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Chapter 6

Plasma Loop Merging and the
Two-Wire Problem

Chapter 5 presents a general theorem of Hamiltonian mechanics concerning the role of action inte-

grals in systems with periodic motion. Keeping this formalism in mind, we now attempt to explain

the coalescence of the spider legs in the Caltech Spheromak Experiment into a single axisymmetric

structure. Recall from Sec. 1.4.2 that Taylor’s theory of magnetic relaxation predicts this evolution

towards the axisymmetry of the magnetic field boundary conditions. This explanation is macro-

scopic and based on helicity-conservation arguments; our approach will be microscopic to identify

the mechanism behind the transition. We will study the trajectories of particles at the edge of or

just outside of a spider leg; the behavior of such particles will be taken as indicative of the evolution

of the spider leg boundary. We find that, when multiple plasma loops are present, the trajectories

can be divided into two classes: those that are essentially confined to the vicinity of one loop and

those that are shared more symmetrically between loops. When time dependence is added to the

system, trajectories can transition from one class to the other. Obviously, transitions from confined

to symmetric orbits would indicate the onset of loop merging, but such transitions occur only when

the induced electric field takes a particular form. The ultimate success of the model in explaining

the merging thus depends critically on the actual induced electric field in the experiments, which,

in all likelihood, must be determined experimentally. Note that this same analysis also applies to

dual-loop merging experiments on the Caltech Solar Loop Experiment.

The electromagnetic fields of the Caltech experiments are quite complex, and we will employ

several approximations to make the problem tractable. Both the Spheromak and Solar experiments

produce plasma loops arching from anode to cathode. These loops carry time-dependent currents

and helical magnetic field lines. On the Spheromak Experiment, the spider legs are more tightly

spaced on the inner disk than the outer annulus, while on the Solar Loop Experiment the two loops

attract each other. Even establishing the electric and magnetic fields in either experiment is quite

a challenge; determining the particle orbits in such fields is even more difficult. We seek model
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magnetic and electric fields that capture the essential physics while remaining tractable. To this

end, we begin with a modest model: straight plasma loops with no bias (axial) magnetic field. This

approximation essentially treats the plasma loops as straight current-carrying wires and ignores the

curved geometry and helical nature of the magnetic field lines.

In Sec. 6.1, we begin by analyzing a single wire, for which the particle trajectories all have

the same qualitative behavior. We compute the action integral for planar motion and develop

approximations for non-planar motion. We broach the difficulties of determining the induced electric

field when the wire current changes in time, and we show how the Hamiltonian formalism of Chapter 5

applies to particles trajectories in such time dependent fields. In Sec. 6.2, we add a second wire,

parallel to the first, and find a richer set of trajectories that fall into several classes: some are

confined to one wire, and some are shared between both wires. When time-dependence is added to

the two-wire scenario in Sec. 6.3, the induced electric field can cause transitions of confined orbits

to shared orbits, but only if the induced electric field is anti-parallel to the wire current. We discuss

the plausibility of such a field and show exactly how it would induce transitions.

6.1 Single Wire and B ∼ φ̂/r Fields

Before attempting to study particle orbits in a system of plasma loops, it is best to first understand

orbits about a solitary wire. Such orbits are of the type described in Chapter 5: the particle executes

periodic radial motion but increments in the axial and angular coordinates. Fig. 6.1.a depicts planar

electron motion about a wire for which there is no angular motion while Fig. 6.1.b depicts electron

motion with non-zero angular momentum. We shall first discuss various occurrences of the magnetic

field B ∼ φ̂/r. The action integral for planar orbits will then be evaluated in closed form, leading

to an exact expression for the drift velocity. Approximate results are derived for non-planar orbits.

The case of a time-dependent current is then explored, and issues concerning the induced electric

field are discussed.

The magnetic field of a straight, infinitely thin wire carrying a current I is given by Ampere’s

law:

B =
µ0I

2πr
φ̂. (6.1)

However, this magnetic field is not limited to infinitely thin wires. In general, the magnetic field for

any axisymmetric, poloidal current density is B(r) = µ0I(r)/(2πr)φ̂, where I(r) =
∫ r

0
2πr′Jz(r

′)dr′,

which scales as 1/r wherever Jz(r) = 0. This includes the vacuum region outside any axisymmetric

current channel as well as the interior of a toroidal solenoid. More generally, B decays like a 1/r

field when Jz(r)� I(r)/(2πr2), for then

dBφ
dr

= −µ0I(r)

2πr2
+ µ0Jz(r) ≈ −

µ0I(r)

2πr2
. (6.2)
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Figure 6.1: (a) An electron executes planar motion in the magnetic field of a current-carrying wire
(b) A three-dimensional plot of an electron orbit with non-zero angular momentum.

The term µ0I(r)/2πr of Eq. (6.2) is µ0/2 times the average current density up to a radius r, so

the condition Jz(r) � I(r)/(2πr2) requires that the local current density be much smaller than

the average current density up to that radius. This condition will most likely be satisfied at the

edge of current channels such as those described in Ref. [105]. Thus, B ∼ φ̂/r both in the vacuum

region outside of a current channel and also at the channel’s edge. We also expect the field outside

a filamentary but curved current channel to scale as B ∼ φ̂/r wherever the distance to the channel

is much smaller than the channel’s radius of curvature. Clearly, many physical scenarios can have

magnetic fields that behave approximately like 1/r fields, and the results presented here may have

broad applications.

6.1.1 The Action and Drift Velocity for Planar Orbits

We now calculate the action variable J , the drift velocity, and magnetic flux of planar trajectories

around a wire. For any toroidal magnetic field, there exists a class of planar orbits that is confined to

a plane containing the wire [106]. This follows from conservation of angular momentum Pφ = mr2φ̇

because planar orbits have Pφ = 0, which immediately implies φ̇ = 0. For such trajectories, we

relate results obtained in Chapter 5 for fields B = Bz(x)ẑ to orbits in toroidal fields B = Bφ(r)φ̂ by

making the identifications x↔ r, y ↔ −z, and ẑ ↔ φ̂.

