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Abstr act 

The work of Ros en baum describing pr opagat i on of 

impe rfec t l y trapped (leakin g ) modes in an acoust i c wa ve­

guide is extended to two pr oblems of geophy sical import ­

ance . Th e problem of a li quid la ye r coupled to an e la st i c 

ha l fsp ac e i s cons ider ed f ir st, in a pap er ent itled: 

Propa gati on of Leakin g Modes in the Cru st al Wa veg uid e : 

Th e Oceanic PL wave. Theo r et ical r esu lt s obta i ned in th i s 

f i rst pap er ma y be app 1 i ed , after s 1 i ght gene ra 1 i zat i on, 

t o the most general type of plan e se i smic wavegu i de . In 

a second paper, entitled : Pr opa ga ti on of Leakin g Int e rfac e 

Wa ves , we discuss these gen era l iza t ions and appl y them to 

the fundamental pr oblem of puls e pr opa ga t i on along a plane 

i nterface . Th e mo s t impor tant res u l t of both pap ers i s 

the descript ion of the earli est - arri v in g s i gn a l travel in g 

i n the wavegu id e as a result of a t ransi ent point exc i t a t i on. 

Numerical resu lt s fo r both ·pr ob l ems we r e obtained 

by so l v in g t he comp l ex per iod eq,a tion on the Bur ro ughs 

220 computer. The pro grammin g framework a nd the numerical 

metho ds used ar e d is cussed i n a th ir d sect io n of th i s thes i s. 
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Abstract 

The prob lem of the seismic signal associated '.'lith the 

earliest P- wave is treated from the modal point of view, 

where the signal is regarded as a quasi - surface wave, 

coupled both to the motion of the earth ' s layered surface 

and to body waves propagating in t he underlying media . 

Predictions made for t he particular model assumed are 

relevant to explosion and earthquake sources . The o sci l­

lations following t he initial P mo tion are explained . 

The transient solution obtained by Rosenbaum for leak­

ing mo de propagation in an acoustic waveguide has been 

generalized to describe propagation in an elastic halfspace 

overlain by a liquid layer . The early-arriving PL mo des 

kno\\rrl from earthquake studies have been computed for 

several theoretical models to test the effect of the elastic 

lContribution No . 10 13, Di visio :1 of Geological Sciences, 

California Institute of Technology 
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constants on the ir dispersion and attenu2.tion. Physic 2.1 

reasoning ba sed on harmonic plane 'dave models , appears in­

sufficient to predict r:lany features of the exact disper sion 

and attenuation . The analogy between PL waves and no rmal 

modes in the case treated by Pekeris is exploited and it is 

also be lieved tlla t PL ':Taves are related to an attenuated 

pseudo - surface ,.lave of a free solid h a l fspace. Late ­

arriving quasi - standing waves are treated briefly and the i r 

relevance to certain seismic p henomena is fJentioned . 



· 
J 

In~roduc t i on 

Ti1e nature of the gr ound response to a transient se ismic 

source , S UCi1 as an explo sion or an earthqua£e , has been ap -

proached f rom t Im complementary pOints o f vi ele? ':,hich are 

mathematically tractable . Geometric ray t heory pr ed::'ct s 

t he ampli tudes and travel times of ener sy travelling as 

compressional and shear waves in the earth . It has been 

especial ly valuable in interpreting t he ear ly part of a 

seismic signal containing t he body waves P and S, as \-Ie ll 

as mixed phases such as PP, PS, PSP, etc . , k:1Ol-m from 

earthquake studies . i'laveg<;.ide theory has hereto fore COI1 -

cerned itself ';,ith t he later portion of a seismogran con -

s i st1ng large l y of oscillations perfectly coupled to t he 

earth ' s layered surface , such as Rayleigh waves and Love 

waves. This theory has not accounted , however, for the 

principal ener gy in the early- arriving body waves , name ly 

the oscillatory "tail" often associated vlith the P \'lave or 

the refraction arrival. Furthermore, early- arriving osci l -

lations are often observed, whi ch have no appar ent relation 

to either knolm body I'laves or theore tical l y predicted sur-

fac e waves . It is to such prob lems that this paper is 

addressed . The waveguide theory is generalized to a 

transient in such a way as to explain early- arrivi ng waves 

\-lhich share certain properties of both body vlaves and surfac e 

I~aves (normal modes ). It is hoped that tr.is appr oach will 

even tu ally predi c t or confirm many details of seismogr am s 
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from transient sources wnich ~1ave been largely ignored up 

to nO l"!. Although a liquid surface layer i s treated here 

t ;1 e method can be extended to a solid surface layer . The 

results for the latter case wi ll appear in a forthcoming 

paper . 

In the past decade much has been l earned about t he 

properties of surface waves on a layered e lastic halfspace . 

One is able to deduce the dispersion and particle motion 

for ordinary Love or Raylei Gh waves by finding the zeroes , 

in the real domain, of a secular determinant , as a function 

of the frequency parameter W. The definitive fo r m of t his 

theory is due to Pekeris [1948 J, who applied his results to 

a liquid layer lying over a liquid hal fspace . Since t hen 

various authors have obtained the dispersive properties of 

surface (-laves in a sufficient variety of cases to learn a 

great deal about the proper t ies of the earth ' s crust and 

upper mantle . 

A common definition of "surface '.-lave" states that, in 

the steady state (sinusoidal time dependence) the energy is 

restricted to the surface waveguide , causing t he ('laVe ampli­

tudes to vanish exponential l y with increasing distance from 

the waveguide . Consequent ly a se t of source free potentials 

can be formed , equal in number to t he boundary conditions . 

The latter generate a set of homogeneous linear equations 

whose vanishing determinant specifies the dispersion rela ­

tions (phase and group velocity cJrves) . An equivalent 



vie\'lpoint , utilizing the nutual ~onstruc~ive interferen~e 

of plane ' .. raves totally reflecte c. in t:'1e v/avegui de, arrives 

at the same result. 

The p lane I'lave interference id.ea strongly suggests t;1a~ 

one may observe other types of surface \'laVeS, in which the 

total reflection cri terion is Clot entirely satisfied . Hodes 

of motion exist in "Ihich energy is systematical l y leaked 

into the halfspace . TI1e construc tive interference criterion 

I'Jill still select certain frequencies at vlhicl1 the l eakage 

loss is smal l conpared with t hat at neighboring frequencies; 

these frequencie s will propagate as qu asi - surface wave s, 

damped exponentially in time and space , due to conti nual 

loss of energy f r om the waveguide . 

Oliver and I'lajor [1960 ] recently discussed a c l ass of 

leaking waves known in earthquake seismology as PL I'laves . 

They are observed as early- arr iving dispersed Signal s , 

coupled to the P I·lave velocity in the basement, and are 

dual to Rayleigh .. laves in the sense that the surface orbital 

motion is generally prograde elliptical. The PL wave is 

the oscillatory portion of the f amiliar refraction arrival 

and corresponds to the normal modes obtained by Pekeris 

for the liquid botton problem . 

Oliver and ]-.1ajor suggested that these leal{ing :nodes 

s hould correspond to minimum values (quasi - resonanc e) of 

the secular determinant . Proceeding on t h i s basis , they 

computed dispersion curves for single layer crustal Clodels 
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corresponding rough ly to an oceanic and a continental crus t . 

':'he Pekeris solution, however, is not sufficiently refined 

to yield damped moda l solutions, so that the Oliver and 

Najor curves, while intuitively reasonable, have no _ rig orous 

ro l e in the Pekeris theory. Also, t he steady-state theory 

does not predict the attenuatio'1 suffered by the various 

frequencie s . 

Electromagnetic theory provides a familiar examp le of 

damped modes, -.,here the loss mechanism, conductivity , is 

intrinsi c to the propagation in the small. 'ile are not 

concerned with microscopic losses, which induce only sligh t 

additional dispersi on, bu t wil l investigate leakage losses 

due to coupling of the waveguide to the halfspace . There 

is no analog in electromagnetic wave~uide theory to certain 

e lastic phenomena which are due to the existence of both 

longi tudinal and transverse wave propagation. ':Ie do know, 

however , that the usual definitions of phase and group 

ve locity lose their precise meaning when attenuation occurs . 

It has long been felt that leaking modes could be in-

cluded in the modal transient solu tion by taking account of 

the complex roots of the period equation lying on "non-

permissibl e" Riemann surfaces of the integrand. Rosenbaum 

[1960 ) accomplished thi s by a series of contour transfor-

mations in the complex sand k planes \,hich enab led him to 

include modal expressions due to these complex roots. The 

resulting integrals are then approximated by the saddle 
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point method in the complex k - p lane . The final expressio:-l s 

fo r the modal solution, save fo r the introduction o f an 

attenuation factor, are simple ~enerali zations of t ho se ob ­

tained in the Pekeri s theory . Th e l ocation of t he saddle 

point 1'lhich defi nes the f requency and wave number of the 

dispersed waves is now in general complex. Group velo city 

is obtained by an operational definition at the complex 

saddle point, while phase velocity appears as an auxiliary 

resu lt . The Rosenbaum solution is distinguished by the 

following properties: 

1. The solution is obtained as the first term 

of an asymptotic expansion in inverse powers of the 

time, in contrast to t he Pekeris solution in inverse 

powers of the horizontal distance r . This generali za­

tion makes it possible to consider t he form of the 

response at short distances and large times (singing 

modes). 

2 . Considered as an equivalent large-r represen ­

tation for waveguide propagation , the Rosenbaum solu­

tion contains as a special case, without da1')]ping, the 

conventional normal mode surface waves . 

3 . Group velocity, phase velocity, frequ ency , 

and vlave number, ob tain preci se operatio:l.al meaning 

only by virtue of t he form of the solution obtained 

by t he saddle point evaluat ion . The damping coefficient 

turns out to depend on t he i maginary parts of both ~ 

and k . 
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il Intuit ive predic tions , ba sed on experience 

Ni th norma l mode theory , are not entirely accurate . 

One is accustomed to speak of waves propagating at a 

gi ven phase velocity , and would l i ke to kn01-1 hOVI 

they are a ttenuated . The correct representation of 

transient leaking modes shows that t hey are to be 

regarded a s a superposition of transient damped os ­

cil lations having a characteristi c si gnal, or group, 

ve l ocity; it is not correct to view t her:1 as a super ­

position of damped harmonic plane waves having a 

characteristic phase velocity . Here this done, t he 

damping factor wou l d arise from e i t he:':' 1m (tV ) or 

1m (k) a lone , instead 0 f the correc t combination 0 f 

both . It is valuable , however , to u se intui tive 

plane ,'lave ideas as a check against the fina l results; 

there ~Iill always be a discrepancy, tut it cannot b e 

t oo great or singu lar in nature . 

Rosenbaum took as an example of his method the leaki ng 

modes in a Pekeris liquid wavegui de . ;';e f ou nd ':Iaves wit" 

a small group veloci ty and large phase ve loc i ty whi ch are 

to be observed at times later than the Ai ry phase . These 

mod e s may be cO:lsidered a s du e to constr '",c ti ve i nterfer enc e 

be t ween plane '.~aves i nCident in the surface layer on t he 

~alfspace at ang les between normal i nc i dence and the critical 

ang l e for compre ssional waves . One may vie\-I this br a nch of 

t 'l e dispersi on curve as due to the normal modes of a liquid 
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plate bou nded by a free surface and an acoustically hard 

surface . In the limit a s the lovle r halfspace attains 

infinite acoustic impedance, t h e Rosenbaum modes become 

identical \'li th the normal modes fo r an acoustic p l ate coc;ple cl 

to a rigid halfspace . Likewi s e , in the saMe limi t, t he 

Rosenbaum modes become entirely undampe d , and the ground 

VIave branch of the di spersion disappears . 

~urpose of t he Present Paper 

vIe shall nov: consider leaking modes in t h e case of a 

liquid waveguide coupled to an e l astic ',alfspace . This 

differs fro::! th e Rosenbaum problem in that certain leal(inG 

modes propagate at signal ve l oc ities greater than t hose of 

t h e norr.1al modes . The prob l em is re l evant in both earth ­

quake seismo l ogy and explosion seismology and concerns the 

oscillatory portion of t he gui ded P- vlave propagating \':i th 

the velocity c 2 of P- waves i n t h e halfspa ce . 

It vTil l be necessary to generali ze the contour trans ­

formations used by Rosenbau~n ; the passag e from a liquid t o 

a soli d ha lfspace intr oduces an additio:1al b ranch point in 

the forma l integral so l ution . This passage is a singular 

perturbation ; an addi tional ( shear ) potential is require d 

2nd another boundary condi tion is appropri ate . It is Hell ­

kno\\'11 that t h e :'1ormal mode solutions to t ,1 is prob lem are 

not the analOG of t he Pekeris normal modes in the liquid 

bo ttom case . One obtains instead Rayleigh and shear modes, 
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1-11: i ch depend str ongly on t he shear "IC',ve ve locity str uctul'e , 

and propagate no faster than the stear ve 10:: ity in t he ha1f -

space . T'1 e waves ,,:hich make up the Pekeris modes are no 

longer total l y reflected at t he li():..li d- solid interface , 

and lose energy into t he ha1fspace by virtue of a transmitted 

shear '!/Bve , even though the compres sional wave is total l y 

r e f1ected _ Such '-laves, propagating Vii t '1 a higher signal 

velocity t han the normal modes , but attenuated, due to 

l eakage of energy into tJ:.e ha1fspace , are called PL Vlaves 

or P-modes . The 101-lest mode may be observed on l ong period 

earthquake seismographs as a 10\'1 amplitude signal pr eceding 

t he shear wave for epicentral distances of 200 - 2000 kn . 

Hi gher modes may have some relevance in the propagation of 

* certain cyustal earthquake pha ses such as Pn and P. In 

seismic exploration applications t hese leaking modes form 

the osci llatory portion of the refraction arrival . P waves 

from nuclear explosi ons ''lOu1d sho\', oscillatory mo tion be -

cau se of near surface layering . 

\'Ie now consider this in a little more detail by going 

to the impre ci se , bu t helpful, notion of harmoni c plane 

waves bouncing in a layer at differ ent angle s of incidence 

(Fig . 2a and 2b) . Between ang les corresponding to phase 

velocities c = c2 and c = ~2 ' P waves are to tally reflected , 

"lhile e nergy leaks into t he bot ton by P ~ S conversion . 

One expect s that the damping of these waves will be l east 

Hhere the P __ P reflection coefficient is t he gr eatest . 
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ReferrinG to Fig . 2b -' "le see that it i s uni t;l for p~l ase 

velocities l e ss than ~2 , giving rise to undalTlped shear mo des 

at all ang les of i nc i dence between graz i ng (900
) and t :-,e 

criti cal ang le for P--;. S transmission . Also , \'/hen c is 

near c 2 , the reflection coeffic i ent a pproaches 1, suggest ­

ing that P- mo des may propagate most e fficiently for t hat 

value of pnase velocity . This explains qualitatively , a t 

l e ast, why t h e oceanic PL wave is propaga t ed over unexpectedly 

Great distances [Oliver and Na.1or 1960 J. 

To esti mate t h e dispersion from t h is simple nodel, 

l','e note that , wh e:1 c = c 2 ' the phase chang e on reflec tion 

is zero ; h ence the dispersion should b e identical with t hat 

i n a Pekeris liquid I'lavegui de near cutoff (Fig . 1) . Oliver 

and Major used essentially t h is me t ho d to compute the dis-

persion . I n later sections I'le vlill see that t his picture 

is indeed accurate in its gross aspe ct ; i n detail it is 

incorrect . Thi s discrepancy is due to t he fund amental i n -

ab ility of h a r monic plane VlBves to descr ibe atte!1uated 

transient modes . Physically t i1e disc repancies arise from 

coupling to the intrinsic l ong - period vibra tion s of a fr ee 

solid ha lfspace . 
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The Formal So lut'on : A Summary 

\1e consider a liquid layer I'li th free upper surface, 

coupled to a solid halfspace, labeling the former 1 and 

the latter 2 (Fig . 2a). The layer thickness is H; sou rce 

and receiver deptl1s are d and z , respectively; densities 

are gi ven by p., compressional velocities by c ., and shear 
l l 

velocities by ~i' The source is consider ed to be a transient 

pulse 1"Iith exponential decay S(t) = Ae- t / 8 . The appendix 

contains a complete list of definitions . For the sake of 

readability, we also relegate to the appendix all details 

of the contour transformations vlhich yield the attenuated 

moda l solutions. The following points, however, deserve 

mention here . 
I 

The three expressions denoted aI' a 2, and a 2, contain 

square root signs, which generate branch lines in the 

comp l ex plane . Jardetzky [1953] has sholom that a l doe s 

not generate a relevant branch cut, due to the symmetry of 

the integrands with respect to this branch point . The 

integrand then lies upon four Riemann surfaces in t he 

complex k or s plane, which we classify by t he fo llowing 

table: 

Riemann surface: I 
II 
III 
IV 

Table 1 

+ 
+ 

+ 

+ 
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It is also i nportant to note tha t all variable s are normal ize d : 

f l' C l' and H, are considered eq'..lal to one. The uni t of ti 'le 

is, then , t he vertical travel time of P ~Iaves in the layer, 

and so forth . s = i W will be used as t '1 e frequency vari able 

for purposes of trans~orming and evaluating the contour 

in tegral, whi Ie we speak in ter:ns 0 f tV in di SC-cl s sing the 

resu lts . 

The pressure response of the Vlave6Uide to a transient 

source i s Given by the double integral: 

AfL'ao /00 J 
(1) Plrz tl=AJ estds J (krJkg(lU,k;z; elk 

('I ) / Jri ,5+8-1 0 / {lev kl 
l- L 00 0 (' ) J 

This expression may be obtained in the usual manner by satisfy-

ing t he boundary conditions [EwinG, Jardetzky and Press 1957 J. 

f is the period function and S is t he response function. 

f - 4 .... 4 . ha'" '[ (21 2, '" 2 2) 2 " k 2 - I 1 = os c u 2 Sln_ 1 . u l cosnu l (T co S - '-T u 2u 2 

Transformation and evaluation of t he formal integral so l u -

tion at residues lying in the second quadrant of t he s -plane 

yie lds the following integral expressions in terms of forvlar d 

propagating modes . He have neglected all non-oscillatory 

transient response terms . 

P = pI + p" 

pI = +4ARe E ( H( 2 )( kr)k l1=OL 0 

Sr 
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r / tk when <.... , ! p i = 0 o t her\·,!ise. The integration is over 

that portion of the real k axis, k > O, who se image s (k) lies 
n 

in the second quadrant of the s - plane, on t he I Riemann shee t . 

