the normal modes of the system.

Hence any

Z : 4 f (549)

J—
where is the % element of the ‘% mode.
./

From ;.quation (5&8)

e (550)
% 4
. ‘-
. Ny 1
=2, f (551)
As the locus of velocity response j‘ is a circle it

follows that X, also has a circular response locus.

Again

tand = Y = 2847%- 27) (552)

¢ 2 (-B822y - A%
aj ¢):_[/ (/-—ivb r] (£53)
Hence d(fer®) 15 a maximm at =/

g8

Therefore the rate of change of ¢ is more rapid

around H=/ than at any other value of & . This
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fact is of great use experimentally as will now be dis-
cussed,

Supprose that a classically damped system is excited
by a force distribution of given freguency. By changing
the frequency of the forece distribution, but keeping the
magnitudes and phase of the forces constant a velocity
reSponse'lccus may be obtained for a particular mass,
Should it happen that the forece distribution was such as
to excite a pure normal mode, the above theory predicts
that the veloecity response locus would be circular.
However, if the natural frequencies of the system are
fairly well separated, then around each natural frequency
the wveloclty response will be a cirecular arc, This is
so because the response of the mass is a superposition
of the responses in each normal mode and around the
natural frequency «/, of one mode the phase angle éﬂ
corresponding to that mode is varying much more rapidly
than the phase angles corresponding to the other modes,.
The response of the system may then be approximated as
a sumuation of two vectors:

A constant vector in magnitude and phase corres-
ponding to the contribution to the response of the mass
from the modes whose natural frequencies are not near
the operating frequency.

A vector, the tip of which describes a circular
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path, which ecorresponds to the contribution of that mode
whose natural frecuency is near the operating frequencye.

As further assistance in identifying the natural
frequency of a particular mode it should be remembered
that a maximum value of the velocitiy often occurs near
a natural frequency. This is so particularly if the force
distribution is arranged to be favorable to the exeitation
of this mode.,

From this discussion it is clear that the concept
of the velocity response locus is of great interest in
experimental work, A possible proceduré Tfor use with an
N degree of freedom system in an effort to experiment-
2l1ly determine the natural frequencies and damping of
each mode may now be described,

Choose a force distribution that is probably
favorable to some particular mode. Flot the velocity
response of one mass as the frequency of this force
distribution is changed. Sketch in circular arcs where
the phase shift of the response changes rapidly with
freguency. An estimation of the natural frequency may
be obtained by noting where the rate of change of the
phese shift with frequency is a maxirnm, This frequency
will, if the modes are well separated, be at the Inter-
section of a line parallel to the axis with ¢é= %45 and

the veloeity response locus. To estimate the damping
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corresponding to a particular mode the simplest proce-
dure is to plot a curve of the amplitude of the response
in this mode, as given by the circle, against the fre-
quency., Of course, only a partial amplitude frequency
response is possible as the circle may only coincide
with the response locus over a short frequency rangee.
However, it 1s necessary to draw the complete circle

as the point from which the amplitudes are measured 1s
the intersection of a line from the natural frequency
on the response curve through the center of the circle
and the circle itself (Figures 11 and 12), From this
velocity amplitude frequency curve a displacement ampli-
tude frequency curve may be plotted by dividing each
velocity amplitude byu4ﬁ=a¢4;,fcr this particular circle,

Having the displacement amplitude curve it is
easy to determine the damping of this mode. The usunal
Yo power law is generally accurate enough considering
the inherent inaccuracies of drawing the circle and
plotiing the curves,

Sonetimes a very small circular arc can only be
obtained, This fréquently oceurs when the experimentor
hes limited selectivity as far as the megnitudes of the
forces to be applied are concerned, Occasionally in
rotating mass shaking machines the nagnitudes of the

force distribution applied are not constant over th
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frequency range. In the latter case it is necessary to
correct for the changing force amplitude by dividing

the magnitude of the responses by a suitable sealing
factor. If the phase of the elements of the lorce dis-
tribution changes relatively to one ancther, the problem
of determining the damping corresponding to any mode is
rmuch more difficult. However, if the phase shifts can
be assumed to be slowly varying it may be possible to
estimate the damping directly from the velocity response
locuse. This procedure may also be used when only a
small arc can be obtained due to some 1limit of the
experimental equipment. Assume the mode separation is
such that the diameter through the natural frequency
point on the response locus is spproximately parallel

to axis with ¢= % « Take two frequencies close to the
natural frequency one above and one below, lMeasure the
respective value of X from the response locus for ceach

frequency. Denote these values by X, and Xz s From

Equation (542)

il el (554)

o o dpsl e (555)
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where £ is a constant of the system

>
A= = H
2
Fronm Equation (556) as X, ; X, may be measured A? A?
may be calculated and thus an estimate of ) may be
made.