We first establish the Hamiltonian and basic orbit properties. We use the vector potential

A = Az(r)ẑ = −
(∫ r

R

B(r′)dr′
)
ẑ = −µ0I

2π
ln
r

R
ẑ, (6.3)

where R is an arbitrary radius that affects A only by the addition of a constant. To simplify

constants, we introduce the characteristic velocity β := µ0Ie/2πm [106]. The canonical momenta
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are

Pr = mṙ, (6.4)

Pφ = mr2φ̇, (6.5)

Pz = mż + (−e)Az(r) = mż +mβ ln
r

R
, (6.6)

and the Hamiltonian is

H =
P 2
r

2m
+

P 2
φ

2mr2
+

(Pz −mβ ln(r/R))2

2m
. (6.7)

Pz, Pφ, and H are conserved along trajectories. For planar orbits, we set Pφ = 0 and use the

Hamiltonian

H =
P 2
r

2m
+

(Pz −mβ ln(r/R))2

2m
. (6.8)

Every orbit has two radial turning points where vr = 0 and a single radius at which vz = 0.

Denoting the inner turning point by r− and the outer one by r+, we set Pr = 0 in Eq. (6.8) and

solve for r to obtain

r± = R exp

[
Pz ±

√
2mH

mβ

]
. (6.9)

These turning points allow us to determine whether the guiding center approximation holds true for

a particular trajectory. The guiding center approximation requires that the fractional change in the

magnetic field be small over the course of a gyration: δB/B � 1. The fractional change from the

outer turning point to the inner one is

δB

B
=
B(r−)−B(r+)

B(r+)
= e2v/β − 1, (6.10)

which gives the simple condition v � β. Note that, due to the lack of an inherent length scale

associated with the magnetic field, this condition is completely independent of the electron’s position.

We define the guiding center radius rgc in analogy to Eq. (5.90) as the radius at which the axial

velocity vz vanishes:

rgc = R exp

(
Pz
mβ

)
. (6.11)

For orbits with v � β, this radius coincides with the gyrocenter radius [106]. This definition relates

R and Pz, neither of which is a physical quantity, to a physical location along an orbit.

For planar orbits, the action integral,

J(H,Pz) =

∮ √
2mH −

(
Pz −mβ ln

r

R

)2

dr, (6.12)
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can be evaluated exactly using the substitution

cos θ =
Pz −mβ ln r/R√

2mH
. (6.13)

θ is simply the angle the velocity vector makes with the z axis; note that θ = 0 at r−, θ = π/2 at

rgc, and θ = π at r+. We can solve Eq. (6.13) for r as a function of θ:

r = rgc exp

[
− v
β

cos θ

]
. (6.14)

The action variable can be evaluated by observing that Pr = mvr = mv sin θ and then integrating

by parts:

J =

∮
Prdr =

∮
mv sin θ

dr

dθ
dθ = −

∮
mv cos θrdθ. (6.15)

Then, using Eq. (6.14) and the integral representation of the modified Bessel function:
∫ π

0
ex cos θ cos(nθ)dθ =

πIn(x) [107, Eq 9.6.19], we find that

J = 2πrgcmvI1

(
v

β

)
. (6.16)

∆t and ∆z can both be computed by partial differentiation as per Eq. (5.4):

∆z = − ∂J

∂Pz
= −2π

v

β
rgcI1

(
v

β

)
, (6.17)

∆t =
∂J

∂H
= 2π

rgc

β
I0

(
v

β

)
. (6.18)

Note that Eqs. (6.17), (6.18), and (6.16) have a simple dependence on rgc that could have been

predicted beforehand using only dimensional analysis. This is so because the vacuum magnetic field

lacks an inherent length scale. The substitution of Eq. (6.13) was apparently known to Wouters,

who derived similar formulae for the betatron half-wavelength in his charge/mass separator [108].

The exact drift velocity, computed without appealing to the guiding center approximation, is

vd =
∆z

∆t
ẑ = −v I1(v/β)

I0(v/β)
ẑ. (6.19)

This formula is exact and holds for orbits where the guiding center approximation breaks down. The

v � β limit of Eq. (6.19) is vd = −v2/(2β), obtained by the small argument limit of the modified

Bessel functions: In(x) ≈ (x/2)n [107, Eq. 9.1.7]. Of course, this agrees with the grad-B drift

of the guiding center approximation as discussed in Sec. 5.2.2. The v � β limit of Eq. (6.19) is

vd ≈ −vẑ, obtained by the large argument limit of the modified Bessel functions: Iα(x) ≈ ex/
√

2πx

when x�
∣∣α2 − 1/4

∣∣ [107, Eq. 9.7.1]. Such electrons drift downward with a drift speed approaching
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their full trajectory speed. We draw two conclusions from this. First, all electrons drift downward

regardless of their velocity or the wire current, and, similarly, all ions drift upwards. The current

driven by the drift flows in the same direction as the original wire current, so the wire current

“bootstraps” itself. Secondly, larger currents have larger values of β and hence smaller drift velocities,

so the bootstrap effect is actually greatest for small wire currents. Similar observations were made

by Alfven on the limit of current channels [109].

6.1.2 Non-Planar Orbits

For non-planar orbits, the action integral,

J(H,Pz, Pφ) =

∮ √
2mH − P 2

φ/r
2 − (Pz −mβ ln(r/R))

2
dr, (6.20)

cannot be evaluated exactly as in the planar case, but we can perform a Taylor expansion about

Pφ = 0. This treats the kinetic energy of the angular motion as a perturbation of the planar problem.