This term is the normal mode contribution plus t he late -

arri ving dar:-,ped mode s of the Ro senbaum type. s denotes a 
n 

root of t h e period equation f = 0 . 

(4) p" 

when r<t'i p" = 0 otherwise . The integration is over 

that portion of the real pOeitive k axis , I,ho se i mage s ( k) n 

lies in the second quadrant of the s - plane, on the III 

Riemann sheet. These r oots of the period equation Clre all 

complex, and will generate the early - arriving damped oscil -

lations . 

Approximate evaluation of integrals of t he t ype (3) 

and (4) has been thoroughly discussed by Rosenbaum . The 

method consists of replacing the Hankel function by its 

asymptotic representation in terms of a I'lave 

the positive direction, obtaining the factor 

progressing 

ei( CU nt-kr) 

in 

in 

the integrand . The k - contour is then considered to be de -

formed so that it passes through saddle pOints defined by 
dw 

the condi tion: ~ = dkn The saddle point approximation 

yields asymptotic solutions in t- l Complete evaluation also 

yields contributions from the end points of t h e contour and 

special expressions for the solution at an Ai r y phase , ;,hen 

W " = 0 . The saddle point representation is t h en : 
n 



P(r,t) = !J ' .r. 

n=O 

1 -- ........ -
-~ 

\'Inere L = I (CU c) - r
t 

I (k c) 
n m n m n 

The procedure for obtaining the dispersion and attenuation 

curves for damped :nodes is as follows : so lve the period equa-

tion f = 0 in tree complex plane in the neighborhood of t he 

contour 31 or SIll (eq s . 3 and 4 ) . Evaluate the complex deri va ­
d W 

tive ____ n , and iterate t h is process until one obtains a point 
dk 

which is both a solution of the period equation and satisfie s 
d W n the condition r = ---- ~ U = real . The quantities appearing 

t dk 
in the asymptotic representation ( 5) are then obtained by 

eva l ua t ion at the saddle point indicated by the superscript 

I n genera l t here \'Iil l exist a family of loci i n the complex 

plane which descr ibe the progress of the saddle po i nt as a 

function of U, the g r oup velocity . 

In point o f fact , cer tain diffi culties exist in applying 

thi s re c ipe for obtaining the dispersion cur ves . One ~ust 

be a ble to continuous l y defor m the contour into such a posi -

tion that it passes ove r each saddle point along a path of 

steepest descent . The exi stence of branch points near the 

i nitial cont our compli cat es the issue of locati ng the steepest 
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oescent conto~r . Rosenbaum recognized the comp l exity of t~e 

problem, and ,'las able , in hi s case, to delimi':; the behavior 

of t !1e roots of tile period equation wi t:1 enough prec i sion to 

specify the steepest descent contour with confidence . I n 

the liquid over solid problem , gener al statements about the 

analytic properties of the root s s (k) ar e difficult to 
n 

make , due to the complexi t y of the period lunction . One is 

f or ced , instead , to generali ze f r om numerical r esults ob -

tained fro :n a fel' arbi trary mode Is . 

It t her efore is advisable to r egar d any theoretical 

results as tentative unless corroborative evidence is avail -

able . The dispersion cur ves must r esemble those predicted 

in an examination o f the physi cs of the problem , as vie have 

done in the i n troduction . Li kewise , the compu':;ed attenuation 

coeffici en t Ln mus t not deviate too stro:1gly f rom the behavior 

predicted on physical gr ound s . It is helpful to disregard 

sadd l e pOints whose attenuation i s so great as to forbid t he 

possibility of observation . In practice O:1e i s interested 

in t he l east damped wave appropria t e to any part i cular signal 

veloci ty U. For the elastic Ivaveguide sunder di scussion , t he 

l e ast damp ed I'lave i s t he nor mal mode Gontributi on , wr.en 

UA L U ~ f32 ' \'Ther e UA is the Airy phase ve l ocity . Thus it 

is l egiti:nate t o ask a fter th e properties o f damped waves 

on ly if U L. A or if U > f3 2 · 
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;1umerical So l ution o f t h e Pr ob lem 

The period equation f = 0 (2) was solved on an ele;;ti'onic 

computer , and the derivative 
dw n 

dk 
eva l uated by appropriate 

forr.mlae in the neighborhood of t he III sheet root s l<2n (ld : 

k real; k 7 0 . In thi s I'lay t he behavior of the aforementione d 

roots (that i s, t he initial contour 5111) was clearly estab ­

li shed , as well as the location of br a nch points in the 

neighborhood of 5111 ' Determination of the saddle point l oc i 
d w 

fo 110l1S by i tera tion to t he condi tion ----1! real . On the 
dk 

Burr oughs 220 Data Processor one pass at the period function f 

takes 1 second , one root, ~ , and derivative are obtai ned in 
n 

about 9 seconds . Solution o f the same prob l em vlhen the super -

ficial l ayer is solid will be about 4 times slovler. 

Dispersion and attenua tion curves were computed for t he 

fo llowing assumed models: 

Table 2 

c 2 132 f 2 

1 5 .196 3 · 000 3 ·000 
2 3 · 000 1. 55 2 . 5 

~ 1.667 . 909 2 .0 
4 .0 2.309 2 . 5 

5 3. 0 2 . 000 2 . 5 
6 3.0 1. 732 2 . 5 
7 5 . 196 2 . 874 3 ·0 

Al l laye r constants are r eferred to c l = 1 , Pl = 1 , H = 1. 
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Case 1 ~s c~osen to represent a sinplified mode l of t~e 

oceanic waveGuide , '·Ti th t he lo'·fer ned urn a Poisson solid . 

Cases 4 and 6 represent Poisson solid s also , \:i t h a reduced 

propagation velocity in the halfspace . Case 7 is Case 1 wi t h 

a smaller bottom i mpedanc e , accor:1plished by reducing the 

shear velocity in t h e so lid slightly . This ,·las chosen to 

correspond to toe reduction in shear veloci ty be lie·ved t o 

occur in the upper mantle . Cases 2 and 5 show the effect 

of a decrease and an increase, respective l y , in the shear 

velocity of Case 6 . The numerical r e sults sholm in Figs . 3 

through 12 are derived as follm·ls . U is t:'le value of t~e 
d C<) 

derivative ____ n at a saddle point , and is plotted as a func -
dl{ 

tion of frequency , namely t he va lue of Re W n at the saddle 

pOint . TIle phase ve locity is plotted to compare 1~i th toe 

usual phase velocity plot in normal mode studies; from t~e 

Re cu 
form of t~e solution (Eq . 12) c = ---- , at the saddle point . 

Re k 

j·:e plot the attenuation constant Ln as a function of the 

g roup velocity , 1·rhich is equivalent to plotting it on a scale 

- 1 of t . All quantities plotted in Fig s . 3 - 12 are dimensionless . 
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Disc"...lssion of lJ~::lel'i cal Results 

T~e results ~or the firs~ three modes of Case 1 are 

plotted in Figures 3 and 4 . The associated normal modes 

and several late - arri vine; leaky node s are shOlm for com-

parison . The pOints P represent the cutoff of the physically 

simi l ar Pekeris normal modes . Par ticularly notel·Torthy are 

the follo~Ting points : 

1. At cutoff the group velocity is equal to c2 . 

This cutof::' is imposed by the form of the intec;ral 

so l ution (3) . The phase velocity at cutoff is slightly 

greater than c 2 . The operational definitions implied 

by the form of the asymptotic solution (5) do not 

necessarily require that U follOl~s fron c by differen­

tiation , a condition '-Ihich occurs onl y when CU
C and k C 

n n 
a r e real. Electromagnetic theory contains exa:nples 

\"There a r.1icroscopic loss mechanism brings about a 

s i milar situation : the group velocity cannot exceed 

a maxi mum value , but the phase velocity may suffer 

possib l y extr eme increase or decrease determined by 

the nature of the probler.J . 

2 . The frequency of the PL mode near cutoff is 

somel-That less than that of the analoGous acoustic mode 

(represented by the point p) . l-lathema tically thi s 

discrepancy \'Ii t;1 the prediction of a harmonic plane 

.,ave model is due to the essential vagueness of the 

mode l l~ith respect to damped oscillations . Physically, 
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it appears that ;;here is slight coupling to an attenuated 

long period surface vlave ,·:hich propagates in the solid 

halfspace . This matter will oe discussed in detail in a 

future paper . 

3. The hi~her modes of Case 1 behave essential l y 

lil[e the first mode . The mode indices n = 1 , 2 , .... 

are not arbitrary , but describe the number of nodal 

surfaces of the 1-lave potential Hi th depth . He may thus 

think of these as compressional modes , dual to the 

shear modes . It will turn out that I'lhen ~2 is unusually 

101'1 , the first mode behaves more like a zero mode Ray -

" leigh "ave , but the notation selected here is t he more 

natural. 

The behavior of the exponential decay constant has strong 

bearing on the possibility of ob s ervinG a given dalnped mode . 

Ln is plotted as a funct i on of U (Figure 4) . The abscissa 

may also be considered as a non - linear time scale runninG 

from right to left . For U < 3 . 0 the curves are dashed , since 

the shear ,,,ave and Rayleigh Have dominate the signal in this 

range . In the range 3 . 0 <: U < 5 . 196 , the maximum value of 

t he attenuation incr eases '"Ii th increasing mode number , in 

a ratio roughly 1 : 3 : 5 for the three modes computed . The 

distances to I'Thich the modes 'viII propagate can be seen by 

consider ing the ob l ique grid superimposed on Fig . 4, rep -

resenting the distance at which a '"/ave is attenuated by the 

- 1 factor e . 1:Ie shal l cal l this the decay range , ro o This 
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is related to Ln by the formula : 

u 
=: --y-

n 

ro is plotted in multiplies of the layer thickness , H. Thus 

the first mode is seen to propagate without appreciable loss 

as far as 250 H. At a very gr eat distance, \~e should see 

just a small wave packet traveling at a group velocity of 3 . 9 . 

At a range of 200 , the second and third modes 1'lOuld appear at 

best as a small damped oscillation following the first ar -

rival. For these modes the cusp at which L goes to zero n 
occurs later than the shear 11ave, and is of no practical 

i mportance . In order to see the entire second mode , one 

.. lOuld have to be at a range of less than 100 . Other rela­

tions of the same type may be extracted from Fig. ~. 

It is important to inquire how readily earthquake data 

may be inverted to compare with theoretical curves . The 

first damped mode has a dimensionless mean angular frequency 

of about 1.4 , \'lhich implies a dimensionless mean period of 

roughly 4 . 5 . At a range of 100 H, for example , the time 

elapsed between the first arrival and the shear wave is 

just l3 . 3~; we should be able to see only 3 cycles of the c
l 

PL '"lave , albeit Virtual l y undamped . Such a signal could not 

be read to give very accurate or even moderately dense esti -

mates of the dispersion , nor could the fine structure of 

the damping coefficient be at all evident . Thus the require-

ment of a reasonably long wave train is in conflict with the 
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fact that the v:ave decays at the desirable long ranges . In 

point of fact, signals of 6 - 10 cycles duration have been 

observed for oceanic paths . There is no reason ,,,hy data 

from many earthquakes cannot be combined to yield sufficient ly 

detailed information . But as regards dispersion, there is 

some question whether the PL wave will ever be able to more 

t han corroborate Rayleigh wave studies . The decay constant 

L , however , turns out to be qui t e sensi ti ve to the physical 
n 

properties of the solid halfspace . Discussion of this matter 

will follo'" in a later paragraph . 

Fir st mode results for Cases 1, 4 , and 6 , are plotted 

in Figs . 5 and 6 . These models demonstrate the effect of 

varying the P-wave velocity in the solid, while keeping 

Poisson ' s constant the same . Phase velocity , group velocity, 

and decay constant show almost identical behavior , save for 

the scaling of the velocity variable . In particular , the 

"hump" in the decay factor near cutoff has nearly the same 

value for all three cases . There is a slight reduction in 

the value of the cutoff frequency as the cutoff velocity is 

decreased . 

In Figures 7 and 8, Case 6 (the Poisson solid) is 

compared with Cases 2 and 5, in which the shear velocity 

of the solid is respectively decreased and increased . Case 

5, representinG a high bottom impedance, involves less 

leakage, and the computed curves behave nearly as predicted 

by analogy with the Pekeris modes . Phase and group velocity 
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cut off nearly at the Pekeris cutof~ , and the damping ap ­

proaches zero as U and c approach c2 . Ti1e opposite extreme, 

Case 2, entails highly anomalous behavior . There the damp ­

ing near cutoff is appreciably increased, and the dispersion 

curves are severely distorted in the direction of lONer 

frequency . 

In vieN of the strong dependence of Ln on the ratio of 

compressional to shear velocity on t he solid, we should look 

for possible applications to structure determinations in the 

earth . Hith this in mind , we have computed Case 7, to sim­

ulate , by 'contrast with Case 1 , the decrease in shear velocity 

\'ihich is believed to take place in a zone of the upper mantle . 

There is no presupposition that the results of this paper 

have direct numerical correspondence to the nature of actual 

seismograms due to the simplified models necessarily employed . 

One would like to know, however , what order of effect this 

simulated decrease might have on U, c , and Ln , to determine 

whether calcu lations for t he mul tilayered model known from 

Rayleigh wave observations would be appropri ate . Figs. 9 

and 10 show, as suspected, that Ln su~fers a pronounced in­

crease near cutoff , l'lhile U(w) and c( cu ) ar e affected only 

s lightly . 

The computed group ve l ocity for Cases 1 and 7 has also 

been plotted in Fi g . 13 for the specific oceanic models 

sho~m , and compared with data by Oliver and Ha jor fo r three 

oceanic paths . The shape of the computed curves agrees 
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better with the data than did the approximate curve" computed 

by Oliver and Maj or . Better fit could be achieved in two 

ways : (1) by varying the laye r thickness of the model, we 

coul d make the vertic a l portion of the group velocity curve 

fit any of the sets of data shown ; (2) by int r oducing an 

additional crustal (basaltic) laye r in our model, it appears 

that we could "pull" the high velocity end of the theoretical 

curves down, into better agreement wi th the data . Thi sis 

not planned at present for practical r easons . Alth ough the 

th eore tica l curve for Case 7 agrees best with the data, the 

ve r y c r udeness of the model forb i ds us to say a nything con ­

clusive . We defer instead to the r efined researches now 

being car ri ed ou t by means of mantle Rayleigh waves. It is 

conceivable, however , that the dependence of the attenuati on 

on the Poisson constant i n the sol id may be uti 1 ized to 

supp l ement information obtained with Love and Ray leigh waves . 

It wi 1 1 be necessary first to compute Ln for models in which 

the solid is generalized to several layers . 

Insofar as reliab l e dispersi on data can be collected, 

we may take advantage of the fact that these P modes have 

a greater de pth of penetration into the mantle than do the 

Rayleigh waves of simi lar frequ enc y. Even t ually, in terms 

of multi - layered models of the mantle, the P modes may yield 

valuable info rmati on on r egions as deep as 300 km. A long 

period (60 seconds) P wave has been obse rved for several 
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large earthquakes by instruments in Pasadena . This P mode 

nay involve motion as deep as the penetration depth of the 

P ray and \'lOuld require theoretical models with several 

layers . Preliminary examination of records suggests that 

this wave is the same for oceanic and continental paths . 

Another point must be borne in mind regarding the effect 

of damping . Pronounced variations in layer properties or 

thicknesses Vlill have a very de leterious effect on the leak­

ing ,'laves , as compared with their effect on Rayleigh \'laves . 

The latter propagate undamped , in a relatively wide fre­

quency band \'T~ich is selected by the dispersion curve . Uhen 

a change of thickness occurs , such as at a continental mar ­

gin , each component frequency incident on the boundary 

merely "feeds" the nevI propagation modes at the same fre ­

quency , but at a nel'/ group veloci ty determined by the local 

dispersion curves . Thus nearly all of the long -period enerGY 

in a Rayleigh l'laVe train is transmitted without loss across 

structural boundaries , propae;ating locally as dictated by 

the local dispersion curves . By contrast , leaking modes 

traverse appreciable paths only in restricted frequency 

bands (see Figs . 3 and 13) l'lhere the dampi ng is small. 

Hhen such ':Iave trains encounter a change in the ,1aveguide 

properties, conditions may then be unfavorable for efficient 

propaGation at the predominant frequency of the signal . Thus 

propagation along mixed paths , or across major structural 

discontinuities ~Iould tend to destroy the oscillatory 
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charac ter of t,1e P-arri val. 

For the sake of completeness, a model hes been con-

sidered , in \'r~icj1 the shear veloci ':;y of tr.e solid is less 

than the compressional velocity in the liquid layer . In 

such an instance , no shear modes can exist in the vlavec;uide 

and the predominant observed guided wave will be the damped 

P-oscillation . In Case 3, illustrated in Figures ·11 and 12, 

''Ie have chosen f 2 = 2 , ~2 = . 9 1, and c 2 = 1. 67 , parameters 

\'ihich might describe e semiconsolidated r ock basement such 

as is found in shalloVi water exploration . The dO\ffiwerd 

frequency shift noted in earlier figures in connection wit:'l 

low shear velocity is the most striking feature of the dis -

persion . 

Pressure and Velocity Distribution 

'ere shall consider further the physical basis for the 

behavior of the group velocity curves just cited , after 

examining the distribution of the wave field in the liquid 

layer . The z - dependence of the pressure, for the trapped 

portion of the field , is given very nearly by ! sinh Ct l zj, 
provided the remaining factors in the excitation function 

(eq . 5) do not vary strongly in the ranze of U that is of 

interest . This has been evaluated for representative values 

of U, for Cases 1 , 2, 3, 5, and 7, and plotted in Figs . 14 

through 18 . The reference curve labeled "Pekeris" is the 

sinusoid \1hich represents tr.e pressure distribution at cut -

off of the first mode for the original liquid/liquid problem . 
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The vertical velocity distribution , u z ' given by the z ­

derivative of the pressure , has been sinilarly plotted on 

the same figures . It will be apparent that the vertical 

veloc ity shoHs most clear l y the departure from the reference 

shape . 

1.'fe see that leakage into the bottom, which depressed 

the cutoff frequency , tends to modify the shape of the 

trapped wave , decreasing the phase di fference betl-Ieen the 

surface and bottom motion. As long as the leakage is 

relatively small (Cases 1, 5, 7), \'Ie may consider the wave 

as a perturbation f r om the reference shape . This is not 

unexpected , since physical grounds have l ed us to classify 

the PL modes \',i th the modes of the liquid/liquid case . 

