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Abstract 

A general reviel'l of normal mode theory as applied 

to the vibration of linear damped lumped parameter bi­

lateral systems is presented . It is shol-ffi that systems 

possessing classical damping may always be solved by the 

nethod developed by Rayleigh. HOI,ever , for more general 

type non- classical dam_ing the method proposed by F. A. 

Foss must be used . The main differences betlfeen classical 

and non- classical normal modes are noted . A non- classically 

damped system \'lhich does not possess a mode type solution 

is solved by La plac e Transform techniques . 

The effect of damping on the natural frequencies 

of a linear system is discussed . It is sho.m that in 

classically damped systems increasing the damping decreases 

the natural frequencies of the system. \'lith non- classical 

damping some of the natural frequencies of the damped 

system may be greater than the corresponding natural 

frequencies of the undamped system. From the pertt~bation 

analYSis , used in determining the effect of damping on 

the natural frequencies of the system, the concept of 

equivalent classical damping fer non- classically danped 

systems is derived . 

Experimental techniques needed to determine the 

mode shapes , natural frequencies , ~~ss spring and damping 

matrices of classically damped systems are presented . 



By the use of the concept of equivalent classical damping 

an estimat e of the damping matrix in non- classical syst ems 

may be obtaincd . EA~erimental results supporting the 

theory are presented . 
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Introduction 

The underlying theory of normal modes was developed 

to a high degree by the classical physicists and early 

mathematicians . In 1753 Daniel Bernoulli introduced the 

idea of superposition of motion and later in 1762- 65 

Lagrange developed the general theory of undamped linear 

vibrating systems . Routh, in his Adams Prize Essay of 

1877 and in his text Rigi d Dynamics , appears to have been 

one of the first to give a systematic treatment of small 

oscillations using nor.nml mode techniques . The climax in 

the early deve l opment 1~as reached by Lord Rayleigh 11hen 

he introduced the concept of the d i ssipation function and 

thereby lai d the foundations of normal modes in damped 

systems . 

At the turn of the century most physicists felt 

that enough Hork had been done on the analysis of mul ti­

degree of fre edom systems . However , Hith the introduction 

of high speed rotating machinery and the a s socia ted pro­

blems of "lhirling of shafts and vibration isolation , 

engineers began t o analyze practica l systems . As it is 

extremely tedious to solve systems of greater than three 

degrees of freedom exactly by hand calculators , many 

iterative numerical methods Here developed at this time 

to rapidly ap~roximat e the normal modes of the system. 
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Up to this time most of the Hork was concerned 

\>lith ,.hat is no," called classically damped systems . In 

point of fact the damping l.as further restricted to 

Rayleigh type uniform damping . With the rapid advances 

in structural dynamics initiated by the aircraft indus ­

try , it was inevitable that the methods of normal modes 

as used by Rayleigh "ould be round to be inadequate to 

solve some interesting physical problems . T. K. Caughey 

shorTed that Rayleigh ' s approach has much .rider application 

than had been supposed . K. A. Foss developed a method 

of deriving normal mode solutions for systems possessing 

non- classical damping . 

Today normal mode techniques are in common use in 

engineering and science . -,ihereas in principal any linear 

dynamic system may be solved by integral transform tech­

niques the use of normal modes Vlill greatly reduce the 

computational Hork. In electrical lumped parameter circuit 

theory the normal mode approach is rarely used '1hereas 

in mechanical lumped parameter system this approach is 

practically standard . This difference in the approach to 

lumped parameter systems is largely due to the standardized 

forms of electrical net'vorks , e . g ., filter sections l-Thich 

are much nore readily treated by such specialized tech­

niques as the four po l e paraneter methods . HOHever, 

electrical engineers use normal mode solutions in many 
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electro-magnetic problems . Although the theory needed 

to f'ind the normal modes of' either classical or non­

classical systems has been developed there is a need to 

critically analyze some of' this theory and to correlate 

the "Iork of' the main researches in the field . This Hork 

attempts to point out some of' the dif'f'icultics that 

may arise in solving systems by the normal mode approach 

particularly if these systems are non- classically damped . 

As there is a great need f'or the development of' practical 

tests to determine the parameters of' a linear system 

some .Tork in this area is presented . Lastly the vlOrk is 

interested in the general physical eff'ects of' non- class­

ical damping and in the development of equivalent classical 

systems. 

This Hork is limited to physically realizable 

passive systems . Consequently the systems considered are 

bilateral as well as linear . Bilateral systems are 

systems such that no unsymmetrical coupling terms that 

would violate the reciprocity theorem are introduced . 

This , of' course, prevents the use of the results to 

either aircraf't f'lutter or systems possessing gyroscopic 

motion . 
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Chapter I 

Not all methods of deriving the equations of motion 

for a multi- degree of freedom system lead to expressions 

'vhich are symmetric in the co- ordinates of the system. It 

is alHays possible , uhen dealing Hith physically realizable 

passive non- gyroscopic systems , to transform a set of 

uns~m~etric equations of motion into a set of s~mnetric. 

equations . Ho\-lever , the use of either energy or variational 

methods of derivation results directly in a s~etric set 

of equations . A further feature of the energy and varia­

tional methods is the possibility of selecting a set of 

co- ordinates Hhich may considerably simplify the algebraic 

and nu.TJlerical Hork involved in solving for the displace­

ments and velocities of the system. 

There are many advantages in using Lagrange ' s 

Equations , the energy method most frequently encountered 

in engineering analysis , to deacribe the mot ion of systems . 

The equations of motion are derived in exactly the S~TJle 

~lay for every possible set of co- ordinates . As onl y the 

potential and kinet ic energies are i nvo lved there is no 

possibility of difficulty }lith the algebraic signs of the 

displacements and v elocit i es , and there is no need to 

determine the accelerations . Hhereas, in fact, many of 

the systems treated later may be solved by UeHton ' s Second 

Lavl of Notion, some difficulty could exist regarding the 
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signs of the disp lacements and velocities while the 

acceleration of each mass ;10uld have to be determined . 

To use Lagrange ' s Equat ions it is necessary to 

define: 

1) Ho lonomic System: A system such that the number of 

degrees of freedom equals t he required nunber of co -

ordinates to completely describe i t . 

2) Hon- Holonomic System: A system, so constrained, that 

the number of degrees of freedom is l es s than the 

required numb er of co- ordinates to completely describe 

it . 

3) Generalized Co- ord;nates 1,,(t,,1, " ~. ): A set of inde­

pendent co- ordinates used to comp l ete l y describe the 

motion of the system. 

As non- holononic systems rarely occur in practise , 

this work 1-1ill be restrict ed to holononic systems . The 

co - ordinat es may be chosen i n any suitable Hay consistent 

1-1i th the geoI1letry of the problen. 

Lagrange ' s EQuat ions for ~ Holonomic Syste~ Hith n degrees 

of freedom 1£ the usual form are 

cL ~, T - ~ l T) _ Q.. , 

c:lt "\' ~, 
(1) 

,'lhere T c kinetic energy of system 
H " 

- t L L M'i 'l,i ttl (2 ) 
t= I \~I 

and Q., ~ Generalized Force at 'ti 

A more conveni ent form for our urpose may be obtai ned 

by defi ning Q.. L = Q..'" + ~. 
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"There aic can be expresscd as a potential function , i . e . 

~II 
(he = - "b<J ; 

V = Potential Energy of system 

(3) 

(4 ) 

and F. is the non- conservative part of the generalized 

force ~. • 

As V is independent of ii Equation (1) may be 

rOHritten as folloHs: 

cl i) l T- v) - ~ ( T- v) = 
cLt ';) i; ~; 

Let T - 'I ~ L Lagrange 1s Function 
) 

cl E,.. (L) ~ (L) f. - = 
<it 'Zl~i '()~ i 

or for a conservative system 

d.. 
cLt 

].. (L) = 0 

z"l. ; 

Fe (5) 

( 6 ) 

Derivation of Equations of Eotion of multi- degree of 

f r eedom system. 

Consider a system of n discrete masses ""'- ~ 

coupled together through springs and dashpots as shoHn 
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in Figure 1 . Choose the generalized co- ordinates XL 

to specify the mot ion of the s y stem . Let Xi ~ 0 all i 

I-Then system is in stable equilibrium. 

As this is clearly a holononic system 

s!:.. " L ".J:. F, = 
d..t b><; 'b )(.i (8 ) 

/oJ 

L M, >-
T .i- x, = 2-

l.'=r (9) 

'" 
... " N 

L .L. L.. "L ~iiX l )(j +.L LC. - x. j Xj 
'J= z. l. 'J 

, :- I i "" L'::.I J~I (10) 

I-The r e M, are the masses L = ', 2.. , '"' 

Ki1 =force exerted on ....... by the spring systel'1 Hhen 

Xi == )( l - 0 all t... except i., = I I )( ~ -= 'I X j - D . 

It should be noted that K'j ~ Ki' as ca.'1 easily be 

shol-m by performing t he follo"Ting tHO experiments : 

Place s ystem i n stable equ~li~rium 

D:t sp lae 9 .... , so that XL = Xi f- 0 

Xj 0 all j .. i 

Holding NI l so that Xi "X i * 0 

Displace ..,ot so that Xol = x. .. "" 0 

J(~ = 0 ~.,.i.. 
*.t 

the s pring s ystem = Total energy stored in 

+ t t~.i\.)(~ 
(11 ) .=. 
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HOl·t reverse sequence of the above experirlent . 

Place system in stable equilibrium 

Displace "' .. so that x ... e x.L 0 

all J 1'.R 

Holdine; "'.I! so that X~ : x.l "*" 0 

>'-j = 0 all J *.1 

Displace "t . so that 

)C j = 0 J .,. L 

x~ : x...( ~ 0 

Total ener gy stored in spring system 

to! II 

L: 
-, 

1::2 
-t 

+"- Ki L )(., I( \ . .I. Xi. XL Ki~ "Po. + = .. 
j= I j=1 

(12 ) 

The final c onfiguration of tne systen is the sa~e in 

these tHO experiments . As there is no energy sink the 

energy stored must be tho sa~e . 

Equation (11) == Equation (12) 

Sinilarly i t n:ay b e sh01·m that 

C-ij '" Ci'- • 

Returning to Equation ( 8 ) and on s ubstitut inf, Equation 

(9) and 3quation (10) fo r L= T-V t he equations of motion 

for the system may be .. 1-Tritten .. 
'" 11. .. , x,· ..... I"'¥\ i. )(\. + L • ~ c ·· x · L 4. J J 
j ':. I 

""Fi J (. = ', :t, . . . .. ,., (13) 
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For sir.'1plici ty of notatio':1 and e l egance of pre-

sentation, matric e s Hill be used l-lhenev er P03Eible . 

Define 

""'-\ 0 0 

o "''\,. 0 

mas s matrix 

o 

\1.,,, (. 11. K,~ 

Spr i ng natrix ~'1 \ \(..~l. ~'1. \ 

o 

o 

. . .. \<., ... 

. . . ' 'l1'tl 

. CI~ 

. Cl..N 

(15 ) 

(16 ) 
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. . on substitutinG ~quation (ll~) , Equation (15) and 

Equat ion (16) into Equat ion (13) 

Hhere 
)(, 
~l 

(17) 

\'1.1 = a colunn vector of order 

)<~ N x I 

and 
~ . 
.f. 

'" {F} 
a colunn vector of order 

~. N x I. 

It should be noted that for a phys ically reali­

zable passive system [1"11, ll<.l and [c 1 are synunetric 

matr:i.ces . [M1 a...'1d lKl are positive definite and ee] is 

at least non-negative definite . 

In this example [1"11 is also a diagonal matrix , 

but this is not necessarily so L'1 all multi- degree of 

freedom probl ems . 

Now if l~l is a null matrix , i . e . in the absence 

of viscous damping , Equation (17) reduces to 

(18 ) 

To solve this set of equations by classical methods 

it is necessary to first solve the inhomogenous equation 
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(19) 

This equation is also Y.:n01m as the equation of f r ee 

vibrations of the undamped system . As some type of 

vibrational mot ion is expected, aSSQme 

(20) 

where { 't \ is a colunm vector of order N x I the elenents 

of \"lhich are independent of tirle . 

On substituting Equation (20 ) into Equat ion (19) 

(21) 

(22) 

For non- t rivial solutions of Equati on ( 22 ) 

(23 ) 

Equation (23 ) , mOlm as the frequency equation, 

reduces to a poly- norlial of degr ee ,., in ""~ as thc det er ­

minent is of ortlce r f) • [If] and [i<J being symmetric and 

posit ive definite the roots of th5_s equat ion are all 

real and pos i t ive . Negl ecting for the present the case 
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of repeated roots, there exists 2n distinct values of 

u~ that satisfy Equation (23) 

Wi. = +/wi" n 

l,.)i +" ":: - rwi.-::' (. -= I" ' / . . • • .. n 
(24) 

~ 

where the Wi' s are the roots of Equation (23) . 

For each distinct l-Ji' there exists a vector { 'l:~ 
vlhich satisfies the folloHing equation : 

[-"'~[Ml -+ [1<.11 ~ ilL) ~ 0 

The vectors t t '} form an linearly independent set . 

In order to fornalize the above pro cedure it is 

necessary to not e that as [r"1} and [1<.1 are symmetric and 

positive definite there exists a transformation [~1 such 

that 

a diagonal matrix . 

a diagonal matrix . 

Let 

(25) 

VIhere { ~ ( tl} iS a column vector of order IV x I \-lith 

elements ? itt) • 
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On substitu ting Equation (25) into Equation (19) 

(26) 

Pre- multip l y Equat ion (26) by Lo.jr • 

(27) 

(28 ) 

Hhere It:11 and l.K1 are diagonal matrices . Equation (28 ) 

is no\~ a set of tmcoupled linear equati6ns of type 

,-lith solution 

'l. e (t ) : 

\(. - 0 - (t) 
- L' -= 0 (29) 

(30) 

i-There w, = I;;, ' is the natural frequency of the i. Ii.. 

normal mode , Il and 8 a~'(. arbitrary constants Hhich may 

be determined from the initial conditions . 

(31) 



Thus any Xi is composed of the sum of ~ quantities 

of type t ,. j?;ltJ "here LD.]: ['l.ii]. For this reason the 

colu..rms of [0.1 are looked upon as vectors a!J.d fx1 is 

said to be a linear combination of these vectors . As 

these vectors possess the property of orthogonality in 

eM] and (1<1 they are commonly called nor!1lal modes . 

From the above analysis it is ~ediately apparent 

that a set of generalized co-ordinates 1'!ill exist which 

will give uncoupled equations of motion . 

For let 

(32) 

" 
From Equation (9) T ~ -t L Mj x,· .... 

i ~ I 
(33 ) 

(34) 

On substituting Equation (32) into Eauation (34) 

(35) 

(36) 

wher e [M 1 is diagonal . 

Again as Lcl is assumed to the null matrix from 
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Equat ion (10) 

~ ~ t x f[ K 1 f (J 

= t hltJfU·1{ \(tl] 

"here Li<.1 is diagonal . 

(37 ) 

NOH on apy l yinr; Lagr ange I s Equations to i and V 

g iven by Equation (36 ) and Equation (37 ) an uncoupled 

s et of equat ions results . 

Ort hogonality of Nornal Hodes 

[M1\.;(\ + LK.1\K1 0: 0 

Let 

\ )( ~ f 1 1] i. w" t 
e J 

~ 

l"lhere f ~ i}iS the 
. tt 

nornal mode, i . e . J 

" ,{'i"n 

On substituting Equation (39 ) i nto Equation (38) , 
i.. W O t 

r earr anging and dividing both sides by e) 

(38) 

(39) 

(40 ) 

(41 ) 
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Again let 

(42) 

On substituting Equation (42) into Equation (38 ), 

rearranging and dividing both sides by e 
i. W.c.t 

(43 ) 

Pre-multip ly Equat ion (L~l) by t tlf 

Transpose Equation (4-3) a.l'ld post- multiply by \ 'i i"\ 

ks (M 1 and L Kl are symmetric 

lMJ T = (111 
\,\(1 T = (K.} 

Equat ion (45) reduces t o 

- wl t t trC~1 ~ 't t ~ + £ t 11"[ K J {t j 1 =: 0 

On substituting Equation (45) f r om Equation (44) 

(46 ) 

(47) 
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If 

W · 
J 

(48 ) 

(49) 

Equation (48) Hill be satisfied for all .e "'- j provided 

the roots of the frequency equation are distinct . On 

substituting Equation (49) into Equat ion (46) 

(50) 

Equat ion (49) and -4uation (50) are knOlm as the ortho­

gonality conditions for the normal modes [1 j j and {'l.l J . 
At this stage it is necessary to note that the 

{ ... i. J form a complete set , i . e ., any [X 1 can be represented 

as a linear combination of these N independent vectors . 

In other Hords the normal roodes span the N vector space . 

Force Vibration of Undamped System: 

Again assuming distinct roots of the fr equency 

equation, the solution to the forced vibrations of an 

und~~ped system is presented 

(51) 
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f,(t) 

Hhere [f(c)} = f.t(t) a column vector of order x 1 

(52 ) 

system. 

Let [x] = [Q ] ft (1.) J (53 ) 

T 

,·there [Q. J [MJ [Q.] :: [A] a diagonal matrix 

[q/ [ KJ [Q] = [iC] a diagona l matrix 

Substituting Equati on (53 ) into Equation (51) and pre­
T 

multiplying by [QJ 

This is a system of uncoup l ed equations of type 

J"I . ~. (t) + \<. .. ').(.tJ ; ['1' (iJ 1 
II '-' l L\.. (.. l J L ) 

(56 ) 

(57) 

a column vector of order N x I 

(58 ) 
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From Equation <.56)t 

'1 . (t) = ' j j~ (z) Sirl c.v '- (r- Z ) ch_ 
~l <.J~ M .. , . 

o 
(59) 

I-There W · ~/k.'i is the natural f r equency of(60) 
• M ·-t/, ,. 

the i. mode . "- i = constant phase angle of the 

mode and A- = constant coefficient of cornplirlentary 
l 

function are both determined from initial conditions . 

Again the complete solution 

f q i. ) 
is a linear combination of normal modes L t l 

(61) 

• 
From the above analysis it is evident that any 

und~mped system forced or free can be solved by normal 

mode techniques provided the roots of the frequency 

equation are distinct . The case of equal roots will 

be taken up later . 

Da.."11ped Systems : 

NOlI viscous damping is introduced into the system. 

The equations of motion for a linear damped system 

(62) 
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,·There [ e J is symmetric and at least non- negative definite . 

