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Abstract

Arrays of broadly responsive, chemically sensitive detectors have been used for many years as
a means of detecting a wide array of vapors. These systems have been used in fields ranging
from analysis of wines and coffees to land mine and nerve agent detection to disease diagnosis.
Despite their successes, these systems have been plagued by problems, namely a lack of sensor
diversity, miniscule libraries of previously-recognized analytes, significant sensor drift, and weak
signal processing capabilities compared to the mammalian olfactory system.

This work details progress toward the alleviation of those problems with regard to arrays of
polymer/carbon-black composite chemiresistor detectors developed at Caltech. Specifically, it has
been determined that larger sensor arrays allow the suitable recognition of more analytes, and a
greater chance of successful discrimination between a given analyte others to which it is similar.
Additionally, new classes of percolative, low carbon-black sensors have been developed that yield
far higher sensitivities and stronger responses than traditional sensors, as well as responses that are
exponential with concentration. Such sensors allow for recognition of analytes using lower precision
electronics than was previously realizable. A method for calibrating the system with few analyte
exposures has also been developed from an analysis of the correlations between sensor/analyte
response changes with time over groups of analytes and sensors.

Further work has allowed algorithmic optimizations to assign functional group identities and
certain physiochemical information such as molar volume and octanol/water partition coefficients
to analytes that are completely unknown to the system, using a model built upon other known
analytes. Additionally, a comparison of linear and nonlinear classifiers is performed to identify data
characteristics that might be more suited to linear classifiers such as Fisher’s Linear Discriminant
or nonlinear ones such as Artificial Neural Networks.

These improvements to chemical vapor detector arrays and the processing of their data allow the
extraction of more useful information and the minimization of time spent training and calibrating
the system. By constructing more appropriate sensor arrays, establishing non-comprehensive
but extensive analyte response libraries, choosing useful algorithmic classifiers, and performing
timely and mimimal calibration, the utility of detector systems can be maximized while minimizing

maintenance.
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Chapter 1

Introduction

1.1 History

Detection of chemical vapors has been performed analytically since the development of early vapor-
specific sensors for the selective detection of light gases such as water vapor or carbon monoxide.
Such sensors have been made for a number of different vapors, are often of very low cost, but have
the obvious disadvantage of detecting only one analyte. Thus, one would need in principle one
sensor for each analyte of interest. Clearly, for situations in which one would prefer to analyze a
larger number of analytes, the number of sensors required to do so would grow very quickly.
Alternatively, one can use a finite number of sensors, each of which responds to a wide variety of
analytes. While each sensor in such a broadly-responsive system shows some measurable response
to practically all analytes, the sensor array as a whole shows a slightly different response to each
analyte it encounters. The original method, as detailed by Persaud and Dodd,! employs a series
of sintered, polycrystalline semiconductor metal oxide detectors. Oxygen in the air oxidizes the
semiconductor material and remains at the surface, forming various oxygen species (07, 05, 0*).
This process is reversible, and reaches an equilibrium state, at which point the semiconductor is
effectively p-type doped relative to the same semiconductor in a vacuum, resulting in a greater
deal of band-bending at the surface of the semiconductor particles, and thus reduced resistance.?
The introduction of reducing analyte vapors (such as hydrocarbons) results in consumption of the
surface oxide species, changing the equilibrium at the surface, and a resulting increase in resistance.
Later methods have typically used a series of thin polymer films to absorb vapor, which is then
transduced by any of a variety of methods. This approach has been used by a number of groups

starting in the early 1980s.> Transduction methods used have included sensitive quartz crystal

7-10 5,11

resonator, and since then methods that measure optical changes,” " resistance changes,”"" and

mass changes® 1213

in sensing materials have been developed (among others). In these cases, the
sensing medium is typically a polymer, and as such all of these systems effectively measure the

partition coeffecient for a given polymer/vapor combination for each detector in an array. This
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partition coefficient is measured indirectly by the specific measurement scheme chosen, whether it
be changes in optical absorption upon analyte uptake of a dye impregnated in the material’ or a

change in deflection of a microcantilever upon a sorption-based mass change.!?

1.2 Implementation of Chemical Vapor Detection System at Cal-

tech

Work in the Lewis group at Caltech has focused on conductive composites of carbon-black and
polymers.'*!> The carbon-black, which is conductive, allows current to pass across the sensor
enabling resistance measurements to be made. Because the polymeric component expands when
it absorbs vapor, the carbon-black particles necessarily grow farther apart. As such, the resistance
of the composite increases upon vapor exposure. This change is measured as AR,;/R;, where AR,
represents the equilibrium resistance change upon exposure to vapor, and R; indicates the baseline
resistance before exposure.'*!® The AR,,/R, metric has been shown to be linear with concentration
and mass uptake over a wide range of vapor concentrations,!” and is fairly consistent over different
carbon-black loadings in the composite.'* Analysis of the response data from such systems can
be accomplished with any standard multivariate tool; among those used most frequently in our
laboratory are Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA), and
Artificial Neural Networks (ANN5s).!820 Each of these methods is used to connect an unknown,
measured data cluster to information that has been previously collected by the detector array. These
techniques of sensor fabrication and data analysis are described at length in later chapters in this

thesis.

1.3 Requirements for Use of Chemical Vapor Detection Systems

Using systems like that developed at Caltech, or any of the other similar systems mentioned, allows
for the detection and recognition of any analyte, assuming a number of restrictive criteria are
met. First, a detector array must contain at least a few sensors that are sensitive to any analyte of
interest, and selective enough to distinguish between it and all other analytes.!®?! Additionally,
these sensors must be stable enough to elicit consistent responses from the detector array during
both training phases and later use. Finally, one need have trained the detector array on all potential
analytes that the detector array might encounter, and employ a pattern-classification algorithm that
is suitable for the analyte signatures that will be generated. For example, some classifiers work
well for binary separations of data that is largely multivariate Gaussian (for example, LDA), while

others work well for clustering many groups of highly nonlinear data (for example, ANN’s).!®
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1.4 Limitations of Broadly-responsive Detector Array Systems

These conditions dramatically reduce the usability of any sensor array system, particularly for
situations in which one does not know what analytes might be encountered “in the field.” Without
this knowledge, it is not feasible to tailor a detector array with a suitable number of task-appropriate
detectors, and impossible to train the detector array on literally every analyte. Even if it were
possible to do so, retraining would be necessary occasionally due to drift in detector responses,
requiring the entire exercise to be frequently repeated. Finally, assuming one could attain all of this,
choosing the wrong classification algorithm could result in extremely poor results, either because
the algorithm lacks sufficient plasticity to model nonlinear data, or because a highly plastic model
was overtrained on an insufficient amount of training data.

This situation prevents the widespread adoption of portable, broadly-responsive detector array
systems, and has restricted their applications to more mundane uses in which the user knows
approximately what to search for. As such, these systems are used less as the ”electronic noses”
they were designed to be, but more like the earlier single-analyte detectors, with the exception that
the ”single analyte” can vary. Rarely, however, have they been used in situations in which the
user does not know what analyte may be encountered, because of the sensor selection and training

required.

1.5 Outline of This Thesis

Methods are needed to determine appropriate detector array compositions and perform some
degree of analyte identification with little or no a priori knowledge of the set of unknown analytes
and concentrations that may be encountered. Additionally, some means of calibrating the device
experimentally is necessary to reduce the overall training burden. This work seeks to address each
of these burdens in turn. In this work, it is determined whether the size of the detector array
can be reduced, or alternatively whether having a larger detector array can overcome problems
encountered by lacking a priori knowledge of analyte identity. It will also be demonstrated that a
wealth of information pertaining to analyte physiochemical characteristics, including functionality,
can be assigned to an unknown analyte that has never been encountered by the detector array.
Additionally, the development of a new, low carbon-black detector will be detailed that shows
extremely high sensitivities at low concentration, to better distinguish among low-concentrations
of similar analytes. Next, a method of recalibrating the detector array system using a small number
of calibrant exposures is described. Finally, linear and nonlinear classification algorithms will be
evaluated and compared on a wide variety of datasets. Ultimately, the results of this work should

increase the usability of arrays of broadly-responsive chemical vapor detectors.
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Chapter 2

Classification Performance of
Polymer/Carbon-Black Composite
Vapor Detector Arrays as a Function of
Array Size and Detector Composition

2.1 Abstract

The vapor classification performance of arrays of conducting polymer composite vapor detectors
has been evaluated as a function of the number and type of detectors in an array. Quantitative
performance comparisons were facilitated by challenging a collection of detector arrays with va-
por discrimination tasks that were sufficiently difficult that at least some of the arrays did not
exhibit perfect classification ability for all of the tasks of interest. Specific discrimination tasks
involved differentiating between low concentration (< 1% of the vapor pressure) exposures to
1-propanol versus 2-propanol, low concentration exposures to n-hexane versus n-heptane, and
differentiating between compositionally similar mixtures of closely related analytes, such as 9.37
ppm m-xylene with 10.2 ppm p-xylene versus 7.67 ppm m-xylene with 12.4 ppm p-xylene. A de-
cision boundary was developed using a cross-validated Fisher linear discriminant algorithm on a
training set of analyte presentations and the resulting chemometric model was then used to classify
a subsequent collection of test analyte presentations to the array being evaluated. In other cases,
classification performance was evaluated using the Fisher linear discriminant and a leave-one-out
(LOO) cross-validation procedure. For nearly all of the discrimination tasks investigated in this
work, classification performance either increased or did not significantly decrease as the number
of chemically different detectors in the array increased. Any given subset of the full array of de-
tectors, selected because it yielded the best classification performance at a given array size for one
particular task, was invariably outperformed by a different subset of detectors, and by the entire

array of 20 chemically diverse detectors when used in at least one other vapor discrimination task.
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Arrays of detectors were nevertheless identified that yielded robust discrimination performance
between compositionally close mixtures of 1-propanol and 2-propanol, n-hexane and n-heptane,
and m-xylene and p-xylene, attesting to the excellent analyte classification performance that can be

obtained through the use of such semi-selective vapor detector arrays.

2.2 Introduction

A significant issue in the use of arrays of semi-selective vapor detectors'? is the dependence of
analyte classification performance on the number of detectors in the array. Patel et al. have claimed
that four conducting polymer composite detectors are sufficient to provide a “universal solvent
detector”.® Park et al. found that for certain analyte classification tasks, various arrays of three
to six surface acoustic wave (SAW) detectors provided mutually comparable results, leading these
authors to conclude that increasing the number of detectors in an array did not significantly improve
classification performance.* However, measurements using conducting polymer composite vapor
detectors have indicated that the performance in certain vapor classification tasks can improve as
the number of different detectors in the array is increased.” The relationship between the number

of detectors and overall system performance is important because significant engineering tradeoffs

6-10 9,11,12

are faced for surface acoustic wave devices,*'" quartz crystal microbalances, conducting

13,14 15,16 17,18

polymer detectors, and dye-impregnated optical beads or optical fibers as the number
of detectors is increased. For example, more SAW detectors require increased power consumption;
increased numbers of optical detectors require higher pixel counts in the focal plane of the detecting
camera; and increased numbers of chemiresistors require more rapid analog-to-digital convertors
and/ or readout circuitry parallelization to maintain the same individual detector data acquisition
rate. Increasing the number of detectors in an array also requires more computational power to
preprocess, process, and analyze the resulting data stream. The focus of thework reported herein
is to address in a quantitative fashion the performance of differently sized arrays of semi-selective
vapor detectors for selected vapor detection tasks.

The vapor detectors that we have used for this purpose are chemically sensitive resistors fabri-
cated from composites of conductors and insulating organic polymers.>!*2° Sorption of an analyte
into these materials produces a swelling of the film that affects the properties of the percolative net-
work of conductive particles in the composite. The swelling produces a change in the dc electrical
resistance of the detector that is readily read with a multiplexing dc ohmmeter.!* The steady-state
relative differential resistance response of these chemiresistive detectors has been shown to be re-
lated linearly to the concentration of analyte in the vapor phase and resulting mass uptake in the

polymer phase over a reasonable range of analyte concentrations and compositions,?"?* thereby

simplifying the data analysis and signal processing requirements on the detector array output. Fur-
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thermore, it is relatively easy to fabricate a large chemically diverse array of such detectors in which
each detector film has a common conductor, typically carbon-black, but has a different insulating
organic polymer supportmatrix, such as polycaprolactone or polyvinylpyrrolidone, as the resistive
component of the composite.?-2*

For data produced by an array of d detectors, with one descriptor per detector (in our case the
steady-state relative differential response value of the composite), the response, X, to each analyte

presentation can be described as a d-dimensional vector:
d
X = Z CiXi (21)
i=i

with the coefficient of the i dimension of X, ¢;, equaling the response of the i detector in the
array. At the system level, the analyte classification performance of an array of semiselective vapor
detectors is intimately related to the signal processing algorithm used to analyze the data. Many
different signal processing algorithms have been used for vapor detector array data, including prin-
cipal components analysis, knearest neighbor analysis, neural networks, and the visualempirical
region-of-influence method (VERI) .2+28

In previous work from our laboratory, a statistical approach was used to define a quantitative
metric for evaluating the resolving power of a detector array in various vapor detection tasks.>?* A
statistically defined metric is especially informative when the detector response is a linear function
of analyte concentration because in such a case the concentration-normalized analyte patterns do
not change with the concentration of analyte. To evaluate the magnitude of this metric, the points
in a d-dimensional space are projected orthogonally onto a line, reducing the classification problem
from d dimensions to one dimension. When the data are projected onto one dimension, it is desirable
to maximize the distance between the means of the two classes being separated, while minimizing
their within-class variation. Such a ratio can be expressed as a resolution factor, RF (eqn. 2.2),
where d is the distance between the two-class means, and s; and s, are the standard deviations of

the two classes, respectively.?*

RE= ——— 2.2)

One quantitative metric that has been proposed to standardize vapor detector array performance
is a Euclidean distance along the vector defined by the means of the two response clusters of interest
divided by the standard deviation of the clusters along this vector.”? When such a metric is used,
noisy detectors can actually produce a decrease in resolution factor when detectors are added to

the array, because even though new detectors add to the overall information content of the array
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output signal, the additional detectors contribute noise along a direction that is defined by the
vector that runs through the mean response points of a specific analyte pair. If the noise along this
direction is greater than the increased separation along this direction, then the computed resolution
factor will decrease. The use of such a metric thus possesses the drawback that the best line for
separating two clusters may not be the line that connects their mean response points. This drawback
is mitigated by use of the Fisher linear discriminant analysis method, which instead chooses a
projection vector such that the array resolving power is maximized for each analyte pair. Thus,
artifacts from new detectors transferring noise to certain directions in detector space are minimized,
and detectors which provide significant noise, rather than resolving power, for a given task are not
strongly weighted along the optimum vector that is identified by the Fisher linear discriminant
methodology. The RF value produced by Fisher’s linear discriminant is also an inherent property
of the data and is independent of the algorithm that might be used subsequently to assign any
individual data point to a class.?* This resolution factor is basically a multi-dimensional analogue
to the separation factors used to quantify the resolving power of a column in gas chromatography,
with the Fisher RF value serving as a quantitative indication of how distinct two patterns are from
each other considering the optimal direction to analyze the signals and simultaneously taking into
account the distribution of responses upon exposure to the analytes that comprise the solvent pair
of concern.

In previous work, when the performance of various vapor detector arrays was evaluated by
assessing the mean pairwise Fisher resolution factor of the median-performing array of k detectors
out of a total of N detectors (yCi) = 20!/[k!(N-k)!] on a broadly construed set of test vapors, the
system performance increased as the number of chemically different detectors increased. Thus, the
average Fisher resolution factor between pairs of a broadly construed test set of analytes increased as
more detector choices were available to produce the optimally performing vector for resolution of a
specific analyte pair.> A similar result was obtained when the resolution factor of the worst-resolved
pair of analytes in the test set was evaluated.’

Although the Fisher RF value provides a reasonable metric to assess the performance of different
detector arrays that contain the same total number of detectors,” it is not optimal for evaluation of
changes in performance with array size, because the Fisher RF value will never decrease with the
addition of more detectors, no matter how ”noisy”.24 Additionally, the resolution factor is a useful
tool for assessing the separation between clusters inherent in the response of the detector array, but
the magnitude of the RF value does not directly translate to analyte classification performance unless
certain distributional assumptions are satisfied. A good comparative measure of the performance
of arrays of varying sizes is the ability to classify an unknown test analyte, and in fact the frequency
with which a model correctly classifies analyte exposures can decrease with the addition of noisy

detectors. Fisher’s linear discriminant was the most accurate classifier for our array for the tasks
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examined in a closely related previous study,? so it was chosen as the discriminant for this work
as well. A simple threshold was set using the assumption that the projected (one-dimensional)
distributions for each class are Gaussian, in accordance with expectations for the situation in which
the variability in detector response arises from external variation in the state of the system (random
fluctuations in temperature, analyte concentration, etc. during data collection) as opposed to
detector-related drift. Analysis of the actual population distributions of the detector responses
resulting from multiple exposures to a given analyte validated this assumption in that that the
observed population distributions were in accord with expectations for a Gaussian distribution,
within the limits of agreement expected for relatively small sample populations. A hyperplane
orthogonal to w, placed at the proper threshold along the vector, is then used to discriminate
between a pair of analytes. The merit of using the Fisher linear discriminant is that it automatically
weights detectors according to their signal/ noise-based resolving power for the task of concern, as
opposed to forcing a noisy detector to transfer its noise into the performance of the remainder of
the system without realizing a concomitant gain in signal/noise performance for analyte resolution.

To compare quantitatively the relative performance of various detector arrays, the collection
of arrays must be presented with pairs of analytes that will not be perfectly classified by at least
some of the arrays. This was not the case with pairs of single-component organic vapors presented
at relatively high concentration, all of which were perfectly (or nearly so) separated from each
other, including structural isomers, such as o-xylene and m-xylene.3>2%30 As part of this work,
we have challenged a polymer/carbon-black composite detector array with a pair of compounds
that are very chemically similar, H,O and D,0. In addition, it is useful to consider the classification
performance between mixtures of analytes. The responses of the polymer/carbon-black composite
detectors are linear with analyte concentration, and the response to a binary mixture of analytes is
the response of the pure analytes weighted by the mole fraction of analytes in the mixture.*® Thus,
the Euclidean distance between a binary vapor mixture that is 0.50 mole fraction of each constituent
and a binary mixture that is a 0.60:0.40 mole fraction mixture of these same analytes should be
approximately one-tenth of the Euclidean distance between the array responses to the individual
pure analytes. Several different binary mixtures of 1-propanol and 2-propanol, of n-hexane and n-
heptane, and of m-xylene and p-xylene were therefore utilized as part of the present work. Another
method to decrease the discriminating ability of a detector array is to decrease the signal-to-noise
ratio of the individual detectors. Low concentrations of analytes will decrease the detector signal
and therefore reduce the signal-to-noise ratio, broadening the clusters of data in detector space
relative to the separation of their mean values. A number of low concentration (<1% of the vapor
pressure) exposures to 1-propanol, 2-propanol, n-hexane, and n-heptane were therefore studied
and the performance of a variety of detector arrays was also assessed for these specific sensing

tasks.
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Table 2.1: Polymeric component of carbon-black composite vapor detectors.

Detector Set A Set B
1 Poly(ethylene-co-vinyl acetate), 70% Polycaprolactone
vinyl acetate
2 Poly(ethylene oxide) Poly(ethylene-co-vinyl acetate), 40%
vinyl acetate
3 Poly(vinyl pyrrolidone) Poly(ethylene oxide)
4 1,2-Polybutadiene Poly(ethylene glycol)
5 Polycaprolactone Poly(styrene-co-butadiene), ABA
block copolymer, 30% styrene
6 Poly(4-vinyl phenol) Poly(methyloctadecylsiloxane)
7 Poly(vinyl acetate) Poly(vinyl stearate)
8 Cellulose acetate Ethyl cellulose
9 Poly(4-vinyl pyridine) Kraton D-1102
10 Poly(methyl methacrylate) Kraton G-1652M
11 Poly(styrene-co-maleic anhydride) Poly(4-vinyl phenol)
12 Poly(vinyl butyral) Poly(vinyl acetate)
13 Hydroxypropyl cellulose Poly(vinyl pyrrolidone)
14 Ethyl cellulose Polycarbonate
15 Poly(ethylene-co-acrylic acid), 86% Polystyrene
ethylene content
16 Poly(methyloctadecylsiloxane) Polysulfone
17 Poly(ethylene glycol) Poly(methyl methacrylate)
18 Poly(ethylene-co-vinyl acetate) 18% Poly(vinyl butyral)
vinyl acetate
19 Polystyrene Hydroxypropyl cellulose
20 Poly(styrene-co-acrylonitrile) Poly(styrene-co-isoprene), 14% styrene

2.3 Experimental

The acquisition and initial treatment of some of the data analyzed in this paper have been described
in a prior article.”® One detector set used in this collection of experiments has been described
previously and is designated herein as detector Set A (Table 2.1).2 A first data set collected with
these detectors consisted of exposures to two chemically similar analytes, H,O and D0, each at
P/P° = 0.050 where P° is the vapor pressure of the analyte at 21+1°C and P is the partial pressure
of the analyte during the exposure period. Another collection of data consisted of exposures to
n-hexane, n-heptane, 1-propanol, and 2-propanol, each at P/P° = 0.010, 0.0075, 0.0050, and 0.0025.
Data were also collected for mixtures of n-hexane/n-heptane and for mixtures of 2-propanol/1-
propanol at partial pressure ratios of P/P° = 0.025:0.025, 0.027:0.023, 0.021:0.029, and 0.035:0.015
for each solvent pair of interest, with the first P/P° value corresponding to the first member of the
solvent pair listed. Each analyte was exposed to the detectors 140 times for 300 s per exposure,
with a separation of 600 s between exposures. The background gas was oil-free laboratory air that
contained 1.10+0.15 parts per thousand (ppth) of water vapor.

The initial exposures of each run tended to give responses that varied more than those later in

the run. For this reason, the first 40 exposures to each analyte in this data set were rejected. The
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Table 2.2: Description of tasks in series I and II data sets.

Task  Analyte 1 Analyte 2
Component P/P°  Component P/P° Component P/P°  Component P/P°
1 2 1 2

1 H,O 0.050 D,O 0.050

2 1-Propanol  0.010 2-Propanol  0.010

3 1-Propanol  0.0075 2-Propanol  0.0075

4 1-Propanol  0.0050 2-Propanol  0.0050

5 1-Propanol  0.0025 2-Propanol  0.0025

6 n-Heptane  0.010 n-Hexane 0.010

7 n-Heptane  0.0075 n-Hexane 0.0075

8 n-Heptane  0.0050 n-Hexane 0.0050

9 n-Heptane  0.0025 n-Hexane 0.0025

10 1-Propanol  0.0025 2-Propanol 0.0025 § 1-Propanol 0.0023 2-Propanol  0.0027
11 1-Propanol  0.0025 2-Propanol 0.0025 § 1-Propanol 0.0029 2-Propanol 0.0021
12 1-Propanol  0.0025 2-Propanol 0.0025 § 1-Propanol 0.00157 2-Propanol 0.0035
13 1-Propanol  0.0023 2-Propanol 0.0027 § 1-Propanol 0.0029 2-Propanol 0.0021
14 1-Propanol  0.0023 2-Propanol  0.0027 § 1-Propanol 0.0015 2-Propanol 0.0035
15 1-Propanol  0.0029 2-Propanol 0.0021 § 1-Propanol 0.0015 2-Propanol 0.0035
16 n-Heptane  0.0025 n-Hexane 0.0025 | n-Heptane 0.0023 n-Hexane 0.0027
17 n-Heptane  0.0025 n-Hexane 0.0025 | n-Heptane 0.0029 n-Hexane 0.0021
18 n-Heptane  0.0025 n-Hexane 0.0025 § n-Heptane  0.0015 n-Hexane 0.0035
19 n-Heptane  0.0023 n-Hexane 0.0027 | n-Heptane  0.0029 n-Hexane 0.0021
20 n-Heptane  0.0023 n-Hexane 0.0027 § n-Heptane  0.0015 n-Hexane 0.0035
21 n-Heptane  0.0029 n-Hexane 0.0021 | n-Heptane  0.0015 n-Hexane 0.0035
22-3  1-Propanol 0.0011 2-Propanol 0.0009 1-Propanol 0.00090 2-Propanol 0.0011
24-5 n-Heptane 0.0011 n-Hexane 0.0009 n-Heptane  0.00090 n-Hexane 0.0011
26-7  m-Xylene 0.0011 p-Xylene 0.0009] m-Xylene 0.00090 p-Xylene 0.0011

28 1-Propanol  0.0075 2-Propanol  0.0083
29 1-Propanol  0.075 2-Propanol  0.083
30 Benzene 0.0065 Toluene 0.00567
31 Benzene 0.065 Toluene 0.056

remaining 100 exposures to each analyte, which were mutually similar within a run, were used for
analysis of this data set. Each task was run separately, resulting in all of the exposures from task 1
being run before any of the exposures of task 2, for example. Within a single task, the analytes were
presented in random order over the 200 exposures (100 to each analyte) of the task. Randomization
was performed to minimize any effects of detector drift that might artificially aid in discrimination
between analytes. Table 2.2 presents a summary of the 21 tasks (1-21) that are collectively denoted
as the Series I data runs.

In a separate set of experiments, binary mixtures of nhexane/ n-heptane, 1-propanol/2-propanol,
and m-xylene/pxylene were exposed to a different array of conducting polymer composite detectors.
The detector array used in these runs, denoted as detector Set B, consisted of 80 detectors that were
housed in two separate chambers. The 80 detectors were formed from four nominally identical
copies of each of 20 compositionally distinct detector materials (Table 2.1). Detectors were fabricated

using procedures described previously.>* 23 All copies of each detector type were formed in the
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same detector fabrication run for each particular detector composition. The detector copies were
placed sequentially along the direction of flow, with one full detector array placed after the other.
Each array consisted of 20 compositionally different detectors that were placed in the chamber
in the order listed in Table 2.1. Except where otherwise noted, only data from the first set of 20
compositionally different detectors were analyzed as detector Set B data.

In these runs, designated collectively as the Series II data runs, the fractional partial pressures for
the first six runs (tasks 22-27 in Table 2.2) were set at P/P° = 0.011 for one component of an analyte
mixture and P/P° = 0.0090 for the other component. The partial pressures of the analytes were
permuted to generate the second analyte mixture that formed each discrimination task (Table 2.2).
Each analyte was exposed 200 times to the detector array, with each individual exposure consisting
of 70 s of exposure to laboratory air, 80 s of exposure to the analyte of interest, and then 60 s of
exposure to laboratory air. In the last four runs of the Series II data (tasks 28-31 in Table 2.2),
two pairs of analytes (1-propanol or 2-propanol, followed by benzene or toluene, respectively) were
exposed separately to the detectors at relatively high and relatively low vapor phase concentrations.
The specific analyte partial pressure values used in the low analyte concentration runs were chosen
to be small enough that each analyte generated a strong response on approximately five detectors,
while producing a less discernable signal on the other detectors. The partial pressures used in
the high concentration runs were then set to be a factor of ten greater than those used in the low
concentration exposures (Table 2.2). In these runs, each analyte was exposed 200 times to a single set
of 20 detectors, with each exposure consisting of 40 s of flowing background laboratory air (having a
water vapor concentration of 1.10+0.15 ppth), 70 s of analyte, then followed by 40 s of laboratory air.
As with the Series I data runs, P° values were calculated for a laboratory temperature of 21+1°C. All
exposures of an analyte pair that comprised a particular classification task were run consecutively,
but the analyte type was randomized within the 400 vapor exposures that comprised a particular
vapor classification task. Values of P° used to calculate analyte concentrations for hexane, heptane,
1-propanol, 2-propanol, benzene, toluene, m-xylene, p-xylene, H,O and D,O were 0.192, 0.0446,
0.0209, 0.0565, 0.102, 0.0304, 0.00852, 0.0113, 0.0295, and 0.0269 atmospheres, respectively.