The situation becomes more complicated \'/hen the damp ­

ing increases . Cases 2 and 3 show that leakage depresses 

so much of the waveform into the hal fspace that the surface 

and bottom of the layer are nearly in phase . This, ho\vever , 

is the situation \'Then a long -wave length Rayleigh wave , for 

example , i s propagated on a solid overlai n by a thin liquid; 

the liquid merely moves in phase with the surface of the 

solid . vIe would want to classify these highly damped modes 

'.'Ii th some sort of surface wave motion in a solid . 
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Late - arriving Haves 

As mentioned previously, the present problem involves 

late - arriving leak<J modes of the type found by Rosenbaum 

for the liq~id/liquid problem . The g rou p velocity curves 

for these modes have the folloVling tl'/O properties : (1) 

every Airy phase, 't!hether of a normal mode or a leaky mode 

of the early- arriving type , is associated "~lith a late ­

arriving brancr, ,·rr.ich "connects" the stationary value of U 

\'lith U = O. (2) In the vicinity of U = 0 , that is, for 

arbitrarily large time , the frequencies of the late - arrivin 

modes degenerate to the set of frequencies w = (n - ~) 'i/ . 

Tr.is behavior is il l ustrated in Fig . 3, l'Ihere three such 

branches have been computed , I'Ihich all degenerate near U = ° 
to the value CU = ~ 'iI. These results have relevance in the 

analysis of the late - arriving signal from an earthqu al{e , 

transmitted along an oceanic path . It is a matter of ob -

servation that observed oceanic Rayleigh ';Iaves do not 

terminate sharply in a strong Airy phase, but gradual l y 

decay , "lith oscil l ations near the expected Airy phase fre­

quency observed at very long times a:'ter the event . As is 

seen in Fig . 3, the three different late-arriving modes 

computed \,lill not differ signi::'icantly in frequency for 

large times . In Fig . 19 ":e have computed the damping 

coefficients :"or these three I-raves; the least damped for 

any value of U bei ng represented by the heavy line, wh i ch 

\'Ie may take as determininG the predomi':1ant branch at any 
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Give~1 t ime . He ':lisn T:1erely t o point out t ll is exp lanation 

for the 0"0 served la te - arri ving \'!aves; a oefi ni ti ve conpari ::;or:. 

of d2.ta Nith the t heory is not attempted h ere . 

Physically, the late - arri vins ' .. ,ave s correspond to plane 

1'!aves nultiply reflected in the layer at nearly vertical 

incidence . In contrast , the ear ly-arri ving 'Ilaves (?L or 

shear) correspon::l to an ang:e of incidence nearly equal to 

an appropriate critical angle for refractio n into t he half -

space. The hig!l - frequenc y branch of a normal mode is the 

result of Naves trave lin:>; at nearly grazing incidence in 

the layer. 

Rayleigh wave observations for various pa ths refl ect 

the se di fferences. It is i ndeed se l dom that the high fre -

quency branch is observed, for e ither continental or oceanic 

paths . Instead, the Airy phase of the e a r l y-arrivi ng (long 

I"ave) branch is occasionally fol l owed in time by a I-le a k 

t rain of waves at the Airy phase frequency . In vie\'l of 

the physical basis for these waves, it is not surprisins 

that the branch d'..le to grazing I'laves is destr oyed by inhomo -

geneities or variations in crustal thickness , a mechanism 

~rhich Ivould not degr2.de the vertically bouncing \'laves as 

severe ly . A m2.jor s true tural bound2.ry \ 'IOU I d al so tend t o 

destroy t~e hi;;h freque?1C~l branch and favor by comparison 

tile Ia te -arri vinE; Vlave . 

Ot her phenomena r e l 2.te d to oceanic s e ismi c Have propag 2. -

tion ;ihich a r e tied in ' .. lith the leakinG modes are briefly : 



1. Sir.~e 2. 182.kin8 mode i s cO'-lpled to a bodj' ',:ave , 

a siT:".ple application of reciproci ty sho\l]s that earti1 -

qual{e boci.y ':laves may excite 2. le2.\:y $).rfE.ce 1'tave train . 

O::ive1' :1as applied tr.is to the compu':;ation 0:;" the long -

period \·:aveform 2.ssociated ':lit!: tl:e body S phase , "Thic:'1 

exc i tes a lealq PL mode of phase velocl ty equal to the 

local trace velocity o f the body \'lave . 

2 . ~i!e rna:,' be concerned 1/li th the IIcomplemen tl! of 

a lea10J mode . A lea1-:;,,' mode repre sen t s narrovT-b2.ncl 

ep..er gy te:.1porarily stored by t i1e surfa.ce portion of 

tne 1:'72vegui::ie . Its cOIilplemen~ is mere ly t he signal 

released from tr.e surface and pernitted tc t rave l 

into the bottom as 2. body ','lave . The osc::'llatory por -

tion of the P wave observed at ranGes of 25 to go 

de grees (con~only a period of 13 to 28 seconds) is 

the complenent of the late - arrivinG (vertically in-

cident) mode excited by an earthqua1<e at the base of 

the crust, propagated 2.n the mantle a long tile s ame 

"ray" as the i,ni tial P- motion . Observed P osci11a -

tions of around 60 2nd 150 seconds are of the same 

type , but, since their wavelength is of the same order 

as the penetration dep th of the P ray , the foregoinG 

remarks become rather imprecise , anti it vlill b e neces-

sary to cons truct a conplete Have t:1eory for these 

oscillatioE::; . 
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3 . I t is sugges ted t hat t he late - arriving quasi ­

standinG mode may playa r ole in t he propagation of 

seismic noise in oceanic regions. Wi despread surface 

pressure variations , whether bar onetri c or due to 

standing water wa ve s, will exc i te t his mode a t least 

as efficiently as t heyexc i t e undampe d Rayle igh wave s . 

The noise may then leave t he source reg=-on e i ther by 

horizontal propagation in t he layer or by mean s of 

t he P wa ves leaking i nto the bo ttom. The f orme r must 

be r egarded as a short r ange mechanism, while the 

latter wou l d carry the energy to appreciable distances 

as body waves . He merely mention these hypotheses , 

since further consideration wil l r equire appropriate 

experiments. 

Conc lu s ions 

In t he s t eady state , undamped norma l modes are suf­

f icient to describe seismi c propagation in t he earth ' s 

outer layers . ",,'hen a transi ent source or a boundary is 

pr esent, however, it is necessary that the lea:<ing modes 

be understood in addition . Of particular interest in t he 

transient case is t he ear l y - arriving PL Ivave, in which energy 

leaves the r egion of t he surface waveguide in the f or m of 

body waves . For solids having the properties usual l y en­

countered in earth materials the PL I-Iave is the analogue 

of the normal mode computed by Pekeris fo r t he liquid/liquid 
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problem . The PL ;';ave dispersion differs, however , from 

t:-:at of the Pekeris :1ormal modes in tha~ the existence of 

leakage into the solid apparently caLlses the f:::>equency of 

the I'raves to be decreased somel'lh a t . ':':le attenuation fac tor 

for PL I'raves is qt;.ite sensitive to t:1e Poisson constant of 

the underlying solid . Du.e to the li:nited ranges of propaga­

tion , the extraction of dispersion and attentuation from 

earthquake records presents considerable difficulty . Ehen 

mode ls with a high Poisson constant are considered , certain 

complicati ons a rise . It appears t hat the resulting highly 

damped wave may be thought of as a long period pseudo ­

surface Have , an interface wave intrinsic to the solid 

ha lfspace , which is in a sense the prograde el l iptical 

dual of t he far:iliar Ray l eigh I-lave . The late - arriving 

leabJ modes appear to be involved in several types of 

seismic signals , such as P- type body >Iaves , late - arriving 

surface waves , and microseisms . 

The i mportance of P- modes in shaping t " e first 

arrivals from l arge blasts cannot be too heavi l y emph sized . 

In tile nuclear detection problem surface layering is respon ­

sible for tile distortion of the P wave into an oscillatory 

signal. For P vraves from blasts or near earthquakes tile 

frequenc ies cOTIL'l1only observed may involve h i gher '.10des . 

Pertinent to this , computations are no '.'1 in progress fo:::> 

:-:1ode ls having 2. solid surface lay er . 

Exact computation of the disper sion for leaking modes 
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involves a simple generalization to complex variables of 

the technique employed in norma:!. mode problems . One comp,-; tes 

complex so lu tions , C<J n ' of the period equation for complex l: 

by iteration and looks fo r the complex l oc i of this solution 

d 4Jn a l ong which is also real and positive . Roughly 5 to 
dk 

10 times more computation time is needed than for the com-

parable normal mode so l ution . 
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Defini tions a;1d formulae : 

A = so·",.rce ampli tude 

b = 

c = phase velocity 

c l = compressional velocity in liquid layer 

c 2 = compressional velocity in soli d hal~space 

D = source deptr. i'1 layer 

f = period function defined by eQ . (2) 

g = response function defined by eQ . (2) 

Ii = layer thickness 

k = complex wa ve number 

Ln = exponential t~me decay factor f or t~e nth mode 

n = mode index 

r = horizontal coordinat e 

r = 
0 

"decay range" for dar:1ped modes = U/L n 
s = Lapla ce transform variable = i 4J 

t = time 

U = group velocity = d t.{) /dk \'~hen this quan ity 
is pure real n 

u = z vertical ve l oci ty 

z = depth coordinate , increasing dOlmward 

The subscript n denotes evaluation at a root (nth mode) of 
ti1e equati on f( tVn , k) = O. "'he superscript c in addition 

denotes eval;.Ja tion at a saddle point, ':ll1ere d w /dk = r/t . 
'1 

T],e subscript I , II , III , or IV, denotes takin::; the fu::1ction 
on the particular Riemann surface defined by Table 1 . 
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Appendix ( continued ) 

1 
(k2 +JS2)2 

1 
(k

2 +"IS2)2 

snear l-laVe velocity in halfspace 

decay time of source pulse 

density of ith layer 

complex frequency = - is 
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The formal Eolution in dimensionless variables is a 

consequence of applying the appropriate boundary conditions 

,:md specifyine; that the source be a point pressu",e pulse, 

exponentially damped in time . 

(1) P(r , z , t) 
. ~ t+i~ 

1/i /I - i oo 
dl, 

where f is the so - called period function and r; t'1e response 

function . 

:e shall deform the ini tial contour of i ntesration 

(Fig . 20) in the s - plane , ca~sing it to lie partly on the 

II and I II Riemann surfaces of the integrand ( see table 1) . 

For convenience , auxiliary functions are defined , in order 

to remove part of the confusion of ,'Iorking ':Ii th several 

Riemann sheets . If ,'Ie VIi sh to take the val ue of f on the 

second sheet , ,'Ie \vri te r) I I ' f * is defined to be the 

function ,-Thich is defined on the first sheet to be identical 

there to f)II ' Thus 

\'!hi l e 

f * = 

= 

I n like fashion , VTe define f **)I = 

and f *** )'I = r)IV 
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Figure 20 shoh's the oriGinal 3romwich contour for evalua-

tion of (1) in the s - plane . Branch pOints due to u 2 = 0 and 

u; = 0 are located at s = + ~ and s = + ~. Toe familiar 

roots of the period equati on produce poles of the integrand 

lying on the imaginar:l' s axis between s = ik and s = ik/c 

(that would be the real tv axis) . The branch cuts are 
1 

chosen by requiring that Re u 2 = 0 and Re u 2 = 0 along the 

two cuts . This conventional choice , while not necessary to 

thi s problem, I"ill be followed . The "top" or first Riemann 

sheet will then be ident ical !'lith that encountered in the 

recent literature . We may then make use of theorems that 

have been proven regarding the disposition of the roots of 

the period equation . 

Si nce all quanti ties under the integr al sign are real 

I~hen s is real , then t hey are complex conjugate at complex 

conjugate values of s . The positive and negative imaginary 

halves of the contour in fig . 20 ar e combined , and we let 

A -? 0 , except for indentations at the singularities on 

the i magi nary axi s . Then : 

P = ;; I{i~ 
o 

(A- l) 
st e 
- 1 

s+8 

00 

ds j Jo(kr)k + dk 
o 

The contour may now be deformed as sholVTI in figure 21 . The 

solution naturally decomposes into the four contributions 

from the various s i ngular ities i n the second quadrant . 

P = Pl + PR + PBP + PBS · Pl arises from the line integral 

along the negative real axis plus the pole contribution from 



the source po l e at s = _9 - 1 . ~he contribution from the in-

fini te arc vanis~e s 2S R -=;,.. (}o The norJr.a l ".lode po Ie s 

yield residue con~ributions i'lhic '1 'de denote by PH' P
3P 

an ::l 

P~S are the t\·,o br2nch line i n t egrals . 
!:l 

Evalua tion of PI 

(A - 2) 2A 

'iT 
-1L ds 

f 

- 1 Except at the indentation at s = - 8 , t he integrand is 

purely real , giving no contribution . The semicircu12r in-

dent2tion is evaluated by residues : 

(A - 3) l~ (~) - 1 
- s= - 8 

dk 

This expression , like all others encounter ed , can be shown 

to vanish prior to an appropriate 2rrival time . \~2t is 

important is that it is a forced non -oscillatory response , 

and of no interest in the study of moda l oscil l atory solu -

tions . There is often some 2mbiguity in taking the contribu-

tion from a semicircular arc a~ a pole : in this case , how-

ever , t he expression 2dopted is t he only po ssible correct 

one . This result \'IOu ld have been ob tained if the infinite 

con tour of fi g . 20 ,<,ere deformed i nto the left half -plane 

before r educing it to a semi - infinite contour . In that 

event the pole 'o'iould contribu te by vi rtue of the residue 

:'ormula , 1'lithou t a":\biguity . ':!i~h t his, 1;le shall drop CO:1 -

sideration of Pl ' 



Evaluation of PR 

PR is the SUl"1 of residue contribu'cions due to roots 

of f ~ 0 lyin;:; on the I sheet imaginary axis bet"leen s ~ ik 

and s ~ ~ It has been sho'!m that :10 other r oots lie 

0:'1 the top sheet (tr1is is , of course , for k real a:1d > 0) . 

For each mode there exists one root s ",hich appears on the 
n 

:r: sheet if k n ;::: k nO ' the cutoff value . For tl:e 101'iest 

(Rayleigh) mode , kOO ~ O. For al l others (the shear modes) 

the cutoff is given by : 

(A- 4 ) k = nO 

1 
(n - 2) 11 

~;,. V I - (,>-

Proceeding , "Ie perform the residue evaluation : 

(A - 5) PR~2 '1)- i Z Res(Sn)= 

n 

I'lr.ere : (A - 6 ) 

Branch Line Integrals : 

00 

> 4A Re J J (kr)~c 
'--' 0 

n 0 

s t 
en, ( v. 'r11 -=---_"lF l s "' ) _ .. { 
sn+8 n 

It will be necessary to rel'r.ri te the branch line integrals 

in ter~s of contours along just one s i de of the respective 

branch cuts : 



For the firs t ter m in bracket s , 1m CL 2> 0 ; for t he second 
, 

t e r:7l, 1m CL " < c. 
'-

Comb i !1ing , 't'le g et 

( p. -8 ) 2P fW - ' 1m J (kr)k 
Tr 0 

o f
i OO 

d k 

i k/c 
d s 

11here the contour runs a l ong the righ t side of the cut, and : 

(A- g ) F2(s,k) = 
2442 ' ( I. 8 hk s c CL 2 CL 2 sinh eLl D) sin.'1 l eL l z) 

f . f * 

remembering , that using t he f* notation implies Re CLi > O . 

In like manner , the other branch line integral beco~es : 

(A- IO) 1
00 

p 2A , ~ 1 "BP = - - Im J (kr)K Q K 'fT 0 
o 

F,, (s , k ) d s 
J 

y 
\~here : 

U - ll) 

Evaluation of PBS 

In t he following l1e s hall transfo r m t h e contour integ r a 2. 

A- 3 in the cOMplex plane, and will have occasion to b reak it 

up into several constituent parts . For clarity , a sub script 

notation is adopted which , it is hoped, viill make it easier 

to fo llow t he mathemati cs and suggest the origin of any 

g iven term . Fo r eXaQple , PES is decompo s ed into the su m of 

tl'IO terms; the se are de no ted P 3S1 and P BS2 ' A floVi chart is 

i nc luded at t he end to sUTIunarize t l1e roles of all the sub -

s cripted terms. 
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The contour for eq . A- 8 , r unning along the right side 

of the branch cut , is transformed as indicated in fi g . 22 . 

It is deformed into the second quadrant of the s - p lane in 

such a i'lay that it passes through t he branch cut and onto 

the II Riemann sheet . All but a small slice o f the second 

quadrant is enclo sed in this manner; all poles of tile 

integrand l ying on the I I sheet are exc l uded by small cir -

cular contours . The infinite arc contributes notil ing , as 

usual . \']e t !len have two contributions to PBS : 

PBSl : The line i ntegral from s = ik/E to - OQ. 

PBS2 : Residue terms due to poles of the integrand lying 

on the II sheet . 

(A - 12) p = - 2A 1m f<OOJ (kr)k d lC J- OOe
S\ J;.2(S , k)} ds 

BSl II 0 . s+9 - L" II 
o lk 

(A-13) 

-8 b 
1'lhere : (A - 14 ) = 

The zeros of f * are just the II sheet cOr.1p lex roots of the 

period equation . Vie note that f did not have any complex 

zeroes on t he I sheet ; t hus PBS2 arises solely from zeros of f~·. 

He introduce further notation to simplify t he analysis . 

Let SI I denote that portion of t he real positive k axis ~Ihose 

root sn (k) lie s in t he second quadrant of the II sheet . SIr 

~lill in general differ for different n . The slight ly smaller 
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I 

set Srr will denote that portion of the real positive k 

axis "Ihic h maps into t he sector l'I"ich is enclosed by the 

dot ted contour in fiS . 22 . \-Ie use t?1is notat ion to repre -

sent the r anse of k for integratio:1. until we are ab le to 

exami!1e the detailed be havi or of the solution s (k) . n 
is the ranse of k in eq . A- l3 . 

A-l3 may be rewritten by use of the follo wing relatio:1.s : 

(A - l5) 8 k2 I 

f* - -' = ct l ct 2 ct 2 cosn ct l 
L 

,., 
I 

Thus , when f* = 0 , f = - 8 k" ct l ct 2 ct 2 cosh ct l n 

hence : 

T'r:is form, I~hich resemb l es P. - 5 close ly , is nearly appropriate 

for evaluating the moda l contribution from this s'1eet . ':Ie 

take this up later . 