Haturally the above procedure is only recommended
in extreme cases. The % power determination of damping
is to be preferred as in this method an experimental
error is not very serious. In point of fact experimental
eérreors are easily located by the distorted shape of the

curve. lode interference can be seen readily.

Structural Damping:

In passing an interesting phenomena may be noted,
The equations of motion of a system with structural
damping is often written as follows:

= Eenl
PP X ‘ig X + KX = Fe (557)

where the spring constant iy implies that tBis force
T,
is in fact /2 radians oubt of phase with the displacement

X o It i1s not intended to discuss structural damping

here but to obtain a solution to Equation (557)
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b | Fand
tet x= 272" (558)

1.

On substituting Squation (558) into Equation (557)

G Curmeiq +a)= F (559)
e M =
= 7
“ e+
—~— (o 4
- =/ (561)
(/-8% + i 9/
To simplify the algebraic worlk let FA:AC =/
g o / (562)
(/=29 % g
Let A a complex number be defined
I (g (563)
A = x+iéig = , 7.
From Eguation (562)
X= (7-2%) (56l)
(/ -/V‘L *j/ 2
2
s =% (565)

(/-— .f"y'z' r‘j%»
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- 3 '

. . x ‘J =

(566)
/ S8 = i oy
(/- 8*)* ijza. ‘/y

PL %,+(%)"= (%7)" (567)

e s (Ire kL )T = (K ) (568)
J 7

Geometrically Equation (568) is a circle and thus the
displacement response locus of a system(g%th structural
darmping is eircular, Whigley and Lewis were the
first to use the displacement response circle in connec-
tion with vibration tests on aireraft structures.

This is an interesting fact because it should
be possible to experimentally determine tThe type of
damping a structure actually possesses by plotting the
response vector locus in both the velocity and displace-
ment planes. However, the detailed mechanism of structural
damping is in considerable doubt and rmuch work needs to
be dome in this area before any such tests on structures
would be justified. In actual fact structural damping
may well be a type of hysteresis effect idealized by the

bi-linear modal. It is difficult to say whether or not

viscous damping in structures lis even physically reason-
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able., To date few structures seem to have been tested
beyond the linear range of Hooke's law and there appears
to be a great lack of experimental data in this area

of structural dynamics. One pressing need is better
Instrumentation to measure the relatively small changes

in the stresses and the strains produced by modern shaking
machines. Actual buildings are further complicated by

the difficulty of an exact description of soil and

foundation conditionse.

Experimental Determination of Damping in Non-Classical

Systems:

In non-classically damped systems the velocity
response locus may again be used to give some estimate
of the damping in each modee. As shown in Chapter 2;
the first order approximation to the damping of any mode
in these systems is the %prresponding diagonal element
of the reduced matrix [Q]ﬂ&[Q][Q}" <& Thus, to a certain
approximation, non-classiéal'systeﬁs may be represented
by an equivalent classical system with damping in each
wcoupled equation equal to the corresponding diagonal

K
will be presented to show that this proceduré is justi-

t
element of[Q] [CJ PQ] « Later, some analogue work
MK M,

fied for systems with damping of from 09 to 20% critical

in each mode.
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Although it is not possible to force excite =
pure mode in non-classical systems a resonance condition
is achieved near each natural frequency. In an effort
to determine the damping, in non-classically damped sy=-
stems, experimentally with greater accuracy than the
above method gives, some work has been done on the response
loci of these systems. By expanding the expression for
the contribution of one mode to the displacement of a
particular mass it may be shown that this displacement
response has a luocus which is the sum of four vectorse.
The tips of these vectors have circular loci over the
entire frequency range (0 —=). 1In point of fact these
four circular loci are contained in.two circles cutting
one another at right angles. As this displacement
response locus of non-classically damped systems has
little practical significance, the details of the locus

are not presented.