For each exposure in the Series I Data Set, the baseline resistance, R;, of each detector was
calculated from the average of the resistance readings for the 60 s immediately prior to the beginning
of the analyte exposure. The equilibrium response, R.;, was calculated from the average of the
resistance readings for the last 60 s of the exposure to analyte vapor. For runs in the Series II
Data Set, which used shorter exposure times, R, was determined from the average of the resistance
readings in the last 30 s immediately prior to each exposure, and R.q was determined from data
obtained in the last 30 s of each analyte vapor exposure. Baseline correction of Series II data was
performed by fitting a separate regression line to the pre-exposure resistance readings for each

analyte exposure, and correcting all subsequent data points by the difference in the value of the
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regression fit at the time of the measurement of that data point and at =0. The quantity used
in analysis of both Series I and II data was the steady-state relative differential resistance change,
AR /Ry, where AR,y = Ry — Rp. Data were converted to AR, /R, form in Microsoft Excel, Labview,
and original C++ code, while all subsequent data analysis was performed in Matlab using original
Matlab code. The AR,;/R;, data were evaluated in unnormalized form in the analysis discussed
herein. The signal-to-noise (S/N) ratio for each detector at the analyte concentration of interest was
computed by determining the ratio between the AR,; value determined from a single exposure to
the analyte of interest and three times the standard deviation of the corrected baseline resistance.!"*2

The classification performance, P, of the detector arrays was evaluated using different methods
for the different data series. In all cases, once a Fisher discriminant decision boundary was deter-
mined and detector weights were set for a particular task and array, each test data point for that
task and detector array was assigned to the class member of the pair-wise discrimination task that
resided on the same side of the decision boundary as the test data point. Because only 100 exposures
to each analyte were available in the Series I Data Set, the array classification performance from
these data was evaluated using the leave-one-out (LOO) cross-validation procedure. This process
provides an approach in which both training set data and test set data can be obtained from a data
set in which the classes of all members are known.?* In the LOO approach, one member is removed
from a data set of n members, the classifier is developed using the n — 1 remaining members of the
data set, and the resulting classifier is used to assign the withheld member to a class. A second
member of the data set is then withheld, a new classifier is constructed from the # — 1 remaining
members, and this classifier is then used to assign that member to a class. The procedure is repeated
through all n members of the data set. The fraction of correct assignments out of the n possible
cases provides an evaluation of the LOO classification performance #; of a given array towards a
specific pair of analytes utilizing a given discriminant algorithm.

For the Series II data, 200 exposures were available for each analyte. This larger data set facili-
tated reliable use of independently constructed test and training sets to evaluate the classification
performance of the various arrays of interest. First, 100 of the 200 total exposures to each analyte
were randomly selected to form the training set for that analyte. The remaining exposures formed
the test set for that particular analyte. The training set was used to formulate a Fisher linear dis-
criminant decision boundary (a hyperplane orthogonal to the Fisher discriminant vector) which
was then evaluated with respect to analyte classification performance on the exposures in the test
set. The classification performance on the training set is denoted as $, and that on the test set is
denoted as Pis;. The capability of the model with respect to a given training set was determined
by the Fisher RF value; the capability with regard to a test set was determined by the fraction of
the exposures that were correctly classified using the decision boundary developed on the training

set. The Series II data were also analyzed separately using the LOO procedure to facilitate direct
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comparison with the classification performance resulting from analysis of the Series I data.

A Beowulf cluster, comprised of 64 Pentium III machines, was used for the more processor-
intensive analyses, particularly for the comparison of the performance of 20-detector arrays with all
possible combinations of arrays having fewer than 20 detectors on all of the analyte classification
tasks. A Pentium III single-processor machine was used for the more routine calculations, such as

identifying which five-detector sets performed the best for a specific analyte classification task.

2.4 Results

2.4.1 Classification of N-hexane/N-heptane and 1-Propanol/2-Propanol Mix-

tures as a Function of the Number of Different Detectors in the Array

Figure 2.1 displays the classification performance for detector Set A discriminating a mixture of
n-hexane at P/P°=0.025 and n-heptane at P/P°=0.025 from a mixture of n-hexane at P/P°=0.027
and n-heptane at P/Po=0.023 (task 16,Table 2.2). The classification performance for this task was
calculated using the LOO cross-validation procedure on the entire set of 100 Series I exposures to
each analyte mixture. The full 20-detector Set A array yielded 78% correct classification for the 200
exposures of this discrimination task. This value is denoted as #;{[€2(20) = 16} where the argument
of Q indicates the number of unique detectors in the array, (2, and the = 16 notation indicates that the
LOO classification performance, $;, of this array was evaluated for classification task 16 in Table 2.2.
For each value of k in the range 1< k <20, where k is the number of compositionally different
detectors in the array, an exhaustive search of all possible 20!/[k!(20-k!]) k-detector combinations
from the 20-detector Set A array was performed to identify the array having k detectors that had
the best LOO classification performance for the task of concern. During this process, new detector
weights and a new decision boundary were determined for every k-detector combination evaluated.
The best-performing array, denoted [Q}¢ (k)] for each value of k, had a classification performance
PQL = 16} = P;iax(k). Fig. 2.1 depicts the relative classification performance, P'5(k), of these
optimally performing array subsets of detector Set A as a function of array size, with the relative
classification performance of each selected subset representing the classification performance of

[Q (k)] normalized relative to that of the full 20-detector array (Eq. 2.3):

P8 (k)] = 16} Pro )
plé

5{[QR0)] = 16} PIE{[Q(20)] = 16)

rel

PO (k) = (2.3)

Table 2.3a lists the best-performing detector sets for each value of k in the range 1< k <10 as well

as the LOO classification performance of these detector sets for this particular analyte separation
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Figure 2.1: Classification performance vs. array size for distinguishing a mixture of n-hexane at
P=P0 (r) 0:025 and n-heptane at P/P°=0.025 from a mixture of n-hexane at P/P°=0.027 and n-heptane
at P/P°=0.023. The classification performance was calculated using the LOO cross-validation pro-
cedure on the entire set of 100 exposures to each analyte mixture. The full Set A detector array,
consisting of 20 compositionally different detectors, had a 78% correct classification performance
for this task. For each value of k in the range 1< k <20 where k is the number of compositionally
different detectors in the array, an exhaustive search of all possible k-detector combinations from
the 20-detector Set A array was performed to identify the array having k detectors that had the best
LOO classification performance for the task of concern. The classification performance for this task
of the best-performing k-member detector set is plotted relative to that of the full 20-detector array.
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Figure 2.2: Classification performance vs. array size for distinguishing a mixture of n-hexane at
P/P°=0.0090 from n-heptane at P/P°=0.011 from a mixture of n-hexane at P/P°=0.011 and n-heptane
at P/P°=0.0090. The classification performance was calculated using the LOO cross-validation pro-
cedure on the entire set of 200 exposures to each analyte mixture. The first set of 20 compositionally
different detectors of the Set B detector array had a 95% correct classification performance in the
test set data for this task. For each value of k in the range 1< k <20, an exhaustive search of all
possible k-detector combinations from the 20-detector Set B array was performed to identify the
array having k detectors that had the best LOO classification performance for the task of concern.
The classification performance for this task of the best-performing k-member detector set is plotted
for 1< k <20 relative to that of the full 20-detector array.

task.

Figure 2.2 displays analogous data for detector Set B, in which a mixture of n-hexane at
P/P°=0.011 and n-heptane at P/P°=0.0090 is separated from a mixture of n-hexane at P/P°=0.0090
and n-heptane at P/P°=0.011 (task 24, Table 2.2). The classification performance $;{[Q2(20)] = 24}
was evaluated for the full 20-detector Set B using the LOO procedure (to aid in comparison with
Data Set I results), and this array yielded 95% correct classification for this task. An exhaustive
search was then performed to identify the subset of detectors of a given array size, designated as

[Q?* (k)] that yielded the best LOO cross-validation performance for each value of k. The classi-

1,max

. . 24
fication performance, ¥ -

(k), normalized relative to the performance of the full 20-detector array
for this task is plotted for 1< k <20. Table 2.3b lists the best-performing detector sets for each value
of k in the range 1< k <10 as well as the LOO classification performance of these detector sets for

this particular analyte separation task.
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Table 2.3: Detectors that provided maximum classification performance at various array sizes.

Array Detectors Performance
size

(a)For task 16
1 9 0.5700
2 12 13 0.6200
3 9 13 14 0.6700
4 2 11 12 13 0.7000
5 1 2 8 11 13 0.7300
6 1 2 8 1 13 17 0.7650
7 1 2 3 8 11 13 18 0.7850
8 2 9 1 12 13 14 15 17 0.7950
9 2 3 9 11 12 13 14 15 17 0.7950
10 1 2 3 7 11 12 13 16 17 18 0.8100

(b) For task 24
1 7 0.6375
2 19 20 0.8750
3 8 19 20 0.9175
4 8 14 19 20 0.9225
5 8 1 15 19 20 0.9350
6 1 7 8 15 19 20 0.9375
7 1 2 7 8 15 19 20 0.9400
8 1 2 6 7 8 15 19 20 0.9450
9 1 2 3 6 7 8 15 19 20 0.9475
10 1 2 3 7 8 9 12 15 19 20 0.9500

(c) For task 10
1 19 0.5600
2 3 9 0.8300
3 3 9 19 0.8550
4 3 6 14 18 0.9300
5 3 6 14 15 18 0.9350
6 3 9 11 12 14 18 0.9550
7 2 3 9 1 12 14 18 0.9600
8 3 6 8 9 11 12 14 18 0.9700
9 3 6 9 1 12 14 17 18 19 0.9750
10 3 6 8 9 11 12 14 17 18 20 0.9800

(d) For task

22
1 3 0.6050
3 8 18 19 0.7450
4 8 11 18 19 0.7800
5 8 10 11 18 19 0.7900
6 2 8 10 11 18 19 0.7925
7 1 2 7 8 12 18 19 0.8000
8 1 2 6 8 11 14 18 19 0.8075
9 1 2 6 8 100 11 15 18 19 0.8125
10 1 2 6 8 9 1 12 15 18 19 0.8175
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Figure 2.3: Classification performance vs. array size for distinguishing between a mixture of
1-propanol at P/P°=0.025 and 2-propanol at P/P°=0.025 and another mixture of 1-propanol at
P/P°=0.023 and 2-propanol at P/P°=0.027. The classification performance was calculated using the
LOO cross-validation procedure on the entire set of 100 exposures to each analyte mixture. The
full Set A detector array, consisting of 20 compositionally different detectors, had a 97% correct
classification performance in the test set data for this task. For each value of k in the range 1< k <20,
an exhaustive search of all possible k-detector combinations from the 20-detector Set A array was
performed to identify the array having k detectors that had the best LOO classification performance
for the task of concern. The classification performance for this task of the best-performing k-member
detector set is plotted for 1 < k < 20 relative to that of the full 20-detector array.

2.4.2 Classification of N-hexane/N-heptane and 1-Propanol/2-Propanol Mix-

tures as a Function of the Number of Different Detectors in the Array

Figures 2.3 and 2.4 and Table 2.3c and d display analogous data for classification of mixtures
of 1-propanol and 2-propanol (tasks 10 and 22, respectively). Detector Set A was challenged to
discriminate a mixture of 1-propanol at P/P°=0.025 and 2-propanol at P/P°=0.025 from a mixture
of 1-propanol at P/P°=0.023 and 2-propanol at P/P°=0.027, while detector Set B was challenged to
discriminate a mixture of 1-propanol at P/P°=0.011 and 2-propanol at P/P°=0.0090 from a mixture
of 1-propanol at P/P°=0.0090 and 2-propanol at P/P°=0.011.

Figures 2.1-2.4 clearly indicate that for these detector arrays, the classification performance for
an individual task either increased or did not decrease significantly as the number of chemically
different detectors increased. Similar trends were observed for essentially all of the other tasks

evaluated in this work, with the exception of the xylenes separation tasks (tasks 25 and 26 in
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Figure 2.4: Classification performance vs. array size for distinguishing between a mixture of 1-
propanol at P/P°=0.0090 and 2-propanol at P/P°=0.011 and another mixture of 1-propanol at
P/P°=0.011 and 2-propanol at P/P°=0.0090. The classification performance was calculated us-
ing the LOO cross-validation procedure on the entire set of 200 exposures to each analyte mixture.
The first set of 20 compositionally different detectors of the Set B detector array had a 79% correct
classification performance in the test set data for this task. For each value of k in the range 1< k <20,
an exhaustive search of all possible k-detector combinations from the 20-detector Set B array was
performed to identify the array having k detectors that had the best LOO classification performance
for the task of concern. The classification performance for this task of the best-performing k-member
detector set is plotted for 1< k <20 relative to that of the full 20-detector array.
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Table 2.2) of Data Set II.

2.4.3 Relative Classification Performance of “Optimal” Five-detector Arrays in

Vapor Discrimination Tasks

Figures 2.1-2.4 also indicate that nearly optimal classification performance could be obtained in
many cases by selecting subsets of 4-10 detectors, and then only using response data from that
subset of detectors to classify presentations of that particular pair of analytes to the detector array.
However, as shown in Table 3, the collection of detectors in the array of a given size that produced
the best classification performance for the hexane/heptane mixture classification task was not the
same as the collection of detectors that produced the best classification performance, at the same
array size, for the 1-propanol/2-propanol mixture classification task. To assess the generality of this
observation, an extensive comparison was performed of the classification performance of selected
detector array subsets in a diverse collection of different analyte classification tasks.

For specificity, this analysis concentrated on evaluating the performance of arrays that consisted
of five compositionally different detectors obtained from the full collection of 20 Set B detectors.
The performance of such five-detector arrays was evaluated for the first six separate classification
tasks in the Series II Data Set (tasks 22-27, Table 2.2). For each five-detector subset, a Fisher
discriminant boundary was developed on the training set of a given task, yielding a Fisher RF
value for each subset. For each specific classification task, an exhaustive search was performed
through all 20!/[(15!")(5!)] possible five-detector subsets in the Set B detector array to identify the

five-detector combination that maximized the Fisher RF value resulting from the training data set
J

for the task of interest. These five-detector arrays are designated as [€),, =

(5)] where the subscript
trn indicates that the arrays were selected based on their abilities to maximize the RF values of the
training set data, and the index ] designates the task for which the array was identified as providing

the maximum Fisher RF value.
J

The classification performance of each [€); =

(5)] array was then evaluated on an independent

test set of exposures that included six analyte classification tasks (tasks 22-27)of the Series II data.
J

In this process, for each combination of a five-detector array [();, .-

(5)] and an individual pair-
wise separation task K of the Series II data, new detector weights and a new Fisher discriminant
boundary were calculated based on the 200 analyte exposures that comprised the training set for task
K presented to the detector set [Q{m,mm(S)]. The classification performance Ptst{[Q{mm 2] = K}
was then evaluated by determining the fraction of a subsequent, separate 200 exposure task K test
data set that were on the correct side of the Fisher discriminant boundary. The process was repeated
for all ] and K in the range 22< | <27 and 22< K < 27.

The resulting detector performance data are summarized in the two 6xX6 matrices of Table 4. The
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entries in each column designate the performance, Ptst{[Q] (5)] = K}, of each [Q] (5)]array

trn,max trn,max

when used in each of the six tasks (22< K <27) evaluated in the Series II data run. Two matrices
are presented, one of which displays the absolute classification performance of the detector sets,
?)tst[Q] (5)] = K}, 22< | <27, 22< K <27, and the other of which displays the classification

trn,max
performance of the detector sets for each task K when normalized to the value of ‘Ptst{[Q] 5] =

trn,max(
K} obtained when K = J. In other words, for each test set task K, the test set classification performance
J

1 (0)] was normalized relative to the test set classification

of the various five-detector arrays [Q
performance of the array, [Q{m,mux(S)], that yielded the maximum training set Fisher RF value for
that particular analyte classification task. The normalization accounts for inherent differences in the
difficulties of the various classification tasks being evaluated. Furthermore, because the task is a
two-class classification problem, a classification performance value of 0.5 is equal to that of random

chance, so normalization was performed using the formula:

Pl (5)=K}-05

trn,max

Pist{[ Q) ex(3) = J} = 0.5

(2.4)

The entries along the diagonal of the normalized matrix are all 1.0, because by definition they
are the values to which the test set classification performance for a given task have been normalized.
The data indicate that different detector subsets yielded the best classification performance for
different tasks. An equivalent statement is that the combination of five detectors which produced
the best classification performance for one task was significantly outperformed by another five-

detector set in another, different task. For example, the combination of five detectors, [Qf:nmx(5)] ,

that produced the best Fisher RF value in a training set run of the pair of m-xylene/pxylene mixtures
yielded only 34-38% of the normalized classification performance on 1-propanol/2-propanol test set
mixtures (tasks 22, 23) relative to the 1-propanol/2-propanol mixture test set classification perfor-

mance (tasks 22, 23) of the five-detector combination, [Q?2  (5)] or [Q%  (5)], that produced

trn,max trn,max

the best Fisher RF value for each 1-propanol/2-propanol mixture discrimination task (Table 2.4).
Similarly, the five-detector set that yielded the best Fisher RF value for the other training set of

m-xylene/pxylene exposures, [(3° | (5)], only yielded 22-40% of the classification performance on

1-propanol/2-propanol test set mixtures (tasks 22, 23) relative to the 1-propanol/2-propanol mix-

ture test set performance of the five-detector set [QF2 | . (5)] or [QZ  (5)] that yielded the best

trn,max

Fisher RF value on the training sets of these 1-propanol/2-propanol mixture classification tasks.

Similarly, the five-detector sets that were found to yield the best Fisher RF value for either of the

25

n-hexane/n-heptane training set mixture tasks, [Q2} = (5)] and [Q?

trn,max

(5)], yielded much worse
test set classification performance in the 1-propanol/2-propanol classification tasks (22, 23) than was

produced when either of the five-detector sets [Q?2  (5)] and [QQ?3  (5)] that produced the best

trn,max trn,max
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Fisher RF value on the 1-propanol/2- propanol training set tasks (22, 23) were used on the test set
of 1-propanol/2-propanol mixture tasks (22, 23).

Good classification performance in the m-xylene/pxylene test set mixture classification tasks
was observed for many (although not all) of the five-detector collections that yielded the best
Fisher RF training set values for any of the other binary mixture classification tasks. However, the
five-detector combinations that produced the best Fisher RF training set values for the m-xylene/p-
xylene tasks yielded inferior performance for the 1-propanol/2-propanol and n-hexane/n-heptane
test set mixture classification tasks relative to detector collections that yielded the best Fisher RF
training set values for those specific tasks (Table 4). As might be expected, five-detector sets that
yielded the best training set Fisher RF values for any given task yielded approximately the same test
set classification performance for that task as they did for a separate test set run that represented a

O] = 24} ~ P [, .. ()] = 24}

nominally identical task. For example, P {[Q2%4 T

trn,max

2.4.4 Classification Performance as a Function of the Number of Composition-

ally Different Detectors in the Array

Given that different k-detector subsets were observed to produce the best classification performance
for different tasks, and that classification performance in general either increased or did not de-
crease significantly as the number of chemically different detectors increased (Figures 1-4), it is of
interest to compare the performance of subsets of detectors to the performance of a full array of 20
compositionally different detectors. This comparison was performed for all of the different tasks
and data sets collected during the course of this work.

First, the LOO classification performance of the array of 20 chemically different detectors in
detector Set A was evaluated for each of the 21 tasks for which these detectors were used (Table 2.2,
tasks 1-21). This returned a set of performance values #;{[€2(20)] = J} for each task (1< | <21). The
LOO classification performance for every individual combination of k-detectors, where 1< k <20,
for each of the 21 tasks was then also evaluated. For every task, the classification performance
for each individual combination of k-detectors,){[Q;(k)] = [} for 1< i < [20!/k!(20 — k)!], was then
compared to that of the full 20-detector array, P){[€2(20)] = ]} for that same task. For each task,
the classification performance for any k-detector array, £{[Q;(k)] = |}, was then normalized by
dividing by the classification performance of the full 20-detector Set A array on that same task,
Pi{[Q(20)] = J}. These performance ratios were tabulated and used to create a function g(k) for
which, by definition, no combination of k detectors does strictly better than g(k) relative to the full
20- detector Set A array on all 21 tasks of the Series I data run. Therefore, when an array containing
k detectors is used to perform a set of tasks, at least one task among the set will yield a classification

performance no better than g(k) relative to performance of the full 20-detector array, regardless
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Table 2.4: Classification performance of arrays formed from five compositionally different detectors.
Array Detectors Task
22 23 24 25 26 27

Absolute Performance

[QZ,,..5)] 8,9,11,18,19 0.735 0755 0755 0.815 0.850 0.880
QZ 5] 8,11,13,18,19 0.760 0.765 0.755 0.795 0.810 0.865
[ .5 1,8,15,19,20 0.620 0560 0930 0930 0.760 0.850
[Q2 )] 1,3,4,19,20 0670 0565 0.890 0925 0.655 0.695
[ .(5)] 4,8,9,12,18 0595 0560 0705 0.655 0.865 0.835
[QF )] 1,8,9,12,19 0590 0.600 0705 0740 0.815 0.880

Normalized Performance”?

[QZ,,..5)] 1.00 0962 0593 0741 0959 1.00
[QZ .5 111 1.00 0593 0.694 0.849 0961
[Q2 .5 0511 0226 100 1.01 0712 1.01
Q> 6] 0723 0245 0907 1.00 0425 0513
6] 0404 0226 0477 0365 1.00 0.882
[QF 0 B)] 0383 0337 0477 0565 0.863 1.00

“Due to differences in inherent task difficulty, prediction abilities for each task are normalized, with 1.00 representing a
valueyzp—0.5

ormtos—, where norm

task being applied to all 20 sensors. Normalization was accomplished from the formula value,ory, =
represents the number by which value,q, is to be normalized

of how the k detectors are chosen. Interpreted slightly differently, g(k) yields the highest LOO
classification performance relative to that of the full 20-detector array that was met or exceeded on
each of the 21 tasks when using any single detector array of size k.

As displayed in Fig. 2.5, no combination of k detectors with 1< k <20 performed as well as the
full 20-detector array on all of the tasks evaluated. Specifically, for every combination of k detectors
with 1< k <20, at least one task was identified for which that detector combination exhibited LOO
classification performance that was less than the performance obtained by using the full 20-detector
array (i.e. g(k) < 1.0 for k < 20). Additionally, the value of g(k) more closely approached that of the
full array as k increased. Also, g(k) > g(k — 1) for 2< k <20, hence increasing the size of the detector
array always resulted in an increase in the value of g(k).

The same procedure was performed for the Set B detectors with Series II data. As displayed in
Fig. 6, the value of g(k) was less than unity for all values of k <20, so for every k-member subset of
the Set B array there was at least one task for which that k-member array was outperformed by the
full 20-detector Set B array. Again g(k) increased monotonically with increases in k. Note that the
g(k) function is somewhat biased in favor of the k-detector subsets because it reports the maximum
LOO classification performance of all possible subsets having k detectors. If another nested cross-
validation were used to choose the best subset of size k based on training set performance and
this subset were then applied to an independent test set of data, the normalized classification

performance would likely be lower than that reported in Figs. 2.5 and 2.6.
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Figure 2.5: Classification performance vs. array size k. For each value of k in the range 1< k <20,
an exhaustive search of all possible k-detector combinations from the 20-detector Set A array was
performed to identify the array having k detectors that had the best LOO classification performance
for each of the 21 tasks in the Series I Data Set. For each task, the classification performance for any
k-detector array was then compared to that of the full 20-detector Set A array. No combination of k
detectors does strictly better than g(k) relative to the full 20-detector Set A array on all 21 tasks of
the Series I data run.
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Figure 2.6: Classification performance vs. array size k. For each value of k in the range 1< k <20,
an exhaustive search of all possible k-detector combinations from the 20-detector Set B array was
performed to evaluate the LOO classification performance of each array for each of the six tasks
in the Series II Data Set. For each task, the classification performance for any k-detector array was
then compared to that of the full 20-detector Set B array. No combination of k detectors does strictly
better than g(k) relative to the full 20-detector Set B array on all six tasks of the Series II data run.
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24.5 Improvement in Classification Performance Upon Addition of Composi-
tionally Different Detectors to an Array Relative to Addition of Nominally

Identical Copies of Detectors to an Array

Some of the improvement in classification performance displayed by the full 20-detector array
relative to the performance of k-detector subsets (k < 20) for either the Set A or Set B detectors
could possibly result from the larger number of observations that are used in the analysis process
for a given measurement task when a constant number of data points is acquired from more
total detectors. Two methods were used to assess the differences in classification performance
that resulted from obtaining more data from fewer compositionally different detectors relative to
obtaining less data from a larger number of compositionally different detectors.

In the first approach, the Series I data were manipulated to generate a new data set, designated
as Series I-A, in which two consecutive exposures of a single analyte to a detector within each task
were taken as a single exposure of that analyte to two duplicate detectors. The full Series I-A Data Set
therefore consisted of 40 descriptors (two consecutive AR,;/R;, responses from 20 compositionally
different Set A detectors) for 100 independent analyte exposures, as opposed to the 20 descriptors
(one AR, /Ry value from each of the 20 compositionally different Set A detectors) for 200 independent
analyte exposures that formed Data Set I. Descriptors obtained from consecutive analyte exposures
to the same detector composition were linked computationally in the Series I-A Data Set so that the
second data point in consecutive analyte exposures was required to be included in a classification
task if the first data point was used in that classification task. The LOO classification performance
for every individual combination of k compositionally different detectors, where 1< k <10, for
each of the 21 tasks was then evaluated. Because consecutive analyte exposure data points were
coupled computationally and treated as arising from duplicate detectors of the same composition,
this process was used to generate a g(k’) versus k curve, with g(k’) being defined as described above
and with k' = 2k being an even-numbered integer in the range 2 < k' < 20. The g(k’) performance
was then compared to the g(k) performance of this same Set A array that has already been depicted
in Fig. 2.5.

As displayed in Fig. 2.7, classification performance could be improved for at least one classifica-
tion task for 1< | <21 at every array size tested by including additional data from compositionally
different detectors into the analysis as opposed to including the same amount of additional data
from detectors which had the same chemical composition as those in the original array. This anal-
ysis reinforces the conclusion demonstrated above that in general at a given array size achieving
optimal classification performance for different classification tasks requires use of the data pro-
duced by different collections of detectors (cf. Tables 3 and 4). Hence, addition of a compositionally

different detector will improve the overall array classification performance for at least those tasks
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Figure 2.7: Classification performance vs. total detector array size k for detector Set A in conjunction
with Series I and I-A data. The g(k) curve for Series I data (0) is identical to that displayed in
Figure 2.5. The Series I-A data had two consecutive exposures of a single analyte to a detector within
each task taken as a single exposure of that analyte to two duplicate detectors. Descriptors obtained
from consecutive analyte exposures to the same detector composition were linked computationally
in the Series I-A Data Set so that the second data point in consecutive analyte exposures was
required to be included in a classification task if the first data point was used in that classification
task. The LOO classification performance for every individual combination of k compositionally
different detectors, where 1< k <10, for each of the 21 tasks was then evaluated. Because consecutive
analyte exposure data points were coupled computationally and treated as arising from duplicate
detectors of the same composition, this process was used to generate a g(k’) vs. k curve (A) with £’
(=2k) being an even-numbered integer in the range 2< k' <20. No combination of two copies of k
compositionally different detectors does strictly better than g(k’) relative to the full 20-detector Set
A on all 21 tasks of the Series I data run.

for which the added detectors provide important analyte classification information, relative to the
classification performance that is obtained upon addition of detectors having nominally identical
compositions as those present the original detector array (which by definition must not be optimal
for at least some members of a diverse set of analyte discrimination tasks).

In the second approach, the six five-detector sets [Q{m/m +(0)] for 22< | <27 (Table 2.4) that
yielded the best Fisher discriminant RF value for the training set data of each task for 22< | <27,
respectively, were used to generate six 20-detector arrays, [Qtlm,max(Sxél)] for22< | <27, by analyzing
additionally the data produced by the three nominally identical copies of each detector composition
that were available in the full 80-detector array of the Set B detectors. The weights for each detector
in these 20-detector arrays were then independently determined using the training set data for

each task of interest (22< | <27). The test set classification performance of these six 20-detector
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Table 2.5: Classification performance of arrays formed from four copies of five compositionally
different detectors.

Array Detectors Task
22 23 24 25 26 27
Absolute Performance

[fommax(Sxél)] 89,11,18,19 0815 0830 0875 0925 0915 0.935
[fon,max(Sxél)] §,11,13,18,19 0.805 0.815 0.825 0910 0.875 0.945
[erzn,mx(Sxél)] 1,8,15,19,20 0.690 0.640 70.965 0975 0.895 0.925
[fonlmx(Sx4)] 1,3,4,19,20 0.725 0.640 0.925 0955 0.6757 0.820
[fonmx(Sxél)] 4,8,9,12,18 0700 0705 0.845 0.780 0.880 0.920
[Q%fn/m 2 (5x4)] 1,8,9,12,19 0675 0575 0.885 0.885 0.865 0.885

[€©(20)] 0755 0755 0920 0.930 0.810 0.845

Normalized Performance’

[fon,max(Sxél)] 124 129 0.893 0988 1.34 1.26
[QF e (5x4)] 120 124 0774 0953 121  1.29
[QF e (5x4)] 0.745 0549 111 110 127 1.23
[erznlmgx(Sxél)] 0.882 0549 1.01 1.06 0.565 0.928
[Q%fn/m 2 (5x4)] 0784 0804 0.821 0.651 1.23 1.22
[Q%fnmx(Sxél)] 0.686 0294 0917 0.895 1.18 1.12

“Prediction abilities for each task are normalized, with 1.00 representing a task being applied to all 20 sensors. Normal-
valueyq,—0.5

ization was accomplished from the formula valueuorm = =555

to be normalized

, where norm represents the number by which value,q, is

arrays was then evaluated for each task in the range 22< | <27 of the Series II data, and the test set
classification performance of these arrays was compared to the test set classification performance
Pist{[QQ(20)] = J}, 22< J <27, produced by the first set of 20 compositionally different detectors in
the Set B array. Table 5 presents the results of this comparison for the absolute and normalized
classification performance of these 20-detector arrays, with the normalization performed using the
approach of eq. 2.4 to account for inherent differences in difficulty between tasks as well as to
account for the two-class character of the discrimination tasks being evaluated.