Resuning consideration of A- l2 , we note t hat 

The object of the :'ollowing transformations is to obtain 

an expression I',hich ex tends the r ange of integr ation of A- l 7 

to the set SII corr esponding to a ll II sheet roots lying in 

the second quadrant of the s - plane . Topologically , this 

can easily be done by defor ming the contour shown i n Fig . 22 
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to circumscribe the entire quadran t . The line integrals 

remaining , hO~"iever , are not easily l1and led , a d an estimate 

of their contribution i s difficult . It is ther efore neces -

sary to go the long route to accompl ish our objective , and 

several contour deformations and changes of vari ab l e VIi ll 

be necessary . Hence, w.r'iting as a doub l e integral "'Ie get : 

( A- 18 ) PBSl 
O<ll"-fYO t ?A s 

:- I m j J (kr)k e - 1 F2 (s , k) d sdk 
/I . k 0 s+8 o l 

e 

q is now introduced as t he variab l e of integrati on re -

placing s : 

(A - 19 ) P = 2A 
BSl 'iT 

ik s = q + ­c d s = d q 

+ 8 -1 + i k/ c 

We no\v consider this as a contour integral in the complex 

k - plane (Fig . 23 ). A pole oc cur s at k = i E (q+8 - 1
) . lrJhen p 

- 8 - 1 ..:::: q L O, t he pole lies on t he positive imagi nary axis . 

Hhen - oo< q <- 8 - 1 , t h e pole lies on t he negative i magi nary 

axi s . Branch points occur at k = + ~ i t=" __ + i "l"e q q and k ..L-

c+r 
I-!e may insert branch cuts running t o infi nity just to t he 

left of the i maginary axis (to avoid the po l e ) . 

dk 

"Ie now defo rm t he contour of Fig . 23 into a loop enc lo si ng 

t he entir e firs t or fourth quadrant of t he k - plane . PBSl no \"! 

decomposes in to t hree terms : 
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P3S11 : A line i ntegr al a l onG an i maginary seDi ­

axis . 

P3S12 : Contri bu tion froD the indentation around 

t he source pole located on the i maginary 

axis . 

PBS13 : Modal contribut i ons due to poles in the 

appropriate que.drant o f the k -plane . 

The condition that the int egr al along t he infinite arc ve.o ish 

deter mi nes t he quadrant into .~hich the contour in t he k - p l ane 

is de fo r med . This is a long , bu t familiar story, i'lhich ,'ie 

Hill only surmnarize . '.tIe represent t he Be ssel function 

asymptotically as a sum of outward travelling and inwe.rd 

travelling ,'laves . "le shall not be concerned wi t h the lat t er; 

a thorough study would double t he length of thi s paper . I n 

general , these inward t ravel l ing "Taves can contribute on l y 

non -realizab le pulse ter ms and modal osci lla t ions insi gnif­

ican t compared VTi th t hose from t he outward travelling waves . 

With respec t t o the latter, t he i n tegrand of A- 19 vani she s 

exponentially in t he upper hal f p lane if t > r c and in 

the lONer half plane if t <: r c. We de form t he contour 

i n Fi g . 23 ac cording ly . This ensure s convergence of the 

line integr al PBSll ' as well a s vanishing of the infini te 

arc contribution . To make the detai ls of the contour trans -

formations easier to fol low, "Te shall replace t he Be sse l 

func tion by the Hankel function of the second kind , which 
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contributes the outv;2.rd travelin3 1'l2.\'e solutions . The 

Hankel function of the first kind, "lhich \'fe have dropped , 

turns out to be merely excess bagua3e; this may be shovm 

by a separate but parallel development such 2.S appears here . 

The restriction of rand t to large positive values is 

crucial in bringing this about . 

If t > r € , "Ie deform the contour into the first 

quadrant of the k - plane . Then : 

(A-20) ;_e - l 

P
BS12

=+2A 1m. eqtH~2)[i c (q+e -~] c (q+e-l)F2(s,kp)e-(q+e-l)tdq 
o 

If t L:.. r IE then the limits are changed to - 9 -1 and - 00 This 

term represents anon-oscillatory, forced response which VIe 

shall not consider further . Proceeding : if k = i j 

(A - 21) 

In the case considered by Rosenbaum, this integral vanished by 

virtue of the integr2.nd being purely real. \'!e are not so en-

dO\'led , and must estimate the form and magnitude of the term . 

The Hankel ~nction is replaced by its far field asy~ptotic 

representation; we then estimate the integral by expanding 

the func tions under the integral sign about q = 0 and i = O. 

Because of the several factors in F2 "thich may be small near 

this point, VIe ImoV! that, to zero order, the integral '-lill 

be small; it is therefore necessary to take at least first 
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order terms in the expansion. The result is an estimate , 

asymptotic as r ~ 0<0 and t ~ DO , of the integral (A-21): 

(A-22) 
-1/2 -3/2 r t 

This expression vanishes strongly except near the arrival 

time of a pulse traveling in the solid at the shear wave 

velocity . To the first order of approximation it is a 

mathematical singularity at the arrival time . Equally of 

note is the dependence on r -1/2 and t -3/2, which, for r 

and t of the same order of magnitude yields a decay of the 

pulse with distance like r - 2 This is the same dependence 

predicted in the case of a refracted arrival propagating 

along the interface between two semi - infinite media . The 

existence of a disturbance prior to the arrival time , suggests 

that the source pulse has been distorted in transmission, such 

as occurs when a plane pulse is reflected by a plane discon-

tinuity at greater than the critical angle . 'Ie are not in a 

position to detail the fo r m of the pulse , nor is this suf-

ficiently relevant to the study of the modal oscillations 

to pursue further . 

Eval uation of the modal term : PBS13 

\oJhen t > r c we take residues in the k -plane from roots of 

the period equation lying in the first quadrant(starting 

with eq . A- 19) . Tnus , in effect, the range of integration 

in q is now reduced to that set Sq of negative real q who s e 
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image, by virtue of the period equation, lies in the first 

quadrant (Fig. 24) . If t < r {; the same residue formula 

will obtain, but the q integration vlill nm'l be over the 
, 

complementary set Sq ,-lhose map lies in the fourth quadrant . 

Also , the sign of the result will differ , since the sense 

of a pole contour in the fourth quadrant differs from that 

of one in the first quadrant . Since either f or f* may 

yield poles , \'le write two terms : 

(A- 23) 

PBS13 = 4A Re 

+ C 
n=O 

where : 

and 

H f* 
n 

n 

PBS131 is due to roots of f* = 0; PBS132 is due to roots of 

f = O. 
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For fixed n, the map of the negative real q axis by 

virtue of the period equation is sho\'m in Fig. 24 . One 

locus is due to vanishing f, the other due to vanishinG f*. 

';/hen q = 0, ~he t\,lO roots coincide , and lie on the real k 

axis. As q decreases , one moves into the first quadran~, 

due to f* = 0, and the other moves into the fourth quadrant, 

due to f = 0 . Both eventually end up in the fourth quadrant 

as shO\'ln. For t > r e , then , A-23 becomes: 

n=O 

with the zeros of f not contributing anything, and PBS132 in 

A- 23 vanishing . The integral over Sq is equivalent to an 

integral over a certain range in the s -plane (Fig. 25) . 

This is just the segment A'-B' in the s -plane . ",'e shall no": 

make a change of variab le from q to kn' vlhich Ne call merely 

k . The integral over Sq is nO\'l a contour integral over the 

arc A- B in Fig. 21 . v.'e may deform thi s contour into the 

line segment A-B along the real k axis . From the properties 

of the conformal mapping sn = Sn(k) , it is evident that the 

image of this segment A- B will be an arc A'-B' in the s­

plane . In short, when A-24 is "Iritten as an integral along 

part of the real k axis, \oTi th the integrand a function of 

sn(k), A-B is the part of the real axis which maps into 

the strip Re s < 0 , ~k .::> 1m s 2: 0 . Following the notation 
, 

of eq. A-17, the k integration is over the set SII - SII . 
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';Then the appropriate change of variable is made , A-24 becomes 

00 

t= 
n=O 

Since we are interested in the outward travel l ing waves, we 

may revrrite A- 17 using the Hankel function in pla ce of the 

Besse l function . Thus , combining A- 25 and A-17, vIe get finally: 

(A- 26 ) 

PBS2+PSS13= - 4A Im 
n=O 

'''!hen t <. r c 
t >fc 

, it is necessary that the contour in the 

k -plane be trans:'orned into the fourth quadrant . Referring 

to Fig . 24, ,ole see that the residue contribution from f* is 

effective over the set complementary to Sq _ This 'Ie have 
I 

sho ill to be equal to SII ' But , as noted previously, the 

sense of the contour of integration in the fourth quadrant 

is negative , and the sign of the result differs :'rom that 

of the pole contributions from the first quadrant . Thus : 

(A-27) PBS13 = 4A Re L 
n=O 

00 

- 4A Re L 
n=O 
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The first term is due to vanishing of f* as i1iscussed above. 

NO'¢1 A-17 as modified is identical vii th the first term of 

A-27, except for sign; thus the important result: "Then 

t < r E the complex modes due to roots of the period equa­

tion on the II Riemann sheet cancel out and do not contribute 

to the propagating ,'!ave . 

The second term of A-27 is due to the roots of the 

period equation on the I Riemann sheet , the normal mode 

poles . But here, again , the sign differs from the sign ob­

tained in eq . A- 5 , "lith the result that \'fhen t < r E , the 

normal mode poles on the first sheet do not contribute to 

the propagating "lave . This is a familiar result obtained 

in studies of the real r oo ts of the period equation . It 

nOil is sho1tm to be true on topological grounds . 

In summary , the fi r st sheet modal contribution is given 

by eq . A- 5; the second shee t modal contribution is given by 

eq . A-26 . ~'lhen t < r E bo th contributions vanish, by cancel­

lation "lith the two terms in eq . (A- 27) . 

Evaluation of PBP 

This term, given by eq . A-lO, \'fill be treated in a 

manner quite analogous to the above detail concerning PBS ' 

':.re begin by deforming the s -plane contour into the 

second quadrant by rotating it 900 counterclockwise . It 

passes through both branch cuts, effecting changes of sign 
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, 
in both 02 and 02 in the various expressions, It consists 

of t ';0 terms: 

ik A line integral from s = r to s = - 0<:> 

lying on the III Riema~D sheet , 

PBP2 : Contributions due to poles of the integrand 

on the III sheet , lying on the sector 0:' 

the second quadrant bounded by the positive 

imaginary axis and the contour PBPl ' 

Eq , A- IO must be altered some'11hat to indicate that 'Ie are on 

the III sheet , Since (f) I II = f**, and (f***)III = f* , the 

response term, eq , A- I I must be modified : 

(./', - 28 ) 

[F3 (s,k) ]III 

Then, of course : 

2A 
(A- 29) P~Pl = -

.D 'iT 

and 

, 
"There SI ll is the set of al l Re k 2! 0 , such that Sn(k) , by 

virtue of f** = 0, lies in the region Re sn <: 0; 1m sn > kit 
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11 

SIr is the similarly defined set ,'Ji th respect to roots of 

f* = O. The response functions are given by : 

(A-31) 

2 222 44 () ( ) 2(2k + € s ) b E s a 2 sinh a l D sinh a l Z 

f*** ( ~ s f *) n 

Noting that : 
222 2 

f* + f** = a l (2k + E s) cosh a l 

where the minus sign comes from the change in sign of a 2 "Then 

\\'e evaluate it on the II I sheet . Similarly , F62 becomes : 

F62 = [Fl (s , k) ]11' The modal term PBP2 decomposes into two 

contributions : 

P:gP21 4A [ Re 1 t 
J o (kr)k e Snt 

[Fl (Sn , k) ]IlI dk 
s +9 - 1 

SIll n 
(A- 32 ) 

(A-33) PBP22 = 4A L Re j Jo(kr)k 
e ~t 

[Fl ( Sn , k)]Il dk -1 \I s+9 
SII n 

By operating on the line integral PBPl' 1~e will be able to 

extend the range of integrati on of these modal integrals . 
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As in evaluating eq . A-12, a substitution is in order: 

q ik + ik ds dq s - , s = q r ' = r 
Consequently : 

ikt 
-O'V Jo<J F4 (s , k) e l' 2A 

1m f e
qt - dq J (lcr)k -1 k dk orr o 0 q+8 + i Ir 0 

Singularities in the k -plane include a source pole at 

kp = i r (e - l+q) and branch pOints along the imaginary axis, 

which "Ie co.nnect to infinity by cuts alon~ the imaginary 

axes . The contour in the k-plane is nmv deformed into the 

1st or 4th quadrant , depending on the values of rand t . 

Considering only the outward travelling "lave component , 

the integral along the infinite quarter-circle vanishes 

in the first quadrant if t > r T ; it vanishes in the 

fourth quadrant if t ~ r~ 

PBPl no", consists of three terms : PBPll' a line integral 

along an imaginary semi - axis; PBP12 ' a contribution from the 

indentation at the pole located at k p = iy (e-l+q); and 

PBP13 ' due to modal contributions from poles of the integrand 

crossed in deforning t!1e contour . The second of these "le 

shall not consider further; it is a fo.rced pulse term 

analo.go.us to. that o.btained in eq. A-20 . 

If t > ry , the co.ntour is deformed into the first quad-

rant of the k -plane , and "Ie "IT'i te PBPll f'rom eq . A- 34 , 

making the substitution k = i g 
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(A-35) 

As before. we agree to consider only the outward 

travelling ,-rave . and replace the Bessel :unction by the 

Hankel function of the second kind . The integrand of A- 35 

is now expanded about the points q = 0 and J= O. and an 

asymptotic formula is obtained. valid for large r and large t . : 

(A- 36) 
-1/2 - 3/2 r t 

' • .rhen t < rr the same expression occurs . hence the absolute 

value sign . This term represents a blunt pulse peaking at 
2 t = rr . with a singularity there . and a l/r dependence 

on range . As the purpose of this paper is to investigate 

the oscillatory response of the system, ",e end consideration 

of eq . A-36 . 

The modal contribution PBP13 decomposes into bolO terns : 

PBP13l ' due to roots of f** = a and the other , PBP132' due 

to roots of f* O. I'Then the modal 

VIe obtained pole contributions for 

term PBS13 was considered, 

t r < /E only from f* 

vanis~ing ; t~e other factor in the denominator . f, did not 

contribute . Detailed consideration of the tvlO terms; 

PBP131 and PBP132 ' along the same lines as the analysis pre -

viously carried out on PBS13 yields analoGous results. In 
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short, PBP131 is a modal expression vii th the same form as 

PEP21 (eq . A-32), but vlhose range of integration complements 

that of the earlier results . The tHO expressions then com-

bine to r;i ve ~he fo llovling re sul t: 

(A-37) 

PEP131 

where SIll is the set of all real positive k whose image, by 

virtue of f** = 0, lies in the second quadrant of the s-

plane . VJhen t < r r ' the two expressions cancel, rather 

~han complementing each other, and their sum contributes 

nothing . 

PBP132 behaves as follo1'ls: "lhen t > r r PBP132 and 

PBP22 (eq . A- 33) add to give a modal contribution integrated 

over the entire set SII . The resultant expression, hOi1ever, 

is posi ti ve, vlhile the identical integral appears in eq. 

A- 26 with a negative sign . Thus 

(A- 38), PI.H'I31. + Pa1>22. t PaS2. + PaSI3 := s t 
=,:zA ~ 'Rel_ Ho12J{krJk e ,ne_I [F;{Sn)kll dk 

h ,Il Sn-r II 

=0 
~:!'nen t <. r r , PBP132 and 

[rc.>t>ry] 
Cf::>fc>rrJ 

PBP22 cancel, and their sum does 

not contribute . 
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':Ie nON sum!!1arize the oscillatory contributions to the 

long range, lonG time pressure signal : the first sheet 

contribution, eq . A- 5, is due to the conventional undamped 

normal modes, namely the Rayleigh wave and the shear modes . 

It vanishes prior to t = r e;.. Late-arriving damped Nave 

trains associated \'li th the nor::lal modes are obtained (it 

turns out) fron this term . The second sheet contribution, 

eq . A-38, vanishes except in the interval r E> t > rr . 
l'lhen the waveguide , as considered here in detail, is a liquid 

layer overlying a solid halfspace, SII can be sho,m to vanish . 

It may not vanish, however, for multiply layered models, 

and is in fact significant in the degenerate case of a free 

solid halfspace . In generalizing to layered structures of 

greater complexity, it may tur~ out that the second sheet 

contributions are significant . Tne Third sheet contribution, 

eq . A- 37, "rill, ':le shall find, give rise to the damped modes 

coupled to the P-\'lave velocity in the halfspace and their 

late-arriving quasi-resonant wave trains. 

Our object is no,", to evaluate the remaining integral 

in the modal solutions by a saddle point method . At points 

d tUn Nhere ~ = real, this derivative may be placed equal to 

the group velocity U ,;; +of propagating waves whose dis­

persion and attenuation are fUnctions of LU and k at this 

saddle point. Eq . 5 is the result obtained by Rosenbaum, 

valid away from stationary pOints of the group velocity. 

It is important for the success of the reCipe , that we be 
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able to continuously deform the initial contour into a posi­

tion so that it passes through t~e saddle point on a path 

of steepest descent . 'E'1e conditions "Ihich determine i'lhet~er 

this is possible for a given saddle point are not at all ob­

viou~ in general J due to the extremely multi valued nature 

of the mapping of the k-plane into the s - plane ( UJ plane) 

induced by t:1e period equation. {Ie have discussed this 

problem in the main text J "lith the point of vie\'.' that physical 

considerations may provide enough confirmatory infor!:'.ation 

to establish the reality of any computed dispersion curves . 
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Summary of Modal Terms : PH' PBS2 ' P:gS13l ' PBS132' PBP2l ' 

PBP22 ' P:gP13l' PBP132 ' 

l. t < r/c 2 : PBS2 + P:gS13l 
= 0 

PBS132 + PR = 0 

PBP132 + PBP22 = 0 

PBP13l + PBP2l = 0 

2 . _ r _.( t < _ r _ 
c2 132 PBS132 + PR = 0 

PBP13l + PBP21 = III sheet solution 

* 
PBP132 + PBP22 

.L 

PBS2 + PBS13l = . 
II sheet solution (A - 38) 

3 · t ) _ r _ 
13 2 PBP13l + PBP2l = III sheet solution 

PBS132 = 0 

PBP132 + PBP22 + P:gS2 + PBS13l = 0 

(A-37) 

(A-37) 

PR = I sheet (normal mode) solution (A-5 : 

* SII appears to vanish for the liquid/solid problem . Here, 

then , this term = 0 also . The early-arriving pseudo-,vave 

in the Lamb problem may be treated by the method of this 

paper , and is due to this II sheet contribution . 



