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Abstract

The work of Rosenbaum describing propagation of
imperfectly trapped (leaking) modes in an acoustic wave-
guide is extended to two problems of gecphysical import-
ance. The problem of a liquid layer coupled to an elastic
halfspace is considered first, in a paper entitled:

Propagation of Leaking Modes in the Crustal Waveguide:

The Qceanic PL wave. Theoretical results obtained in this

first paper may be applied, after slight generalization,
to the most general type of plane seismic waveguide. In

a second paper, entitled: Propagation of Leaking Interface

Waves, we discuss these generalizations and apply them to
the fundamental problem of pulse propagation along a plane
interface. The most important result of both papers is
the description of the earliest-arriving signal traveling
in the waveguide as a result of a transient point excitation.
Numerical results for both ‘problems were cbtained

by solving the complex period ecuation on the Burroughs
220 computer. The programming framework and the numerical

methods used are discussed in a third section of this thesis.
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Abstract

The probvlem of the seismic signal associated with the
earliest P-wave is treated from the modal point of view,
where the signal is regarded as a quasi-surface wave,
coupled both to the motion of the earth's layered surface
and to body waves propagating in the underlying media.
Predictions made for the particular mocdel assumed are
relevant to explosion and earthquake sources. The oscil-
lations following the initial P motion are explained.

The transient solution obtained by Rosenbaum for leak-
ing mode propagation in an acoustic waveguide has been
generalized to describe propagation in an elastic halfspace
overlain by a liquid layer. The early-arriving PL modes
known from earthquake studies have been computed for

several theoretical models to test the effect of the elastic

1Contribution No. 1013, Division of Geological Sciences,

California Institute of Technology



constants on their dispersion and attenuation. Physical
reasoning based on harmonic plane wave models, appears in-
sufficient to predict many features of the exact dispersion
and attenuaticn. The analiogy between PL waves and normal
modes in the case treated by Pekeris is exploited and it is
also believed that PL waves are related to an attenuated
pseudo-surface wave of a free solid halfspace. Late-
arriving quasi-standing waves are treated briefly and their

f=]

relevance to certain seismic phenomena is rmentloned.



Introduction

The nature of the ground response to a Sransient geismi
source, sucil 8s an explosion or an earthquake, has 1
proached from two complementary points of view which are
mathematically tractable. Geometric ray theory predicts
the amplitudes and travel times of energy travelling as
compressional and shear waves in the earth. It has been
especially valuable in interpreting the early part of a
seismic signal containing the body waves P and S, as well
as mixed phases such as PP, PS, PSP, ete., kaown from
earthquake studies. Waveguilide theory has heretofore con-
cerned itself with the later portion of a seismogram con-

sisting largely of oscillations perfectly coupled to the

9

earth's layered surface, such as Rayleigh waves and Love
waves. This theory has not accounted, however, for the
principal energy in the early-arriving body waves, namely
the oscillatory "tall" often associated with the P wave or
the refraction arrival. Furthermore, early-arriving oscil-
lations are often observed, which have no apparent relation
to either known body waves or theoretically predicted sur-
face waves. It 1s to such problems that this paper is
addressed. The waveguide theory is generalized to a

transient in such a way as to explain early-arriving waves

which share certain properties of both body waves and surface

waves (normal modes). It is hoped that this approach will

eventually predict or confirm many details of seismograms

¢



from transient sources which have been largely ignored up
to now. Although a liguid surface layer is treated here

the method can be extended to a solid surface layer. The
results for the latter case will appear in a forthcoming

paper.

In the past decade much has been learned about the
properties of surface waves on a layered elastic halfspace.
One is able to deduce the dispersion and particle motion
for ordinary love or Rayleigh waves by finding the zeroes,
in the real domain, of a secular determinant, as a function
of the frequency parameter & . The definitive form of this
theory is due to Pekeris [1948], who applied his results to
a liquid layer lying over a liquid halfspace. Since then
various authors have obtained the dispersive properties cf
surface waves in a sufficient variety of cases to learn a
gcreat deal about the properties of the earth's crust and
upper mantle.

A common definition of "surface wave" states that, in
the steady state (sinusoidal time dependence) the energy is
restricted fo the surface waveguide, causing the wave ampli-
tudes to vanish exponentially with increasing distance from
the waveguide. Consequently a set of source free potentials
can be formed, equal in number to the boundary conditions.
The latter generate a set of homogeneous linear equations

whose vanishing determinant specifies the dispersion rela-

tions (phase and gzroup velocity cuarves). An equivalent
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viewpoint, utilizing the mutual constructive interference
of plane waves totally reflected in the waveguide, arrives
at the same result.

The plane wave interference idez strongly suggests tha:
one may observe other types of surface waves, in which the
total reflection criterion is not entirely satisfied. Modes
of motion exist in which energy is systematically leaked
into the halfspace. The constructive interference criterion
will still select certain frequencies a2t which the leakage
loss is small compared with that at neighbtoringz frequencies:
these frequencies will propagaté as quasi-surface waves,
damped exponentially in time and space, due to continual
loss of energy from the waveguide.

Oliver and Major [1960] recently discussed a class of

leaking waves known in earthquake seismology as PL waves.
They are observed as early-arriving dispersed signals,
coupled to the P wave velocity in the basement, and are
dual To Rayleigh waves in the sense that the surface orbital
motion is generally prograde ellipfical. The PL wave is
the oscillatory portion of the familiar refraction arrival
and corresponds to the normal modes obtained by Pekeris
for the liquid bottom provlem.

Oliver and HMajor suggested that These leaking modes
should correspond to minimum values (quasi-resonance) of

the secular determinant. Proceeding on thls basis, they

computed dispersion curves for single layer crustal models
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corresponding roughly to an oceanic and & continental crust.
The Pekeris solution, however, is not sufficiently refined

to yield damped modal solutions, sc that the Oliver and
Major curves, while intuitively reasonable, have no .rigorous
role in the Pekeris theory. Also, the steady-state theory
does not predict the attenuation suffered by the various
frequencies.

Electromagnetic theory provides a familiar example of
damped modes, where the loss mechanism, conductivity, is
intrinsic to the propagation in the small., We are not
concerned with microscopic losses, which induce only slight
additional dispersion, but will investigate leakage losses
due to coupling of the wavegulde to the halfspace. There
is no analog in electromagnetic waveguide theory to certain
elastic phenomena which are due to the existence of both
longitudinal and transverse wave propagation. We do know,
however, that the usual definitions of phase and group
velocity lose their precise meaning when attenuation occurs.

It has long been felt that leaking modes could be in-
cluded in the modal transient solution by taking account of
the complex roots of the period equation lying on "non-
permissible" Riemann surfaces of the integrand. Rosenbhaum
[1960] accomplished this by a series of contour transfor-
mations in the complex s and k planes which enabled him to
include modal expressions due to these complex roots. The

resulting integrals are then approximated by the saddle



point method in the complex k-plane. The final expressions
for the modal solution, save for the introduction of an
attenuation factor, are simple generalizations of those ob-
tained in the Pekeris theory. The location of the saddle
point which defines the frequency and wave number of the
dispersed waves is now in general complex. Group veloclity
is cobtained by an operational definition at the complex
saddle point, while phase velocity appears as an auxiliary
result. The Rosenbaum solution is distinguished by the
following properties:

1. The solution is obtained as the first term
of an asymptotic expansion in inverse powers of the
time, 1n contrast to the Pekeris solution in inverse
powers of the horizontal distance r. This generaliza-
tion makes it possible to consider the form of the
response at short distances and large times (singing
modes).

2. Considered as an equivalent large-r represen-
tation for waveguide propagation, the Rosenbtaum solu-
tion contains as a special case, without damping, the
conventional normal mode surface waves.

3. Group velocity, phase veloecity, frequency,
and wave number, obtain precise operational meaning
only by virtue of the form of the solution obtained
by the saddle point evaluation. The damping coefficien®t
turns out to depend on the imaginary parts of both &

and k.
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4, Intuitive predictions, based on experience
with normal mode theory, are not entirely accurate.
One is accustomed to speak of waves propagating at a
given phase velocity, and would like to know how
they are attenuated. The correct representation orf
transient leaking modes shows that they are to be
regarded as a superposition of transient damped os-
cillations having a characteristic signal, or group,
velocity; it is not correct to view them as a super-
position of damped harmonic plane waves having a
characteristic phase velocity. Were this done, the
damping factor would arise from either Im (&) or
Im (k) alone, instead ¢f the correct combination of
both. It is valuable, however, to use intuitive
plane wave ideas as a check against the final results;
there will always be a discrepancy, but it cannot be
too great or singular in nature.
Rosenbaum took as an example of his method the leaking
modes in a Pekeris liquid waveguide. He found waves with
a small group velocity and large phase velocity which are
to be observed at times later than the Airy phase. These
modes may be considered as due to constructive interference
hetween plane waves incident 1In the surface layer on the
halfspace at angles between normal incidence and the critical
angle for compressional waves. One may view this branch of

the dispersion curve as due to the normal modes of a liquid



plate bounded by a free surface and an acoustically hard
surface., In the 1limit as the lower halfspace attains
infinite acoustic impedance, the Rosenbaum modes become

dentical with the normal modes for an acoustic plate coupled

WA

to a rigid halfspace. Likewise, in the same 1imit, the
Rosenbaum modes become entirely undamped, and the ground

vave branch of the dispersion disappears.

Purpose of the Present Paper

L1,

Ve shall now consider leaking modes in the case c¢f a
liquid waveguide coupled to an elastic halfspace. This
differs from the Rosenbaum problem in that certain lealdng
modes propagate at signal velocities greater than those of
the normal modes. The problem is relevant in both earth-
quake selismology and explosion seismology and concerns the
oscillatory portion of the guided P-wave propagating with
the velocity Ch of P-waves in the halfspace.

It will be necessary to generalize the contour trans-
formations used by Rosenbaum; the passage from a liquid to
a solid halfspace introduces an additional branch point in
the formal integral solution. This passage is a singular
perturbation; an additional (shear) potential is required

and another boundary condition is appropriate. It is well-

o]

known that the normal mode solutions to this problem are
not the analog of the Pekeris normal modes in the liquid

hottom case. One obtains instead Rayleigh and shear modes,
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vwinich depend strongly on the shear wvave velocity struc
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and propagate no laster than the shear velocity in the half-
space. The waves which make up the Pekeris modes are no
longer totally reflected at the liguid-solid interface,

and lose energy into the halfspace by virtue of a transmitte
shear wave, even though the compressional wave is totally
reflected. Such waves, propagating with z higher signal
velocity Than the normal modes, but attenuated, due <o
leakage of energy into the halfspace, are called PL waves
or P-modes. The lowest mode may be observed on long period
earthquake seismographs as & low amplitude signal preceding
the shear wave for epicentral distances of 200 - 2000 km.
Higher modes may have some relevance in the propagation of
certain crustal earthquake phases such as Pn and P*. In
seismic exploration applications these leaking modes form
the oscillatory portion of the refraction arrival. P waves
from nuclear explosions would show oscillatory motion be-
cause of near surface layering.

Je now consider this in a little more detail by going
to the imprecise, but helpful, notion of harmcnic plane
waves bouncing in a layer at different angles of incidence
(Fig. 2a and 2b). RBetween angles corresponding to phase
veloclties ¢ = Co and ¢ = 52, P waves are totally reflected,
while energy 1lealts into the bottom by P = S conversion.
One expects that the damping of these waves will be least

where the P - P reflection coefficient is the greatest.

2
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Referring to Fig. 2b, we see that it is unity for phase
velocities less than ﬁg,giving rise to undamped shear medes
at all angles of incidence between grazing[goo) and the

tical angle for P—= S transmission. Also, when ¢ is

}Ju

ar
near c, the reflection coefficient apprcaches 1, suggest-
ing that P-modes may propagate most efficiently for that

value of pnase velocity. This explains qualitatively, at

least, why the oceanic PL wave 1s propagated over unexpectedly

great distances [Oliver and Major 1S60].

To estimate the dispersion from this simple model,
we note that, when ¢ = Cos the phase change on reflection
is zero; hence the dispersion should be identical with that
in a Pekeris liquid waveguide near cutoff (Fig. 1). Oliver
and Major used essentially this method to compute the dis-
persion. In later sections we will see that this picture
is indeed accurate in its gross aspect; in detall it is
incorrect. This discrepancy is due to the fundamental in-
ability of harmcnic plane waves to describe attenuated
transient modes. Physically the discrepancies arise from
coupling to the intrinsic long-period vibrations of a free

solid halfspace.
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The Formal Solution: A Summary

We consider a liquid layer with free upper surface,
coupled to a solid halfspace, labeling the former 1 and
the latter 2 (Fig. 2a). The layer thickness is H; source
and receiver depths are d and z, respectively; densities
are given by FE, compressional velocities by Cys and shear
velocities by B,. The source is considered to be a transient
pulse with exponential decay S(t) = Ae_t/g. The appendix
contains a complete list of definitions. TFor the sake of
readability, we also relegate to the appendix all details
of the contour transformations which yield the attenuated
modal solutions. The following points, however, deserve
mention here.

The three expressions denoted Qs Qo and aé, contain
square root signs, which generate branch lines in the
complex plane. Jardetzky [1953] has shown that a, does
not generate a relevant branch cut, due to the symmetry of
the integrands with respect to this branch point. The
integrand then lies upon four Riemann surfaces in the

complex k or s plane, which we classify by the following

table:
Table 1
1
Rea2 Recx2
Riemann surface: I + +
IF + -
ITT - -

Iv - -



It is also impertant to note that all variables are normalized:

f>1, Cqs and H, are considered equal toc one. The unit of time
1s, then, the vertical travel time of P waves in the layer,
and so forth. s = 1w will be used as the frequency variavle
Tor purposes of transforming and evaluating the contour
integral, while we speak in terms of ew in discussing the
results.

The pressure response of the wavezuide to a transient
source is given by the double integral:

A+loo
() Pliz,t)= A / etds /J(k;%i(ﬂﬁi/_q’k

-—L§:19 K (hjlkj

This expression may be obtalnea in the usual manner by satisfly-

ing the boundary conditions [Ewing, Jardetzky and Press 1957].

f is the period function and g is the response function.

4 4 2, £2:2)2

1
f = bs é‘a2 sinhal + oy coshal[(zk-%é -ngagae}

sinha, D
24,2
{%s € ago+nha1(1 z)+a1cosqgl(7—»] Ko efs ) L%y agq}

Transformation and evaluation of the formal integral solu-
tion at residues lying in the second quadrant of the s-plane
yields the following integral expressions in terms of forward
propagating modes. We have neglected all non-oscillatory
transient response terms.

P =F 4 B
(3) —
pr = +kare 5 [ u(®) (e e 5—%_-1 Fi(s,,k)f ax

n=0 2

5 i +
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vhen T(:‘ﬁp . P' =0 otherwise. The integraticn is over
that portion of the real k axis, k>0, whose image sn(k) lies

in the second quadrant of the s-plane, on the I Riemann shee%.

This term 1s the normal mode contribution plus the late-

arriving damped modes of the Rosenbaum type. S, denotes a

root of the period equation f = O.

o0
s_t
g : 2 e’
(4) P" = -U& Re 2 f H(O)(kr)k—n_l Fs {8 okirers

n=0 SIII s+8

’ t . : - 5 .
when r< 4% . P" = 0 otherwise. The integration is over

dl

'y Y

that portion of the real positive k axis, whose image sﬂ(k)
lies in the second gquadrant of the s-plane, on the III
Riemann sheet. These roots of the period equation are all
complex, and will generate the early-arriving damped oscil-
lations.

Approximate evaluation of integrals of the type (3)
and (4) has been thoroughly discussed by Rosenbaum. The
method consists of replacing the Hankel function by its
asymptotic representation in terms of a wave progressing in
the positive direction, cobtaining the factor ei(ajnt_kr) in
the integrand. The k-contour is then considered to be de-

formed so that it passes through saddle points defined by

- dcd
the condition: % = dkn . The saddle point approximation

) 1 . : : =1 e : ;
yields asymptotic solutions in t ~. Complete evaluation also

yields contributions from the end points of the contour and

,-

special expressions for the solution at an Airy phase, wnen

&)n” = Q. The saddle point representation is then:
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where L = I (tv ) = Inlk, )
4° = Fl(ibu,’ % J¥n = 626 "
Sl (770 =
(6 "+Hw )(w "k 7)2

The procedure for obtaining the dispersion and attenuation
curves for damped modes is as follows: solve the period egua-
tion £ = 0 in the complex plane in the neighborhood of the
contour S; or S;ip (egs. 3 and 4). Evaluate the complex deriva

ded
. n ; - " .
tive , and iterate this process until one obtains a point

(O]
o
™

which is both a solution of the period equation and satisfies
r d‘Un

the condition = = U = real. The gquantities appearing
t dk

in the asymptotic representation (5) are then obtained by

1

evaluation at the saddle point indicated by the superscript "c.
In general there will exist 2 family of loci in the complex
plane which describe the progress of the saddle point as a
function of U, the group velocity.

