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Abstract

This thesis describes the construction, integration, and use of a new 230-GHz ultra-wideband

heterodyne receiver, as well as the development and testing of a new sideband-deconvolution

algorithm, both designed to enable rapid, sensitive molecular-line surveys.

The 230-GHz receiver, known as Z-Rex, is the first of a new generation of wideband

receivers to be installed at the Caltech Submillimeter Observatory (CSO). Intended as a

proof-of-concept device, it boasts an ultra-wide IF output range of ∼ 6 - 18 GHz, offering

as much as a twelvefold increase in the spectral coverage that can be achieved with a single

LO setting. A similarly wideband IF system has been designed to couple this receiver to an

array of WASP2 spectrometers, allowing the full bandwidth of the receiver to be observed

at low resolution, ideal for extra-galactic redshift surveys. A separate IF system feeds a

high-resolution 4-GHz AOS array frequently used for performing unbiased line surveys

of galactic objects, particularly star-forming regions. The design and construction of the

wideband IF system are presented, as is the work done to integrate the receiver and the

high-resolution spectrometers into a working system. The receiver is currently installed at

the CSO where it is available for astronomers’ use.

In addition to demonstrating wideband design principles, the receiver also serves as

a testbed for a synthesizer-driven, active LO chain that is under consideration for future

receiver designs. Several lessons have been learned, including the importance of driving

the final amplifier of the LO chain into saturation and the absolute necessity of including

a high-Q filter to remove spurious signals from the synthesizer output. The on-telescope

performance of the synthesizer-driven LO chain is compared to that of the Gunn-oscillator

units currently in use at the CSO. Although the frequency agility of the synthesized LO

chain gives it a significant advantage for unbiased line surveys, the cleaner signal and

broader tuning range of the Gunn continue to make it the preferred choice.
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The receiver and high-resolution spectrometer system were brought into a fully opera-

tional state late in 2007, when they were used to perform unbiased molecular-line surveys

of several galactic sources, including the Orion KL hot core and a position in the L1157

outflow. In order to analyze these data, a new data pipeline was needed to deconvolve the

double-sideband signals from the receiver and to model the molecular spectra. A highly

automated sideband-deconvolution system has been created, and spectral-analysis tools

are currently being developed.

The sideband deconvolution relies on chi-square minimization to determine the op-

timal single-sideband spectrum in the presence of unknown sideband-gain imbalances

and spectral baselines. Analytic results are presented for several different methods of ap-

proaching the problem, including direct optimization, nonlinear root finding, and a hybrid

approach that utilizes a two-stage process to separate out the relatively weak nonlineari-

ties so that the majority of the parameters can be found with a fast linear solver. Analytic

derivations of the Jacobian matrices for all three cases are presented, along with a new

Mathematica utility that enables the calculation of arbitrary gradients.

The direct-optimization method has been incorporated into software, along with a

spectral simulation engine that allows different deconvolution scenarios to be tested. The

software has been validated through the deconvolution of simulated data sets, and initial

results from L1157 and Orion are presented.

Both surveys demonstrate the power of the wideband receivers and improved data

pipeline to enable exciting scientific studies. The L1157 survey was completed in only 20

hours of telescope time and offers moderate sensitivity over a > 50-GHz range, from 220

GHz to approximately 270 or 280 GHz. The speed with which this survey was completed

implies that the new systems will permit unbiased line surveys to become a standard ob-

servational tool. The Orion survey is expected to offer ∼ 30 mK sensitivity over a similar

frequency range, improving previous results by an order of magnitude. The new receiver’s

ability to cover such broad bandwidths permits very deep surveys to be completed in a

reasonable time, and the sideband-deconvolution algorithm is capable of preserving these

low noise levels. Combined, these tools can provide line spectra with the sensitivity re-

quired for constraining astrochemical models and investigating prebiotic molecules.
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Chapter 1

Introduction

1.1 Star Formation

Throughout most of the interstellar medium, atomic species dominate. The density is

so low that interactions between atoms are rare, and any molecules that do form are de-

stroyed almost immediately by stellar radiation. Within this harsh environment, however,

there are oases in the form of molecular clouds. These clouds consist of dense collections

of dust and gas in which the outer layers of dust grains protect the interiors of the clouds

from stellar radiation. The higher density provides more opportunities for atoms to inter-

act and form molecules while the gentler environment allows those molecules to survive.

Current theories of stellar formation hold that stars are born in the depths of these

clouds. In particular, low-mass stars (∼ 1 MSun) are believed to follow a life cycle similar

to the one shown in Figure 1.1 [e.g., Andre et al., 2000, Lada, 1987, Shu et al., 1993, Boogert,

1999]. Deep in the cloud, dust and gas form pockets of higher-density material. Over

time, these dense cores become gravitationally unstable, initiating an inside-out collapse

to create a protostar at the center. Following the nomenclature of Andre et al. [1993], an

object in this stage of low-mass stellar evolution is usually referred to as a Class 0 protostar.