Flo',<j Chart 

P 

r-____________ ~------~P~~(~Al-LI=:l~i--------------~ 
Pl ~ (A-2) PH t (A- 5) PBS (A- 7) PBP ~ (A- IO) 
~on -oscillatory modal term 

neglect 

FBSU ~ (A - 21) 

line inte ral 

PBSll ( A- 22) 

blunt pulse 
neglect 

(A - 29) 

PBPU (A- 35) 

PBPll LA-36 ) 

blunt pu l se 

(A - 12) (A- 13) 

(A - 18) (A- 17) 

modal term 
(A - 19) 

I I 

PBS12 + (A- 20) 

non - oscillatory 
neglect 

PBF2 ( A- 30) 

PBP21 (A - 32 ) 

modal term 

PBS13 ~ (A- 23 ) 

(J 24) 

PpS13 t (A- 25) 

modal term 

PBP22 (11. - 33) 

modal term 

PBP131 (A- 37) 

modal term 

( A- 38 ) 

modal term 

PBF12 (non- oscill atory : neglect) 
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PROPAGATION OF LEAKING INTERFACE WAVES 

Robert A. Ph i nney 

Seismological Laboratory 

California Institute of Technology 

Pasadena, California 

Abstract 

Using simple generalizations of the method due to 

Rosenbaum (1961) and Phinne y (1961) single inte gral expres­

sions may be written down for the long range pole contribu­

tions to the t r ansient signal in a plane seismic waveguide. 

Th~s method yields expressions for the leaking, or imperfectly 

trapped waves, and suffers from no restrictions on the number 

of layers or the existence of coupling to one or two half­

spaces . When applied to the simple interface wave problem 

of two halfspaces in contact, closed form expressions are 

obtained, describing the propagation of pulses along the 

interface due to lower sheet poles. The theory i s applied 

to the Lamb problem, the liquid/solid interface, and the 

solid/solid interface prob l ems. The leaking wave generali-

'*Contributi on No. 1023, Divis ion of Geological Sciences, 

California Institute of Technology. 
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zat io ns of the Rayleigh an d Stoneley wa ves are found, and 

a new wave, co upled t o t he P- wave , is demonstrated . The 

phys i cal impo rtan ce o f leakin g in t er face pulses is shown to 

b e in t he i r coupl i ng to the no r mal o r leaki ng osci ll ations 

of laye r ed st r uctu r es . 
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T ABLE OF SYMBOLS 

Symbol Definition Equati on Reference 

a · coefficients in expansi on of f 
I 

A amplitude of source 

b i coefficients in expansion of g 

C,C r contou r of integration Fig . 2 

c any solution of equation (4) 

where c = (J)/k 

c· I 

E 

f 

compressional wave velocity in 
medium i 

energy in delta-f unction source 

pe ri od function 

g r es ponse function 

h source- interface separati on 

k wave number in horizontal direction 

Ln damping constant of modal oscillations 

(se e paper I and Rosenbaum, 1960) 

= 1m ( (J)~) - (r/t)lm( k~) 
m index of halfspace = number of media 

in layere d structure 

m(c) excitation function for interface 

wave problem 

n subscript i ndicating evaluation at 

a root of the period equation 

N 2 + homogeneous degree of ( g/f) 

6 

Fig. 

9 

1,4 

7, Fig. 1 

3 

7 

2 

7, 14 



- 4 -

Symbol Definition Equation Reference 

p order of Bessel function in 

expression for field variable 

qo horizontal displacement on surface 

of free halfspace 

Q r - ct + ihY(C) 

Q~ excitation function of saddle point 

formula ; usage conforms to paper 1--

occurs here only once 

r horizontal coordinate in ci rcu la r 

cyl indrical coordinates 

s = iill: Lap lace transform variable 

t time 

v Re (c) 

vi body wave velocity defined by v i < vi+l' 

equals some particular c j or ~j 

Wo vertical displacement on surface of 

free halfsp ace 

x(t) field variable, such as pressure, 

displacement, stress, etc . 

Re Y(c) 

1m Y(c) 

z axial coordinate in circu lar cylin-

drical coordinates 

5 

19 

10 

3 

15 

Table 2 

20 

15 

15 
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Symbol . De f inition Equation Reference 

a. 
I 

a l 
I 

2/ 2 ill c· 
I 

~ . shear veloc i ty in medium 
I 

Y( c) 

5 r otation angle between k- p1ane and 

j - plane 

~ 

e 

\.I . 
I 

Pi 

lJ. 
I 

f( c) 

%0' 

ill 

% 

- i5 
.k e 

Im (c) 

time decay const ant of source 

density of me d ium i 

Poisson constant of medium 

phase of m( c) 

angular f re quency : = - is 

Int roduction 

I ntroduct i on 

9 

10 

10 

9 

Table 2 

13 

14 
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INTRODUCTION 

I n t his paper we make it possible to apply recent devel­

opments in leaking mode theory to a fairly broad class of 

seismic waveguides. What is desired is a simple techn iqu e 

for investigating the complex roots of the period equation 

and interpreting them in light of an appropriate representa-

tion of the s ol utio n. We shall first state two generaliza-

tions which mak~ it poss ible to use formulae obtained in an 

earlier paper for this purpose. In the body of the paper we 

treat the i nterface wave problem of two halfsp ac es in contact 

on a plane boundary. This is done by reducing the single 

integral obtained by general considerations to a closed 

exp r ession r ep r esenting pr opagation of a leaking interface 

pulse. The complex roots of the appropriate period equation 

may now be nume rica lly evaluated, and the velocity and shape 

of the pulse the n follow. 

In a previous paper (P hinney, 1961), which we designate 

as I, we have deduced the leaking, or attenuated , modes of a 

seismic waveguide consi st ing of a liquid layer coupled to a 

solid halfspace. The method (Rosenba um, 1960) consists of 

writing the response to a transient point s ource i (xo(t) = 

e- t / G) as a double integr a l. 

( 1 ) J
A+i.- t. 

-X(t) = -IT- s e; B-1 dk 
). - Gt» o 
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The Laplace transform variable is s, k is the wave number 

!n ~he horizontal coordinate, x ( t) is some field variable 

such as pressure or displacement. We determine g(s, k) and 

f(s , k) by applying boundary conditions at the plane in terfac es 

boundi ng the media . 

Lett i ng 

j k2 + s2/c~ 
the index m refer to the halfs pace , then a = 

m 

a nd a~ = j k2 + s2/~~ , which occu r in g and f, 

gi ve r ise to branch po ints in the s -plane. Cuts are intro­

duced , joining the branc h points to i ~ a lo ng the imaginary 

s-axis . The s-integration in ( 1) may be perf or me d by r ewrit-

ing it as a s et of resid ue con tribut io ns from poles lying on 

the shee t of integ ratio n and two branch l ine in te gra ls aris -

ing from in t eg r ation ar ound the cu ts. By def ormation of the 

branch line contours ont o lower Rieman n su r faces , the branch 

line integ rals decompose into (a) r esidue contributi ons from 

compl ex zeros of f and (b) pulse terms whic h are interpreted 

as ray arrivals at the body wave velocities . Al l the res idue 

contributions from both t he top sheet and the r elev a nt lower 

sheets have the same f orm and may be written symbolicallY 

as a single integ ral. 

CD 1 s~t 
(2) ';«(1=) = 4 A"~ !.(k r

) k 5,,~ tr' 

SI II. CIr , ~ 

SI, II , III are contours on three Ri emann sheets. When this 

express ion is evaluated by a saddle point method in the k-

plane, a repr esentation of the solution at long ranges may be 
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written down (3). It expresses the oscillatory contributions 

at long ran ge in terms of a cosine term and a damped exponen­

tial. The subscript n denot es evalu ation at a root sn(k) of 

the period equation f(sn , k) = O. The superscri pt c denotes 

evaluation at a saddle point where r/t = dilln/d k . (s = iill) 

(3) rx(t) == Q: ;L"t. cos[Ure w~) t - {Re k:h· t.Ill 

Gene r alizations of the theory 

We now summarize two resu lts whi ch may be obtained by 

generalizing the ana l ysis in I . 

( 1) The liquid layer/solid ha1f space problem of I 

differs from the liquid layer/liquid ha1fspace problem done 

by Rosenbaum ( 1960) in that the integrand g/f contains two 

branch cuts instead of one . More general surface wavegui des 

consisting of a stack of so l id and liquid layers overlying 

a solid ha1fspace sti 11 only invol ve two branch cuts. We may 
I I 

write f and g in the form : f = aO + a l Om + a20m + a3umOm ; 
I I 

g = bO + b10m + b2um + b3Om Om ' where the aj and b i do not 

involve the branch points . If this form is used in the ana1-

ysis in I, it follows that a ll quantities transform exactly 

as they did in the particular case in I . Th e sin gl e integral 

(2) now express es the pole contribu tions from all sheets . 

The saddle point solution (3) now may be applied to this gen ­

eral layered problem, provid ed on l y that a saddle point exists 

and i s "accessible" to the in itial contour of (2) . 
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(2) If the waveguide under consideration is bounded by 

halfspaces on both top and bottom, the integrand in (1) will 

involve up to 4 branch lines. In I we obtained the follow -

ing result, which states the values of time for which each 

Riemann sheet is appropriate: 

TABLE 

Re Re 
I 

u2 u2 

t ) r/~ 2 + + 

r/~2 > t >r/c2 + 

0 > t >r/c,) 

To generalize to 3 or 4 branch lines it is necessary to trace 

the way in which the per iod functio n, f, is transf ormed as 

the branch line integrals in I are manipulated . The essence 

of the matter is that each branch line integral is deformed 

in the s-plane in such a way that the line integ r al converges 

most rapid ly . When this is done, the resulti ng line integral 

and po le contributions are found on some particular "lower" 

Riemann sheet. Each branc h line integ ral, consisting of two 

terms, gives rise in this way to pole contributions from two 

lower sheets; analysis of the conditions which ensure con -

vergence on an arc at ~ gives the range of t which i s appro­

priate to the poles from each sheet, as illustrated in the 

table above for the two branch line problem. The res ult for 
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four branch lines is stated in Table 2. In connection 

with the interface wave problem we shall write the restric~ ­

tions of Table 2 in more specific form. In general, we find 

that when the signal velo city (r/tj 1 ies between two body 

wave veloc i ties, the rel evant Riemann sheet is "upper" for 

all faster body waves and "lower" for all slower -body waves. 

In all cases, the signal is constrained to vanish prior to 

the earliest body wave, and th e signal after the slowest 

body wave is determined by the conventional "top sheet" 

for all variables . 



- 11 -

TABLE 2 

Two halfspaces in contact, having four body wave velocities: 

v l <v2 < v
3

< v4' without specification as to type. 

Setting ~. = vfk2 - ill2/v~ , specification of the sign of 
I I 

the real pa~t of each of the ~ specifies the Ri~mann 

surface appropriate to any g iven signal velocity according 

to this table. 

Revl Rev2 Re'S Reu
4 

0 <' r/t < v 1 + + + + 

v l < r/t < v2 + + + 

v2 < r/t < v3 + + 

v3 < r/t < v4 + 

0 <' r/t < v4 

The first sheet root is real, when it exists. Roots of th e 

period equation lying on lower sheets must be complex with 

a positive imaginary part if they are to contribute to the 

signal. (T his r efe rs to a complex root illn (k), when k is 

real and positive.) 
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The general interface wave problem 

We now restrict ourselves to the case of two ha1fspaces 

in contact on a plane interface . Three types of problem 

may be considered: 

(A) A solid ha1fspace with vanishing stresses on 

the surface (Lamb's problem) . 

(B) A solid halfspace in contact with a liquid 

halfspace . 

(C) Two solid ha1fs paces in welded contact. 

Exc i tation functions and period equations for these problems 

are well known , since they may be derived from steady-state 

considerations . A fairly complete collection of results fo r 

various types of source is found in Ewing" .Jardetzky, and 

Press (1957). In this pap er we consider a point source near 

the interface, and use results given in the reference. Period 

e quations for the th r ee cases are as follows: 

(4) (B) 

(e) 

If a transient poi nt source, xo(t) = Ae- t / S, is excited 

at a distance h from the interface, then the solution is 
-

represented as the double integral: 
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(5 ) 

p is zero or one depending on the field variable of interest. 

f is one of the period functions (4), and g contains the 

dependence on hand z. 

By a method due to e agniacd it is possible to obtain 

an exact closed form solution for all ranges. eagniard 

(1939 ) i nvestigated the solid/solid problem, Garvin (1956) 

and Gi lbert (1956) solved the Lamb problem, and eagniard 

(1939) and Strick (1959) treated the liquid/solid interface 

problem. These authors found the various waves long known 

from asymptotic evaluation of the solution in the steady 

state. P and S waves arise f r om integration near a branch 

point, while the familiar surface waves are due to a poie 

lying on the sheet of integration . As is customary, this 

sheet is defined by the condition that ReSi ;> O for all the 

radicals U o; this is brought about by the r equirement that 
I 

the steady state solution die off exponentially away from 

the interface. Surface waves, due to "top sheet" poles, may 

be categorized as follows : (A) the Rayleigh wave, having 

a velocity between .86~2 and .96~ 2' (B) the Stoneley wave, 

having a velocity near .99cl for typical models, and (e) 

the Stoneley wave, with a velocity less than either ~ l or- ~2' 

but greater than the RayJel9h :, Velocity in the faster med~um. 
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The Stone1ey wave (e) exists only for a very restricted class 

of models. These remarks are not intended to be complete, 

but only to characterize. For a complete discussion of the 

Stone1ey wave for (B) and ee), the list of references should 

be consulted. 

Various investigators have suggested the existence of 

partially trapped interface waves, representing a generaliza­

tion of the Rayleigh and Stone1ey waves cited. Strick (1959) 

demonstrated a generalized Rayleigh wave for case {B}, with 

a velocity equal to that of the comparable undamped Rayleigh 

wave (Al, but decaying in time by coupling to P- waves in the 

liquid. Gilbe r t and Laster (1961) have found a partially 

trapped wave in the Lamb problem, existing in solids with a 

high Poisson constant . They have also identified a leaking 

Stone1ey wave fo r case (el when the model pa r ameters do not 

pe r mit a t r ue Stone1ey wave to exist. All of these pseudo­

waves are caused by poles of the integrand which lie on 

Riemann sheets other than the principal sheet of integ r ation . 

By their proximity to the branch cuts (in the eagniard formu­

lation) they affect the form of the solu t ion obtai .ned by 

evaluation near the cuts, thus ge nerating a contribution to 

the signal, despite their location on a lower sheet . Inves ­

tigations of the sort cited are equipped to delineate exact 

seismog r am shapes, but prove tedious in many cases without 

shedding proportionate 1 ight on the physical nature of the 
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signals. In this paper we treat the interface wave problem 

in a more traditional way, obtaining asymptotic formulae for 

the pulse shape by direct attack on the double integral sol­

ution (5). The res ults c i ted in the introduction make it 

possible to do so with a precision which brings the lower 

sheet contributions into sharp focus, · instead of l eav i ng them 

implicit in the branch line integrals as has been the pr ac ~ ic 

tice up to now. 

Our starting point is t he s i ngle integral formula (2), 

a rather general tool whic h is easi ly appl ied to the cases 

we are considering. An asymptotic r ep r esentation of the 

pulse due to each lower sheet pole arises directly from (2) 

by exact evaluat io n of the integral r esulting from the long 

di stance approximation to the Bessel function. In this 

approximation each wave has a constant velocity, given by 

the real part of the r oot c of the period equation. We may 

now view the leaking interface waves as f r ee vibrations of 

the interface in a more general sense than that wh i ch de ~ _r 

scribes ordinary undamped surface waves . Arising fr om so­

called extraneous roots of the pe r iod equation, t he pseudo ­

waves make sense physically in terms of plane wave r eflection 

and transmiss i on coefficients. The attractiveness of this 

method lies in its simplicity; for a given s e t of laye r 

parameters the complex roots of the period equation may be 

easily obtained, enabling one to predict the velocity, pulse 
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width, attenuation, and existence of all the trapped or par­

tially trapped fFee waves. 

For eac h pole of the integrand which lies on a permis­

sible sheet (Tables 1 - 2) we may write down the single inte­

gral obtained from (2): 

(6 ) -x = 1Me (1; (kr) 
() 

~kct 
e 

~kc+e-I 

Since the period equation (4) is homogeneous in (J) and k, it 

is possfb1e to write f = f((J),k) = f(kc,k) = kaf(c, 1) = O. 

Thus roots of the period equation may be regarded as single 

complex numbers c, rather than functions (J)n(k). Henceforth, 

appearance of the letter c imp1 ies that it is a root of the 

period equation. The inte grand in (6) is the result of the 

substitution (J) = kc. Since g is also homogeneous, the ex ­

pression in parentheses in (6 ) reduces to the form kN- 1m(c), 

where m(c) is a complex funct ion of complex c . If the source 

or receiver are not on the interface, exponential factors 

of the form: 

or 

will also r esu lt (from the function g) . I t is sufficiently 

general for our purposes to assume that z is zero and h 

positive, with the source compressional in nature, lying in 

medium i . (6) may now be written: 
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(7 ) 

We now make the only approximation in the analysis . It 

is the conventional long distance representation pf the 8es-

sel function, under the assumption of no sources at infinity : 
- H(t) (.l.) 
J p (k r) = r (kr) -t- Hp (kr) -7 H;.l.)(kr ) 'V 

Then: 

If we assume the source function to be a delta-f unction 

in time, then S-l~"" We 1 et the source amp 1 i tude A----:;. 

tV as well, so that the source pulse still has finite energy. 