Analogue Gommuter Investigations:

There 1s no need to elaborate on the use of the
electric analogue compubter to simulate problems in
mechanical vibrations., The nodal and loop analogies

are the basic electrical-mechanical analogies and their

properties are swmerized in the following table:
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Nodal Analogy

Electrical System Mechanical System
Capacitance (C) Mass (M)
1/Inductance (1/L) Spring Constant (K)
1/Resistance (1/R) Damping C

Currents (I) Forces (F)

Voltages (E) Veloeities (V)

Loop Analogy

Electrical System Mechanical System
Inductance (L) Mass (M)
1/Capacitance (1/C) Spring Constant (K)
Resistance (R) Damning (C)
Voltages (EB) Torces (F)

Currents (I) Velocities (V)

In the appendix a typical three degree of freedom
system is represented by both the nodal and mesh analo-
gles. "
The analogue compubter was used mainly to check
the difficulty of determining the damping of a typical
three degree of freedom system. At first a classical
system was simulated on the computer and the velocity
response was plotted. It was found that good circular

loci were obtained around each natural frequency pro-

vided the force distribution was adjusted to suit the
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mode being excited. In fact it was relatively easy %o
niss a natural frequency by using a force distribution
that practically exclted a pure mode and so effectively
darped out the contributions of the other modes, Later
a non-classical system was simulated and the velccity
response locus determined, The spring and mass matrix
of this non-classical system were talken to be the same
as the classical system previously examined. The damping
metrix was so arranged that[éjr [CJ Da] had the sanme

M M, K
diagonal terms as in the classical case. The forces
applied were the same exactly as in the classical case
which had been determined to suit the excitation of a
certain mode. From these response curves the damping
in each mode was determined and the values obtalned give
assurance that the results of the concept ol equivalent
classical damping have sufficient acecuracy for engineer-

ing purposes.

Root Iocus:

Suppose there exists a damped system characterized
by ["'IJ, [K] and/[c]where,é is a scalar constant that varies
continuously from o—wee, If [M], [K] and [C]r'emain fixed
the locus of the eigenvalues of the system as # varies
is said to be the root locus of thé system, Now if the

system is classically damped each uncoupled equation has
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the form:

»

@f +’5’4‘4')é+ '(a'j ol (569)

eigenvalue corresponding to this equation

o -y s AAC)>- 4 7 Zid (570)
‘ 2
c B + i St R - (BTt ) (571)
277,

From Zquation (571) it is easy to see that the locus of

‘(,- is a seml-circle on the left half plane of radilus

/(ii/ﬂ‘?-ﬁ- @ In passing it may be noted that in class-

ieal systems the set of eigenvectors remain the same
independent of the wvalue of / .

From consideration of [W]the 24 x 2N natrix it is
easily seen that eigenvalues in non-classically damped
systems have in general no simple locus, It is clear
that the eigenvectors of such a system change continuously

s 15 changese.

M

In an effort to show the great differences between
classical and non-classical systems as far as root locus
is concerned a plot of the roots of the system treated

on the analogue computer is shown in the appendix, This



143

plot shows that each '(.i has a negative real pari for
all /and for particular values of/ these roots may be

purely negative.
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Discussion and Conclusions

Tn this work an effort has been made to show the
wide range of application of normal mode techniques to
the solution of linear damped parameter systems, The
only case where a normal mode solution cannot be obtained
is if there are less than 2W independent eigenvectors in
the case of repeated roots of the frequency equation of
non=-classically damped systems solved by Foss's method.
This latter case may best be solved by integral transform
methods. It is always possible to exclte a system to
fibrate in a pure mode by a suitable choice of initial
conditions., However, it is not possible to force excite
a pure mode with zero initial conditions in non-classically
damped systems, The normal modes of both a classically
and non-classically damped system satisfy certain ortho-
gonality conditions, The condition for the existence
of classical damping is that derived by Caughey, namely,
the damping matrix must be diagonaliged by the same
transformation as simultaneously diagonalizes both the
mass and spring matrices.

In classical systems increasing the damping de-
creases the natural frequency of the system. In the case
of non-classical damped systems it is possible that the
introduction of damping will increase the natural fre-
quencies of the system. However, the highest freaquency

of the damped non-classical.case must be less than, or
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equal to the highest natural frequency of the undamped
system.

The experimental work shows that the concept of
equivalent classical damping for non-classically damped
systems is accurate enough for engineering purposes.