In point of fact, certain difficulties exist in applying
this recipe for obtaining the dispersion curves. One nmust
be able to continuously deform the contour into sucn a posi-
tion that it passes over each saddle point along a path of
steepest descent. The existence of branch points near the

initial contour complicates the issue of locating the steepest

"
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descent contour. Rosenbaum recognized the complexity of the
problem, and was able, in his case, to delimit the behavior
of the roots of the periocd equation with enough precision to
specify the steepest descent contour with confidence. 1In
the liquid over solid problem, general statements about the
analytic properties of the roots sn(k) are difficult to
make, due to the complexity of the period function. One is
forced, instead, to generalize from numerical results ob-
tained from a few arbitrary models.

It therefore is advisable to regard any theoretical
results as tentative unless corroborative evidence is avall-
able. The dispersion curves must resemble those predicted
in an examination of the physics of the problem, as we have
done in the introduction. Likewise, the computed attenuation
coefficient Lrl mﬁst not deviate too strongly from the behavior
predicted on physical grounds. It is helpful to disregard
saddle points whose atfenuation is so great as to forbid the
possibility of observation. In practice one is interested
in the least damped wave appropriate to any particular signal
velocity U. For the elastic waveguides under discussion, the
least damped wave is the normal mode contribution, when
U, < U= 8,, vhere U, is the Airy phase velocity. Thus it
is legitimate to ask after the properties of damped waves

only 1f UL U, o AT U>BE‘

A
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Numerical Solution of the Problem

The period equation f = 0 (2) was solved on an electronic
de/
— evaluated by appropriate

computer, and the derivative
dk

formulae in the neighborhood of the III sheet rootscuh(k):

k real; k0. 1In this way the behavior of the alorementloned
roots (that is, the initial contour SIII) was clearly estab-
lished, &s well as the location of branch points ih the

Determination of fthe saddle point loci
dev

neighborhcod of SIII'

follows by iteration to the condition 2 real. On the

d'lr

L

Burroughs 220 Data Processor one pass at the period function f{
takes 1 second, one root, a)n, and derivative are obtained in
about 9 seconds. Solution of the same problem when the super-
ficial layer is solid will be about 4 times slower.

Dispersion and attenuation curves were computed for the

following assumed models:

Table 2

o Po p2
1 5,106 3.000 3.000
] 3.000 155 2.5
E. 1.667 . Q09 2.0

L.o 2.30¢ 2.5
5 3.0 2.000 2.5
6 2.0 1.732 2.5
T 5.196 2.874 3.0

A11 layer constants are referred to ¢, =1 fpl 2 by H, 2= g
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Case 1 is chosen to represent a simplified model of the
oceanic waveguide,'with the lower medium a Poisson solid.
Cases 4 and € represent Poisson solids also, with a reduced
propagation velocity in the halfspace. Case T is Case 1 with
a smaller bottom impedance, accomplished by reducing the
shear veloecity in the solid slightly. This was chosen to
correspond to the reduction in shear velocity believed to
occur in the upper mantle. Cases 2 and 5 show the effect
ol a decrease and an increase, respectively, in the shear
velocity of Case 6. The numerical results shown in Figs. 3
through 12 are derived as follows. U is the wvalue of the

de
derivative

at a saddle point, and is plotted as a fune-
dk

tion of frequency, namely the value of Re aJn’at the saddle

point. The phase velocity is plotted to compare with the

usual phase velocity plot in normal mode studies; from the

Reew
form of the solution (Eq. 12) ¢ = , &t the saddle point.
Re Kk

e plot the attenuation constant Ln as a function of the

group velocity, which is equivalent to plotting it on a scale
-1

of £t ~, All quantities plotted in Figs. 3-12 are dimensionless.



Discussion of Numerical Results

The results for the first three modes of Case 1 are
plotted in Figures 3 and 4. The associated normal modes
and several late-arriving leaky modes are shown for com-
parison. The points P represent the cutoff of the physically
similar Pekeris normal modes. Particularly noteworthy are
the following points:

1. At cutoff the group velocity is equal to Coe
This cutoff is imposed by the form of the integral
solution (3). The phase velocity at cutoff is slightly
greater than Coe The operational definitions implied
by the form of the asymptotic solution (5) do not
necessarily reqguire that U follows from c¢ by differen-
tiation, 2 condifion which occurs only when cug and kg
are real. Electromagnetic theory contains examples
where a microscopic loss mechanism brings about a
similar situation: the group velocity cannot exceed
a maximum value, but the phase velocity may suffer
possibly extreme increase or decrease determined by
the nature of the problemn.

2. The frequency of the PL mode near cutoff is
somewhat less than that of the analogous acoustic mode
(represented by the point P). Mathematically this
discrepancy with the prediction of a harmonic plane
wave model is due to the essential vagueness of the

model with respect to damped oscillations. Physically,



it appears that there is slight coupling to an attenuated

long periocd surface wave which propagates in the solid

halfspace., This matter will be discussed in detail in a

future paper.

3. The higher modes of Case 1 behave essentially
like the first mode. 'The mode indlces n =1, 2, ....
are not arbitrary, but describe the number of nodal
surfaces of the wave potential with depth. Ve may thus
think of these as compressional modes, dual to the
shear modes. It will turn out that when 62 is unusually
low, the first mode behaves more like a zero mode Ray-

~leigh wave, but the notation selected here is the more

natural.

The behavior of the exponential decay constant has strong
bearing on the possibility of observing a given damped mode.
L is plotted as a function of U (Figure 4). The abscissa
may also be considered as a non-~linear time scale running
from right to left. For U« 3.0 the curves are dashed, since
the shear wave and Rayleigh wave dominate the signal in this
range. In the range 3.0 £U < 5,196, the maxirmum value of
the attenuation increases wifth increasing mode number, in
a ratio roughly 1:3:5 for the three modes computed. The
distances to which the modes will propagate can be seen by
considering the oblique grid superimposed on Fig. 4, rep-
resenting the distance at which a wave is attenuated by the

factor e™T. We shall call this the decay range, r . This




T is plotted in multiplies of the layer thickness, H. Thus
the first mode is seen to propagate without appreciable loss
as far as 250 H. At a very great distance, we should see
Just a small wave packet traveling at a group velocity of 3.9.
At a range of 200, the second and third modes would appear at
best as a small damped oscillation following the first ar-
rival. For these modes the cusp at which ]'_.n goes to zero
occurs later than the shear wave, and is of no practical
importance. In order to see the entire second mode, one
would have to be at a range of less than 100. Other rela-
tions of the same type may be extracted from Fig.44.

It is important to inguire how readily earthquake data
may be inverted to compare with theoretical curves. The
first damped mode has a dimensionless mean angular frequency
of about 1.4, which implies a dimensionless mean period of
roughly 4.5. At a range of 100 H, for example, the time
elapsed between the first arrival and the shear wave is
Just 13.3—%—; we should be able to see only 3 cycles of the
PL wave, albeit virtually undamped. Such a signal could not
be read to give very accurate or even moderately dense esti-
mates of the dispersion, nor could the fine structure of
the damping coefficient be at all evident. Thus the require-

ment of a reasonably long wave train is in conflict with the
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fact that the wave decays at the desirable long ranges. In
point of fact, signals of 6 - 10 cycles duration have been
observed for oceanic paths., There is no reason why data

from many earthquakes cannot be combined fto yield sufficiently
detailed information. But as regards dispersion, there is
some question whether the PL wave will ever be able to more
than corroborate Rayleigh wave studies. The decay constant
Ln, however, turns out to be quite sensitive to the physical
properties of the solid halfspace. Discussion of this matter
will follow in a later paragraph.

First mode results for Cases 1, 4, and 6, are plotted
in Figs. 5 and 6. These models demonstrate the effect of
varying the P-wave velocity in the solid, while keeping
Poisson's constant the same. Phase velocity, group velocity,
and decay constant show almost identical behavior, save for
the scaling of the velocity variable. In particular, the
"hump" in the decay factor near cutoff has nearly the same
value for all three cases. There is a slight reduction in
the value of fhe cutoff frequency as the cutoff velocity is
decreased.

In Figures 7 and 8, Case 6 (the Poisson solid) is
compared with Cases 2 and 5, in which the shear velocity
of the solid is respectively decreased and increased. Case
5, representing a high bottom impedance, involves less
leakage, and the computed curves behave nearly as predicted

by analogy with the Pekeris modes. Phase and group velocity



cut off nearly at the Pekeris cutoff, and the damping ap-
proaches zero as U and ¢ apprecach Coe The oprosite extreme,
Case 2, entails highly anomalous behavior. There the damp-
ing near cutoff is appreciably increased, and the dispersion
curves are severely distorted in the direction of lower
frequency.

In view of the strong dependence of Ln on the ratio of
compressional to shear velocity on the solid, we should look
for possible applications to structure determinations in the
earth, VWith this in mind, we have compufted Case 7, to sim-
ulate, by contrast with Case 1, the decrease in shear velocity
which is believed to take place in a zone of the upper mantle.
There 1s no presupposition that the results of this paper
have direct numerical correspondence to the nature of actual
seismograms due to the simplified models necessarily employed.
One would like to know, however, what order of effect this
similated decrease might have on U, ¢, and Ih’ to determine
whether calculations for the multilayered model known from
Rayleigh wave.observations would be appropriate. Figs. S
and 10 show, as suspected, that Ln suffers a pronounced in-
crease near cutoff, while U(ew ) and c(aw ) are affected only
slightly.

The computed group velocity for Cases 1 and 7 has also
been plotted in Fig. 13 for the specific oceanic models
shown, and compared with data by Oliver and Major for three

oceanic paths. The shape of the computed curves agrees
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better with the data than did the approximate curve-computed
by Oliver and Major. Better fit could be achieved in two
ways: (1) by varying the layer thickness of the model, we
could make the vertical portion of the group velocity curve
fit any of the sets of data shown; (2) by introducing an
additional crustal (basaltic) layer in our model, it appears
that we could "pull"™ the high velocity end of the theoretical
curves down, into better agreement with the data. This is
not planned at present for practical reasons. Although the
theoretical curve for Case 7 agrees best with the data, the
very crudeness of the model forbids us to say anything con-
clusive. We defer instead to the refined researches now
being carried out by means of mantle Rayleigh waves. It is
conceivable, however, that the dependence of the attenuation
on the Poisson constant in the solid may be utilized to
supplement information obtained with Love and Rayleigh waves.
It will be necessary first to compute L, for models in which
the solid is generalized to several layers.
Insofar as reliable dispersion data can be collected,

we may take advantage of the fact that these P modes have

a greater depth of penetration into the mantle than do the
Rayleigh waves of similar frequency. Eventually, in terms
of multi-layered models of the mantle, the P modes may vield
valuable information on regions as deep as 300 km. A long

period (60 seconds) P wave has been observed for several
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large earthquakes by instruments in Pasadena. This P mode
may involve motion as deep as the penetration depth of the
P ray and would reguire theoretical models with several
layers. Preliminary examination of records suggests that
this wave is the same for oceanic and continental paths.
Another point must be borne in mind regarding the effect
of damping. Pronounced variations in layer properties or
thicknesses will have a very deleterious effect on the leak-
ing waves, as compared with their effect on Rayleigh waves.
The latter propagate undamped, in a relatively wide fre-
quency band which is selected by the dispersion curve. Vhen
a change of thickness occurs, such as at a continental mar-
gin, each component frequency incident on the boundary
merely "feeds" the new propagation modes at the same fre-
quency, but at a new group velocity determined by the local
dispersion curves. Thus nearly all of the long-period energy
in a Rayleigh wave train is transmitted without loss across
structural boundaries, propagating locally as dictated by
the local dispérsion curves. By contrast, leaking modes
traverse appreciable paths only in restricted frequency
bands (see Figs. 3 and 13) where the damping is small.
Then such wave trains encounter a change in the waveguide
properties, conditions may then be unfavorable for efficient
propagation at the predominant frequency of the signal. Thus
propagation along mixed paths, or across major structural

discontinuities would tend to destroy the oscillatory



character of the P-arrival.

For the saké of completeness, a model hes been con-
sidered, in which the shear velocity of the solid is less
than the compressiocnal velocity in the ligquid layer. 1In
such an instance, no shear modes can exist in the waveguide
and the predominant observed guided wave will be the damped
P-oscillation. In Case 3, illustrated in Figures 11 and 12,
we have chosen f72 =2, By = .91, and c, = 1.57, parameters
which might describe a semiconsolidated rock basement such
as is found in shallow water exploration. The downward
Trequency shift noted in earlier figures in connection with
low shear velocity is the most striking feature of the dis-

persion.

Pressure and Velocity Distribufion

Yle shall consider further the physical basis for the
behavior of the group velocity curves just cited, after
examining the distribution of the wave field in the liquid
layer. The z-dependence of the pressure, for the trapped
portion of the field, is given very nearly by Isinh aq z/,
provided the remaining factors in the excitation function
(eq. 5) do not vary strongly in the range of U that is of
interest. This has been evaluated for representative values
of U, for Cases 1, 2, 3, 5, and 7, and plotted in Figs. 14
through 18. The reference curve labeled "Pekeris" is the
sinusoid which represents the pressure distribution at cut-

off of the first mode for the original liquid/liquid problem.
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The vertical velocity distribution, u,, given by the z-
derivative of the pressure, has been similarly plotted on
the same figures. It will be apparent that the vertiecal
velocity shows most clearly the departure from the reference
shape.

e see that leakage into the hottom, which depressed
the cutoff frequency, tends to modify the shape of the
trapped wave, decreasing the phase difference between the
surface and bottom motion. As long as the leakage is
relatively small (Cases 1, 5, 7), we may consider the wave
as a perturbation from the reference shape. This is not
unexpected, since physical grounds have led us to classify
the PL modes with the modes of the liquid/liquid case.

The situation becomes more complicated when the damp-
ing increases. Cases 2 and 3 show that leakage depresses
so much of the waveform into the halfspace that the surface
and bottom of the layer are nearly in phase. This, however,
is the situation when a long-wavelength Rayleigh wave, for
example, is propagated on a solid overlain by a thin liquid;
the liquid merely moves in phase with the surface of the
solid. We would want to classify these highly damped modes

with some sort of surface wave motion in a solid.
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Late-arriving VWaves

Ls mentioned previously, the present problem involves
late-arriving leaky modes of the type found by Rosenbaum
for the liquid/liquid problem., The group velocity curves
for these modes have the following two properties: (1)
every Airy phase, whether of a normal mode or a leaky mode
of the early-arriving type, is associated with a late-
arriving branch vhich "connects" the stationary value of U
with U = 0. (2) In the vicinity of U = 0, that is, for
arbitrarily large time, the frequencies of the late-arriving
modes degenerate to the set of frequencies¢ = (n -%)7?.
This behavior is illustrated in Fig. 3, where three sdéh
branches have been computed, which all degenerate near U = 0
to the value &/ = %1T. These results have relevance in the
analysis of the 1até~arriving signal from an earthquake,
transmitted along an oceanic path., It is a matter of ob-
servation that observed oceanic Rayleigh waves do not
terminate sharply in a strong Airy phase, but gradually
decay, with oscillations near the expected Airy phase fre-
guency observed at very long times after the event. As 1s
seen in Fig. 3, the three different late-arriving modes
computed will not differ significantly in frequency for
large times. In Fig. 19 we have computed the damping
coefficients for these three waves; the least damped for
any value of U being represented by the heavy line, which

we may take as determining the predominant branch at any
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given time. Ve wish merely to point out this explanation
for the observed labte-arriving waves; a definitive comparison
of data with the theory is not attempted here.

Physically, the late-arriving waves correspond to plane
waves miltiply reflected in the layer a2t nearly vertical
incidence. In contrast, the early-arriving waves (PL or
shear) correspond to an angle of incidence nearly equal to
an appropriate critical angle for refraction into the half-
space. The high-frequency branch of a normal mode is the
result of waves traveling at nearly grazing incidence in
the layer.