Sett i ng E = AS and Q'(c ) = /1 - c2/cT : 

IT f I ;.If(l'+iJJtJO "-i -i.k(r-d -i.h Y{c)) elk} 
(9 ) 'X = ~£1;;' f?e m(c)e k e 

" 
Consider the integ ral alo ne : 

(1 0) Y = [X)k}/-i
e 
-~kQdk 

" 
where Q = r - ct - ih Y(c ) 

This integral is easily ev a luated if the variable k is 

replaced by ~ = k e- i5 • The effect is a rotat ion of the 

k-plane. (F igure 2) . 
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The original contour C in the k-p 1ane maps into C in 

the f - plane. We distort C into C' along the real f -axis 

and along an arc at infinity. 5 is chosen so that C' is 

a steepest descent path, as follows: 

Q = Q1 + i Q2 
exp (-ikQ) = exp(-i kQ1) ex p (k Q2) = 

exp[ -i ~Q1 (cos 5 + i sin 5U expHQ2(cos 5 + i sin 5 il = 

exp[ -if( Q1cos 5 - Q2sin 5 )] ex p[ - f ( -Q 1 sin 5 - Q2cOS 5 U 
For a steepest descent path 5 is chosen so that Q1cOS 5 = 

Q2sin 5. In other words: sin 5 = -Ol// Q/ ; cos 5 = -Q2/ .JQJ, · 

whe re the minus sign is necessary to make the integral 
r .. Q~] [ ,J converge. Thus : exp(-ikQ) = exp C ~ 0,,;, e = exp -UQ/J 

Therefore: Y = J«'a~~~t-ie -~/~ld (~e(.() 
o 

-: e' J(I(+';.) J""f'-± e. -i/Ii'/ J f 
() 

This integral may be evaluated in terms of the gamma func-

tion: 

( 11) y= 

Substitutin g in (9), we get : 

( 12 ) 

~ If(e) 
If m(c) is cast in polar form: ==1~.,(c)le then 

( 13 ) .1. = 



where : 
3 

5 = - IT - phase( Q} 
2 

= ( r-ct) -ih '('I c) Q 

Xrv) =-
r (ry 1"U 

-rrr 
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where c is in genera l comp l ex 

N = 2 + homogeneous degree of g/f 

p = order of Besse l function 

m( c) = ex c itation function depending on mode l and sou rc e 

By subscripts r, t it is suggested that Q and 5 a r e function s 

of the time and hori zonta l range . It is this dependence, in 

fact, which shapes the pulse . (13) may be cast in a more 

con venient form depending explicitly on the phase of Q (which 

we denote by ¢) . 

(14 ) 'X = ~[ ~"tl:'''- /"' i< )/ )'(N) cos[ 1>. - (N' !..) g",.J 
where 

ck "" ftc) + IT + (/> -N) ~ 
We shall use ( 14) to describe the shape of the pulse 

pro pagated along an interface due to comp l ex po les, c, of 

t he per iod equa t ion . I t is, th erefore, Aecessa r y at this 

point to write down i n t abu l ar form the rest r ictions on the 

Riema nn sheets for various va l ues of t. These a r e ta ken from 

Tab le 2, or a similar tab l e for two or th r ee branch l ines . 
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For all three problems the "lower" sheet for all variables 

(last line in Table 2) is identical to the "top " sheet. This 

is seen by ins pection of the period e quations (4). It is, 

t herefor~ not relevant to the description of the pole con -

tributions . 

(A) Free solid halfspace: 132 < c2 

o < r It < 13 2 + 

Re at 
2 

+ 

- + 
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(8) Liquid ha1fspace/so1id ha1fspace: 

Re a 1 
Re a ' 2 Re a 2 

0 < r/t < c 1 (Stone ley wave) + + + 

c 1 < r /t < 132 (Pseudo-Rayleigh) + + 

132 < r/t < c2 (Pse udo-P wave) + 

132 < c 1 < c2 

0 < r/t < 13 + + + 
2 

132 < r/t < c 1 + + 

c 1 < r /t < c2 + 

132 <. c2 < c 1 

o < r/t < 132 + + + 

132 < r /t < c2 + + 

c2"< r /t <. c 1 + 
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(C) Sol id halfs pace/so l id halfspace: 

13 1 « c l < 13
2 

<::::'c
2 

Re a' 
1 

Re a 
2 

Re a' 
2 

o < r/t < 13
1 

13 1 < r/t <c l 

c 1 < r /t 
13 2 < r/t 

o < r/t < 13
1 

13 1<r/t < 13
2 

13 2 <r/t <,c
l 

c 1 < r /t < c
2 

+ 

+ 

+ + 

+ 

+ 

13 1 < 132 " c 2 <: c 1 

+ + 

+ + 

+ + 

+ 

+ + 

+ + 

+ 

+ 

o < r /t < 13 1 + + + + 

13
1 

<r/t < 132 + + + 

13
2

<r/t < c2 + + 

c
2

< r/t < c l + 

All ot her combinations of body veloci ti es are either 

tr i vtal or physically inadmissable . Henceforth, we refer 

to a Riemann sheet by a sequence of +' s and _IS: e . g. 

(-+), (-++), or (-+-+). 
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Typica l pu l se shapes predicted by (14) 

We now inspect the pulse r epresentation (14) In enough 

detai 1 to show its r e lation to the physics of the pro b lem and 

demonstrate i ts ag re ement with known results for undamped 

surface waves. Wr j t ten in te rms of rea 1 Quant it i es, Q has 

the form : 

( 15 ) Q = (r - vt + hY2) - i('( t+hYl) 
.J.. 

where : v = Re c Yl = Re ( 1 - c2/cT )"" 
I 

~ = 1m c Y2 = 1m ( 1 c2/ci )"~ 

Case ( B ) is taken as representative. We take a model 

typ ical of water in contact with a solid, with the source 

located in the water layer : c l = 1. 0, c2 = 3 · 0, ~2 = 1.732, 

and P2 = 2Pl (a Poisson solid): 

sheet 

(+++ ) 

(-++) 

(--+) 

(--+) 

v 

. 9860 

1. 6151 

3 . 036 

3 . 917 

Whe n Poisson's constant 

i s s l ightly differe nt: 

P2 = 2p 1 : 

(+++) . 966 

(-++ ) 1.348 

(--+ ) 2.768 

is 

c 1 

type of wave 

Stoneley 

. 0980 Pse ud o-Rayleigh 

~ } Trivial pseudo-P 

taken to be ·355, the situation 

= 1. 0, c2 = 3·0, ~ = 1. 41, and 
2 

stone ley 

.0917 Pse udo-Rayleig h 

.492 Pseudo-P 
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These results are taken from a later section, where the 

complex phase velocities for a representative class of models 

have been computed and presented in the form of arrival - time 

diagrams. 

The pulse is shaped by (14) as follows. A cylindrical 
1 

spreading term, r - 2 , which multiplies the pulse amplitude, 

is identical with that obtained for point source excitation 

of true surface waves . If we were considering a line source 

problem this factor would be missing. The factor /Q I -(N+~) 
determines the pulse envelope, and ( N + ~),0', as an argument 

of a cosine function, determines osci llation of the signal 

with i n the pulse en velope. For all the cases considered in 

th i s paper" N = 2. Higher N corresponds to a field variab l e 

obtained by one or more spat i al or time derivatives; its 

appearance in the phase factor makes sense from this point 

of view. 

Stoneley wave : h = 0, '1= O. Q vanishes when t = r/v, 

namely at the arrival time of the wave whose velocity = Re c. 

There is, therefore, a singularity at the arrival time of the 

Stoneley wave . Also, m{c) is rea 1, therefore '({ c) = 0; for 

the pressure signal in the water, p = o. Thus ,0'0 = IT + 0 + 0 

+ 3IT = 4IT~0. When t < r/v, ,0' = 0; whe n t = r/v, ,0' = -~IT 

(assuming a sma 1 1 + imaginary I{); when t > r/v, ,0' = - IT • 

Figure 3 shows : (l) Q as a function of t (in the complex plane), 

(2) a polar diagram of phase, (3) and the consequent pulse 
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shape, obtained by applying the envelope function and the 

cosine operation. 

The singularity is, of course, a result of taking a delta 

function source in the first place, and is suggestive of the 

fact that the Stoneley wave is perfectly trapped and that the 

high frequencies are preserved in transmission. (The pulse 

shape shown is just that due to the Stoneley pole; when con­

sidered as part of an actual seismogram, we lJlust "gate" the 

pulse on at t= r/c l , and superimpose the contribution from 

the direct body wave. A similar qual ification holds for all 

the pulse shapes we sha ll derive.) 

When we take into account the separation of the source 

and interface, h I 0, ~ = 0, and Y2 = 0 (since c = v < cll. 

Figure 4 shows the variation (with tl of Q, (,00 -(5/2),0), and 

x(t) . The effect of remov ing the source from the interface 

is to remove the high frequencies from the interface wave. 

The source preferentially excites longer wavelengths; in 

the same way, a recei ver not on the interface does not "see" 

shorter waves due to their greater localization near the inter-

face. 

The preceding has been tO ,demonstra te the use of the 

representation (14), since the Stoneley wave is no newcomer, 

and has been thorough ly descr ibed in the literature. We now 

demonstrate its applicability to leaking inte rface waves. 

The results to be derived for the pseudo-Rayleigh wave wi 11 
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bear out some of the properties discussed by Strick (1959) 

in his exact treatment . This is just a Rayleigh wave on the 

solid which loses energy by conversion i nto compressional 

waves radiating int o the liquid. It, therefore, looks like 

an interface wave with respect to the solid, but has the 

proper ties of a critically refracted ray in the liquid. Its 

velocity is essen tiall y that of a Rayle igh wave on a free 

halfspace. We set h = 0 in order to isolate the effect of 

'1 on the pu lse shape. Then: 

x 'V r-t I (r - vt) - i1 t I -5/2cos (%0 -( 5/ 2 )%r,t) 

To ease the computation slightly, we set 1(c) = 0, an assump­

tion which affects the phase of the wavelet, but not the point 

we wish to make. Figure 5 shows the construction of the 

waveform as befor e. The existence of 1m c ='1 manifests 

itself in a smoothing of the waveform and a reduction of the 

maximum amplitude. In other words, the higher frequen~ies 

attenuate more rapidly than the lower frequencies. This is 

as it must be : The absence of a characteristic dimension in 

the geometry implie s, by a similarity arg ument, that the 

decay range of a given frequency must be proportional to its 

wavelength. 

F h J. 0 t t k . t t . = /1 - c2/~2. or r , we mus a e In 0 accoun Yl + IY2 1 

c is nearly real, and Re c>c1 . Yl is, therefore, small and 

negative, while Y2 is large and positive. The sign choice is 

due to the fact that we are on the sheet where Re c l < o. 
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Then: 

In harmonic wave theory, Yl describes a wave increasing 

exponentially away from t he interface . Here, its only effect 

is to decrease the bluntness of t he pulse by counteracting 

t he ~t term. Alte rnat ively, we may say that the existence of 

a ray pat h into the liq uid permits the source to communicate 

t he h i gh frequencies to the interface ~ore eff i c i ent ly t han 

was possi b le for the wholly trapped Stoneley wave (and recipro­

cally). Y2 is responsi b le for a term wh ich delays the peak 

amplitude of the pulse a time equal to the time requ i red for 

the signal to reach the interface along the crit i cal ray 

feed ing the Rayle igh wave in t he solid. Thu s, wh i le roots 

of the characteris tic eq uat i on lyin g on lower Riemann s heets 

yield physically impermissi b le steady-state waves, t he result 

of superposition in the time domain is physically quite 

reasona b le. 

The ps eudo-P wave, wh ic h we shall discuss later in detai 1, 

is an intrinsic leaky vi br ation of a solid halfspace whic h 

does not "see" the liquid halfspace in a significant way. 

Ener gy is radiated away from the interface as shear energy 

into t he solid and as P waves into t he l iquid . When ~= .355, 

for example, t he maximum pulse amplitude propagates at a 

velocity slower than c
2

• The h ig h imaginary part of c suggests 

t hat t h is pulse is very muc h b lunted in comparison with the 
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Pseudo-Rayl eigh wave. This pulse is identically zero prior 

to t = r / c2 , and IIgates ll on only with the arrival of the ini­

tial P phase. When ~= .25, the pair of roots which were 

comp lex conjugate for '{.= .355 have degenerated to a pai r of 

unequal real roots whose real parts exceed c2 . The main body 

of the corresponding pulse neve r exists, because the signal is 

constrained to vanish prior to t = r/c2; at times shortly 

after the P-wave these poles may affect the signal slightly, 

giving the P-wave a slight tai l. 

Summary: The solution (14) is an asymptotic represen­

tation of a pulse propa gated along a plane interface, due to 

complex roots of the period equation (4). The results are 

subject to th-e constraint-s of Ta bles 1 and 2, which denote 

the permitted Riemann sheets for any r, t. As pointed out by 

Strick (1959), these quasi-surface waves are not always phys­

ically se para ble on experimental or exact theoretical records 

due to their close association with bo dy phases. The purpose 

of our demonstrat i on has been to genera 1 i ze the fami 1 i ar long 

range expression of free surface waves to describe partially 

trapped waves in the same framework. A harmonic t heory is 

not possible; we may, howe ver, cast the real and complex 

roots of the period equation in the same framework. We inter­

pret t he complex roo ts as modes of motion which invol ve less 

coupling to body waves (radiation away from the interface) 

than neighboring motions (in a variational sense). 

Having a single framework for both true surface waves 
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and complex surface waves, we hope that the nomenclature may 

become standardized . The resemblance between the true Ray­

leigh wave, the Stone1ey wave for a liquid/solid interface, 

and the Stone1ey wave for a sOlid/solid interface is super­

ficial, since they arise by coupling to the lowest body wave 

velocity in the system, which is different in each case. We 

may now identify corresponding wave types for the 3 types of 

system; Strick (1959) has already established, for example, 

the correspondence of the true Rayleigh wave (A) with the 

pseudo-Rayleigh wave ( B) 

Mathematically, the solution has the following properties: 

1. Jt was not nece ssary to approximate the second integral 

beyond using the l ong range representation of the Bessel func-

tion. If desired we could write out further terms in the 

asymptotic series for J (krl and obtain a more precise esti­p 

mate of the pulse shape. As this is not our object, we defer 

to the exact solution by the method of Cagniard, should 

t heoretical seismograms be desired . 

2. The existence of characteri stic roots on lower Riemann 

sheets is physical ly permissi ble . The only effect of Re .f' . 
I 

(be it + or -) is to modify the pulse shape slightly. 1m ..r., 
I 

whic h is connected with radiating body waves, appears in a 

time delay due to the source-interface separation. 

3. Reciprocity enab les us to make the same remarks about a 

receiver at distance z f r om the interface as we have made con-

cerning a source at h. By superposition we may consider both 
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s i mu It aneous ly. 

4. A pseudo-surface pulse will travel faster than certain of 

the body velocities and slower than the remainder. The for­

mer group wi 11 couple to the pulse as bod y waves in the rele­

vant medium. The latter velocities cause the trapped portion 

of the energy. An instrument sensitive to body potentials 

with velocities v. )R e c wi 11 see an exponential decrease 
I 

away f r om the interface. One sensitive to wave potentials 

whose velocities vi < Re c wi 11 see body waves feeding (or 

leaving) the interface at a critical angle 6: sin e = vi/v. 

ln what follows we shall display the complex roots of 

the perIod equation in a manner which is suggestive of the 

form of the pulse expression (14). h has the effect of 

modifying and delaying the pulse ar~ival ; since propagation 

along t he interface is of interest, we set h = O. v is the 

velocity of the maximum pulse amplitude, and causes a broad­

ening and weakening of the pulse. A rough measure of the 

pulse broadening may be obtained: We express the envelope 
-(N+~) 

function )Q/ in terms of the arrival time of the pulse 

and solve for the time where the envelope is down by some 

factor. lt is assumed that (1jv)<.3, so that (,?/v)2 may be 

neglected in the result. 
J. -(N+t) 

I -(fib.) -.!. -(tw;') I v t . 1! I 
(16) /'X/ /V r-~ {(r-vt) -L'lt/ = r >Or (1--;:::) -(.,... == 

-(N t-/) I I. 1.. J. I J -(,v+~) = r /-t - L L = 
V 

t' = corresponds to the pulse maximum. 
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When t' = 1, 

When t' = 1 + ~, which we 

set equal to mIP(l)1 = mV/v. Solving for ~ and dropping 
Q 

(1/v) ~ in the result, we have an estimate of the half -w i dth 

of the pulse i n terms of its arrival t i me: 

( 17) ~ /V ~(1-r(W! J._I) 

If n = 2, m = 2 suffices to describe the point at which the 

pulse has about 1/6 peak amplitude. Using the formula 

~ = 1. 7 (1/v), we indicate the half-width i n Figures 6-13 by 

the shading. 

Another measure of pulse width in this case is t he pea k 

to trough time for the osci llat ory center of the pu lse. Un­

der assumptions like those gi ven above, O. 7{V/v) is an 

e quivalent estimate, whic h we shal l not use. 

Setting tl = 1 in (1 6 ), we get an expression for t he 

decay of the peak amplitude with dis tance. 

_(Nf-I)(YJ)-(N-tt)_ -i (r 7)-(1111'1...) 
(18) "X/V.... V - r V 

Numerical results: The se are plotted in the form of an 

arrival - time diagram . The horizo ntal axis is the time, nor -

malized to the arrival of one of the bod y wa ves in the system . 

The vertical coordi nate represents the variation of some 

function of the densities and body velocities; in this way 

we are able to show the behavior of the in terface waves for 

a representative class of models. The ar rival of t he var ious 

bod y waves and tru e interface wave s is represented by so l id 
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lines , and the pseudo- waves are indicated by the arrival 

of the pulse maximum . Shading indicates the pulse width of 

the pseudo-waves according to (17). The areas between the 

body waves are labeled with the (-+++) notation to denote 

the relevant Rieman n sheet for interface wave propagation. 

The Lam b Problem 

From .e quations (2-86 ) in Ewing, J ardetzky, and Press 

(1957 ), we may write t he surface response to a compressiona l 

point source at depth . Generalized to a pu l se, t he horizon­

tal and vertical displacements become (with a s l ight nota-

tional change) : 

J
}.f~«> st-

.1A e 
( 1 9 ) if. = IT i. s---==+=-8---' 

r -;"" 

(20 ) w,,= 2~l)1t-i"'e'S-t 
f't i S +er' 

iI-,,,,, 
whe r e fA(s,k) i s the Rayl eigh fun ct io n in 

sions have the form of (1). (14) results immediate ly, with: 

qo Wo 

p 1 0 
N 2 2 

There are two relevant Riemann sheets . When 

we consider the sheet (++) . Whe n r/t32 > t > r/c2, we consider 

the sheet (-+) . For a ll nontrivial values of P2' t3 2 , c2' a 

real root of fA(c) exists on t he (++) sheet with a velocity 

near . 92 ~2' the fami liar Rayleig h wave . A pa ir of roots 

exists on the (-+) sheet . When t32/c2 is l ess than . 52, t hese 

roots are real, une qua l, and their velocities grea ter than 
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c2 ; hence they do not contribute to the observed signal. 

For small values of ~2' the roots become complex conjugates, 

with velocit i es less than c2 and greater than ~2' Since only 

roots with positive imaginary parts (on the lower sheets) are 

pertinent to our solution, a single pulse is predicted, 

arriving between t he P and S waves. Since th is pulse is 

trapped with respect to compressional motion and appears 

shortly after the P wave, we call it the Pseudo-P wave. Fig. 