By performing the experiments that are presented above,
it is possible to completely specify a multi-degree of
freedom system. These experiments should be of use when
trying to determine an approximate spring mass dash pot
equivalent cirecuit for a complex structure.

As regards future work there is little need to
stress the desirabllity of attempting to extend some of
these ideas to continuous systems. However, in such an
attempt certain difficulties arise immediately. Matrices
are replaced by functions and in general it is much more
difficult to work in funetion space than in M dimensional
space, The real advantage of working with discrete
systems is that elementary matrix theory is sufficient

for most phases of the analysis.
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Agnendix

Experimental Results

Before investigating a three degree of freedom
system it was desirable to ascertain the accuracy of the
analogue cormputer under normal operation. As a check
on this accuracy the velocity response spectrum of a sin-
gle degree of freedom system was determined. At this
time the nodal analogy was used, but in later experimental
work the loop analogy had to be adopted because the
current generators developed some instability in operation.

The circuit used is as shown in Figure L. At a
given frequency the magnitude and phase of the current
I fed into the circuit and of the voltage E across the
capacitor C_. were recorded. The phase angles were measured
relative to a fixed standard and so the phase angle
between the current and the voltage could be obtained at
any frequency. In the nodal analogy the volkage across
a capacitor corresponds to the velocity of a mass in
the analogous mechanical system. The current flowing

to the circuit corresponds to the force applied at
the mass in the single degree of freedom system.

As can be seen from the circular velocity response
locus plot Figure L the accuracy of the computer justi-

fles its use in further experimental work.
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The main experimental effort was devoted to the
determination of the natural frequencies and the percen-
tage of critical damping in each mode of classically
and non-classically damped three degree of freecliom systems.,

In this case the non-classical damping matrix[C ] was so

chosen that the diagonal terms of

(<], [eT0d], (572)

were identical with the corresponding diagonal terms of

[Q]: elle] (573)

where [€]1is the classically damped matrix, [Q]n s the
matrix which simultaneously diagonalizes [M]and, [KJ .

The parameters of the system were selected so that the
computer was operating at a current level where parasitic

resistence was negligible.

E 3 o o ]

[”] =l | o 2 o (57L)
LO o 1 J
r 4 -7 il

[K] = TR e 50 (575)




148

end [@]the classically damped matrix is chosen to satisfy

Rayleight's condition

[e] = <M+ 2[4

[ 14 -3 =&
(576)
[c_'f:za -2 w0 _us

L—‘ = /7
Here (= /00 ; B= 6 x10™
To obtain the natural frequencies of this system it is

necessary to solve the frequency equation

H["wzl + [ [K]]H =o (577)

From Equation (57l) and Equation (575)

TRl AN
[m]-'[l{] e @ 2 -~os | r0* - (578)
—~4f =7 ¢

On substituting Equation (578) into Equation (577) and
after solving the resulting cubic equation in w™it is
easy to show that the three natural frequencies of the
system are

w, = 215 cycles per second

@, = )5 ecycles per second (579)

752 cycles per second

R
G
1l
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Letting {Cb"} = normal mode corresponding to wq

a .

{¢'}=1¢,

(580)

From Equation (577) and Equation (578) these {é }'s rmust

satisfy equations of the following type:

'
rz,tx /a‘-w‘- /o
<3 ‘
-5 X /0 70" " w;
= 2 X /0‘ g
- -5 X r0

From Equation (581)

=

&
IxXr0° - e,
g X /O"— w;

a .
4

.Z_ -ﬂX/oé—- w
T 4SS X0k ~ s

.-.'2,‘/0‘ ]
-.?.s’xm‘

/‘- .
FXx/0 we ]

-

biy=1{o}

(581)

(582)

(583)

On substituting the values of w,; derived from Equation

(577) into Equation (582) and Eguation (583) [QJ may be
MK

determined
[y 0.6764 3 ©. 70831 |
[Q] = [-0.06761 06161 6 /
MK
-0. 75953 / O. 7§32/ r

It may be shown that

(@] [ela], -2 | .

[ 2676603 o

17 %3652

(=]

10.385 794+ J

(58l)

(585)
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[rspewr o o ]
2.2/7/3
[o] [M][a] ~%]| ° y (586)
j ‘ | © o J. 07054 |
[ 5. 80434 o o |
_
(o] [x]le] = | o aswar o (587)
- (o} I.WZB«

A single degree of freedom system is said to be critically
damped if

C’:Cc=2 KM

(588)
Percentage of critical damping possessed by any single

degree of freedom system is defined to be

C/Cc X s00) (589)

As each uncoupled equation is in effect a single degree
of freedom system these ideas may be carried over to

multi-degree of freedom classically damped systems.