As before a vibrational solution of type 

is assuned . On substituting Equation (62)-into Equation 

(62) 

..(2 [I1J['1-~ .(.li+ ~ [CJ ['}}.( .(~+ [KJ [~?L.zt= [F J 
(63 ) 

To solve Equation (63) by classical methods it 

is necessary to first solve the ~~onogeneous equation 

( 64 ) 

on dividing through by ~ 
.<.t 

lo1'["1+~LQ1+[K] ] I,d - 0 (65) 

For non- trivial { t} 

II [./ [M] + do] + lKlll1 - 0 

(66 ) 

Equation (66 ) is the frequency equation for the 

damped system. In e eneral this equation, being a polo­

nomial of degree -Z# in .,!. , has ,.2# roots . 
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For a stable system these roots , if not compl etely 

iMaginary, Must contain a negative real part . In princi-

ple it is possible to solve this frequency equation for 

the eLi 1 s !L"1.d to calculate the corresponding [1i l 'S 
and thereby form a complete solution for the free vibra-

tions of da~ped linear systems . The details of this 

procedure will be presented later and nO~l a more eloquent 

and s:!l!Ipler method ,.;111 be reviewed . In passing it 

should be noted that as the oLiO 1 S are in general complex 

the corresponding ['}i JIS may have complex components . 

Equations of motion for free vibrations of a damped 

linear system 

As [M] and [KJ are symmetric and positive definite 

there exists a transformation (Q) such that 

is a diagonal matrix . 

is a diagonal matrix 

[ Q]' [M) [ Q] >= [MJ 
l Q] T [KJ [Q.] =[i(] 

",here [Q] is al'l N x tV matrix . non if [e] is such that 

[Q)T[C] [Q] :: [C J is a diagonal matrix (68 ) 

then it is possible to co~pletely uncouple the above 

equat ion s of motion f or 

Let [x} = l Q J t ~ (t) } (69) 

~lhere {t ({)! is a column vector of order N x I . 
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On substituting Equation (69) into Equation (68 ) 

T 
Premul t i ply Equat ion (70) by [q] 

This is a set of uncoupled equations of type 

M ·. ·z· LL • , +C .· ".+K ·· ry. =0 
tL Itl IL vt 

(72) 

Solvinr; for Zi (I,) , 
. tl. 

assuming the i modo is underdamped 

c;., t 

'li(i)=Ai. ~- Z"''' S;/;'.i::ii _(Cit): -JoLt) (74) 

~P1ii .t~j 

1 - -0- )2 ;e .. C ·' 
where '. {( is the damped natural 

l'7i i .2l'lti 
frequency of the i"th mode . 11;,.( [ are arb! trary 

cons tants depending on the initial conditions . 
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In this case the solution consists of a linear combi-

nation of normal modes . 

The above analysis is possible only if [e] is 

such that the transforJ11ation which uncouples the unde.nlped 

system VIill also uncouple the damped system. Dr . T. K. 

Caughey realizing this fact derived sufficient conditions 

for [C] such that the equations can be uncoupled as 

above . Unfortunately necessary conditions on the damp-

ingmatrix have not been developed . A brief review of 

Caughey ' s ·,rork is presented. 

The equations of motion of a damped linear system 

(77) 

where eN] = [.1M: ] is a diagonal matrix of ordernxn. 

Substituting Squation (77) into Equation (76) 

-I 

Premultiply Equation (78) by LN] 

:. [N)-I[M] [Nr'{ii 1 ~rNr'LcJ [NJ'{f 1 +[ N rl [,<] [N r'[p J = 0 
(79 ) 



:.[rJ{pJ + [A]{p\ + [BJ[p1 - 0 (80) 

Hhere [I] is the unit matrix of order n x n . 

-I - 1 
A '" [N] [C] [N] (81) 

(82) 

As [Q.] and [K.] are symmetric and positive defi ­

nite it fol101'lS that [A] a.."ld [51 are also symmetric and 

positive definite . A system that can be completely 

uncoupled by the [Q] matrix as shovn1 above is said to 

possess classical normal modes and to be classically 

damped . 

Caughey shows that a sufficient though not necessary 

condition that the original system possesses classical 

normal modes is that 

where QrI£ are a 

is some .e./n ih 

Q [13] -tIN 
nt I (83 ) 

set of arbitrary consta.'1ts and [I3J .tIN 
I 

root of [8]. To express Equation (83) 
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in terms of wAtrices of the original system substitute 

Equation (81 ) and Eouation (82 ) into Equation (83 ) 

. [NfCc] [Nf-~ 5f, Q,+f £K) [N]-r' (84) 

uhere [N] = [/M ] 
It is of interest to note some of the properti es 

of classical normal modes . If a systeu possesses 

classica l normal modes and the systeu is vibrating 

freely in this mode , "Thich is assumed to be underdamped , 

all the YnL I S pass through their points of stable 

equilibrium at the ca~e instant . This implies that for 

classical normal modes the ~~ I S can be eA~ressed as 

v ectors 1-1i th real components . If in. a classically 

damped system the damping is scalarly increased through-

out the system the same normal modes exist as previously . 

Should any mode be overdamped solution of type 

(85) 

(I) /(~) 
exists , 1'here ~. and <><-t are negative real numbers 

( 
.t. . (If .{. ~»-t ) . if. 

and Ae ' +- Be ' is the solution to the t overdamped 

uncoupled equat ion: 

( 86 ) 
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overdamped if( C;; ).2 > 
.?Plii (87) 

These properties of classical normal modes I.[ill 

be contrasted to the properties of the normal modes of 

systems '-lhich are not classically damped . 

Forced Oscillations of classically damped systems : 

In quite an analogous fashion to the previous 

\-lork it is possible to extend these ideas to the forced 

vibration of classically damped systems . 

Equation of motion of forced vibration of damped systems 

(88) 

As before let 

"!here [11] fu"ld [KJ are symmetric and positive definite 

and [Qf [1'1] [Q.] ': [M] is a diagonal matrix of 

orderll.[Q]T LKJ [Q] ': [.R.1 is a diagonal matrix 

of order /II and as the system is classically damped 
T 

[~] [C] [Q] = [~] is a diagonal matrix of 

order /II 
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On substituting Equation (89) into Zquation (88 ) 

T 
Premultiply Equation (90) by [q] 

This is a system of uncoupled equations of type 

fYJ .. ij -+ e.. . + z:: - q /t ) 
(I vi it t; II '/; - J.i II 

vThere [Q] T [F(t)] = { (!. (.t) ~ 

(93 ) 

and t~(i-) l iS a column vector N x , ,·lith elements :1,' (t). 

Solving Equat ion (93) 

-t Ai e - R~} 5 . (J'5!£ _ (~).2 t .J.-» 
U7 1'7. " ~M ( 

II ""fii 
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where Kii _ ( ell )2 
Pfii ~l'7ii 

is the natural f'requency , Ai 

and oCt" are arbitrary constants determined f'rom the 

initial conditions . 

(95) 

Bef'ore going on to the discussion of' more gen­

eral t ypes of' damping a brief' summary may be in order . 

In a classically damped system, Hhich by def'inition 

includes the undaJ'lp ed case, it is alHays possible to 

obtain a solution of' t yp e 

Hhere [Q] is such that it simultaneously diagonalizes 

lMJ , LK J and [C J. The columns of [Q] are the normal 

modes of' the system and are 

{ q i. J f'or each r satisf'ies 

-I 

the eigenvectors of' [M] [K], 

[A/ [M] + [KJ JhJ - 0 ( 97 ) 

or 

(98 ) 
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I~here Equation (98) is the usual form of an eigenvalue 

problem . It should be noted that each {1' ~ may only 

be determined to ~~ arbitrary scalar multiplier and may 

be reduced to a vector of order N x I vTi th real compo -

nents I-Then this scalar multiplier , if' imaginary , is 

neglected . In the next section it I-Till be shOl-m that 

the restriction of distinct roots of' the f'requency 

equation is not necessary for the existence of a normal 

mode solution to classically damped systems . 

It is interesting to note that Lord Rayleigh 

stated that if [cJ = ..L[M} + ~ [t<.] 

,{ ,8 constants (99) 
J 

then the system has classical normal modes I-Thich are 

of course identical I~ith the modes of the undamped 

system. HOi-Tever , Equation (99) may be obtained directly 

from Equation (84) which is Caughey ' s sufficient con-

dition f'or classical normal modes 

Do n-I 

[Nf[cJ[N} = L L (100) 
n: I £.:0 

by letting - all .e.;6 0 ) I , all n';':' \ 

C(I( - t9 

[~]~~]t[:]_, (~: rf~][N ir+ ~~ N j~~ K] [NJ J 
=,.< GrJ +P [NJ [K] [N] 
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On premultiplying and postmultiplying Equation (101) 

(102) 

(103) 

vlhich is Rayleigh ' s condition for classical normal modes . 

Although Rayleigh ' s result appears to be obvious when 

expressed in matrix notation it should be remembered 

that Rayleigh did not have the benefit of the use of this 

concise and highly suggestive notation . As a matter of 

fact Rayleigh introduced a Dissipation Function of type 

N N 

J)=..J.. 2- ~ (! .. >< . ~ . 
2 'j 

, .J 
(104) 

,-= I j=/ 

(105) 
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to study damped linear syste~s . 

Equal roots in classically d~ped systems : 

In this section the theore~s of linear algebra 

of interest in vibrational analysis are presented as 

\1ell as a discussion of the case of equal roots of the 

frequency equation . Some of the theorems have already 

been used but it is felt tr...at a fornal presentation is 

desirable . 

As shown previously the determination of the 

classical normal modes of a syste~ is essentially an 

eigenvalue and eigenvector problem of type 

(106) 

A Hell knO\-ffi theorem in linear algebra can be 

stated as follo1<1s: 

Let [A] and [BJ be Ii x N real synmetric matrices ll\1 
being positive definite . Then there is a nonsingular 

real matrix such that 
T [R] [AJ [I<] = I a unit matrix of order N x N 
T [I<] lBJ[ R.] =. [D J a diagonal natrix of ol'der /II 

x N • As in most practical cases [M] and [K.J ~lill be 

positive definite as \-lell as syrenetric , define CR.J 
as a natrix of order N x N such that 

(107) 
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is the unit matrix of order I'i 

(108 ) 

[a] is a diagonal matrix of order N Hhere [R..] is non­

singular . Define [p} a column vector of order N x I 

such that 

-I 

As [R.] i s non- singular [R.] ex:lsts 

Substituting Bquation (110) into 3quation ( 106) 

T 
Premultip l y ;;;quat ion (111) by [R..] 

On substituting Equat i on (107 ) and Equation (108 ) 

(109) 

(llO) 

(lll) 

(ll2) 

(ll3 ) 
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As [1)] is sYJ'1Illetric a t heoren in linear algebra 

states that the eigenvalues or Equa tion (113) are all 

real and in ract are the diagonal elements or 
Becaus e [D] is silniliar to [I<.J , a posi ti ve derinite 

matrix , thes e eigenvalues are all negative . Again ror 

any pair of distinct eigenvalues ,I. . and A. there exists 

corresponding eigenvectors {pi. J an~ {p J} :UCh that 

fpi1 and tpj1 are orthogonal . This is consistent 

with the previously derived orthogonalit y conditions 

Equation (49) and ~uation (50) . Thus i f the eigen-

values arc all distinct the eigenvectors form an ortho­

gonal base for the N space . 

Suppose now that t he eigenvalues are not all 
~ distinct , i . e . , there exists a particular X. , a root 

( 

of 

I[A'l +[01]11- 0 (114) 

Hi th mul tiplici ty fY/. It can be sholom that t here exists 

precisely M lin early independent eigenvectors associated 
~ 

\1i th this ei genvalue A i of mul tip lici ty f"\. These 

eigenvectors need not be orthogonal , however . But by 

the Gram Sch~dt orthogonalization process it is possible 

to construct orthonormal vectors which are linear com-

binations of these M linearly independent eigenvectors . 
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But any linear conbination 

solution to Equation (113) 

of these eigenvectors is a 
.l .<. 

uhen /l = /l - . Hence , each 
L 

vector of the orthonormal set derived by the Gram Schmidt 

proc ess is in fact an eigenvector . 

Thus if [M] and [K.] are symmetric and positive 

definite there exists N eigenvec tors vrhich form a complete 

orthogonal set . Hence, there is no difficulty attached 

to equal roots of the frequency equation in classically 

danped systems for t he resulting set of ei envectors 

can be nade to span the compl ete '" s ace . NOvl consider 

an ei genvalue and eigenvector problem of type : 

=0 
(115 ) 

,.here A - are the e i genvalues . , [S] is a nonsym:'letric 

matrix of order N x N , {X-'3 are the eigenvectors of 

order N x I • There are N values of i\ uhich satisfy 

the follovring equati on 

(116 ) 

Should these eigenvalues be distinct a complete 

set of eigenvectors exist . For a theorem in linear 

algebra states that for ea~h distinct eigenvalue there 

exists a vector independent of all other eigenvectors . 
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As there are N distinct roots there exists a set of 

N independent ei genvectors . Unfortunately, if one 

ei genva lue has mul t i plicity , M > I , a complete set of 

ei genvectors mayor may not exist . The criterion fo r 

the exis tence of a complete set of eigenvectors in this 

case is the degeneracy of the matrix [~ . I + B] i.here 
c 

~ t is the eigenvalue of multi plicity M. If the 

rov's of a l':'.Atrix are linearly connected by nore than 

one relation the matrix is multiply degener ate and in 

fact the degeneracy is N if there are N such relations . 

The degeneracy of [A, T + BJ must be equal t o M, the 

multiplicity of the root Ai for M distinct eigenvectors 

to exist corresponding to this root . 

The treatment of gener a lized damping E.:l: the method of 

K. A . Foss : 

If [~J is such that it cannot be diagonalized 

by the same transformation as simultaneously diagonalized 

[M] and [1<] the syst em is said to po ssess non - classica l 

or generalized damping and the methods of solution pre-

sented above are not applicable . K. A. Foss has developed 

an interesting method for treating some cases of gen eraliz ed 

d~~ping . The essence of this method is to introduce a 

.:( N space in vlhi ch the equations of motion of the system 

can be uncoupled . A revi ei" of Foss I s method for forced 
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oscillations of linear damped systems is p res ented . 

Equat ions of mot ion of linear damped systems; 

(117) 

By the introduction of a :pair of -<NX / col= vectors 

{ll "[i:~ 1 (118 ) 

(119 ) 

and the follovling set of matrices of order -< IV' x ..:?N 

(120) 

(121) 

vlhere [x.J ,[xl ,{o~ and f.fCd} are col= vectors of 

order N x I associat ed Hith Equation (117) . [M] , 

LKJ and [c.J are matrices of order N x N of the orig i nal 

linear damped system . 
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Equation (117) ca.T'\ nOH be reduced to 

(122 ) 

as ~quation (122) on performing the matrix multipli­

cations reduces to 

l M] [x} [oJ 
= 

(123 ) 

Equation (123 ) is equivalent t o Z equations . 

(124) 

( 125) 

:::;quation (124) is an identity .,1hile :equation (125) is the 

original equation of motion Equation (117) . To solve 

Equation (123) by classical methods first solve the in­

homogeneous Equation 

(126 ) 
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This is also the free vibration equation for the 

damped linear system transformed to 2N space . As vibra-

tional solutions are expected 

Let 

(127) 

vrhere [11 is a column vector of order 2# x I • On 

substituting Equation (127) into Equation (126) 

(128 ) 

.Lot 
On dividing :2:quation (128 ) through by .e and rearrang-

ing 

(129) 

Equation (129) may be further reduced by premultiplying 
- / 

by [p] , provided it exists , and dividing through by ~ 

(130) 

Equation (130) is in the usual form of an ei genvalue 
- I 

problem. That [p J exists may be seen from the folloVT-

ing 

Let (131) 
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lThere [a.] , [t] , [C!.] and [d] are matrices of order N 

C -I 
x N. If pJ exis ts then on using Equation ( 131) and 

Equa tion (121) 

[0-] = 

[1,.] = 

- [M] 

[ oJ 
[oj 

-[a.] [MJ 
= (132 ) 

-[~] [M J 
- / 

(133 ) 

- I 
[c.] '" 
[d] = 

- [p,,-I . t •• ~ eXlS s 

[I<.] _I 

as LM] and [I<.J -/ exist if [M] and [KJ 

are nonsingular . It is not n ecessary that [M] and [KJ 

be nonsingular in a physically realizable s y stem. 

Hol-lever, those cases Hhere either [M] or [KJ are sing-

ular , generally ar_se in p ractic e from over- simplifi-

cation of the physica.l system, and 1-1ill be neglected . 

-I 

LPJ.:: [0] [K]-I (134 ) 

o I 
-I 

[p] [R.] = _I _I 

-[ k.] [M] - LK1 [C!.] ( 135) 
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vrhere [u.] is a matrix of order 2("( x 2.1'1. Substituting 

Equation (124) into Equat ion (119) and rearranging to 

a form more suitable for numerical vrork 

(136 ) 

This is an eigenvalue problem and so as lu..] is non-

s~1I1etr ic , except in -:;he t rivial cas e Hhen 

(137 ) 

[KT' [c ] is a symme tric matrix 

e .. g"i t 
-. 

[KJ = [141 
[KJand [c ] are diagonal matricee 

.< N i nde:1ende:1t eigenvectors ~ay e::ist only if t here 

are .:(N distinct roots 0:: t he frec:.uency equat ion in 2N 

space 

o (138) 

For eac h distinct root ~, of Equat:l.o n (127 ) 

there e;:is ts an independent v e c tor {cj"} . As stated 

!Jreviously a root of ,.lUltiplicity M !.1ay or :.1a:" not have 

M assoc iated linearly i ndependent eigenvectors . ~he 

eiGenvalues %Li of ~quat ion (125 ) nay be purely real , 

corml cx 0 1' purely i naginary , but for a st'lbl c system 



the real part of eaeh ~_ ~ 0 • , s [~J contai n s only real 

e lel'lents the e 0rl? l ex roots L'.ust :'Orr.l sets of comp l ex 

conjuBate roots . For each conp l eJ: conjugate r oot pair 

the elenwnts of the corresponding e igenvectors are also 

e onpl ex conjugates . 