6 is t he arrival-time diagram for Pse udo-P and the Rayleigh 

pu l se, normalized to the arrival of the shear wave . 

The shaded a r ea on the figure represents rou gh ly the 

extent of the Pseudo-P pulse. When . 3 <tr
2 

< .45 i t appears 

as an appendage to the P-wave. When v2 >. 45 it becomes dis­

tinct from both P and S; as rT2 ....".. . 50 (variable ~2' fixed 

c2 ), the ampl i tude of Pseu do-P approaches zero, due to the 

very great time of arrival relative to the P-wave. When 

0-2 < . 30 no pulse occurs, although t he images of the root are 

p lot ted us i n g ad ash e d 1 i n e . A f am i 1 i a r res u 1 t s tat est hat, 

when 0-; = . 25, two "extraneous" real roots are found on the 

lower Riemann sheet. These have been interpreted as describ­

i ng the angles at wh i ch shear waves are converted who l ly i nto 

P-waves upon reflection by the free surface (or vice versa) . 

We may generalize t his interpretation: when 0'2 > . 30, a 

shear wave incide nt on the free surface with a certain "com­

plex angle of incidence" is conve~ted entirely i nto a com­

press iona l mot ion critical l y refracted along the interface . 
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Conversely, a signal moving along the interface with velocity 

near c2 (ma king it largely a P-wave) continually feeds a 

shear wave radiating into the solid. If we assume a pulse 

moving along the surface at a velocity between ~2 and c2, 

then only radiating shear waves are possible . The particu ­

lar velocity of Rseud ~ - P is that velocity which minimizes 

the loss by conversion to s hear waves . 

Gi 1bert and Laste r have found Pseudo-P by evaluating 

the exact (Cagniard) closed form solution of Lamb's problem . 

In that framewo r k the si gnal at times between the arr ival of 

P and S is obtained by evaluating a certain function at a 

point near the branch cut. When ~2 ). 30 , a pole lying on 

the lower sheet becomes so disposed with respect to the 

branch cut that it affects the value of the solution for cer­

tain va lues of time . The authors have r eported a broad , i11-

defined pulse comi ng after the P-wave , a r esult in agreement 

with the calculations reported he r e (Fig. 6). The method 

described in the present paper is va lid only at long ranges 

and lacks the preci s ion of the Cagnia rd method, but it gives 

us a s imple tool for investigating the phYsical importance 

of the complex poles. 

We do not claim that Pseudo-P would be an observed phase 

in field problems . It should be observed in model experi­

ments, if sufficient control of the physical properties is 

possible . Tbe physical importance of this wave is in its 

effect on leaking mode propagation in more elaborate wave-
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guides. In a recent paper (Phinney, 1961), the leaking 

modes of a liquid layer coupled to a solid halfspace were 

determined. It was then noticed that the frequency of the 

first PL mode is somewhat less than expected on the basis of 

a simple ra y theory. This effect becomes more pronounced as 

the shear velocity of the solid decreases. At the time it 

was hypothesized that this was due to couplin g of the chan-

nel wave to an intrinsic long-pe riod vibration of the half­

space. In this paper we have already shown that such a 

v ib ration does exist and that it propagates at velocities 

in common wi th the PL group veloci ty (13 2< C <c2). 

The coupling effect is demonstrated by computing PL 

,wave dispersion for severa l cases, whose properties resemble 

those permitting propagat ion of Pseudo-Po The following 

models are presented in Fig. 7 . 

Case (/2 13~c2 

5 • 10 .667 
6 .25 .577 P2 = 2p 1 
2 .32 .517 ,.~~- -'-'" ... 

8 :~05 .400 c2 = 3c l 
9 .45 .300 

The equivalent Lamb prob l ems are indicated on Fig. 6 by 

case number. On Fig. 7 the arrows labeled (2), (8), and (9) 

represent the ve locity of Pseudo-P in the halfspace, accord­

ing to Fi g . 6. For cases 5 and 6 the Pseud o-P root is degen­

erate and is not plotted; although the peak does not propa­

gate in such cases, the tai 1 of the pu lse falls in the rang e 

(13 2 <r/t<c2 ) and the corresponding PL mode is affected in 
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the immediate neighborhood of the P arrival. Since all 

systems of geophysical interest ·are layered (or worse), we · 

conclude that Pseudo - P manifests itself indirectly, by coup­

ling to leaking modal osci llations of a layered system. 

We may test the physical meaning of waves such as 

Pseudo-P in another way. This wave is presumably coupled to 

shear waves radiating into the halfspace; it therefore loses 

energy by leakage. If this is correct, then we may stop the 

leakage by putting a perfectly reflecting bottom on the 

structure to trap the downward radiating shear waves . The 

perfectly trapped (normal) modes of a free elast i c plate 

should then show coupling to the Pseudo-P wave of an elastic 

halfspace. At long wavelengths the appropriate wave is the 

extensional, or plate wave, whose velocity of propagation is 

given by the formula: 

(21 ) 

This has been evaluated for various Poisson constants and 

plotted as a normalized arrival time in Fig. 6 . The agree­

ment of the plate wave with the Pseudo-P wave is very good, 

in the range where the latter exists. 

Recent work on early-arriving waves, which are usually 

leaking waves, has tended to associate them with prog r essive 

elliptical sur-faoe motion as contrasted with the retrograde 

motio,n o·f Rayleigh waves. Oceanic and continental PL waves, 
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as we ll as the plate wave just cited, fall into this class. 

Typical numerica i resu lts pertinent to the Pseudo-P have 

been appl i ed to (14) wi th the object of estimatin g the sense 

of the orbi t a l ellipse . A rat he r flat prograde ellipse is 

found, having its major axis tipped backward about 45 degrees 

from the vert i cal. We may thu s think of Pseudo-P as the 

basic pro gressive elliptica l motion of a halfspace, dual to 

the Rayleigh motion. It manifests itself chiefl y in simi lar 

motions of more complicated la ye red waveguides. 
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The liquid/solid interface problem 

Havin g introduced the pseudo-P pulse, we are in a posi­

tion to consider more oomplicated problems; we expect to 

find general izat ions of the Pseudo-P and Rayleigh waves, as 

well as encountering the familiar Stoneley wave. I n an ear­

lier section, numerical data for this problem were used in a 

discussion of the behavior of (14). A complete physical 

discuss i on as well as representative numer~cal results are 

now offered. 

The Stoneley wave, which has a velocity less than the 

l east body wave velocity (usually the liquid velocity), pro­

pagates as a trapped wave with respect to all modes of motion. 

As is well known, the Stoneley wave exists for all non-trivial 

values of the wave velocities, and has been verif ied exper i­

mentally in recent model work (Roever and Vin i ng, 1959; and 

Osborne and Hart, 1945). If we perturb Lamb's problem by 

imposing a l i quid halfspace on the surface, the Rayleigh wave 

velocity wi 11, for a great many cases, be greater than the 

compressio nal wave veloci ty in the liquid. The Rayleigh 

wave thus excites a rad iating P-wave in the liq uid, whi c h 

serves to abstract ener gy from the interface. This leaking 

Rayleigh wave, or Pseudo - Rayleigh wave, has been d iscussed 

by Strick ( 1959) in the cont ext of the closed algebraic solu­

tion (Cagniard). In our earlier discussion of the pulse 

solution (14) we have verified most of the properties dJs­

cussed by Strick . The Pseudo - Rayleigh wave is the least 
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damped, and hence the mDst observable, of all the leaking 

wave types which arise from lower sheet roots of the period 

equation. In the numerical resu lts schematically shown in 

Figs. 8 - 13 , the Pseudo-Rayleigh wave is shown arriving dir­

ectly after the S- wave, with a pulse width which invol ves the 

initial S motion. When the shear velocity is nearly the same 

as the liquid velocity, the Pseudo -Rayle igh wave ceases to 

exist. If c l > t3 2 the Rayleigh motion is manifest in the 

Stoneley wave. 

It is to be noted that seeming disagreement exists with 

a res ult in Strick's paper . We show that the Pseudo-Rayleigh 

velocity is nearly equal to the true Rayleigh velocity (Fig. 

6) as t32 ~.707c2' with considerable disagreement as t32-cl. 

Strick showed that the two velocities were always the same. 

We have defined the pulse velocity by t he velocity of the 

puls ~ envelope maximum, whi le St r ick computed the ve locity 

of a zero -crossing in the pulse . Thus no contradiction actu ­

ally exists. Details about the signal as t32~cl must be re­

solved by numerical evaluation of the closed form solution. 

-The gene ral iza tion, for the 1 iquid/solid interface, of 

the Pseudo- P pulse is shown in Figs. 8 - 13 . The pole is 

on the Riemann sheet appropriat e to radiation as shear waves 

and as P-waves in the liquid, but describing trapped P-waves 

in the solid, namely the sheet (--+). The figures show 

that Pseudo-P is little affected by the liquid when a poor 

impedance match occurs between the media . When one or both 
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of the solid velocities is near to or less than c l ' Pseudo-P 

differs considerably in breadth and velocity from the "stan­

dard" in Lamb's problem. 

If t3 2 <cl' the sheet (+-+ ) is relevant to the motion 

when r/t32 >t >r/c l • It is seen i n the figures that a root 

occurs with a velocity rou ghly 1.4 - 1.5 times the shear vel-

ocity. The pulse breadth (17) is so great that we can hardly 

re gard this wave as easi ly observable. Its amplitude must 

be quite small in view of the long times at which it arrives. 

We suggest that it may be a manifestation of Pseudo-P motion, 

much as the Rayleigh motion is described by two different 

branches, depending as Cl< t3
2

, or vice versa. This is pro­

bably the same root encountered by St~ick, by a zero-crossing 

formula, with a velocity 12 times the shear velocity. 

Figure 12 deserves special comment. It shows the 

effect on the Pseudo-P and Pseudo -Rayleigh waves of varying 

the density ratio. t32/C2 = .43 is chosen to insure that 

Pseudo-P is not degenerate. When PI becomes greater than P2' 

the increased impedance of the liquid rapidly suppresses the 

free motion of the solid. The effect is less drastic on 

Pseudo-P than on Pseudo-Raylei gh , since the former is largely 

a compressional motion parallel to the interface and involves 

less coupling from solid to liquid. 
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The solid/solid interface problem: 

Numerical results for this prob lem wi 11 be reported in 
\ 

a separate paper. Due to the increased number of paramet ers 

involved, many figures will be required to even outline the 

general behavior of the pseudo - waves. The following general 

results may be mentioned he re. 

If the s10w halfspace is viewed as a perturbation of 

the faster medium, we find ps eud o-P and pseudo-Rayleigh 

coupled to the P and S waves of the faster medium, with radi-

ation into the slower materia l . If the faster medium is 

v iewed as a perturbation of the slower, we f in d that i t sup-

presses the pseudo-waves in the slower material, although 

roots may be found which are trivial in the sense that they 

do not contribute appreciably to the signa l . The true 

Stoneley wave for this problem appears as a very specia l 

case of the pseudo-Raylei gh wave in the faster medium, when 

its v el o~ity turns out to be slower than all four body wave 

veloc it ies. Gi lbert and Laster have treated th i s problem 

from the point of view of the ex act (Cagniard) solution, 

and our numerical results should provide a valuable comple­

ment to their detai led discussio n. 
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Appendix 

In this appendix we provide a little more detai 1 regard­

ing the assertions in the introduction. We claimed that 

equations (2) and (3) may be appl ied to the deduction of 

leaking mode dispersion in plane seismic waveguides with any 

number of layers. We also stated that problems involving two 

halfspaces (and any number of layers) are susceptible to the 

same equations if the res ults re gard ing permissible Riemann 

surfaces are generalized. This latter point, in .particular, 

formed an integral part of the discussion on leaking inter-

face waves. Enough steps will be demonstrated to enable the 

reader fami liar with the author's previous paper (Phinney, 

1961), denoted by I, to derive the r esults stat ed . 

Generalization to multilayered waveguides: 

If we assume a structure consisting of m - 1 solid lay-

ers bounded above by a free surface and bounded below by a 

solid halfspace, we may write the response as a ratio of two 

determinants of order 4m - 2. 

(B-1 ) g ·/f J 
f:,·If:, 

J 

Both expressions are even in the variables ai' 
I a · 
I 

( i <m). 
I 

Only the variables ~, ~ generate branch cuts in the s 

(=im) plane. As these quantities occur in only two wave 

potentials, they appear in only two columns of either deter­

minant. Inspection of equation (4-276) in Ewin g, Jardetzky, 

and Press, (1957), showing the form of the determinant, 

shows that we may write: 
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(B-2) 
I I 

f 6. = ao +al'1n+ a2Cin + a3 am'1n = 
I I 

6.. = bo + b 1 am + b2a
m + b3 '1nam = g 

J 
The expressions (B- 2) may now be substituted into ( 1 ) and 

the development of paper 1 carried out. We refer to equa­

tions A-l, A-2, •• which are located in the appendix to I. 

Equations A-l throu gh A-3 r emain unchanged under the use 

of (B-2), and (A-4) may be deleted. The first sheet modal 

contribution to the signal is described by (A-5). A gene r al­

ization of the response factor (A-6) yields: 

( B-3) (--.L] = [-
~: S:: 5 

" I 

Th e development in 1 continues; if '1n and am are considered 
I 

where 02 and 02 appear in I, we need only to rewrite the 

exp r essions for the r esponse factors as they are transformed. 

(A-9) becomes: 

(B-4) 

(A-ll) now takes the form: 
"/::#.'$ 

(B-5) G(S,,_,k)= J"~"'-: :::: ::~,.fcbofob,,'{Xa,+a.JI( .. ') - (b,+b3
d,.:)(Q_+aL d.:)} 

(A-14) becomes: 

(B -6) (s,}~. = [ : ~~. [( b. ' b,o, X., ,.,.", ) - (b, ' J" <.l( Q. H. "'. ~} 
Js s.~ 
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which is evaluated (subscript n) at the roots of f*. 

Now: f* - f = -2a~(a2 + a3am). When f* = 0, fn = 
I , I 

2am(a2 + a
3

am) · Also: ao + alam = am(a2 + a3am). (B-6) 

thus reduces to: 

" which is the same result obtained in (eq. A-l6). F2 and 
" I F2 may be treated in the same manner~ yielding the analogous 

result, which is stated in equations (A-25) and (A-26). 

Evaluation of the contrib ution PBP follows the same lines, 

yielding equati ons (A-37 ) and (A - 38) as written. 

We conclude that the results of paper I may be taken 

over with only minor alterations. The exact functional 

dependence of the a
i 

and the b i on ill and k differs from case 

to cas e and therefore defines an FI(sn,k) and a Q~ which 

carryall the specific information about the model not given 

directly by the period equation f = o. 

Generalization to two halfspaces (three or four branch cuts). 

Two solid nalfs paces or one solid halfspace and one 

liquid halfspace are considered as bounding a plane layered 

seismic waveguide. Med ium I occupies z<O and medium 2 occu-

pies z:>D :>0. One or mor e layers occupy the r e gion D:>z >0. 

Since the exis t ence of t hese finite layers does not inc rease 

the number of branch points, it is unnecessary to acknowledge 

their existence in the following discussion . 
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Using the development of paper I, we may locate the 

singularities in the complex s-plane. It is sufficient to 

restrict consideration to the upper half plane. There will 

be four branch points in the upper half plane , joined by cuts 

to s = i ~. Since the layer velocities cl ' ~l' c2 ' ~2' may 

satisfy various inequalities among themselves, we merely 

call them vI' v2 ' v3 ' v4' where vI < v2 < v3 <v4 ' The radi ­

cals generating the branch cuts will be of the form 

vi =/k2 + s2/vT =jk2 - (j)2/vT ' the branch points will 

consequent l y lie at s = i kvi (Figure 15). 

We denote a Riemann sheet by a sequence of pIS and mls. 

For examp l e, (pmmp) denotes the sheet where Revl /> 0, 

R e 152 4. 0, R e 'lf3 <. 0, and R e){4 > 0 • T his no t a ti 0 n ref e r s to 

the veloc i ties arranged in increasing order of magnitude, 

and differs from the (+--+) notation used in the main text, 

which ref ers to specific velocities . The single integral 

solution (2) will be represented by the symbol X. The ap ­

propriate Riemann sheet will be designated by the symbol, 

e . g. (pmmp), as an argument of the symbol X. For example: 

<>0 [ s.t 
(8-8) -fA [ 5 J.,O' t-) k 5 .. :&-' [F.{svk~D: dk 

II 

= X II = X (mp) 

An algebraic sign is also necessary to specify the result . 

In I the individual branch line and pole contributions 

behaved as follows: 
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Top sheet poles: PR = XI = X(pp): all r, t 

PBS =- XI =-X(pp): t > r /~2 - r/v l = First branch line: 

-X" =- X (mp ) : t ;>r/v l 
PBP = X" =X(mp): t ') r jC2 - r/v2 = Second branch line: 

- X III =- X(mm): -t> r/v2 

When all contributions are summed, we find: 

X(pp) contributes when 

X(mp) contributes when r/v l >t >r/v2 
- X(mm) contributes when t>r/v2 

subject to the restriction that roots on the lower two 

sheets contribute only over the range of k such that 

Im[mn(kU>O, k bein g real and positive (or with a very small 

negative imaginary part ) . 

The evaluation of PBP was typical of the result to be 

obtained if one of several branch cuts is evaluated. Suppose 

that there are four branch cuts; consider the way in which 

PB3 will tra nsform under the contour deformations of I (Fig . 

16). The original branch line integral on the top sheet will 

have f(pppp) and f(ppmp) as factors in the denominator, after 

the two sides of the branch line contour have been algebra­

ically combined into a sin g l e contour on the right side of 

the cut . If this contour is deformed into the second quad ­

rant by a 90 0 counterc lo ckwise rotation, all the quantities 

in the inte grand go onto the lower sheet with respect to 

J l , <f2 , and 153 - I - e o, f(pppp) -----7f( mmmp) and f(ppmp)--7 
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f(mmpp). Since the contour did not cross t he fourth 

branch cut in being deformed, the fourth index remains 

unchanged. 