Let C, = critical damping of (¥ mode. From Equation

(586) and Equation (587)

C = 3748/ x 0%
/

Q, = 20978 x s20° (590)
2

Z2o77s X ro02

i

C’G
3
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From Equation (585), Eguation (589) and Eguation (590)
Percentage critical damping in lst mode 9.97%
Percentage critical damping in 2nd mode 11.25%
Percentage critical damping in 3rd mode 15.88%

For the non-classically damped case the following damping

matrix was used

[13.€3944 - Y sC722 - 6. 8408
[C'] = 20 |4 ECTIR i GHPPE - ) CSHTZ (587)
b pdsof - 1-6¥P2 o490

It may be shown
[ 2% 7¢40 2 0/2 -tooek

[Q‘?:K[C'J [Q]M:zo 20/12 174365 -5 70 (588)

~1.0064 -5 FIRS /d!..?&'??-‘

and so on comparing Equation (588) with Equation (585)
it is seen that the corresponding diagonal terms are the
same, In passing it should be noted that although most
of the off diagonal terms are small the ratio of the
largest off diagonal term to the smallest diagonal term
150.58, This means that there is considerable coupling
between the second and third modes.

To find the normal modes in the non-classical

case it is necessary to determine the eigenvalues of

. & - o 0% (o] o ']
o fo) o o 70° o
(o) o o o o r0®

—QHBTS ~0, ZO00O ~0. 1/250 ~5F,69F40 ~49.7 745 105258 |= [U] (589)
~0.1000 -0.40000 =0, /10coe 18.72850 1%, boest. F. FEHL
|-Q.11260 -0.2000 - ©.17500 F.é0320 - &2. 979 -J/.ﬂazj

-
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Solving the freguency egquation
U[[u] ‘AI]” i i (590)

-4
X, & (’0..336’05’.:!' 4'205’747) X /0
b

-4

= (- + ¢ X /0
)\215 ( 0.%40398 L ¢ .16'42\5?) (591)
A,

P
From Equation (591),(1*,_(‘259.nd,(36may be determined.

4

It should be noted that each,{t. has a negative real part

y (co.7358¢ * ¢ 733/78) X 10

which corresponds to stable motion. The imaginary part
of each aéz corresponds to the natural frequengy,
There are three natural frequencies for this system.
{: =. 215 cycles/second
{; = 11 cyecles/second (592)
f; = 72 eyecles/second
On comparing Equation (592) with Equation (579)
it 1s gseen that the non-classical natural frequencies
are very close to the classical natural frequencies.
This fact will later be borne out by the velocity res-
ponse plots for the two cases.
As is known from the theory the contribution of
any mode to the response of the system with a constant
amplitude forcing function is largest when the frequency

of the forcing function is near the natural fregquency of
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the mode and the forcing function distribution is so
adjusted as to predominately excite this mode., Bearing
these facts in mind the forcing function was changed in
going from one frequency range to another to facilitate
the determination of the damping in each mode,

In order to excite a pure mode in a classically
system the forcing function‘{F(i')}is given by

{rwl = 5@ [m]{44 (593)

where j('&) is an arbitrary scalar function of time, {1‘]_‘
is the mode being excited, From Equation (58l.) and

Equation (57L)

o. 7083/
ey Y (59L.)

{F:} 3’ o, 75%2
0.67663 )

ACE 32&7 -1.232521 (595)
|

{R@}= 9,-0.13522 (596)
-0. 7.5’932_]

The transformer settings were arranged to give the relative
amplitude of each force in the force distributions. The
scalar functions of time g (), were of type A, S wt .

Where the A; 's were determined experimentally on

the computer by adjusting the output of the power amplifier
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until a desired level of response was obtained.

Although there is no possibility of force exciting
a pure mode in the non-classically damped system the for-
cing functions given by Equation (594), Equation (595)
and Equation (596) were used.