Rayleigh wave observations for various paths reflect
these differences. It is indeed seldom that the high fre-
quency branch is observed, for either continental or oceanic
paths. Instead, the Airy phase of the early-arriving (long
wave) branch is occasionally followed in time by a weak
train of waves at tThe Airy phase frequency. In view of

sing
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the physical basis for these waves, it is not surpr
that the branch due to grazing waves is destroyed by inhomo-

L

geneities or variations in crustal thickness, a mechanism
which would not degrade the vertically bouncing waves as
severely. A mejor structural boundary would also tend %o
destroy the high frequency branch and favor by comparison
the late-arriving wave,

Cther phenomena related to oceanic seismic wave propaga-

tion which are tied in with the leaking modes are briefly:



1. GSince a2 leaking mode 1s coupled to a body wave,
a simple application of reciprocity shows that earth-
gce wave train,
P

Oliver nas applied this to the computation ¢ the long-

period waveform associated with the body S phase, which

=

exclites a lealkty PL mode of phase velocity equal to the
local trace velocity of the body wave.

2. ‘e may be concerned with the "complement"” of
a lealky mode. A lealry mode represents narrow-band
energy temporarily stored by the surface portion of
the wavegulde. Its complement is merely the signal
released from the surface and permitted tc travel
into the bottom as a body wave. The oscillatory por-
tion of the P wave observed at ranges of 25 to 20
degrees (cormonly a period of 128 to 28 seconds) is
the complement of the late-arriving (vertically in-
cident) mode excited by an earthquake at the base of
the crust, propagated in the mantle along the same
"ray" as the initial P-motion. Observed P oscilla-
tions of around 50 and 150 seconds are of the same
type, but, since their wavelength is of the same order
as the penetration depth of the P ray, the foregoing
remarks become rather imprecise, and it will be neces-
sary to construct a complete wave theory for these

oscillations.
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5 suggested that the late-arriving quasi-

(W

standing mode may play a rcle in the propagation of
seismic noise in oceanic regions., Widespread surface
pressure variations, whether varometric or due to
standing water waves,will excite this mode at least
as efficlently as theyexcite undamped Rayleigh waves.
The noise may then leave the source region either by
horizontal propagation in the layer or by means of
the P waves leaking into the bottom. The former must
be regarded as a short range mechanism, while the
latter would carry the energy to appreciable distances
as body waves. Ve merely mention these hypotheses,
since further consideration will require appropriate

experiments.

Conclusions

In the steady state, undamped normal modes are suf-
ficient to describe seismic propagation in the earth's
outer layers. VWhen a transient source or a boundary is
present, however, it is necessary that the leaking modes
be understood in addition. Of particular interest in the
transient case is the early-arriving PL wave, in which energy
leaves the region of the surface waveguide in the form of
body waves. For solids having the properties usually en-
countered in earth materials the PL wave is the analogue

of the normal mode computed by Pekeris for the liquid/liquid



protlem., The PL wave dispersion differs, however, from
that of the Pekeris normal modes in that the exlistence of
leakage into the solid apparently causes the frequency of
the waves to be decreased somewhat. The attenuation factor
for PL waves is quite sensitive to the Poisson constant of
the underlying solid. Due to the limited ranges of propaga-
tion, the extraction of dispersion and attentuation from
earthquake records presents considerable difficulty. Vhen
models with a high Poisson constant are considered, certain
complications arise. It appears that the resulting highly
damped wave may be thought of as a long period pseudo-
surface wave, an interface wave intrinsic to the sclid
halfspace, which is in a sense the prograde elliptical

dual of the familiar Rayleigh wave. The late-arriving
leaky modes appear To be involved in several types of
seismic signals, such as P-type body waves, late-arriving
surface waves, and microseisms.

The importance of P-modes in shaping the first
arrivals from large blasts cannot be too heavily emphasized.
In the nuclear detection problem surface layering 1s respon-
gible for the distortion of the P wave into an oscillatory
signal. For P waves from blasts or near earthquakes the
frequencies commonly observed may involve higher modes.
Pertinent to this, computations are now in progress for
models having a2 solid surface layer.

Exact computation of the dispersion for leaking modes



involves a simple generalization to complex variables of

the technique employed in normal mode prohtlems. One computes

complex solutions, ajn, of the period equation for complex k

by iteration and looks for the complex loci of this solution
cia)‘,l

along which ——

is also real and positive.
dk

Roughly 5 to
10 times more computation time is needed than for the com-

parable normal mode solution.
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Definitions and formulae:

A = source amplitude

B = /P,

c = phase velocity = Re(&/nc)/ée(knc)

¢ = compressional veloeity in liquid layer

ey = compressional velocity in solid halfspace

D = source depth in layer

F = pericd function defined by ea. (2)

g = response function defined by eq. (2)

H = layer thickness

k = complex wave number

Ll,1 = exponential time decay factor for the ntL mode

n = mode index

o = horizontal coordinate

r, = "decay range" for damped modes = U/Ih

s = Laplace transform variable = i)

£ = time

U = group velocity = dev_/dk when this gquantity
i1s pure real o

u, = vertical velocity

A = depth coordinate, increasing downward

The subscript n denotes evaluation at a root (nth mode) of

the equation f(aun, k) = 0., The superscript ¢ in addition
denotes evaluation at a saddle point, where dw) /dk = r/%.

1 !
I* = flag,ay); £** = f{-0,,-0,); £*** = £(-0,,0,)

The subscript I, II, III, or IV, denotes takingz the function
on the particular Riemann surface defined by Table 1.
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shear wave velocity in halfspace
¢1/%p

°1/P2

decay time of source pulse
density of ith layer

complex frequency = -is
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The formal solution in dimensionless variables is a
consequence of applying the appropriate boundary conditions
and specifying that The source be a point pressure pulse,

exponentially damped in time.
2'!']'_0" oD
A

(1) P(r,z,t) =
i ‘2 -0 S+G—l

ds I (kr)k S dx
» !

where f is the so-called period function and g the response

function.

e shall deform the initial contour of integration
(Fig. 20) in the s-plane, causing it toc lie partly on the
II and IIT Riemann surfaces of the integrand (see table 1).
For convenience, auxiliary functions are defined, in order
to remove part of the confusion of working with several
Riemann sheets. If we wish to take the value of f on the
second sheet, we write f)II‘ f* is defined to bhe the

function which is defined on the first sheet to be identical

there to f)II' Thus

2 2.2 = L
f‘)II = [bs & a sinhal-;alcoshal[(zk €"s") =Lk azag]}
while
f* = bsué‘ a251nhcz +al\.oshoc [(2k +52 2)2 ukzagaé]
That is, f);; = f*)I
In like fashion, we define f**)I = f)III

and f***lI = f)IV
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Figzure 20 shows the original Bromwich contour for evalua-

tion of (1) in the s-plane. Branch points due to a, = 0 and
1 i i 3

Ay = 0 are located at s = + 1k and s = + =£ .

roots of the period equation produce poles of the integrand

The familiar

lying on the imaginary s axis between s = ik and s = ik/&
(that would be the real & axis). The branch cuts are
chosen by requiring that Re Qs = O and Re aé = 0 along the
two cuts. This conventional choice, while not necessary to
this problem, will be followed. The "top" or first Riemann
sheet will then be identical with that encountered in the
recent literature. Ve may then make use of theorems that
have been proven regarding the disposition of the roots of
the period equation.

Since all quantities under the infegral sign are real
when s is real, then they are complex conjugate at complex
conjugate values of s. The positive and negative imaginary
halves of the contour in fig. 20 are combined, and we let
A —> 0, except for indentations at the singularities on

the imaginary axis. Then:
100 oo

st
€ _ as / I (kr)k £ dk

(A-1) P o8

= & - 2

Im
5 s+8

o}
The contour may now be deformed as shown in figure 21. The
solution naturally decomposes into the four contributions
from the various singularities in the second quadrant.

P = P1 + PR + PBP + PBS' P1 arises from the line integral
along the negative real axis plus the pole contribution from
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the source pole at s = -6 ~, The contribution from the in-
finite arc vanishes as R —=>00 . The normal mode poles
vield residue contributions which we denote by PR. PBP and

P_. are the two branch line integrals.

Lo

Evaluation of P1

00 ~oo L
% 2A es ;
(A-2) Py = == Im Jo(kr)kdk ——— £ 3s
m s+8 i
C
Except at the indentation at = = -7, the integrand is

purely regl, giving no contribution. The semicircular in-

dentation 1s evaluated by residues:

(6 @]
) -t/8 : -
(a-3) 2y =28 7% f o)k (B) .y

o S

This expression, like all others encountered, can be shown
to vanish prior to an appropriate arrival time. Vhat is
important is that it is a forced non-oscillatory response,
and of no interest in the study of modal oscillatory solu-
tions. There is often some ambiguity in taking the contribu-
tion from a semicircular arc at a pole: in this case, how-
ever, the expression adopted is the only possible correct
one. This result would have been obtained if the infinite
contour of fig. 20 were deformed into the left half-plane
before reducing it to a semi-infinite contour. In that
event the pole would contribute by virtue of the residue
formula, without ambiguity. With this, we shall drop con-

sideration of Pl'



P_ is the sum of residue contributions due to roots

of £ =0 lying on the I sheet imaginary axis hetween s = ik

oV

1)
= 4 - 1 1
nd s = i? . 1t has been shown that no other roots lie
on the top sheet (this is, of course, for k real and > 0).

For each mode there exists one roct = which appears on the

I sheet if knéa kno’ the cutoff value. For the lowest
(Rayleigh) mode, kyg = 0. TFor all others (the shear modes)

the cutoff is given by:

(n - 3)T

Y T

_—
irb
I

=
~—
~
|

QO unL/
(A-5) PR=2ﬁ’ri z Res(s_)= LLA R f J (kr)x £ %_lFl(sL-,I,)fK
n n C n
b qk éﬂ a,,.51n (a D)% ﬁl(& 7)
where: (4-6) Fl(sn’k) = = o i3
- Q... cosh E (f)
1n In o n

Branch Line Integrals:

It will be necessary to rewrite the branch line integrals
in terms of contours along Just one side of the respective
branch cuts:

"k

ir-_

s : o2 gt
(1) Pg =22 ] fJ (hefied [ S-clov| €00 2 ol

L oo %;& 'f



For the first term in brackets, Im a5:> O; Tor the second

1
term, Im a, < C.

Combining, we get

w im o
(A-8) Poo=— 2 m J (kr)k 6 & B, (s,k) ds
BS T o> S s#@hl 2VE T
o ik/e
where the contour runs along the right side of the cut, and:

8 bkesLL eL"o:g a'2 sinh(al D) sinh(al z)

oL oPe

remembering, that using the * notation implies Re ai>>0.

In like manner, the other branch line intezral becomes:

00 ioco
(A-10) P__ = — 28 1o J (kr)k 6 % i F.(s,k) ds
- J.BP ﬁ__ - o . Lo A 0!9_1 3 L I [ e
o St
Y
where:
- 2 242 4
2(2k"+ 5 )T b .ELIL:SLL(R2 :11’131(&., D) sinh(al :)
(‘P‘-"ll) F?(S:k) = =
> P PREX

- 7
Fvaluation of PES

In the following we shall transform the contour integral

4

Ai-3 in the complex plane, and will have occasion to break it
up into several constituent parts. For clarity, a subscript
notation is adopted which, it is hoped, will make it easier
to follow the mathematics and suggest the origin of any

given term. TFor example, PES is decomposed into the sum of

two terms; these are denoted P, A flow chart is

2
s

and Phoan.

-

included at the end to summarize the roles of all the sub-

sceripted terms.



The contour for eq. A-8, running along the right side
of the branch cut, is transformed as indicated in fig. 22.
It is deformed into the second quadrant of the s-plane in
such a way that it passes through the branch cut and onto
the ITI Riemann sheet. All but a small slice of the second
guadrant is enclosed in this manner; all poles of the
integrand lying on the II sheet are excluded by small cir-
cular contours. The infinite arc contributes nothing, as
usual. Ve then have two contributions to P

BS®

P The line integral from s = ik/e to -09.

BS1®
PHSE: Residue terms due to poles of the integrand lying

on the II sheet,.

-7 st
(B=12) Bgq=— 2B T I (er)k 4k & Fo(s,k) & ds
BSl o) A= 2
11 S48 II
ik
oo eg t
g B !
(ﬁ.-].?)) PBS2= =4n Re Z f' JO(]{I')I’_' ,.._Te_'—l ﬁe(sn,k)}*I dlc
' n=0 S ~a -
IT r ol
s b U '
" ; -8 b ks e'ag as sinh(alesin}-lez)
where: (A-14) JP,(s ,kZ} =
B 5 . O
f (£*)
n s n

The zeros of % are just the II sheet complex roots of the

period equation. We note that f did not have any complex

zeroes on the I sheet; thus PBSE arises solely from zeros of f¥,
We introduce further notation to simplify the analysis.

Let SII denote that portion of the real positive k axis whose

root sn(k) lies in the second quadrant of the II sheet. Sqq

will in general differ for different n. The slightly smaller
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set S will denote tha
IT
axis which maps into the sector which is enclosed by the
dotted contour in fig. 22. Ve use this notation to repre-
sent the range of k for integration until we are able to
examine the detailed behavior of the solution Sn(k)' SII
is the range of k in eq. A-13.

A-13 may be rewritten by use of the following relations:

(A-15) % - £ =8 k° ay Qg aé cosh a4
2 1
Thus, when f* =0, f = - 8 k= @, @, oy cosh a,
Lo
, b s & a, sinh(a; D)sinh(a;z)
and (A-16) [;b(sn,kZE = 5 ij
) LE
a, cosh a, - (f*)
_— - S t
hences (E-07) Boos Ui )i .
hence: (A-1T7) Phao Re Z: ; Jo(Ir)k s Fl(sn,_:\}_rT
=0 gy o -

fi

This form, which resembles A-5 c¢logsely, is nearly appropriate

FaT

for evaluating the modal contribution from this sheet. Ve

Resuming consideration of A-12, we note that

{%g(s,ki} = - F (s,k) .
1L -

The obJect of the following transformations i1s to obtain
an expression which extends the range of integration of A-17
to the set SII corresponding to all II sheet roots lying in
the second quadrant of the s-plane. Topologically, this

can easily be done by deforming the contour shown in Fig. 22

11



to circumscribe the entire quadrant. The line integrals
remaining, however, are not easily handled, and an estimate
of their contribution is difficult. It is therefore neces-
sary to go the long route to accomplish our objective, and
several contour deformations and changes of variable will

be necessary. Hence, writing as a double integral we get:

oo p=o° s ‘
(A-18) Py = =2 Im ] e s 4|
A-18 Bs] = = Im J (kr)k =y Fo(s,k) d s d k
. o ik ? 8 )
E

S

q is now introduced as the variable of integration re-

placing s:

-5 - 1K - q + ik _
q=5 g s =9+ 2 d s=d4dag
ikt /e
-0
(A-19) P 2 ¢ qt Ty Btk
-19 BS1= o m e*"dg Jo(xr) = T dk
- 5 g + © +

We now consider this as a contour integral in the complex

k-plane (Fig. 23). A pole ocours at k= i € (a+6™1). hen

—e'l<:q£;o, the pole lies on the positive imaginary axis.

When -oco<Lqd - e'l, the pole lies on the negative imaginary

axis. Branch points occur at k = + % i€ q and k = i_&:[ﬁ;ﬂ._
2 Ett?ﬂ

We may insert branch cuts running to infinity Jjust to the

left of the imaginary axis (to avoid the pole).

We now deform the contour of Fig. 23 into a loop enclosing
the entire first or fourth quadrant of the k-plane. PBSl now

decomposes into three terms:



3511° A line integral along an imaginary semi-

AX1S.

EL)

Contribution from the indentation around
the source pole located on the imaginary
axis,

PESl3: Modal contributions due to poles in the

appropriate quadrant of the k-plane.

The condition that the integral along the infinite arc vanish

determines the guadrant into which the contour in the k-plane

o

s deformed. This is a long, but familiar story, which we
will only summarize. We represent the Bessel function
asymptotically as a sum of outward travelling and inward
fravelling waves. Ve shall not be concerned with the latter;
& thorough study would double the length of this paper. 1In
general, these inward travelling waves can contribute only
non-realizable pulse terms and modal oscillations insignif-
icant compared with those from the outward travelling waves.
With respect to the latter, the integrand of A-1Q vanishes
exponentially in the upper half plane if t > r € and in
the lower half plane if ¢t £ r & . We deform the contour

in Fig. 23 accordingly. This ensures convergence of the
line integral PBSll’ as well as vanishing of the infinite
arc contribution. To make the details of the contour trans-
formations easier to follow, we shall replace the Bessel

function by the Hankel function of the second kind, which
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contributes the outward traveling wave solutions. The
Hankel function of the first kind, which we have dropped,
turns out to be merely excess baggage; this may be shown
by a separate but parallel development such as appears here.
The restriction of r and t to large positive values is
erucial in bringing this about.