Orthogonali t y conditions in ;zLf s pa ce: 

Assume that (~J is sue J. thnt t here e):ists a eom­

plete set of ~/II eige::lVe c tors f f <.} a.."rld distinct e i een­

values ~, 
Let {r. J = [~j 1 ~..Ljt 

On subntHutil1['; ~quut ion (139 ) 

d ividin::; both sides by L o/..;-t-

Again l e t 

(139 ) 

into :quuti ol1 (126 ) a.."rld 

(140 ) 

On substitutinG Equat ion (141) int o Lquat i on (126 ) and 

d ividinG both sid es by ~ u0.L
t 

(Jl:.2 ) 



Transpose Equation (140) and C?ostnult i~ly by {~£ t 

?renultiply Aua'cicn (Jl;2) by {~,qJ T 

On subtracting 5quution ( 144) from ~quation ( ~3) 

(145) 

::. 0 
(146 ) 

j:;¢ L • 

On substituting 2quc.tion ( 144) 

o 
j:;r£. 

( Jl~7) 

~quat ion (146) and ~uaticn (147) are analogous to the 

orthogonality conditions previously obtained u ith class-

ical nO!Tlal modes . 
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Basis of Foss ' s ~ethod 

It is :;ell to note the :r ole basis of Foss ' s nethod 

rests on the assul":lption that 

tll 
{)(J 

= {x} 

1The~e [f} is a coltu~ vector of order ;ZN x I • Prom 

=4 a tion (1l ~3) 

(Jlt9 ) 

uhere {~J is a colurm vector of order tV ~;: I 

(150) 

On s ubstitut~nG ~q ation (149) and =4uat i on (150) into 

~<,quation (148 ) 

(151) 

nO',r nO'G a ll systens are such that 

( 152) 



for take the case of a classically dD.JlI]lcd systc:-:l suc}l. 

t:l.at tne i. tI, uncou?led equation 

M .. ;; 
tl l;' 

C -+ K·· 7 = 0 -+ .. i] Lt· 
II vi. l 

has solution of type 

( ) 
.,/ · t 

fl· + B t £.. l 
L L 

I·There ~. -
t 

(
_ );t. e·· 

..t~tl' -

:c!ere {X 1 = 

{x} ~ (A i. +- B t t) ..e ..ci t {..(; 9'> i J 
-t- BL L..(.J {~L } 

:. in t;-,~ s case 

{..(; <P, 1 -</ 
of Bi L 

(153 ) 

(155) 

(156) 

(157) 

(153 ) 

It is not ~ossible to exnress ~ouation (15~) in - --
the forr.l of :Squa tion (151) a...""l.d so Foss I S :notll.od do os not 

give a solution in this case . 
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ExnandinG tho orthoGonality condit ions in toms of 

Datrices of the systeD: 

Fron ~uation (151) ond :'::quat i on (143) 

(159) 

Substituti..l1G :";qu::.t ion (120) and :;q ['.tion (159 ) into 

;:;quat ion (146) 

T · T 

(.t,l +-{) {~jl [M] {4>.L} + {1/} [c] {f .L J == 0 (160 ) 

L*j 

gc.in on o::pand:"J1g the Znd orthoGonality cond5.tion 

..;quation (147) 

. T T 
_~~)[1>J} [M]{4>L}~{~j} [KJ{cp~~ =0 (161) 

.L. f j 
Complete So lution of' Generalized DD..i_ vc. !,inear Szstems 

E.;z: Foss r s . ;othod : 

Eaking use of the orthogonality condi t ions :'::quation 

(:U~6) and "::quat ion (147) it is nOll possible to construct 

tho conplete sol tion to tho eeneralized damping problem 

by J?oss r s nethod, ?l'ovided the roots of the frequency 

equat i on are distinct . 

The oquation of' ~otion in 2IV spac e 

(162 ) 
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Let 

{~} = [51]{3J (163 ) 

H:'lCrc [Q] is a natri:t of order 21'1 x. 21'1 the col=s of' 

uhich are the {~~ } r s . .Ga.ch 

and [51 is a. C 01UlnIl vector 0:.:' order .2N' x / • 

stitutinG ~quation (163) into Equati on (162) 

T 

Premulti l y :squat ion (165) by [SlJ 

.. -t/, 
ITOH the ':J e l ement of 

. . f:J, 
the ~ el ement of 

(164 ) 

On sub -

(165 ) 

(167 ) 

(16 8 ) 
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Eenco on usinG the orthogonality con itions Squution 

Oh6) acJ.d ::;quution (ll~7) , Equat i on (166 ) reduces to a 

set of uneo ? l ed equation s of type 

(169) 

ilOH 

and 

(171) 

?ron Equation (~~O) 

(172) 

On premultip lying ~uation (172) by 

(173 ) 

On substitutinG ::;quution (173) into ::;quution (169 ) 

(174) 
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:·rhere Ri a scala r , is defined 

(175) 

As the {pL.} ' s forn a comp let e set it rw:y be assumed 

tha t fF (t) l c an be e;:na11ded in terns of t he r.1odal v ectors 

as fo11oils 

..2.tV 

{~(t)} = 2. An CR.J f~n} 
" "'I 

T 
Premultip 1y Equation (176 ) by {~rn} 

T 2# 

Hml {~(i) 1 = L: 
"~I 

(176) 

(177) 

On using the orthogonality c ondit i on Equation ( ll.~6 ) 

Eauat ion (177) reduc e s to 

(178) 

(179) 

(180 ) 
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On substituting ~quation (180 ) int o ~quntion (176) 

[F(t) 1:0 f {~n If F(t>1 [R.]{ ~ nl (181 ) 
n ~ I R.

n 

(183 ) 

(1 4) 

?ron Zqunt i on (183 ) on prenultipl-inS by [M) 
-I 

(185 ) 

:I.I{ . 

nou {zl -'" L 11>'~ ). 
(.=1 

~fhere Jl' is '~::e soh,t i on of eC".,at i ons of ::;q ation (174 ) 

. r = -' J: ,(~ (I:-Z) H 'ffF(z>f dl + fliL -<it 
. . ) i R., ( 186 ) 

" 
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l1here Ili is an arbitrary consta..,t depending on the 

initial co~ditions . Fron 2quation (lG6 ) 

(188 ) 

On eX3lundinc:; Equation (188 ) 

On se- arating out Dquat ion (189) 

As a check calculate {xl fro~.l Equat ion (191) 

(192 ) 
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On substitutinG .o:quat ion (185) into ...;qua-c i on (192 ) 

Equat ion (193) is the smle as 3quati on (190) ~,d thus 

if the £~<'l ' s fOrL1 a cormlete set ffOSS ' S ncthod doos 

in fact sive the scI tion to a generalized da~'ed sJst~~. 

Comnlex ~oot s ~,d ~i5envectors give real solutions : 

Take 

of. -
~ 

.(. 
t ... N ( 19~_) 

fAll and f~'-"'''l 
(~ I {~ ~ are t~o nodal columns cor~esponding 

to -<- and ,(i~n ' respectively . r:auat ions of r.lotion in 

.:J. IV' spac e 

[.e]{z~ +lPJ[Z} = 0 (195) 

Let 

[z 1 (196) 

On substitutinG ~quation (196) into ~quation (195) 

(197) 
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Let 

{l] 
(198) 

On substituting Equation (198 ) into Equat ion (195) 

(199) 

Taki nr, comp lex conjugateH of Bquation (199 ) fu,d sub­

stituting Equat ion (194) 

(200) 

On cOMparing Equation (197) and Equation (200 ) 

{ r1 0( { FJ (20~) 

On normalizing t cfJ and f fT") Equat ion (201) reduces 

to 

( 202 ) 

From Equati on (186) 
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Taking compl ex conjugates of Equation (203 ) and sub­

st i tuting Equati on (202) 

(204 ) 

From Equati on (203) 

(205) 

-
if ,4. = If. 

t <+n (207 ) 

But (208 ) 

lfhere a t t: O . 
T 

by trL] [R.] On premulti plying Equation (208) 

(209 ) 
I~ I 
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On using the orthogonality condition Equat ion (146) 

Prom Equation (210) 

From Equation (210) 

. T 

Ii . = {~<'i-nJ [RJ {~(o)1 
L 

H i.+nf" [IC ] t iF i.+n J 
By Equation (207) 

- II - . 
i -for] 

~. = l+n 
.'. contribution to ~ {-e} i'rom 1.. and .<. ~ 

t trn 

j·There .,c. = oL. 
( ,t .,<n 

{Z (r)J, = 1 [~ L } + h+n {pU"} 
= fz {~'J + t tpL} 

== -2 Ri' J. {p lj 

(211) 

(212 ) 

(213) 

(214) 

(21.5) 
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contribution of ./.. and '<" . to X
J
' , ,+n 

(217) 

Derivation of Caughey ' s conditions from Foss ' s ortho­

gonality condit i ons : 

It has already been remarked that any root <,' 
can be either purel y real or a complex con jugate of 

another root . The caso of purely real roots corresponds 

to overda.mped vibrations and \o1ill be neglected in the 

present section . If only complex conjugate roots are 

considered, it is ShOl'm, that t he necessary and sufficient 

condHions for real {<p ' } in tV space is that [e J be 

diagonalized by the sane transfonnation as diagonalizes 

LM] and [KJ. Real {p L} Hi th comnlex roots implies 

classical normal modes as discussed above . 



56 

Orthogonality condition derived in Foss ' s method Equation 

(160) 

· T T 

(Lt + ~) { ~ J J [n] { ~ L} + f ~ j J [C ] { 4> 21 = 0 ( 218 ) 

~ake 2 pairs of cocplex conJougate roots / J ~. 
1(£ ' <><-.e -I- n ' Y 

and ..to such that ~ = .J. ,L-I-n} J "<1'7 

. -S = ~'+n 
The vectors {~( J corresponding to tt'10 complex 

conjugate roots .(. and ..L., are such that 
t t~1? 

(219) 

liot·r if {<j> "} 8...''ld {~J J are real vectors 

(220) 

(221) 

From Equation (218 ) on lotting 

(222) 
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On taking the conplex conjugate of Equat ion (222 ) 

(223) 

On substract ing Equatio~ (223 ) fron Equation (220 ) 

(224 ) 

as -<'..t. and ~. are distinct cor.lp lex roots Equation (224) 

reduces to 

=0 (225) 

j :t: .t.. 

or 

(226 ) 

On substituting Equation (226) into Equation (218 ) 

(227) 

2 "J. 
On substituting Equation (227 ) into the orthogonality 

condition (EqUation (161) ) 

(228 ) 
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it fol101o[S that 

=0 
J ~ .£.. 

(229) 

Equat ion (226), Equat ion (227 ) and Equation 

(229) are the conditions for classical normal modes . 

Hence, \-lith distinct complex roots of the f requency 

equation all real modal columns are possible only if 

the system is classically damped . It should be noted 

that it is possible for any tHO modal columns to satisfy 

Equat ion (226) , Equat ion (227) and Equation (229) even 

though the system is not classically damped . This is 

so because for classically damped s ystems all the roots 

must satisfy relations such as Equation (206) , Equation 

(207) and Equation (208 ). 

Excitation of pure normal modes ~ classically damped 

s ystems : 

At this point it is of interest to discuss one 

remarkable difference betvreen cla ssical and non- classical 

damping . The equations of motion of linear damped systems 

(230) 

Now examine under Hhat conditions it is possible to 
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excite a pure normal mode . If the systen is classically 

damped let 

{xl = [Q] {~l (231) 

T 

Hhere [~] [MJ [~J is a diagonal matrix of order N x N 
T 

[G2][KJlQ] is a diagonal matrix of order N x N ,. 
[QJ[C] [Q] is a diagonal matrix or order N x N 

On substituting nquation (231 ) into Equation (230) and 
T 

premultiplying by [Q] 

TTl 

[ Q ] [M ] [Q] {t 1 + [Q] [e ] l Q] {i J + [Q ] [KJ L ~ ] { z 1 =0 ( 232 ) 

If' the j th mode has to be excited 

o 
o 

a colunm vector of order N x I 

(233 ) 

(234) 

with all zero elements except (235) 

the j th element . 

The system of equat ions Equation (233) are of type 

M .. ',' + e. .. ~. ~ K. .. ~ - 0 u. ' Ll ' u. . 
l l L 
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To satisfy Equation (235) these equat ions must have 

solutions 

~i.(t) = 0 

1,i(t) '*' 0 

all 

~i. (0) = i/o) dll ~ ~ j 

but 

(236) 

(237 ) 

(238 ) 

Equation (237) and Equat ion (238 ) give the initial 

displacement and velocity distributions necessary to 

excite a pure normal mode in a system "lith classical 

damping . It may be noted that it is necessary to specify 

both the v elocity and tho displacement distributions 

but that the relative magnitudes of the velocities and 

the displacements are arbitrary . Thus , if a system 

possesses classical damping it is ahmys possibl e to 

excite a pure nornal mode by an initial distribution 

of displacements and velocities . 
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To force excite a pure normal mode in classically damped 

systems : 

The equations of motion of forced vibrations of 

danped systems 

Let ( 240) 

On substituting Equation (240) into Equation (239) and 
T 

premultiplying by [~J 

T T T 
[QJ [~] [Q] {it + [~J [eJ [q]{i} + [Q] [K] [Q] hI (241) 

_ "r 

TQ] {~(t) J 

To excite the j~ normal mode assume zero initial 

conditions .. . 'Zj (0) =- i/o) .: 0 all j • 
Let 

T 

[Q] {F(~l} == {G(t) 1 (243 ) 

where {(!(t") ~ is a column vector of order N x I and .'lith 

elements j i.(t ) 



then 

~ "t (to") 

Zj ("t) 

Thus to excite 

'j/t) = 0 

'3;"(d * 0 

=. 0 

* 0 
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all '*" J 

the ji:h nOITlal mode 

o 
o 

o 
a _I 

From Equat ion ( 246 ) as ([~{) exists 

(244) 

(245) 

(246) 

l-There :Jj (t) may be any function of time . It is interes­

ting to note that it is possible to force excite the 

system to vibrate in a pure mode a t a frequency other 

than that of the natural frequency of the mode . HOHever , 

for a g i ven fo rce l evel the largest r esponse Hill be 

obtained from the system l-lhen the fo rcing frequency is 

approximately the natural frequency of the mode . 

Exci t ation of normal mode s in non- clas s ically damped 

systems : 
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As 1vas already discussed if the roots of the 

frequency equation are distinct in a non- classically 

damped system normal mode solutions vlill exist . HoH­

ever , due to the non- symmetric matrices involved li t tle 

can be said in thc case of repeated roots . Although a 

system nay not be so lvable in terms of normal nodes 

for arbitrary initial conditions and forcing functions 

a solution of type 

(248 ) 

Hhere f ~ 1 is a eigenvector , may exist for certain 

initial conditions and forcing functions . In the present 

context such solutions .1111 be looked upon as normal mode 

solutions . To discuss the excitation of pure normal 

modes in non- classically danped systems it is necessary 

to distinquish three cases corresponding to the roots 

of the frequency equation 

1) complex conjugate roots 

2) real roots 

3) equal roots . 

In passing it should be noted that any physical 

system may have roots in each of these three categories . 

In the se cases i t is necessa r y t o appl y the follo\-ling 

theory to each t ype of root s eparately . 
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Complex conjugate roots : 

In the <'" space the equ at ions of' motion are 

(249) 

As ShO'ffi previously if' the jth mode is excited 

(250) 

In the f'ree vibration case {~( /;)} = 0 Equation (250) 

reduces to 

(251 ) 

(252) 

(253) 

(254) 

From Equation (253) and ~quation (254) the initial con-

ditions necessary to allow the sy stem to vibrate in a 
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pure normal mode are 

(255) 

(256) 

Equation (255) and Equation (256) ShOH that in the case 

of' non- classical damping \-lith complex roots of' the 

f'requency equation the relative magnitude of' the initial 

displacement [x(o) 1 and initial velocity [i«o)l necessary 

to excite a pure normal mode is f'ixed . This should be 

contr asted "lith the classically damped case .. There although 

given initial displacement and velocity distributions 

are necessary to excite a pure mode the relative magni-

tude of' these distributions is arbitrary . 

Having established t~~t a pure mode may be excited 

by a suitable cho i c e of' initial conditions it is nOH of' 

interest to determine if' it is possible to f'orce eAcite 

a pure mode . 

The impossibility of' exciting a pure normal mode 

in a non- classically damped systen, .c,. complex , by any 

arb:trary distribution of' f'orce and zero initial condi-

tions Hill nOli be demonstrated . Equations of' notion in 

~N space 

(257 ) 
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If the roots of the frequency equation are distinct the 

{ pi} I S form a complete set . Let 

(258 ) 

On substituting Equation (258) into Equation (257 ) and 
T 

premultiplying by [pJ 

By the orthogonality conditions Equat ion (146) and Equation 

(147 ), Equation (259 ) reduces to 

(260 ) 

To excite the jt~ mode it is necessary that 

"J . (t) '*' 0 .,. (t)4o 0 'I. Ct):. 0 all i. =#= j, j+n (261) 
~J (,J~n (,L 

Let 

\·rhere 

o 
o 

(262 ) 

(263 ) 
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ITOly as the tpi.} ' s span the 2tV space 

AN ' 

{F(t) 1 = L 8£ [R] {if 
i-i 

premultiply Equat ion (264) by 

On using the orthogonality conditions 

' T 
{cpJ} {FCt;)J 

• 13 , . . "./ = {<}j([({] {~j} 

On substituting Equation (267) into Equat ion (264 ) 

'T 

(264) 

(266) 

(267) 

:ltV {~l} {;:(t) f ' 
{F(t)} = L ' T ,[~] {4>(,} (268 ) 

i=1 {~'1 U<]{~~J 

Using ~quation (260) on separating out the jth equat ion 

,€ "t' + ft" 'I. j}' JJ' 
:J 'J 

= .J., (t) 
:; 

(269) 
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But 

I?jj = {~irl~1~ f1 
(270) 

I'~\ = l f '~)T[ 1'J\ ~11 
(271) 

d itt) -= { Pf {fC(UJ 
(272) 

Substituting these equations into Equat ion (269) and 

rearranging 

t £1~Tll'J\. ¥ i \ 
{ t\~Ttjt r~ ~ i = 

f!~~ r {F (tl} 

{p~~lR1 {p) (273) 

It folloHs from Equation (273) thnt if the .~ tl. mode is 

forc e excited 

1fYTml} 
{frl"Rl{ f\ 

- 0 
(273- ) 

all i. *), j .... N 

From Equation (267) condition Equation (273) reduces to 

all i PJ,j +N 

Using Equation (264 ) and Equation (274) 

~N 

[FfC)] = L. 7f, [1..][ t r 
, :1 

(274) 

(275) 
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(276) 

(277) 

(278) 

(279 ) 

(280) 

As [M] is generally non- singular Equation (279 ) reduces 

t o 

(281) 

Let ; . = a ~ i? 
J 

(282) 

f + j} :: [ ~~ } + i { ~ i } (283) 

I 

j [ j 
Hhere t ~ Rt~ and tr 1 are real vectors 
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Substitute Equation (282) and Equation (283) into Equation 

(281) 

, 

{o ~ - a. {t~ ~ -, [~~} (284) 

From Equation (284) 

ei ther 'l = , = 0 (285) 

or (286) 

Equation (285) implies that [J(t)} = 0 and if this 

equation is satisfied initial conditions are the only 

possibility of exciting a pure nornal mode . 