Comparison of Tables 4 and 5 indicates that the mean absolute classification performance for
a given task increased by ~ 11% when three additional copies of each detector were included in
the array. This increase can be attributed to averaging of noise through use of multiple copies of
a given detector type, in accord with expectations and with recent observations indicating that the
noise of polymer/carbon-black detectors decreases as the inverse square root of the detector area,

for a constant detector film thickness [31]. Furthermore, the benefit of dimensionality reduction
J

trn,max

performance than [)(20)] in the task | for which the [«

trn,max

was clearly evident in that the [Q) (5x4)] 20-detector arrays always yielded better classification
(5)] detector arrays were selected as
providing the best test set classification performance for five-detector arrays (Table 2.5). Similarly,
arrays that were identified as producing the optimal Fisher RF value on training set data for a

specific task yielded excellent test set classification performance relative to [€2(20)] in a duplicate
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J

trial of that same task. However, these 20-detector [€2,, . -

(5x4)] arrays generally yielded inferior

test set classification performance relative to the set of 20 compositionally different Set B detectors
J

trn,max

when the specific 20-detector [Q (5x4)] arrays were used for other tasks in the Series II data
run. For example, the set of 20 compositionally different Set B detectors yielded =~ 13% better test
set classification performance than did any of the [Q{m,mM(SxéL)], 24< ] <27 detector sets for either

of the 1-propanol/2-propanol mixture classification tasks (J=22,23).
J

trn,max

Similarly, the detector sets [Q (5x4)] that yielded optimal training set Fisher RF values
for the heptane/hexane mixture classification tasks, [=24,25 in test set classification performance
Ptst{[Q] (5x4)] = K} when |, but [€2(20)] yielded better test set classification performance than

trn,max

[Q] (5x4)], ]=24,25, for either of the 1-propanol/ 2-propanol mixture classification tasks J=22,23

trn,max

Interestingly, any [Q{m,mx(SxéL)], J=22-27 array except [fon,nm(SxéL)] yielded a better test set clas-
sification performance for the m-xylene/p-xylene mixture classification tasks, [=26,27, than was
obtained using the full 20 compositionally different Set B detector array, [€2(20)]. The relatively low
test set classification performance obtained when using the entire 20-detector Set B array on tasks 26
and 27 suggests that the m-xylene/p-xylene separation is impeded by some detectors that have par-
ticularly low signal/noise ratios for this specific classification task. For example, the [Qf%,max(5x4)]
array did not outperform the full 20-detector compositionally different Set B array, [€2(20)], on
tasks 26 and 27, and [fomm .+ (5x4)] did not contain detector 8, which was contained in all the other

[Q{m,mx(Sxél)] arrays (i.e. [=22-24,26,27). Consistently, tasks 26 and 27 depended heavily on the use

of detector 8 in Set B to achieve high test set classification performance, so the absence of detector 8

25

from the set [Q%  (5x4)] hindered the classification performance of [Q o max

trn,max

(5x4)] when that array
was used in a very different mixture classification task than the one for which it was identified to
yield optimum classification performance. Again, however, the results of Table 2.5 demonstrate that
the use of compositionally different detectors improves the overall array classification performance
for at least some tasks relative to the classification performance that is obtained upon addition of
detectors having nominally identical compositions to those present in the original (best-performing

at a given size for one specific task) detector array.

2.4.6 Discrimination Performance Between Benzene and Toluene and Between

1-Propanol and 2-Propanol as a Function of Analyte Concentration

The vapor classification tasks discussed above involved differentiation, at relatively high sig-
nal/noise ratios, between analytes that are so chemically similar that the signals produced by
the detector arrays of interest did not result in well-separated clusters for the various analytes in
ddimensional detector response space. A conceptually different challenge for an array of semi-

selective vapor detectors involves classification between analytes at sufficiently small vapor phase
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concentrations that the low corresponding signal/noise responses for many of the detectors in the
array will reduce the separation between data clusters that are otherwise well-separated at high
analyte concentrations. To probe the effects of array size and array composition on such tasks,
detector response data were collected for conducting polymer composites that were exposed to
benzene, toluene, 1-propanol, and 2-propanol, respectively, each at both high and low vapor phase
concentrations (tasks 28-31, Table 2.2).

The five-detector arrays that yielded the maximum Fisher RF value on training set data,[Q{m,m 2O
for each classi- fication task in the range [=28-31 were again selected from the collection of 20 com-
positionally different Set B detectors, [€2(20)]. Table 6 indicates the detectors in these [Q{mmx(5)]
arrays and presents the test set classification performance of these arrays on tasks 28-31. Com-
parison of Tables 2.3 a-d and 6 clearly shows that different detectors formed the best-performing

five-detector arrays for different analyte classification tasks. Additionally, this comparison shows

that different collections of detectors formed the [Q{mmx(5)] arrays for classification of analytes
J

at high concentration relative to the [Q, .

(5)] arrays that were identified as producing the best
classification performance for analytes at low vapor phase concentrations.
The compositional differences between these optimally performing five-detector [Q{mmx(5)]

arrays were investigated in more detail for tasks 28-31 of the Series II data run. To avoid any bias

that might arise from incrementally small differences in classification performance between the
J

bestperforming detector set for a task, [(2;,, . .

(5)], and other nearly optimal five-detector sets for
the same classification task, detectors were ranked based on the frequency with which a detector
was contained in the 20 five-detector arrays that produced the 20 best Fisher RF values on the
training set data for the classification task of interest. Table 6 summarizes the results of such an
analysis for tasks 28-31 of the Series II data.

For the low concentration, 1-propanol versus 2-propanol analyte classification task (task 28),
the detectors that were most commonly contained in the 20 best-performing arrays (appearing in
more than 10 out of the 20 array that yielded the best training set Fisher RF values) were detectors
16 (17), 18 (20), 19 (20), and 20 (16), with the numbers in parentheses indicating the number of
the 20 total bestperforming arrays for the task under consideration which contained that specific
detector. Three of these detectors, 18-20, were among the four detectors that exhibited the largest
S/N ratios for 1-proponol at P/P°=0.0075, having S/N values of 186, 63.2, and 30.0, respectively.
This makes sense in that a priority at low concentration conditions is to robustly detect the signal
relative to the baseline detector noise, and robust detection will in general correlate with good
analyte discrimination under such conditions. Detector 16 only exhibited a S/N value of 9.83 for
1-proponol at P/P°=0.0075, and its frequent presence in the best-performing five-detector arrays
for this classification task can not be explained solely on the basis of S/N ratios and therefore

reflects important analyte discrimination power for the task of concern. In contrast, the detectors
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Table 2.6: Detectors represented in best-performing five-detector arrays for high concentration and
low concentration mixture classification tasks.

(@)
Task | Sens S/N” #Sel’| Sens S/N #Sel | Sens S/N #Sel | Sens S/N #Sel | Sens S/N  #Sel
28 15 169 6 16 983 17 |18 18 20 |19 632 20 |20 300 16
29 1 131 20 3 50.9 20 5 41.6 20 16 246 16 18 123004
30 8 662 16 |10 780 5 15 941 20 (18 187 20 |19 336 20
31 2 309 8 5 946 14 |8 385 20 [15 570 12 |19 789 17

(b)

Designation Best Sets of Five Performance

[Q% (5] 16 18 19 20 0.920

trn,max

1

[ x®1 |1 3 5 10 16 1.00
Qe Gl |7 8 15 18 19 | 0955
[ N2 3

5 8 19 1.00

trn,max

SIS

trn,max

?Signal to Noise, calculated as three times thebaseline standard deviation
’Number of times sensor was chosen among the best 20 5-sensor sets for a particular task

most frequently contained in the 20 five-detector arrays that yielded the best Fisher RF training set
values for the high concentration 1-propanol versus 2-propanol analyte classi- fication task (task
29) were detectors 1 (20), 3 (20), 5 (20), and 16 (16). Only detector 1 had a relatively high S/N value
(131) for 1-propanol at P/P°=0.075, with the other detectors exhibited S/N ratios for 1-propanol
at P/P°=0.075 of 50.9, 41.6, and 24.6, respectively. Although these detectors were not among the
most sensitive for the task at hand, they were selected among the 20 best-performing five-detector
arrays a total of 76 times, which is the maximum frequency with which four detectors could be
selected among 20 unique sets of five detectors. Because this detector selection preference persisted
despite the presence of detectors that possessed higher S/N values for 1-propanol at P/P°=0.075,
such as detectors 8, 18, and 20 (S5/N between 309 and 1240), the selected detectors are clearly
providing more classification information between the two analytes in the test set under conditions
when discrimination is more important than robust signal detection. Thus, different five-detector
combinations provided optimal analyte classification performance for analytes at high vapor phase
concentrations relative to classification of these same analytes at low vapor phase concentrations,
due to the different relative importance of signal/noise ratios and detector response differences that
are crucial for optimizing analyte classification under the two different task conditions.

Similar trends were found in the low concentration versus high concentration analyte classifi-
cation tasks for benzene versus toluene (tasks 30, 31). At low vapor phase analyte concentration
(task 30), four detectors (8 (16), 15 (20), 18 (20) and 19 (20)) were selected a total of 76 times (the
maximum) in the 20 five-detector arrays that yielded the best training set Fisher RF values for this
classification task. These detectors had S/N values for benzene at P/P°=0.0065 of 66.2,94.1, 187, and
33.6, respectively, which were the four highest S/N ratios for benzene at P/P°=0.0065 produced by
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any of the 20 detectors in the Set B detector array. None of the other 16 detectors in the Set B array
were represented at a significant frequency in the 20 best-performing five-detector arrays for this
analyte classification task. The consistent selection of the four detectors with the highest S/N values
again indicates the relative importance of robust analyte detection at low analyte concentration in
order to perform analyte classification.

In contrast, at high benzene and toluene vapor phase concentration, different detectors appeared
with high frequency in the best-performing five-detector arrays (task 31). Four detectors (5 (14),
8 (20), 15 (12), and 19 (17)) were contained at least 10 times among the 20 best-performing five-
detector arrays for this task. Three of these detectors (8, 15, 19) were also amongst the most
frequently selected detectors for the low concentration benzene versus toluene classification task,
but detector 15 was not represented as often in the five-detector arrays that performed best in the low
concentration benzene versus toluene classification task. Furthermore, detector 18 was not among
the most commonly chosen detectors for task 31, being represented only three times among the
best 20 five-detector arrays for this classification task. This change in selection frequency suggests
that detector 18 completely lost its advantage at higher concentrations compared to other available
detectors in the Set B array. Detector 18 and, to an extent, detector 15, were replaced with four
detectors that had lower S/N values than those of detectors that were not frequently selected at low
benzene or toluene concentration: detectors 5 (14), 2 (8), 4 (8), and 10 (7). The differences in selection
preferences among these last four tasks again indicate that that the relative importance of sensitivity
versus selectivity varies with analyte concentration. These results therefore clearly indicate that
different five-detector arrays will provide the best classification performance for different tasks,
even when the differences in tasks involve the same analytes but different analyte concentrations.
Again having more compositionally different detectors in the array therefore allows selection of
the detectors that will perform best for the task at hand and will yield improved performance for
at least some classification tasks relative to a five-detector array that has been optimized for some

other analyte classification purpose.

2.5 Discussion

In theory, only two broadly responsive and partially uncorrelated detectors should be required to
identify any single-component analyte, at any concentration. These two detectors would provide
two descriptors that would allow solution for the two unknowns, analyte identity and analyte con-
centration, from the vapor detection system. An array having more than two partially uncorrelated
detectors therefore constitutes, in principle, an overdetermined system for “universal” classification
and quantification of single-component analyte vapors.

A similar analysis applies to differentiation between any two different, possibly multi-component,
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analytes. In principle, only one detector is needed for such a task, provided that the detector re-
sponse can be determined with sufficient accuracy and precision to allow differentiation between
the presence of the two different analytes when exposed to the detector.

However, practical limitations on the vapor classification performance of actual semi-selective
detector arrays arise from the fact that the partition coefficients of two singlecomponent analytes
can not be measured with arbitrarily high precision from the response of a single sorption-based
detector. The exact number of different detectors required to achieve a certain level of analyte
classification performance in any practical system will therefore depend upon the details of the
response properties of the detectors and on the chemical diversity of the analytes in the test set. For
a set of chemically very different, single-component analytes being probed by a set of chemically
diverse detectors, the lack of ultrahigh precision on a single, or on two, detectors can generally be
compensated through obtaining data from a few additional (typically four to five total) detectors,
provided that the responses of the additional detectors are at least partially uncorrelated with those
of the first two detectors.

However, when the task (or the background clutter to be discriminated against) is variable,
and/or when the analytes are not very different chemically, the situation can be somewhat different.
In this mode of application of detector arrays, the analysis might for example be a “forced choice”
situation determining which of two different analytes were present in a sample, having the knowl-
edge that the samples of interest will only consist of one or the other of the pair of specified analytes.
Arrays of four to five detectors may well suffice to produce good classification performance between
a particular pair of analytes, but four to five different detectors will in general produce the best
classification performance for different tasks. For example, detectors containing polar polymers
will generally display higher partition coefficients and therefore will exhibit better signal/ noise
ratios towards polar analytes than will detectors formed using very nonpolar polymers. Thus,
for the task of classifying several polar analytes, arrays that largely consist of the polar detectors
will in general outperform arrays that largely consist of nonpolar detectors, because the nonpolar
polymers will hardly respond to the polar analytes and will provide low signal/noise ratios in the
response descriptors to be used for this analyte resolution task. Therefore, if the task is known
fully in advance, i.e. if the analyte pairs and their concentrations are defined precisely, and if the
background levels and interferent identities and levels are fully known, a nearly optimal subset of
detectors can in principle be selected from a broader set of detectors. However, when the task is
variable or when the background is not well defined, having more detectors available of roughly
equal inherent signal/noise characteristics at a given response level allows flexibility in the choice of
down-selected detector sets to achieve optimal vapor classification performance for different tasks.
In this approach, a hierarchial classification approach would be used, in which the full detector ar-

ray response would be used to determine which family of analytes were present and the responses
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produced by the appropriate subset of detectors would be used to further discriminate between
analytes within a family. As demonstrated herein, it is not necessary to down-select such subsets
of detectors in advance of data analysis. Instead, obtaining data for a chemically diverse set of
detectors and importing the full data set into the Fisher linear discriminant algorithm produced
performance that was as good, or nearly as good, as the optimal detector subset of any size for any
of the tasks evaluated. Additionally such a procedure yielded classification performance that for
at least some tasks was superior to that of an individual down-selected detector subset when the
subset was subsequently used for tasks for which it was not originally evaluated.

A related issue is that capturing the most variance between a chemically diverse test set of ana-
lytes is not in all instances the critical factor for achieving analyte classification. Rather, the variance
between the classes of interest is the key quantity. Consider down-selecting a set of “optimum”
detectors for best classifying a training set of presentations comprised of achiral analytes. Further
consider the situation in which the detectors of interest are comprised of a set of achiral polymer
films, except for one detector that is formed using an enantiomerically pure chiral polymer. Addi-
tionally, consider the situation in which the chiral detector is significantly noisier at a given signal
response level than the achiral detectors. Clearly, the noisy chiral detector would be eliminated
in a search for the down-selected detector subset that produces the best classification performance
for the test set of achiral analytes. However, if the test set is changed so that it includes a pair of
enantiomers, inclusion of the chiral detector is absolutely necessary, regardless of its noise level,
to obtain any resolution or classification information in the chiral analyte resolution portion of the
task. If this chiral detector replaced one detector in the original array, then the original array would
by definition perform more poorly in classification of the achiral analytes than it did previously.
This reduction in performance probably would not be obtained if instead the chiral detector had
been added to the original array and the Fisher discriminant algorithm had been used to form the
optimal decision boundary for each task of concern using the responses produced by the complete
set of detectors in the array.

Similarly, if the analyte test set were switched such that it contained only enantiomerically
pure chiral analytes, the optimal detector set would likely contain only detectors that incorporated
enantiomerically pure chiral polymers, regard- less of whether these detectors were in the down-
selected set that yielded the best classification performance for tasks involving the achiral analytes.
Thus, the variance between classes being discriminated, as opposed to the overall variance between
all possible chemical analytes representing all possible diverse chemical features, is the key factor in
determining the optimization of an array for a specific task. This between-class variance necessarily
depends on the nature of the analyte test set and on the differences between the various responses
that this test set produces on the detectors. Having more detectors available clearly allows selection

of the most appropriate detector set for the task at hand.
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The nature of the classification task also affects which subsets of detectors will be most useful
for that task. At low analyte concentration, detectors that exhibit the best signal/ noise ratios will
generally be favored because such detector responses will produce the best characterization of the
individual analyte data points that are used to form the data clusters which dictate the position of
the classification decision boundary. However, a single set of low-noise detectors is not sufficient
to provide optimal classification performance between a chemically diverse group of test analyte
pairs, even for a group of tasks that consists solely of differentiation between various analytes at low
vapor phase concentrations. Detectors with low S/N values will indeed be generally included in
optimally performing arrays of a given size for classification between pairs of analytes at low vapor
phase concentration. However, the signal of a given detector will vary significantly for different
analyte classes, causing its S/N ratio to change significantly for different discrimination tasks. Hence,
while a given detector might have a relatively high S/N value in response to low concentrations of
hydrophobic analytes, it will likely have a much lower S/N value in response to low concentrations
of hydrophilic analytes. Different collections of detectors were thus found to comprise optimally
performing five-detector arrays for classification of low concentrations of 1-propanol versus 2-
propanol relative to the detectors that formed the optimally performing five-detector arrays for
classification of low concentrations of benzene versus toluene. In contrast, separation between two
chemically similar analytes at high concentration (for example, enantiomers or structural isomers)
favors the use of detectors that probe the perhaps subtle, but critical, chemical differences between
the analytes of interest. Hence having a diverse collection of compositionally different detectors in
the array provides access to the best set of detector responses for the task at hand without having

to physically replace and redesign the array for each task of interest.

2.6 Conclusions

For a broad set of chemically very different test solvents, in principle only two semi-selective
detectors are needed to provide robust information on the identity and concentration of any pure
analyte in the test set. For polymer/carbon-black composite chemiresistive vapor detectors, excellent
classification performance was observed for arrays as small as three to four detectors for pure analyte
vapors at concentrations high enough to produce high detector signal/noise ratios for the analytes
of interest. However, when the signal strength was lowered, or when the analytes were chemically
very similar, more detectors were required to achieve optimum classification performance for all
tasks investigated. Classification performance in general either increased or did not decrease
significantly as the number of chemically different detectors increased. Furthermore, different
subsets of the detector array produced the best classification performance at a fixed array size

for different analyte classification tasks. Hence, the full compositionally different detector array
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always yielded better classification performance than any smaller size array for at least some
vapor classification tasks. Reduction in dimensionality was observed to be advantageous when
the task was identified in advance, because multiple copies of detectors that had been identified
as yielding the best training set classification performance for a given task at a fixed array size
yielded better classification performance than the same total number of compositionally different
detectors when both arrays were used for that specific classification task. However, the full array of
compositionally different detectors yielded better test set classification performance than did any
fixed array containing multiple copies of fewer compositionally different detectors for at least some
other task of interest in a broadly construed set of analyte classification tasks. Subsets of detectors
were identified that yielded robust discrimination between D,O and H,O, between compositionally
similar mixtures of 1-propanol and 2-propanol, and between compositionally similar mixtures of n-
hexane and n-heptane, attesting to the excellent analyte discrimination power that can be obtained
at least in certain tasks through use of an array of semi-selective chemiresistive vapor detectors
even when no single detector provides the needed chemical resolution to differentiate between the

analytes of interest.
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Chapter 3

Development and Characterization of
Polymer/Carbon-black Chemical
Vapor Sensors Utilizing Percolative
Conduction Characteristics

3.1 Abstract

Chemical vapor sensor chemiresistors have been developed based on very low fractions of carbon-
black (1-12% w/w) that allow for very high responses, with AR,;/R;, values over 100 in many cases.
The responses of a small array of low carbon-black sensors and a similar array of higher carbon-
black analogs are both exposed to 16 different analytes, and compared on the basis of response
magnitude, sensitivity, correlation, and classification.

Low carbon-black sensors are found to be highly nonlinear with respect to concentration pre-
senting both challenges in terms of calibration and benefits in terms of additional modes of use
impossible with standard, high carbon-black sensors. Low carbon-black sensors are typically more
susceptible to drift and show somewhat less reproducibility, but exhibit both greater responses and

predominantly higher sensitivity.

3.2 Introduction

In the past 20 years, arrays of broadly cross-reactive sensors have received significant attention for
their possible use in detection and classification of analyte vapors. These systems can be based
on many signal transduction modalities, including polymer-coated quartz-crystal microbalances

(QCM) or surface-acoustic wave (SAW) devices,! glass beads or optical fibers coated with dye
g p y

impregnated polymers,*® conducting polymer” ! or polymer composite!>'* chemically sensitive

resistors, polymer-coated micromachined cantilevers,’® polymer-based capacitors and FETs,'¢ 17
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and metal oxide chemiresistors.18-21

Work in our laboratory has focused on the development of conducting composite films con-
sisting of ordinary insulating polymers and conductive carbon-black. These sensors pass current
through continuous pathways of the conductive carbon-black that traverse the gap between a pair
of electrodes which is between 10 ym and 1 mm wide. When the sensors encounter chemical vapors
they swell, necessarily breaking some fraction of the continuous carbon-black pathways increasing
the bulk dc resistance of the composite.”> We typically report the resistance change in its fractional
form, as AR./Ryp, because it is more reproducible between sensors containing the same insulating
polymer component but of different baseline resistances.!3

Our sensors are designed to indirectly measure the mass uptake that occurs when polymer
films are exposed to chemical vapors. In this way, they have been designed to essentially mimic
QCM sensors, which directly measure mass uptake upon analyte sorption. However, the behavior
of our sensors is dependent on the fraction of conductive carbon-black they contain. Films with
small fractions of carbon-black have been shown to exhibit a power law relationship between
resistance and degree of analyte uptake; this relationship approximates linearity at higher fractions
of conductor.’

At the time polymer/carbon-black composite sensors were designed, emphasis was placed on
their maintaining a linear relationship between resistance and vapor concentration. This necessi-
tated the use of high fractions of carbon-black in films (20% w/w), ultimately resulting in sensors
that exhibited highly linear responses as a function of concentration over a wide range of concentra-
tions.!¥? Development of sensors exhibiting linear responses facilitated normalization techniques
that could easily extract a concentration-independent signal S from a raw signal S that corresponds
to a AR.;/R}, sensor response vector (eq 3.1).

5 =M 3.1)

Y 27 Sij

However, the high degree of linearity came at a price because the responses were thus restricted,
they were necessarily kept out of the percolation regime, which would have resulted in dramatically
higher responses.?? The result was that a typical sensor response yielded a resistance change upon
typical analyte exposures of only a few percent at best. Only under exceptional circumstances would
a sensor response pass 30%.2>"% Given the extremely low noise of these sensors of approximately 1
part in 90,000% and their high degree of repeatability,?’ the relatively small responses on the order
of a few percent can still be made with a high degree of sensitivity.

To achieve resolution of 1 part in 90,000, a minimum of 17 bits are required for full-scale
measurements. This is not possible for all desired applications of our sensors, in which less

expensive, smaller, or low-power electronics might be preferred. In cases where lower resolution
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measurement hardware is used, the low noise of the high carbon-black sensors is meaningless, as
it is dwarfed by the digital noise of the hardware. In these cases, the greater signals provided by
sensors fabricated with lower fractions of carbon-black would be a strongly preferred, and in many
cases necessary to measure a discernable signal.

Varying the carbon-black fraction in a sensor also affords the opportunity to generate a greater
amount of sensor diversity without actually introducing new components (such as more types
of polymers). This approach has proven useful when varying the amount of plasticizer in a
polymer/plasticizer/conductor system, where a single polymer and plasticizer can be combined in
varying ratios to yield a sensor array.?® By including different sensors that employ the same sensing
element but different fractions of carbon-black, sensors can be developed that might be significantly
less correlated than nominally identical sensors would be, which would add some degree of useful
information to the system.

Toward these goals we report here the development and characterization of a mixed array of
high- and low-carbon-black sensing films. We seek to determine whether and in what circumstances
using arrays containing lower carbon-black fractions is beneficial. Overall, for the inclusion of
nominally identical sensors differing only in carbon-black content to prove useful, they must be
more selective, more sensitive, more reproducible, and/or generate responses that are uncorrelated
with their high carbon-black analogs. Here we compare sensors derived from high and low carbon-
black fractions with regard to these considerations. We also detail methods for determining from
a single analyte exposure whether a sensor has become “percolative,” thereby leaving the linear

concentration/response regime.

3.3 Experimental

3.3.1 Sensor Fabrication

Four polymers were used to generate the sensors used in this work: poly(ethylene oxide) (PEO),
MW=100,000; poly(ethylene-co-propylene) (PEP), 40% propylene; poly(ethylene-co-vinyl acetate)
(PEVA), 40% vinyl acetate; and poly(vinyl stearate) (PVS). Black Pearls 2000 carbon-black (Cabot
Co.) was used as the conductive element for all sensors. Polymer and some fraction of carbon-black
were mixed by co-dissolving them in a compatible solvent and sonicating for 30 min to break up the
agglomerated carbon-black particles, which produces nanoparticles with radii of approximately
12 nm with a surface area of 1500 m?/g.? The solutions were then deposited across leads of
interdigitated electrodes with gaps of 10 um and total interfacial contact distance of 2 cm using a
hobby airbrush as described previously.'326:2

Solutions were sprayed on sensor electrodes to generate films with resistances no higher than
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single-digit MQ), and lower where possible. For each polymer, two sensor types were created: one
with a low fraction of carbon-black, and one with 40% (w/w) carbon-black, which has been shown
previously to ensure linear response vs. concentration characteristics over a broad concentration

range.'?

The low carbon-black fractions used varied by polymer type, with the fraction used
representing the lowest fraction that ultimately produced a viable sensor for that polymer type.
The fractions of carbon-black used were 2%, 12%, 7%, and 1% for PEO, PEP, PEVA, and PVS,
respectively.

Additionally, two PVS films sensor films were generated from the same 1% carbon-black feed-
stock. One film was applied to an interdigitated electrode as described above, and one was applied

to a 10 MHz resonant quartz crystal microbalance. Changes in resonant frequency of each coated

crystal can be related to changes in the mass of the film through the Sauerbrey equation (eq 3.2):

—Am X f3
C pXUXA

Af (3.2)

Here, fj is the resonant frequency of the crystal, p is the density of quartz, v is the speed of sound
in quartz, and A is the area of the crystal. Af and Am are changes in the resonant frequency and

mass, respectively.

3.3.2 Data Collection

For a first set of experiments, a QCM crystal coated with a PVS/1% carbon-black sensing film was
exposed to THF concentrations between 0 and P/P°=0, 0.067. The concentration vs. time profile
was shaped as a sawtooth, with a single cycle (from 0 to P/P°=0, 0.067) requiring 1000 s. Frequency
was measured using a Hewlett-Packard 53181A frequency counter, and resistance with a Hewlett-
Packard 34970A multimeter. Frequency was converted to mass as described above. For a second
set of experiments, the 2 copies (high and low carbon-black) of 5 sensor types were placed in an
airtight stainless steel flow chamber which was connected to computer controlled vapor delivery
apparatus, as described previously.® Resistances were measured by a Keithley 2002 multimeter
and 7001 multiplexer. 16 different analytes were used to test the sensors, as shown in Table 3.1.
These analytes were delivered at fractional saturation concentrations of P/P°= 0.005, 0.01, 0.02,
0.03, 0.04, 0.06, 0.10, 0.12, 0.14, and 0.16 each. Within a given run, only 8 analytes were presented,
but each combination of the 8 analytes and 10 concentrations was repeated 10 times within a run,
with the exposure order of the analytes randomized to minimize the effect of sensor history effects
upon the results. Each analyte exposure consisted of 70 seconds of clean laboratory air, 80 seconds
of analyte, followed by another 60 seconds of laboratory air during which time the sensors are
allowed to rest before the next exposure. Of the 8 analytes used in each experiment, four of them

iso-octane, toluene, THF, and chloroform were used in each run, accompanied in all cases by four
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Table 3.1: Summary of experiment runs.

Run | Since Last Run | Analyte 1 Analyte 2 Analyte 3 Analyte 4
1 N/A isobutyl acetate 1-chlorobutane ethanol water
2 2 weeks isobutyl acetate 1-chlorobutane ethanol water
3 1 day isobutyl acetate 1-chlorobutane ethanol water
4 3 months isobutyl acetate 1-chlorobutane ethanol water
5 1 day 1,1,1-TCE pyridine decane n-octanol
6 1 day dichloromethane | isopropyl benzene | methyl acetate methanol

Note: All experiments also used iso-octane, toluene, THF, and chloroform.

other analytes. The first three experiments all used the same analyte set, and also the same order of
presentation for the analytes. Two weeks passed between experiments 1 and 2, and nearly 3 months
between 2 and 3. Experiment 4 was run a day after the end of experiment 3, and experiment 5 one

day after the end of experiment 4. Table 3.1 summarizes these experiment runs.