If t> r& , we deform the contour into the first

quadrant of the k-plane. Then:

(A-20) g 1
o=
= . qt (2) 1 E _l —1 [ -(q‘ )t'\
Phgyp=t2A Im/:5 et H "/[1 £(q+0 }ﬂ] €(q+6 )Fg(u,kp)e dq

If t £ r€ then the limits are changed to -8+

and -o< , This
term represents a non-oscillatory, forced response which we

shall not consider further. Proceeding: if k = ij

| = ) 1€ 7 (s,k) -§tf
(a-21) PBSH?Z# Imf edt dq/ H(()g)(ig r) q§_§; —1 1af
(o] o]

In the case considered by Rosenbaum, this integral vanished by
virtue of the integrand being purely real. VWe are not so en-
dowed, and must estimate the form and magnitude of the term.
The Hankel function is replaced by its far field asymptotic
representation; we then estimate the inftegral by expanding

the functions under the integral sign about g = 0 and g: 0.
Because of the several factors in F2 which may be small near
this point, we know that, to zero order, the integral will

be small; it is therefore necessary to take at least first
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order terms in the expansion. The result is an estimate,

asymptotic as r —>» 00 and t —> &° , of the integral (A-21):

. T -1/2 t'3/2
BS11 L |8
/r - /Z}

This expression vanishes strongly except near the arrival

(A-22)

time of a pulse traveling in the solid at the shear wave
velocity. To the first order of approximation it is a
mathematical singularity at the arrival time. Egually of
note is the dependence on r -1/2 and t _3/?, which, for r
and t of the same order of magnitude yields a decay of the
pulse with distance like r_2. This is the same dependence
predicted in the case of a refracted arrival propagating
along the interface between two semi-infinite media. The
existence of a disturbance prior to the arrival time, suggests
that the source pulse has been distorted in transmission, such
as occurs when a plane pulse is reflected by a plane discon-
tinuity at greater than the critical angle. We are not in a
position to detail the form of the pulse, nor is this suf-
ficiently relevant to the study of the modal oscillations
to pursue further.

Evaluation of the modal term: PBSl3
When t> ré& we take residues in the k-plane from roots of
the period equation lying in the first quadrant(starting
with eq. A-19). Thus, in effect, the range of integration

in g is now reduced to that set Sq of negative real q whose
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image, by virtue of the period egquation, lies in the first
quadrant (Fig. 24). If t r& , the same residue formula
will obtain, but the q integration will now be over the
complementary set Sé whose map lies in the fourth quadrant.
Also, the sign of the result will differ, since the sense
of a pole contour in the fourth quadrant differs from that
of one in the first quadrant. Since either f or f¥ may

yield poles, we write two terms:

(A-23)
— 0 1
k. F.(s,k. ) ik t
PB513 = UA Re [- E: ethée)(knr) 21 iﬁ 8 === dq
- n
n=0 Sq(II) q+9 . 2 —éT'
oo K Fo'(s,k.) ik t
qt,(2) n 2 " n B
I T H " (o) ———3x — & —&— 99Y= Ppa131*+Pasi30
=0 Ys 07 —=
- a(1) 3 =
w D kESu'euag a; sinh @, D sinh a, z
where: F2 = —
2"
H £, I
0k
n
ay D kgsu e4 ag aé ginh a, D sinh a, z
and F2 =
9L, |
H £* L
n\ 2y
n
P

BS131 is due to roots of f* = 0; PB8132 is due to roots of

f = 0.
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For fixed n, the map of the negative real q axis by
virtue of the period equation is shown in Fig. 24. One
locus is due to vanishing f, the other due to vanishing f*.
When q = 0, the two roots coincide, and lie on the real k
axis. As q decreases, one moves into the first quadrant,
due to f* = 0, and the other moves into the fourth quadrant,
due to f = 0. Both eventually end up in the fourth quadrant

as shown. For t> re€& , then, A-23 becomes:

oo
t. (2 )
(A-24) PBSl31=uA Re z: t[ et Hé )(knr) nik e dg
= S
a

with the zeros of f not contributing anything, and PB8132 in
A-23 vanishing. The integral over Sq is equivalent to an
integral over a certain range in the s-plane (Fig. 25).
This is just the segment A'-B' in the s-plane. We shall now
make a change of variable from q to kn’ which we call merely
k. The integral over Sq is now a contour integral over the
arc A-B in Fig. 24. Ve may deform this contour into the
line segment A-B along the real k axis., From the properties
of the conformal mapping s, = sn(k), it is evident that the
image of this segment A-B will be an arc A'-B' in the s-
plane. In short, when A-24 is written as an integral along
part of the real k axis, with the integrand a function of
sn(k), A-B is the part of the real axis which maps into -
ik

the strip Re s £ 0, —6—2 Im s= 0. Following the notation

1
of eq. A-17, the k integration is ocver the set SII - SII >



When the appropriate change of variable is made, A-24 becomes

&
. 2) e’n

(A-25) P BSlﬁ LA Re Z: f (k k H_Tl{f;l(sn,ijI dk
St1- II 8, +0

Since we are interested in the outward travelling waves, we
may rewrite A-17 using the Hankel function in place of the

Bessel function. Thus, combining A-25 and 2-17, we get finally:

(A-26)

£
E e {: )
E52 3813 “4A Im f I{I’)k -1 bl(Sn,lL)V?IIdk
S n

n=0
t >re

Vhen t<£ r€ , it is necessary that the contour in the
k-plane be transformed into the fourth quadrant. Referring
to Fig. 24, we see that the residue contribution from f* is
effective over the set complementary to Sq. This we have
shown to be equal to SII" But, as noted previously, the
sense of the contour of integration in the fourth quadrant
is negative, and the sign of the result differs from that

of the pole contributions from the first quadrant. Thus:

(A-27) Pocen = 4A Re )(kr {ﬁ 8 ,kz} dk
BS13 z;; . s _+0° T

SIS Eal
1A 2 1 k e =
-4A Re E f HO ({1") —-L@—_lf‘l(sn,k dk-—-PBSl.al
n=0 S ®n’"

n
I +Ppg130
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The first term is due to vanishing of f* as discussed above.
Now A-17 as modified is identical with the first term of
A-27, except for sign; thus the important result: when

t { r€ the complex modes due to roots of the period equa-
tion on the II Riemann sheet cancel out and do not contribute
to the propagating wave,

The second term of A-27 is due to the roots of the
period equation on the I Riemann sheet, the normal mode
poles. But here, again, the sign differs from the sign ob-
tained in eq. A-5, with the result that when t{ r& , the
normal mode poles on the first sheet do not contribute to
the propagating wave. This is a familiar result obtained
in studies of the real roots of the period equation., It
now is shown to be true on topological grounds.

In summary, the first sheet modal contribution is given
by eq. A-5; the second sheet modal contribution is given by
eq. A-26, VUWhen t<{r& Dboth contributions vanish, by cancel-

lation with the two terms in eq. (A-27).

Evaluation of PBP

This term, given by eq. A-10, will be treated in a
manner quite analogous to the above detail concerning PBS‘

Wle begin by deforming the s-plane contour into the
second quadrant by rotating it 900 counterclockwise. It

passes through both branch cuts, effecting changes of sign



in both Qs and aé in the wvarious expressions., It consists
of two terms:
PBP1: A line integral from s = %? to s =—0=
lying on the III Riemann sheet.
PBPE: Contributions due to poles of the integrand
on the IIT sheet, lying on the sector of
the second quadrant bounded by the‘positive

imaginary axis and the contour PBPl'

Eq. A-10 must be altered somewhat to indicate that we are on
the III sheet. Since (f)III = %%, and (f***)III = %, the

response term, eq. A-11 must be modified:

(4-28)

2(2Lc2+ 5232)21) € s a mn"@.lD}s nl‘f]lj
= -F,

% f*%

[F3(S’1{)]III = S 1’)

Then, of course:
-

24 r .
(4-29) Pgpy = = In f J (kr) k d k oy Fy(s,k) ds
° ik
T

0]

and

s
J Snt6”!

(a-30) P -8AZ"Re[f F(s k) ]kf(kr)

+60

where sI;I is the set of all Re k= 0, such that s_(k), by

virtue of f*¥ = 0, lies in the region Re sn< 0; Im sn) K/s.
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SII is the similarly defined set with respect to roots of

I = 0, The response functions are given by:

2(2k + 5 S 2h 6 S a oinh(al D) sinh(ocl z)

(A-31) - Fey = f‘*( f*ﬂ
Os e
2(2k2+ 6252)213 .454511L s sinh(oal D) sinh(czl z)
e, =
62 pxxx [ O ¥
Os
n
Noting that: ¥ + %% = a1(2k2+ 52 2)2 cosh a4
F-. becomes:
61 b GASMQE sinh(a1 D)sinh(a1 %) : )
Feo = = -[F,(s_,k)]
61 @, cosh o, (——a f**) Tt LI
n

where the minus sign comes from the change in sign of ey when
we evaluate it on the III sheet. Similarly, F62 becomes:

Fgp = [Fl(s,k)]II. The modal term Ppp, decomposes into two

contributions:
il esnt
(A—32) PBPE]. = -AERG‘[ ' Jo(k:r’)k S__E [Fl(Sn,l{)]III dk
LT n
e
(A—33) PBP22 = }-LAERG f . Jo(kl“)k ;—:—@—-T [Fl(sn,k)]II dk
2 n'

IT

By operating on the line integral PBPl’ we will be able to

extend the range of integration of these modal integrals.



As in evaluating eq. A-12, a substitution is in order:

q:s_i—k S=G‘L}£, dsqu-

T Y

Consequently: 1Kk

-0
o F(s,k) e T
(A-3L4) Popy =§r%1mf eqt dqf Jo(kr)k 4 —~ e dk
o . g+8 “+ 1 /T

Singularities in the k-plane include a source polé at

1+q) and branch points along the imaginary axis,

kp = 17‘(9
which we connect to infinity by cuts along the imaginary
axes. The contour in the k-plane is now deformed into the
1st or 4th quadrant, depending on the values of r and t.
Considering only the outward travelling wave component,
the integral along the infinifte quarter-circle vanishes
in the first quadrant if t > r7r ¥ 1k vanishes in the
fourth quadrant if t.(,r7ﬂ

PBPl now consists of three terms: PBPll’ 2 line integral
along an imaginary semi-axis; PBPlQ’ a contribution from the
indentation at the pole located at kF’ = ivﬂ(e-1+q); and

P due to modal contributions from poles of the integrand

BR13’
crossed in deforming the contour. The second of these we
shall not consider further; it is a forced pulse term
analogous to that obtained in eq. A-20,

wE t:>r7ﬁ, the contour is deformed into the first quad-
rant of the k-plane, and we write PEPll from eq. A-34,

making the substitution k = ig « %



- 54 -

(A-35) - £ téﬂ

¥ )
Phpi1= - Imf dqf J (1§ r) § ” Zl§ -
q+e — = f&,

As before, we agree to consider only the outward

- |

travelling wave, and replace the Bessel function by the
Hankel function of the second kind. The integrand of A-35
is now expanded about the points q = 0 and g 0, and an

asymptotic formula is obtained, valid for large r and large t.:
p =172 . -3/2

/r_ %‘8

When t<<r7ﬂ the same expression occurs, hence the absolute

£-36) Ppp117™v

value sign. This term represents a blunt pulse peaking at
5= r;r , with a singularity there, and a 1/'1"2 dependence
on range. As the purpose of this paper is to investigate
the oscillatory response of the system, we end consideration
of eq. A-36,

The modal contribution PBP13 decomposes into two terms:

P due to roots of ©*%¥ = Q0 and the other, P due

BP131’ ¥ THP132°
to roots of ¥ = 0. Vhen the modal term PBSl3 was considered,
we obtained pole contributions for r<jt4? only from f*
vanishing; the other factor in the denominator, f, did not
contribute. Detailed consideration of the two terms;

P and P along the same lines as the analysis pre-

BP131 BPl132*
viously carried out on PBSl3 yields analogous results. In
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short, PBP131 is a modal expression with the same form as
PpPQl (eq. A-32), but whose range of integration complements
that of the earlier results. The two expressions then com-

bine to give the following result:

(2-37)

g G
n
_ (2) . _€
PEP131 + Papoy = ;AEfRe HJ (kr)k g {Fl(sn,k) dk
g SnTU I1T
IIT .

where SIII is the set of all real positive k whose image, by

92}

virtue of *¥* = (O, lies in the second quadrant of the
plane. Vhen t £ r7° s the two expressions cancel, rather
than complementing each other, and their sum contributes
nothing.
PBP132 behaves as follows: when t )>1"7- PBP132 and
Popoo (eq. A-33) add to give a2 modal contribution integrated
over the entire set SII' The resultant expression, however,

is positive, while the identical integral appears in eq.

A-26 with a negative sign. Thus

(a-38) Parizat Favas t Bs2*+ Bsia=
=945 Ref Hkr)k € = {Alsn, KT %

L re>i'>r'r]

=g LE>re>ry]
When t { r7' y PBP132 and Phpo, cancel, and their sum do€s

not contribute.
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We now summarize the oscillatory contributions to the

long range, long time pressure signal: the first sheet

contribution, eq. A-5, is due to the conventional undamped
normal modes, namely the Rayleigh wave and the shear modes.
It vanishes prior to ¢t = r&. late-arriving damped wave
trains associated with the normal modes are obtained (it

turns out) from this term. The second sheet contribution,

eq. A-38, vanishes except in the interval r& > t > 1"7’ ;
When the waveguide, as considered here in detail, is a liquid
layer overlying a solid halfspace, SII can be shown to vanish,
It may not vanish, however, for multiply layered models,

and is in fact significant in the degenerate case of a free
sclid halfspace. In generalizing to layered structures of
greater complexity, it may turn out that the second sheet

contributions are significant. The Third sheet contribution,

eq. A-37, will, we shall find, give rise to the damped modes
coupled to the P-wave velocity in the halfspace and thelr
late-arriving quasi-resonant wave trains.
Our object is now to evaluate the remaining integral
in the modal solutions by a saddle point method. At points
dw

where dkn = real, this derivative may be placed equal to

the group velocity U = —%—of propagating waves whose dis-
persion and attenuation are functions of w and k at this
saddle point., Eg. 5 is the result obtained by Rosenbaum,
valid away from stationary points of the group velocity.

It is important for the success of the recipe, that we be
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able to continuously deform the initial contour into a posi-
Tion so that it passes through the saddle point on a path

of steepest descent. The conditions which determine whether
this is possible for a given saddle point are not at all ob-
vious in general, due to the extremely multivalued nature

of the mapping of the k-plane into the s-plane (& plane)
induced by the period equation. We have discussed this
problem in the main text, with the point of view that physical
considerations may provide enough confirmatory information

to establish the reality of any computed dispersion curves.



Summary of Modal Terms: PR’ PBSZ’ PBSlBl’ PBSIBE’ PRPEl’

Paposs Pmpizis Pmpize-

1. t{r/cy,: PB82+PBSI31 = 0
Pesiza +Pg = O
Prpi32 * Pgppp = O
Ppp131 * Pppzy = ©

r» r

Sl = {t< B, ‘'Bsiz2tfR = 0O

PBP131 + Pgppy = III sheet solution (A-37)
*
Pep132 + Pppop + Ppgp * Ppgy3y =
II sheet solution (A-38)
1 4

Bx TP 55 PBP131 + Pypoy = IIT sheet solution (A-37)
Prsi132 = 2
Pppiz2 * Pppos * Ppge + Ppgizn; = ©
Pp = I sheet (normal mode) solution (A-5

SII appears to vanish for the liquid/solid problem. Here,
then, this term = 0 also. The early-arriving pseudo-wave
in the Lamb problem may be treated by the method of this

paper, and is due to this II sheet contribution.
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Figs. 11 & 12.

Fig. l ,2'
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Iist of Captions

Typical behavior of phase and group velocity
for a single-layered acoustic waveguide
(after Pekeris). €,/¢, =15

Model consisting of a liquid layer overlying
a solid halfspace, with typical values for
an oceanic crust.

Reflection coefficient for P waves in01dent
in water against a solid.

Phase and Group velocity of first three PL
modes: Case 1. Also included are three
normal modes and their associated late-
arriving leaky modes.

Exponential Decay constant of first three
PL modes: Case 1. Oblique grid represents
? the range for e -1 decay, in multiples

of H.

Phase and Group velocity of first PL mode:
Cases 1, 4, and 6

Exponential Decay constant of first PL mode:
Cases 1, 4, and 6. Decay range, r,, in
multiples of H.

Phase and Group velocity of first PL mode:
Cases 2, 5, and 6.

Exponential Decay constant of first PL mode:
Cases 2, 5, and 6. Decay range, r,, in
multiples of H.