Equat ion (286) implies that {4>J} as given by 

Equat ion (283) is merely a complex scalar tiMes a real 

vector . This is the case for classical damping and so 

it is iMpossible to force ex:cite a pure nornal mode in 

non- classically damped systems >-lith conplex roots to 

the frequency equation . 

Real Roots : 

, If -/... . is real then the corresponding e i genvector 
~ l 

{.p ~ is also real . Equations of motion in ~tI space 

(284 ) 
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NOVI 

fl~=[~J[~(t)l (285) 

assurring the f~fJ I S span the space . To excite the j-th 

!'lode {Z (tJI must have f'OI'l'l 

o 
o 
o 

From Equation (285 ) and Equati on (286 ) 

" 
j 

Premu1tip1y Equation (287) by {4 J [~] 
. T . T · 

{~jl [R.] {-r(o)1 = {pJl [R] {<pJ~?j (0) 

. T 

ttPj}[R.]{lCO) ~ 
. T • 

[pJf[RJ t~J} 

2/°) = 0 l.=Fj 

:. if 

{r (0 )1 
j 

- [t? 11' (0) 
J 

(286 ) 

(287) 

(288 ) 

(289 ) 

(290 ) 

(291) 
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the jth mode i s exci ted . 

Equat ion (291) on expanding 

(292 ) 

(293 ) 

(294 ) 

Again it is seen that t o excite a pure nornal 

mode by initial conditions there is a required relation-

ship between the re l at ive magnitude of the ve locity and 

displacement distributions . The impossibility of force 

exciting a pure mode in non- clas si cally danped systems, 

\,li th real "-. , \,lill nOH be demonstrated . :;:;quations of 
t 

mot ion 

(295 ) 

Let 

(296 ) 
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On substituting Equation (296) into Equation (295) and 
T 

premultiplying by [~J 

On using the orthogonality conditions Equation (297) 

reduces to 

(298 ) 

This is a set of uncoupled equations and to exc i te the 

jtJ.. mode uith zero initial conditions 

T 

[ ~ Jf F(·t) ~ = {G<'~)! (299) 

where 
C> 
0 
0 

{G-(t)~ = ;it) (300 ) 

o. 
0 

.f.;°ft) * 0 (301) 

But 

T 

[ T TJ rOI } [~] fF(t) l = [0( 4>J)~] fj(t>l 
(302) 
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,. 
I'There (.( c\> ] and [<p J . are <1'1 x 1'1 matrices of type 

H'l 
T 

{ cp.1JT 
T " 

[t> ] = f~.'+NJT (303 ) 

. T 
[ ¢' ~,..~ 

On substituting Equa tion (299) and Equation (303) into 

Equation (302) 

On comparing Equation (300) l-rith Equat i on (304) 

(305 ) 

Hhere h lj is Kro.nec kers delta . 

The :</'1 elements of' [G(t)l may be split into tHO 

group s of AI elements as follo1'1S: 
I T 

HUrl 

'" elements (306) 

" 

"T 1'1 elements (307) 
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Suppose that the element :J' (-I:) * 0 is in the first 
'J L 

set of Ii elements Zquat ion (306) . Nou the {+ 1 · s, 

.t = ',2 0 0 or{ being N dimensional vectors may fom a com­

plete set for the '" s pace . Suppo se the {<p L l' s do in 

fact form a cooplete set . Then any 

(308) 

On postmultiplying Equation 

N T 

~ aI-A:. {cj,r"l {[(t)} (309) 

~=I 

If the £~t-4"'~ . s i=I,.2 oo r-l form a coop l ete set it is clearly 

possible to satisfy Equation (305) for j = I,.l, oooN • 

from Equation (309) on substituting Equation (305) 

L+r<. T{ 2 
as qt 0 ± 0 in g eneral f 4> J Hi) ! 

';/ 

'*=0 

But 

(310) 

(311) 

fA. ~ ] 
Therefore , if the 't' • s i.e V:o rJ span the N s pace 

it is n ot possible to select fHt)t so that {G.-(t)1 Hill 

have the fom given by Equat ion ( 305) . Thus it is not 

possibl e to force excite a pure normal mode in non-classically 
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f~ ~ 1 I S damped systems with distinct real r oots if the i ) 

I,Z···· .1'1 span the N space . 

Equal Roots : 

As Has mentioned previously the case of equal 

roots of the frequency equation in non- classical darnping 

cannot be readily analyzed due to the non- symmetric 

matrices involved . As [UJ has form given by Equation 

(135) o 

[u] = (312 ) 

the rank of [«- .AI] must be at least N as the I matr ix 

in [u.] is non- singular . Thus for ~N distinc t eigen­

vec tors in the 2N space at most N equal roots of the 

frequency equation can exist . However , there is no gua-

rantee that \-lith roots of any multiplicity M ~ N a complete 

set of eigenvectors "Till exist . It is interesting to 

note that the above facts fit in rather nicely "lith the 

classically d~~ed system. In this system it is possibl e 

to have N equal roots ~ these roots corresponding to a 

solution to each uncoupled equation in the N space , and 

still obtain a normal node solution of the type Foss 

assumes . HO;'lever , should a classically dar.:tped system 

possess equal roots uhich correspond to two equal root s 
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of an uncoupled equation a normal mode solution of the 

Foss type Hill not exist . 

Excitation of ~ node in ~ of equal roots : 

If a complete set of eigenvectors exist in the 

2N space then the treatment of equal roots is s~liar 

to the cas es already discussed . If , hovrever , the num-

ber of possible independent eigenvectors is less than 

1M , the discussion given above does not apply. 

It llill be shovm t hat it is possible to excite 

a pure mode by initial conditions in a system 'l-li th equal 

roots . T'ne equation of motion in 2 N space is 

(313) 

if .(i. the repeated root is cornpletethere exists -<-I. +i'/ 

such that 

o{i = {i+N (314) 

for each -<.. repeated . Solution to Equation (313) 
{ 

Ili :f: 0 

From Equation ( ] 15 ) if 

a normal mode solution ,rill exist . 

(315) 

(316 ) 

(3171 
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Equation (317) reduces to 

{x(o)} = .2,('L{~. Hi.J)Ai (318 ) 

{x (o)} -= z,e./ ([ 4/}) ~. (319) 

Thus , if the initial conditions are given tJ Equation 

(318) and Equation (319) a pure mode Hill be excited . 

NOvl in the case of equal real roots a solution of type 

(320) 

(321) 

l'1here ~ is real, exists . Again if 

the i t'h mode is excited by initial condi tions . Equa tion 

(322) reduce s to 

(323) 

(324) 

Unfortunately in the case of equal roots and an incomplete 

set of eigenvalues nothing c&~ be said about the p ossibility 

of forced excitation of a normal mode . 
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Other methods or solving generalized damning nroblems: 

As ,vas noted previously a normal mode solution 

Hill ahlays exist in classically damped systems . A 

mode solution may not exist in the case or equal roots 

or the rrequency equation in non- classically damped 

systems . 

Ir a normal mode solution does in ract exist it 

is always po ssible to solve the problem in IV space <lith­

out transrorming to the 2 AI space . Equation or motion 

or damped system in N space 

o (325) 

As a mode solution exists 

(326 ) 

On substituting Equation (326) into Equation (325) 

(327) 

On rearranging Equation (327) 

(328) 
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For non- trivial solutions of Equation (328) 

This equation reduces to a polynomial of degree :<1"; in 

A and thus there are .2N values of A Hhich Hill satisfy 

the equation . Corresponding to each A' there exists a 
< 

{ J- i 1 
~ 5 such that ~quation (328 ) is satisfied . 

To determine {<\>1. J corresponding to a particular 

" . pro c eed as follOl-Ts : 
L 

On expanding 
X- . c + ,11,,+ A, " K" 
j\"M +)..·C +1< 

".2, c..,2,1 at 
• 

(330) 

r:ove colurm 1 to the right and omi t ro\o1 1 
< • ( ,. <l 4' )"M ~). . c. +" ) 
;. I L:l1 l.t, J., 

(331 ) 
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This set of' f'\ - I equations !'lay nOll be solved by Craner ' s 

method . For each ILi there e;dsts a corresponding [4>;' f 
and so 

(332) 

i"There lQ.] is a matrix of' order N ;, 2.'" f'omed of' the modal 

columns {4>'t 

{ ~ tt)! is a column vector of' order .;# x / 

7(t) - 4
i

L;it. C (333) 
t 

To complete the solution to Equat ion (325)it is necessary 

to pl'escribe a value to [x (t>j and [ide) ! at sone point in 

time . Assune 

at t= 0 (334) 

at t = 0 (335) 

On substituting Equation (33L~) and E_uation (335) into 

Equation (333 ) 

(336) 

(337) 

(338) 
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There ar e .21'1 l.Ulknolm /};. I s and there are :ltv' equations 

in these l.UllmOl-ms , Equation (337) and Equation (338) . 

The orthogonality relations of generalized damped systems 

in ti space: 

The equat ions of mot i on in N space 

[MJ {X } + [K ] {X ~ + [K ] {'A J =- 0 (339 ) 

(340) 

On substituting Equation (340 ) into Equation (339 ) 

;.:. [MJ [~jl+ fi.. [eJ Hjl~[KJHjl = 0 
J J 

(341) 

Let f X J ,. t ~ L }..l .(i t (342 ) 

On substituting Equation (342 ) into Equation (339 ) 

(343) 

Transpose Equat ion (343 and postmultiply by 
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As [MJ ,[ CJ and D< ] are symmetric , Equation (344) 

reduces to 

On premu1tip1ying Equation (341) by {~L}~ 

On subtracting Equation ( 346) from Equat i on (345) 

On di vid:tng through by ( A. - ~.) 
, J 

Hu1tip1y Equation (345) by 

Eultip1y Equat ion (346 ) by A· , 

(345) 

(349) 

(50) 



84 

subtracting Equation (350) from Equation (3L~9) 

(351) 

Dividing Equation (351 ) by 

(352) 

Equation (348) and Equation (352) have been derived 

previously by expanding the orthogonality conditions 

in ZI'I space associated lIith Foss ' s method . 

To solve the forced vibration problem it is much 

simpler to use Foss ' s method than to solve the problen 

in N space . The main advantage of using II space for 

the solution of the homogeneous equation is that the 

matrices are of order N' x tV , whereas , in ZI'I spac e the 

order of the matrices is 21'1 x ..zl'l. In dealing "Ii th 

systems lvi th many degrees of freedom this consideration 

may be important , especially 1-1hen using a limited storage 

digital computer . 

Integral Trfu~sform Techniques : 

Until Foss developed his method for handling 

generalized damping most non- classically damped systems 

Here solved by transform methods . Although straight-

fOrl-lard in application the use of transform techniques 
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leads to tedious algebraic Hork . If a system does not 

possess a mode solution it may be very difficult to 

obtain a solution without the use of transform methods . 

In the next section a systen that does not possess a 

mode solution Hill be solved by Laplace transform, the 

integral transform technique most frequently used in 

engineering analysis . 

Numerical Examnles to Illustrate Sone of the Theory 

Developed Above: 

In a later section of this thesis tHO fully worked 

examples of classically and non-c lassically damped systems 

Hill be presented . Here , a few exampl es of "systems that 

highlight some of the above theory , are given . 

Exanrole 1: 

Non- classically damped system .lith 

freedom . Equation of motion 

Here 

[0
' 01 [M] ~ J 

degrees of 

(353 ) 

(354) 



[1<]= [' - '] 
-I 3 

[eJ= fZ -'J 
l-' 3 
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(355) 

(356) 

Let [~J be the matrix of order .2 x 2 uhich sinultan­

eously ~i~gOnalizes [MJ and [ KJ. It is eas y to shovl 

t hat 
1-5 

(357) 

and 
1+.25 - , 

(358) [~J [Qj = 
M,l( 

-/ 7-2.1;: 

From Equat i on (358 ) it is seen that this system possesses 

non- classical damping . I n the notation used previously 

1 
[LtJ = (359) -, 

-[KJ [c] 

where [ oJ and I are matrices of order :2 x 2. • From 

Equation (355) 

-I [3,,' ] [K] = t (360) 
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To deternine ..f. 

lthere [q, ~ is a modal column of order 4- x I • From 

Equation (361) 

Let _I = A 
..t.. 

(362) 

(363) 

On substituting 3quation (359) , Equation (360) and Equation 

( 363) into Equation (362) 

-), 0 0 

0 -).. 0 

-~ I -li-).. 0 = 0 
.z -:r (364) 

-1.. I _1.. -)- ). 

2 -Z z 

From Equat ion (364) for non- trivial H} 
-,\ 0 0 

0 -A 0 

_3 I -z"i-). 0 .:0 

:t -:r (365) 

-.1- -;k _1.. -/-
.z .z 

Equation (365) reduces to 

4 
ZA 4- 7/ z 

+ '1 A +5 Ii + I = 0 (366) 
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There are four roots to Equat ion (366) 

A= -/ -/ -I-i.. 
.J ) ) 2 

-I 
) 

-/ 
) 
-/ -2 

.J 

(368) 

Thus this system has a root of multiplicity three of 

the frequency equation . As t he system is non-c lassica l , 

a mode solution may not exist . Tne follo.ving calculations 

shot·, that only tHo independent eigenvectors are possible 

and thus the system does not possess a mode so l ution . 

From Equation (364) 

-A 0 I 0 

0 -).. 0 / a. {o } 
-.2- -.zi-A = (369 ) -.!.. 0 -? 2 .z 
_.1. I - I -/- ).. C Z -:z 2-

vThere 

HI = 
Q 

l-
(370) 

C 
Taking A= -/ and on performing the matrix multiplication 

Equation (369) reduces to 

+ .t- o 

a. ... (!. 0 

= (371) 
-i -1 ~ -.Jt 0 :z 

I -Q.. - ~ 0 -2: 1: 
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For Equation (371) to hold i t is easy to verify that 

the fol101-1ing values of a. ,,g. and C are required . 

a.=o (372) 

(373 ) 

(374) 

(375) 

A = - I 

Thus there is only one eigenvector corresponding to the 

root , A = - I , of multiplicity three . 

Similarly it may be shown that the eigenvector 

corresponding to the root A" - ~ is 

- I 

-~ 
(376) 

Yz 
Therefore in this system only tHO independent 

modal columns can be obtained and in general a mode 

solution is not possible . It is of interest to pursue 

some of the properties of this examp le a little further . 

The equation of motion of a damped system in N space 

(377) 

is a solution (378) 
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substituting Equation (378) into Zquution (377) 

(379) 

(380) 

NOH in classically damp ed sy stems Equation (380) 1'1hich 

is a quadratic in .t..i gives the tHO values of -<i which 

correspond to the eigenvector t~i} . In the present 

system it l-1ill be Sh01ID t hat equations of type Equation 

(388) bring in an extraneous root which does not satisfy 

the frequency equation and hence is not an eigenvalue . 

Substitute Equation (354 ), Equation (355) and Equation 

(356) and 

h t_1 == f~} (381) 

into Equation (380 ) and on simplifying 

(382) 

From Equation (382) .i_/ = -/~ -/ (383) 

Similiarly on substituting Equation (354 ), Equation 

(355) and Equat ion (356) and 

(384) 
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into Equation (380) and on s~lifying 
2-

..c..( -f7L..,t, =0 

From Equat ion (385) 

(386) 

The root ,.c' = -%' l1hich does not satisfy the frequency 

equation, 

(387 ) 

is extraneous in this cas e . 

Examnl e 2 : 

This example is a cas e of a non - classi cally danped 

system with 2 degrees of freedom and 2. equal roots of 

the frequency equation . As thcre are only ~ equal roots 

in this case the theory presented above predicts that a 

mode solution may be possible . HOi-leVer , a s is shotvn 

belol-t a mode solution does not in fact exist . The equation 

of motion 

I MJ {x J 4 [ eJ {X } -+ [ K ] {i. } = 0 
(388 ) 
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In this case let 

(389) 

(390) 

(391) 

The matrix of order .z x .z that sirlultaneously diagonalizes 

matrices [M] and [K] is 

(392) 

J 

It is easy to ShOH that 

'T 

[~] [ C] [~] is not a diagonal matrix 
/'I K. M, K. 

I 

and therefore this system is non- classically dru~ed . In 

the notation previously used 

o I. 

(393) [u.) = -I 

- [K] [c] 

From Equation (390 ) 

(394) 
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To determine 1 solve thc frequency equation 

=0 (395) 

On substituting Equat ion (389 ) , Equation (391) and Equation 

(394) into Equation (395) and expanding 

'" J .:z ~ ..27 A + 271{ -I- 1.1 A ~ 7/l I- / = 0 

A=-~)- !i:J)- 1~/7I 
..z 

(396) 

This is a sy stem Hith a root , A=-~, of multiplicity 

2 and on perforMing similiar calculations to those of 

Example {l;] it _cs: be{ r o}'m that 

J-y,-.fIO ,; 
is the uniquc nomalized eigenvector corresponding to 

this root . As t here are less than 4 distinct eigen-

vectors in this case a mode solution ,-Till not exist . 

Examnle 2: 

As an illustration of the use of transform tech-

niques in solving multi- degree of freedom syste~s the 

solution to Exa..'1lple 1 Hhich cannot be solved by the nor­

mal mode approach is nO .. 1 presented . Here Laplace transform 

is used . 
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Given 

t<.o (398) 

(399) 

~ complex as the Laplace transform of ! (t) • It can 

be shown 

;

r.,<i oo 1-
/(t) = .2;, ,~/ I'~)d/, 

J' - ~ .-

(400) 

Equat ion (400) is known as the Inversion Formula . In 

Equat ion (399) I' is a complex variable , /'= a..,< lW, .'lith 

the real part sufficiently large that the integral exists . 