The first-order expansion is

J(J, Pz, Pφ) ≈ J0(H,Pz) +
1

2

∮
(−P 2

φ/r
2)dr√

2mH − (Pz −mβ ln(r/R))2
, (6.21)

where J0(H,Pz) is the planar action integral given by Eq. (6.16). Using the substitution u/R = R/r,

we get

J(J, Pz, Pφ) ≈ J0(H,Pz) +
1

2

∮
(P 2
φ/R

2)du√
2mH − (Pz +mβ ln(u/R))2

, (6.22)

which can then be evaluated with the substitution
√

2mH cos θ = Pz +mβ ln(u/R),

J(H,Pz, Pφ) ≈ J0(H,Pz)−
πP 2

φ

mβrgc
I0

(√
2mH

mβ

)
(6.23)

= J0(H,Pz)−
P 2
φ

2mr2
gc

∆t0. (6.24)

∆t0 is the period for planar motion given by Eq. (6.18). Note that the correction term in Eq. (6.24)

contains the kinetic energy of angular motion, P 2
φ/(2mr

2), evaluated at r = rgc. Indeed, Eq. (6.24)

could have been derived from Eq. (6.21) by approximating P 2
φ/r

2 as P 2
φ/r

2
gc and then evaluating the

resulting integral:

1

2

∮
(−P 2

φ/r
2
gc)dr√

2mH − (Pz −mβ ln(r/R))2
= −

P 2
φ

2mr2
gc

∮
dr

ṙ0
= −

P 2
φ

2mr2
gc

∆t0, (6.25)

where ṙ0 is the unperturbed radial velocity. We can think of Eq. (6.21) as an averaging of the

perturbation over an unperturbed orbit, in which case Eq. (D.22) could be used to obtain an even
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more accurate estimate of J .

The Pφ term in Eq. (6.24) provides the first-order correction to all quantities derived from J due

to angular motion. For instance, in the v � β limit, the drift velocity agrees with the guiding center

approximation once the curvature drift is added to the dominant grad-B drift.

6.1.3 Time-Varying Currents

In preparation for the time-dependent two-wire problem, we consider particle motion in a time-

varying 1/r magnetic field. The primary difficulty in this case is actually not the particle orbits

themselves but rather determining the appropriate electric field to use. It is well-known that a time-

varying magnetic field induces an electric field, but Faraday’s law, ∇×E = −∂tB, only specifies the

curl of E, leaving E undetermined up to the addition of the gradient of a scalar. In the single-wire

case, we can write E in terms of the potentials

E = −∂A

∂t
−∇V =

µ0İ

2π
ln
r

R
ẑ −∇V, (6.26)

using the vector potential of Eq. (6.3). We cannot proceed, however, because we have no prescription

for determining V : there are no boundary conditions for E due to the infinite extend of the wire,

its infinite thinness, and its lack of return current. In order to determine the electric field, these

details, which could be ignored in the static case, must be specified [110, 111]; a solitary infinite wire

carrying a time-dependent current is an ill-posed problem. In this section, we present two return

currents for the wire and their possible relevance to the Caltech experiments.

Consider the configuration shown in Fig. 6.2.a, where the wire current is fed by two large planar

disks; this configuration is similar to a toroidal solenoid. We also assume that the wire has a non-zero

radius r = a. If all surfaces are perfectly conducting, then the tangential component of the electric

field must vanish on the surface. The appropriate electric field is obtained from Eq. (6.26) by setting

V = 0 and R = a:

E =
µ0İ

2π
ln
r

a
ẑ. (6.27)

E then satisfies the boundary conditions at the plates because it is axial, and it satisfies the boundary

condition on the wire surface because it vanishes at r = a. This electric field is aligned with the wire

current, and the associated Poynting flux in radially inward, suggesting that the source of energy

for the circuit is located at r =∞.

Now consider the configuration shown in Fig. 6.2.b where the current returns coaxially at radius

r = b. For perfectly conducting surfaces, the axial electric field must vanish at both r = a and r = b.
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Figure 6.2: Two different possible returns for a wire: (a) two planar plates radially feed the wire
and (b) a coaxial return. The direction of current flow is drawn in black, the electric field is drawn
in green, and the Poynting vector is drawn in blue.

Evaluating Eq. (6.26) on these surfaces implies

Ez(r = a) = 0 → ∂V

∂z

∣∣∣∣
r=a

=
µ0İ

2π
ln
a

R
, (6.28)

Ez(r = a) = 0 → ∂V

∂z

∣∣∣∣
r=b

=
µ0İ

2π
ln
b

R
, (6.29)

V must also satisfy Laplace’s equation because E satisfies Poisson’s equation: ∇ · E = 0. For

azimuthal symmetry, ∇2V = 0 has solutions of the form V ∼ z ln r. Matching the boundary

condition, we have

V =
µ0İ(t)

2π
z ln

r

R
. (6.30)

The axial component of the electric field vanishes, leaving a radial radial electric field,

E = −µ0İ(t)

2π

z

r
r̂, (6.31)

which is independent of R and the radii of the cable. Note that V breaks the axial symmetry of

the configuration, and in particular there is a z position at which E vanishes. This location might

be physically set by placing an electrical short between the inner and outer conductors. A zero in

the radial (normal) electric field is also seen in the electrostatic field of a circuit, and the location of

the zero depends on the circuit geometry [112]. Also note that the Poynting vector directs energy

axially towards the zero of the electric field.

Neither the fields in Eq. (6.27) nor Eq. (6.31) are entirely accurate. Both fields are unbounded

and rise to arbitrarily high values. Also, neither field truly satisfies Ampere’s law because the dis-

placement current ε0∂tE does not vanish. However, if we work in the limit of adiabatic slowness,

then the displacement current, which is proportional to Ï in both cases, can be ignored. For com-
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pleteness, we note that the fields that fully satisfy Ampere’s and Faraday’s law are TEM modes; the

electric field in Eqs. (6.27) and (6.31) are approximately equal to the sum of an ingoing wave and

a reflected wave, the waves traveling radially and axially, respectively, and being reflected at r = a

and z = 0, respectively.