Phase and Group velccity of first PL mode:
Cases 1 and 7.

Exponential Decay constant of first PL mode:
Cases 1 and 7. Decay range, Tos in multiples
of H.

Case 3: Phase and Group velocity of first
PL mode. Exponential Decay constant and
Decay range.

Group velocity of first PL mode for two
oceanic models represented by Cases 1 and 7.
Data by Oliver and Major.
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Pressure and vertical velocity dependence
depth for three values of U/cl. Case 1.

Pressure and vertical velocity dependence
depth for three values of U/bl. Case 7.

Pressure and vertical velocity dependence
depth for three values of U/bl. Case 2.

Pressure and vertical velocity dependence
depth for two values of U/c,. Case 5.

Pressure and vertical velocity dependence
depth for three values of U/bl. Case 3.

on

on

on

on

on

Exponential Decay constant for the first mode

late-arriving waves. Case 1.

Initial Bromwich inversion contour in the

s-plane. Branch cuts and first sheet poles.

Deformation of contour into second quadrant

of s-plane.

Deformation of branch line contour for P

(dashed 1ine).

BS
into second quadrant and onto the II sheet

k-plane contour for PBSl‘ Branch cuts and

source pole shown.

Typical mapping of the negative real g axis
onto the k-plane induced by solution of the

period equation.

Image of k-plane (Fig. 24) in s-plane ob-
tained by changing variable from kn to 83
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PROPAGATION OF LEAKING INTERFACE WAVES

Robert A. Phinney

Seismological Laboratory
California Institute of Technology

Pasadena, California
SRR FRAOK K

Abstract

Using simple generalizations of the method due to
Rosenbaum (1961) and Phinney (1961) single integral expres-
sions may be written down for the long range pole contribu-
tions to the transient signal in a plane seismic waveguide.
This method yields expressions for the leaking, or imperfectly
trapped waves, and suffers from no restrictions on the number
of layers or the existence of coupling to one or two half-
spaces. When applied to the simple interface wave problem
of two halfspaces in contact, closed form expressions are
obtained, describing the propagation of pulses along the
interface due to lower sheet poles. The theory is applied
to the Lamb problem, the liquid/solid interface, and the

solid/solid interface problems. The leaking wave generali-

*Contribution No. 1023, Division of Geological Sciences,

California Institute of Technology.



zations of the Rayleigh and Stoneley waves are found, and
a new wave, coupled to the P-wave, is demonstrated. The
physical importance of leaking interface pulses is shown to
be in their coupling to the normal or leaking oscillations

of layered structures.
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TABLE OF SYMBOLS

Symbo ] Definition Equation Reference
a; coefficients in expansion of f -
A amplitude of source 1
b; coefficients in expansion of g -
CyC? contour of integration Fig. 2
c any solution of equation (%)
where ¢ = w/k 6
Cj compressional wave velocity in
medium i Fig. 1
energy in delta-function source 9
f period function 1,4
g response function ]
h source-interface separation Ts Fligs 1
k wave number in horizontal direction ]
Ly damping constant of modal oscillations
(see paper | and Rosenbaum, 1960)
= Im (wﬁ) - (r/t)lm(kﬁ) 3
m index of halfspace = number of media
in layered structure -
m(c) excitation function for interface
wave problem T
n subscript indicating evaluation at
a root of the period equation 2

N 2 + homogeneous degree of (g/f) 7,14



Symbo Definition Equation Reference
p order of Bessel function in
expression for field variable 5
a5 horizontal displécement on surface
of free halfspace 19
0 - r - ct + iMec) 10
0% excitation function of saddle point

formula; usage conforms to paper |--

occurs here only once 3
r horizontal coordinate in circular

cylindrical coordinates ]
5 = jw: Laplace transform variable 1
x time 1
v Re(c) 15
Vi body wave velocity defined by Vi< Vigrs

equals some particular cj or Bj Table 2
W, vertical displacement on surface of

free halfspace 20
x(t) field variable, such as pressure,

displacement, stress, etc. 1
Y1 Re Y(c) 15
Yo Im Y(c) 15
z axial coordinate in circular cylin-

drical coordinates -



Definition Equation Reference

\/LE - 0)2/0:]2 - \/k2 - sa/c;i2
J2 - o®/p2 = Vi 4 522

i

shear velocity in medium i

I = cg/c?

rotation angle between k-plane and

g-plane

density of medium i
Poisson constant of medium i

phase of m(c)

angular frequency: = - is

Introduction

Introduction

10

10

Table 2

13

14
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INTRODUCT | ON

In this paper we make it possible to apply recent devel-
opments in leaking mode theory to a fairly broad class of
seismic waveguides. What is desired is a simple technique
for investigating the complex rooté of the period equation
and interpreting them in light of an appropriate representa-
tion of the solution. We shall first state two generaliza-
tions which make it possible to use formulae obtained in an
earlier paper for this purpose. |In the body of the paper we
treat the interface wave problem of two halfspaces in contact
on a plane boundary. This is doné by reducing the single
integral obtained by general considerations to a closed
expression representing propagation of a leaking interface
pulse. The complex roots of the appropriate period equation
may now be numerically evaluated, and the velocity and shape
of the pulse then follow.

In a previous paper (Phinney, 1961), which we designate
as |, we have deduced the leaking, or attenuated, modes of a
seismic waveguide consisting of a liquid layer coupled to a
solid halfspace. The method (Rosenbaum, 1960) consists of
writing the response to a transient point sourcel(x,(t) =

e-t/g) as a double integral.

At e £ =
_ A e’ - jlgEJSL.CJk
() 6= A ‘*’j“"”‘ﬂw

A=t °
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The Laplace transform variable is s, k is the wave number
in the horizontal coordinate, x(t) is some field variable
éﬁcﬁ“as pressure or displacement. We determine g(s,k) and
f(s,k) by applying boundary conditions at the plane interfaces
bounding the media.

Letting the index m refer to the halfspace, then a =

m
2 ‘ ’
J&2 + 52/cm and u; - J@é + sQ/Bﬁ ,» which occur in g and f,

give rise to branch points in the s-plane. Cuts are intro-
duced, joining the branch points to i@ along the imaginary
s-axis. The s-integration in (1) may be performed by rewrit-
ing it as a set of residue contributions from poles lying on
the sheet of integration and two branch line integrals aris-
ing from integration around the cuts. By deformation of the
branch line contours onto lower Riemann surfaces, the branch
line integrals decompose into (a) residue contributions from
complex zeros of f and (b) pulse terms which are interpreted
as ray arrivals at the body wave velocities. All the residue
contributions from both the top sheet and the relevant lower
sheets have the same form and may be written symbolically

as a single integral.

@ s,
(2) xle) = 4A ) [LUksE—— (T 1 dk

5 Jn

=0
SLu,or
S|’||’||| are contours on three Riemann sheets. When this

expression is evaluated by a saddle point method in the k-

plane, a representation of the solution at long ranges may be
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written down (3). It expresses the oscillatory contributions
at long range in terms of a cosine term and a damped exponen-
tial. The subsgript n denotes evaluation at a root sn(k) of

the period equation f(sn,k) = 0. The superscript c denotes

evaluation at a saddle point where r/t = do /dk. (s = iw)

® ae)= G & " cos[(Rewt)t ~(Re kS + 01

Generalizations of the theory

We now summarize two results which may be obtained by
generalizing the analysis in |.

(1) The liquid layer/solid halfspace problem of |
differs from the liquid layer/liquid halfspace problem done
by Rosenbaum (1960) in that the integrand g/f contains two
branch cuts instead of one. More general surface waveguides
consisting of a stack of solid and liquid layers overlying
a solid halfspace still only involve two branch cuts. We may
write f and g in the form: f = ag + ajoy + aga% + a3ama; 3
g = by + bjay + bya + bgapa , where the a; and b; do not
involve the branch points. |If this form is used in the anal-
ysis in I, it follows that all quantities transform exactly
as they did in the particular case in |I. The single integral
(2) now expresses the pole contributions from all sheets.

The saddle point solution (3) now may be applied to this gen-

eral layered problem, provided only that a saddle point exists

and is "accessible" to the initial contour of (2).
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(2) If the waveguide under consideration is bounded by
halfspaces on both top and bottom, the integrand in (1) will
involve up to 4 branch lines. |In | we obtained the follow-
ing result, which states the values of time for which each

Riemann sheet is appropriate:

TABLE |
Re a, Re a;
t>r/B, + +
r/By 7t »r/c, + -
0 >t >r/c, - _

To generalize to 3 or 4 branch lines it is necessary to trace
the way in which the period function, f, is transformed as
the branch line integrals in | are manipulated. The essence
of the matter is that each branch line integral is deformed
in the s-plane in such a way that the line integral converges
most rapidly. When this is done, the resulting line integral
and pole contributions are found on some particular "lower"
Riemann sheet. Each branch line integral, consisting of two
terms, gives rise in this way to pole contributions from two
lower sheets; analysis of the conditions which ensure con-
vergence on an arc at @ gives the range of t which is appro-
priate to the poles from each sheet, as illustrated in the

table above for the two branch line problem. The result for
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four branch lines is stated in Table 2. In connection

with the interface wave problem we shall write the restric=-
tions of Table 2 in more specific form. In general, we find
that when the signal velocity (r/t) lies between two body
wave velocities, the relevant Riemann sheet is "upper™ for
all faster body waves and "lower" for all slower body waves.
In all cases, the signal is constrained to vanish prior to
the earliest body wave, and the signal after the slowest
body wave is determined by the conventional "top sheet”

for all variables.



.
TABLE 2

Two halfspaces in contact, having four body wave velocities:
V] < Vo< Vg <Vys without specification as to type.
Setting Y, = k2 - me/v? , specification of the sign of
the real part of each of the ﬂi specifies the Riemann
surface apprdpriate to any given signal velocity according

to this table.

2 L
0 <r/t <vy + + + 4
V) <r/t <v, - - - +
Wi Zilt < Vg - - + +
V3 <r/t < vy - - - +

0 <r/t <V - - - -

The first sheet root is real, when it exists. Roots of the
period equation lying on lower sheets must be complex with

a positive imaginary part if they are to contribute to the

signal. (This refers to a complex root wn(k), when k is

real and positive.)
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The general interface wave problem

We now restrict ourselves to the case of two halfspaces
in contact on a plane interface. Three types of problem
may be considered:
(A) A solid halfspace with vanishing stresses on
the surface (Lamb's problem).
(B) A solid halfspace in contact with a liquid
halfspace.
(C) Two solld halfspaces in welded contact.
Excitation functions and period equations for these problems
are well known, since they may be derived from steady-state
considerations. A fairly complete collection of results for
various types of source is found in Ewing, . Jardetzky, and
Press (1957). In this paper we consider a point source near
the Enterface,.and use results given in the reference. Period
equations for the three cases are as follows:

/

2, a
(A)  f, = (Rk—%.) - 4Kd.q

(4) (B) fg= -%-—,—-F‘l’.ﬂ

kS

L v eryq?d / 5 . 1 2 _)
(¢} o= KL )] e l-2)e 2 ] -

a /

— o[k 1)+ -ﬁ"f:] i) A +h G- )2 oo,

B,“/S:ﬂ,
. : -t/8 . .
If a transient point source, xo(t) = Ae , is excited

at a distance h from the interface, then the solution is

répresented as the double integral:
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@

At of k
(5) %= ”f £ dsfj(—s’—)—kjp(kr)dk

T s+&” f(s, k)

A~ioo

p is zero or one depending on the field variable of interest.
f is one of the period functions (4), and g contains the
dependence on h and z.

By a method due to Cagniard it is possible to obtain
an exact closed form solution for all ranges. Cagniard
(1939) investigated the solid/solid problem, Garvin (1956)
and Gilbert (1956) solved the Lamb problem, and Cagniard
(1939) and Strick (1959) treated the liquid/solid interface
problem. These authors found the various waves long known
from asymptotic evaluation of the solution in the steady
state. P and S waves arise from integration near a branch
point, while the familiar surface waves are due to a pole
lying on the sheet of integration. As is customary, this
sheet is defined by the condition that Re\fiJ>O for all the
radicals U}; this is brought about by the requirement that
the steady state solution die off exponentially away from
the interface. Surface waves, due to "top sheet" poles, may
be categorized as follows: (A) the Rayleigh wave, having
a velocity between .86{32 and .96B,, (B) the Stoneley wave,
having a velocity near .99c; for typical models, and (c)
the Stoneley wave, with a velocity less than either By or Bo,

but greater than the Rayleighivelocity in the faster medium.
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The Stoneley wave (C) exists only for a very restricted class
of models. These remarks are not intended to be complete,
but only to characterize. For a complete discussion of the
Stoneley wave for (B) and (C), the list of references should
be consulted.

Various investigators have suggested the existence of
partially trapped interface waves, representing a generaliza-
tion of the Rayleigh and Stoneley waves cited. Strick (1959)
demonstrated a generalized Rayleigh wave for case (B), with
a velocity equal to that of the comparable undamped Rayleigh
wave (A), but decaying in time by coupling to P-waves in the
liquid. Gilbert and Laster (1961) have found a partially
trapped wave in the Lamb problem, existing in solids with a
high Poisson constant. They have also identified a leaking
Stoneley wave for case (C) when the model parameters do not
permit a true Stoneley wave to exist. All of these pseudo-
waves are caused by poles of the integrand which lie on
Riemann sheets other than the principal sheet of integration.
By théir proximity to the branch cuts (in the Cagniard formu-
lation) they affect the form of the solution obtained by
evaluation near the cuts, thus generating a contribution to
- the signal, despite their location on a lower sheet. |Inves-
tigations of the sort cited are equipped to delineate exact
seismogram shapes, but prove tedious in many cases without

shedding proportionate light on the physical nature of the
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signals. In this paper we treat the interface wave problem
in a more traditional way, obtaining asymptotic formulae for
the pulse shape by direct attack on the double integral sol-
ution (5). The results cited in the introduction make it
possible to do so with a precision which brings the lower
sheet contributions into sharp focus, instead of leaving them
implicit in the branch line integrals as has been the prac=i:~
tice up to now.

Our starting point is the single integral formula (2},
a rather general tool which is easily applied to the cases
we are considering. An asymptotic representation of the
pulse due to each lower sheet pole arises directly from (2)
by exact evaluation of the integral resulting from the long
distance approximation to the Bessel function. |In this
approximation each wave has a constant velocity, given by
the real part of the root ¢ of the period equation. We mayb
now view the leaking interface waves as free vibrations of
the interface in a more general sense than that which de=cr
scribes ordinary undamped surface waves. Arising from so-
called extraneous roots of the period equation, the pseudo-
waves make sense physically in terms of plane wave reflection
and transmission coefficients. The attractiveness of this
method lies in its simplicity; for a given set of layer
parameters the complex roots of the period equation may be

easily obtained, enabling one to predict the velocity, pulse
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width, attenuation, and existence of all the trapped or par-
tially trapped free waves.

For each pole of the integrand which lies on a permis-
sible sheet (Tables 1 - 2) we may write down the single inte-

gral obtained from (2):

'kct 9¢:
4A;ee[;r(;<) (g

Since the period equation (4) is homogeneous in w and k, it
is possible to write f = f(w,k) = f(kc,k) = k?f(c,1) = 0.
Thus roots of the period equation may be regarded as single
complex numbers c, rather than functions wn(k). Henceforth,
appearance of the letter ¢ implies that it is a root of the
period equation. The integrand in (6) is the result of the
substitution w = kce Since g is also homogeneous, the ex-

N_]m(c),

pression in parentheses in (6) reduces to the form k
where m(c) is a complex function of complex c. |f the source
or receiver are not on the interface, exponential factors

of the form:
vt i
(-2 2] -2 h
e = or e <
will also result (from the function g). It is sufficiently
general for our purposes to assume that z is zero and h
positive, with the source compressional in nature, lying in

medium i. (6) may now be written:
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| ckcf
7l X =4A Re.{m(-f)fk J(k) = -,e“' B dk}

We now make the only approximation in the analysis. It
is the conventional long distance representation of the Bes-

sel function, under the assumption of no sources at infinity:

‘T;o(k") = H:')(kr) + H:A)(/{r) — H'fl)(kr) ~r
N']/r%. exp [-ilkr -I- 20}

Then:

ik(r —<t =ik IS
A(P a.) Lk( t C.; d
]/ 3 = K
(8) x= 44 K’e{ m[)e jk Tfe +o°

|f we assume the source function to be a delta-function
in time, then © '3 . We let the source amplitude A —>

@ as well, so that the source pulse still has finite energy.