In Equation (400) the integral is a line integral in the 

complex plane carried out on the contour shol-m in Figure 

2 . Yne contour is parallel to the imaginary axis , but 

Hith Y chosen sufficiently large that the contour is to 

the right of all singularities (poles and branch points 

of ! 0) ). The reason for this is that the integral 

represents zero for t < 0 uhic can easily be sho.-m by 

closing the contour Hith a large semi- circle on the left 

and usin Cauchy I s theorem. For -t <. 0 it is necessary 

to evaluate Equation (400) by the standard complex inte-

gration techniques . 
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Solut i on kt Laulac e Transforn I:ethod : 

Equat i ons of not ion in '" space 

(401) 

"here [M], [C] and [K] are given by Equation (354) , 

Equation (355 ) and Equation (356 ) respectively . Taking 

Lapl a c e t ransforms of Equat i on (401) noting 

.( {i<} -,.0.( f)(} - {)(. (o)} 

.( t'<} .. f/-<. {xl -p {x(o)} - {X(o) f 

:P~f.xt -p[xCo)} - {X(o)} 

(402) 

(403 ) 

(405 ) 

(406) 

,·rhere f X (o)} and D«o)} a r e the initial conditions at 

t = 0 • 

pz[MJ£xt+ p [e]{X}+[K] {X} = 

p [M] {X (0) }+ [C] {X (O>} + [M H>«o)} (407) 

On rearrangi ng Equati on (407) 
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On substi';uting Equation (354) , Equation (355) and Equation 

(356) into Equat ion (408 ) 

-y- , l~ x1 = r~~2 -I l{'At) + r x(o)1 
,~+'1+~ n l-, ?n J 'IJ l J 

From Equation (409) 

[
~'+2-Y .. \ 

{X1 = 
~ -Y- ' 

From Equat ion 

~\\ -Y- I Y +2-

7~ .. "!.Y+3 -I 

+ \1'~+:2.'" , 
l-Y-I 

(410 ) 

To evaluate tXl it is nece ssary to knOH 

,[-' 1 
( p + ,)' ( l' +:Z..) 

~ -' -Jr:~:_-7-I-- cJ.. t' 
>...iT i.. . (1' + Il' (Y ...... ) 

'1- t. #O 
By Cauchy ' s Theorem i t can be sho~-m that 

(410) 

(411) 
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J 
~ ....... ft 

e ll""" )' ( \' +'-) 

\' - i.. p 

=-Z!Tt 2: Residues in ]) 

(413 ) 

vrhere \' is contour sho.m in Figure 2 , 1) is domain en -

closed by r and the line joining r _, cO to (,. ..... i..'i/IO • 

By Jordan ' s lemma it is easy to Sholv that 

- 0 (414) 

By .lell Imo.m techniques it is possible to evaluate the 
e 1'C 

residues at the poles of (r T ')' (." +=<) • For this 

particular flmction there are singular points at r =-/ 

and -p = -2 • 
R4.s.J. ...... ~ 
at ? = - Z 

Residue due to 3~d order singular l)oint at r = -/ 

= e _t( --t t'l.- t +1) 

On using Equation (413) , Equation (414), Equation 

and Equation (416) 

(415) 

(416 ) 

(415) 

(417) 

(418) 
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Using the ~lell-knolm result 

IY 

~-~ tV lCp) :: ;t,N 
_ I _ 

"- I{;» (419) 

- / I'IV 

..( (1' 1- 1) 3 (1'+ 2) 
IV = ~ Z"..3 can be evaluated 

from Equat ion (418) and on substituting these functions 

of -t into 

(411) 

{x} '" 

[ 

-zt -t{~ JZ~/l -,L ,t..L ';2 ~ '/ 

+ -..zt -t 
.L .. .L (-{-/) 

(420) 

As a check on previous uork 

J 

{)((0)1= {~}j f~(o)} <: r-~} (421) 

[x}=[~J£-t as shown previously . 

Again if 

{)((o)} = ~',}; [)((o) 1 = f;J 
(422) 

{x}= f_',}£-zt 
It is easy to see 

as sho,m previously . 

from the form of [xl as giv en 

by Equation (420) that mode solutions do not in general 
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exist as 

f)( f =f [Q] { 2 (t) } 

1-lhere [Q] is any matrix of order 2 it ~ and { 7, (of)] is a 

co l umn vector of order ~ x J • 

If the above system is force excited it is necesssary 

to determine the solution to the inhomogenous equation by 

transform methods . In nrinciple this is similar to the 

homogeneous cas e and the solution is not presented . In 

passing it may be noted that one advantage of transforn 

methods is that the initial conditions must be incorporated 

into the calculations before any solution is obtained . 

This is not so I-lith other methods of solution uhere it is 

necessary to solve first the homogeneous problem .lith 

the given initial conditions and then the inhomogeneous 

problem vii th zero initial conditions . 



100 

Chapter II 

Effect of D~~ping 2£ the ijatura l Frequencies 

of Linear Dynamic Systems .:< 

An analysis is presented of the effect of Heak 

damping on the natural frequencies of linear dynamic 

systems . It is Sholffi that for certain damping matrices , 

some of the damped natural frequencies of a dynamic system 

may be larger than the corresponding frequencies for the 

undamped systems . 

Introduction 

(8) 
In his Doctoral thesis , Berg considered the 

vibration of a dynamic system vrith generalized linear 

damping, and shoHed numerically that the damped natural 

frequency of the lOHer mode l.;as larger than the corres-

ponding frequency of the undamped system. 

It is ,-Tell kn01ffi that in a single degree of 

freedom system, the damped natural frequency is aluays 

less than the undamped natural frequency . In the case 

of multi- degree of freedom systems \-lith classical normal 
(1 ) 

modes it may be sho1-m that the dam ed natural fre-

quencies are always less than, or equal to, the corresponding 

,< The author is indebted to Dr . T. K. Caughey for suggest­
ing the analytical anproaches used in this chapter . 
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undamped r r equencies . 

Here it is intended to study the errects or \Teak 

damping on the natural rrequencie s or linear dynamic 

systems , and to show under uhat conditions Berg ' s anoma-

lous results are obtained . 

Analysis : 

1~e equations or motion or an N degree or rreedom 

linear dynamic s ysten ,'lith lumped arameters may be 

Hritten in matrix notation as : 

(423) 

For passive systems the N x N matr ices lM] and [K] are 

symmetric and positive derinite , and the matrix [( } is 

symmetric ~~d non-negative derinite . Consider the 

homogeneous system obtained by setting {fCel}=° in Equation 

(423 ) • 

Classical Norma l iodes : 

The system derineu by Equation (424) pessesses 

c lassical normal modes , lr and onl y ir the matrix [C] 
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is diagonalized by the same transformation \,hich simul­

taneously diagonalizes [M] and [ K J. Let 

(425) 

1-1here [Q] is the normalized matrix uhich simultaneously 

diagonalizes [M] and (KJ . If [CJ is such that classi­
r 

cal normal modes exist , then LQ.] [c.] [Q] = [e] 

a diagonal matri x Hith e lements 

(426) 

If Equation (425) is substituted into Equation (424 ) 
T 

and then premultiplied by [~] , there results the system 

of equations: 

Hhere 

Let 

M .. -I- c.. rJ + K· '1 ~ 0 
i..t~ Lvi. l."l 

F\=fj.Lr[M]{~J 

Ci.,,{~f[c.] t'lt} 

(427) 

(428) 

(429) 
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Then 

A·= -l 

(4.30) 

Hence , the damped natural frequency is given by: 

w.d= 
{ 

;Z 
{U . -

{ 
<. w ' 
- I 

(431) 

Thus , if a system possesses classical normal modes , the 

damped natural frequencies are ahlays less than , or 

equal to , the corres?onding undamped frequencies . 

lion- Classical normal Hodes : 

If the natrix [C J, in Equation (424) is such 

that it cannot be diagonalized by the tr~~sforPk~tion 

which simultaneously diagonalizes [M] and [K] , the 

system is said to possess non- class_cal normal modes 
(3) 

and must be treated by Foss ' s method • 

To analyze the effect of Heak damping on the 

frequencies in this case, reHrite Rquation (424) in the 

follo"ling manner: 

(432) 

1,here E. is a small parameter , the problem can no" be 
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(13 ) 
t r eated by perturbat i on anal ysis • Let 

(433 ) 

Substituting Equati on (433 ) i nto Equation (432 ) 

(434 ) 

(435 ) 

(436 ) 

~N ~ th "lhere I and f\.~ a re the n e i genv ector and e i gen-

value for the undamned problem, E = o. Inserting 

Equation (435 ) and Equati on (436 ) into ~quation (432 ), 

l eads to thc fol l oHing system of equati ons on separating 

out the various orders in 

{A: [11] + [~])£e~ J = - (Cr>ZAHV: )[MJ+ jtJC~{ <p n} 
_ (2 A ,. [Mj.\o A (cJ) {f rI } 

n ,. n 

(437 ) 

(L~38 ) 

(439 ) 

_. 
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From these equations , the perturbat ions of various orders 

may be calculated . 

Zeroth Order Solutions: 

The zeroth order solutions are obtained f rom 

Equation (437) 

(IW-O) 

" ::: \ I 2. I .. ... t..I 

Since \..t"'\\ and l¥.."\ are symmetric and posi t ive definite: 

all " • That is , the eigenvalues 

are purely imaginary. 

2) The {~"1' s are real . 

3) The tY1' s are orthogonal in lM"\ and \.I<.I. 

That is Zfr[ti1~~"~ = 0 .i *---
In the analysis "Thi ch f ollo"Ts it Hill be assumed 

for simplicity that the A" 1 S are di stinct . 

First Order Perturbations : 

The first order perturbations are obtained from 

Equat ion (438 ) 

In order to evaluate the first order perturbations , el~ress 
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(442) 

j=1 

Premultiply Equa'.;ion (441) by {q,t J T 

.'.)1.: HLf[M]{'t'n3+-[te/lK]{'yn1 = 

Now 

f<vlLM]{ct>t1i= a2.fJ4>nl[MJHnJ= a~f) ( 4l!lJ. ) 

1,there d~1I = 0 ,£ ~ n } 

= ,e =" is Kronecker t s delta . 

The [4>"} may be normalized such that 

(445) 

/I -= /, .2 .•. ' . N 

If in Equat ion (440) , n is replaced by ~ and the result -

ing equation t ransposed , and then postmultiplied by 

{
u.> n ~ 
l 5 : Then 

(446) 
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lienee , Equation (L:.43) becomes: 

[ ~.Il [ M ] {'t''' 1 :: - -----;Jt ;,.,--:..:.<~ ~':--2:;-- {¥ {[ c '] H n ~ 
n L 

If ~ = n , then 
T 

.-A" = - ~ {<f' J [~'] {<phJ 

T 

!Tou premultiply Equat i on (442) by {<P£][M] 

Thus 

Thus 
T 

U
n

£ = H L} [M] {f "1 

a := - . An 
'. 'u. A 2._ I\. 2-

n=F~" l. 

(448) 

(449 ) 

: 

( L~50 ) 

(451 ) 

The quantity Q is found from the normalization condi ­
.. m 

tion 

(452) 
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lience , a nn ~ 0 (453) 
Therefore , if 't''' can be expanded in terms of 4>J 

N , 

L 
j=1 

A 2 - ;>.. .... 
h J 

(454) 

Hhere the symbo l L denotes summation of the indicated 

values of j , omitting the term for v1hi ch j = Yl • 

Second Ordor Perturbations: 

Having determined the first order perturbat i ons , 

the second order torms may be found in a similar manner . 

Let N 

s'" = L 
j =1 

(455) 

Using the same tecpnique as used above: 

~e= I (J:2\ {q,nf [c']{£jlnJ)({q, f [c 'J { ¢> nf 1I; - 1\.£2 

N 1 

({~([cIJfcpn})(H'h c:J{4>jJ)] 
(456 ) L A: 

+ A"- - \ .""' n } 
j=1 

.,..,~.e. 

z 
U. 

"J 
(457) 

Y-' ~ _I-
n ,no 

1'/ 
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Eigenvectors ;n Damned Systems: 

The eigenvectors for the damped system are to 
.2 

terns of order C. : 

N J 2 N 
_ 41\+ C, ~ anj ~ + c ~ 

J= 1 J=I 

(459) 

l'/here (iV' is given by Equat i on (451) and Equat ion (452) , 

/-:i is given by Bquation (456) and Equat ion (L~57) . 

Some Interesting Pronerties of Equation (459) 

1) If the matrix [e'] iS such as to admit classical 

normal modes , then 
. / 

f t{;J} [e'] {.pn f :0 0 

Hence , 

Q . ~ 0 
'.Y 

-
t"=.pYl 

J = /) 2 .1 J .. . ,.. .. N 

n:o /.1 .2/ .5 . . , . . ,. N 

(460) 

(461 ) 

(462) 

That is , the eigenvectors are identical with those for 

the undamped problem . 

2) If the matrix [C 'J _s non- classical, then in general 
· T 

{<j>J} [el fer} do 0 
(463) 
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(464) 

-
:. cp" = q, YI + crt (real vector) ... E Z (real vector) (465) 

Thus , the cigenvectors are , in general , complex . 

Eigenvalues in Damped Systems : 

terms 

The eigenvalues for the damped system are to 

of order C .z: 

An - % [q;nf [C']{cP YlJ + E"£ 1, (f <J>YlJT lc 'J [ q,"Jt A = n 
Y\ 

.\2. 
." 

(466 ) 

NoVI A l'I = F «.I" 

/'7=/2. .. . ..... /'1 
> 

(467 ) 

Thus 

\, =/-7 wn {/- %'t, (£~r [C']{~Y1t( "'nz- w/J) 

(468) 

Damped Natural Freguencies: 

The d~ed natural frequency for the system is 
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given by: 

lUnd=- tUn {/- 5tf'(t<fJY[c'H4>"ltCw:- w/JI 
./-1 (469) 

- cjw:({cV{[CJ fcpn}/} 4- 0 (t '+-) 
The 0 (c ,,) term arises due to the fact that the 3rd order 

term in A" is purely real . 

Some Interesting Properti e s £! Equation (469 ): 

1) If [C'J is such as to admit classical normal modes: 

n =- I.) 2. . . . . . . IV' 
Hence , tV d <. w n -

(470) 

(471) 

Equat ion (471) is in a g reement lTith Equati on (431) . 

2) If [C'] is non- classic a l , then , in general . .,. 
{q,JHc;]{q,"! :/: 0 VI ,j: j 

If in Equat ion (469) Yl is set equal to N. FOH 

tun> w n _/ ;> . 

Z Z 
l.() - tV · > 0 

n "J 

w 
"d 

> w, 

(472 ) 

(473) 
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3) If y') = J then w · :> <.V j oF n 
J n 

(474) 

(475) 

Then wi.d > «-', , a...'1d Berg ' s anomalous result is proved . 

Conclusions: 

From the above analysis the follo"l'ling conclusions 

may be dra1m: 

1) In a linear dynamic system ,lith 1-Ieak damping , the 

damped natural frequency of the highest mode is 

ahlays l ess than, or equal to , the undam!)ed frequency , 

no matter \-That form of damp ing matrix is used . 

2) The dal'llped natural frequency of the Im'lest mode may 

be higher than the corresponding und~~ed frequency , 

depending on the choice of damping matrix . 

3) In a system Hith classical normal modes , the damped 

natural frequencies are ahmys less than , or equal 

to the corresponding undamped frequencies . 

Example : To illustrate the results of the above 

analysis , consider the follovling system: 
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where [MJ == I 

l~ 
-/ 

-;] [KJ ~ Z 

- I 

[e]· [: 
0 

~] 0 Ie = o. 
0 

Undamped Systems: 

For the Q~damped system 

{4>'J = Yz {~} (V/ '" o. 7t,5'3(,~ 

[elf} == $r-~ } W = / . .,t/~2 /1-
2 

{ctfJ = Yz {-~ w3 == /. J'7'77S9 

(476) 

(477) 

/ 

(478 ) 

Using Equation (469) , the damped natural frequencies are : 

GU
t d > w , 

< «.12 

~d ~ I ,N'M, 9~ < ~ 

(479) 

The exact values obtained by solving Equa tion (476) are : 

"",d ~ o.7C,StI.,fi" 

(480 ) 
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Comparison of Equat ion (479) a...'1d Equation (480 ) ShovlS 

excellent numerical agreement . It should be noted that , 

the damped natural frequency of the first mode is higher 

than that for the undamped system, while the damped fre ­

quencies for the second and third modes are lm'fer than 

the corresponding values for the undamped system. 
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Cnapter 3 

3xperimental Inves t igati ons 

In experi.lllental Hork it is often desirable to 

excite a system predo~nantly in a pure mode . Frequent l y , 

the exact parameters of the system are not kno.m and 

hence , it is not possible to set up a force distribution 

that t·lill excite a nure mode . Hot·lev er, the follolling 

it erative procedure for selecting the force distribution 

can be applied to classically damped systems . If the 

natural frequencies of the system are "\Iell separated 

t his procedure Hill converge rapidly to a force distri-

but ion that will excite a pL~e mode . 

Equation of mot ion in N space 

"Ihere {I=" (-/;)1 is an arbitrary force distribution . Let 

fp~; [Y1J{x} 
[,,1 = [1M ] 

[MJ is a diagonal matrix . 

lP 1 is a col= vector of order N x I • 

From Equati on (482) 

(482 ) 

(483 ) 
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Substitute Equation (483 ) into ~uation (481) and pre­
-I 

multiply by [n] 
-I -\ -I -I -I -I -I 

[.,] [1"1] [" ]{ pJ. ~] l ~]["'.J I p J ·{".J[t<][nlfpj "-( "JiF(+)} 
(484) 

-I -I 

Let l~]:(n][c][n] a symmetric matri x 
(485) -, -I 

[~] :: l Y\ ] (K] [~ 1 a symmetric ~~d posit ive definite 

matrix . Substituting Equation (485 ) into Equation (484) 

and Si I'lp lifying 

-I 

.r h+~ [c] ip J .. [~] {p 1 = [nJ t F(t:)l 

where as the system is classically damped 
T 

[Q] [C.] (Q] = [eJ a diagonal matrix 
T 

[Q] [K] [Q] = [iZ] a diagonal matrix 

(486 ) 

On substituting Equation (487) i nto Equation (486 ) and 
T 

pr emult i plying by [~] 

- 'ad: 
Let J - £ /' J L (489 ) 

On substituting Equation (489 ) into Equation (488 ) and 

rearranging 

(490) 
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From Equation (490) 

J" t" (w) ] [~i Hlect)i (491) 

Hhere {FCt) J = Jt'..e{ n-t)}.e i wi _ / 

[ ~(wJ = [_WOZI + i ~ [c]+ [i<] ] 
From Equation (487) and Equation (482) 

(492 ) 

From Equution (491) 

NOll let an iterative pro cedure be set up such that 

{Foet) 1 = k'~ {F(il}.e ,"wi 

[- J l. ... d 
I.here Fet) £. is any arbitrary force distribution 

made up of forces Hhich have the same frequency W • 

[F;(tl1- [M] {XJ 
Hhere .{Xof iS the response of the system to 

I.here fX",-.! is the reStlonse of the system to f F",_,(tl! 