3.3.3 Data Analysis

For each response signal derived from a single analyte exposure to a given sensor, the data were
first baseline corrected and then transduced to extract a single characteristic value. Baseline cor-
rection was accomplished by fitting a trendline to the analyte-free pre-exposure period, with the
trend extracted from the entire signal. From the baseline corrected data were then extracted the
equilibrium resistance change (AR,;) and the baseline resistance (R;). The characteristic chosen is
AR.;/Rp, which has been shown to be more consistent than AR,; between sensors such as those
used in this work that are derived from a single polymeric component but differing carbon-black
fractions.

This work employs principal components analysis (PCA) and Fishers Linear Discriminant (FLD)
to estimate how successfully our sensors distinguish among different analytes (Duda). PCA simply
rotates the data to ensure that the first few dimensions contain as much of the variance as possible,
while FLD is a supervised algorithm that attempts to maximize separation between clusters of pre-

identified clusters of points. These algorithms are implemented here as in previous work.?-31-32

3.4 Results and Discussion

3.4.1 Determination of the Relationship Among Mass, Resistance, and Concen-
tration
Figure 3.1 shows response vs. concentration profiles for a PVS/1% carbon-black composite sensor:

a) response as Am,,;/my, b) response as AR, /Ry, as well as ¢) Am,,;/my vs. ARy /R,. Mass changes

are linear with concentration until approximately P/P°=0.20-0.30, after which the curve gradually
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Figure 3.1: Response vs. concentration profiles for a poly(vinyl stearate) sensor (1% carbon-black)
exposed to tetrahydrofuran: a) Am,,;/my vs. concentration, and b) AR,;/R; vs. concentration. Data
were recorded from a sawtooth concentration vs. time profile. Figure c) displays AR.;/R; vs.
Aty [ 11y,
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03 04 0s [ 01 02 03 04 05
Concentration (P/P") Concentration (P/P')

(a) (b) (©

increases past linear. This implies that PVS/THF partition coefficient is consistent at moderate
concentrations, increasing somewhat at high THF loadings. Changes in resistance are linear with
changes in mass until approximately P/P°=0.10, at which resistance dramatically increases with
respect to mass. This result clearly shows that what effects may be taking place, they are not
explainable by polymer/vapor sorption phenomena, which would also be manifest in the mass
plot. Thus, the seemingly exponential (or at least highly supra-linear) responses derived from the
low carbon-black sensors are not due to changes in polymer morphology, but rather to percolative

behavior that is manifest at low fractions of carbon-black and relatively high analyte concentrations.

3.4.2 Spatial Analysis of Sensor Responses

Figures 3.2 a-h show raw sensor responses (AR.;/R}) vs. concentration (P/P°) for iso-octane, THF,
and chloroform. As shown in the previous section, the low carbon-black sensors show significant
nonlinear characteristics with respect to concentration, while the high carbon-black sensors do not.
Figure 3.3 displays first principal component derived from the a) high carbon-black sensors and
b) low carbon-black sensor sets, plotted vs. analyte concentration. As expected, the first principal
component that which contains the bulk of the variance from the data is monotonic, and roughly
linear for the high carbon-black sensors and roughly exponential for the low carbon-black sensors.
Characteristically, further principal components of each grow noisier.

For the data collected in this work, the first principal component derived from high carbon-black
sensors serves as an effective means of removing concentration effects, as it remains linear with
concentration even if some of the high carbon-black sensors in the array do not. Decomposing

the data into principal components also allows for recognition of percolative effects earlier than
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Figure 3.2: Raw AR,/R;, Responses of High and Low Carbon-black Sensors to Iso-octane (o),
Toluene (O), and Tetrahydrofuran (x)
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Figure 3.3: PCA Analysis of Sensor Response Data Collected From 16 Analytes in Table 3.1. Marked
are four selected analytes: isopropyl benzene (o), water (0), chloroform (¢), and methyl acetate (V).
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may be possible on a simple sensor by sensor basis for example, 1-chlorobutane and isopropyl
benzene are easily recognized as displaying significant nonlinear behavior in the fourth and least
significant principal component at P/P°=0.06, while the first principal component does not display

such behavior until P/P°=0.10.

3.4.3 Determination of Signal-to-Noise Characteristics

The goal of using percolative, low carbon-black sensors is primarily to generate sensors capable
of generating stronger responses than the higher carbon-black sensors typically used. Enhanced
responses, however, can be undone if the noise inherent in such sensors is also significantly higher.
To this end, we compared signal to noise ratios (S/N) for high and low carbon-black sensors as a
function of concentration. Signal was taken from AR,, values, and noise determined from three
times the de-trended baseline standard deviation, in accordance with standard practices.33 S/N
values were derived from each exposure to all analytes of the first data collection period.

As would be expected, the high carbon-black sensors show a roughly linear dependence of S/N
vs. concentration, while the low carbon-black sensors show a generally exponential dependence.
At low concentrations, the high carbon-black sensors show higher average S/N, while the low
carbon-black sensors show higher S/N at higher concentrations. The curves cross near P/P°=0.06,
roughly in the region at which the low carbon-black sensors tend to begin displaying percolative

behavior.
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3.4.4 Analysis of Drift, Scatter, and Analyte History upon Sensor Responses

Prior work in our group showed that, for well broken-in sensors containing relatively high fractions
of carbon-black, sensor drift rarely causes irrevocable problems resulting in analyte misidentifica-
tion.”” What drift does occur is largely due to changes in the environment of the sensors or due
to long periods without using the sensors. Additionally, so long as the sensors are not exposed to
unduly high concentrations of analyte and are allowed to return to baseline before the next analyte
exposure, analyte history plays little role upon sensor responses. For this work, however, we used
higher concentrations of analyte and using very low fractions of carbon-black, and expected that
the sources and character of the variance in the system might change.

To determine the source of variation in groups of data derived from exposures of a given analyte
ata fixed concentration to a certain sensor, we sough to establish the source of this variation namely,
whether it derived from history or drift effects (which are correctable) or from scatter (which is not).
We considered data from the first four runs (Table 3.1), which were comprised of the same analytes
exposed in the same order. Thus, even in the presence of history effects, the data acquired from
each run should (in principle) yield the same responses. As such, any disparities between the four
runs will be due only to drift and scatter. For this work, it is assumed that little drift occurs within a
run (consistent with prior work?), so drift is determined to be the difference in the mean response
change of the responses to an analyte between runs. With the effects due to analyte history and
drift thus determined, any further variance is assumed to arise from scatter or white noise.

Figure 3.4 a) and b) display the contributions of drift, analyte history, and scatter for the group of
high carbon-black and low carbon-black sensors, respectively, between the first two runs (separated
by two weeks). For both the high and low carbon-black sensor sets, drift makes up the primary
component of variance, with analyte history and scatter approximately equal. For the low carbon-
black sensors, the scatter drops to approximately 8% of the sensor responses, on average, at higher
concentrations, with a greater contribution at lower concentrations. For the high carbon-black
sensors, scatter remains approximately 3-4% of the total sensor response. After further months
of use including responses to high concentrations of various analytes the sensors showed more

significant drift, although the scatter and history effects remained consistent.

3.4.5 Comparison of Optimal Effectiveness of Percolative and Non-percolative

Sensors

Though it is clear that low carbon-black sensors generally show less reproducibility than sensors
with greater conductor fractions, this knowledge must be weighed against the extra information
that percolative sensors can contribute. Table 3.2 displays correlation matrices for data derived

from the first run of the PEO, PEP, PEVA, and PVS sensors (high and low carbon-black) to iso-
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Figure 3.4: Separation of Total Response Variation (+) into Response Drift (o), Response History
Effects (O), and Scatter (+) for the high carbon-black (a) and low carbon-black (b) sensor arrays.

16 '1:
i
A
0.2+ 4
_ JV\ + _ 4 '.' [
g | - g 4
2 % e e L 5
o N e T S n
o 3 .= e
2o \ g £
c N T ud c 4L
il ¥ L
s 8
3 3 o8
Q o1 a
© k3
Lo o 08f
5] T
o o 0.4
005+
Y\’/* E——- 02}
—h— —o-
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Concentration (P/P') Concentration (P/P )
(a) (b)

octane, toluene, THF, iso-butyl acetate, 1-chlorobutane, chloroform, ethanol, and water. Table 3.2a
displays this correlation matrix derived from the lowest concentrations (P/P°;j0.06) of each analyte
(averaged over the 8 analytes used), and Table 3.2b data derived from the highest concentrations
(P/P°;0.10). Two results are clear: first, the high carbon-black sensors tend to correlate more highly.
Second, this effect is most significant at the higher concentrations studied, where one would expect
percolation behavior to be manifest. Note that even the highest concentrations studied in this work
are not particularly high, and one would expect the low carbon-black sensors to generate even
less correlated data at yet higher concentrations. Examination of classification performance of the
arrays with and without low carbon-black sensors also suggests that the low carbon-black sensors
can be of significant benefit. Fishers Linear Discriminant was used to distinguish among the eight
different analytes used in the first data collection run, and was implemented on a pairwise basis
considering all possible tasks of distinguishing between two analytes at the same concentration,
and repeated for each of the concentrations at which data was collected. For each of these binary
separation tasks, a resolution factor (RF) derived from the data.?* Results of this examination show
that using a sensor array comprised of only low carbon-black detectors yields greater RF values
than an array of only high carbon-black detector array for 31.7% of the FLD separation tasks for
those separation tasks that involve analytes with concentrations at least P/P°=0.06. Additionally,
the low carbon-black array yielded RF values at least 50% higher than the carbon-black sensor
array for 14.8% of the tasks, and 100% higher for 6.2% of the separation tasks. The respective ratios
for separation tasks below P/P°=0.06 are 3.0%, 0.67% and 0.17%, respectively. Not coincidently,
P/P°=0.06 is approximately where many of the analytes investigated in this study begin to exhibit

nonlinear behavior (Figure 3.2). As such, for distinguishing among analytes that exhibit nonlinear,
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Table 3.2: Correlation matrix between sensors for analytes from the 8 analytes of the first data
collection run.

(a) Concentrations P/P° < 0.06

PEO(2%) PEP(12%) DPEVA(7%) PVS(1%) PEO(40%) PEP(40%) PEVA(40%) PVS(40%)

PEOQ2%) 1 0.731 0.820 0.876 0.959 0.857 0.960 0.949
PEP(12%) 1 0.505 0.619 0.732 0.948 0.732 0.854
PEVA(7%) 1 0.845 0.843 0.644 0.845 0.769
PVS(1%) 1 0.906 0.774 0.942 0.870
PEO(40%) 1 0.862 0.983 0.968
PEP(40%) 1 0.874 0.957
PEVA (40%) 1 0.963
PVS(40%) 1

(b) Concentrations P/P° > 0.10

PEO(2%) DEDP(12%) PEVA(7%) PVS(1%) PEO(40%) PEP(40%) PEVA(40%)PVS(40%)

PEO(2%) 1 0.452 0.924 0.819 0.930 0.650 0.960 0.834
PEP(12%) 1 0.368 0.626 0.412 0.729 0.454 0.531
PEVA(7%) 1 0.713 0.880 0.533 0916 0.741
PVS(1%) 1 0.883 0.923 0.893 0.956
PEO(40%) 1 0.748 0.984 0.945
PEP(40%) 1 0.753 0.905
PEVA(40%) 1 0.929

PVS(40%) 1
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percolative sensor responses, using low carbon-black sensors is beneficial. In other cases, the
lessened reproducibility of the low carbon-black sensors typically causes arrays utilizing them to
be less effective.

The previous FLD analysis assumes that reasonable calibration curves are available for all
analytes to allow identification instead of simply resolution. Assuming such robust calibration
exists, then classification performance would follow FLD RF values. In practice, all calibration
curves are necessarily coarse, derived from data collected at a discrete set of concentrations. For
high carbon-black sensors, this is not a problem, as their linear nature allows a one-point calibration
to be in practice continuous. However, it is a much greater problem for low carbon black sensors,
which do not follow a strict parametric form, requiring a full calibration curve be derived. As
such, the ability to classify an unknown anlayte correctly depends on both its differentiability
with respect to potential interferents as well as the coarseness of the calibration curve. To test the
effect of this limitation, we considered a nearest-neighbor®* approach, considering each of the 80
analyte/concentration combinations as a separate analyte. For each analyte exposure, its distance to
each of the other 79 analyte/concentration clusters was measured, specifically excluding the cluster
derived from that exposure and replicates. If the nearest cluster to a given analyte exposure was a
different concentration of the same analyte, effectively treating the other 9 clusters of that analyte
as a 9-point calibration curve, the classification was considered successful.

Figure 3.5 shows the results of this analysis as a function of concentration, for classification using
low carbon-black sensors (o) and only high carbon-black sensors (O). Here, the low carbon-black
sensors are revealed to be at a significant disadvantage, while they performed very competitively
in many cases when considering only resolution. The reduced performance of low carbon-black
sensors in terms of classification ability compared to resolution is due in large part to the nonlinearity
of the low carbon-black sensors the strong responses that make them so desirable also spreads
consecutive calibration points much farther apart compared to high carbon-black sensors. The
magnitude of this conclusion, however, is peculiar to this study, namely upon the coarseness of the

calibration and spacing of the calibration concentrations used.

3.4.6 Use of Percolative Sensors as “Binary” Vapor Sensors

Despite the advantages that high carbon-black sensors possess regarding noise, this is only relevant
when using an analog-to-digital converter that possesses the resolution to measure sensor responses
at their full precision. If this is not the case, and digital noise is significant compared to the noise
of the sensors themselves, then any advantage derived from the low noise of high carbon-black
sensors is lessened. If the digital noise of the electronics is actually higher than the noise of the low
carbon-black sensors, then such advantages are completely irrelevant. In such cases, the sensor that

delivers the greatest signal will be preferred. This is nearly always the low carbon-black sensor.
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Figure 3.5: Classification efficiency of low carbon-black (o) and high carbon-black (O) sensor arrays
using a coarse calibration curve
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Table 3.3: Correlation matrix between sensors for analytes from the 8 analytes of the first data
collection run.

I-octane Toluene THF Bu-Acetate  Cl-Butane CHCl;  Ethanol Water

PEO 0.131 0.142 0.090 0.143 0.104 0.062 N/A N/A
PEP 0.116 0.122 0.093 0.148 0.101 0.064 N/A N/A
PEVA 0.138 0.137 0.102 0.154 0.108 0.050 N/A N/A
PVS  0.040 0.030 0.017 0.038 0.022 0.011 0.150 N/A

N/A denotes an analyte that did not reach the percolation threshold over the concentration range tested.

Considering the most extreme case, one might seek a sensor that can yield meaningful results
when using even a 1-bit conversion, assuming only that we have the sensor in a circuit that allows
it to have a variable “turn-on” resistance. In this case high carbon-black sensors would be generally
useless, as their very linearity would provide greatly reduced signal and no convenient point (such
as a percolation threshold) at which to designate the “turn-on” point. For low carbon-black sensors,
the enhanced response and nature of the percolation threshold could allow low carbon-black sensors
to be treated as either “on” or “off.”

Though the percolation threshold may not be perfectly defined in all cases, it is reasonable to
presume that the point at which the responses of the high and low carbon-black sensors diverge
represents the percolation threshold. Given only one exposure at a single concentration, however,
one must guess what degree of difference is necessary between the sensors of the pair actually
represents percolation behavior. To derive a useful metric from the relationship between the high
carbon-black and low carbon-black sensors, we have applied the following relationship to determine
a derived signal (S;,) from the signals S (here, AR,;/R; values) of a high/low carbon-black sensor
pair (eq 3.3):

2

S = Slow (3 3)
der Shigh '

Figures 3.6 a-d show Sy, for PEO and PEP, PEVA, and PVS, respectively. For PEO, S4, values
of less than 0.25 lie below the percolation threshold, and higher values above it. For PEP, PEVA,
and PVS this threshold is sharper, and the threshold concentration may be set at 1.5, 2.0, and 1.0,
respectively. Also, for a given analyte presented to a given sensor pair, the P/P° concentration
required to generate an above-threshold S, value varies and can be taken as characteristic of the
particular analyte/polymer combination. Table 3.3 shows the S, threshold for each sensor pair,
and the P/P° concentration (estimated by interpolation) for each analyte required to exceed it.

Another potential benefit of considering the highly nonlinear percolative sensors from a binary
on/off standpoint is as a mimic of the mammilian olfaction system, which (at the lowest level)

consists of many different receptor neurons, each of which fires when sufficiently stimulated by
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Figure 3.7: Principal Components Analysis of Sy, Data Converted to Binary Format. Analytes are
iso-octane (o), toluene (O), tetrahydrofuran (2), butyl acetate (x), chlorobutane (+), chloroform (x),
ethanol (¢), water (V)
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“051

analyte vapor.®

Taken together, a large array of percolative sensors would then generate, in
effect, a bit vector for any analyte exposure, similar to how the response set generated by olfactory
receptors. Figure 3.7 shows response data of the 8 primary analytes investigated in this study,
first converted into binary form using the thresholds in Table 3.3 and then decomposed into its
principal components. Figure 3.7 a) shows principal components 1 and 2, and b) shows principal
components 1 and 3. Principal components 1 and 2 show an arc through the decomposed binary
sensor space that is traced by all of the analytes; components 1 and 3 show the analytes sharply
diverging near P/P°=0.06 at which point the sensors begin to show strong percolative responses
to some analytes and then reconverge at P/P°=0.16, by which point many of the responses were
percolative. These characteristics are somewhat biomimetic. Different regions of the brain have
been shown to be responsible for determining odor intensity (amygdala) and identity (portions of
the orbitofrontal cortex).?® PCA acts as an analog to the processes that transform raw responses
into different pieces of information that are ultimately represented as identity or concentration.
Other work indicates that higher concentrations of a given analyte stimulate more regions of the
glomerular layer, in addition to more olfactory receptors, which is also analogous to the sensor
responses in this work.” The reconvergence effect displayed in PCA would indicate that chemicals
should smell similar at very high concentrations. In the mammilian olfaction system, this has not
found to be the case, in that the ability to distinguish chemicals increases with concentration.®® This
research does show, however, that chemicals are perceived differently at different concentrations,
and suggests that many chemicals possess some common characteristics at high concentrations,

namely, that they are perceived as “chemical” or “varnish” or similar unpleasant characteristics.
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The authors do not speculate as to why this might be, but note the lack of trigeminal stimulation,

which suggests that what effects exist are olfactory in nature.

3.5 Conclusions

Using low carbon-black sensors presents a variety of advantages when used in conjunction with
high carbon-black sensors. They generate stronger responses, often better resolve analytes, and are
generally more sensitive above low concentrations of approximately P/P°=0.06. These advantages
are tempered, however, by the more significant degree of drift, loss of response vs. concentration
linearity, and lessened reproducibility of the responses of such sensors. Even including such
considerations, sensor arrays that contain fractions of carbon-black typically perform at least as
well as high carbon-black sensor arrays, and often much better. Arrays of low carbon-black sensors
also offer unique ways to mimic biological olfaction phenomena such as response saturation.

While low carbon-black sensors often present greater signal to noise ratios as compared to high
carbon-black analogs given ideal signal conversion electrionics, less capable electronics may be
unusable with high carbon-black sensors, as digital noise may overwhelm the responses of the
sensors in such cases. In these situations, high carbon-black sensors will not function and only
lower carbon-black sensors may be used at all to any degree of success.

Given the additional information they add and new use modes they present, low carbon-black
sensors show promise for use in arrays also containing high carbon-black sensors. Their limitations
will prevent them from actually replacing high carbon-black sensors in sensor arrays, but their

benefits allow them to complement the function of high carbon-black sensors well.
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Chapter 4

Estimation of Chemical and Physical
Characteristics of Analyte Vapors
Through Analysis of the Response
Data of Arrays of
Polymer/Carbon-Black Composite
Vapor Detectors

4,1 Abstract

Analysis of the signals produced by a collection of organic polymer/carbon-black composite vapor
detectors has been performed to assess the ability to estimate various chemical and physical prop-
erties of analyte vapors based on information contained in the response patterns of the detector
array. A diverse array of composite chemiresistive vapor detectors was exposed to a series of 75 test
analytes that had been selected from among five different chemical classes: alcohols, halogenated
hydrocarbons, aromatics, unsubstituted hydrocarbons, and esters. The algorithmic task of interest
was to use the resulting array of response data to assign one of the five chemical class labels to a
test analyte, despite having left that analyte out of the model used to generate the class labels. The
k-nearest neighbor algorithm was employed for this task using either Euclidean or Mahalanobis
distance calculations with raw data, or Euclidean distances with data preprocessed using Fisher’s
Linear Discriminant algorithm. Each data cluster that was produced by replicate exposures to an
individual analyte was well resolved from all of the other 74 analyte clusters. Furthermore the ana-
lyte response clusters could be robustly grouped into supersets such that each of the five individual
chemical classes was well-separated from every other class of analytes in principal component

space. Up to 85% percent of the test analyte exposures were correctly assigned to their chemical
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classes. The detector array response data also was found to contain semi-quantitative information
regarding physicochemical properties of the members of the test analyte series, such as the degree
of unsaturation of the carbon chain, the number of halogen atoms, and type of aromatic ring in the
test analytes. Using multiple linear regression, quantitative information related to analyte sorp-
tion, such as water/octanol partition coefficients, dielectric constants, and molar volumes were also
predicted. The performance in these types of tasks is relevant for applications of a semi-selective
array of vapor detectors in situations when no prior knowledge of the analyte identity is available
and when there is no assurance that the test analyte will have been contained in the training set

database produced by a compiling a library of responses from the detector array.

4.2 Introduction

Arrays of broadly cross-reactive sorption-based detectors have received much recent attention.

1-3

Typically the sorption detectors are either conductive polymers'— or conducting polymer compos-

ites*” polymers that have been impregnated with dyes whose absorption or luminescence signals

8-12

are sensitive to their environments,®~* polymer films that have been coated onto surface or bulk

resonating crystals,>1°

or polymers that have been coated onto the ends of micromachined can-
tilevers.!® In any of these architectures, an analyte elicits a response from many detectors, and
in turn each detector responds to many analytes. Pattern recognition algorithms are then used to
classify, and in some cases quantify, the analyte of interest.'”"1® Arrays of 5-20 different polymeric
sorption detectors have been shown to provide excellent analyte classification and quantification
characteristics in a variety of laboratory-based situations .19

Detectors of particular interest in our laboratory are composites that consist of regions of an
electrical conductor and regions of an insulating organic polymer.>?* Swelling of the polymer by
sorption of an analyte induces a reversible, characteristic change in the dc electrical resistance of the
detector film. Arrays of such detectors have been shown to provide excellent pairwise resolution
between both closely related and diverse analytes, easily resolving between pairs of homologous
alkanes, homologous alcohols, H,O vs. D,0O, or very similar binary analyte mixtures.®2%2224 Thus,
over the timescale of these laboratory experiments, once the detector system has been trained
towards these particular odorants, it can readily identify, with a high probability of correct identifi-
cation and a low rate of false positives, the identity of one of these vapors presented in a subsequent
test exposure to the array.

In this work, we have focused on a different question than matching a response pattern to one
of the patterns that is already known to be contained in the stored response database for the array

of interest. In the present work, we assume that the analyte response information is not in the

database, and wish to evaluate what can be deduced about the test analyte through analysis of
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its array response signals. In many instances, for example, it would be sufficient to be able to
classify the general characteristics of an unknown analyte in terms of a chemical classification as
an aromatic, aliphatic, chlorinated hydrocarbon, alcohol, ester, or other designated chemical class
grouping based on the presence of certain functional groups. Additionally, within such descriptions
of analyte classes, it would be of interest to obtain an estimate of selected physicochemical properties
of an analyte, such as the value of an analytes dipole moment, vapor pressure, and/or its molecular
volume. Some of this information, such as functional group analysis, is routinely available through
analysis of the infrared spectrum of an organic vapor. Other information however, such as molecular
volume or substrate binding affinity,?> is more likely to be probed directly by a sorption-based
detector than by the amplitude and position of a molecular electromagnetic absorption or emission
signal.

As shown in prior work, 467

on a sufficiently compositionally diverse array of vapor detectors,
each single-component pure analyte will yield its own characteristic response cluster in odor space.
The polymer/carbon-black composite detectors generally exhibit a response that is linear with
analyte concentration, so that the response cluster for a given analyte is maintained for normalized
data over a wide range of analyte concentrations.® Each response cluster can furthermore typically
be differentiated with relatively high resolution from the response clusters produced by exposure of
the detector array to all of the other analytes in the training set. The question of interest is whether
a decision surface can be drawn in the resulting n-dimensional odor space (where n equals the
number of detectors used) such that if a test analyte exposure falls inside of the decision surface,
the test analyte can also be correctly identified with high probability as being a member of the
same chemical class as the training set of analytes that is contained inside the decision surface. An
example for a hypothetical two-dimensional odor space is shown in Figure 4.1, in which analyte X
is correctly assigned to one of three possible analyte clusters, whereas analyte Y is not successfully
assigned to a class. Additional class boundaries can in principle be formulated to describe other
physicochemical properties of the analytes of interest, such as hydrocarbon unsaturation or aromatic
ring type, and regression, and regression techniques can allow prediction of continuous variables
based upon sensor responses, as shown in prior work.?

To evaluate these possibilities, arrays of chemically sensitive resistors based on composites of
organic polymer and carbon black were exposed to a series of single-component organic vapors. The
vapors were members of one of five distinct chemical classes, as indicated in Table 4.1. In a “leave-
one-out” (LOO) approach,!” subsets of these analytes formed the models and databases that were
used in conjunction with data analysis algorithms to extract physicochemical information on the test
analyte. Principal components analysis (PCA) and k-nearest neighbor (k-NN) analysis using both
Euclidean and Mahalanobis distance calculations were evaluated for their ability to assign correctly

the chemical class, degree of unsaturation, number of halogen atoms, and nature of the aromatic
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Figure 4.1: Description of clustering as implemented in this study. Three distinct analyte clusters
(A, B, and C), consisting of five members each, are shown in a simulated principal components
analysis plot. Each of the three clusters is completely separated from the others. Also included
are two unknown test analytes, X, and Y. X is completely contained by the boundary that defines
class A, and each of the three points nearest to X is a member of class A. Therefore, X is assumed to
belong to class A. Y is well outside the boundaries of all three classes, and the analytes nearest to it
do not correspond to the same analyte class. Therefore, Y is likely not a member of any of classes
A, B,orC.
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ring. Multiple linear regression was used to predict the water/octanol partition coefficient (K,),
dielectric constant (¢),van der Waals size parameters, and Hildebrand®® and Hansen? solubility
parameters, for each of the 75 test analyte vapors. K, represents the partitioning of a liquid analyte
into a water/octanol bilayer. Hildebrand solubility parameters () are defined in eq. 4.1, Hansen in

eq. 4.2.

AHy,, — RT
o = (——)'" (4.1)
5T =00 +05+60 (4.2)

Here, 0; represents the total solubility parameter, and 6., 04, and 6y, its electrostatic, dipole, and
hydrogen bonding terms, respectively. AH,,, is the enthalpy of vaporization for an analyte, R the

ideal gas constant, T the temperature, and V,, the liquid molar volume.

4.3 Experimental

The detector array consisted of 2 copies each of 20 compositionally distinct polymer/carbon-black
composite chemically sensitive resistors (Table 4.2), for a total of 40 detectors. Detector films were
cast from mixtures of 80% polymer and 20% by weight of carbon-black (Black Pearls 2000, Cabot
Inc), as described previously.” The detector films were deposited between two Au leads that had
been evaporated onto a glass slide, and the array was housed in a stainless steel assembly that
was connected by teflon tubing to a computer-controlled, calibrated vapor generation and delivery
system.

The set of 75 pure single-component analyte vapors was formed from approximately 15 members
from each of five distinct analyte classes: alcohols, halides, aromatics, hydrocarbons, and esters
(Table 4.1). Due to a limited number of solvent bubblers available in the experimental apparatus,
data collection was divided into many runs, with each run consisting of exposures to 8 out of the 75
analytes. The first run consisted of 10 exposures of the detector array to each of analytes 1-8 from
Table 4.1, with the analytes presented in random order. The next run was made up of 2 randomly
selected analytes from run 1, as well as 6 new analytes, numbers 9-14 from Table 4.1. The selection
process was then repeated again, and a new set of 8 analytes was created from a pair of analytes
from the previous run and 6 new analytes. The selection process was continued until each analyte
had been included at least once in a run. Then, another round of runs was performed with each
run containing two randomly chosen analytes from 4 of the 5 analyte classes, and this process

was repeated until each analyte had been included in a second run. In this way, each analyte was
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Table 4.1: Analytes presented to the detector array.