Followin g the technique employed i n I, it may be even ­

tually concluded that when t ) r/v
3

, modal contributions 

result, in the form of t he terms X(mmpp) and - X(mmmp). When 

t<r/v
3

, the con t our inte grals in the s - plane conver ge only 

if t hey are transformed in a way which causes both terms to 

vanish . In general, PBl will tr ansform like PBS; PB2 will 

behave like P
BP

; PB3 and P
B4 

behave s imilarly, as we have 

outli ned above. A table of all modal contributions may then 

be constructed : 

Top sheet po l es : PR = X( pppp ) all r,t 

First branch line: PB1 = - X( pppp ) t > r /v 1 

- X(mppp) t > r /v 1 

Second branch line : PB2= X(mppp) t > r/v2 
-X(mmpp) t > r/v2 

Third branch l i ne : PB3= X(mm pp ) t > r/v3 

- X(mmmp) t > r / v3 

Fourth branch 1 i ne: PB4 = X(mmmp) t > r /v4 

- X(mmmm) t >r/v4 

Summation of the terms in th i s table y i elds the 

following statements defin i ng t he permiss i ble Riemann 

sheets for different values of t i me. 
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X(pppp) t '7 r/v 1 

X(mppp) r/v 1 >t '7 r / v2 
X(mmpp) r/v2 >t ;> r / v3 

X(mmmp) r/v3 '7t »r/v4 
-X(mmmm) t ;> r/v4 

These results are subject to the restriction t hat roots on 

the lower four sheets con t ribute only over the ran ge of k 

such that I m [fin (k 0 > 0, where k 1 i es on a contour runn in g 

from o to ~ just below the real positive k-axis. 



- 49 -

Appendix 2 

I t is easily shown that the exact closed form solution 

by Cagniard's method yields restrictions on pole contribu­

tions from the lower Riemann sheets analo go us to those found 

by t he more traditional analysis. To simplify the algebra, 

we set h = z = o. This method is, of course, applicable only 

to the unlayered, simple interface problem . 

The Fourier transform of x(t) may be reduced to a one­

sided transform by virtue of x(t) vanishing prior to t= 0: 

-x = 

Setting up steady state solutions of the wave equation which 

satisfy the boundary conditions on the interface , we obtain: 

aD 

A S((j)) I ¥~~;~l k Jp(kr) dk 
-x = 

where S((j)) is the Four i er transform of the source time 

dependence . 

We now consider the solution at sufficiently long range 

that we may approx ima t e the Besse l function an d drop the 

i nward trave l ing wave . 

Jp(kr) H~l)(kr) + H(2)(kr) 
p 

-';TT~r ex p [ - i (kr - TT/4 - PTT/2Y 

H(2)(kr) 
p 

Then : 

x = 

t:P 

A S((j)) etTTi(P + tV 21 g((j),k) kt e - ikr dk 
TTr f((j),k) 

o 
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If we set u = k/ill, then dk = ill du and: 

"" 
- A S(ill) ~TIi (p +~)~ J g (ill, Uill) '( Uill) ~ e - i Uillr ill x e du ----rrr f( ill, Uill ) 

0 

Now set -r ur : du = d-r/r: 

-x A S(ill) e - i ill-r d-r 

For solvable cases and fare 

homo ge neous in ill. If f and g are now factored, the result­

i ng power of ill will just be the difference in homogeneous 

de gree of f and g . We set this eq ual to N - 2 to conform 

with the convention used in the main text. 

-x = 

When S(ill) = 1, the source is a delta function; when 

S(ill) = l/iill, the source is a un it step. By taking S(ill) = 

1/1iro, we simplify the analysis as well as represent a source 

somewhere between the step and delta function. 

ill N- l -2 r 
OJ 1. 

J g f 1 , -r /r) -r2 e - I ill-r d-r 
o f 1,-rJr) 

The time function correspondin g to x is now obtained by 

inspectio n: 

1 _1. ( N _ 1 ) TT i d N - 1 [ 1 (1 t/ )} x = A ,j2/TT e2PTTir-2 e. 2 ---:-~ t2 g ,r 
- dt N- 1 f(l,t/r) 

where the variable t runs from 0 to w along the real -r- axis. 
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The rad i ca ls .J. wh i ch generate bra nch cuts must be 
I 

expressed in te rms of ~. 

-f. = jk>'- w'" . == 
L y ." 

• 

j ~ I c..v ~_-
r~ v·>" .. 

_ t 
- u>-v. 

I. 

If t he Ri emann sheet s are def i ned as before, with Re ~. = 0 
I 

definin g the cuts, we may l ocate the singularities i n the 

~-pla ne .(Fi g . 17). We assume t to li e along the bottom bank 

of the cut. 

Wh e n t lies between two of the bran ch points in the 

~-pla ne, the value of g/f is affected by any poles near 

~ = t. There are non e on the top sheet except the surface 

wave pol e lyin g on the r eal axis at t >r/v l • There may be 

poles on l ower sheets , however, and one wh ich is contiguous 

to the point t will aff ect the si gn al in that range. This 

is made c lear by redrawin g the branch cuts so a s to ex pos e 

those portions of the lo wer sheets which represent a con­

tinuation of the real ~-axis into the first quadrant. 

Portio ns of the ~-plane (Fi g . 18) so cut which do not li e 

on the f ir st sheet are i nd icated by the con ve ntio na l notation 

(mppp) , (mmpp ) , •• etc. Note that for the in t er face wave 

probl em (mmmm) and (pppp) ha ve the same poles. 

The result demons trat ed i n the pre v ious appendix and 

used i n the main text is now apparent from insp ect ion of 

t he fi gu re. When t li es between the arrival times of two 

body waves, the si gn al may be i nf l uen ced by zeroes of f 
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lying on t he Riemann sheet conti gu ous to t. This is t he 

same conclusion.obtained by the lon ge r analysis based on 

the strai ghtfo rward evaluation of the double integral 

form of the solution. Ta ble 2 in the main text will be 

seen to be equivalent to the results demonstrated graph­

ically in Fi gu re 18. 

We might writ e down a for mu la which isolates the 

effect of such a lowe r sheet pole in the T-plan e and at­

tempt a close comparison with the pulse expression (14) 

obtained in the main text. The difference between the two 

representations is too great, however: In the T-plane, 

proximity of the branch point man ifests itself by mult i­

plyin g the effect of the pole. The analysis in this paper 

leakin g up to (14) separates the pole contributions from 

the body waves in such a way that they add to give the 

total signa l. 
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List of Captions 

Three classes of interface wave problem. 

k- plane and ~-pla ne for integration of ( 1 0) . 
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Stoneley wave : h = 0, '7 = o. 
Q- p lane, [00 - (5/2) 01 , and x as func t ions 
Stoneley wave: h I 0, ~ = o. 
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Pseudo-Rayge i gh wave : h = 0, "1. I o. 
Normalized arriva l time dia gram for Lam b ' s 
problem. Effect of variable ~2/c2 . 

of 

of 

of 

t. 

t. 

t. 

Coupl in g of Pse udo-P to group ve lo c i ty of first 
PL mode: liq u id layer overlyin g a solid ha lf­
space . Eff ect of variab l e ~2/c2 . Pseudo-P 
ve l ocities for Cases 2, 8 , 9 shown by arrows. 

Normal ized arrival t ime d!agram for liq uid/sol id 
interface . Effect of variable ~2/c2· c2/cl = 5 · 

Norma lized arrival t ime d!agram for liquid/solid 
interface. Effect of var ia b l e ~2/c2 . c2/c I = 3 · 

Arrival time diagram of Fi g . 9 renormal ized to 
arrival of the shear wave. 

Norma liz ed arrival time diagram for variable c2. 

Norma lized arri val time diagram for variable 
density contras t . 

Norma lized arri val time diagram for liquid/solid 
interface . Effect of va riable ~2/c2 . 
c2/c l = 1.20. 
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Numerical solution of complex mode problems 

Description of problem: 

The complex mode problems described in the main body 

of this thesis were sol ve d by a series of programs coded 

for the Burroughs 220 computer. The purpose of the program 

is to f ind complex zeroes (mn ) of the period f unctio n (f) as 

a function of the complex parameter k, and to obtain the 

derivative dmn/dk at each zero. Stated otherwise, it ob ­

t ains the mapping of the k-pl ane onto the cut mn plane, and 

computes the complex scale factor of the mapping. The 

followin g problems may be ha ndled: 

1) Li quid layer over a solid halfspace 

2) Sol id layer over a solid halfs pace 

3) Sol id halfspace with a free surface 

4) Liquid/solid halfspaces in contact 

5) Sol id/solid halfspaces in contact 

The root findin g procedure and complex arithmetic 

are common to all thes e variations. Explicit coding of 

t he individual functions was employed, since t he machine 

is too slow for general n-layered computations . 

Description of computation: 

1 . I n put val u e s 0 f k and mar e g e n era ted: ma n u all y 

from the keyboard, or internally, dependin g on console 

switch settings. k is taken as a parameter and m as a 

trial value. 



III.-2 

2. f(k,w) is evaluated at k and at k + 5k, the 

increment being fixed in storage. f(k + 5k) - f(k) is 

used to estimate the next trial value of w by Newton's 

method (in complex variables). When the correction term 

~w becomes less than m'5k , t he machine ass umes that a 

root has been found. For normal ized inputs between 0.1 

and 5.0, m = 20 and 5k = 10-6 are sufficient to insure 

repeatability to 5 deci mal places. Due to the way in which 

f is expressed, the ma gn i tude of its i nd i vi dua 1 terms 

varies as some power (4 or more) of the magnitude of t he 

input variables. Consequently the increment used in the 

root finding (5k) must be adjusted manually depending on 

t he magnitude of the input quantities. If 5k is too small, 

overflow will occur in the Newton extrapolation, and if 5k 

is too large, inaccuracy is a consequence . 

&{"~, . )~ 3. (Variations 1 and 2 only) The functions / O<.v l., 

and ~;tJ which have been explicit) y coded, are evalua -
a-r 

- ~I(/?f 
,} I.<.J 

, is ob tained. In ted, and U, defined by 

investi gations of t he saddle point one is interested in 

followin g the complex locus where 1m U = O. It is there­

fore necessary to know U to 4+ decimal plac es. Fluctua­

tions in the root wn (due to cutting off t he iterations) 

in t he 5th decimal place result i n fluctuations of U in the 

4th decimal place. This ma gnifi cati on of error occurs even 

t hou gh the derivati ves are obtain ed by analytic formulae 

rather than by takin g small diff e rences . Thus proper 
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selection of the incr ement 5k is more crucial i n ob t ain ­

in g the desired accuracy i n the quantity U t han i n know ­

in g the behavior of mn (k). 

4 . Output of the comple x numbers k , mn' a nd U occurs 

on the on - line prin te r . For the non - dispersi ve problems 

(variations 3-5) U is set equa l to zero. 

5 . (Variations 1 and 2) The sett in g of switc hes 

on the console det er mines t he se l ection of new input values 

of k by arithmetic incr ements . The new trial value of m 

is estimated by: m(t rial ) - m(o l d) = U(old) x increment 

of k . 

(Va r iations 3 - 5) The machine awaits input of 

one or more new phys ical parameters on the keyboard. Se l­

ect io n of the parameters of interest is a ccompl is hed by 

e l ementary modifi cations of the stored pro gram. These 

parameters are also pri nted out in the ensu in g ou tp ut of 

k and m. 

From two to four radicals i n f are respons i ble for 

t he exi s tence of 4 to 16 Riemann surfaces . The s i gn of 

the rea l part of each rad i cal i s cho s en + or - depending 

on the se t tin g of certa i n switches on the console. When ­

ever data ( k and m) is introduced at the keyboard, an 

output oc curs, specifying t he Rieman n sheet. In the 

root find i ng process f appears to the computer as a sin­

g le valued f unct i on analyt i c eve r ywhere except a l ong the 

branch cut, where it is discont i nuous. Newt~n ' s method 
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thus breaks down near the branch cut. It has been pos­

sible, by judicious choice of inp uts, to get close enoug h 

to the cut from e it her side for the behav i or of the roots 

Wn and of t he group ve loci ty to be appar ent. 

A framework has been estab lis he d whic h permits solu­

tion of similar problems with a minimum of r ecoding . It 

is nec essary on ly to 
,if. 

f (w,k ), aLu and 

following routines: 

recode 
d~ 

~" 

th e expl i cit eva l uation of 

This is simplified by the 

1) An interpreter which op e rat es on sequentially 

stored pseudo - instructions i n the complex arithmetic mode . 

Square root and the hyperbol i c functions are included in 

thi s mode . 

2) Rout in es wh ic h evaluate total derivat i ve s by 

su mmation of a signal flow grap h. It is ne cessary only 

to ex plicitly evaluate indi v id ual partial derivatives in 

the complex mo de . 
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Signal flow graphs as a coding aid 

The concept of a si gnal flow graph may be used as 

a programming aid i n evaluating tota l derivati ves. We 

wil l describe a systematic hand programmin g procedure . 

Our description, howev er, might readily be taken as the 

framework of a compiler with the abi l ity to generate an 

equivalent program automatical l y . Fo r example : f = f(ill, 

k, ul'u2 ' .. . . Uj, . .. un) . The Uj may be functions of each 

other and functions other var i ab l es . The cha i n of depen ­

dence reaches back eventually to the two independent 

variables ill and k; to define th i s chain, one must write 

down a ll the ex pli cit formulae 

The tota l de ri vative s ~t and 

relat i ng 
~f 
i;w a r e 

the variables. 

obta i ne d by mul -

til inear sums of a l l the part ial derivatives relat i ng the 

intermediate var i ables. Explicit expressions fo r ~t 
and may be t oo co mp li cated to cons i de r ; the pa r-

d"~ tial derivatives are eas i ly written down . A sig -
d~) 

na l flow graph provides a formal i sm by which the partial 

deriva ti ves may be summed . 

S i gna l flow graphs were dev i sed by Mason (1 953, 1956) 

as an a i d i n the computation of l i ne a r ga i n in feed back 

ampl i fiers . The appli cation described here is actually 

the basic case in wh i ch feedback does not enter. The 

appl i cation of the feedback portion of the theory to more 

ge neral pro b lems ha v i ng loops of depend e nc e can be easily 
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made, when and if t h is becomes desira b le. We offer he re 

a short description of the " forward" type of flow gr aph. 

1. When u is a function of v , we write u = f(v). 

The corres pondin g flow graph is: 

L.l 
r-------~>-------,O 

(B y "funct ion" we mean an expl i c it relation) . The linear 

relation obtained from u = f ( v) is du = 
dL(. 
~v dv. The 

f l ow graph may be considered to represent t h is expression 

also. We assign a "linear gain" g to the dir ected li ne vu 

fro m v to u and write : du = gvudv . 

2. Let Xl be an explic it function of x2 ' x3' x4 • 

We now wr i te the linear re l ation between t he diffe r ent ials: 

d CIl, d ,;)", d ;;)J. • 
xl = C);'4 x2 + ~J.:J x3 + a~-I°x4 

Setting 5 = g .. , the fo r mu la becomes : 
dl.j~ IJ 4-

dX l g2 l dx2 + g3 l dx3 + g4l dx 4 = ~g ildXi 
The g i j are ca.11ed t he branch gains . "Tra nsm issio n" of 

si gn al (dep endence ) alon g a branch involves multipl ication 

by t he branch gain, and confluence of branches goin g into 

a node represents summation. 

3 . Compl icated total derivat i ve s may be represented 

by flow graphs using co mb inations based on t he si mple 
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conventions just described. For example, the following 

set of equat i ons and flow gra ph are equivalent: 

f f v,y) 
v = v u,w) 
y y u,w) ? 
u = u x) 
w w u,x) 

df/dx is the sum of all the linear path ga ins connect i ng 

x to f. There are 6 for ward flow pat hs from x to f . Thus: 

df (I'll dV df + d W -;; y OI f + dU dV H + dU o y d f 
dx d x oW d v d x a w Cl y C) x 0 u CJ vax a u Ol y 

+ d U 3 w a y 3f + (} U i) 1V 'dV df 
ax ~ aw ~ ~ x a u oW tJ v 

The fifth term (underlined) is t he total path gain alon g 

the pa th x- u- w- y- f ( heavy lin e in the graph). This 

result could be obtained by careful inspection of the def in-

i ng equations. When mo re varia bles occur, however, the 

poss i b i 1 i ty of error in such a procedure increases, and 

t he flow graph is a convenient vi sual representat io n of 

the problem. 

4. We now for mula te a procedure for evaluating a 

total derivative, dXl/dxn, using the or gan ization afford ed 

by t he s i gna l f l ow grap h . First , as many i ntermed ia te 

va riables are defined as is convenient, s o t hat the partial 

( branch) gains gi j are al gebraica lly simple . The varia b les 

( nodes) are numbered from 1 to n as follows: 

xl is the output variable 

xn is the input var i able . If the r e are 2 or 

more input variables, t hese are assi gned indices n, 
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n- l , n-2, ...• 

Every i nd i v i dua 1 branch is directed from a 

h i ghe r numbered node to a lower numbered node . 

This is possible whe n feedback is absent . Whe n 

feedback is present, appropriate tra nsfor mat ions 

wil l put the grap h in a non-feedback configuration 

(see Mason, 1953 , 1956 ) . 

When n = 5, the most ge neral graph of the ty pe descri be d 

is: 

5 · The path ga i ns g i j are non - zero on l y if i > j. 
These quantities may be computed indi v idually and stored 

in a triangu l ar array . Many of these gains wi l l be zero 

if no branch exists between the pair of nodes; the graph 

in para graph 3 may be t ho ugh t of as having a branch fro m 

v to y with gain gvy = O. We then define dx l /dx n to be 

the ga i n of the matrix (array). 

6 . hp = dx /dx p is define d as th e gain of the sub-

mat rix obtained by deleting all the nodes Xq of inde x 

greater than p . Then : 

h2 g21 

h3 = g31 + g32h2 
1)\ - j 

hm = )" gm php if h 1 = l. 

P~I 
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Th is formula is the bas is for a computer pro gram which 

computes successive hp for p = 2, 3, .•••.. ,n, from the 

stored mat rix g . -. hn is the des i red matr i x gain. When 
I J 

mo re than one indepe ndent var i ab l e is invo l ved, hn, h
n

_
l

, 

... etc . ar e the derivatives of xl with respect to the 

va rio us inputs . When more th a n one dependent (output) 

va ria b le is in vo l ve d, these may be set up indiv id ually 

i n the r o l e of x l. 

7 . Total derivatives are evaluated expl ici tly on 

the Burroughs 220 as follows (in the complex mode ): 

a . Explic it evaluation of the partial ga ins 

must be performed by hand coded complex inter -

pretive commands. 

-b . A specia l int erpret ive command specifying 

and j stores the ga i ns i n the pr oper matr i x locations . 

c. The summation rout i ne operates on the 

matr ix, prod uc i ng a tab l e of hp . 
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