Setting E = A6 and ¥(c) = /1 - c2/c? :

(9) x = 4E1/§ E’a{m(c) ei?f(f* )j’ e -..k(r et ~ihyle) a’k}

Consider the integral alone:
-k @
(10) Y = f K d¢ where Q=r - ct - ihv(c)

This integral is easily evaluated if the variable k is

replaced by € =k e~ 1%, The effect [s a rotation of the

k-plane. (Figure 2).
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The original contour C in the k-=plane maps into C in
the f -plane. We distort C into C' along the rea]f ~axis
and along an arc at infinity. ® is chosen so that C!' js
a steepest descent path, as follows:

Q=10 +iQ,

exp(-ikQ) = exp(—ikQ1) exp(kQy) =

exp[-iéQ](cos 5+ i sin ﬁﬂ exp[er(cos 5+ i sin 6ﬂ==

exp[-if(Q]cos B - Qpsin ﬁﬂ exp[—f(-olsin 8 - Qcos bﬂ
For a steepest descent path ©® is chosen so that Q]cos 6 =
Qosin 6. In other words: sin & = -Q;/[Q] ; cos B = -QE/JQL'
where the minus sign is necessary to make the integral
converge. Thus: exp(-ikQ) = exp[ éo’;;? ] = exp[-f [QIJ

. = [%rp S\W-L - F
Therefore: Y = l ([ Pag gmd(ée:)

UG rf »v-:'ie— Elel | ¢

This integral may be evaluated in terms of the gamma func-

1l

tion:

(1) ‘Y=

e;“m’)l"({#i) _ us:(mu)y4 N)r
Q"™ 1Q[¥*%

Substituting in (9), we get:

SV r_— £y Nf‘i)
(12) X -:‘Hf/wé—: Re{yn[c)e“ =L )M Vi 1@ Q| }

. . Yre)
If m(c) is cast in polar form: = hnk)]e then

(130 x= 2EB s M) cos[#0) + E (o) + (oS, ]

#L
X N

1@,



where:

3
8 = - M - phase (0Q)

2
Q = (r-ct) =-ih¥{fc) where c is in general complex
My L)
L T

N = 2 + homogeneous degree of g/f

p = order of Bessel function

m(c) = excitation function depending on model and source
By subscripts r, t it is suggested that Q and © are functions
of the time and horizontal range. 1t is this dependence, in
fact, which shapes the pulse. (13) may be cast in a more
convenient form depending explicitly on the phase of Q (which

we denote by f#).

() A = LEE L @) cos[ b, - (1+5) .
i e }ertl ’

where Cé _ Y(C)+TT+(P"N)%-
We shall use (1%4) tq describe the shape of the pulse

propagated along an interface due to complex poles, c; of

the period equation. 1t is, therefore, necessary at this

point to write down in tabular form the restrictions on the

Riemann sheets for various values of t. These are taken from

Table 2, or a similar table for two or three branch lines.
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For all three problems the "lower" sheet for all variables
(1ast line in Table 2) is identical to the "top" sheet. This
is seen by inspection of the period equations (4). It is,
therefore, not relevant to the description of the pole con-

tributions.
(A) Free solid halfspace: By < 5

Re an Re aé
0 <r/t« B, + +

f32<l’/t<c2 - o+
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(B) Ljquid halfspace/solid halfspace:

¢1 <Py <

0 <r/t < cq (Stoneley wave)
€1% rft & Bo (Pseudo-Rayleigh)
Bo < r/t < Cs (Pseudo-P wave)

B. £ ¢. €€

0 <r/t <B
52<r/t < €

Ci<r/t <ey
82 (02 (C]

0 <r/t <p
52<r/t < ¢y

cy<r/t < ¢
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(C] Solid halfspace/solid halfspace:

2
Re a% Re a, Re % Re a!
0 <r/t <[3] + + +
By<r/t <cy " + "
¢, <r/t <8, - - +

52<r/t <c¢, - - -

0 <r/t <B, ~ + +
Py<r/t <B, - ¥ +
B, <r/t <c, a + "
¢, <r/t <c, - = =
B]'< 52 TeE_ e
0 <r/t <B, + + ¥
B]<r/t <B, - + +
52<r/t <c, , . + -
c2<r/t <c, - + z

A1l other combinations of body velocities are either
trivial or physically inadmissable. Henceforth, we refer
to a Riemann sheet by a sequence of +'s and -'s: e.g.

('+)’ ('++), or (‘+‘+)-
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Typical pulse shapes predicted by (1%)

We now inspect the pulse representation (1%) in enough
detail to show its relation to the physics of the problem and
demonstrate its agreement with known results for undamped
surface waves. Written in terms of real quantities, Q has
the form: |
(15) Q= (r - vt+ hy2) - i (gt + hy,)

5
where: v = Re ¢ y; = Re (1 - CE/C%)T
T1T=1Imc yp = Im (1 - C2/C%)a

Case (B) is taken as representative. We take a model

typical of water in contact with a solid, with the source

located in the water layer: ¢, = 1.0, cp = 3.0, B, = 1.732,

and pp = 2p, (a Poisson solid):

sheet v U8 type of wave

(4+4+) .9860 _— Stoneley

(—++) 1.6151 .0980 Pseudo-Rayleigh

(--+) 3.036 - Trivial pseudo-P

(-—+) 3.917 - }
When Poisson's constant is taken to be .355, the situation
is slightly different: ¢, = 1.0, ¢y = 3.0, 62 = 1.41, and
Pp = 2p]:

(+++) .966 - Stoneley

(—++) 1.348 .0917 Pseudo-Rayleigh

(——+) 2.768 492 - Pseudo-P
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These results are taken from a later section, where the
complex phase velocities for a representative class of models
have been computed and presented in the form of arrival-time
diagrams.

The pulse is shaped by (14) as follows. A cylindrical
spreading term, r‘%, which multiplies the pulse amplitude,
is identical with that obtained for point source excitation
of true surface waves. |If we were considering a line source

) P -(N+3)
problem this factor would be missing. The factor ,Q’

determines the pulse envelope, and (N + %)@, as an argument

of a cosine function, determines oscillation of the signal
within the pulse enve]ope; For all the cases considered in
this paper, N = 2. Higher N corresponds to a field variable
obtained by one or more spatial or time derivatives; its
appearahce in the pha§e factor makes sense from this point

of view.

Stoneley wave: h = 0, M= 0. Q vanishes when t = r/v,

namely at the arrival time of the wave whose velocity = Re c.
There is, therefore, a singularity at the arrival time of the
Stoneley wave. Also, m(c) is real, therefore ¥(c) = 0; for
the pressure sighal in the water, p =0. Thus fo =T+ 0+ 0

+ 30 = 4T—>0. When t <r/v, § = 0; when ff o= r/v, f = =31
(assuming a small + imaginary 0 ); when t >r/v, g# = -T.

Figure 3 shows: (1) Q as a function of t (in the complex plane),

(2) a polar diagram of phase, (3) and the consequent pulse
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shape, obtained by applying the envelope function and the
cosine operation.

The singularity is, of course, a result of taking a delta
function source in the first place, and is suggestive of the
fact that the Stoneley wave is perfectly trapped and that the
high frequencies are preserved in transmission. V(The pulse
shape shown is just that due to the Stoneley pole; when con-
sidered as part of an actual seismogram, we must "gate" the
pulse on at t = r/c], and superimpose the contribution from
the direct body wave. A similar qualification holds for all
the pulse shapes we shall derive.)

- When we take into account the separation of the source
and interface, h # 0, 7 = 0, and yo =0 (since ¢ = v ¢ cq)-
Figure 4 shows the variation (with t) of Q, (4, -(5/2)f), and
x(t). The effect of removing the source from the interface
is to remove the high frequencies from the interface wave.
The source preferentially excites longer wavelengths; in
the same way, a receiver not on the interface does not "see"
shorter waves due to their greater localization near the inter-
face.

The preceding has been to demonstrate the use of the
representation (14), since the Stoneley wave is no newcomer,
and has been thoroughly described in the literature. We now

demonstrate its applicability to leaking interface waves.

The results to be derived for the pseudo-Rayleigh wave will
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bear out some of the properties discussed by Strick (1959)
in his exact treatment. This is just a Rayleigh wave on the
solid which loses energy by conversion into compressional

- waves radiating into the liquid. |t, therefore, looks like
an interface wave with respect to the solid, but has the
properties of a critically refracted ray in the 1iquid. lts
velocity is essentially that of a Rayleigh wave on a free
halfspace. We set h = 0 in order to isolate the effect of

M on the pulse shape. Then:

Vi

X~ r !(r - vt) - it | ~5/2¢05 (4o -(5/2)ﬂr,t)
To ease the computation slightly, we set 7’(c) = (0, an assump-
tion which affects the phase of the wavelet, but not the point
we wish to make. Figure 5 shows the construction of the
waveform as before. The existence of Im ¢ =9 manifests
itself in a smoothing of the waveform and a reduction of the
maximum amplitude. In other words, the higher frequeqcies
attenuate more rapidly than the lower frequencies. This is
as it must be: The absence of a characteristic dimension in
the geometry implies, by a similarity argument, that the
decay range of a given frequency must be proportional to its
wavelength.

For h # 0, we must take into account y, + iy2 =1 - Ce/f?
c is nearly real, and Re ¢ >c1. ¥y is, therefore, small and

negative, while Yo is large and positive. The sign choice is

due to the fact that we are on the sheet where Re cl<:O.
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Then:

0 o o2 ](r - vt + hy,) -i(qt - hy])J 2 e (go-—i-gﬁ)

In harmonic wave theory, Y describes a wave increasing
exponentially away from the interface. Here, its only effect
is to decrease the bluntness of the pulse by counteracting
the 7t term. Alternatively, we may say that the existence of
a ray path into the liquid permits the source to communicate
the high frequencies to the interface more efficiently than
was possible for the wholly trapped Stoneley wave (and recipro-
cally). Yo is responsible for a term which delays the peak
amplitude'of the pulse a time equal to the time required for
the signal to reach the interface along the critical ray
feeding the Rayleigh wave in the solid. Thus, while roots
of the characteristic equation lying on lower Riemann sheets
yield physically impermissible steady-state waves, the result
of superposition in the time domain is physically quite
reasonable.

The pseudo-P wave, which we shall discuss later in detail,
is an intrinsic leaky vibration of a solid halfspace which
does not "see" the liquid halfspace in a significant way.
Energy is radiated away from the interface as shear energy
into the solid and as P waves into the liquid. When 7= .355,
for example, the maximum pulse amplitude propagates at a
velocity slower than c2. The high imaginary part of c suggests

that this pulse is very much blunted in comparison with the
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Pseudo-Rayleigh wave. This pulse is identically zero prior

"gates" on only with the arrival of the ini-

to t = r/c,, and
tial P phase. When O = .25, the pair of roots which were
complex conjugate for O = .355 have degenerated to a pair of

unequal real roots whose real parts exceed c The main body

o
of the corresponding pulse never'exists, because the signal is
constrained to vanish prior to t = r/c2; at times shortly
after the P-wave these poles may affect the signal slightly,
giving the P-wave a slight tail.

Summary: The solution (14) is an asyﬁptotic represen-
tation of a pulse propagated along a plane interface, due to
complex roots of the period equation (4). The results are
subject to the constraints of Tables 1 and 2, which denote
the permitted Riemann sheets for ény r, t. As pointed out by
Strick (1959), these quasi-surface waves are not always phys-
ically separable on experimental or exact theoretical records
due to their close association with body phases. The purpose
of our demonstration has been to generalize the familiar long
range expression of free surface waves to describe partially
trapped waves in the same framework. A harmonic theory is
not possible; we may, however, cast the real and complex
roots of the period equation in the same framework. We inter-
pret the complex roots as modes of motion which involve less
coupling to body waves (radiation away from the interface)

than neighboring motions (in a variational sense).

Having a single framework for both true surface waves
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and complex surface waves, we hope that the nomenclature may
become standardized. The resemblance between the true Ray-
leigh wave, the Stoneley wave for a liquid/solid interface,
and the Stoneley wave for a solid/solid interface is super-
ficial, since they arise by coupling to the lowest body wave
velocity in the system, which is different in each case. We
may now identify corresponding wave types for the 3 types of
system; Strick (1959) has already established, for example,
the correspondence of the true Rayleigh wave (A) with the
pseudo-Rayleigh wave (B)

Mathematically, the solution has the following properties:
1. 1t was not necessary to approximate the second integral
beyond using the long range representation of the Bessel func-
tion. |f desired we could write out further terms in the
asymptotic series for Jp(kr) and obtain a more precise esti-
mate of the pulse shape. As thjs is not our object, we defer
to the exact solution by the method of Cagniard, should
theoretical seismograms be desired.
2. The existence of characteristic roots on lower Riemann
sheets is physically permissible. The only effect of Rexfi
(be it + or =) is to modify the pulse shape slightly. lm-Ji,
which is connected with radiating body waves, appears in a
time delay due to the source-interface separation.
3. Reciprocity enables us to make the same remarks about a

receiver at distance z from the interface as we have made con-

cérning a source at h. By superposition we may consider both
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simultaneously.
4, A pseudo-surface pulse will travel faster than certain of
the body velocities and slower than the remainder. The for-
mer group will couple to the pulse as body waves in the rele-
vant medium._ The latter velocities cause the trapped portion
of the energy. An instrument sensitive to body potentials
with velocities vij>Re c will see an exponential decrease
away from the interface. One sensitive to wave potentials
whose velocities Vi< Re c¢c will see body waves feeding (or
leaving) the interface at a critica] angle ©: sin 8 = vi/v.

In what follows we shall display the complex roots of
the period equation in a manner which is suggestive of the
form of the pulse expression (14). h has the effect of
modifying and delaying the pulse arrival; since propagation
along the interface is of interest, we set h = 0. v is the
velocity of the maximum pulse amplitude, and causes a broad-
ening and weakening of the pulse. A rough measure of the
pulse broadeninglmay be obtained: We express the envelope
function JQI—(N+§) in terms of the arrival time of the pulse
and solve for the time where the envelope is down by some
factor. It is assumed that (1A0<3, so that (Q/v)g may be
neglected in the result.

=(v+s) r:(m*;_), ( —‘1,5) _int ’-(N*f)

(16) ¥~ R rvt)-nE] = r : .

. AR - ~(v+d
- r"'(Nﬂ)} I—t’— "'g’t l )= b (NM)}PI +%)

t!" = 1 corresponds to the pulse maximum.
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When t' = 1, Pl =7/v
When t' = 1 + T, Pl =V + ()(1+T)" which we

set equal to m|P(]ﬂ = mY/v. Solving for Tt and dropping
(ﬂ/v)g in the result, we have an estimate of the half-width
of the pulse in terms of its arrival time:

(7) 7 ~[(Yn*—)

If n =2, m=2 suffices to describe the point at which the
pulse has about 1/6 peak amplitude. Using the formula

= 1.7 (1/v), we indicate the half-width in Figures 6-13 by
thg shading.

Another measure of pulse width in this case is the peak
to trough time for the oscillatory center of the pulse. Un-
der assumptions like those given above, 0.7(7/v) is an
equivalent estimate, which we shall not use.

Setting t' = 1 in (16]), we get an expression for the

decay of the peak amplitude with distance.

(18) a~ r

—

— (N +1) (3 )—(mi); r_i ( ~(wti)

Numerical results: These are plotted in the form of an

arrival-time diagram. The horizontal axis is the time, nor-
malized to the arrival of one of the body waves in the system.
The vertical coordinate represents the variation of some
function of the densities and body velocities; in this way
we are able to show the behavior of the interface waves for

a representative class of models. The arrival of the various

body waves and true interface waves is represented by solid
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lines, and the pseudo-waves are indicated by the arrival

of the pulse maximum. Shading indicates the pulse width of
the pseudo-waves according to (17). The areas between the
body waves are labeled with the (-+++) notation to denote

the relevant Riemann sheet for interface wave propagation.

The Lamb Problem

From.equations (2-86) in Ewing, Jardetzky, and Press
(1957), we may write the surface response to a compressional
point source at depth. Generalized to a pulse, the horizon-

tal and vertical displacements become (with a slight nota-

tional change): Ml st >
Y dj (A0 F2) T dk

(19) .= 7 s+r9'

i £, (k)
)n—mn
(20) w, = if] j‘LLtCDJ(_*E) [k,.)J,(z
s 5 oY Fa ()

where fA(s,k) is the Rayleigh function in (4). These expres-

sions have the form of (1). (14) results immediately, with:

9 %o
p 1 0
N 2 2

There are two relevant Riemann sheets. When t >r/52,
we consider the sheet (++). When r/ﬁ2 i >r/b2, we consider
the sheet (-+). For all nontrivial values of Pps Bys Cps @

real root of f,(c) exists on the (++) sheet with a velocity

g
near .92 52, the familiar Rayleigh wave. A pair of roots
exists on the (-+) sheet. When {32/c2 is less than .52, these

roots are real, unequal, and their velocities greater than
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Css hence they do not contribute to the observed signal.