Alcohols Halides Aromatics Hydrocarbons Esters
Methanol 1-Chloro- Benzene Cyclooctane Isopropyl  ac-
benzene etate
Cyclopentanol 1-Bromobutane | Propyl benzene | n-Hexane Butyl acetate
2-Butanol Cyclohexyl- m-Xylene n-Octane Pentyl acetate
chloride
1-Pentanol 1,1,2-Trichloro- o-Xylene n-Decane Methyl acetate
ethane
2-Pentanol 1-Bromopentane | p-Xylene 3,3-Dimethyl Isobutyl acetate
1-butene
3-Pentanol 3-Chloro Isopropyl ben- | n-Heptane trans-2-Hexenyl
2-methyl zene acetate
propene
Isopropanol 1-Chloro- Ethyl benzene n-Nonane Hexyl acetate
propane
Ethanol 2-Chlorobutane | Toluene Cyclopentane Isopentyl acetate
1-Butanol 1-Fluorobenzene | 1,2,4-Trimethyl 2,2,4-Trimethyl- | Ethyl propionate
benzene pentane
2-Methyl- 1-Iodopropane 2,6-Lutidine Cyclohexane Propyl acetate
1-propanol
3-Methyl- 2-Bromo 2-Picoline n-Pentane sec-Butyl acetate
1-butanol 2-methyl
propane
2-Methyl- 1-Iodobutane Pyridine 2,5-Dimethyl Isopentyl propi-
2-butanol 2,4-hexadiene onate
2-Propen-1-ol Chloroform Anisole 2-Methyl- Pentyl butyrate
2-butene
1-Hexanol Methylene chlo- 7-Methyl Isopentyl ben-
ride 1,6-octadiene zoate
2-Methyl- 1-Chlorobutane 1,7-Octadiene Ethyl butyrate
3-buten-2-ol

Cyclopentene

Cyclooctene
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Table 4.2: Polymers used to fabricate the polymer/carbon-black composite detector array.
1 poly(ethylene oxide)

2 Poly(ethylene oxide)-co-poly(amidoamine), diblock gen. 4°
3 Poly(ethylene-co-vinyl acetate) (45% vinyl acetate)

4 Poly(ethylene oxide)-co-poly(amidoamine), diblock gen. 1”
5 Poly(styrene-b-butadiene)

6 Kraton G°

7 poly(vinyl carbazole)

8 Kraton D?

9 poly(vinyl acetate)

10 poly(diphenoxyphosphazene)

11 polycaprolactone

12 polychloroprene

13 polysulfone

14 polyaniline-0.5-HDBSA®

15 poly(n-vinyl pyrrolidone)

16 bis(cyanoallyl polysiloxane)

17 poly(4-vinyl phenol)

18 poly(styrene-co-allyl alcohol)

19 poly(methyl octadecyl siloxane)

20 ethyl hydroxyethyl cellulose

“PEO-PAMAM diblock copolymer, with 5000 MW linear PEO and generation 4.0 PAMAM dendrimer (total MW=8420
YPEO-PAMAM diblock copolymer, with 5000 MW linear PEO and generation 1.0 PAMAM dendrimer (total MW=5230
‘Commercial Polymer from Shell Corp.

4Commercial Polymer from Shell Corp.

Polyaniline with a 0.5 fraction of all amine sites protonated by hexadecyl benzene sulfonic acid (HDBSA

presented to the detector array on at least two different occasions. Analytes were all presented at
a fixed (0.020) fraction of their vapor pressure at room temperature, 21+1°C, to insure a constant
vapor phase analyte activity throughout the runs.

Each analyte exposure consisted of a three-minute pre-exposure period to allow measurement
of a stable baseline resistance, followed by a five-minute period of analyte flow during which
the steady-state differential resistance change of the detector was recorded. A seven-minute post-
exposure period allowed the detector resistances to return to baseline after each analyte exposure.
Resistance data were recorded using a multiplexing Keithley multimeter and a data acquisition
computer as described previously.?’

Baseline correction of the data was performed by fitting a regression line to the first 10 points
of the pre-exposure resistance readings, and correcting all subsequent data points by the difference
in the value of the regression fit at the time of the measurement of that data point and at t = 0. A
single descriptor, the relative differential resistance change, AR,;/Rj;, was used in the analysis of the
response of each detector to an analyte exposure. The resistance values upon analyte exposure were
measured as the average over 10 data points after reaching equilibrium. AR, was measured as

the difference in resistance between the equilibrium response states before (R) and during analyte
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exposure. Each analyte exposure therefore produced a 40-dimensional vector, as follows:

X = Z cixi (4.3)

Prior to quantitative data analysis, principal components analysis was used to visualize portions
of the unnormalized, 40-dimensional detector array response data. The first two principal compo-
nents contained 66% of the total variance of the 40-dimensional data while 76% of the total variance
was contained in the first three principal components; thus, the data were visualized using the
first three principal components as axes. The three-dimensional data clouds were rotated manually
while the data were viewed along a fixed axis to assess the separation between clusters for various
tasks of interest.

The k-nearest-neighbor (k-NN) approach was used to obtain a quantitative measure of analyte
classification ability in different tasks. First, the mean response vectors for each of the 75 analytes
were calculated by averaging the unnormalized array responses recorded during the replicate
exposures to each analyte. A leave-one-out approach was then used, and a model data set was
formed from the mean response vectors produced by exposures to 74 of the 75 total analytes. No
response data from the analyte of interest was included in the construction of this model database of
response vectors. For each individual exposure to the test analyte of interest, up to 7 of the nearest
mean response vectors in the model database were then identified. The procedure was repeated for
each of the 20 exposure data points for the analyte of interest. Finally, the entire process of model
database construction, excluding data for the analyte of interest, and assessing distances to other
mean analyte response vectors in the database, was repeated for each of the 75 analytes studied in
this work.

Distance measurements in the k-NN analysis were made using both Euclidean distances and
Mahalanobis distance methods applied to raw data, as well as Euclidean distances based upon data
preprocessed using Fisher’s Linear Discriminant (FLD)."” The Euclidean values were calculated

simply by determining the distances between two points in the 40 dimensional space, with no prior

scaling or normalizing of the AR,;/R;, response data values:
P = (- (- ) (44)

FLD is used to to preprocess the data by retaining information that successfully separates data
clusters, while rejecting information that does not. The 20 exposures to a given analyte were treated
as an individual data cluster, resulting in 75 total clusters from the 75 unique analytes. For this
analysis, it was assumed that it was known which analyte exposures were mutually replicate,

meaning that we did not seek to make this an analyte recognition problem but rather a class
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recognition problem. As such, no validation scheme was used for FLD. Because more data clusters
were used than available features, FLD returned a new 40-dimensional dataset. For this work, the
least significant 5 dimensions - those which contain data least capable to separate the data clusters
- were rejected, and the other 35 were used for regression.

Mahalanobis distances differ from Euclidean distances in that they are calculated on data for
which each of the 40 individual descriptors is first autoscaled across the entire data set. When
autoscaling, each of the 40 dimensions is mean-centered, then divided by the variance of that

particular dimension:!'”

r= (W= - p) (4.5)

The Mahalanobis distance approach has the advantage in principle that noisier dimensions (detec-
tors) do not unduly dominate the distance calculated between two data points in the 40-dimensional
response space. However, it is possible for this data transformation to introduce artifacts in certain
cases.

Each analyte exposure was then assigned a class identity using each of these three methods. The
class of each test data point was assigned to the class that was represented by the majority of the
nearest k mean response vectors, with k varying as 1, 3, 5 or 7. Each analyte was assigned to only
be a member of a single class (Table 4.1). No class assignment was made to a data point in instances
when the nearest neighbor data points selected did not produce a majority class consensus.

To predict quantitative analyte properties, data were first preprocessed using the FLD-preprocessed
data. The FLD data was then fit to a multiple linear regression model used with a LOO cross-
validation scheme. For each of the quantitative properties investigated, not all of the FLD features
were used to build the model; rather, the N most significant FLD features were used, and the value
N chosen was that which maximized the significance of fit for the given model.

Quantitative analyte properties to be predicted included properties likely to be related to an-
alyte sorption into polymer matrices, such as water/octanol partition coefficients (K,,), dielectric
constants (€), van der Waals volume and area, Hildebrand solubility parameters (6;), and the Hansen
electrostatic (6,) and dipole (64) components of the Hildebrand solubility parameter. The Hansen
hydrogen bonding component (0,) was not analyzed because it was nonzero only for the alcohols.
Values for Ky, €, and 0; were taken from previous experimental results, and the van der Waals
parameters were determined from experimental values.”® If a value for an analyte/property com-
bination was not available, that analyte was omitted from analysis for that property only. Hansen

parameters were determined experimentally using the Cerius? and Jaguar software packages.
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Figure 4.2: Principal components analysis plot of the mean response vector termini for each analyte
used in the study, each of which corresponds to one of five analyte classes: alcohols, halides,
aromatics, hydrocarbons, and esters. Approximate classification boundaries have been drawn
around each of the five classes.

4.4 Results

44.1 Class Assignment

Figure 4.2 presents a plot of the analyte response data for all 75 analytes as projected onto the
first three principal components of the 40-dimensional detector AR,,x/R, response space. For
clarity, only the mean response vector termini, obtained from the average of multiple exposures
to each analyte, are displayed. Each of the 75 different analytes produced a response cluster that
was clearly separable from the response cluster of every other analyte investigated in this work.
As is apparent from Figure 4.2, the mean vector response termini clustered into four well-defined,
mutually separated regions. Three of these regions individually contained the mean vector response
termini for the alcohols, hydrocarbons, and esters, respectively. In contrast, substantial overlap was
present between the region that contained vector response termini produced by exposure of the

detector array to halides and the regions containing either aromatic or ester organic vapors. The class
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Table 4.3: Fractions of analyte exposures correctly classified using k-nearest neighbor analysis.

Neighbors Mahalanobis Euclidean Euclidean
(Raw) (Raw) (FLD)
1 Correct 0.777 0.789 0.951
1 Incorrect 0.223 0.211 0.049
1 Non-classified N/A N/A N/A
3 Correct 0.786 0.771 0.888
3 Incorrect 0.161 0.177 0.081
3 Non-classified 0.053 0.052 0.031
5 Correct 0.775 0.755 0.810
5 Incorrect 0.155 0.149 0.122
5 Non-classified 0.069 0.096 0.068
7 Correct 0.754 0.740 0.792
7 Incorrect 0.137 0.150 0.153
7 Non-classified 0.109 0.110 0.055

assignment performance enabled by the detector array data was quantified using k-NN analysis
(Table 4.3). Analytes that are members of two analyte classes (fluorobenzene, chlorobenzene, and
isopentyl benzoate) were excluded from this analysis. The mean correct class assignment probability
for the 72 single-class analytes tested was 0.76-0.82 using Euclidean distances and 0.76-0.81 using
Mahalanobis distances for raw data, and 0.79-0.95 using Euclidean distances and FLD-preprocessed
data. Classification rates were largely insensitive to whether k= 3, 5, or 7 nearest neighbors was
used. The data in Table 4.3 suggested that using 7 neighbors instead of 3 decreased the correct
classification rate more than the incorrect classification rate, and significantly increased the number
of non-classified exposures. Classifications using 3 neighbors were preferable to those derived from
a single neighbor, however, as the increase in the non-classification rate resulted almost exclusively
from a decrease in the incorrect classification rate. Therefore, the 3 nearest neighbor algorithm was
used in all further analysis.

Tables 4.4 a and b report the performance by analyte class in the form of confusion matrices for
the class assignments using Mahalanobis distances derived from raw data and 3 nearest neighbors,
where each (X,Y) cell in the table indicates what fraction of exposures belonging to an analyte
class X was assigned to the analyte class Y. Perfect classification performance would produce the
identity matrix in this representation of the success of class prediction from the detector array
response data. Table 4.4a shows the results of all five classes, while 4.4b displays the results
having left the halides out of the analysis. The overall the correct classification rate for all 72
single-class analytes using 3 nearest neighbors and Mahalanobis distances was 0.80; excluding
halides (retaining all alcohols, aromatics, hydrocarbons, and esters), this rate increased to 0.88. The

analytes with the worst classification performances among the alcohols, aromatics, hydrocarbons,
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Table 4.4: Confusion matrices developed from k-nearest neighbor analysis using three neighbors
and Mahalanobis distances.

Alcohols Halides Aromatics  Hydro. Esters
(a)
Alcohols 0.9733 0 0 0 0.0267
Halides 0.0077 0.4577 0.1654 0.0192 0.2000
Aromatics 0 0.0885 0.8154 0.0077 0.0346
Hydrocarbons 0.0147 0.0265 0.0324 0.8441 0.0235
Esters 0.0500 0.0714 0.0036 0 0.8464
(b)
Alcohols 0.9767 0 0 0.0233
Aromatics 0 0.8538 0.0192 0.0808
Hydrocarbons 0.0147 0.0588 0.8382 0.0500
Esters 0.0821 0.0143 0.0036 0.8714

and esters corresponded to isopropyl benzene, cyclopentene, 2,5-dimethyl 2,4-hexadiene, methyl
acetate, and trans-2-hexenyl acetate, which resulted in error rates of 1.0, 0.80, 0.80, 1.0, and 0.7,
respectively. Removing these five analytes (as well as the halides) from the set resulted in an overall
correct classification rate (Mahalanobis distances, 3 neighbors) of 0.95. Thus, by removing 23 of
the 75 analytes, the combined rates of non-classification and error was cut by three-fourths. Using

FLD-preprocessed data, very few mistakes were made at all.

4.4.2 Determination of Chemical Information in Addition to Class Identity

The structure of the data displayed in Figure 4.2 suggests that classification of additional ana-
lyte properties should be possible, because the majority of the non-halide frequently misclassified
analytes were polyfunctional, unsaturated, or had low molecular volumes relative to most mem-
bers of their respective classes. Examples are provided by the responses of isopropyl benzene,
cyclopentene (small, cyclic, unsaturated), 2,5-dimethyl 2,4-hexadiene (polyunsaturated), methyl
acetate (small), and trans-2-hexenyl acetate (the only ester tested with an unsaturated hydrocarbon
chain), as labeled in Figure 4.3. Consequently, further analysis was performed to determine whether
such analyte-specific information could be isolated in a systematic fashion from the array vector
response data. Figure 4.4 displays a principal components analysis plot of 20 exposures each of the
detector array to n-hexane, n-heptane, n-octane, 2,2,4-trimethyl pentane, 2-methyl 2-butene, 2,5-
dimethyl 2,4-hexadiene, 1,7-octadiene, and 7-methyl 1,6-octadiene. These analytes contain various
degrees of unsaturation in the hydrocarbons yet minimize differences in their molecular weights.
The broad, diffuse cloud of array response data in Figure 3 that was produced by the unsaturated
hydrocarbons was clearly separable from the tighter cluster of response data that was produced
by the saturated hydrocarbons. The only overlap between the two clusters (from the vector angle

shown) arose from half of the exposures to 7-methyl 1,6-octadiene.
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Figure 4.3: Principal components analysis plot of the mean vector termini for each alcohol, aro-
matic, hydrocarbon, and ester except those that were members of multiple classes (chlorobenzene,
fluorobenzene, and isopentyl benzoate). The five analytes that were most frequently misclassified
by k-nearest neighbor analysis using Mahalanobis distances and three nearest neighbors, isopropyl
benzene (A), cyclopentene (B), 2,5-dimethyl 2,4-hexadiene (C), methyl acetate (D), and trans-2-
hexenyl acetate (E), are specifically labeled in the plot as ().
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Figure 4.4: Principal components analysis plot of data collected from eight hydrocarbons: n-hexane,
n-heptane, n-octane, 2,2,4-trimethyl pentane, 2,5-dimethyl 2,4-hexadiene, 2-methyl 2-butene, 7-
methyl 1,6-octadiene, and 1,7-octadiene. All 20 exposures for each analyte are shown. The first
four analytes, which are saturated, are represented in the plot by (+),(e),o, and o, respectively. The
last four, which are unsaturated, are represented by (A), (V), (<), and (>), respectively. Sufficient

separation is achieved between the two clusters to determine saturation with a success rate of over
80%.
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A confusion matrix analysis of the k-NN determined (Mahalanobis, 3-nearest neighbors) clas-
sification performance in this task indicated that the fraction of saturated hydrocarbons correctly
identified as such was 0.96; unsaturated hydrocarbons were correctly classified with a probability of
success of 0.79. Hydrocarbons which produced responses that were located outside of a single, tight
cluster were predicted, with a high degree of success, to be unsaturated. In fact, 10 of the 17 mistakes
made in classification of the unsaturated hydrocarbons corresponded to 7-methyl 1,6-octadiene, the
only unsaturated hydrocarbon that overlapped with the cluster of saturated hydrocarbons. Fig-
ure 4.5 displays a principal components analysis plot of 20 exposures to non-aromatic analytes
that contained single or multiple halide groups. The multi-functional halides employed were
chloroform, dichloromethane, and 1,1,2-trichloroethane; additionally, all non-aromatic halides (but
excluding fluorobenzene and chlorobenzene) from Table 4.1 were included in the analysis. With
the exception of four outlier data points that arose from some of the exposures to 1-iodopropane,
the analytes that contained single halide functionality were well-separated from analytes that had
multiple halide functional groups. This separation persisted despite a wide disparity in molecular
weights (78.5-119 g mole!) and molecular volumes (81.4-126 A3) within the group of analytes that
contained a single halide functionality. Additionally, although the multi-functional halides had no
more than two carbons, a good deal of overlap existed between their molecular weight and molec-
ular volume ranges and those of the monofunctional analytes (96.9-133.5 g mole™" and 58.6-92.6 A3,
respectively).

Figure 4.6 displays a principal components analysis plot of the clustering that arose from the
mean vector response termini from each analyte in the halide and aromatic vapor sets. The clus-
tering is divided into four categories: benzenoid aromatics, pyridinoid aromatics, mono-functional
halides, and multi-functional halides. The pyridinoid analytes produced signals that were well-
separated from the signals produced by the benzenoid analytes. The clustering of the benzenoid
aromatics from the pyridinoids persisted despite the presence of anisole (methoxybenzene), which
is similarly polar, so a simple polarity argument is not sufficient to explain the clustering. Fur-
thermore, adding chlorobenzene and fluorobenzene to the set resulted in their responses falling
well within the benzenoid aromatic/monofunctional halide cluster. The slight separation between
the halide and aromatic clusters (Figure 4.2) was largely produced by the presence of the multi-
functional halides and pyridinoid aromatics. The observation that the pyridinoid aromatics were
easily separated from the benzenoid is not necessarily surprising, given the increased basicity of the
pyridinoid structure, but it is interesting from a classification point of view that the two groups are
reasonably well-separated from each other. Furthermore, it is surprising that the degree of overlap
between the benzenoids and single-functional halides is so high, even more so than indicated by

the PCA and k-NN results for aromatics relative to halides.
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Figure 4.5: Principal components analysis plot of data collected from all of the halides used in
this study (20 exposures each). The polychlorinated analytes, including 1,1,2-trichloroethane,
dichloromethane, and chloroform are represented in the plot by (0), (+), and (o), respectively. Mean
vector response termini for the polychlorinated clusters are denoted by (O), with A representing
1,1,2-trichloroethane, B representing CH,Cl,, and C representing CHCl3. All of the other halides
are represented by (e). The polychlorinated analytes are well-separated from the main group of
halides.
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Figure 4.6: Principal components analysis plot of the mean vector response termini for the halides
and aromatic analytes used in this study, excluding chlorobenzene and fluorobenzene. Pyridinoid
aromatics (o) are well-separated from benzenoid aromatics (e), as are polyfunctional halides (/)
from monofunctional halides (+). The bulk of the separation between the halides and aromatics in
this study arises from the presence of polyfunctional halides and pyridinoid aromaticsseparation
between benzenoid aromatics and monofunctional halides is poor.



75

Table 4.5: Prediction results of six selected analyte properties.

Property Name #FCs RMSE/Range | r° Slope | Int./Range
Kow 5 0.0783 0.867 1.00 6.0x107%
Van der Waals Volume 11 0.110 0.664 1.08 -0.0596
Van der Waals Area 10 0.122 0.611 1.07 -0.0543
Dielectric Constant 3 0.0793 0.835 0.978 0.00566
Solubility Parameter 9 0.0737 0.852 | 1.05 -0.0640
Hansen Dipole 11 0.130 0.595 | 1.04 -0.104
Hansen Electrostatic 5 0.176 0.535 1.07 -0.0256

4.4.3 Prediction of Physiochemical Values

Although class properties dominated the clustering of the principal component data derived from
the analytes investigated, other properties could be predicted from the same response data by
weighting each sensor response differently. Rather than determining the weights so that the result-
ing mappings represented the greatest portion of the variance, weights were determined so that the
mappings corresponded with variables of interest.

Figure 4.7 shows predicted vs. actual K, values for the 75 analytes tested. The prediction was
accomplished with an 12 of 0.867, and the regression line exhibited a slope of 1.00, an intercept/range
value of 6x107*, and a root mean squared error/range value (RMSE/range) of 0.07826. These data
are summarized in Table 4.5. Figures 4.8-4.13 show similar results for dielectric constant, van der
Waals volume and area, Hildebrand solubility parameter, and the Hansen dipole and electrostatic
terms, respectively.

Fit effectiveness, as measured by r* values, ranges from poor (0.535 for &) to the very good
(nearly 0.9 for 6; and Kyy). This analysis suggests that properties more fundamentally related to

analyte sorption are more easily predicted by sensor responses.

4,5 Discussion

To our knowledge, little information is avaiable to date in a leave-one-out study protocol regarding
whether mapping into functional groups and/or geometric descriptors of a molecule can be robustly
performed from the response patterns produced by an array of semi-selective sorption-based vapor
detectors. At sufficiently high analyte concentration, the responses of a variety of detectors are
sufficiently distinct that unique identification is possible for most analytes. However, because the
responses of semi-selective detectors by nature depend on a large number of factors, including
molecular volume, branching, dipole, hydrogen bonding, aromaticity as well as many others, the
ability to extract any one of these parameters to the exclusion of the others, or at least by limiting
them, has not been fully elucidated to date.

Within a single analyte class, isolating certain variables (such as size or saturation) proved



76

Prediction of Water/Octanol Partition Coefficient (Test Set)
7 T ¥ T T T T T

Predicted Values
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Actual Values

Figure 4.7: Predicted vs. actual K, values derived from a 5 Fisher component linear model. The
solid line represents a best fit for the data; the dashed line is y=x. Error bars are 2¢.
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Prediction of Dielectric Constant (Test Set)
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Figure 4.8: Predicted vs. actual € values derived from a 3 Fisher component linear model. The solid
line represents a best fit for the data; the dashed line is y=x. Error bars are 2¢.

o rediction of Solubility Parameter (experimental) (Test Set)
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24
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Actual Values x 10"

Figure 4.9: Predicted vs. actual Hildebrands solubility parameter values derived from a 9 Fisher
component linear model. The solid line represents a best fit for the data; the dashed line is y=x.
Error bars are 20.
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Prediction of Hansen Dipole (Test Set)
10.5 T T T T T T

Predicted Values
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Actual Values

Figure 4.10: Predicted vs. actual Hansen Dipole Parameter values derived from a 11 Fisher compo-
nent linear model. The solid line represents a best fit for the data; the dashed line is y=x. Error bars
are 20.

Prediction of Hansen Electrostatic (Test Set)
12 T T T T T T

Predicted Values

4 4]
Actual Values

Figure 4.11: Predicted vs. actual Hansen dipole parameter values derived from a 5 Fisher component
linear model. The solid line represents a best fit for the data; the dashed line is y=x. Error bars are
20.
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Prediction of Van der Waals Volume (experimental) (Test Set)
0.12 T T T T T T T T

Predicted Values
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Actual Values

Figure 4.12: Predicted vs. actual van der Waals volume values derived from a 11 Fisher component
linear model. The solid line represents a best fit for the data; the dashed line is y=x. Error bars are
20.

o rediction of Van der Waals Area (experimental} (Test Set)
16 T T T T T T

Predicted Values

L
8 10 12 14 16
Actual Values x 10°

Figure 4.13: Predicted vs. actual van der Waals area values derived from a 10 Fisher component
linear model. The solid line represents a best fit for the data; the dashed line is y=x. Error bars are
20.
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successful because there were, in general, few differences between the analytes in the set except
the variable of interest. For instance, within a homologous series of alcohols, only molecular
weight and branching of the chain separated the 12 unsaturated members of the set, with three
also possessing a unit of unsaturation. Monofunctional halides were successfully separated from
bi- or tri-functional halides, benzenoid aromatics were distinct from pyridinoids, and saturated
hydrocarbons were not readily confused with unsaturated hydrocarbons. This is largely due to
the fact that, of the many factors to which a semi-selective detector is responsive, frequently only
one varies significantly within a particular chemical identification task, so the chemical subclasses
(such as saturated hydrocarbons) are largely homogeneous relative to the differences between the
subclasses.

However, successfully classifying a set of analytes that differ not only in analyte class but also
with regard to many other parameters was found to be more difficult. Among the non-halide
classes, the bulk of the mistakes in k-NN analysis was contained in five analytes, such as methyl
acetate or 2,5-dimethyl 2,4-hexadiene, that differed significantly from their base analyte classes.
Because classification proved successful for a high proportion of analyte exposures, unique class
characteristics such as aromaticity, hydrogen bonding, and others found in this analyte set must
largely overwhelm considerations such as saturation, branching, and volume differences, which
vary considerably within classes without leading to significant rates of misclassification.

The comparative difficulty in correctly identifying analyte class members that differ from their
respective classes is not surprising. However, the result does not imply that recognizing analytes
within diverse classes is impossible, as found from the high rate of correct classification among
the pyridinoid aromatics, which differ greatly from the benzenoid. Rather, a sufficiently robust
analyte basis set must be established to ensure that a sufficiently similar neighbor exists in the
analyte database. Expecting correct classification of pyridine as aromatic, for example, would be
unreasonable if lutidine or picoline were not present in the set. However, with a well-developed
analyte basis set, a great deal of within-class diversity can be tolerated before poor classification
performance is obtained.

Though it is beneficial that the detector set employed in this analysis proved more sensitive
to solvent class characteristics than physical characteristics, it is not clear that this trend can be
generalized to all detector sets. It is certainly conceivable that the overwhelming variable could
have been molecular volume. Had this been the case, efficient clustering along class boundaries
would likely have not been possible. An array of detectors comprised of a homologous series of
polymers that differed only in chain length, such as poly(1-alkenes), might prove more sensitive
to molecular volume than to chemical characteristics. Because the detector array in this study was
designed to ensure that a variety of polymers with diverse characteristics was represented, it should

not be surprising, then, that the detector array used in this study is most sensitive to chemical class.
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The polymer/carbon-black composite vapor detectors used in this study have previously been
shown to produce a response that is linear with analyte concentration. Hence, the analysis per-
formed herein is essentially independent of the concentration of analyte.® Development of a robust
model for non-linearly responding detectors is expected to be less straightforward, and likely re-
quires collection of larger datasets along with modeling the detector response as a function of
analyte concentration.” Such complications are minimized through the use of polymer/carbon-
black composite detectors, which facilitates a straightforward development of classification models
for various chemical and physical properties of the analytes of interest.

The effectiveness with which each physical property is predicted is related to how strongly it
relates to analyte sorption. Hildebrand’s solubility parameter is strongly linked to analyte sorption,
as is Ky, and both were well predicted from sensor responses. It is interesting to note that neither
the Hansen electrostatic or dipole terms are as easily predicted from sensor responses as is solubility
parameter; this suggests that the analytes and sensing polymers we used in this study were strongly
dependent upon both electrostatic and dipole interactions (as well as hydrogen bonding for the
alcohols). Other properties, such as € and van der Waals area or volume, impact analyte/polymer
sorption, although not as strongly. As such, these properties are predicted fairly well, though not as
well as Ky, or solubility parameter, by the manner in which the analytes in question interact with

the sensors used in this study.

4.6 Conclusions

In addition to identifying with a high degree of confidence analytes to which it has been previously
exposed, an array of semi-selective polymer/carbon-black composite detectors is also capable of
qualitatively describing analytes to which it has never been previously exposed. k-NN and princi-
pal components analysis indicate that, with the exception of the halide analyte class, the detector
array used in this work is capable of assigning with a high degree of confidence class descriptors
to analytes. In addition to the overall analyte class, a variety of chemical sub-class information can
also be extracted from the raw data, including hydrocarbon saturation, mono- vs. poly-functionality
among halides, and the nature of aromatic rings (benzenoid vs. pyridinoid). Additionally, in cer-
tain cases information regarding the size and dipole moment of molecules can be determined.
Ultimately, it is possible that in many cases sufficient knowledge of an unknown analytes charac-
teristics can be established through the extraction of chemical and physical parameters to allow

tentative identification of analytes that have not been previously encountered by the sensor array.
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Chapter 5

Comparison of Fisher’s Linear
Discriminant and Multi-Layer
Perceptron Networks for
Classification of Analytes Exposed to
a Chemical Vapor Detector Array

5.1 Abstract

Two different classification methods, Fisher’s linear discriminant (FLD) and a multilayer percep-
tron neural network (MLP), were directly compared with respect to their abilities to differentiate
response patterns arising from arrays of chemical vapor detectors. The algorithms were com-
pared in five different types of tasks that had been selected because they produced classification
problems of varying character and difficulty. In one task, an array of 20 compositionally dis-
tinct polymer/carbon-black composite vapor detectors was exposed to P/P°=0.0075 1-propanol and
P/P°=0.0083 2-propanol, where P and P° are the vapor pressure and standard vapor pressure, re-
spectively, of a given analyte. The second task consisted of classification of a mixture of P/P°=0.011
1-propanol and P/P°=0.0090 2-propanol vs a mixture of P/P°=0.00901-propanol and P/P°=0.011
2-propanol. A third task consisted of multiple concentrations of three hydrocarbons, and a fourth
task involved clustering two hydrocarbons in the presence of a variable background composition.
An additional dataset was generated by exposing an array of five thin-film metal-oxide sensors to
the headspace of seven different coffee blends. In each case, the MLP and FLD techniques were
compared using the 5-sensor subset of the 20 available sensors that proved optimal for that dataset.
The FLD and MLP algorithms yielded comparable performance on straightforward classification
tasks, whereas the MLP technique yielded better performance on tasks that involved non-linear

classification boundaries. In addition, for the four datasets produced by the polymer/carbon-black
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composite detector array, the performance of each possible 5-sensor subset was evaluated using
both signal processing approaches. The performance of the best 5-sensor subset selected with MLP
was found to be slightly better than the performance of the FLD-selected subsets, and the perfor-
mance of the median 5-sensor subset using MLP was nearer to that of the optimal subset than the
median sensor array selected by FLD. In one case, the optimal test set performance distribution
was found to be significantly better with MLP than with FLD: MLP had a clear advantage (86%
vs. 57% correct classification rate) when applied to the “coffees” dataset, and this trend is likely
applicable to other multi-cluster classification tasks that consisted of non-Gaussian shaped data in

lower-dimensional spaces.