From Equation (493 ) on using the iterative procedure 
-/ T -I 

{X.t"'R'([Yl] [Q] [~/(wd Lev] [h] [M] [n] [~(w)J 
(494) 
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- / . I -, 
No.-, [t'I] [n J = [M] 

= f*J 1< 

a diagonal matrix (495) 

(496) 

-/ T 
= [n] [~] (497) 

[n] being a diagonal matrix . From Equation (492) and 

Equat i on (493) it is seen that [M] is diagonalized by 
- I 

[Q][Yl] • It is easy to sho\o1 that [K] and [CJ 
-/ 

are also diagonalized by [~J L n ] • Therefore , 

the colunms of [G<.] [n ] - I are the normal modes of the 

system . On substituting Equation (496) into Equation 

(494) 

But [ ~ lew) ] is a diagonal matrix ].lhose i. i.. -th element is 

I 
(499) 

'- :1.4- ' C. -I- L .. ) 
\:,W <w l, ~a 
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. <1. 
where .a .. ::. wit. is the natural frequency of the !. 

II 

mode . On continuing on ;lith the i terative p rocedure , 

uhere £ a.J is a colunm vector of order tV x I • 

tuting Equation (501 ) into Equati on (500) 

From Equation (499 ) if 

/
_W

Z + i. we · .J.c.u .• . t.t. « 

Equat ion (502) reduc es to 

-
(!.. +-w· . 
7.1 // 

a(( j:j:. i.. 

(500) 

(501) 

Substi-

(502) 

(503) 

(504) 

.there fa.J = to. 1 (L Y1 fCa]} = i; colunm of ([ n f [~] ) 
= L normal mode . 
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From Equat ion (504 ) 

(505) 

A:constant 

As shom'! above the convergence of this i terative pro-

c edure is conditional on Equation (503 ) being satisfi ed . 

If all (! ., are approximatel y the same value th,. jJ 
condi t ion may be reduced to 

I w"'",w . . \<.!-c.vz+w .. \ - It /J (506) 

all j t L 

From Equation (506) i t can be seen t hat if t he 

natural frequencies of t he system are Hell separated 

froLl one another the above iterat ive procedure .1111 con-

verge on the mode co rresponding to that natural frequenc y 

<-u ii nearest the f orcing frequ ency w. 

To experimentally determine the ~ matrix: 

The equations of motion of a classically damped 

s ystem excit ed by an impulse forcing function 

(507) 

Hhere {J F} is a column vec tor of order IV x / , the 

elements of Hhich are impulses of amulitude a. 
l • 
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Let {'){l" [~J{J J 
Substitute Equation (508) into Equation (507) and 

T 
premultipl y by [Q.] . 

~ . . T . T 

[Gt][M] [~J{JI+[QJ [C][QJ{JJ+[QJ [1<1[QJ{j{= 
T 

(508) 

[~J [.F] (509) 

Equation (509) is a set or uncoupled equations or type 

"r 

1'7.. y" 0/- t! .. J" + tC:. j,' = fj.; f f ~ F } "; ai it ~ 
(510) 

{ . 1 th r tJ1f } \'lhere 1. l is the ( normal mode . How l~ {JF , 

the rorcing runction or the ~+~ uncoupled equation, 

is merely a sum of impulses . Suppose the system has 

zero velocity berore the application or the distribu-

tion or impulses: From Equation (508) if 
{~(o)} efo} 
U(o)I=[o} at t=O 

0_ 

From Equation (510) arter the application or the im-

pulses 

(511) 

{rCo) J = ~QJ [MJ [QJ)'[Qf{JF} 
(512 ) 

04-



122 

From Equation (508 ) _I 

f.x(o)i
o 

.. = [Q] (Qf [Mf ((Q]) [Qf {F} 
(513 ) 

-I 

=[M1 {~F} 

Hence , if the velocity of the system is measured 

imnediately after the application of the impulse force , 

the mass matrix can be determined by using Equation 

(513) . From Equation (513) 

In [MJ 

M .· lJ 
bution 

(514) • 

(514) 

:l. 
there are N el ements . 

2.. 
Allm·Ting for mutual masse s there are N unknowns 

i n Equation (514 ) . Each particular force distri­

tJF J gives rise to N equations as in Equation 

Hence, to completel y specify [M] it is necessary 

to perform N experiments of the type described above . 

To eA~erimentally determine the spring matrix ~ : 

If a spring mass system is acted on by a static 

force distribution the inertia and damping terms may 

be omitted from the equation of mot ion 

[K]fxJ={FJ 
where l F} is the static force distribution . 

(515) 
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NOH to apply this force distribution it is necessary 

to Slovlly vary the force on each mass until the desired 

force distribution is achieved . If the force is applied 

instantaneously, then the prohlem is not a sta tic one 

as treated here , but a dynamic one . HOl-lever , in actual 

fact , if a steady force distribution is rapidly .applied 

to the system, the solution for large time tends to the 

static solution as the vibrational motion is damped out . 

From Equation (515) 

(516 ) 

From Equation (516) it can be seen that it is possible 

to determine [K] provided N distinct experiments are 

carried out . It may be noted that as f F} is a column 

vector in N space it is possible to specify N independent 

force distributions . 

It wlj,s Sho\ffi above that lfith a series of experi-

ments the natural frequencies , the normal modes , the 

mass matrix and the spring matrix can be determined for 

any classically damped system. The impulse test for 

determining the mass matrix is not of great practical 

significance , because of the measuring difficulties . 

However , it is possible to get an estimate of mass matrix 

Imovli ng the natural frequencies , mode shapes and spring 

matrix of a lightly damped system. 
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For W'~k (517) 
t - a 

iYF u 
T . 

But K.. -= [CP'J [K] [cp'J 
l< 

fY/. . f cpf [M ] {<j><f 
(518 ) 

= 
II 

as 1 <pc f , [KJ and u.J . are Imol-m an estimate of the 
< 

value of /'7 .. a can be made . 

But 

(519 ) 

( 520) 

Later a technique uill be presented to correct 

for the damping of the system. 

Non- classical Systems : 

It should be noted that the experiments described 

above for determining the spring matrix can be used Hith 

either classical or non- classical systems . HoV/ever , the 

eA~eriments for determining the mass matrix have been 

justified in the case of classical systems only . Here 

it Ifill pe sholm that a similar set of experiments are 

in fact sufficient to determine the mass matrix of a non-

classical sy stem. 

Equations of motion of matrix of non- classically danped 
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system in :z tV space: 

(521) 

vrhere 

f
10 } J { F(t) } = {f(t)! (522) 

Let {fCt)l be a distribution of i mpuls e s of magnitude 

f. . AssU!'1e that a mode so lution is possible . 
L 

Let 

(523 ) 

Substitute Equation (523) into Equation (521) and pre­
T 

multiply by [4>] 

Equat ion (524) is a set of uncoupled equat ions of type 

(525) 

NOH as {f~ is an impulse force distribution 

(526) 
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From Equat i on (523) and Equation (528) 

{2c (0) L:: [<p] [~f[ R.J' ([cPf)' [cpf{ F } 

= [R.f{F} 
-I 

provided [R] exi sts . But 

I t i s easy to ShOi-l that 

-I -) 

-[MJ [CJ [M] 
-) -I 

[RJ - [M] 

(527) 

(528) 

(529 ) 

(530 ) 

(531) 

_I _I 

_". as [M] exists CR.] exists . 

On reducing Equati on (529) 

(532) 

{x(o)} = 0 (533 ) 
0+ 

Equation (532) is exactly analogous to that previously 
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obtained in the case of classical systOnB . Hence it is 

possible to determine [1"1] from a series of N independ~nt 

experiments . 

Determination of damping in classically damped systems : 

The essential feature of a classically damped 

system _s the reduction of the equations of motion to a 

set of N uncoupled equations in the transformed plane . 

Consider such an uncoupled equation . 

17 .. J" 
l, . , K .. J Lt . , = I ( t ) 

l 
(534) 

i-lhere 

(535 ) 

~ ,'wi 
Let j == .Af! L /lL. , 
On substituting Equation 

(536) 

(536) into Equation (534) 

(536- ) 

/1== (537) 
(-lAJ -'1. /1.. -I- K .. + i. (.d i:!:,.) 

it If ~'" 

(538 ) 

(539 ) 
= ?/ Z : 
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For 
!' = ~;/.z / £.' IIJ" ./ I It ~, 

simplici ty let F';';- c I 
~;, 

It is of interest to calculate the locus of )f 

considered as a complex number Hi th amplitude I I} I and 

plane .p • 

A=/4 IL"4> 
=.J'.+ lJ' 

l-lhere x = 1 /I I (! os 4> 

J'= /11 I ~n 4> 
On rationalizing the denominator of Equation (539) 

From Equation (540) 

...Y -= -.<.11' 
(I - .,8"y- ~ sf,6' >-,!' ,... 

From Equation ( 5L~2) and 3quation (543) 

Z ..,>-
X + -../ -

/ 

(540) 

(541) 

(542) 

(543) 

(544) 
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Substituting Equation (543) into Equation (544) 

(545) 

(546) 

(547) 

The geometrical interpretation of Squat ion (547) 

is a circ le dra .. m in the ,&;<, ry plane of radius ~4)' 

and Hith center at (~- ~r ). Noting that 

(548 ) 

and i ~ wit 
It is easy to see that Equat ion (547) represents 

a circle in the velocity plane . Thus the polar plot of 

the velocity response O'ler the entire frequency range 

o • --, of an uncoupled equation of Motion is a 

circle . The angle of lag 4> (:;) in this plot is the plane 

angle between the response and the forcing function . 

Should a mult i-degre e of freedom systen be vibra-

ting in a pure mode then the velocity response locus of 

any mass is a circle . For assume that the system is 

. b t" . -&1, v~ ra =g ~n the ( nornal mode . 

f ,...,. ~·4.Jt 
. '. J/ ,: K'L /l.e. , 

(5L~7 ) 

1: == 0 
':/ 

,:,1/ j:l= i. 
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:. {)( J ~ [~J {J f 

'·lhere { x I is the response of the , [Q 1 is the matrix 

whose columns are the normal modes of the system. 

Hence any 

where (~ ') is 

N 

XL = L 
j.=-I 

the .L -t1) element 

From Equat ion (548 )' 

(549 ) 

of the j ~ mode . 

(550) 

• t 

XL = <j. J. (551) 
.L. t 

As the locus of velocity response ~. is a circle it 

folloHs that XL. also has a circ lar response locus . 

Again 

(552) 

(553) 

Hence d (fa,.,9:> 2 
d~ 

is a maximum. at 4~ 1 

Therefore the rate of change of q, is more rapid 

around 4 = I than at any othor value of ,d • This 
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fact is of great use e;tpcri:nentally as Hill nOH be dis­

cussed . 

Smrose that a cl:?ssically da.:·,ped systen is excited 

by a force distribut ion of c;:.ven froquency . By cha..TlSinS 

the frequency of the forco distr i bution, but keeping the 

nagni tudes a\'1.d p:lase of' tho forces constant a velocity 

res'Jonse locus l'lay be obtained for a "articular nass . 

She Id it happen that t he forc e distribution 1:as such as 

to excite a pure normal mode , the above tleory predicts 

that t he velocity response locus ,Tould be circular . 

Eouevor , if' tl'le natural frequencies of' the s:Tstcn are 

fairly Hell separated, then around each natural f'req ency 

t:le velocity response Hill be a circular arc . This;;'s 

so beca se t e response of the nass is a superposition 

of the ~esponses in each no~al ~ode and around the 

natural frequency ~ of one node the phase ansle ~~ 

corresponding to that r.lOde j. s vary:'.nc; Buch more rapidl y 

than the P:1.8.30 a..l"lgles corrcs}!ondins to t::.c other ::'lodes . 

The response of' the s:Tsten nay t:len b e anpro): :L-.:lated as 

a s1lrk'"1ation of tuo v ec tors: 

A cens ta..Tlt v ector _n ~aGn;;.tude a..Tld phase c orres­

pondinS to the contribution to the response of tile r.'.ass 

from the nodes 'Those natural frequencj.es are not near 

the operating f'~equency • 

. vector , the tin of .Th;;'ch describes a clrcular 
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path, ':hich corresponds to the cont rib tion of' t hat mode 

uhose natural fre~uency is near the operating f'requency . 

As further assis tance in identif'ying the natural 

f'requency of a particular =de it should be rer.1embered 

that a naxinum value of the velocity of'ten occurs ncar 

a :'1atural f'requency . T:1is is so particularly if t he f'orce 

distrib tion is a~ranGed to be favorable to the excitation 

of this mode . 

Fron this discussion it is clear t:lat tn.e concept 

of the velocity response locus is of great interest in 

e:qJeri nental Hork . A possible procedure for use l:ith an 

IV degree o=: freedon systen in an effort to ex,erir.lent ­

ally dete~ine the natural frequencies and damping of 

each :r.:tode may nOH be described . 

Choose a forc e distribution that is probably 

f'avorabl e ~o some particular mode . ~lot the velocity 

response of O'1e r.ass as the frequency of this force 

distribution is c:'1anged . Sketc~l in circular arcs Hhere 

the phase stif't of' the response changes rapidly lTith 

f'requeney . An estimation of the natural f'requency :w:y 

be obtained by noting Hhere t.'1e rate of' c.l8Ilge of the 

phase shif't ;'ii tl'1 fcoequency is a mx:imun. Tl1is f requency 

vTill , if' the nodes are llell separated, be at the inter­

section of' a line paralle l to the axis uith <p' % and 

the velocity response locus . ~o estimate the danping 
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corresponding to a ~articular r.lode the siInplost proce­

dure is to plot a curve of t.e ~~litude of the response 

in this mode , as given by the circle , against the fre-

quency . Of course , only a ""Qrtial an:plitude frequency 

response is ::,ossible as the circle nay only coincIde 

l1_t1. t ho responne locus over a short frequency range . 

:roIlever, it is necessary to dra'T the conplete circle 

as the point fron lThich the anplitudes are r:easured is 

the intersection of a line fron tho natura l frequency 

on the responne curve tl1.rouCh the center of the circle 

and the circle Itself (Figures 11 and 12) . ?ron t~s 

vclocity ~~litude ~requency curve a displacenent e.rpli-

tude frequency curve nay be plot ted by divi ding each 

velocity anplitude by ,4", w~n for this particular c ircle . 

HavinG the displacenent anplitude curve it is 

easy to dete::-rline the dampinG of this node . ':'he usual 

!f2 pO~Tor la~, is ge:'lerally accU!'ate enough considering 

the inherent inaccuracies of dra~Ting t~'le circle and 

plott inC the curves . 

Sonet; ~s a vcry small circular arc can only be 

obtained . ~his frequentl y occurs ,1:1.en i;:'le eX?eri..",,-entor 

has llruted selectivity as far o.s the l-:J.a(;nitudes of the 

forces to be applied arc concerned . Occasionally in 

rotatins nas s sha:::ine nacr_ines the :,agnitudes of t .e 

force distribution applied are not constant over the 
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frequency ranGe . L~ the lattcr case it is necessary to 

correct for the c14~~GinG force anplitude by dividinG 

the :,-agn:.tude of the res?o!1ses by a suitable scaling 

f'ac-;;o::, . If t~16 ?has e of the eler!ents of tho force dis-

tribution chanGes relatively to one anot:le:.7 , the prob le::J. 

of detcrnini.ng t ile da:1J:)inS corresponding to any J!lOde is 

To1Uch nore difficult . Eouever , if tle phase s h ifts can 

be assuned to be slouly varying it nay be p ossible to 

estimate the dampinG direc tly from the velocity response 

locus . :'hi8 procedure may also be used Ulen only a 

snaIl arc can be obta'ned due to sone linit of the 

eAperi;'1enta1 equipnent . Assume the mode separation is 

such t~lat t he dianeter through the natural frequency 

point on the response loc s is appro;;::L"18.tely parallel 

to axis uith <P~ %. Take t:,o :'requencies close co the 

natural frequency one above a.l1d one belOl·T . : :eas re tlle 

respecti ve value of )( from tile res:::,onse locus for each 

frequency . Denote taose values by X, and Xz • ? rom 

::quc. tion (5 t2) 

(554) 

(555) 
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u:1.ere .( is a constant of t!"le systen 

X, / -
'/X:L -

(/-.0: J.) [(1- ,Ie r ..... .;. ,4>-,;- ~ ] 
(/ - ~ -:J [(I - -4 J. ).2.1'4 ~ ... r>-] 

(556) 

FroIl ::::quation (556) as x, ' X z :--my be neasured g; , ~ 
nay be calculated ~~d thus an estL~ate of ~nay be 

=de . 

:~a turally t!lC a00ve proced:tre is enl:- reco~ended 

in extre:::te cases . The .:;- pOl1er deterr.D.nation of da>;1pinG 

is to be preferred as in this method an exper:L.";lental 

error is not v ery serious . In point of fact e;cperi.,"-ont!".l 

errors are easily locat ed by the distorted shape of the 

curve . :_ode interferenc e c an be seen readily . 

Structural Damming : 

L'1. passinG ~'1. interesting phenomena nay be noted . 

The equations of motion of a syst e:'l '.i5.th structural 

dru:t~ing is often ,]1'i tten as fo110;rs : 

(557) 

;l:'wre the s:;JrinG constant 'J irIplies that t.is force 

is in fact ~ radians out of phase -lith the displacerlCnt 

x. It is not :l.ntended to discuss structural dar.!ping 

here but to obtain a solution to Equat ion (557) 
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Let X = £1 /l L., 

1)6 

On substituting ~q ation (558 ) into Equat ion (55?) 