Which of these two field configurations most closely resembles the actual fields in the Caltech

experiments is an open question. On the one hand, the plates that radially feed the wire in Fig. 6.2.a

resemble the plasma electrodes on which each flux tube starts and ends. The boundary conditions

imposed by these plates cannot be satisfied by the radial electric field in Eq. (6.31), and, from this

argument, the field is likely to resemble the axial field of Eq. (6.27) bent into a curved geometry as

depicted in Fig. 6.3. On the other hand, plasmas are liable to form thin sheaths at all the boundaries,

and the electric field in the sheath is likely to be normal to the surface. In this case, the plasma

might have a field structure shown in Fig. 6.4. Given the possible existence of sheaths, it is unlikely

that the correct electric field can be easily derived from first principles, and in all likelihood an

experimental measurement will be needed to determine the actual field.

Figure 6.3: The Solar Loop Experiment might have an induced electric field that is “axial,” as
shown here by the green lines. The electric field begins and ends on the electrodes. The associated
Poynting flux, shown by the blue lines, transports energy radially through the gap in the electrodes.

The induced electric field thus depends on the particulars of the setup, but we can still establish

a reduced Hamiltonian for particle orbits and derive general properties without going into the full

details. We leaving V arbitrary except for two requirements: that V is proportional to İ and hence

vanishes when the current is static, and that the current changes very slowly so that terms involving

Ï and İ2 can be ignored. The exact Hamiltonian for particle motion is

H =
P 2
r

2m
+

(Pz −mβ(t) ln(r/R))2

2m
− eV (r, z, t), (6.32)
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Figure 6.4: Alternatively, the Solar Loop Experiment might have an induced electric field that is
“radial,” as shown here by the green lines. The electric field lines are normal to the plasma surface.
The associated Poynting flux transports energy axially along the flux tube.

The Hamiltonian now contains explicit time and z dependence, so H and Pz are no longer conserved

quantities but instead evolve as

Ḣ =
∂H

∂t
=
Pz −mβ ln(r/R)

m

(
−mβ̇ ln

r

R

)
− e∂V

∂t
(6.33)

≈ −mβ̇ż ln
r

R
(6.34)

Ṗz = −∂H
∂z

= −e∂V
∂z

. (6.35)

The term ∂tV in Eq. (6.33) is dropped because it is proportional to Ï. These equations give the

instantaneous evolution of H and Pz and fluctuate over the course of a gyro-orbit. In Chapter 5, we

developed a formalism to obtain the orbit-averaged equations of motion. Using Eq. (5.137) with J0

being the action given by Eq. (6.16) for the static magnetic field:

J(H,Pz) ≈ J0

(
H − qV (rgc, z, t) +

m

2

(
∂rV

Bz

)2

, Pz +m
∂rV

Bz
;β(t)

)
(6.36)

≈ J0

(
H + eV (rgc, z, t), Pz + e

r

β
∂rV ;β(t)

)
. (6.37)

The term (m/2) (∂rV/Bz)
2

is dropped because it was proportional to İ2. Also, we have explicitly

written the β dependence of J0 because it will be needed below. We use Eq. (6.37) to compute the

average evolution ∆H/∆t and ∆Pz/∆t. We can compute ∆Pz and hence ∆Pz/∆t from Eq. (5.4):

∆Pz =
∂J

∂z
=
∂J0

∂H

(
e
∂V

∂z

)
+
∂J0

∂Pz

(
e
r

β

∂2V

∂r∂z

)
= ∆t

(
e
∂V

∂z

)
−∆z0

(
e
r

β

∂2V

∂r∂z

)
, (6.38)
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∆Pz
∆t

=

(
1 +

r

β

∆z0

∆t

∂

∂r

)(
e
∂

∂z

)
V. (6.39)

This is the average evolution of Pz, which is related to the instantaneous evolution in Eq. (6.35) by

the averaging formula Eq. (D.22).

We can also work out the change in energy ∆H over one period of motion. We briefly return

to the general Hamiltonian theory of Chapter 5 and assume that the Hamiltonian contains explicit

time dependence, H = H(ξ, Pξ, η, Pη; t), but that adiabatic invariance of J is maintained. Then the

action integral J contains explicit time-dependence, and

∂J

∂t
=

∮
∂Pξ
∂t

dξ =

∮
− ∂H/∂t

∂H/∂Pξ
dξ = −

∮
Ḣ

ξ̇
dξ (6.40)

= −
∮
Ḣdt = −∆H. (6.41)

We have made use of the fact that the total time derivative of H along a trajectory is equal to its

partial time derivative. Applying this theorem to Eq. (6.37),

∆H = −∂J
∂t

= −∂J0

∂H

(
e
∂V

∂t

)
− ∂J0

∂Pz

(
e
r

β

∂2V

∂r∂t

)
− ∂J0

∂t
≈ −∂J0

∂t
= −β̇ ∂J0

∂β
, (6.42)

since all other terms are proportional to β̈. The relationship between ∆H and Ḣ may not be

apparent, but integrating Eq. (6.34) with respect to time over one period of unperturbed motion

gives

∆H =

∮
−mβ̇ż ln

r

R
dt = −mβ̇

∮
ln
r

R
dz = −2πmβ̇

µ0I

∮
A · dr. (6.43)

As discussed in Sec. 5.1.8, we can pull β̇ and I(t) out of the integral sign because we can effectively

hold these quantities constant over the course of a single period. Applying Eq. (5.160) with V = 01

to Eq. (6.43) and obtain

∆H = −q β̇
β

∂J0

∂q
= −β̇ ∂J0

∂β
, (6.44)

where the last step follows because q only appears the expression for J0 in Eq. (6.16) through β.