For small values of B,, the roots become complex conjugates,
with velocities less than Co and greater than 52' Since only
roots with positive imaginary parts (on the lower sheets) are
pertinent to our solution, a single pulse is predicted,
arriving between the P and S waves. Since this pulse is
trapped with respect to compressional motion and appears
shortly after the P wave, we call it the Pseudo-P wave. Fig.
6 is the arrival-time diagram for Pseudo-P and the Rayleigh
pulse, normalized to the arrival of the shear wave.

The shaded area on the figure represents roughly the
extent of the Pseudo-P pulse. When .3<:Uél<.45 it appears
as an appendage to the P-wave. When Gé > 45 it becomes dis-
tinct from both P and S; as Vé —= .50 (variab]e 62, fixed
c2), the amplitude of Pseudo-P approaches zero, due to the
very great time of arrival relative to the P-wave. When
U} <.30 no pulse occurs, although the images of the root are
plotted using a dashed line. A familiar result states that,
when 0; = .25, two "extraneous" real roots are found on the
lower Riemann sheet. These have been interpreted as describ-
ing the angles at which shear waves are converted wholly into
P-waves upon reflection by the free surface (or vice versa).
We may generalize this interpretation: when (Té >.30, a
shear wave incident on the free surface with a certain "com-
plex angle of incidence" is converted entirely into a com-

pressional motion critically refracted along the interface.
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Conversely, a signal moving along the interface with velocity
near c, (making it largely a P-wave] continually feeds a
shear wave radiating into the solid. |If we assume a pulse
moving along the surface at a velocity between 62 and c,,
then only radiating shear waves are possible. The particu-
lar velocity of Pseudo-P is that velocity which minimizes

the loss by conversion to shear waves.

Gilbert and Laster have found Pseudo-P by evaluating
the exact (Cagniard) closed form solution of Lamb's problem.
In that framework the signal at times between the arrival of
P and S is obtained by evaluating a certain function at a
point near the branch cut. When 02 >.30, a pole lying on
the lower sheet becomes so disposed with respect to the
branch cut that it affects the value of the solution for cer-
tain values of time. The authors have reported a broad, ill-
defined pulse coming after the P-wave, a result in agreement
with the calculations reported here (Fig. 6). The method
described in the present paper is valid only at long ranges
and lacks the precision of the Cagniard method, but it gives
us a simple tool for investigating the physical importance
of the complex poles.

We do not claim that Pseudo-P would be an observed phase
in field problems. |t should be observed in model experi-
ments, if sufficient control of the physical properties is
possible. The physical importance of this wave is in its

effect on leaking mode propagation in more elaborate wave-
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guides. In a recent paper (Phinney, 1961), the leaking
modes of a liquid layer coupled to a solid halfspace were
determined. It was then noticed that the frequency of the
first PL mode is somewhat less than expected on the basis of
a simple ray theory. This effect becomes more pronounced as
the shear velocfty of the solid decreases. At the time it
was hypothesized that this was due to coupling of the chan-
nel wave to an intrinsic long-period vibration of the half-
space. In this paper we have already shown that such a
vibration does exist and that it propagates at velocities
in common with the PL group velocity (62< c4<c2).

The coupling effect is demonstrated by computing PL
.wave dispersion for several cases, whose properties resemble
those permitting propagation of Pseudo-P. The following

models are presented in Fig. 7.

Case 75 BE/C2

5 .10 667

2 .32 BV e aakiy
8 .,'['05 .400 CE o= 3C]
9 45 .300

The equivalent Lamb problsms are indicated on Fig. 6 by

case number. On Fig. 7 the arrows labeled (2), (8), and (9)

represent the velocity of Pseudo-P in the halfspace, accord-

ing to Fig. 6. For cases 5 and 6 the Pseudo-P root is degen-
erate and is not plotted; although the peak does not propa-

gate in such cases, the tail of the pulse falls in the range

(52'<F/%'<02) and the corresponding PL mode is affected in
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the immediate neighborhood of the P arrival. Since all
systems of geophysical interest -are layered (or worse), we-
conclude that Pseudo-P manifests itself indirectly, by coup-
ling to leaking modal oscillations of a layered system.

We may test the physical meaning of waves such as
Pseudo-P in another way. This wave is presumably coupled to
shear waves radiating into the halfspace; it therefore loses
energy by leakage. |If this is correct, then we may stop the
leakage by putting a perfectly reflecting bottom on the
structure to trap the downward radiating shear waves. The
perfectly trapped (normal) modes of a free elastic plate
should then show coupling to the Pseudo-P wave of an elastic
halfspace. At long wavelengths the appropriate wave is the
extensional, or plate wave, whose velocity of propagation is

given by the formula:

CP 133.)'
21 —_— = g | — w——mm=:
( ) [ga. C')-

This has been evaluated for various Poisson constants and
plotted as a normalized arrival time in Fig. 6. The agree-
ment of the plate wave with the Pseudo-P wave is very good,
in the range where the latter exists.

Recent work on early-arriving waves, which are usually
leaking waves, has tended to associate them with progressive
elliptical surface motion as contrasted with the retrograde

motion of Rayleigh waves. Oceanic and continental PL waves,
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as well as the plate wave just cited, fall into this class.
Typical numerical results pertinent to the Pseudo-P have

been applied to (14) with the object of estimating the sense
of the orbital ellipse. A rather flat prograde ellipse is.
found, having its major axis tipped backward about 45 degrees
from the vertical. We may thus think of Pseudo-P>as the
basic progreésive elliptical motion of a halfspace, dual to
the Rayleigh motion. |t manifests itself chiefly in similar

motions of more complicated layered waveguides.
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The liquid/solid interface problem

Having introduced the pseudo-P pulse, we are in a posi-
tion to consider more complicated problems; we expect to
find generalizations of the Pseudo-P and Rayleigh waves, as
well as encountering the familiar Stoneley wave. In an ear-
1iéf section, numerical data for this problem were used in a
discussion of the behavior of (14). A complete physical
discussion as well as representative numerical results are
now offered.

The Stoneley wave, which has a velocity less than the
least body wave velocity (usually the liquid velocity), pro-
pagates as a trapped wave with respect to all modes of motion.
As is well known, the Stoneley wave exists for all non-trivial
values of the wave velocities, and has been verified experi-
mentally in recent model work (Roever and Vining, 1959; and
Osborne and Hart, 1945). |If we perturb Lamb's problem by
imposing a liquid halfspace on the surface, the Rayleigh wave
velocity will, for a great many cases, be greater than the
compressional wave velocity in the liquid. The Rayleigh
wave thus excites a radiating P-wave in the liquid, which
serves to abstract energy from the interface. This leaking
Rayleigh wave, or Pseudo-Rayleigh wave, has been discussed
by Strick (1959) in the context of the closed algebraic solu-
tion (Cagniard). |In our earlier discussion of the pulse
solution (1%) we have verified most of the properties dis-

cussed by Strick. The Pseudo-Rayleigh wave is the least
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damped, and hence the most observable, of all the leaking
wave types which arise from lower sheet roots of the period
equation. In the numerical results schematically shown in
Figs. 8 - 13, the Pseudo-Rayleigh wave is shown arriving dir-
ectly after the S-wave, with a pulse width which involves the
initial S motion. When the shear velocity is nearly the same
as the liquid velocity, the Pseudo-Rayleigh wave ceases to
exist., |If c];>B2 the Rayleigh motion is manifest in the
Stoneley wave.

It is to be noted that seeming disagreement exists with
a result in Strick's paper. We show that the Pseudo-Rayleigh
velocity is nearly equal to the true Rayleigh velocity (Fig.
6) as By —.707c,, with considerable disagreement as By—>cC-
Strick showed that the two velocities were always the same.
We have defined the pulse velocity by the velocity of the
pulse envelope maximum, while Strick computed the velocity
of a zero-crossing in the pulse. Thus no contradiction actu-
ally exists. Details about the signal as 62—901 must be re-
solved by numerical evaluation of the closed form solution.

The generalization, for the liquid/solid interface, of
the Pseudo-P pulse is shown in Figs. 8 - 13. The pole is
on the Riemann sheet appropriate to radiation as shear waves
and as P-waves in the liquid, but describing trapped P-waves
in the solid, namely the sheet (--+). The figures show
that Pseudo-P is little affected by the liquid when a poor

impedance match occurs between the media. When one or both
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of the solid velocities is near to or less than Cys Pseudo-P
differs considerably in breadth and velocity from the "stan-
dard" in Lamb's problem.

If B,<cy, the sheet (+=+) is relevant to the motion
when r/Bo >t >r/cy. It is seen in the figures that a root
occurs with a velocity roughly 1.% - 1.5 times the shear vel-
ocity. The pulse breadth (17) is so great that we can hardly
regard this wave as easily observable. |Its amplitude must
be quite small in view of the long times at which it arrives.
We suggest that it may be a manifestation of Pseudo-P motion,
much as the Rayleigh motion is described by two different
branches, depending as c]<fﬁ2, or vice versa. This is pro-
bably the same root encountered by Strick, by a zero-crossing
formula, with a velocity 42 times the shear velocity.

Figure 12 deserves special comment. |t shows the
effect on the Pseudo-P and Pseudo-Rayleigh waves of varying
the density ratio. 62/c2 = .43 is chosen to insure that
Pseudo-P is not degenerate. When Py becomes greater than p,,
the increased impedance of the liquid rapidly suppresses the
free motion of the solid. The effect is less drastic on
Pseudo-P than on Pseudo-Rayleigh, since the former is largely
a compressional motion parallel to the interface and involves

less coupling from solid to liquid.
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The solid/solid interface problem:

Numerical results for this problem will‘be reported in
a separate paper. Due to the increased number of parameters
involved, many figures will be required to even outline the
general behavior of the pseudo-waves. The following general
results may be mentioned here.

If the slow halfspace is viewed as a perturbation of
the faster medium, we find pseudo-P and pseudo-Rayleigh
coupled to the P and S waves of the faster medium, with radi-
ation into the slower material. |If the faster medium is
viewed as a perturbation of the slower, we find that it sup-
presses the pseudo-waves in the slower material, although
roots may be found which are trivial in the sense that they
do not contribute appreciably to the signal. The true
Stoneley wave for this problem appears as a very special
case of the pseudo-Rayleigh wave in the faster medium, when
its velocity turns out to be slower than all four body wave
velocities. Gilbert and Laster have treated this problem
from the point of view of the exact (Cagniard) solution,
and our numerical results should provide a valuable comple-

ment to their detailed discussion.
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Appendix 1

In this appendix we provide a little more detail regard-
ing ﬁhe assertions in the introduction. We c]aimeﬂ that
equations (2) and (3) may be applied to the deduction of
leaking mode dispersion in plane seismic waveguides with any
number of layers. We also stated that problems involving two
halfspaces (and any number of layers) are susceptible to the
same equations if the results regarding permissible Riemann
surfaces are generalized. This latter point, in particular,
formed an integral part of the discussion on leaking inter-
face waves. Enough steps will be demonstrated to enable the
reader familiar with the author's previous paper (Phinney,
1961), denoted by |, to derive the results stated.

Generalization to multilayered waveguides:

|f we assume a structure consisting of m - 1 solid lay-
ers bounded above by a free surface and bounded below by a
solid halfspace, we may write the response as a ratio of two
determinants of order 4m - 2.
(B-1) Qj/f = AJ-/A
Both expressions are even in the variables a,, a; (i<m).
Only the variables a, aé generate branch cuts in the s
(=iw) plane. As these quantities occur in only two wave
potentiais, they appear in only two columns of either deter-
minant. Inspection of equation (4-276) in Ewing, Jardetzky,
and Press, (1957), showing the form of the determinant,

shows that we may write:
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(B-2) A = ay + aja, + aea$ + a3ama$ = f
Aj=b +b]a +bam+b3ama,;=g

The expressions (B-2) may now be substituted into {1) and
the development of paper | carried out. We refer to equa-
tions A-1, A-2, . . which are located in the appendix to |.

Equations A-1 through A-3 remain unchanged under the use
of (B-2), and (A-4) may be deleted. The first sheet modal
contribution to the signal is described by (A-5). A general-
ization of the response factor (A-6) yields:

(8-3) F(s,k = (asj bﬂ*b%*bdwéaw,]

3t 55,

!
The development in | continues; if e and a. are considered
where a, and aé appear in |, we need only to rewrite the
expressions for the response factors as they are transformed.

(A-9) becomes:

(B-4) E (5., k)= %;- % - b,+b.w-.-b1;";"éa_¢-4~'_ b.+b,dn+6.;.'+b,er.d-.'

B %{(bﬁb, ,(,,')(a,gfa,dm) — (b, + 5,“..)(4, 4, t¥...)}

(A-11) now takes the form:

¥ X
(851 F G 4)= Lo - T = 2o badlarad) - (b,w,«.')(q.m‘«;)}

(A-14) becomes:

(8-6) E ’(s,,l«)]ﬂ= {{ . .;‘*[( by + ba)a,+as4.) ~ (b, + b o)(a, +4, d,..}]}

b s=%
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which is evaluated (subscript n) at the roots of ™
1
Now: fX - f = -2am(a2 - a3am). When f* = 0 fn =
1 1
2a (ap + a3am)- Also: a, +aja = a (as + aga ). (B-6)

thus reduces to:

pr + .b dn”dm/(b:_'f'b.; 4, )Jn
B-7 I k = l N = E 5
(8-71 6,0 E3) [Fe,h)]
which is the same result obtained in 1 (eq. A-16). F; and

F;' may be treated in the same manner, yielding the analogous

result, which [s stated in equations (A-25) and (A-26).
Evaluation of the contribution PBP follows the same lines,
yielding equations (A-37) and (A-38) as written.

We conclude that the results of paper | may be taken
over with only minor alterations. The exact functional
dependence of the ai and the bi on w and k differs from case
to case and therefore defines an Fl(sn,k) and a Qﬁ which
carry all the specific information about the model not given

directly by the period equation f = 0.

Generalization to two halfspaces (three or four branch cuts].

Two solid halfspaces or one solid halfspace and one
liquid halfspace are considered as bounding a plane layered
seismic waveguide. Medium 1 occupies z<0 and medium 2 occu-
pies z>D >0. One or more layers occupy the region D >z >0.
Since the existence of these finite layers does not increase
the number of branch points, it is unnecessary to acknowledge

their existence in the following discussion.
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Using the development of paper |, we may locate the
singularities in the complex s-plane. |t is sufficient to
restrict consideration to the upper half plane. There will
be four branch points in the upper half plane, joined by cuts
to s = i@ . Since the layer velocities C1> Bys Cos Bp, may
satisfy various inequalities among themselves, we merely
call them Vis Voo v3, V) s where Vi <v2‘<v3 <Vy- The radi-
cals generating the branch cuts will be of the form

\& ==Jk2 + se/v? =Jk2 - w?/v? 3 the branch points will

consequently lie at s = kv (Figure 15).

We denote a Riemann sheet by a sequence of p's and m's.
For example, (pmmp) denotes the sheet where Relﬁ >0,
Red, < 0, Reﬂé <0, and ReVy >0. This notation refers to
the velocities arranged in increasing order of magnitude,
and differs from the (4+--+) notation used in the main text,
which refers to specific velocities. The single integral
solution (2) will be represented by the symbol X. The ap-
propriate Riemann sheet will be designated by the symbol,

e.g. (pmmp), as an argument of the symbol X. For example:

e N
(8-8) 4A 3 | T, (k0 k gﬁr [Fs,0] dk = Xpy = X(mp)

=0 SE
An algebraic sign is also necessary to specify the result.
In | the individual branch line and pole contributions

behaved as follows:



Top sheet poles: Pp = X, = X(pp): all r,t

First branch line: PBS ==X =-X(pp): t.>r/52 = r/v]
=Xy ==X(mp): t >r/vI

Second branch line: PBP = Xll = X(mp): t'>r/c2 = r/v2

X111 =-X(mm) : {:}r/v2
When all contributions are summed, we find:

X(pp) contributes when t.>r/v]

X(mp) contributes when r/v]'>t >r/v2

-X(mm) contributes when t>r/v,
subject to the restriction that roots on the lower two
sheets contribute only over the range of k such that
!m[wn(kﬂ >0, k being real and positive (or with a very small
negative imaginary part ).