The experimental results for the classical system
are shown in Figures 5, 6 and 7. As can be seen practi-
cally pure modes were excited in each case. From these
curves the damping was estimated by the circle method
developed above. Comparisons between the natural fre-
quency and damping derived by the circle method and the
exact calculated valuesare shown below. Generally the
peak amplitude method of calculation of the damping has
been used in the past. It should be noted that in the
cases showm due to the excitation of bractically pure
modes the peak amplitude method has a better chance of
being accurate than in cases where a large contribution
from interfering modes is present. In the latter cases
the circle method will quickly show up the interfering
modes and much more accurate results will be obtained
by the use of the cirecle method than the peak amplitude
method.

The experimental results for the non-classical
case is shown in Figures 8, 9 and 10. As can be seen

these response loci are practically circular and the concept
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of equivalent classical damping appears to be justified.
These loci are treated by the circle method teo determine
the equivalent damping in each mode. Comparison with

experimental results and actual calculated values are

ghown beloWe
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Single Degree of Freedom System

Nodal Analogy

Input Output
1 b1 B s

5.0 21,5 357 323
5.0 L.50 323
5.0 2ii6 5.65 322.5
5.0 8 6.95 322
5.0 251.,5 8.70 322
5.0 259 10.9 322
5.0 259.5 10.6 322
5.0 266,0 13.3 322
B0 2760  AT.2 322
5.0 293.0 21,2 321.5
5.0 313.,0 2.0 321.5
560 3275 23.5 321.5
5,0 351.0 21,2 321.5
5.0 3.0 18.0 321.5
50 12.5 @ 15.3 321.5
5.0 18,0 13,1 321.5
5.0 16,8 13.2 322.0
Ss0 220 11.7 322.0
5.0 25,0 10.3 322,0
5.0 26,5 9.5 322
5.0 29.0 8eb 321.5
5.0 29,1 7.95 321.5
By ' 313 73 321.5
5.0 33.0 6.3 321.5
5.0 35,0 Sy 321.5
5.0 }1.5 o7 321,
5.0 L1.5 3,15 321.5
5.0 13.0 2.8 321

GRS REENRIRISRERRER

a & & 8 & & & & & L
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36 :
Force Distribution {@:}iw Excite 1st Mode Loop Analogy

Damping: Classical 3 Degree of Freedom System
Frequency Input Response
E de L ¢z 360- &y &
100 10 21 0.7 288 93
120 10 20 1163 28l 96
1%0 10 20 15.6 279 101
160 10 19 22,2 272 107
180 10 17 37 258 119
200 10 15 55.9 230 5
220 10 17.0 6542 186 191
20 10 21,0 L7.0 156 225
260 10 22,0 333 13 239
280 10 2240 2540 135 2.7
300 10 21.0 2040 131 250
320 10 . 21,0 172 128 253
340 10 21 1.8 125 256
360 10 21 13.0 123 258
380 10 20 11.8 122 258
1100 10 20 10.6 121 259
1120 10 20.5 10.0 120 260.5
0 10 20.0 9.6 119,.5 26045
0 10 20.5 8.9 119 261.5
180 10 20 8t 118 262
500 10 19 79 117 262
520 10 19 T2 117 262
5ho 10 20 Tel 116 26l
560 10 20 6.8 116 26l
580 10 20 6.y 115 265
600 10 20 642 115 265
620 10 20 5.9 115 265
60 10 20 5.65 115 265
660 10 20 5.5 11l 266
680 10 1 5.15 115 26l
700 10 18,5 5.05 114.5 26
750 10 20 lL.56 114.0 26
800 10 20 L.33 113.5 266.5
850 10 20 .03 113.0 267
900 10 19 3.80 1125 266.5
950 10 19 3.55 112.5 26645
1000 10 19 3.25 112.5 266,.5
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Forece Distribution {ﬂﬁg&to Excite 2nd Mode Ioop Analogy