We could further pursue the nature of particle orbits in these time-dependent fields, but this

is not a fruitful task. The lessons that should be taken from this section are that time-dependent

currents induce electric fields that can be difficult to compute and that require the global circuit

geometry to be specified. Furthermore, the electric field might break some of the symmetries present

in the static problem, causing previously conserved momenta to gradually evolve in time.

1We set V = 0 here because we are integrating Eq. (6.34) over an unperturbed trajectory.
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6.2 The Two-Wire Problem

The previous section described particle orbits around a single solitary wire. We now turn our

attention to trajectories in the magnetic field generated by two parallel wires carrying equal currents.

Planar orbits still exist in the plane containing both wires, but now these planar orbits fall into several

distinct classes. Some of these orbits are localized to one wire and resemble the orbits observed in

the previous section for a single wire. Other orbits, however, are shared symmetrically between the

two wires. This distinction between confined and symmetric orbits is exactly what is needed to

describe the merging of two parallel plasma loops.

We will work in Cartesian coordinates with the z axis aligned with the wires and x being the

direction separating the wires. Let the wires be located at x = ±a/2 so that the wire separation

distance is a. The magnetic field in the plane containing the wires is

B =
µ0I

2π

[
1

a/2 + x
− 1

a/2− x

]
ŷ =

µ0I

2π

−2x

a2/4− x2
ŷ. (6.45)

We note that there is a magnetic null at x = 0 where the field vanishes; this null will play an

important role is the classification of orbits. The vector potential can be chosen such that

A = −µ0I

2π

[
ln
a/2 + x

R
+ ln

a/2− x
R

]
ẑ = −µ0I

2π
ln
a2/4− x2

R2
ẑ, (6.46)

where R is again arbitrary. The canonical z momentum for an electron of charge q = −e is

Pz = mvz +mβ ln
a2/4− x2

R2
, (6.47)

and is conserved, yielding vz as a function of x:

vz(x) =
1

m

[
Pz −mβ ln

a2/4− x2

R2

]
. (6.48)

We will work with scaled variables, scaling distance by a/2, velocity by β, and momentum by mβ.

Since R is arbitrary, we set it equal to a/2 so that it is scaled to unity. Then, in scaled variables,

Eq. (6.47) becomes

Pz = vz + ln
(
1− x2

)
. (6.49)

From Eq. (6.49), we can derive the existence and location of turning points where the x motion

reverses. These turning points exist because the magnitude of the z velocity vz can never exceed the

magnitude v of the total velocity, so the locations where Eq. (6.49) predicts |vz| = v denote turning

points. We can find these turning points by setting vz in Eq. (6.49) equal to either ±v and solving
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for x:

x = ±
√

1− ePz±v. (6.50)

The choice of + and − is independent between the two ± signs, so up to four turning points exist

for any given orbit. These turning points come in mirrored pairs about the magnetic null x = 0.

We shall show that one of these pairs exists for all orbits, while the second pair only exists if certain

conditions are met.

When Pz + v < 1, all four turning points exists, and the orbit resembles those of a single wire.

One set of turning points, which we denote by x+, is given by choosing the + sign in the exponential

of Eq. (6.50):

x+ = ±
√

1− ePz+v. (6.51)

Since Pz + v < 0 by assumption, we have exp(Pz + v) < 1, and the argument of the radical in

Eq. (6.51) is positive. The second set of turning points, which we denote by x−, is given by choosing

the − sign in the exponential in Eq. (6.50),

x− = ±
√

1− ePz−v. (6.52)

The argument of the radical in Eq. (6.52) is also positive, because Pz − v < Pz + v, so

1− exp(Pz − v) > 1− exp(Pz + v) > 0. (6.53)

This argument also establishes that |x−| > |x+|, so the turning points ±x+ lie between the turning

points ±x−. In such orbits, the particles rattle back and forth between an inner and outer turning

point and never crosses the magnetic null at x = 0. Such a particle is thus “trapped” in one half of

the plane and is “confined” to one of the two wires. These orbits resemble the orbits seen in Sec. 6.1,

and an example of such an orbit is plotted in Figs. 6.5.a and 6.5.b.

When Pz + v > 0, the inner turning points ±x+ given by Eq. (6.51) fail to exist, and the particle

is instead confined by the two outer turning points ±x− given by Eq. (6.52). This constitutes a

new class of trajectories not seen in the single wire case. The non-existence of the inner turning

points x+ follows simply by noting that the argument of the radical in Eq. (6.51) is negative because

Pz + v > 0. The two outer turning points are still defined; to see this, we prove that Pz − v < 0 for

any orbit using Eq. (6.49),

Pz − v > Pz − vz(x) = ln(1− x2) < 0. (6.54)

In physical terms, the outer turning points always exist because the magnetic field becomes infinitely
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strong at the wires2, so all orbits are deflected from the wires. The inner turning points, however, are

not always defined because some particles reach the magnetic null at x = 0. As the particle crosses

the null, the sign of field reverses, reversing the radius of curvature of the trajectory as well. The

particle then moves back and forth between the two outer turning points; such an orbit is symmetric

between the two wires and is not confined to a single flux tube; compare Figs. 6.5.b and 6.5.c.

We can further classify symmetric orbits based on the direction of their drifts. Figures. 6.5.c

through 6.5.f show several examples of symmetric orbits; some orbits, such as that shown in Fig. 6.5.c,

have the same drift direction as in the single wire case, but other orbits, such as that shown in

Figs. 6.5.e and 6.5.f, have the opposite drift. To derive this distinction, we first solve for the x

positions where vz(x) = 0:

x = ±
√

1− ePz . (6.55)

These x positions are not defined when Pz > 0. For such cases, vz is never zero but rather always

positive. The particle never turns around in the z direction; it bounces back and forth between

the two turning points while snaking its way up the z axis as shown in Fig. 6.5.f. This drift is in

the opposite direction as the drift of a particle around a single wire. If, however, Pz < 1, then the

particle has vz < 0 for part of its orbit. Such particles can drift in either the positive or negative z

direction, as demonstrated by Fig. 6.5.c and 6.5.e. There is a special class of orbits that have no net

movement in the z direction but rather make figure-eight motion; an example is shown in Fig. 6.5.d.