The evaluation of PBP was typical of the result to be
obtained if one of several branch cuts is evaluated. Suppose
that there are four branch cuts; consider the way in which
PBB will transform under the contour deformations of | (Fig.
16). The original branch line integral on the top sheet will
have f(pppp) and f(ppmp) as factors in the denominator, after
the two sides of the branch line contour have been algebra-
ically combined into a single contour on the right side of
the cut. |If this contour is deformed into the second quad-
rant by a 90O counterclockwise rotation, all the quantities
in the integrand go onto the lower sheet with respect to

U., ﬂé, and Ué. l. e., f(pppp) —=7(mmmp) and f(ppmp)—>
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f(mmpp). Since the contour did not cross the fourth
branch cut in being deformed, the fourth index remains
unchanged.

Following the technique employed in |, it may be even-
tually concluded that when t >r/v3, modal contributions
result, in the form of the terms X(mmpp) and -X(mmmp). When
t.(r/WB, the contour integrals in the s-plane converge only
if they are transformed in a way which causes both terms to
P

vanish. In general, PB] will transform like P will

BS® B2

behave like PBP; PB3 and Pgu behave similarly, as we have

outlined above. A table of all modal contributions may then

be constructed:

Top sheet poles: PR = X(pppp) all r,t
First branch line: Pgp,= -X(pppp) t >'r/v]
-X(mppp) t >r/v,
Second branch line: Pp,= X (mppp) t >r/vs
-X (mmpp) t >r/v,
Third branch line: PBB= X (mmpp) t ;»r/v3
=X (mmmp ) t >~r/v3
Fourth branch line: PBu= X (mmmp ) t > r/vlL
=X (mmmm) t >r/vy

Summation of the terms in this table yields the
following statements defining the permissible Riemann

sheets for different values of time.
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X(pppp) t >r/v,
X (mppp) r/vy >t >r/vy
X (mmpp) r/vo >t >r/vs
X (mmmp ) l’/v3 >t >r/v4
=X (mmmm ) t ?f'/V4

These results are subject to the restriction that roots on
the lower four sheets contribute only over the range of k
such that Imﬁmn(kﬂ >0, where k lies on a contour running

from 0 to @ just below the real positive k-axis.
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Appendix 2

It is easily shown that the exact closed form solution
by Cagniard's method yields restrictions on pole contribu-
tions from the lower Riemann sheets analogous to those found
by the more traditional analysis. To simplify the algebra,
we set h =z = 0. This method is, of course, applicable only
to the unlayered, simple interface problem.

The Fourier transform of x(t) may be reduced to a one-

sided transform by virtue of x(t) vanishing prior to t= 0:

w

w . .
X = j x(t) e 19tgt - fx(t) e~ 1®tyy

—00 [~]

Setting up steady state solutions of the wave equation which

satisfy the boundary conditions on the interface, we obtain:

o0
X = A S(w) jg k) k Jy(kr) dk
TEw,R)

where S(w) is the Fourier transform of the source time
dependence.

We now consider the solution at sufficiently long range
that we may approximate the Bessel function and drop the
inward traveling wave.

_ 4 (2) (2)
Jp(kr) = Hp (kr) + Hp (kr) —> Hp (kr) ~~

]ﬁﬁ;‘ exp [-l(kr - /4 - pn/gj
Then:
X = A S(w) 92]1'(9 + 2)’ f f($::} % e—ikr P
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If we set u = k/w, then dk = @ du and:

T o As(w) M +3) /2 / (@,uw) (1} o-Tuary g,
f w,um)

Now set T = ur: du = dt/r:

L 3
s(w) e2Mi(p + %)]Z]ETF[Q B ;)(_raz)“»r% o~V g
-]

For solvable cases (simple interface problem) g and f are

>

b
Il
>

homogeneous in w. |f f and g are now factored, the result-
ing power of w will just be the difference in homogeneous
degree of f and g. We set this equal to N - 2 to conform

with the convention used in the main text.

o0
_ dm3 1 .2 i 3
X = A S(w) eznl(p+5) 2/ wN-2 wzr'e‘(g 1,%5/r) 12 e™'®%
T%l,réri
» «dT

When S(w) = 1, the source is a delta function; when
S(w) = 1/iw, the source is a unit step. By taking S(w) =
I/Jiw, we simplify the analysis as well as represent a source

somewhere between the step and delta function.

1aTmi . o ‘ |} p
= Ay2/1 eZPT N-1 -2 ‘[g%I,T/r) 72 e~ 1®T g4q

The time function corresponding to X is now obtained by

inspection:

X &=

2/m 2P -2 ef%(N—])ni g { t% ﬂil;i[il}

dtN-T f(1,t/r)

where the variable t runs from 0 toe® along the real T-axis.
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The radicals 'x& which generate branch cuts must be

expressed in terms of 7.

a

<

f = Jk-2 = wlI -— = o
: r
If the Riemann sheets are defined as before, with Re \ﬁ = 0
defining the cuts, we may locate the singularities in the
t-plane.(Fig. 17). We assume t to lie along the bottom bank
of the cut.

When t lies between two of the branch points in the
t-plane, the value of g/f is affected by any poles near
T =t. There are none on the top sheet except the surface
wave pole lying on the real axis at t >r/v]. There may be
poles on lower sheets, however, and one which is contiguous
to the point t will affect the signal in that range. This
is made clear by redrawing'the branch cuts so as to expose
those portions of the lower sheets which represent a con-
tinuation of the real t-axis into the first quadrant.
Portions of the t-plane (Fig. 18) so cut which do not lie
on the first sheet are indicated by the conventional notation
(mppp), (mmpp), . . etc. Note that for the interface wave
problem (mmmm) and (pppp) have the same poles.

The result demonstrated in the previous appendix and
used in the main text is now apparent from inspection of
the figure. When t lies between the arrival times of two

body waves, the signal may be influenced by zeroes of f
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lying on the Riemann sheet contiguous to t. This is the
same conclusion obtained by the longer analysis based on
the straightforward evaluation of the double integral
form of the solution. Table 2 in the main text will be
seen to be equivalent to the results demonstrated graph-
ically in Figure 18. |

We might write down a formula which isolates the
effect of such a lower sheet pole in the t-plane and at-
tempt a close comparison with the pulse expression (14)
obtained in the main text. The difference between the two
representations is too great, however: |In the t-plane,
proximity of the branch point manifests itself by multi-
plying the effect of the pole. The analysis in this paper
leaking up to (14) separates the pole contributions from
the body waves in such a way that they add to give the

total signal.
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List of Captions

Three classes of interface wave problem.
k-plane and §-plane for integration of (10).

Q-plane, [ﬁo -(5/2)gj , and x as functions of t.
Stone]ey wave: h =0, =20

0-plane, [#, -(5/9)¢) and x as functions of t.
Stoneley wave: O, 7= 0.

Q-plane, [@, -(5/2)#] , and x as functions of t.
Pseudo-Rayleigh wave: h = 0, 7 #0

Normalized arrival time diagram for Lamb's
problem. Effect of variable az/cz.

Coupling of Pseudo-P to group velocity of first
PL mode: 1liquid layer overlying a solid half-
space. Effect of variable By/cy. Pseudo-P
velocities for Cases 2, 8, 9 shown by arrows.

Normalized arrival time diagram for liquij/so]id
interface. Effect of variable 52/02' cs/cy = 5.

Normalized arrival time diagram for 1iquij/so]id
interface. Effect of variable Bo/cs. cp/cy = 3.

Arrival time diagram of Fig. 9 renormalized to
arrival of the shear wave.

Normalized arrival time diagram for variable co.

Normalized arrival time diagram for variable
density contrast.

Normalized arrival time diagram for liquid/solid
interface. Effect of variable 52/ -
cy/cy = 1.20.
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Numerical solution of complex mode problems

Description of problem:

The complex mode problems described in the main body
of this thesis were sclved by a series of programs coded
for the Burroughs 220 computer. The purpose of the program
is to find complex zeroes (mn) of the period funétion (f) as
a function of the complex parameter k, and to obtain the
derivative dwo,/dk at each zero. Stated otherwise, it ob-
tains the mapping of the k-plane onto the cut w, plane, and
computes the complex scale factor of the mapping. The
following problems may be handled:

1) Liquid layer over a solid halfspace

2) Solid layer over a solid halfspace

3) Solid halfspace with a free surface

4) Liquid/solid halfspaces in contact

5) Solid/solid halfspaces in contact

The root finding procedure and complex arithmetic
are common to all these variations. Explicit coding of
the individual functions was employed, since the machine
is too slow for general n-layered computations.

Description of computation:

1. Input values of k and w are generated: manually
from the keyboard, or internally, depending on console
switch settings. k is taken as a parameter and w as a

trial value.
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2. f(k,w) is evaluated at k and at k + Bk, the
increment being fixed in storage. f(k + dk) = f(k) is
used to estimate the next trial value of @w by Newton's
method (in complex variables). When the correction term
Aw becomes less than m*0k, the machine assumes that a
root has been found. For normalized inputs between 0.1
and 5.0, m = 20 and b®k = 10'6 are sufficient to insure
repeatability to 5 decimal places. Due to the way in which
f is expressed, the magnitude of its individual terms
varies as some power (4 or more) of the magnitude of the
input variables. Consequently the increment used in the
root finding (6k) must be adjusted manually depending on
the magnitude of the input quantities. |If 8k is too small,
overflow will occur in the Newton extrapolation, and if 0Bk
is too large, inaccuracy is a consequence.

£
3. (variations 1 and 2 only) The functions a/fku)«

and %{)ul whfch have been explicitl]y coded, are evalua-
af
ted, and U, defined by = SR/gi , is obtained. In
w

investigations of the saddle point one is interested in
following the complex locus where Im U = 0. It is there-
fore necessary to know U to 4+ decimal places. Fluctua-
tions in the root w, (due to cutting off the iterations)

in the 5th decimal place result in fluctuations of U in the
bth decimal place. This magnification of error occurs even
though the derivatives are obtained by analytic formulae

rather than by taking small differences. Thus proper
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selection of the increment B8k is more crucial in obtain-
ing the desired accuracy in the quantity U than in know-
ing the behavior of mn(k).

4, Qutput of the complex numbers k, w,, and U occurs
on the on-line printer. For the non-dispersive problems
(variations 3-5) U is set equal to zero.

5. (variations 1 and 2) The setting of switches
on the console determines the selection of new input values
of k by arithmetic increments. The new trial value of w
is estimated by: w(trial) - w(old) = U(old) X increment
of k.

(Variations 3 - 5) The machine awaits input of
one or more new physical parameters on the keyboard. Sel-
ection of the parameters of interest is accomplished by
elementary modifications of the stored program. These
parameters are also printed out in the ensuing output of
k and w.

From two to four radicals in f are responsible for
the existence of 4 to 16 Riemann surfaces. The sign of
the real part oﬂ each radical is chosen + or - depending
on the setting of certain switches on the conscle. When-
ever data (k and ) is introduced at the keyboard, an
output occurs, specifying the Riemann sheet. |In the
root finding process f appears to the computer as a sin-
gle valued function analytic everywhere except along the

branch cut, where it is discontinuous. Newton's method
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thus breaks down near the branch cut. |t has been pos-
sible, by judicious choice of inputs, to get close enough
to the cut from either side for the behavior of the roots
w, and of the group velocity to be apparent.

A framework has been established which permits solu-
tion of similar problems with a minimum of recoding. |t
is necessary only to recode the explicit evaluation of
Fla, k), %E and %% . This is simplified by the
following routines:

1) An intérpreter which operates on sequentially
stored pseudo-instructions in the complex arithmetic mode.
Square root and the hyperbolic functions are included in
this mode.

2) Routines which evaluate total derivatives by
summation of a signal flow graph. 1t is necessary only

to explicitly evaluate individual partial derivatives in

the complex mode.



11I~-5

Signal flow graphs as a coding aid

The concept of a signal flow graph may be used as
a programming aid in evaluating total derivatives. We
will describe a systematic hand programming procedure.
Qur description, however, might readily be taken as the
framework of a compiler with the ability to generate an
equivalent program automatically. For example: f = f(w,
K, “I’“g""'uj""“n)' The uj may be functions of each
other and functions cther variables. The chain of depen-
dence reaches back eventually to the two independent
variables w and k; to define this chain, one must write
down all the explicit formulae relating the variables.

. 3¢ ‘
The total derivatives %% and gt are obtained by mul-
tilinear sums of all the partial derivatives relating the

intermediate variables. Explicit expressions for %%z

and %% may be too complicated to consider; the par-
U, . . :
tial derivatives 5;— are easily written down. A sig-
p

nal flow graph provides a formalism by which the partial
derivatives may be summed.

Signal flow graphs were devised by Mason (1953, 1956)
as an aid in the computation of linear gain in feedback
amplifiers. The application described here is actually
the basic case in which feedback does not enter. The
application of the feedback portion of the theory to more

general problems having loops of dependence can be easily
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made, when and if this becomes desirable. We offer here
a short description of the "forward" type of flow graph.
1. When u is a function of v, we write u = f(v).

The corresponding flow graph is:
v

) .8
B

o
1 &)

(By "function" we mean an explicit relation). The linear

relation obtained from u = f(v) is du = g%-dv. The

flow graph may be considered to represent this expression

also. We assign a "linear gain" g, to the directed line

vu
from v to u and write: du = gvudv.
2. Let X1 be an explicit function of Xps Xgs X -
Then Ry - f(xe’XB’xﬂ)' The corresponding graph is then:
’XL L\\
=My S o
£ ,/,.,-—‘3(_) 'Xn

r\/
%0

We now write the linear relation between the differentials:

_ o Ik ,
dx]-— §de2-+ §de3 + 3&dx4
Setting 2% = g.., the formula becomes:
Ju; 1] 4
dx] = 921dX2 + gBIdXB + guldxu = zg:gi]dxi

The gj; are called the branch gains. "Transmission" of
signal (dependence) along a branch involves multiplication
by the branch gain, and confluence of branches going into
a node represents summation.

3. Complicated total derivatives may be represented

by flow graphs using combinations based on the simple
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conventions just described. For example, the following

set of equations and flow graph are equivalent:

% vV
f=1(v,y)
v = v(iu,w) {
y = y(u,w) A
u = u(x) 3
w = w(u,x) by -~ -’

df/dx is the sum of all the linear path gains connecting

x to f. There are 6 forward flow paths from x to f. Thus:

df = Jw v 3f + 9w dy of + Jdu 3v of + Ju sy of
dax X OW 3V DX 3W 3Y DX U 9V  IX 3U 3y
HoufE oyl ko Ay o
IX U 3WIY DX 3U OW DV

The fifth term (underlined) is the total path gain along

the path x- u- w- y- f (heavy line in the graph). This
result could be obtained by careful inspection of the defin-
ing equations. When more variables occur, however, the
possibility of error in such a procedure increases, and

the flow graph is a convenient visual representation of

the problem.

4. We now formulate a procedure for evaluating a
total derivative, dx]/dxn, using the organization afforded
by the signal flow graph. First, as many intermediate
variables are defined as is convenient, so that the partial
(branch) gains gj; are algebraically simple. The variables
(nodes) are numbered from 1 to n as follows:

x)] is the output variable
Xx. is the input variable. |f there are 2 or

n

more input variables, these are assigned indices n,



n-1, n-2,

Every individual branch is directed from a
nigher numbered node to a lower numbered node.
This is possible when feedback is absent. When
feedback is present, appropriate transformations
will put the graph in a non-feedback configuration
(see Mason, 1953, 1956).

When n = 5, the most general graph of the type described

iss

5. The path gains g are non-zero only if i) j.

99
These quantities may be computed individually and stored
in a triangular array. Many of these gains will be zero
if no branch exists between the pair of nodes; the graph
in paragraph 3 may be thought of as having a branch from
v to y with gain By = 0. We then define dx]/dxn to be

the gain of the matrix (array).

6. h, = dx]/dxp is defined as the gain of the sub-

p
matrix obtained by deleting all the nodes Xq of index
greater than p. Then:

hp = 0o

iy = 31 * 9352

B == if h = ]

m= 3 Smplp
p=i
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This formula is the basis for a computer program which
computes successive hp for p = 25 F3 ssaswns sn, from the

stored matrix o h. is the desired matrix gain. When

j=

more than one independent variable is involved, h h

n’ n_]’

...etc. are the derivatives of X3 with respect to the
varijous inputs. When more than one dependent (output)
variable is involved, these may be set up individually
in the role of Xy .
T. Total derivatives are evaluated explicitly on
the Burroughs 220 as follows (in the complex mode):
a. Explicit evaluation of the partial gains
must be performed by hand coded complex inter-
pretive commands.
‘b. A special interpretive command specifying
i and j stores the gains in the proper matrix locations.
c. The summation routine operates on the

matrix, producing a table of hp.
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