Damping: Classical 3 Degree of Freedom System
Frequency Input Response
e Q‘ p & b]_ uo—#l* *’e
100 10 22 3.55 291 91
120 10 21,5 3.95 289 9245
120 10 21,0 .70 288 93
160 10 21,0 5.6 287.5 93.5
180 10 205 .67 291,0 89.5
200 . 10 21 8.0 290,0 91
220 10 19 10,0 288.0 91
2%0 10 18.5 11.0 282 96,5
260 10 - 19,0 12.85 278.5 100.,5
280 10 19,0 1%.1 276.5 102,.5
300 10 18.5 16,7 273.0 10545
320 10 17.0 19.2 269 10
340 10 17:80 23,2 26l 113
360 10 U5 28.% 257 117.5
380 10 12,0 3. 7 125
Loo 10 10,0 L2.5 23 136
Lh2o 10 8.0 52.5 21 152
Lo 10 10 58,2 196 17k
160 10 1.5 56,2 177 197.5
180 10 17.0 50.0 165 212
500 10 20,0 h1.3 155 225
520 10 20.,0 35,7 1,8 232
520 10 21,0 30.9 13 238
560 10 23.0 26.7 139 2&%
580 10 21:0 23,8 135 2l
600 10 22.5 213 132 25045
620 10 22,5 19,5 130 252.5
6%0 190 215 17.8 129 252,.5
680 10 21,0 16.5 128 253
700 10 21,0 1.5 126 255
750 10 2350 'X2.3 125 256
800 10 20,0 11.0 123 257
850 10 21.0 10.0 122 259
900 10 230" 193 121 260
950 10 21,0 8.6 120 261
1000 10 20,0 - 749 119 261
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Force Distribution {*N;}to Excite 3rd Mode Ioop Analogy

=16
Damping: Classical 3 Degree of Freedom System
Frequency Input Response
E Q‘ % &z 3“"!?1.*#5
100 10 21 1.2l 291 90
125 10 22 1,59 289 93
150 10 21 1.98 288 93
175 10 21,5 2.56 283 99
200 10 21 2.80 277+5 103.5
225 10 21,0 2.61 273 101
250 10 20 2.82 283.0 97
275 10 20,0 3.31 283 97
300 10 20 3.80 283.5 96 .5
3h0 10 20 1,62 282.0 98
360 10 19 5.08 281.,0 98
80 10 19 5«55 278.5 100.5
00 10 18 6,00 27845 99.5
Li20 10 18.5 6.61 278.,5 100
0 10 18,5 7.20 277.0 101.5
L60 10 18,0 7.60 275.0 103
80 10 17.5 8.5 275.0 102,.5
00 10 17,0 9.3 273.0 104
520 10 16,0 10.0 272 10l
5%0 10 16,5 10.8 269 107.5
560 10 1740 - 11.8 266.,5 110,5
580 10 15,5 13,2 26,0 111.5
600 10 15,0 1Lk 261.0 1
620 10 1.0 16,0 256.,0 11
6.0 10 B 1T7.5 251.0 123
660 10 12,0 19,2 23,0 129
680 10 31,0 210 236,0 135
700 10 12,0 22,5 22,0 148
720 10 10:8 " 23.% 21,0 156
740 10 8,0 2h.3 203.0 165
760 10 8.0 -2l 191.0 177
780 10 B0 ' 23.7 183.0 185
800 10 9,0 ' 22.% 178.0 191
820 10 8.0 212 170,0 198
8l.o 10 8.5 20,0 165.0 203.5
860 10 10,0 = 188 160 210
880 10 10 LI 156 215
900 10 11.0 16,1 15l 217
5t BB B2 i 2
.0 4 223
960 10 10,0 13,3 7 223
1000 10 10,0 12.9 5 225
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1S
]to Excite lst Mode Ioop Analogy

Force Distribution {?1
Damping: Generalized 3 Degree of Freedom System
Freguency Input Response
€ 3; I &‘I - +x * {’E
100 10 2 87 299 83
120 10 21 11.3 293 38
1%0 10 20 15.8 286 ol
160 10 19 2245 270 109
180 10 17.5 3L.0 257 120.5
200 10 15 Slie3 229 116
220 10 18 6642 188 190
220 10 22 18,0 156 226
260 10 23 33.8 10 2h3
280 10 21 25.1 131 250
300 10 22 20.0 127 255
320 10 21 17 125 256
320 10 22 Ui ,6 120 262
360 10 21 2.7 117 26l
380 10 20 13,2 116 26l
L,.00 10 20 9.9 115 265
20 10 20 8.6 11,5 265.5
u%o 10 20 Teb 117.5 262.5
1160 10 19 753 123.0 256
1180 10 19 Te2 12,5 254.5
500 10 20 Tod 123,0 257
520 10 19 6.95 123,0 256
5%0 10 20 6.7 122 258
560 10 20 6.l12 121 259
580 10 19 6.10 120 259
600 10 19 5.95 119 260
620 10 19 5.78 119 260
620 10 20 5.58 118.5 261.5
660 10 19 S.y 117 262
680 10 19 5.1 117 262
700 10 20 5.0 117 263
750 10 19 lL.6 115 261,
800 10 18 Loy 116 262
850 10 19 L0 116 263
900 10 19 3.75 11,5 26L.5
950 10 19.5 3.58 115 26l ,5
1000 10 19,0 3.35 11 265
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Force Distribution {¢] to Excite 2nd lode