The distinction between confined and symmetric orbits can be explained using effective poten-

tials [2, sec. 119]. The Hamiltonian for a planar orbits between two wires is, for an electron of

charge q = −e

H =
P 2
x

2m
+

(P 2
z + eAz(x))2

2m
. (6.56)

This is a two-dimensional Hamiltonian system, but, because z is ignorable, we can instead view it

as a one-dimensional system in x with a parameter Pz. In this one-dimensional system, the particle

is confined in an effective potential

Ueff =
1

2m

(
Pz −mβ ln

a2/4− x2

R2

)2

, (6.57)

where Eq. (6.46) has been used. We can express this effective potential in terms of scaled coordinates,

with scaled energy as U = U/(mβ2),

U eff =
(
Pz − ln(1− x2)

)2
(6.58)

The shape of this potential is determined by the value of Pz. Fig. 6.6.a plots Ueff when Pz > 0; in

this case the potential well is always concave up, and the magnetic null at x = 0 is a minimum of the

2If the wires were not infinitely thin, this would not be the case, and orbits could also pass into the wire.



151

potential. Fig. 6.6.b, however, plots Ueff when Pz < 0. The potential well develops a central bump,

and the null is now a local maximum. It is also clear that particles of low energy will be confined to

one of the smaller side wells, whereas particles of sufficient energy will travel over the null and will

not be confined to either side well.

In summary, we have five types of motion:

• Snaking motion, shown in Fig. 6.5.f, where the orbit always moves in the positive z direction

and bounces back and forth symmetrically between the two wires

• Jigsaw motion, shown in Fig. 6.5.e, in which the orbit still bounces symmetrically between the

wires and has a positive drift but also travels in the negative z direction for certain periods of

time

• Closed figure-eight orbits, shown in Fig. 6.5.d where the electron has no net z motion

• Loopy motion, shown in Fig. 6.5.c, in which the orbit is symmetrical but has a negative z drift

• Confined motion, shown in Fig. 6.5.a and 6.5.b, where the orbit never crosses the magnetic

null at x = 0 and drifts downward as in the single-wire case

These results are also summarized in a parameter space plot in Fig. 6.7. To make the plot more

intuitive, we express Pz in terms of x− via Eq. (6.52). For instance, the condition Pz + v < 0 can

be recast as v < −(1/2) ln(1−x2
−) < 0, and the condition Pz > 0 can be recast as v < − ln(1−x2

−).

Also plotted in Fig. 6.7 are several isolated points where the conditions for a closed orbit have been

calculated numerically.

6.3 Time Dependence and Orbit Transitions

The previous section established distinct classes of orbits in the plane between two parallel current-

carrying wires. However, in this static system, orbits cannot transition between the different classes.

We therefore seek a mechanism that causes orbits confined to one-half of the plane to drift inward

towards the magnetic null where they can transition to symmetric orbits. An axial electric field

induced by two plasma loops attracting one another provides exactly such a mechanism.

6.3.1 Axial Electric Fields

Trajectories will be drawn to the magnetic null line if an axial electric field points in the negative

z direction anti-parallel to the current because the E×B drift will be inward towards x = 0. This

scenario is similar to Speiser’s current sheet [113] where an electric field anti-parallel to the current

causes particle to drift towards the null sheet where they are then accelerated by the electric field
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along the null sheet. In order to achieve such a transition, we must have an electric field that is (i)

axial and (ii) pointing in the negative z direction anti-parallel to the wire current.

In Sec. 6.1.3, we discussed possible electric fields associated with a single wire carrying a time-

dependent current. In particular, we considered two configurations, shown in Fig. 6.2, for which

the induced electric fields are entirely different, as shown by comparing Eqs. (6.27) and (6.31). An

argument was made for the axial field, Eq. (6.27), based on the fact that the radial component must

vanish at the electrodes, which cannot be satisfied by the radial electric field in Eq. (6.31). Also,

as we shall see below, there must be an axial component to the electric field when the wires attract

and move towards each other, so a purely radial electric field is not possible. However, the actual

experiment has curved, finite geometry, as suggested by Figs. 6.3 and 6.4, and also probably involves

sheaths, which makes determining the actual field configuration very difficult. We will proceed using

an axial electric field but acknowledge that the actual field may be different.

Even if E is assumed to be axial, relative motion between the wires is necessary for E to be

anti-parallel. To see this, assume that E is axial and that the current I(t) is increasing but that

the wires are stationary; we shall show that the induced electric field is parallel to the current and

draws particles away from the magnetic null. For a current profile I(t), we have, from the vector

potential Eq. (6.46),

E = −∂A

∂t
=
µ0İ

2π
ln
a2/4− x2

R2
ẑ. (6.59)

ρ must be selected so that E satisfies the boundary condition at the plasma surface. If the plasma

has radius ρ, then the boundaries of the loops are x = ±(−a/2 + ρ); see Fig. 6.8. If E is to vanish

at these locations, then we must set R = a2/4− (a/2− ρ)2. Then

E =
µ0İ

2π
ln

a2/4− x2

a2/4− (a/2− ρ)2
ẑ, (6.60)

and E points in the positive z direction everywhere. An increasing plasma current cannot explain

the merging of the two loops; if anything, the increase in current would cause the orbits to constrict

radially.