5.2 Introduction

Arrays of broadly responsive chemical sensors have attracted significant attention due to their
inherent portability, ability to accommodate a diversity of detector materials, and wide-ranging
possible application areas. Of course, the utility of such array-based methods is intimately linked
to the efficacy of the signal processing algorithm that is used for the identification, classification,
and quantification of analytes. In this work, we have compared the performance of two different
methods of feature selection, Fisher’s linear discriminant (FLD) and a multilayer perceptron neural
network (MLP), on a variety of vapor detection tasks.

A great deal of prior work has been devoted to evaluating many different methods for analysis
of data'™ produced by arrays of broadly responsive vapor detectors based on a variety of different
architectures.>® Vaid et al. used polymer/carbon-black composite detectors to compare a variety
of lower-order methods, including FLD and quadratic discriminant analysis, as well as k-nearest-
neighbor analysis, and found that FLD performed best with the data included in that study.’® In
that study, the sensor responses to a given analyte were largely Gaussian in character, with the
variability dominated by nonsystematic fluctuations in the vapor generation system. Longer-term
signal classification performance has also been addressed for such systems, and such studies have
revealed that only small, nonsystematic, changes in response occurred over time periods as long
as two months.!! When the responses of different analytes are sufficiently distinct, and when the
clusters of response data are easily represented by a parametric form (i.e., responses that are linear
with concentration and Gaussian for each sensor), the choice of algorithm used is hardly relevant,
because even a simple Euclidean distance metric should be sufficient for perfect classification.
In fact, for binary analyte separations of Gaussian data, a FLD model can be proven to coincide
with that of the optimal Bayes classification model.!? This is typically the case for the arrays of
polymer/carbon-black composites vapor detectors, which have been previously shown to elicit

highly linear responses with respect to analyte concentration.!> For example, even for tasks such
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as separation of n-hexane from n-heptane (each at P/P=0.01) FLD provided correct classification
>95% of the time over extended periods of use. Thus, more challenging analyte classification tasks
are required to determine the relative quality of different data analysis algorithms on such vapor
detector arrays.

For such challenging tasks, as well as for sensors that inherently do not produce a Gaussian
distribution of response and/or do not produce signals that are linear with increasing analyte
concentration, it is of interest to compare the performance of more flexible, non-linear algorithms,
such as artificial neural networks (ANNSs), to that of linear algorithms such as FLD. In this work,
two sets of detector arrays, one based on polymer/carbon-black composites, and one based on
metal oxide sensors, have been used in a variety of different tasks. For the polymer/carbon-
black composite sensors, standard chemical solvents were used as test analytes. As expected,
these analytes produced highly linear and Gaussian responses on the chemiresistor detector array.
However, the classification tasks were very difficult and involved very chemically similar analytes
at low concentrations, very similar mixtures of analytes, and sets of similar analytes in the presence
of various chemical interferents. On the array of metal oxide vapor detectors, a series of coffees
was studied, and these complex analyte mixtures on non-linear sensors produced nonlinear and
non-Gaussian responses that also presented difficult classification issues for linear discriminant
algorithms.

The effect of using sub-optimal feature (sensor) selection has also been evaluated with respect
to the performance of linear vs. highly nonlinear algorithms. The simulation of sub-optimal
feature selection is important because any sensor array of any size is a subset of a potentially larger
sensor array, and is almost certainly not the most capable sensor set that could in principle be
constructed for any specific analyte recognition task. Thus, evaluating the performance of different
algorithms on nonoptimal sensor arrays is essential to ensuring the viability of these algorithms
under real-world conditions. Additionally, smaller sensor subsets (as small as four or five sensors of
some larger array) are frequently used to reduce power consumption, increase sampling frequency,
minimize device size, or reduce computational overhead.'*!> As such, it is useful to compare FLD
and MLP with respect to reducing any performance penalties that may arise when fewer sensors

are used in data collection and/or analysis.
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Table 5.1: Detectors used in this study.

1 poly(caprolactone)

2 poly (ethylene-co-vinyl acetate)

3 poly(ethylene oxide)

4 poly(ethylene glycol)

5 poly(styrene-co-butadiene)

6 poly(methyl octadecylsiloxane)

7 poly(vinyl stearate)

8 ethyl cellulose

9 poly(styrene-co-maleic anhydride)
10 poly(methyl vinyl ether-co-maleic anhydride)
11 poly(4-vinyl phenol)

12 poly(vinyl acetate)

13 cellulose acetate

14 polycarbonate

15 polystyrene

16 polysulfone

17 poly(methyl methacrylate)

18 poly(vinyl butyral)

19 hydroxypropyl cellulose

20 poly(styrene-isoprene)

5.3 Experimental

5.3.1 Sensor arrays
5.3.1.1 Polymer/Carbon-black Composite Detectors

Twenty compositionally distinct polymer/carbon-black composite chemically sensitive resistors
(Table 5.1) provided one test array. The substrate for each sensor consisted of a glass slide, onto
which two Au leads had been evaporated. Detector films were cast from mixtures of 40% polymer,
40% di(ethylene glycol) dibenzoate, and 20% by weight of carbon-black (Black Pearls 2000, Cabot
Inc), as described previously.!"1¢ Sensors were fabricated by using an airbrush to spray coat the
polymer/carbon-black mixture onto the substrate. The array of sensors was housed in a stainless
steel assembly that was connected by teflon tubing to a computer-controlled, calibrated vapor

generation and delivery system.!

When exposed to an analyte vapor, each sensor exhibited
an increase in resistance that was transduced as a single descriptor, ARy /Ry, where AR, is the
equilibrium differential resistance of the sensor after exposure to vapor and R is the resistance of

the sensor when exposed to clean laboratory air.

5.3.1.2 Metal Oxide Detectors

The Pico-2 EN, developed at the Sensor Lab of the University of Brescia, made use of five thin

film semiconducting gas sensors. The sensors were either classical catalyzed SnO,-based sensors
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or Ti-Fe sensors. All of these sensors were formed by sputtering using the Rheotaxial Growth and
Thermal Oxidation (RGTO) technique.'” The surface of the film after the thermal oxidation step
of the RGTO technique consisted of porous, nano-sized agglomerates that are well-suited for gas
absorption. A thin layer of noble metal was deposited as a catalyst on the three SnO, sensors. To
improve sensitivity and selectivity, one sensor was coated with Au, one with Pd and one with Pt.
Prior to data analysis, responses from these sensors were transduced to AR,ux/Rp, where ARy, is
the maximum resistance change upon exposure to vapor and R; is the baseline resistance under

laboratory air.

5.3.2 Datasets
5.3.2.1 Polymer/Carbon-black Composite Detectors

Four datasets (Table 5.2) were collected on polymer/carbon-black composite detector arrays. Dataset
1 (“low concentration”), consisted of 200 exposures in random order to either 1-propanol at P/P°
= 0.0075 or 2-propanol at P/P° = 0.0083. Slightly different activities of the two analytes were used
because these values produced approximately equal amplitude responses on the polymer/carbon-
black composite sensor array. Dataset 2 (“close mixtures”) consisted of 200 exposures to a gas
mixture of 1-propanol at P/P° = 0.0090 and 2-propanol at P/P° = 0.011 and of 200 exposures to a
second gas mixture that consisted of 1 propanol at P/P° = 0.011 and 2-propanol at P/P°= 0.0090.
Dataset 3 (“multiple concentrations”) consisted of exposures to either n-hexane, ethyl acetate, n-
heptane, or n-octane, each at P/P° = 0.010, 0.020, 0.040, and 0.070. Each analyte and concentration
combination was exposed 100 times to the detector array, with exposures occurring in random
order during the data collection run. Dataset 4 (“interferents”) consisted of 200 exposures to each of
n-heptane at P/P° = 0.022 or n-octane at P/P° = 0.022, with all exposures performed in the presence
of a series of interferents that were introduced into the background carrier gas. The interferents
were: 1) nothing; 2) ethanol at P/P° = 0.0060; 3) ethanol at P/P° = 0.010; 4) ethanol at P/P° = 0.016;
5) tetrahydrofuran (THF) at P/P° = 0.0060; 6) THF at P/P° = 0.010; 7) THF at P/P° = 0.016; or 8) a
mixture of THF and ethanol at a combined partial pressure of P/P° = 0.016. For interferent 8, the
analyte bubblers that contained THF and ethanol were driven by a single mass flow controller, so the
exact fraction of the two interferents is unknown. Each of the 16 analyte/interferent combinations

was exposed in random order 25 times to the detector array.

5.3.2.2 Metal Oxide Detectors

For this classification task, seven distinct blends of Italian coffees were used as analytes (Table 5.2).
To generate analyte vapors, gas was sampled via an autosampler (static headspace extraction) that

contained 2g of ground coffee. 36 measurements each were collected for seven coffee blends.!®
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Table 5.2: Test-set classification rate for the classification tasks studied.

Dataset #, Name Classification Problem MLP Performance  FLD Performance
1,”Low concentration” Binary, no normalization ~ 94% 94%
1,”Low concentration” Binary, normalization 68% 65%
2,”Low concentration” Binary, no normalization  84% 81%
2,”“Low concentration” Binary, normalization 80% 79%
3,“Low concentration” Binary, n-hexane vs. 100% 97%
n-heptane
4,”Low concentration” Binary 97% 95%
4,”“Low concentration” Binary, all sensors, 99% 98%
n-heptane vs. n-octane
4,”Low concentration” 4 classes, determination 100% 80%
of ethanol interferent con-
centration
4,"“Low concentration” 4 classes, all sensors, de- 100% 83%

termination of ethanol in-

terferent concentration
5,“Low concentration” 7 classes 86% 57%
5,“Low concentration” Binary, coffee 1vs. coffee5 100% 89%

All classification performances derived from the best 5-sensor subset unless otherwise noted.

5.3.3 Algorithms and Feature Selection
5.3.3.1 Linear Methods

Data were first visualized using Principal Components Analysis (PCA).!? FLD was then used to
determine the optimal linear separation between any set of analyte data clusters. In all cases, a
train/test scheme was employed, in which the optimal FLD transformation was determined using

the training data, and this transformation was then applied to the test data.

5.3.3.2 Multi-layer Perceptron Networks

The raw data were preprocessed using principal components analysis (PCA) yielding projected
data that were then used as inputs to the MLP system. Since only five sensors were employed,
all five PCA projections were used without further extraction. As a result, the role of the PCA
transformation for this data set was to de-correlate the inputs, as the dimensionality of the data
was unchanged. The train-test division was the same as that used for the Fisher discriminant. To
prevent overfitting,' both early stopping (ES)*® and weight decay regularization.?! were initially
employed. The two methods gave similar results, so the faster ES method was used. The use
of a complexity control method dispensed with the need to select the optimal number of hidden
units for the MLP network. The only requirement for this method was to use a sufficiently large
network to avoid ur1derfittir1g.22 Trials were performed with 5, 7, and 9 hidden units, and 7 units
were found to give sufficient flexibility and minimal computational time. The computational time

remained an important issue, as performing MLP analysis for each 5 sensor subset of 15 total
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sensors required 12 hr, whereas FLD required only 20 min to perform the same task. The MLP
network was trained using the backpropagation method, with the error function minimized using
the Levenberg-Marquardt algorithm.!¥?* Ten network initializations were usually performed for

scanning the error space, and the net that produced the best result on the test set was used.

5.4 Results

5.4.1 Classification of Low Concentration Exposures of Chemically Similar An-

alytes

Dataset 1 was analyzed for both normalized and raw response data. The normalization process

was performed using eq 5.1:

, Sij
Sij =3
Y1 Sij

(5.1)

where S;; refers to the AR,;/R; response of the jth detector (out of 7 total detectors) to the ith analyte
exposure, and 5}; represents the sum-normalized analog of S;;. If the sensor response is linearly
related to the concentration of analyte, as is the case for the polymer/carbon-black composite
sensors, this normalization procedure scales the sensor responses to be independent of analyte
concentration. Discrimination between different analytes can then be based only on the direction
of the feature vector and not on its amplitude.

The PCA plot for Dataset 1 (Figure 5.1) yielded two fairly Gaussian-shaped, partially superim-
posed data clusters. Classification results on these data were similar for FLD and MLP, with each
algorithm yielding 94% correct classification for unnormalized data (Table 5.2). Such behavior is
expected because for a pair of perfectly Gaussian distributed classes the optimal Bayes classifier
is obtained with FLD.!? Both algorithms yielded much lower classification performance on nor-
malized data (Table 5.2), indicating that slight differences in the concentrations delivered for two

analytes played a role in the enhanced classification performance of the unnormalized data set.

5.4.2 Classification of Highly Similar Binary Analyte Mixtures

The PCA plot for Dataset 2 (“close mixtures”) (Figure 5.2) clearly showed that these data were not
Gaussian-distributed. In spite of this, for unnormalized data, both FLD and MLP yielded relatively
high classification rates using the best 5-sensor subset (Table 5.2). The FLD and MLP methods
yielded nearly identical performance for this task as well. The plane generated by the first two
principal components (PC 1 and PC 2), which is derived from some contribution of all sensors

used, evidently did not contain a significant contribution from the dimension on which the FLD
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Figure 5.1: Principal components analysis plot of Dataset 1 (“low concentrations”), comprised of
(O) P/P°=0.0075 1-propanol and (x) P/P° =0.0083 2-propanol.
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Figure 5.2: Principal components analysis plot of Dataset 2 (“close mixtures”), comprised of a
mixture of P/P°=0.011 1-propanol and P/P°=0.0090 2-propanol (O) and a mixture of P/P°=0.0090
1-propanol and P/P°=0.011 2-propanol (X). The first two principal components shown contained
66% of the total sample variance.
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Figure 5.3: Principal components analysis plot of the two most significant principal components
(PCs 1 and 2) of Dataset 2(“close mixtures”), comprised of a mixture of P/P°=0.011 1-propanol and
P/P°=0.0090 2-propanol (O) and a mixture of P/P°=0.0090 1-propanol and P/P°=0.011 2-propanol
(X). Only data from the best 5 sensors (6, 8, 12, 18, and 19 from Table 5.1) were used to generate this
plot.
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algorithm projected the data in order to produce its 81% classification rate. Had it done so, the
data of Figure 5.2 would have shown significant clustering for each analyte. In an attempt to find
a PC plane that did contain such a dimension, the search for the discrimination boundary was
restricted to the feature space spanned by the top-scoring subset of 5 detectors, as determined by
FLD (sensors 6, 8, 12, 18, and 19 from Table 5.1). Figure 5.3 shows the PCA plane generated by the
first two principal components derived from the array of 5 optimal detectors. This plot exhibited no
better clustering than that in Figure 5.2. A different distribution, and a much better separation, was
only found when the fifth principal component was included in the PCA plot (Figure 5.4). Note
that principal component 5 (out of 5) contains a very small fraction of the total variance (0.14%) in

the dataset, and therefore the sensors must be very stable if this separation is to be preserved.

5.4.3 Classification of Unnormalized Analyte Exposures Independent of Con-
centration
A PCA plot of Dataset 3 (“multiple concentrations”) indicated that ethyl acetate produced very dis-

tinct responses from those produced by the three hydrocarbons n-hexane, n-heptane, and n-octane.

Figure 5.5 shows a PCA plot of Dataset 3, in which the ethyl acetate data have been omitted for clar-
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Figure 5.4: Principal components analysis plot of the two least significant principal components
(PCs 4 and 5) of Dataset 2 (“close mixtures”), comprised of a mixture of 0.011 P/P° 1-propanol and
P/P°=0.0090 2-propanol (O) and a mixture of P/P°=0.0090 1-propanol and P/P°=0.011 2-propanol
(X). Only data from the best 5 sensors (6, 8, 12, 18, and 19 from Table 5.1) were used to generate this
plot.
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Figure 5.5: Principal components analysis plot for Dataset 3 (“multiple concentrations”), comprised
of 400 exposures to n-hexane (O), n-heptane (X), and n-octane (+). Each analyte was presented to
the detector array at four different concentrations. Concentrations in the plot increased from right
to left, with a high degree of clustering within the individual analytes. Data were not normalized
prior to PCA analysis.
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ity. The clusters were separated primarily based on the differences in concentration of the different
analytes, and not on differences between the identities of the analytes at that test concentration.
At very high concentrations, the various hydrocarbon analytes were somewhat distinguishable
from each other in the space defined by the first two principal components. Despite the obvious
similarities between the response patterns for n-hexane and n-heptane at each concentration, MLP
showed 100% correct classification of analyte for normalized data collected over a variety of analyte
concentrations, and the linear FLD classifier yielded a 97% correct classification rate. This strongly
implies that whatever concentration differences existed were extremely linear, and therefore could
be robustly removed by normalization. These results also suggest that the MLP method was able to
effectively define its own non-parametric normalization scheme, and was as effective toward that

end as FLD with standard normalization.

5.4.4 C(Classification

The MLP and FLD methods exhibited similar classification performance when optimal detector
array subsets were used for the data input. However, for suboptimal sensor subsets, MLP yielded a

high rate (> 90%) for most of the 5-sensor subsets, whereas the classification performance using FLD
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Figure 5.6: Distribution of the Fisher Linear Discriminant (dashed line) and Multi-Layer Perceptron
(solid line) classification rates over all 5-sensors subsets for Dataset 3 (“multiple concentrations”).
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degraded much more quickly when non-optimal sensor subsets were used (Figure 5.6). Apparently,
only some subsets are sufficiently insensitive to the concentration differences between analytes that
they span a linearly separable space, whereas the bulk of the sensor sets possess some significant

sensitivity to these nonlinearities.

5.4.5 Classification of Similar Analytes in the Presence of Variable Analyte

Backgrounds

Dataset 4 (“interferents”) was collected with the intention of making the discrimination task very
difficult and additionally to attempt to simulate some of the conditions that might exist in poorly
controlled field use of such sensor arrays. In this data run, two base analytes (n-heptane and n-
octane) were used in fixed concentrations and various concentrations of two background interferents
(ethanol and tetrahydrofuran) were added to the base analyte stream. The resulting sensor array
data were analyzed in the context of two separate tasks: the first task was to identify the base analyte
(n-heptane or n-octane) without regard to the concentration of the interferent; the second task was
to identify the concentration level of the ethanol “interferent,” without regard to the identity of the
base analyte or to the concentration of the tetrahydrofuran interferent.

Figure 5.7a presents a PCA plot for the first task, discrimination between n-heptane and n-octane

in the presence of various interferents, while Figure 5.2b presents a PCA plot for the second task,
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Figure 5.7: Principal components analysis of Dataset 4 (“interferents”), which consisted of n-heptane
or n-octane in the presence of variable levels of ethanol and/or tetrahydrofuran. Plots a) and b)
display the same PCA projection with two different labelings of the data, corresponding to the two
classification tasks that were performed with the data. Plot a) shows discrimination between two
analytes, n-heptane (O) and n-octane (X) irrespective of interferents. Plot b) shows the concentration
level of the ethanol interferent (O,X, +, and *, indicating lowest to highest ethanol concentration,
respectively), without regard to the base analyte identity or presence of the tetrahydrofuran inter-
ferent.
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distinguishing among the four different ethanol interferent concentrations without regard to the
THF interferent concentration or the identity of the base analyte. The PCA plots (PCs 1 and 2)
indicate that the variance in the data was produced almost entirely by the different concentration
levels of the interferents. These figures indicate that the class distribution of each analyte was
multimodal, where each mode corresponded to a different concentration level of an interferent. For
the first “interferents” task, excellent classification performance was observed for both MLP and
FLD classifiers (97% vs. 95% classification rate, respectively). The excellent performance of the FLD
in this task clearly is related to the linearity of response of the detectors as a function of analyte
concentration, as observed for the tasks of Datasets 1 and 3. When the classification performance of
a collection of nonoptimal detector subsets was considered, the distributions had a similar shape but
the MLP distribution was shifted towards somewhat higher performance values, with the means
over all subsets being 82% and 75% for the MLP and FLD classifiers, respectively.

The second “interferents” task was effectively a multi-class problem. For the best 5-sensor
subsets, MLP determined the ethanol interferent concentration with perfect accuracy (473 5-sensor
subsets of the sensors in Table 5.1 yielded perfect classification), but the FLD algorithm produced
no higher than 80% classification when using a 5-sensor subset. The FLD algorithm produced

an 83% classification rate when data from all of the sensors were used. The Fisher projection is
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Figure 5.8: Principal components analysis of Dataset 5 (“coffees”), which was derived from analysis
of the headspace of 7 different coffee blends. Each of the blends was nominally collected under the
same conditions.
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known to be suboptimal for more than two classes because it tries to preserve distances of classes
that are already well-separated, thereby often resulting in a large overlap of, or even occlusion
between, neighboring classes.?* Hence, for such multi-class problems, non-linear discriminants

have a performance advantage over the FLD approach.

5.4.6 Classification of Coffees

Figure 5.8 displays a PCA plot of Dataset 5 (“coffees”), revealing effectively no linear or Gaussian
character in any analyte cluster or PC dimension. Consequently, a significant disparity was ob-
served between MLP and FLD, with the algorithms producing 86% and 57% correct classification
performance, respectively. FLD is most efficient for binary separation problems; however, even
when only two of the coffees in Dataset 5 were selected, MLP significantly outperformed FLD

(100% vs. 89% correct classification) due to the form of the data in this Dataset.

5.5 Discussion

Overall, the Fisher linear discriminant method yielded good to excellent classification performance

even in these extremely challenging discrimination tasks. The FLD method is relatively simple
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to implement computationally and also imposes a relatively low burden on a training set while
allowing for facile updating of the database in response to the addition of response patterns for new
analytes. Hence, the FLD is an algorithm of choice for sensors and tasks that are well matched to
the use of linear discriminant methods for classification. Clearly, the success of the FLD approach
in the present examples is related to the linear response vs. analyte concentration behavior of the
polymer/carbon-black composite vapor sensors.

In contrast, the MLP method (and by extension, other ANN methods) has the flexibility to
establish highly nonlinear decision boundaries, as evidenced by its success with the interferents,
multiple concentrations, and coffees datasets. The drawback of using such an approach, however,
involves the number of fittable parameters associated with such models. For a multi-class imple-
mentation of FLD, a dataset consisting of D features and C classes will require D x (C — 1) fittable
parameters. Assuming no preprocessing, the simplest possible ANN model, utilizing no hidden
layer, would require D X C parameters. In practice, such methods rarely prove useful, and hidden
layers are nearly always necessary. For typical fully connected, feed-forward ANN methods (such
as the MLP investigated here), the number of fittable parameters can be found from eq 5.2, in which
n represents the number of layers (including inputs and outputs) and size; represents the number
of fittable parameters in layer [.

n
parameters = Z size; X sizej 1 (5.2)

1=1
Here, the size of the first layer (inputs) is equal to D, and the size of the last layer (outputs) is equal
to C. Even assuming a small number of inputs and classes, of 5 and 3 respectively, FLD will require
10 fittable parameters, whereas an ANN with no biases or hidden layers will require 15 parameters.
However, adding even a single modestly sized 4 units hidden layer increases the number of fittable

parameters to 32.

As a result, ANN systems must typically reduce the number of inputs for all but the smallest
feature sets. In the case of MLP technique employed here, preprocessing using PCA reduces the
number of features from 40 to 5. Reducing the number of fittable parameters is critical to reducing
the training burden, as more complicated models require more training data to establish a necessary
goodness of fit. Alternatively, for a training set of a given size, a more complicated model increases
the risk of overtraining, in which the model is attuned to non-systematic information in the training
set and thus develops a fit to information that will likely not be present in any test set, degrading
the ultimate predictive classification performance of the model.

One could reasonably thus assume that the simplest model that performs a given task appro-
priately is the model of choice. Because FLD typically involves far fewer features than do ANN

methods, it would likely be more appropriate for better-controlled systems in which the data clus-
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ters have at least some hyperplane that provides a linearly separable decision boundary for the task
of interest. Additionally, for systems in which relatively small datasets are available, FLD would be
preferred because of the reduced risk of overtraining. However, for systems in which the variance is
expected to be highly nonlinear and non-Gaussian, and for which relatively large data libraries are
available, more flexible models such as ANNs will likely be required to obtain good classification
performance.

This process is not without cost, as shown by Dataset 2 in this study, in which the fifth (and
last) principal component contained the bulk of useful information for separating the two analytes.
Had the very last PC not been recognized to include such useful information, it might have been
rejected in the MLP method (as is often the case), and the MLP performance on this task may have
suffered. In this way, ANN methods often reduce the number of fittable parameters required by
trading some information loss for greater flexibility in the resulting model. This type of trade is
typically beneficial for nonlinear, non-Gaussian data clusters.

The possibility that sub-optimal sensor arrays will be chosen for real-world use must also be
considered. For the datasets considered in this study, FLD showed similar classification performance
for optimally performing 5-sensor subsets on a given task to the performance of the MLP in
conjunction with its optimally performing 5-sensor subset (with the exception of the extremely
nonlinear Datasets 4 and 5). However, even for tasks in which FLD performed similarly to MLP,
fewer sub-arrays showed near-optimal classification performance with FLD than with MLP. This is
likely because, while some of the sensors showed at least somewhat Gaussian responses to a given
analyte set, and some sensors were selective with regard to those analytes, few sensor sub-arrays
were able to combine Gaussianity with selectivity to yield high performance. As such, not only did
FLD perform very poorly in highly nonlinear classification tasks, it required optimal sensor arrays
(or large sensor arrays) to perform well with datasets that were somewhat nonlinear. Thus, more
plastic models such as ANN provide much improved classification performance for data having

significantly less than ideally distributed variance.

5.6 Conclusions

The Fisher linear discriminant method performed as well as a non-linear multi-layer perceptron
approach in most of the tasks evaluated in this work. The non-linear MLP method yielded superior
performance for multi-class problems and in some other instances. The degree to which the MLP
method outperformed the FLD approach varied by the nature of the task. Binary classification
tasks that contained data clusters that were largely Gaussian in all or most dimensions were almost
optimally classified by FLD, as proscribed by theory. However, tasks that were multi-class, or

which contained a number of highly non-Gaussian dimensions could only be optimally solved by
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a nonlinear method, for example the MLP. Although a nonlinear method is generally preferable
from a performance perspective, such methods are generally more computationally intensive and
require a greater ratio of samples/features to prevent overtraining. Therefore, for systems in which
many features are required, relatively few samples are available, or little computational power is
available, a linear method such as FLD is preferable. Clearly, the success of the FLD approach in the
systems evaluated in this work is related to the linear response vs. analyte concentration behavior
of the polymer/carbon-black composite vapor sensors used to generate the array response patterns

for the various tasks of interest.
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Chapter 6

Comparison of Analytical Methods
and Calibration Methods for
Correction of Detector Response Drift
in Arrays of Polymer/Carbon-black
Composite Vapor Detectors

6.1 Abstract

The responses of 15 polymer/carbon-black composite chemiresistors have been analyzed during
exposure to 8 different analytes (n-hexane, tetrahydrofuran, ethanol, ethyl acetate, cyclohexane, n-
heptane, n-octane, and isooctane) in random order at low concentration (0.5% of the vapor pressure
of analyte at room temperature) over 4 months (8000 total analyte exposures) of data collection. Data
were collected for periods during which the array was continuously exposed periodically to analytes
and after long periods during which no analyte exposures had been performed. All but the most
difficult separation tasks (for example, discrimination between low concentrations of straight-chain
hydrocarbons) could be performed robustly over the entire 4 month time period based only on the
use of a decision boundary formulated from an initial training set of 200 exposures, indicating the
sensor drift had minimal effect on system performance in such classification tasks. For the remaining
classification tasks, modeling the dynamics of sensor drift either through a linear regression or
Fourier transform decomposition of the individual relative differential resistance responses vs time
of each sensor yielded little improvement in classification performance, indicating that external
events were largely responsible for changes in sensor response vs time. Six analytes that were not
treated as unknowns for a binary separation task were individually treated as calibrants whose
response was intermittantly used to renormalize the response of the sensor array. A simple linear

sensor-by-sensor calibration scheme proved effective at restoring the classification performance of
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difficult binary separation tasks to the performance that was observed in the initial training set
period. Calibrants that were mutually similar to the analytes being differentiated tended to be
more effective than calibrants that were very chemically different from the analytes of interest.
Evaluation of various calibration protocols indicated that an optimal tradeoff existed between
the number of calibration exposures and the frequency of calibration periods. Condition-based
calibration, in which calibration was only performed when the classification model exhibited a
decline in classification performance below a predetermined threshold value, was observed to be
superior to a time-based calibration approach or to interval-based, cyclic calibration protocols for

this set of analytes exposed under the chosen analysis conditions.