~ 

. '. I'l = 

= 

= .?k 
(/- ,,&'1.) -,I- I. Y/-t:' 

To sir.1plii'y the algebra5.c Hork let F~ : / 

Let /? a cor.1p l ex nunber be dei'ined 

From Equat ion (562) 

x : (/-4:<) 

{/ -~»:t. rJ'~'" 

5= -..9&= 
{; - 4'Z)J.. r 37K >-

(558) 

(559) 

(560) 

(561) 

(562 ) 

(563) 

(564) 

(565) 
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/ 
(566 ) 

(567) 

<'568 ) 

Geonetr ically uquation (568) is a circle and thus t h e 

displacement response locus of a systel'l uith struc tural 
(6 ) 

d~ing is circular . "./higl ey and Leuis Here the 

first to use the d ispla c enent ~espon~e circle 5n c onnec-

t ion Hith vibration test s on aj.rcro.ft structures . 

This is an interesting ~act bec ause it should 

b e possible to e;;:perL-:lentally detern;ne t he type of 

d~ing a structure a c tually possesses by p lotting the 

response v ec tor locus in both the v eloc_ty and di sp l a c e-

nent planes . I:ollev er , the dotailed mechanis::1 of' struc tural 

da.r:rpins is in considerable doubt and nueh ;;orlr needs to 

b e don e in this area befor e any such tests on structures 

uould be justif1ed . In actual fact structural dar!ping 

nay lJell be a t-rpe of hystere s i s effect idea15.zed by the 

bi- linear laodal . It is diff'icul t to s ay Hllet her or not 

viscous d~~ine in structures is ev en physically reas on-
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able . To date fev: structures seem to have been tested 

beyond the linear range of Hooke Isla,; and there ap~)ears 

to b e a great lack of eX?eri~lcntal data in t h is area 

of structural dyn~~cs . One yressing need is better 

i...'1strumentation to !.wasure the relatively snall changes 

in the stresses and the strains produc ed by nodern shaking 

mach i nes . Actual buildings arc further comp licat ed by 

the difficu l ty of an e~act description of soil and 

foundation condit ions . 

IXperL"1ental Deterr,li na ti on of Da.mo i ng in Non - Glassi cal 

Syster:lS : 

In non-classically damped systems t he velocity 

r esponse locus nay aga in b e used to give some est i-nate 

of t he damping in each mode . As shmm in Chapt er 2 , 

the first order approxi mation to t he druuying of any mode 

in these syste::'ls is the ;.orresponding diagonal el ement 

of the reduced [;latrix [Q] [c] [Q] • Thus , t o a c ertain 
MJr<. M,K.. 

appro;cimation , non- classica l systems may be represented 

by an equivalent classical systen u ith danping in each 

uncoup l ed equation equal to the correspcnd5.ng diaGonal 
T 

el eY1ent of [Q] [e] [~] • Later , some analogue Hork 
M,IC M}K 

uill be presented to shou that this pro c edur~ is just i -

fied for syst ems Hith damping of from 05~ to 20% critical 

in each node . 
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Although it is not possible to force excite a 

pure mode in non- classical syst ems a r esonanc e condition 

is achieved near each natural frequency . In an eff ort 

to determine the danping, in non- classicallY dar~ed sy­

st ems , experinentally uith greater accuracy tha-'1 t he 

above nethod gives , sone lIorl: has been done on the response 

loci of t hese syste::lS . By ej:pa...,dL'g the express i on for 

the contribution of one mode to t he disp lac ement of a 

particular mass i t may be ShOiffi that t h is displac ement 

response has a l ocus uhich is t hc sum of four v cc tors . 

The tips of these vectors hav e circular loci over t ho 

entire frequency range (0 --+ - ) . In point of fact these 

f our cir cular loci are contamed in tuo circlcs cutting 

one another at right anGles . As t~ts disp l a c ement 

response locus of non- classicall y damped systems has 

l ittle practica l significance , the details ef the locus 

arc not presontod . 

AnalOGue Gomnuter L'1vestiGations: 

L~ere is no need to elaborate on the use of the 

electric analogue conputer to simula t e problems i n 

mechanical vibrations . ~~e nodal and loop analogies 

are the basic electrical- mechanical analogies and t heir 

properti es are sUl.1l!!arized in tl1e follmling table: 
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Hodal Analogy 

Electrical System 

Capacitance (C) 

l/Inductanc e (l/L) 

l/tesis tance (l/R) 

Currents ( I) 

Voltages ( :8) 

Electrical System 

Inducta.,c e (L) 

l/Capacitanc e (l/C) 

iles5.stance (R) 

Voltages (E) 

Currents (I) 

Loo? Analogy 

::echanical Syster.1 

Iill. s s 0 :) 

Spring Constant (K) 

Damping C 

Forces (F ) 

Veloc ities (V) 

;·!echanica l Syst em 

Has s ( IL) 

Spring Const~~t (K) 

Daxtp ing (C) 

:;'orces (F ) 

Ve loc ities (V) 

L, the append~~ a typical three dogrce of freedom 

syst en is repres e:1ted by both the nodal and nesh analo-

gies . • 

"'he anulo[;ue cOrl?uter ;ras used mainly to check 

the difficulty of dete~ining the dfu~ing of a typical 

t:1ree debree of freedor'- systen. At first a clas sical 

system Has simulated on the comnuter and the velocity 

;.' esponsc :las p lotted . It uas found that good circular 

loci Hcre obtaincd around each natural frequency pro­

vided te:c force distribution uas adjust cd to suit t:lC 
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node being e;~ci ted . In fact it Has relat ively easy to 

ILlss a natural frequenc y by usj~~ a force distrib tion 

that pl'ac tieall;,- excited a pure mode and so effcctively 

da.:':JI'cd out t:'lC contr_buticns o:!:' the ot:lCr nodes . Lat er 

a non- classic al systen Has smulated and the veloeity 

c:>esponse locus deterr.lined . 1':le spc:>inG lL'1.d nass natri.J: 

of t:lis non- classi cal systen "ere ta;~en to be the sru:le 

as the classical syst em p r eviously examined . The dlL"1ping 
r 

matrix Has so arra.'1.ged that [QJ l c J [QJ l:>.ad the Sar.le 
M>"- M, I<. 

diagonal t erns as in the cla ssical case . The forces 

a ppli ed Here t he sane exactly as in the class i c a l ca se 

Hh:!.ch had been deter:n:'ned te suit the e;:citation of 0. 

c ertain mode . Fron these response curves t he d~lping 

in each mode :1Q.S deter:nined and tile values obtained giv e 

assurance t hat the results of the conc ept of equivalent 

classical d~lping hav e sufficient accuracy for en3i'1.eer-

Root Locus: 

Suppo s e there ex_sts a damped system charact erized 

by [MJ, [K] andl [e] l1her e )J is a scalar consta..'1.t tl1at varies 

contil1Uously fron o-~. If [MJ,[KJ and LCJ re:1ain fixed 

t he locu s of t he e i genvalue s of t he system as ~ vari e s 

is s aid t o be t he root locus of t he system. UOll if t !le 

s yste;). is cla s sically damped each uncoupled equation 11as 
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the form: 

n .. }·· +;5(! .. J' r K.J = 0 
G l It (i <'569 ) 

eigenvalue corresponding to this equation 

(570) 

(571) 

Fro~ ~uation (571) it is easy to see that the locus of 

-C . is a se~Ji -c ircle on the left half plane of radius 
I 

fiii!;; ~ 41 ... In passing it nay be noted that in elass -' '''--ii it 

i~al syster.J.s the set of eigenvectors rer:!ain t he sar.le 

independent of the value of ~ • 

Fron cO::J.sideration of (UJ tl:e ~r( ;{ ~N natri;;: it is 

easily seon that eigenvalues in non- classically da"'1ped 

syster:!s have in general no si'1ple l ocus . It is clear 

that the eiGenvectors of' such a systerl cIlD.ngo continuously 

as ~ changes . 

In an effort to ShOH the great differences betueen 

c lassical and non- classical s;,-stens as i'ar as root locus 

is concerned a plot of' the roots of the systeM. treated 

on the analoGue conputer is srt01m in the appendix . This 
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plot shaHs that each 0(,; has a neGative real part .Lor 

all ;5 and for particular values of ,# these roots may be 

urely neGative . 



Discussion and Conclusions 

Tn this Hor k an ef'f'ort [la.s been made to shov; the 

Hide range of application of normal mode techniques to 

the solution of' linear damped parameter systems . The 

only case Nhere a normal mode solution cannot be obtained 

is i f' there are less than 2U i ndependent eigenvectors in 

the cas e of' repeated roots of' the f r equency equat ion of' 

non- clas sically damped systems solved by Fo s s ' s met hod . 

This latter case l~y best be solved by integral transform 

methods . It is ahrays po ssible to excite a system to 

vibrate in a pure mode by a suitable choice of' initial 

condit i ons . I-:ol-lev er , it is not po s s i ble to f'or c e excite 

a pure =de .lith zero initial conditions in non- classically 

damped systems . The normal nodes of both a classically 

and non- classically damped system satisf'y certain ortho ­

gonality conditions . The condition f'or the existence 

of classical damping is that derived by Caughey, namely, 

the damping matrix must be diagonalized by the same 

transf'ormation as Simultaneously diagonalizes both the 

mass and spring matrices . 

In classical systems increasing the damping de­

creases the natural frequency of' the system. In the case 

of' non- classical damped systems it is po ssible that the 

introduction of' da.'1Iping 'dill increase the natural fre­

quencies of the systen . HOvTever , the highest frequency 

of the damped non- classical case Must be less than , or 
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equal to the hi~~est natural frequency of the undamped 

system. 

The experimental Hork ShOl'lS that the concept of 

e uivalent classical dampin for non- classically damped 

systems is accurate enough for engineering purposes . 

By performing the experiments that are presented above , 

it is possible to completely specify a multi- degr ee of 

freedom system. These experirlents should be of use ;;hen 

trying to determine an approximate spring mass dash pot 

equivalent circuit for a complex structure . 

As regards future l.ork there is little need to 

stress the desirability of attenpting to extend some of 

these ideas to continuous systems . HOHever , in such an 

attenpt certain difficulties arise iIllrlediately . Iatrices 

are replaced by functions and in general it is much more 

difficult to vlOrk in func tion space than in /II diIllensional 

space . The real advanta c of Ilorking \lith discrete 

systems is that elementary matrix theory is sufficient 

for most phases of the analysis . 
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Annendix 

~neriMental ~esults 

Before investigating a three degree of freedon 

system it Has desirable to ascertain the accuracy of the 

analogue cortputer under nonlal operation . As a check 

on this accuracy the velocity response spectrum of a sin-

gle degree of freedom system lIas determined . At this 

time the nodal analogy Has used , but in later experimental 

work the loop anal ogy p~d to be adopted because the 

current generators developed sone instability in operation . 

Tne circuit used is as shown in Figure 4. At a 

given f r equency the magnitude and phase of the current 

I fed into the c _rcuit and of the voltage E across the 

capacitor 014 ,-Iere recorded . The phase angles }lere measured 

relative to a fixed standard and so the pp~se angle 

bet1-/een the current and the voltage could be obtained at 

any frequency . In the nodal analogy the voltage across 

a capacitor corres~onds to the velocity of a mass in 

the analogous mechanical system. The current flol-Iing 

into the circuit corresponds to the force applied at 

the nass in the single degree of freedom system . 

As can be seen from the circular velocity response 

locus plot Figure 4 the accuracy of the computer justi-

fies its usc in further experi.c-nental Hork . 
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The main exper imental effort .las devoted to t he 

determination of the natural frequencies and the percen-

tage of critical damping L~ each mod e of classically 

and non-classically d~~ed three degree of freedom systems . , 
In this case t he non- classical damping matrix lC ] ,vas so 

chosen that the diagonal terms of 

(572) 

were i dentical Vlith the co r r esponding diagonal terms of 

where [e] is the cla s sically 

matriM Vlhich simultaneously 

(573 ) 

damped matrix, [~] is the 
I'" I<. 

diagonalizea (~] and [KJ • 

The parameters of the system vlere selected so that the 

computer Has operating at a current l evel Vlhere parasitic 

resi stence "as negligible . 

o 0 

o o (574) 

o 0 

-I - ,z 

(575 ) 
- I 2 - 0 . 

- ~ -0.5 3 
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and [CJ the class.ically- daI!lped matr ix is chosen to satisfy 

Rayleigh ' s condition 

[c] ". L [Mj ... .6'CKj 

1<1 - .3 
(576 ) 

[c] ",.zo -.3 10 

-, - 1 . .5' II 

Here .<:: / "0 . ,d' = ~ X 10-.5' 
.I 

To obtain the natural f r equencies of this syst em i t i s 

nec essary to so l ve the frequency equat i on 

(577 ) 

From Equat i on (574 ) and Equat i on (575 ) 
8 - z - ¥ 

.z - O.S' (578 ) 
- I 

On subst i tuting Equation (578) into Equati on (577) and 

after solving the resul ting cubic equat i on in LU~it i s 

easy to Sho .. l that the three natural frequencies of the 

system are 

0 , 

UJ 
.l. 

"-'.3 

= 

-
= 

215 cyc les per second 

445 cycles per second 

752 cycles per second 

(579 ) 
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Letting {<I>' J = norrnal mode corresp onding to wi 

!~i l-F: } <.580) 

From Equation (577) and Equation (578 ) these [qLjr s must 

satisfy equations of the follot,ing type : 
(. 

4X 10 -wi 

, 
/0 -~~ 

-.5 )( lO S" 

From Equation (581) 

tl . 
( 

= 8 x/ot. - 2w,· 

! )( lOb - wi. 

4.-5" X 10(. 

- .2 XIO' 

, 
-.<.5' }(IO 

, 
.3'X IO -Wi. 

Q' , 

(581) 

(582) 

(583 ) 

On substituting the values of wi. derived from Equation 

(577) into Equa tion (582) and Equa tion (583) [Q] may be 

determined 

-0. 0'7bl 

-0. 7.s9n 

It may be shotffi t hat 

0.(,76'3 

0."'" 

I 

o 

o 

M,K 

0.70331 

I (584) 

O. 70'1-::1.1 

o o 

o (585) 

o 
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o o 

2.. 2171.3 o 
o <'586 ) 

o o 3 . 070S4 

o o 

o 4 .334-08 o (587 ) 

o o 

A single degree of freedom systen is said to be critically 

damped i f 

(588) 

Per centage of crit i cal damping possessed by any single 

degree of freedom system is defined to be 

(589 ) 

As each uncoupled equation is in effect a single degree 

of f r eedom system these ideas nay be carr ied over to 

multi- degree of f r eedom classically damped systems . 
n . ~ Let Le . = critical damping of { mode . From Equation , 

(586) and Equation (587 ) 

(! = 3 . 7 -slJ'I X /0.3 

"'I 
C ~ 0'1'1,}' x ,;> (590 ) = /0 

C.z 

C" = 2 . 077S X /0 4 

.3 
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PrOIa Equation (585) , Zquat ion (589 ) and Equat i on (590) 

Percentage critical damping in 1st mode 9 . 971; 

Percentage critical damping in 2nd mode 11 . 25% 

Percentage critical damping in 3rd mode 15 . 88% 

For the non- classically damped case the follo1-ling damping 

matrix lias used 
I:!. ,gwJ/ - 4. 5C.7.22 -~. ,j~/OJ' 

[c'] ::. 20 -</, .0(,7.2.2 1 4 . .,41'9' - I. o,s.¢5'.z (587 ) 

- 6. J''I/ oi _ /. 6.5"¢92 ~ 04.290 

I t may be shOl·m 

29. 7(."0 .2. all.2 - / .oo",t. 

T 

[Q] [12'] [QJ = 20 2 .011:2 /7. 43'S- -5. ~?&"" (588 ) 
I'1,K M,K 

and so on comparing Equat i on (588 ) l-lith Equation (585) 

i t is seen that the corresponding diagonal terms are the 

same . In pa ssing it should be noted that a l though most 

of tho off diagonal terms are small the ratio o£ the 

large st off diagonal term to the sw~llest diagonal term 

i s Q 58 . This means that there is considerable coupling 

bet"l-leen the second and third mode s . 

To find the normal modes in the non- classical 

casc it is necessary to determine the eigenvalues of 
o c 0 10£ 0 0 

a o o o / 0 " 

o o o o o 

- 011/.37.5 - 0, .20000 - 0. 1/35" -SlY.6S'I'-rto -"'9. 77i4S¥ 

.,-0 . 1000 -a4oocx> - 0.10000 / 6'. 72¥30 -/X>.60~ 

o 

/ 0' 

/ 0 , .... =" = [u] (589) 

J, "'Vit. 
-0."2 50 - 0 . .2000 - 0-'7$00 9. ~3Z0 -&":2. 9/791' -51. 79<52 
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Solving the frequency equation 

-iI' 
>( /0 

-~ 
X 1 0 

(590) 

(591) 

A =< (-o. 73S~to 1: l 7. .33 / 7J') X 10-4-
3," 

From Equation (591) .,( ,.( and/ may be determined . 
/ J 1'- :2.1'5 ~ (" 

It should be noted that each 0(' . has a negative real part 
t 

\'lhich corresponds to stable motion . T'ne imaginary part 

of each ~. corresponds to the natural frequenoy • . 

There are three natural frequencies for this system. 

-F, =- 215 cycles/second 

fz - 4hl cycles/second (592) 

£ - 742 cycles/second 

On comparing Equat ion (592) \'lith Equat ion (579) 

it is seen that the non- classical natural frequencies 

are very close to the classical natural frequencies . 

This fact vlill later be borne out by the vel ocity res -

ponse p lots for the tHO cases . 

s is !mO\ro fron the theory the contribution of 

any mode to the response of the system vlith a constant 

amplitude forcing function is largest l'Ihen the frequency 

of tho foroing function is near the natural frequency of 
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the mode and the forcing function distribution is so 

adjusted as to predoninately excite this node . Bearing 

these facts in mind the forcing function Has changed in 

going fron one frequency range to another to facilitate 

the determination of the damping in each mode . 

In order to excite a pure mode in a classically 

system the forcing function {F(e)h s given by 

{Fi (t)l ~ 3{-t) [M] {fl (593) 

vrhere j (-t) is an arbitrary scalar !'lmction of time, 1. t \ '1 
is the mode being excited . From Equation (584 ) and 

Equation (574) 

(594 ) 

(595) 

(596 ) 

The transformer settings Here arranged to give the relative 

amplitude of each force in the force distributions . The 

scalar functions of time <'I., (-I.), Here of type A· S· <vt • 
J t I..fl 

Hhere the A < I S Here determined experimentally on 

the computer by adjusting the output of the pOl-rer amplifier. 
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Wltil a desired level of response Has obtained . 