One can have an anti-parallel electric field if the inner boundaries of the plasma loops move

towards each other; that is, if ρ increases or a decreases in Fig. 6.8. This is certainly the case in the

Solar Loop Experiment, where the plasma loops attract. This is also true on the Spheromak side for

plasma moving towards the cathode because the loops are more tightly spaced there. We assume

that the plasma loops are perfectly conducting so that the electric field in the co-moving frame of

the loop edge must vanish. Since this surface is moving due to the loops’ attraction, the electric field

in the lab frame is not zero but is related to the field in the co-moving frame by E′ = E+v×B = 0,

where E′ denotes the electric field in the moving boundary’s frame. Since E′ = 0 by assumption,

the lab frame electric field at the boundary is E = −v×B. The boundary located at x = −a/2 + ρ
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has a velocity of v = (−ȧ/2 + ρ̇)x̂; using this v and the magnetic field of Eq. (6.45) gives E at the

boundary

E = −v ×B = − [(−ȧ/2 + ρ̇)x̂]×
[
µ0I

2π

−2(−a/2 + ρ)

a2/4− (−a/2 + ρ)2
ŷ

]
(6.61)

= −(−ȧ/2 + ρ̇)
µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
ẑ. (6.62)

This electric field is anti-parallel to the current and induces drifts towards the magnetic null.

6.3.2 Computing the Field

To continue, we assume that the electric field is entirely axial and has the boundary condition given

by Eq. (6.62). We then use Faraday’s law to compute E everywhere in the plane. Using the magnetic

field in Eq. (6.45) and an axial electric field, we have

∇×E = −∂Ez
∂x

ŷ = −∂B

∂t
=

[
µ0İ

2π
ln

2x

a2/4− x2
− µ0I

2π

2x

(a2/4− x2)2

aȧ

2

]
ŷ. (6.63)

Performing the x integral,

Ez =
µ0İ

2π
ln
(
a2/4− x2

)
+ ȧ

µ0I

2π

a/2

a2/4− x2
+ C, (6.64)

where C is a constant of integration that must be determined by the boundary conditions. Indeed,

the value of C will determine the ultimate polarity of Ez and hence the direction of the E×B drift!

Evaluating Eq. (6.64) at x = −a/2 + ρ and setting it equal to Eq. (6.62) determines C:

µ0İ

2π
ln (ρ(a− ρ)) + ȧ

µ0I

2π

a/2

ρ(a− ρ)
+ C = −(−ȧ/2 + ρ̇)

µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
. (6.65)

Solving for C and substituting into Eq. (6.64) gives

Ez =
µ0İ

2π
ln
a2/4− x2

ρ(a− ρ)
+ ȧ

µ0I

2π

(
a/2

a2/4− x2
− 1

a− ρ

)
− ρ̇µ0I

2π

2(a/2− ρ)

ρ(a− ρ)
, (6.66)

the induced electric field between two wires when the current, wire separation, and wire radius

change in time.

The ultimate polarity of the electric field cannot be determined until the three quantities İ, ȧ,

and ρ̇ are specified. We can see that the İ term of Eq. (6.66) is positive when İ is positive, but the

ȧ and ρ̇ terms can make the induced electric field negative. Unfortunately, a and r are not easily

determined to great accuracy. For the purposes of this analytic study, however, we shall assume
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that each of these three quantities changes self-similarly on the same time scale. That is,

İ =
I

τ
ȧ = −a

τ
ρ̇ =

ρ

τ
. (6.67)

This allows us to rewrite Eq. (6.66) as

Ez =
µ0I

2πτ

[
ln
a2/4− x2

ρ(a− ρ)
−
(

a2/2

a2/4− x2
− a

a− ρ

)
− 2(a/2− ρ)

(a− ρ)

]
. (6.68)

We now introduce normalized lengths x̄ = x/(a/2) and ρ̄ = ρ/(a/2) and a normalized field strength

E = 2πτE/µ0I and rewrite Eq. (6.68) as

Ez = ln
1− x̄2

ρ̄(2− ρ̄)
−
(

2

1− x̄2
− 2

2− ρ̄

)
− 2(1− ρ̄)

(2− ρ̄)
. (6.69)

The electric field profile then depends on the dimensionless quantity ρ̄. We plot this profile for

several values of ρ̄ less than one in Fig. 6.9. For a wide range of ρ̄, the electric field is everywhere

negative in the plane between the two wires. Indeed, we can prove that for any ρ̄ > 0.076, the

electric field is nowhere positive. We determine this critical value by first observing that the electric

field achieves its maximum value at x̄ = 0. Setting x̄ = 0 in Eq. (6.69) gives this maximum value of

Ez as

ln
1

ρ̄(2− ρ̄)
− 2 +

2

2− ρ̄
− 2(1− ρ̄)

(2− ρ̄)
. (6.70)

Setting Eq. (6.70) equal to zero and numerically solving gives ρ̄ = 0.076. Even when ρ̄ < 0.076, only

the electric field in the central region becomes positive; the electric field close to the wires remains

negative.

Eq. (6.69) was derived by making assumptions concerning the values of İ, ȧ, and ρ̇ and should

not be expected to hold rigorously. However, the conclusion that the effects of an expanding wire

radius and decreasing wire separation cause a negative electric field for a large set of parameters is

probably robust and can be expected to hold in general. Indeed, on the Solar Loop Experiment, the

initial loop separation is about 8 cm and the initial loop radius is about 1.5 cm, giving ρ̄ = 0.375.

On the Spheromak Experiment, the spider legs are flared and have different radii and separation

distances at the cathode than at the anode. At the cathode, the spiders legs have have a radius of

0.2 cm and a separation of 4 cm, giving ρ̄ ≈ 0.1. At the anode, the spider leg radius is 0.6 cm, and

their separation is about 14 cm, so ρ̄ ≈ .09. From these values, it seems likely that the dimensions

of the Caltech plasma loops are such that the induced electric field, if axial, will be anti-parallel to

the current and draw orbits inwards towards the magnetic null.
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6.3.3 Drift Velocity

The purpose of this study was to determine how two adjacent plasma loops can merge into a single

structure. It might seem somewhat circuitous, then, to assume that the plasma loops are expanding

and to then show that the E × B drift is inward. We therefore compare the E × B drift with the

velocity of the loops’ boundaries. For larger values of ρ̄, the E×B drift is larger than the boundary

velocity, and we conclude that the merging process is accelerated the closer the loops get to each

other because the E×B becomes larger.