Damping:
Frequency

100

120
120
160
180
200

220
5%
280

300
320

30

1000

-6

Generalized
Input
E e
10 22
10 22
10 22.5
10 22,0
10 21
10 21
10 20
10 20
10 19
10 19
10 17
10 17
10 16
10 15
10 12
10 10
10 8
10 10
10 1
10 19
10 20
10 21
10 21
10 23
10 23
10 22
10 21
10 22
10 23
10 23
10 22
10 23
10 21
10 23
10 21
10 22
10 22

Response

1
3.28
l,.05
2.90

0

745
10.1
13.3
%%:0
17.8
o3
29.5
122
6.2
2.0
59.0
50.7

b:
291
29l
295
296
303
29,
285
275
271
270
267
265
261
252
2l
229
213
191.5
173.0
160,0
%ﬁg.o
«0
110
137
133
132
129
127
126
125
125
121
119
118
118
117
116

Loop Analogy

3 Degree of Freedom System

360~ *1 + +£
88

88
875
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Force Distribution {“_ﬁ-} to Excite 3rd lMode Loop Analogy

Damping:
Frequency

100
125
150
175
22
250
275
300
320

30

1000

Generalized

Input

10.0
12,0
12,0
12.0
12,0
12,5
12,5
13.0

13.0

Response
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13.5
12,6
12,7

3 Degree of Freedom System

wo- b + be
93

93

92.5

96
101
108
103
101
100
101
101
102.5
103
10
105
105
105
105
107
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loop Analogy

FPimure 3w (i~ I

5
o S

: . ¥
. 3 Dagm?o “Broodon System
Lo s k) g ‘ "' = A l,'i ' 4



Ilechanical Systern:

Veloecity lesponse

N ()










Fipure 7

' "ifel‘_]'_i.ty Response of a 3 'megreéihf Precedorn: 83
m&teﬂ as to be nredominarﬂ" vibrating in
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Darmping:
Fipure 8+ &, '

Velocity -Zesronse of a 3 Degréa of Freoedom System so
excited as to be predoninantly vibroating in its 1st &
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Velocity “esponse of a 3 Degroe of “reedom Systen so
axe 0!?» as to be rredominately vibrating in its 2nd node
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Typicel Velocity lesponsse of a 2 Degree o
Systen cxcited by an arbiftrary force dist
i E




o — ——

!
!
|
|
_
_
_
'
!
_
_
|
*
!
|
!
_
_
!

nbea g ‘A juswadserdsig jo epryrdwy
.ﬁoﬂusﬂumﬁ

e B S S TS —




174

Calculation of Damping in Each lMode

Classical Systen

Percentage Initial Damping

Exact
1st lMode 15,88
2nd mode 1T.25
3rd mode 9.97

Non=-Clagsical System

Equivalent Classical Damping

Exact
1st mode 15,88
2nd mode 11.25
3rd mode 9.97

From Circles
1.2l
11.78
10.13

From Circles
16,98
13.15
11.2h
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Determination of Natural Frequencies

3 Degree of Freedom System

Classical Damping:

1st mode
2nd mode
3rd mode

Non-Classical Damping:

1st mode
2nd mode

3rd mode

Bxact
215

752

Exact
215

h2

From Circle
216
hydy
75l

From Circle
216
hL2
755



Figure 13

{ o ﬁ?ﬁnﬂu Plot of 2 Degree of Freedom Non Classically
. nped System. Semi circles show Root Locus Plot
. Degree of Freedom Classically Damped System with
wmg.m undamped natural frequency as the non classically
ped system.
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Root Locus Plot
2 Degree of Freedom System

(Non-Classical Damping)
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Root Iocus Data
A

187 & .9811
L ll?O t 0557
-.281 x 0956
- 0256 : 0521!-
—.lLlB = 0903
"-398 b4 o}-]J-I-]-
-0607 = .75""
"'.578 .t .]-,-,-3
-.890 373
~l158
-1,022

«958 .078
-.27h
-2.57h
=21
-1,311
-+153
11,001
-0213
-2.261
-+ 201
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