6.2 Introduction

Robust vapor sensing systems all have some method of algorithmically correcting or physically
minimizing sensor drift. For example, flame ionization detectors are calibrated with known stan-
dard gas mixtures, and near-infrared detectors are typically calibrated with calibrant sets! or even
with a single analyte.? Recently, arrays of broadly cross-reactive sensors have received significant
attention for their possible use in detection and classification of analyte vapors. These systems
can be based on many signal transduction modalities, including polymer-coated quartz-crystal mi-

crobalances (QCM) or surface-acoustic wave (SAW) devices,*® glass beads or optical fibers coated

10 11-13 14-16

with dye impregnated polymers,®'° conducting polymer or polymer composite chemi-

cally sensitive resistors, polymer-coated micromachined cantilevers,'” polymer-based capacitors
and FETs,'®19 and metal oxide chemiresistors.2%23

To maximize sensor diversity, the sensors in such systems are typically as uncorrelated as pos-
sible. However, sensor drift can ultimately invalidate some of the classification models, requiring
correction or retraining. The effects of sensor drift can be significant, and complex to treat ana-
lytically, because of the large number of ways in which the array response can change with time.
Without correction for sensor drift, analyte recognition libraries may be limited in size because of
the significant burden that frequent retraining of large libraries would impose on the user. The best
approach would be to minimize the drift in the sensors themselves, only applying corrections or
calibrations to situations in which it was demanded for the successful application of the technology
to a specific problem of interest.

Because driftis such a serious problem in many types of sensors, often preventing reliable analyte
identification over long timescales, a great deal of work has been directed towards the development
of drift correction methods. Effectively, the solutions fall into three categories: a) attempts to attune
classifiers to signal while ignoring drift; b) the use of adaptive models that update the classifier

based on assigned identities; and c) the use of a calibrant to return the classifier to its original
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state. Attempts to attune the classifier to specific signals of interest have been used in conjunction
with either independent components analysis (ICA)** or principal components analysis (PCA)®
to determine which dimensions of the analyte space correlate most highly with the differences
between the analytes in the set. These presumably represent the dimensions that are least noisy
and/or are least affected by drift, and are the only dimensions retained in constructing a classification
model. The attuning methods can provide significant improvements in classification over a fixed
time period. However, it is not clear what would be done upon addition of new analytes to the
recognition library, as the previously rejected dimensions might be necessary to robustly identify
new analytes. Additionally, these methods contain no provisions for updating the model, and thus
may ultimately be invalidated by sensor drift, requiring some sort of retraining or calibration.

Adaptive models, frequently neural networks such as self-organizing maps (SOM), have also
been useful, because newly recognized data that match the stored analyte signatures can be con-
tinuously used to retrain the classifier.?~?° This technique has the advantage of simplicity because
no actual recalibration is performed by the user. However, most of the analytes encountered must
be pure, to ensure that the sensors, rather than the analytes, drift in time. Also, the drift must
be gradual, as a discontinuity in response between consecutive exposures (regardless of the time
interval between the exposures) would immediately invalidate the classification model and would
prevent adaptation.

Use of a calibrant or set of calibrants to retrain a classifier is a more time-intensive method
of drift correction, but may well be the only robust method for determining precise information
regarding the degradation of the classification model regardless of the degree of sensor drift.
Ultimately, calibration is also therefore the only method that is capable of sustaining a high degree
classification performance in the face of inconsistent sensor drift over extremely long time periods
and with potentially intermittent use. Calibration methods have proven successful for transferring
classifier models between sensor arrays, and presumably this approach could also be used to correct
for drift in a given sensor array, because after a sensor array drifts sufficiently, it effectively becomes
a new, slightly different array.*® Neural methods, which are computationally intensive, might be
less suited to drift correction of arrays having large numbers of sensors than they are to a one-time
array transfer. Frank et al. developed a method of using an array of calibrants to periodically
update a classifier by relating the linear change of the each single sensor to that of the average
sensor.’! This method has the advantage of allowing for retraining whenever necessary until the
sensors cease providing meaningful output signals.

The goal of this work was not to develop an optimal classifier or to develop the best method
for transferring/updating that classifier naturally, different classification and transfer schemes are
more useful in different situations. Rather, the goal of this work was to explore analytically the

effects of drift on quantification and classification of analytes in an array of chemically sensitive
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vapor detectors formed from composites of carbon-black and insulating organic polymers. Such
sensor arrays have been shown to yield excellent classification performance between organic vapors
and additionally have been shown to provide a relatively linear response as a function of analyte
concentration. Ultimately, we seek to determine an acceptable method for updating a classifier at
the lowest level possible a single sensor at a time. Such a method would be a useful transfer method
in itself, or could be used as a pre-processing stage before application of most of the techniques
mentioned above. In this work, we have analyzed the response of a 15-detector array over a 120-day
time period to 1000 exposures each of 8 different analytes (8000 total analyte exposures).

A specific question of interest is how important is drift in affecting the quantification and
classification of analytes based on the response signals of polymer/carbon-black composite vapor
detector arrays. Fishers Linear Discriminant® was selected as the classifier of choice, because it has
been previously shown to be effective for the types of sensors and classification tasks considered in
this work.® In principle, many other non-reductive schemes (i.e., not PCA or ICA) could have been
used, so the approach described herein should be applicable to other classifiers as well. We have
determined how much of the sensor drift is linear vs. time for each sensor as well as other functional
forms that can be corrected analytically at the sensor level. Additionally, we have evaluated how
often one needs to perform calibration and for what period in order to develop a successful sensor-
level-based drift-correction model. For the component of sensor array drift that is not analytically
correctable at the sensor level, we have evaluated whether the array response can be calibrated
with a known standard analyte, and if so, how similar the calibrant should be to the test analytes in
order to be useful for updating the classifier model. Finally, we have analyzed whether calibration
should be performed at regular intervals or whether analytical methods can be used to indicate

when calibration is necessary.

6.3 Experimental

6.3.1 Detectors

The detector array used in this study consisted of 15 compositionally distinct polymer/carbon-black
composite chemically sensitive resistors (Table 6.1). Detector films were cast from mixtures of 40%
polymer, 40% di(ethylene glycol) dibenzoate (a plasticizer), and 20% by weight of carbon-black
(Black Pearls 2000, Cabot Inc), as described previously.!>1¢3* The detector films were deposited
between two Au leads that had been evaporated onto a glass slide, and the array was housed in a
stainless steel assembly that was connected by Teflon tubing to a computer-controlled, calibrated

vapor generation and delivery system.!
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Table 6.1: Detectors used in this study.

1 poly(caprolactone)

2 poly (ethylene-co-vinyl acetate)
3 poly(ethylene oxide)

4 poly(ethylene glycol)

5 poly(styrene-co-butadiene)

6 poly(methyl octadecylsiloxane)
7 poly(vinyl stearate)

8 ethyl cellulose

9 poly(methyl vinyl ether-co-maleic anhydride)
10 poly(4-vinyl phenol)

11 polycarbonate

12 polystyrene

13 poly(methyl methacrylate)

14 poly(vinyl butyral)

15 poly(styrene-isoprene)

6.3.2 Analytes and Data Collection

Five hydrocarbons (cyclohexane, n-hexane, n-heptane, n-octane, and isooctane) and three other
analytes (tetrahydrofuran, ethanol, and ethyl acetate) were presented to the detectors. Within a
single run, these eight analytes were presented 200 times each, in random order, to the detector
array. Each analyte presentation consisted of 70 s of clean laboratory air, followed by 80 s of analyte
vapor, followed by another 60 s of clean air to purge the system. The laboratory air contained
1200 ppm of water vapor. All analytes were presented to the detector array at concentrations
of approximately P/P°=0.0050, where P is the partial pressure and P° is the vapor pressure of the
analyte at room temperature (21+1°C). Five total runs of 200 exposures per analyte were performed,
with each run requiring approximately 4 consecutive days of data collection. Breaks of less than 1
week occurred after runs 1 and 2, while longer breaks of 70 days and 20 days followed runs 3 and

4, respectively.

6.3.3 Data Pre-processing

The response of a vapor detector to a particular analyte was expressed as AR,;/R;, where Rj is
the baseline resistance of the detector in the absence of analyte, and AR,; is the baseline-corrected
steady-state resistance change upon exposure of the detector to analyte.® Baseline correction was
performed by fitting a spline to the data obtained during the pre-exposure period, and subtracting
the spline over the entire exposure. In some cases, the responses from each of the datasets were

subsequently sum-normalized to remove any linear concentration dependence on the resulting



107
array signals. This process was performed using eq. 6.1

Si]‘

S: = n
! Yj=1 Sij

(6.1)

where §;; refers to the R/R; response signal of the jth detector (out of n total detectors) to the iy,

analyte exposure, and S, represents the sum-normalized analog of S;;.
y P ij 'ep g j

6.3.4 Quantification of Classification Performance

The Fisher Linear Discriminant (FLD) algorithm was used to analyze the data for classification
performance.® In the FLD approach, analyte exposures in a training set are used to select a
hyperplanar decision boundary that maximizes the separation between the two data clusters of
interest. For normalized data (eq. 6.1) produced by the responses of an n-detector array, this

hyperplane (or classification model) has the form:

n—-1
Dl’ = Z C]'SI/-]- (6-2)
j=1

where c; represents one of the n — 1 weighting factors from the hyperplane determined by the
FLD algorithm. The value of D; (hereafter referred to as the “D-value”) is a single, scalar metric
that characterizes the position, along a vector normal to the hyperplane discrimination boundary,
of the detector array data produced by an individual analyte exposure. The function of the FLD
algorithm is to maximize the separation, or clustering, of the two distinct populations of D-values
that arise from a single binary separation task. This clustering is measured by the resolution factor

(rf) characteristic of a separation task, as given in eq. 6.3:**

rf = (6.3)

Here, 6 is the difference in the population means of D-values, and o1 and o, are the standard
deviations of the two populations of D-values that correspond to the two analytes of the separation
task. The FLD algorithm was used to evaluate the separation of two analytes at a time for each
possible combination of two analytes in the data set. Because a supervised algorithm inherently
introduces some bias into the analysis, a train/test scheme was employed. For each pair of two
analytes that comprised a single separation task, the first 200 exposures to each analyte were used
to generate a training set, and a set of coefficients (comprising a classification model) as described
in eq. 6.2 was established. Population means and standard deviations based on the characteristic
Fisher scalar values were also calculated. A decision boundary was then developed by defining the

hyperplane at which an unknown analyte exposure would have an equal probability (according to
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eq. 6.3) of belonging to either analyte population of the given binary separation task. All subsequent
data were treated as test data, in that the Fisher algorithm was not performed after the training
phase, and analyte identities were classified according to their positions relative to the fixed FLD

decision boundary.

6.3.5 Calibration

For any given experiment, two of the eight analytes were treated as unknowns, with their identities
masked to the classification algorithm. A third analyte was treated as a calibrant, with its identity
known to the algorithm. To insure that all linear variance, consisting of (for example) incidental
concentration variations, was already removed from the dataset, only normalized data were used
for calibration. Calibration was performed by determining the mean and normalized response of a
calibrant to a specific detector during training, and then determining these quantities during some
later time interval (or, even, to a single later calibrant exposure). The response of each detector was
adjusted by a multiplicative calibration factor to produce the same amplitude on the calibration

data as would have been observed during the initial exposures to the calibrant (eq. 6.4):

Sa,O
SC,O

Su,t = SC,t X (64)

Sat and S indicate the AR,;/R; response signals for an analyte a or calibrant c, respectively, at an
arbitrary time t after training. The original FLD coefficients established during training (t = 0) can
be used indefinitely if the theoretical response of a detector at ¢ = 0 is correctly predicted from its
actual response at time t using the relationship in eq. 6.4. Better correlation between Sa and Sc over
substantive time intervals will allow for a better fit over time between the calibrated data and the
original FLD model. Calibrant data were not collected strictly contemporaneously with exposures
to unknown analytes, so a block of data was used for calibration and the updated Fisher model was
then used to classify the analytes whose identities were masked during development of the model.
This scheme was used to simulate likely use in the field, in which calibration after each unknown

exposure is not practical.

6.3.6 Method of Evaluation

Typically, for a binary separation, the only information of interest is the identity of the unknown
analyte, with the knowledge that the unknown belongs to one of the two populations. Once the
analyte identity has been established by determining its location relative to the FLD decision bound-
ary, the analyte concentration can be determined using a linear regression because the response of
polymer/carbon-black composite detectors is linear with analyte concentration over a significant

range of conditions. In this approach, a significant amount of detector drift could in principle occur
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without affecting the analyte classification performance, if the drift occurs in a direction completely
parallel to the decision boundary. To account for components of drift perpendicular to the boundary,
any deviation of an analyte away from the original population means determined during training
was penalized, regardless of whether the deviation pushed the population toward or away from
the decision boundary. To accomplish this, the root-mean-square (RMS) values of the deviations
between the actual and predicted mean-population D-values were calculated both before and after
calibration. These values were treated as indicative of the effectiveness of the calibration, with the
goal being a reduction of the RMS deviations. To prevent outliers from unduly affecting the results,
these results were recalculated after removing from each analysis the 2% of data points having the
highest and lowest deviations. These metrics will be referred to as RMSD and RMSD;, is which refer

to the RMS deviations before and after outlier rejection, respectively.

6.4 Results

6.4.1 Analysis of Drift
6.4.1.1 Analysis of Raw Data

At moderate analyte concentrations, previous studies have indicated that polymer/carbon-black
composite vapor detector responses in conjunction with the FLD algorithm can robustly separate
even extremely similar analyte pairs over extended periods of time [33, 35, 36]. To obtain a data set
in which the inherent drift in detector response drift did affect classification, and therefore provide a
testbed for analyzing the efficacy of various drift-correction methods, all of the analytes investigated
in this study were presented at low concentration, with P/P° = 0.0050, to the detector array. These
relatively low concentration values produced less than 100% classification performance for at least
some of the binary separation tasks.

Figures 6.1 a-b plot the unnormalized AR,;/R; responses of two sensors (detectors 2 and 3 from
Table 6.1, respectively) for all 8 analytes as a function of exposure number. The drift of the sensors
was clearly not continuous or monotonic, and instead the bulk of the variance clearly resulted from
specific events. For example, sensor responses were clearly affected by the two-month break after
exposure 600; additionally, sensor 9 (not shown) also showed significant spikes after the other,
shorter breaks that followed exposures 200, 400, and 800. All of the sensors additionally exhibited
less immediately explainable spikes and response changes at other times during data collection.

The average raw AR,;/R; response of a detector to a specific analyte changed by 71.5% of its mean
value over the entire period of data collection, with the greatest change being 381% and the lowest
being 14.3%. These values were based on an 11-point moving average after removal of 4 outlier

data points out of the 8000 total data points. For normalized data, the average AR,;/R; response of a
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Figure 6.1: Unnormalized (raw) AR,;/R; values, for all eight analytes, as a function of exposure
number for a) Sensor 2 and b) Sensor 3. For clarity, each analyte data series is offset by a constant.
Each plot contains 8 data series, corresponding to sensor responses to n-hexane (-1.2, -0.27), tetrahy-
drofuran (-5.1, -2.4), ethanol (-2.6, -2.4), ethyl acetate (-5.5, -2.9), cyclohexane (-6.1, -4.5), n-heptane
(-6.6, -5.3), n-octane (-7.4, -6.3), and iso-octane (-8.6, -6.3) listed top to bottom, with constant offsets
[x10%] for sensor 2 and sensor 3, respectively, in parentheses
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detector to a specific analyte changed by 21.3%, with the greatest change being 115% and the lowest
change being 5.05%. In contrast, for the first 200 exposures to each analyte, which were collected
without any discontinuity in time between subsequent exposures, the highest, lowest, and mean
detector response changes for normalized data were 63.6%, 1.68%, and 7.85%, respectively. This
result suggests that discontinuities were a major source of drift.

The normalized responses of n-hexane and ethanol on individual sensors differed by 55.6%,
averaging over all sensors and considering the full range of data. This value is significantly higher
than the average change in normalized sensor responses over time of 21.3%, so the performance of
a classification model trained to separate n-hexane and ethanol should be reasonably unaffected by
such time-dependent detector response changes. However, for a pair of analytes whose response
differences are less than the threshold of average sensor change, such as n-hexane and n-heptane
(which differ by only 6.50%, on average), classification performance is expected to be strongly
time-dependent, and will require some correction for detector drift even within a run having no

temporal break between analyte exposures.

6.4.1.2 Separability of Analytes During Training Phase

Figure 6.2 a shows data in principal components space collected for all 8 analytes during the initial
training set run. Figure 6.2 b shows a similar plot only for the 5 hydrocarbon analytes. The data
presented in Figure 6.2 2 are based on normalized detector responses, so changes in amplitude
that may affect the ability to quantitate analyte concentration are absent from such a representation.

Clearly, even at these relatively low analyte concentrations, each of the analyte clusters was robustly
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Figure 6.2: Principal components analysis (PCA) plot of a) all 8 analytes considered in this analysis
and b) of only the hydrocarbons. Data for this plot were taken from 20 random exposures of the first
200 acquired from each analyte, which were obtained from the first unbroken run of data collection.
The hydrocarbons considered in this analysis were n-hexane (o), n-heptane (), n-octane (¢),iso-
octane (V), and cyclohexane (/\). Other analytes considered were tetrahydrofuran (*), ethanol (+),
and ethyl acetate (X). For clarity, ellipses containing at least 80% of the data for each analyte are
shown.
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separated from all of the other clusters, although the hydrocarbons are mutually more similar to
each other than to any of the other three analytes. This behavior is in accord with previous studies of
the resolution between analytes at low concentrations on arrays of polymer/carbon-black composite
vapor detectors.

To determine the effectiveness of the Fisher linear discriminant classifier without considering
any temporal differences in the data, for each pairwise analyte separation task the training set was
subdivided into two nominally equivalent subsets of analyte exposures. Exposures were randomly
assigned to these two subsets, ensuring only that each contained the same number of exposures
to each analyte. The FLD analysis was performed on one of the subsets, and the resulting model
then applied to the second subset, with the fraction of correctly predicted analyte exposures then
being measured from the second subset. The subsets were then switched and the entire process
repeated. The classification statistics from the two subsets were then averaged to yield an expected
classification performance for the training set. This quantity can then be compared to statistics from
subsequent test sets while minimizing issues related to training-set overfitting. This process was
repeated for each binary analyte separation task in the data set.

Table 6.2 shows the training-set separability (as described above) of the hydrocarbon analyte
pairs. All other binary analyte separation tasks produced no errors in the training period. Ap-
preciable error rates were only present for binary separations that involved exceptionally similar
analytes, such as the straight-chain hydrocarbons differing in length by only a single carbon (e.g.,
n-hexane and n-heptane). Other hydrocarbon separations, such as cyclohexane vs. n-octane, pro-

duced nearly perfect classification performance even at these low analyte concentration values.
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Table 6.2: Train/test performance of hydrocarbon binary separations from training set (first 200
exposures).

n-hex c-hex n-hept n-oct i-oct
n-hex N/A 0.9950 0.8325 0.9500 1.000
c-hex - N/A 1.000 1.000 1.000
n-hept - - N/A 0.8275 1.000
n-oct - - - N/A 0.9950
i-oct - - - - N/A

Figure 6.3: Principal components analysis (PCA) plot of a) all 8 analytes considered in this analysis
and b) of the hydrocarbons only. Data for this plot were taken from 20 random exposures to both
the first and last 200 exposures acquired from each analyte. These exposure series derive from the
first and fifth (last) unbroken runs of data collection, respectively. Hydrocarbons considered in
this analysis were n-hexane (o), n-heptane (0), n-octane (¢),iso-octane (V/), and cyclohexane (/).
Other analytes considered were tetrahydrofuran (*), ethanol (+), and ethyl acetate (x). Data points
collected during the final run are filled/bolded. For clarity, an unfilled ellipse is drawn for each
analyte containing at least 80% the data corresponding to both runs. Within each unfilled ellipse, a
shaded ellipse is drawn containing the data from the final run.
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Surprisingly, n-octane vs. i-octane also produced near-perfect classification performance, suggest-
ing that the detector array is highly tuned to analyte structure as well as analyte functionality and
molecular weight. The FLD analysis therefore quantifies and largely corroborates the PCA data for

the training set exposures.

6.4.1.3 Separability of Analytes After the Training Phase Using Uncorrected Data

Figure 6.3 a shows PCA data for the 5 hydrocarbons collected during two different runs, the first
and the last, between which over 3 months elapsed. The PCA rotational matrix that was used to
map the original, autoscaled data onto the PC axes was determined from the original (first run)
data, and the 3-D viewing angle was chosen to maximize the separation of the 5 analytes in the
training set. Then, the rotational matrix and viewing angle were applied without modification to

the subsequent (last run) data set. Figure 6.3 b shows similar results for all 8 analytes.
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Figure 6.4: Waterfall plot of the FLD “D-values” as a function of exposure number for the n-
hexane/ethanol binary separation task. The first 200 exposures were used to train the model,
yielding the population means for the n-hexane (o) and ethanol (#) clusters as well as the decision
boundaries between the two clusters. D-values for the final 200 exposures (801-1000), the last
collected as a part of this study, were determined by applying the FLD model determined during
training to the normalized AR,;/R;, data for each exposure. Dotted lines are shown representing
the mean D-value of each analyte and the decision boundary between them as determined during
training.
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The array responses to polar analytes clearly were sufficiently different from each other and
from the straight-chain hydrocarbons that, even at relatively low analyte concentration, sensor
drift did not affect classification performance over a nearly 4-month period. However, under
such conditions the hydrocarbons exhibited better clustering by run than by analyte. Hence for
hydrocarbon separations some type of drift correction approach is needed to retain the initial
classification performance throughout the entire period of data collection.

A quantitative representation of the change in separation distance between analyte clusters is
presented in Figures 6.4 and 6.5 for two limiting cases of performance. Figure 6.4 presents a waterfall
plot in which the array response data for a separation of n-hexane and ethanol are projected onto
the Fisher discriminant vector that was obtained by use of a training set of 200 exposures/analyte for
the task of interest. The analytes are very well separated, and essentially perfect classification can
be achieved using the indicated decision boundary arising from the FLD. Data projected onto the
FLD vector were chosen from the first 200 responses (on which the FLD model was based) and last
200 responses to each analyte, with a gap of approximately 100 days and 4800 analyte exposures
between the two groups. Even after this period of months and over 8000 analyte exposures, the
data did not drift sufficiently to invalidate the initially developed classifier.

In contrast, Figure 6.5 shows a corresponding plot for a separation of n-hexane and n-heptane.
Clearly, this separation task produces more classification errors, particularly for the last 200 expo-

sures. Classification performance using a fixed decision boundary is additionally more sensitive to
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Figure 6.5: “Waterfall” plot of the FLD “D-values” as a function of exposure number for the n-
hexane/n-heptane binary separation task. The first 200 exposures were used to train the model,
yielding the population means for the n-hexane (o) and n-heptane (#) clusters as well as the
decision boundaries between the two clusters. D-values for the final 200 exposures (801-1000), the
last collected as a part of this study, were determined by applying the FLD model determined during
training to the normalized AR,;/R;, data for each exposure. Dotted lines are shown representing
the mean D-value of each analyte and the decision boundary between them as determined during
training.

OO °
14 o o o° o ° ;E
o o & o0°© oo =
o Bb © o [S]
o o [¢] o
g-us o4 5 8 o oo o . 0% o £
§ * OOOOO S o0 o° o> (90 o o & o OQ)O b (;
& * ORI ) 0.0 0 = ¥
A ORI TN 4 O ¥ 2 Ss o Oy | @ n-hexane
o ® © o 0 © * O ¢ o O =,
5 ‘@‘% 0 00 ‘@) %0 %y * oc g o o o
ﬁ-‘“d‘% Odeb f& © FEYR S <X Yo¥S I 3 st | S - . :ec:z:on
[ ¢ ¢+ * . ) S ° oundary
2 %”‘00’ ‘0"“ : (;% ‘. ‘30:3” % .":‘0 ’ s Q@OO o0 @ogo ° o ° oo
= 16 Q. X
b RS A AR R T S S 37 PP PR S ) MQ"Q 2 ooy Se ST O n-heptane
5 . .+ . ot S o0 &‘E ° 0@ Ooooow%pcogwc;’ 08%590@00% Sy
B . Rl . o (9}
3] AR N X « . . [S] 4° 80 o ¢S o g S0 Op .
@ -165 s ¢ * ¢ . *» . . &8 S D¢ 09 ot B oRe % @ 0 $®0
© . o o Q% g0 0908, o ¢ 0% o
@ L R ‘e ‘ « o P S AR A To e
5 i ¢ 4 9] TR A e ¢ 49 00
S it . ! o0 G IR N Tl W
e s, *
¢ ) Nv"o‘,.o Wt 0):"‘,.900‘0‘0“0
R .
175 3 b ot . 3 RN 7Y '.

L L L L L L L L L L L L L . L L L L L
20 40 60 80 100 120 140 160 180 200 300 820 840 860 880 900 920 940 960 980 1000

Exposure number

drift in the detector response, as expected from the PC plot of Figure 6.3 a.

Table 6.3 shows that, even after sensor drift over an extended time period, very few errors are
made when comparing analytes that do not share a functional group. In many cases, few errors
are made even for the straight-chain hydrocarbon separations. The n-hexane/THF separation was
a statistical anomaly that arose because the THF population cluster was much tighter than that
of n-hexane; consequently, the decision boundary produced by FLD analysis on the training set
was located so much closer to the THF population that a slight detector response drift shifted the
population over the decision boundary. Another decision boundary could clearly have been drawn
(with less statistical validity on the initial training set data) that would have yielded essentially
perfect classification performance for this separation over the entire data set. Other than this
anomaly, however, only binary separations between very chemically similar analytes presented at
very low concentrations to the detector array generated classification errors even after significant

elapsed time and use of the detectors.

6.4.2 Statistical Analysis of Correlations Between Detectors

To correct for the signal drift in the array of polymer/carbon-black composite sensors and thereby
improve the classification performance under the most demanding analyte separation conditions,
the nature of the drift must be understood statistically, if not phenomenologically. It is clearly

of interest to ascertain whether the drift in response of the entire set of detectors and/or analyte
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Table 6.3: Performance of all separation tasks from final 200 exposures.
n-hex  THF ethanol EtOAc c-hex  n-hept n-oct i-oct

n-hex N/A 05875 1.0 1.0 1.0 0.5125 0.5725  0.8900
THF - N/A 1.0 09875 1.0 1.0 0.9875  0.9650
ethanol - - N/A 1.0 1.0 1.0 1.0 1.0
EtOAc - - - N/A 1.0 1.0 1.0 1.0
c-hex - - - - N/A 1.0 1.0 0.5000
n-hept - - - - - N/A 0.5050 0.6725
n-oct - - - - - - N/A 0.5900
i-oct - - - - - - - N/A

exposures can be estimated from the behavior of a subset of sensors and/or analytes. Additionally,

the time scale over which such predictable drift manifests itself is of interest.

6.4.2.1 Correlation Between Sensors Exposed to Each Individual Analyte

To investigate whether any correlation existed between the drift of the various individual sensors,
a 15 x 15 correlation matrix was developed from a base 8000 X 15 matrix of unnormalized sensor
responses vs. time. Because the global data matrix contained the responses of the sensors to eight
different analytes, the global mean response to each analyte/sensor combination was subtracted
from each individual sensor response. In this way, only the changes in response vs. time were
analyzed, independent of the mean response of any sensor to a particular analyte. The mean
correlation (averaged over all possible sensor combinations) of unnormalized data was found to be
0.9993 over the full 8000 analyte exposures. In contrast, the mean correlation between sensors after
normalization was 0.1459. The large decrease in correlation after normalization implies that most of
the drift was linearly correlated between sensors. This strongly suggests that the correlated variation
was a result of systematic external perturbations such as slight changes in analyte concentration at
nominally the same settings of the mass flow controllers, temperature fluctuations, or other external
variables that affected the response of essentially all of the sensors in the same fashion at the same
time.