Although there is no possibility of force exciting 

a pure mode in the non- classically danped system the for­

cing fWlctions given by Equation (594) , Equation (595) 

and Equation (596) Here used . 

The experimental results for the classical system 

are shOlm in Figures 5, 6 and 7 . As can be seen practi­

cally pure modes 'Vere excited in each case . From thcse 

curves the damping vias estimated by the circle method 

developed above . Compari sons bet'·leen the natural fre­

quency and damping derived by the circle method and the 

exact calculated values are ShOl-m beloH . Generally the 

peal{ amplitude method of calculation of the damping has 

been used in the past . It should be noted that in the 

cases ShOl-m due to the excitation of practically pure 

modes the peak amplitude method has a better chance of 

being accurate than in cases llhere a l arge contribution 

from interfering modes is present . In the latter cases 

the circle method Hill quickly SP.oH up the interfering 

modes and much more accurate results will be obtained 

by the use of the circle method than the peak amplitude 

n.ethod . 

The experimental results for the non- classical 

case is sho.-m :tn Figures 8 , 9 and 10 . As can be seen 

these response loci are p~actically circular and the concent 
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of equivalent classical damping a ppears to be justified. 

These loci are treated by the circle method to determine 

the equivalent daIilpi ng in each mode . Comparison t-lith 

experimental results and ac tual calculated values are 

ahot·m below. 
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Single Degree of Freedom System 

lTodal Analogy 

Input Output 

5..". "I. ·h E 1,>. % cPr ~2 
100 5 . 0 241 . 5 3. 57 323 . 714 Bl . 5 
120 5 . 0 242 4 . 50 323 . 90 Bl . 0 
140 5 . 0 246 5 .65 322.5 1. 13 76 .5 
160 5 . 0 24B 6 . 95 322 1 . 39 74 . 0 
I Bo 5 .0 251 . 5 B. 70 322 1 . 7~ 70 . 5 
200 5 . 0 259 10 . 9 322 2. 1 63 . 0 
200 5 . 0 259 . 5 10 . 6 322 2 . 12 62 .5 
220 5 . 0 266 . 0 13 .3 322 2.66 56 . 0 

~g 5 . 0 276 . 0 17 . 2 322 3.44 46 . 0 
5 . 0 293 . 0 21 . 2 321 . 5 4. 24 2B . 5 

2Bo 5 . 0 313 . 0 24 . 0 321.5 4 . BO B. 5 
300 5 . 0 327 . 5 23 . 5 321 . 5 4 . 70 - 6. 0 
320 5 . 0 351.0 21 . 2 321 .5 4 . 24 - 29 . 5 
3~0 5 . 0 3 . 0 IB . o 321. 5 3 .60 -41 .5 
3 0 5 . 0 12 .5 15 .3 321 . 5 3 .06 -51 . 0 
3Bo 5 . 0 I B. o 13 . 1 321 . 5 2 . 62 - 56 . 5 
3Bo 5 . 0 16 . 5 13 . 2 322 . 0 2. 64 - 54. 5 
400 5 . 0 22 . 0 11 . 7 322 . 0 2 . 34 -60 . 0 
420 5 . 0 25 . 0 10 .3 322 . 0 2 . 06 - 63 . 0 
frtg 5 . 0 26 . 5 9. 5 322 1. 90 - 64.5 

5 . 0 29 . 0 B. 6 321. 5 1 . 72 - 67 . 5 
4Bo 5 . 0 29 . 1 7. 95 321.5 1.59 - 67 .6 
500 5 . 0 31 . 1 7. 3 321.5 1.46 - 69 .6 
550 5 . 0 33 . 0 6. 3 321 . 5 1. 26 - 71. 5 
600 5 . 0 35. 0 5 .4 321. 5 1 . oB - 73 . 5 
700 5 . 0 )8. 0 4 .4 321 . 5 . BB - 76 . 5 
Boo 5 . 0 41 . 5 3 . 7 321. 5 . 74 - Bo . o 
900 5 . 0 41.5 3. 15 321 . 5 . 63 - Bo . o 

1000 5. 0 43 . 0 2. B 321 . 56 - B2 . 0 
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Force Distribution {3~ 1 ••.• to Excite 
n 

1st node Loop Analogy 

Damping : Classical 3 Degree of Freedom System 

Frequency Input Response 

• <\> • I ~. HO- h .. c\>. 
100 10 21 8 .7 288 93 
120 10 20 11 . 3 284 96 

itg 10 20 15. 6 279 101 
10 19 22 . 2 272 107 

180 10 17 34 . 7 258 119 
200 10 15 55 . 9 230 145 
220 10 17 . 0 65 . 2 186 191 
240 10 21 . 0 47 . 0 156 225 
260 10 22 . 0 33 . 3 143 239 
280 10 22 . 0 25 . 0 135 247 
300 10 21 . 0 20 . 0 131 250 
320 10 . 21 . 0 17 . 2 128 253 

3tO 10 21 14. 8 125 256 
3 0 10 21 13 . 0 123 258 
380 10 20 11 . 8 122 258 
400 10 20 10. 6 121 259 
420 10 20 . 5 10 . 0 120 260 . 5 

[tg 10 20 . 0 9 . 6 119. 5 260 . 5 
10 20 . 5 8 . 9 119 261 . 5 

480 10 20 8 . 4 118 262 
500 10 19 7 . 9 117 262 
520 10 19 7 . 42 117 262 

5tO 10 20 7 . 1 116 264 
5 0 10 20 6.8 116 264 
580 10 20 6 . 4 115 265 
600 10 20 6 . 2 115 265 
620 10 20 5 . 9 115 265 
6tO 10 20 5 . 65 115 265 
6 0 10 20 5 . 5 114 266 
680 10 19 5 . 15 115 264 
700 10 18 . 5 5 . 05 114. 5 26t 
750 10 20 4 . 56 114. 0 26 
800 10 20 4 . 33 113 . 5 266 . 5 
850 10 20 4 . 03 113 . 0 267 
900 10 19 3 . 80 112 . 5 266 . 5 
950 10 19 3 . 55 112 . 5 266 . 5 

1000 10 19 3 . 25 112 . 5 266.5 
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t ' ~ 1 -'~~5 to Excite 2nd Hode Loop Analogy 

Damp ing: Classical 3 Degree of Freedom System 

Frequency Input Response 

I; <\>. t ~ 3<0 - ~L • ~t 
100 10 22 3 . 55 291 91 
120 10 21 . 5 3 . 95 289 92 . 5 

itg 10 21 . 0 4 . 70 288 93 
10 21 . 0 5 . 6 287 . 5 93 . 5 

180 10 20 . 5 6 . 7 291 . 0 89 . 5 
200 10 21 8 . 0 290 . 0 91 
220 10 19 10 . 0 288 . 0 91 

~g 10 18 . 5 11 . 0 282 96.5 
10 . 19 . 0 12 . 5 278 . 5 100. 5 

280 10 19 . 0 it·l 276 . 5 102 . 5 
300 10 18 . 5 1 . 7 273 . 0 105. 5 
320 10 17 . 0 19 . 2 269 108 
340 10 17 . 0 23 . 2 264 113 
360 10 14.5 28 . 4 257 117 . 5 
380 10 12 . 0 34 . 8 247 125 
400 10 10 . 0 42 . 5 23t 136 
420 10 8 . 0 52 . 5 21 152 
L~O 10 10 58 . 2 196 174 
460 10 14. 5 56 . 2 177 197 . 5 
480 10 17 . 0 50 . 0 165 212 
500 10 20 . 0 41 . 3 155 225 
520 10 20 . 0 35 . 7 148 232 
5~0 10 21 . 0 30 . 9 143 238 
5 0 10 23 . 0 26 . 7 139 244 
580 10 21.0 23 . 8 135 246 
600 10 22 . 5 21 . 3 132 250 . 5 
620 10 22 . 5 19. 5 130 252.5 
6~0 1') 21.5 17 . 8 129 252 . 5 
6 0 10 21 . 0 16 . 5 128 253 
700 10 21 . 0 14. 5 126 255 
750 10 21 . 0 12 . 3 125 256 
800 10 20 . 0 11 . 0 123 257 
850 10 21.0 10 . 0 122 259 
900 10 21 . 0 9 . 3 121 260 
950 10 21 . 0 8 . 6 120 261 

1000 10 20 . 0 7 . 9 119 261 
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Force Distribution Ch 1 to Excite 3rd Hode wop Analogy 

Damping: Classical 3 Degree of Freedom System 

Frequency Input Response 

.: 4>. .. q, • 140- ~l' ~£ 
100 10 21 1.24 291 90 
125 10 22 1.59 289 93 
150 10 21 1.98 288 93 
175 10 21.5 2 . 56 283 99 
200 10 21 2 .80 277 . 5 103 . 5 
225 10 21 . 0 2 . 61 273 101 
250 10 20 2 . 82 283 . 0 97 
275 10 20 . 0 3 . 31 283 97 
300 10 20 3 . 80 283 . 5 96 . 5 
340 10 20 4 . 62 282 . 0 98 
360 10 19 5 . 08 281 . 0 98 
380 10 19 5 . 55 278 . 5 100. 5 
400 10 18 6 . 00 278 . 5 99 . 5 
420 10 18 . 5 6 . 61 278 . 5 100 

tttg 10 18 . 5 7 . 20 277 . 0 101. 5 
10 18 . 0 7. 80 275. 0 103 

480 10 17 . 5 8 . 5 275 . 0 102 . 5 
500 10 17 . 0 9 . 3 273 . 0 104 
520 10 16 . 0 10 . 0 272 104 
540 10 16.5 10 . 8 269 107.5 
560 10 17 . 0 11 . 8 266 . 5 110 . 5 
580 10 15.5 13.2 264.0 111 . 5 
600 10 15. 0 14. 4 26l.0 114 
620 10 14. 0 16 . 0 256 . 0 118 
6tO 10 14. 0 17 . 5 251 . 0 123 
6 0 10 12 . 0 19. 2 243 . 0 129 
680 10 11 . 0 21 . 0 236 . 0 135 
700 10 12 . 0 22 . 5 224 . 0 148 
720 10 10. 0 23 . 7 214. 0 156 
7tO 10 8 . 0 24.1 203 . 0 165 
7 0 10 8 . 0 24. 0 191 . 0 177 
780 10 8 . 0 23 . 7 183 . 0 185 
800 10 9. 0 22 . 7 178 . 0 191 
820 10 8 . 0 21 . 2 170 . 0 198 
8tO 10 8 . 5 20 . 0 165 . 0 203 . 5 
8 0 10 10 . 0 18 . 8 160 210 
880 10 11 . 0 17 . 3 156 215 
900 10 11 . 0 16 . 1 154 217 
920 10 10 . 0 15. 2 150 220 
9tO 19 11. 0 14. 2 148 223 
9 0 10 10. 0 13 . 3 147 223 

1000 10 10. 0 12 . 9 145 225 
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CSl Force Distribution ~.; to Excite 1st Node loop Analogy 

Damping: Generalized 3 De ree of Freedom System 

Frequency Input Response 

( ~2 
1: h 3/,0- ~, • t. 

100 10 8 . 7 299 83 
120 10 21 11. 3 293 1)8 

rt;g 10 20 15. 8 286 94 
10 19 22 . 5 270 109 

180 10 17.5 34. 0 257 120. 5 
200 10 15 54. 3 229 146 
220 10 18 66 . 2 188 190 

~g 10 22 48 . 0 156 226 
10 23 33 . 8 140 243 

280 10 21 25 . 1 131 250 
300 10 22 20 . 0 127 255 
320 10 21 17 125 256 
3iO 10 22 14. 6 120 262 
3 0 10 21 12 . 7 117 264 
380 10 20 11.2 116 26L~ 
400 10 20 9. 9 115 265 
420 10 20 8 . 6 114. 5 265 . 5 
jftg 10 20 7. 6 117 . 5 262 . 5 

10 19 7. 3 123 . 0 256 
480 10 19 7. 2 124.5 254 . 5 
500 10 20 7. 1 123 . 0 257 
520 10 19 6 . 95 123 . 0 256 
5iO 10 20 6 . 7 122 258 
5 0 10 20 6 . 42 121 259 
580 10 19 6 . 10 120 259 
600 10 19 5 . 95 119 260 
620 10 19 5 . 78 119 260 
6iO 10 20 5 . 58 118 . 5 261 . 5 
6 0 10 19 5 .4 117 262 
680 10 19 5 .1 117 262 
700 10 20 5 . 0 117 263 
750 10 19 4 . 6 115 264 
800 10 18 4 .4 116 262 
850 10 19 4 . 0 116 263 
900 10 19 3 . 75 114. 5 264 . 5 
950 10 19. 5 3 . 58 115 264. 5 

1000 10 19 . 0 3 . 35 114 265 
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£ "'} Force Distribution .:!., to Excite 2nd J·lode Loop Analogy 

Damping: Generalized 3 Degree of Freedom System 

Frequency Input Response 

E h 'l h 140- h + ~ £ 

100 10 22 3 . 28 294 88 
120 10 22 4 · 05 294 88 

itg 10 22 . 5 t ·9O 295 87 . 5 
10 22 . 0 . 0 296 86 

180 10 21 7 . 5 300 81 
200 10 21 10 . 1 294 87 
220 10 20 12 . 8 285 95 

~g 10 20 13 . 3 275 105 
10 19 it·1 271 108 

280 10 19 1 .0 270 109 
300 10 17 17 . 8 267 110 
320 10 17 20 . 5 265 112 

3tO 10 16 24 . 3 261 115 
3 0 10 15 29 . 5 252 123 
380 10 12 35 . 5 244 128 
400 10 10 46 . 5 229 141 
420 10 8 56 . 2 213 155 

htg 10 10 62 . 0 191 . 5 178 . 5 
10 14 59 . 0 173 . 0 201 

480 10 19 50 . 7 160 . 0 219 
500 10 20 42 . 5 150 . 0 230 
520 10 21 36 . 5 145 . 0 236 
5to 10 21 31.2 140 241 
5 0 10 23 27 . fj 137 246 
580 10 23 24 . 2 133 250 
600 10 22 21 . 8 132 250 
520 10 21 19 . 9 129 252 
6tO 10 22 18 . 3 127 255 
6 0 10 23 17 . 0 126 257 
680 10 23 16 . 0 125 258 
700 10 22 15 . 0 125 257 
750 10 23 12 . 8 121 262 
800 10 21 1l . 3 119 262 
850 10 21 10.2 118 263 
900 10 21 9 . 4 118 263 
950 10 22 8 . 7 117 265 

1000 10 22 8 . 0 116 266 
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Force Distribution {\\s} to 
- 1 · ~ 

E..'tci te 3rd 1:ode Loo:":, Analogy 

Damping: Generalized 3 Degree of Freedom System 

Frequency Input Response 

( ~2 " ~, 340 - ~I -+ ~ £ 

100 10 1.23 289 93 
125 10 22 1 . 60 289 93 
150 10 21 . 5 1 . 96 289 92 . 5 
175 10 22 . 0 2 . 42 286 96 
200 10 20 2. 95 279 101 
225 10 20 2 . 87 272 108 
250 10 20 2 . 93 277 103 
275 10 20 3 . 35 279 101 
300 10 19 3 .90 279 100 
320 10 19 4 . 15 278 101 
3~0 10 19 4 . 6 278 101 
3 0 10 19 5 . 0 276 . 5 102 . 5 
380 10 19 5 ' i 275 103 
400 10 18 5 . 274 104 
420 10 18 6 . 2 273 105 

~g 10 18 6 . 67 273 105 
10 18 7. 30 273 105 

480 10 18 8 . 15 273 105 
500 10 17 8 . 90 270 107 
520 10 16 9 . 90 267 109 
5tO 10 16 10 . 07 265 111 
5 0 10 16 11 .8 261 115 
580 10 16 12 . 8 257 . 5 118 . 5 
600 10 15 it·3 ~~ 121 
620 10 15 1 . 0 127 
640 10 15 17 . 7 241 134 
660 10 14 19 . 2 235 139 
680 10 13 21 . 0 227 . 5 145 . 5 
700 10 12 22 . 5 220 152 . 0 
720 10 11 23 .5 210 161 . 0 
7L~0 10 11.5 23 . 8 20L~ 167 . 5 
760 10 10 . 5 24 . 0 193 177 . 5 
780 10 11 . 5 23 . 5 185 186 . 5 
800 10 11 . 0 22 . 5 179 192 
820 10 10. 0 21 . 3 173 197 
8tO 10 10 . 0 19 .8 167 203 
8 0 10 12 . 0 19.8 164 208 
880 10 12 . 0 17 . 5 158 g~ 900 10 12 . 0 16 . 3 154 
920 10 12 . 0 15. 2 152 220 
940 10 12 . 5 14. 0 149 223.5 
960 10 12 . 5 13 . 5 148 224. 5 
980 10 13 . 0 12 . 6 145 228 

1000 10 13 . 0 12. 7 145 228 
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Calculation of Damp;ng in Each Hade 

Classical System 

Percentage Initial Damping 

Exact 

1st Node 

2nd mode 

3rd mode 

Non- Classical Sys tem 

15 . 88 

1I . 25 

9. 97 

Equivalent Classical Damping 

Exact 

1st mode 

2nd mode 

3rd mode 

15. 88 

11 . 25 

9 . 97 

From Circles 

14. 24 

11 . 78 

10 . 13 

From Circles 

16 . 98 

13 . 15 

11 . 24 
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Determination of' Natural Frequencies 

3 Degree of' Freedom System 

Classical Damping : 

1st mode 

2nd mode 

3rd mode 

Non- Classical Damping : 

1st mode 

2nd mode 

3rd mode 

Bxact 

215 

445 

752 

Exact 

215 

441 

742 

From Circle 

216 

444 
754 

FrOD Circle 

216 

442 

755 
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Root Locus Plot 

2 Degree of Freedom Sys t em 

(Non- Clas s ical Damping ) 
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Roo t Locus Data 

n >. 
0 -. 187 :!: . 9811 

-.170 ±. . 557 

1 -. 281 1: . 956 
-. 256 :!: . 524 

2 -.418 ±. . 903 
-.398 :!:. .441 

3 -. 607 :!:: . 754 
- . 578 :!:. . 143 

4 -. 1)90 . 373 
-.458 
- 1. 022 

5 . 958 . 078 
- . 274 
- 2.574 

6 -.421 
- 1. 311 
-. 153 
-4 . 001 

7 -. 213 
- 2. 261 
-. ih01 
- 6 . 021 
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