The E×B drift is given by combining Eqs. (6.69) and (6.45),

vExB =
E×B

B2
=
a/2

τ

1− x2

2x

[
ln

1− x̄2

ρ̄(2− ρ̄)
−
(

2

1− x̄2
− 2

2− ρ̄

)
− 2(1− ρ̄)

(2− ρ̄)

]
x̂. (6.71)

We will compare Eq. (6.71) with the velocity of the plasma boundaries given by−ȧ/2+ρ̇ = (a/2τ)(1+

ρ). To start, we note that the two velocities are equal at the plasma surface. This is hardly

coincidental; the electric field at the boundary is E = v ×B, so the E×B drift at the boundary is

E×B

B2
= − (v ×B)×B

B2
= v. (6.72)

However, away from the boundary, the E×B velocity may be greater or less than v depending on

the value of ρ̄. We plot Eq. (6.71) for several values of ρ̄ in Fig. 6.10. When ρ = 0.5, the E × B

drift velocity is indeed greater than the speed of the plasma wall. However, at ρ = 0.15, the two

velocities have nearly the same value except at the vicinity of the null. For even lower values of ρ,

there are regions where the E × B drift is slower than the expansion rate of the tube. Of course,

when ρ̄ < 0.076, the electric field becomes positive in the region around the null, and particle orbits

are drawn away from the null rather than towards it.

This analysis suggests that the merging of two tubes may be a self-enhancing process. As the

loops approach each other, the value of ρ increases, giving a faster and faster E ×B drift towards

the null. The particles on the outside of the flux tube are thus drawn to the null at a faster and

faster rate.

6.4 Conclusions and Directions for Future Work

To explain the coalescence of the spider legs in the Caltech Spheromak Experiment into a single

axisymmetric structure, we have studied the particle trajectories in a simplified model that treats

the arched helical plasma loops as straight current-carrying wires. For a single wire, the particle

trajectories all have the same qualitative behavior, but the addition of a second wire opens up new

classes of trajectories: those that are confined to one wire, and those that are shared between both
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wires. The time dependence of the Solar Loop and Spheromak experiments can cause transitions

of confined orbits to shared orbits if the induced electric field is anti-parallel to the wire current.

Unfortunately, we cannot presently determine the exact nature of the induced electric field from first

principles, but we have argued that the induced electric field must be anti-parallel in the vicinity of

the plasma loops when the loops move towards one another.

To further this work, the nature of the induced electric field in the actual experiments should be

studied experimentally, as it seems unlikely that it can be determined by first principles alone due

to the likely presence of plasma sheaths. If an experiment can determine the direction of the field,

then the analysis of this chapter can proceed with confidence. The second set of information needed

in the model is the experimental determination of the rate at which the plasma loops expand and

attract. Once these parameters are determined, the analysis can proceed to determine exactly how

fast orbits from the edge of the plasma loops are sucked into the magnetic null.

Finally, the current model does not investigate non-planar orbits. Analysis of such orbits is

clearly more difficult than the study of planar orbits given the extra dimension of motion, and such

studies of such orbits would probably proceed numerically. Note, though, that if an axial magnetic

field were added to the model, then the field lines would be helical, and the planar orbits of the

model presented in this chapter would not exist at all. Therefore, studies of non-planar orbits will

be essential to more sophisticated models.
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Figure 6.5: Several sample trajectories in the plane of two parallel wires. All orbits begin at x = −0.8
but with different velocities. (a) v = 0.4, well below the threshold to cross the magnetic null. The
orbit is confined to the left wire. (b) v = 0.51, just below the threshold to cross the magnetic null.
(c) v = 0.511, just above the threshold to cross the null. The orbit is symmetric between the two
wires. (d) v = 0.687994, for which the orbit is closed. (e) v = 0.8, for which the z drift becomes
positive. (f) v = 1.4, for which the particle never travels in the negative z direction.
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Figure 6.6: The effective potential for (a) Pz < 0 (b) Pz > 0. In (a), the potential forms a well
with infinite walls, and the magnetic null x = 0 is a minimum. Pz = 0.5 for this particular plot. In
(b), the potential well develops a central bump, and the magnetic null is a local maximum. Orbits
with small energy can be trapped in one of the small wells, while orbits with sufficient energy can
pass over the maxima at the null. This particular plot has Pz = −0.75.

Figure 6.7: A parameter space plot of the different types of orbits. The bounding curves are
determined by the values of the total velocity v and the canonical z momentum Pz. The points for
which the orbits are closed are determined numerically at isolated points.
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Figure 6.8: We align the z axis parallel to the current and denote the separation distance between
the loops as a. We also give the loops a non-zero radius ρ, so the locations of the loops’ edges, in
the y = 0 plane, are x = ±(−a/2 + ρ).

Figure 6.9: The electric field profile for different values of ρ̄. Starting from the bottom curve, the
ρ̄ values are 0.5, 0.15, 0.076, and 0.05. ρ̄ = 0.076 is the critical value at which the electric field
becomes positive for part of the domain.
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Figure 6.10: The E × B drift is plotted for a three different values of ρ̄. The horizontal dashed
lines denote the value of the plasma surface velocity. The top dark plot is for ρ = 0.5; the E × B
drift is quite large. The middle blue plot is for ρ = .015; the drift velocity is nearly equal to the
surface velocity over much of the domain. The bottom light-blue plot is for ρ = 0.1; the E×B drift
is slower than the surface velocity except near the null and the plasma surface.