Next, the data were split by analyte, to form a series of 1000 exposures to each analyte. The
analysis described above was then independently repeated for each of the 8 analytes tested, yielding
8 15 x 15 correlation matrices. On average, the correlation before normalization for any pair of sen-
sors exposed to a single analyte was 0.7826, and was 0.2896 after normalization. The unnormalized
correlations are lower than those for the unsplit, 8000-exposure data series presumably because
concentration differences between analytes are rendered moot upon sorting by analyte. The signifi-
cantly lower normalized variance for the unsplit series indicates that a significant proportion of the
variance arising from analyte diversity is nonlinear in nature, and hence not correlatable using the

FLD classification model. These results indicate that the nonlinear portion of the sensor drift trends
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vary significantly by analyte, and as such the trends must be evaluated either analyte-by-analyte
or at most within groups of similar analytes. Ultimately, however, the greatest portion of drift is

linear in nature and is easily removed by sum-normalization.

6.4.2.2 Correlation Between Analytes to Each Individual Sensor

Having determined the correlation relationships between sensors, a similar investigation was per-
formed for the different analytes in the test set. For this portion of the study, the data were first split
by sensors into 15 separate 1000 x 8 matrices that represented the sensor responses as a function
of time for all 8 analytes. Correlation matrices can not however be directly established from these
data, because the 8 analyte data series in a given matrix were not temporally synchronized in the
sense that the nth exposure to analyte 1 may have occurred right before, right after, or 20 minutes
apart from the nth exposure to analyte 2. A 5-point moving average was therefore constructed from
the data series, assuming that, over 5 exposures, the individual analyte series should have similar
temporal characteristics. This process yielded 15 new 200 x 8 matrices.

Averaging the correlation matrices over all analyte pairs as well as all 15 sensors yielded global
values of 0.1294 and 0.2535 before and after normalization, respectively. Because normalization
occurs over sensors and not analytes, there is no requirement that the normalized correlations be
lower than the unnormalized values. The correlations between the normalized data tended to be
higher than those between unnormalized data, presumably because any concentration-influenced
variance would be completely independent of analyte identity and even independent of exposure
number to a given analyte. Therefore, normalization should effectively remove a significant amount
of almost completely non-correlatable variance, resulting in better correlation coefficients between
the normalized analyte responses compared to the unnormalized responses.

Table 6.4 displays the 8 X 8 correlation matrix derived from the normalized, moving-averaged
200x8 data matrix. The relationships between individual analytes (or similar groups of analytes)
tended to be stronger than between sensors. Considering normalized data, the average correlations
were 0.3444 between straight-chain hydrocarbons, 0.3293 between all hydrocarbons, 0.2484 between
the polar non-hydrocarbons, and 0.1971 considering all possible comparisons between a hydrocar-
bon and non-hydrocarbon. This clearly indicates that drift is most similar among analytes that are
themselves similar. In addition to evaluating the correlations over the entire data set, correlations
and variances during unbroken runs were additionally compared to those for exposure blocks that
spanned multiple runs; i.e., those blocks that contained at least one major discontinuity. To this end,
covariance and correlation matrices were generated for each of the 5 separate collection runs and,
within each run, for each sensor. For this analysis, the first 50 exposures of each run were rejected to
ensure that the sensors sufficiently recovered from the most recent discontinuity. For comparison,

similar statistics were collected for blocks of 200 exposures that spanned 2 separate runs (for exam-
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Table 6.4: Correlation matrix of analyte responses vs. time averaged over all sensors.
n-hex  THF ethanol EtOAc c-hex  n-hept n-oct i-oct

n-hex 1.0 0.32 0.061 0.33 0.40 0.35 0.35 0.26
THF 0.32 1.0 0.11 0.53 0.35 0.27 0.20 0.22
ethanol 0.06 0.11 1.0 0.11 0.044 0.040 0.040 0.46
EtOAc 0.33 0.53 0.11 1.0 0.37 0.29 0.22 0.25
c-hex 0.40 0.35 0.044 0.38 1.0 0.43 0.31 0.30
n-hept 0.35 0.27 0.040 0.29 0.43 1.0 0.33 0.31
n-oct 0.35 0.20 0.040 0.22 0.31 0.33 1.0 0.25
i-oct 0.26 0.22 0.046 0.25 0.30 0.31 0.25 1.0

ple, the block consisting of exposures 101-300, spanning the discontinuity after exposure 201). For
each block, the covariances and correlations were averaged over sensors and analyte pairs, with
the autocorrelations and autovariances removed from analysis.

The results of this analysis are displayed in Figure 6.6. The exposure blocks within single runs
showed low average variances and correlations as compared to the values observed for the blocks
that spanned runs. Three of the 4 spanning blocks showed covariances and correlations that were
higher than any of the 5 non-spanning blocks, with the last spanning block being the lone exception.
This indicates that specific events, here discontinuities in sampling, produced the greatest portion
of the variance. However, as shown in Figure 6.6, a proportional amount of this additional variance
is also reflected in the correlation statistics. Thus, information regarding the changes in one (or a
few) analytes following a discontinuity could be used to predict changes in the other, unknown

analytes. In this way, the problem of predicting and/or calibrating drift can be further reduced.

6.4.2.3 Correlation Trends As a Function of the Range of Exposure Data and Number of Expo-

sures Used

Naturally, the time spent calibrating the system should be as short and infrequent as possible.
Therefore, it would be preferable to have high short-term correlation between analytes. To this
end, the correlation analysis described above was repeated for data subsets of all possible sizes as
low as 3 data points (corresponding to 30 exposures, because this analysis, unlike the previous one,
consisted of 10-point moving average data due to computer memory constraints). Additionally, to
minimize bias, 20 subset samples were chosen for each subset size, spreading each of the samples
out as much as possible through the data. The goal was to investigate how relations between
analytes might be dependent on the range of data collected, independent (as much as possible) of
the presence of sampling discontinuities.

Figure 6.7 (solid line) shows a plot of the mean correlation, averaged over all sensors and over
the straight-chain hydrocarbon analyte pairs, as a function of the range of the data (number of

exposures). The results indicate that the correlations show a peak at short time intervals and then
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Figure 6.6: Average covariance and correlation values between all analyte pairs for specific exposure
blocks of 150 or 200 exposures. 150-exposure blocks that were collected without any sampling
discontinuity (m, solid line) generally showed less average covariance between sensor pairs than did
200-exposure blocks collected symmetrically around a discontinuity (m, dashed line). Additionally,
most of the additional variance was correlatable, as shown from the plots of mean correlation (®
dashed line reflecting sampling discontinuities, solid line none).
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Figure 6.7: Average correlations between straight-chain hydrocarbon analyte pairs as a function
of the length of the exposure window over which they were correlated. Correlation values (r?)
determined from normalized AR,;/R; data are shown as calculated (solid line), and as extrapolated
to remove data artifacts (dotted line).
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drop quickly, followed by a gradual increase with yet a larger number of exposures. However,
this analysis was a bit deceptive in that fewer data points tended to show higher correlations due
to overfitting. Thus the dependence of correlation on the range of the data became convoluted
with the number of data points used. In other words, the desired quantity is *(E), in which * is
dependent solely on the exposure interval, E; however, the r* yielded by the analysis is r*(E, p),
where p is the number of data points per exposure interval. For the data used in this study, the most

appropriate functional form between these two quantities (based on best fit) is shown in eq 6.5:
A(E,p) = % + (E) (6.5)

where both a and 7%(E) are fittable parameters, and r*(E, p) and p are known. Because this analysis

is extremely computationally intensive, it was only performed on the three straight-chain hydrocar-
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bons considered (n-hexane, n-heptane, and n-octane), which due to their mutual chemical similarity
are of greater interest than other (more well-separated) separation tasks. Figure 6.7 (dashed line)
shows a plot of 7*(E) as a function of the data range (in number of exposures), with *(E) increasing
effectively monotonically with the size of the exposure range. This indicates that analytes will
correlate better over longer times, at which point more predictable variance is manifested. On the
other hand, at shorter intervals, any variance can effectively be considered white noise, or nearly
so. As such, one might expect to be able to effectively calibrate drift over longer intervals, less so
over shorter intervals.

In addition to the general upward trend of mean correlations vs. exposure length, a few
discontinuities are clearly present. Though the subset windows are spaced evenly, certain lengths
will unavoidably begin to pick up sampling discontinuities, which have a dramatic effect on the
result. This result supports the conclusion that specific events, not time or consistent use, are

responsible for most of the noise in the full data set.

6.4.3 Correction of Sensor Data Without Calibration

Analytical methods of drift correction would optimally only require determining the response of
a single sensor to a single known analyte and using that value to adjust the remaining sensor
responses in the array. Accordingly, three methods were explored to evaluate the extent to which
the drift could be corrected through a measurement-derived approach: a) the drift of individual
sensors were fit to a regression analysis; b) a Fourier transform analysis was used to determine any
periodicity in the drift of individual sensors, and c) the short-term analyte history of the sensor
responses was analyzed to investigate whether the drift was dependent on the recent history of

exposure to various analytes.

6.4.3.1 Non-periodic Functional Detrending

If the response signal of a sensor to a given analyte at time £, S(t), is a function of time, and if changes
in S are due to continuous processes, then it might be possible to model S(t) as S(f) = Si=o + mt,
where m is equal to AS/At. Alternatively, if S(t) does not arise from continuous processes but varies
due to a number of processes that are fairly consistent over relatively short time intervals, then the
same model can still be used but with m and S;—q being defined piecewise rather than globally for
each sensor/analyte combination.

To determine whether this description of sensor response data was applicable to the data col-
lected in this study, each of the normalized, 1000-exposure sets that corresponded to a single
sensor/analyte response combination was fitted by a series of linear regressions. For each of the

sets, the first 200 exposures were used to determine the mean response for that sensor/analyte
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combination. Subsequently, the remaining 800 exposures were analyzed by alternately building a
regression model on 20 exposures, testing that model for the next 80 exposures, and repeating the
process until the end of the data set was reached.

A regression-derived model for sensor drift would only be of value if it were more predictive
than simply using the mean response of a sensor over the same range of data, and should certainly
be more predictive than the mean response value during the original, 200-exposure training phase.
Following each regression period, the data were extrapolated using the regression model, and this
extrapolation was compared to the response means measured during both the previous regression
period and during the training period. After the 800 exposures had been exhausted, data from all of
the extrapolation periods were collected and compared to the actual response data that was collected
during the intervals of interest. Three sets of deviations (or residuals) were thus collected one for the
model based on linear regression, and two based on the respective mean-response-based models.
Each set of deviation values was then divided by the appropriate mean sensor/analyte response as
determined during the training phase. Finally, RMS values of the deviations for each model and
analyte/sensor combination were determined. These RMS values are indicative of the degree of
predictive power of each model, with a high RMS deviation implying a poor model.

For the regression-based models applied to unnormalized data, the mean RMS deviation (over
all analyte/sensor combinations) was 0.849. This indicates that, on average, the scatter in the
regression-predicted responses was roughly 84.9% of the actual response. The corresponding
values were 20.2% and 24.8% for the mean-based models based on the continually updated and
non-updated mean response values, respectively. A similar analysis applied to normalized data
yielded values of 34.7%, 10.1%, and 12.1%, respectively. This suggests that a frequently updated
mean value is often a very capable predictor, and was better than simply using the original training-
phase mean response. Additionally, the analysis indicates that a regression model introduced a
significant amount of error in prediction ability. Figure 6.8 shows data that were derived from the
responses of sensor 3 to hexane, overlaid with the regression model as well as both of the mean-value
based models. Clearly, the occasional benefit from using the trending information did not outweigh
the errors that arose in regions in which a temporary trend resulted in a model that was completely
non-predictive. Many of the discrepancies in regression prediction of course originated from the
breaks in data collection. However, even when the first 50 data points of each run were rejected and
regression periods were chosen not to overlap breaks in data collection, the regression approach
did not perform as well as simply using the most recently determined mean values of the sensor
response. For normalized data, this revised method yielded fractional RMS deviations of 19.0%
for regression, with lower values of 8.71% and 12.1% for the predictions based on the continuously
updated and non-updated mean values, respectively. Thus, even under optimal circumstances,

regression was not suitable for prediction of analyte responses, as it was worse than simply doing
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Figure 6.8: AR,;/R;, responses of sensor 3 to n-hexane at P/P°=0.005. Curves shown are the
actual data (rough line), response predictions predicted by regression as updated using the first 20
exposures out of every 100 (solid line), by using the mean response as updated using the first 20
exposures out of every 100 (dash-dot line) and by using the mean response as determined from the
first 200 exposures (dotted line).
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nothing.

Both the regression and updated-mean schemes are of course impractical as methods of cor-
recting a classifier because application of the model requires prior knowledge of the behavior of
an unknown analyte. However, both schemes are indicative of the best possible performance that
could be attained by similarly implemented calibration schemes because an ideal calibrant would
correlate with an unknown as highly as possible, allowing their histories to be somewhat inter-
changeable. Hence, these results may be taken as best case scenarios for similarly implemented
calibration schemes. The recent history of a known calibrant may thus be useful information if the
calibrant correlates suitably with the unknown. However, the data also suggest that the responses
R(t) in this study were not sufficiently reliant on continuous processes, but rather arose primarily
from discontinuous and unpredictable events, as shown in Figure 1. Thus, it is not surprising that

attempting regression with this dataset is actually deleterious to any predictive ability, and that
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using a continuously updated mean value is preferable.

6.4.3.2 Spectral Character of Signal Variability in Individual Analyte Signal Series

Since regression analysis of the drift over short timescales lacked any significant predictive power,
the variability in the AR,;/R; vs. time signals is expected, over the short term, to lack any significant,
linearly predictable behavior. However, these sensor response series might still show periodic
variability over similar timescales. To probe this aspect of the sensor response dynamics, the full,
1000-exposure signal stream from each analyte/sensor pair was deconvoluted using a fast Fourier-
transform (FFT) technique.

On average, the signal spectral power vs. exposure period trends determined from FFT were
highest for higher exposure periods such as 500 and 1000 exposures, suggesting that little short-term
predictive ability could be expected. The spectral power was consistently low below 300 exposures
for all sensor/analyte combinations, with differences between sensors in the spectral character of
the signal variability arising only over longer time intervals.

In general, the spectral power increased with length of period (in exposures). The low-frequency
spectral power of the signal for sensor 3 was not significantly higher than high-frequency power
the average signal spectral power for sensor 3 between periods of 2 and 5 exposures was 0.0235,
whereas the power at a period of 1000 exposures was 0.436 an increase of very slight magnitude and
a factor of less than 20. Sensor 2, on the other hand, showed a high-frequency value of 0.0471 (similar
to that of sensor 3), but a low-frequency power of 17.5 an increase factor of 372. The differences in
the character of the spectral power between these two sensors can be attributed to the behavior of
the two sensors after the two-month discontinuity in data collection. Sensor 3 showed a temporary
discontinuity at this point, and Sensor 2 showed a seemingly permanent discontinuity. As expected
from above results, the discontinuities are the greatest source of variability in the system. It should
be therefore expected that inconsistent use of a detector array would yield a significant amount
of low-frequency variability, varying by degree with sensor identity. Considering that the periods
that showed any appreciable signal spectral power were equal to at least half the range of the data,

ascribing this behavior to any actual periodicity would likely be inaccurate.

6.4.3.3 Effect of Sensor History Upon Non-correlatable Short-term Trends

The order of analyte exposure in this study was effectively random, with the pattern repeating every
1600 exposures. Any effect arising from analyte history would therefore be difficult to deconvolute
without prior knowledge of the specifics of the analyte exposure protocol. To investigate these
effects, the first 1600 consecutive exposures (200 per analyte) were first de-meaned by analyte and

then independently sorted by the identities of the parent and grandparent analytes.



124

On average, exposures following high AR,,/R; analyte responses were themselves higher than
expected given the mean AR,;/R; value for that analyte/sensor combination. This effect varied in
that some sensors responded more rapidly or slowly than others to a given analyte, causing greater
lag/overlap with the next analyte exposure. Ultimately, the grandparent effect was nearly zero;
hence the parent effect was the only one of significance.

For some sensors, the parent effect was sufficient to overwhelm the differences in response
between very similar analytes. For example, considering only sensor 13, the average difference in
analyte exposures following a THF exposure vs. an iso-octane exposure was approximately five
times greater than the actual response differences between any of the straight-chain hydrocarbon
exposures. Hence, a great algorithmic reliance upon this sensor would be very detrimental to a
separation task that involved similar hydrocarbons. Fortunately, because the periodicity of the
AR./Ry vs. time signal should be rather short, a reasonably long calibration cycle should remove
such artifacts from the analysis, and a similarly reasonable training set should prevent reliance on
such sensors at all. However, the short effect of history also implies that it cannot be the origin of
the long-term drift. Removing this effect would be at best useful for making all separations slightly

better.

6.4.4 Correction of Sensor Data with Calibration

Effectively, the data obtained in this study cannot be reliably corrected without some type of prior
knowledge. Even then, recent knowledge of analyte history is insufficient to correct for drift, and
functional modeling of responses is no more successful. As such, removal of drift will require fairly
detailed information about the analyte/sensor combination to be corrected. Fortunately, calibration
over longer time frames (over which drift manifests) is fairly correlated between similar sensors, as
shown above. Therefore, we have treated certain analytes as known calibrants to correct the signal

response vectors for other analytes whose identities have been masked.

6.4.4.1 Effectiveness of Calibration As a Function of Calibrant Identity

Optimal calibrants were sought for each of the following binary separation tasks: hexane vs.
heptane, heptane vs. octane, and THF vs. ethanol. For each separation task, each of the 6 analytes
not treated as an unknown analyte was used, individually, as potential calibrant. A cycle of 150
use exposures and 50 calibration exposures was used to test each calibrant. Table 6.5 displays the
RMSD,,; values before and after calibration for each calibrant and each task.

As expected, calibrants that are more similar to the two “unknown” analytes in question are
more effective. For both the hexane/heptane and heptane/octane separations, all of the hydrocarbon

calibrants yielded lower (i.e., beneficial) RMSD,.; values than did any of the non-hydrocarbons.
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Table 6.5: RMSDrej values of selected binary separations using all possible calibrants.

Separation Task Calibrant Fraction Correct RMSD RMSD,.;
n-hexane/ THF 0.6525 1.3009 1.2412
n-heptane Ethanol 0.6512 1.3056 1.2541
Ethyl Acetate 0.6687 1.0274 0.9358
Cyclohexane 0.6475 1.0314 0.9236
n-octane 0.7612 0.9004 0.7931
i-octane 0.6588 1.0296 0.9134
NONE 0.6687 1.2348 1.1250
n-hexane/ n-hexane 0.6900 0.8613 0.8005
n-octane THF 0.6013 2.0537 2.0050
Ethanol 0.6025 1.4045 1.3793
Ethyl Acetate 0.8025 0.7196 0.6275
cyclohexane 0.7300 0.8046 0.7931
i-octane 0.6588 1.0296 0.9134
NONE 0.6687 1.2348 1.1250
THEF/ n-hexane 1.0 0.1266 0.1232
Ethanol Ethyl Acetate 1.0 0.1031 0.0967
Cyclohexane 1.0 0.2078 0.2019
n-heptane 1.0 0.1419 0.1378
n-octane 1.0 0.1497 0.1457
i-octane 1.0 0.2500 0.2435
NONE 1.0 0.6916 0.9313

Also, for a separation of THF and ethanol, ethyl acetate yielded a lower RMSD,,; value than any of
the hydrocarbons. These results indicate that using a calibrant similar to the analytes in question
provides the most reliable way of correcting for drift, assuming a single calibrant is to be used.
Fortunately, it is frequently possible to derive sufficient information about an unknown analyte to
effectively determine its functional identity (i.e., alcohol, hydrocarbon, etc). Therefore, choosing
appropriate calibrants should frequently be possible even with no prior knowledge of analyte

identity.3°

6.4.4.2 Effectiveness of Calibration As a Function of Calibration Frequency and Number of

Calibration Exposures

The previous FFT and correlation vs. exposure range analysis indicated that calibration should
be ineffective on an exposure-to-exposure basis because the variability in response for exposures
separated by so little time tended to be mostly highly temporally uncorrelated white noise. The
same analysis indicated that the total variance of a series of n consecutive response signals to a single
detector analyte combination increased with n, as did the correlation between two such series. This
resultimplies that lengthy calibration would be preferable to shorter calibration. Naturally, frequent

calibration should also be preferable, as the state of the system during use must be similar to the
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state during calibration. Unfortunately, calibration cannot be both frequent and lengthy without
unacceptably increasing the total burden of calibration upon the user. From a use standpoint,
calibration should be short and a small fraction of total use, while the opposite is desired from a
statistical standpoint. Assuming a predetermined fixed fraction of calibration vs. use exposures,
it is not clear from the analyses described above whether short and frequent calibration is better
or worse than longer but rarer calibration runs, if a compromise between length and frequency of
calibration must be made.

These questions were addressed for the three most challenging separation tasks evaluated in
this work, hexane vs. heptane, heptane vs. octane, and hexane vs. octane. For all three tasks,
the straight-chain hydrocarbon not treated as an unknown was used to calibrate the array. A
calibration/use cycle was simulated in which the first 200 exposures were used to train the model,
the next x exposures of a pair of unknowns were classified by the model, and finally the next y
exposures of a known calibrant were used to re-train the model. The final two steps were then
repeated until all of the data had been exhausted. This method simulates a likely mode of use of
a detection device in the field. The variables x and y were then varied, with RMS deviation values
with and without outlier rejection (RMSD and RMSD,,;, respectively) determined for the entire
"use” populations as a function of x and y. The variable y was adjusted to be between a single
exposure and x, at which point a user would be spending as much time calibrating the device as
using it.

Generally, the RMSD,,; value was minimized by maximizing y, as might be expected the
longer the calibration stage, the more robust it should be. Additionally, for a constant calibration
period, a shorter use period (x) resulted in better performance. This behavior ostensibly arose
because each data point is, on average, less removed from a calibration, limiting the degree of drift
that could manifest itself. Therefore, a duty cycle with a higher fraction of calibration exposures
would be preferred from a performance standpoint. Naturally, however, a calibration-heavy duty
cycle is not preferable from a usability or economy standpoint. Therefore, it is of interest to
determine the optimal cycle length (x + y) for a given calibration fraction. Figure 6.9 displays the
RMSD;,j vs. cycle length for a duty cycle of 50% calibration/50% use. For this analysis, the data
were collected and averaged from each of the three possible tasks in which two straight-chain
hydrocarbons were classified using a third such straight-chain hydrocarbon. The resulting average
RMSD,,j dropped somewhat with increasing length of the duty cycle as more consecutive calibration
exposures are used. However, this trend ultimately reversed as the use exposures became too far
removed from the most recent calibration, increasing RMSD,.;. The optimum calibration/use length
was approximately 25 exposures, although this result is likely peculiar to the detector set and

experimental conditions employed in this work.
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Figure 6.9: Root mean square deviation (RMSD,,;) between calibrated D-values and those deter-
mined during training, as a function of the length of the alternating use/calibration cycle used in
the system. For this plot, only binary separations of straight-chain hydrocarbons also calibrated
with such were considered. Calibration was performed on a cyclic basis, varying the length of the
cycle while maintaining the ratio of use/calibration exposures.
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6.4.4.3 Event-driven Calibration

Asillustrated in Figure 6.1, any persistent trending in the system studied was driven more by specific
events than any continual process. As such, periodic calibration may prove less appropriate than
calibrating after an event that renders the FLD classification model less able to correctly classify
analyte members of a particular separation task. If one could determine when calibration needs
to be performed, fewer exposures would be sorted with an inferior classifier model, and fewer
(possibly needless) calibration cycles would be performed.

For the binary classification tasks used in this study, re-calibration was deemed necessary when
X recent, unclassified test exposures out of the most recent Y tested fell a distance > Zo from both of
the training populations. Thus, when the model consistently failed to reliably classify new analyte
exposures as either possible analyte, re-calibration must be performed. The parameters X, Y, and
Z are variable, with higher values of Y and lower values of X and Z increasing the frequency of
re-calibration.

For all further analysis, values of 5 and 10 were used for X and Y, respectively, and 25 exposures
were used to recalibrate the FLD model whenever necessary. The analytes n-hexane and n-heptane
were treated as unknowns, and n-octane was used as a calibrant. As previously, 200 exposures were
used to train the FLD models. The non-cyclic model was allowed to update itself as often as was
warranted, provided that the model allowed Y exposures between calibrations to provide for the
appropriate statistics to be collected. For comparison, cyclic calibration schemes were evaluated
using 25, 55, 75, 175, or 375 exposures between calibrations, with the number of exposures between
calibrations constant for a particular experiment. Additionally, to ensure that the cyclic vs. event-
driven calibration approaches were directly compared, the values of Z used were adjusted so they
produced, on average, the same average number of exposures between calibrations as listed above.

In all cases, the event-driven calibration showed a higher performance and lower RMSD,.;
values, indicating overall better calibration models. Figure 6.10 depicts a plot of RMSij vs. the
average number of exposures between calibrations for both the cyclic and event-driven calibrations.
When given the choice, the event-driven calibration algorithm chose to calibrate after breaks in data
collection and after outliers of the data set.

Naturally, the curves of Figure 6.10 cannot continue to diverge with increasing numbers of
exposures between calibrations, as eventually no calibration occurs and poor performance results.
Similarly, with very frequent calibration, the two curves will be effectively the same, performing
calibration after a very few exposures. Between these two extremes, when an algorithm can hasten
or delay calibration significantly, event-driven calibration shows much better performance than
cyclic calibration. This is particularly advantageous for data of the sort evaluated in this study,

in which the degradation of the FLD model is not easily modeled or predictable (outside of the
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Figure 6.10: Root mean square deviation (RMSD,,;) between calibrated D-values and those deter-
mined during training, as a function of the number of use exposures between calibration periods.
Cyclic calibration using a cyclic calibration scheme (o) is compared to that using a scheme in which
calibration is performed after a certain degree of deterioration of the classification model (O).
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obvious breaks between data collection periods), but rather is seemingly random (assuming no
knowledge of external events). From the data presented in this experiment, it would be appropriate
to assume that calibration would be necessary after a long break between data collection; however,
the algorithm was quite capable of determining other situations in which calibration is necessary
as well.

The data collected in this study was obtained under relatively controlled laboratory conditions.
When used in the field, one might assume that other, less predictable events would tend to dominate,
and that breaks in data collection would possibly be more frequent than calibration reasonably could
be. Under such circumstances, the recalibration method would be useful because predictions of
drift cannot be based heavily on sampling dynamics, but must instead be determined from the

behavior of the sensors themselves.

6.5 Conclusions

The detectors used in this study seemed rather immune to drift in all but the most difficult bi-
nary classification problems. Even for such separations, drift was typically only problematic after
weeks of use. For such challenging separations, a simple, linear method has been developed for
correcting sensor drift over time, without significant regard as to the nature or dynamics of the
drift. The method is most effective at dealing with large degradations in binary separations that
were previously at least somewhat robust.

Because of the lack of a simple, predictive model to estimate future sensor drift with the sensors
used in this study, a calibration system was necessary to prevent frequent and complete retraining
of the Fisher classifier models. Such a calibration scheme can be effective because a given detector
will exhibit similar drift trends to similar analytes. Therefore, if the response of a given detector is
known atany given time to a certain analyte, it is possible to estimate how any similar analyte would
have responded at any time by simply sampling it once. This phenomenon allows a static model
to be used for a dynamic system while we have no fundamental understanding of the dynamics
that affect the analyte/sensor response, we can at least measure the dynamics on a known, similar
analyte.

Because a suitable calibrant needs to be similar to the analyte it is used to calibrate, this scheme
might at first seem daunting, as each binary separation task would appear to require two calibrants,
each of which need be similar to one of the two analytes of the task. Without prior knowledge,
this requirement might seem more difficult than simply determining the identity of the unknown
analytes themselves. However, any separation task that is difficult enough to generate errors
will necessarily involve two very similar analytes, as shown above. This means that two such

similar analytes can readily share the same calibrant. Additionally, suitable calibrants can be easily
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chosen based upon similarities between the unknown analyte signatures and other, stored analyte
signatures. This selection of similar analytes is possible despite any sensor drift that might occur, as
our sensors do not drift sufficiently to cause similar analytes to appear dissimilar over reasonably
long time periods.

Of course, efficient calibration requires that a relatively large database of chemical signatures
be collected. Naturally, a classifier model trained to distinguish n-hexane from n-heptane will not
be effectively calibrated if hydrocarbon data has never been previously collected. However, such a
library database need only be collected once for a given sensor set to be useful over the operation
periods of four months evaluated in this study.

Finally, there is no specific determination of how much or how often calibration needs to be
performed. Naturally, longer and more frequent is always better. In a tradeoff between frequency
and duration, the optimal mixture will likely vary on the sensor set used as well as the ratio of
calibration to use exposures employed. It is reasonable to assume, however, that extremely short
cycles will not be effective because of the lack of predictive ability of the response variability at
short timescales. Similarly, extremely long cycles are not optimal, as a great deal of drift might
occur in the meantime. It is best to evaluate the model constantly, and calibrate when it has clearly
deteriorated, as the drift/noise in this system is based on specific events more than an elapsed time
or number of exposures.

Ultimately, this method provides a simple, linear, computationally manageable method of cor-
recting a previously determined classification model. Additionally, by intelligently determining
when calibrations are required, the least possible time can be spent calibrating, allowing for more

time spent using the device.
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