As can be seen in the artist’s conception in Figure 1.2, Class 0 protostars are still deeply

enshrouded in the dust and gas that gave birth to them. Material continues to fall onto

the central source, creating an ever-expanding bubble in the molecular cloud around the

protostar. The infalling matter carries angular momentum with it; in order for it to form a

compact protostar, some mechanism is needed to shed the excess angular momentum. As

discussed in Shu et al. [1993, 2000], disk-mediated mass transfer provides one method of
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Figure 1.1: Overview of low-mass star formation.

allowing matter to accrete onto the central source. In this model, excess angular momen-

tum is carried off by magnetically driven jets emanating from both poles of the protostar.

Most of the gas inside a molecular cloud is relatively cold, with temperatures on the

order of T ∼ 10 - 20 K [Gueth et al., 1997, Shu et al., 1993]. At this stage of stellar de-

velopment, the protostar is not massive enough to support internal burning. However,

the gravitational potential energy given up by material falling into the central protostar

releases a significant amount of energy, which is eventually converted into heat in the sur-

rounding gas.1 This increased thermal energy allows the relatively simple molecules of

the molecular cloud to interact with one another, driving a surprisingly rich chemistry.

As the protostar evolves into a so-called Class I object, the amount of matter falling

onto the central source decreases. The angular extent of the bipolar jets expands, gradu-

ally clearing the remains of the dense core. The protostar continues to evolve into a Class II

1In high-mass protostars, some of the richest chemistry occurs in the hot core, the warm region near the
protostar. It is unclear whether low-mass protostars support miniature hot cores, although there is evidence
favoring their existence (e.g., Schoier et al., 2002).
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Figure 1.2: Artist’s conception of a heavily enshrouded protostar. (Image courtesy of
NASA/JPL-Caltech/R. Hurt, SSC.)

object, characterized by a fully exposed central source surrounded by a dusty, protoplane-

tary disk, and finally a Class III object, in which disk-clearing has condensed much of the

diffuse material of the disk into planets.

1.2 Studying Molecular Clouds

Molecular clouds exist because dust grains shield the interiors from intense optical and

ultraviolet stellar radiation; however, this also makes them difficult to study at many of the

traditional wavelengths. In particular, the same dust grains that keep light from entering

also prevent it from escaping, making it impossible to study the interiors of molecular

clouds with optical observations.

The physical process behind the dust grain’s extinction of light is Rayleigh scattering,

which intensifies as a strong function of frequency; radiation with short wavelengths is

scattered much more strongly than that of longer wavelengths. Using lower frequencies

allows observers to peer deeper into molecular clouds.
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As an example, consider the images of the Carina Nebula in Figure 1.3. The top image

shows a dust pillar in the visible spectrum while the bottom shows the same image in

infrared. Because of their longer wavelengths, the infrared photons are not scattered as

heavily by the dust. They escape from the depths of the molecular cloud, making the

dust virtually invisible and clearly revealing an embedded protostar (and its associated

outflows) at the tip of the dust column.

The situation improves further when even longer wavelengths are used, as shown in

Figure 1.4, comparing visible and submillimeter images of the Antennae Galaxies.2 The

interactions between these colliding galaxies has stirred the dust and gas, triggering star

formation. This fact is not obvious in the visible image, but appears clearly in the submil-

limeter, where the bright red regions show dense dust that has been warmed by obscured

star formation.

Submillimeter observations benefit not only from an improved ability to penetrate

through dust, but also because they are directly sensitive to emissions from the gas and

dust in the star-forming regions. At the temperatures typical of these objects, thermal

emission from the dust peaks at frequencies of a few to tens of THz, generating a signif-

icant amount of flux at the upper end of the submillimeter range [Kraus, 1986, esp. Fig

3.16]. Because the peak of the emission occurs to the short side of the submillimeter range,

submillimeter imaging arrays (such as SHARC II, which generated the data shown in Fig-

ure 1.4) are ideal for searching for distant star-forming regions in which the spectrum has

been redshifted.

Not surprisingly, molecular clouds also generate a significant amount of flux in molec-

ular emission lines. In particular, the temperatures are just right to excite the low-lying ro-

tational (and sometimes vibrational) quantum levels of small molecules, and the resulting

rovibrational emission spectral lines lie squarely in the submillimeter range. For instance,

CO, one of the most common interstellar molecules, has strong emission lines spaced at 115

GHz, and the lines at 230 GHz and 345 GHz are particularly useful tracers of molecular

gas.

2Submillimeter and millimeter wavelengths fall between microwave and far-infrared. The submillimeter
image shown here was taken by the SHARC II camera, operating at 350 µm (≈ 850 GHz). The term “sub-
millimeter astronomy” refers to observations in the range ∼ 300 GHz to a few THz (corresponding to wave-
lengths of ∼ 1 mm to ∼ 0.1 mm, respectively). The Caltech Submillimeter Observatory, the telescope used for
the observations in this thesis, has instruments covering frequencies from approximately 180 GHz to 1 THz.
The term “submillimeter” will be used throughout this work to refer to observations in those frequencies,
although the low-frequency end of the range might be more properly termed “millimeter astronomy.”
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Figure 1.3: Hubble images of dust pillar in the Carina Nebula in visible (top) and infrared
(bottom). The longer wavelength of the infrared photons allows them to escape from the
molecular cloud, revealing a protostar that is hidden by dust in the visible spectrum. (Im-
age credit: NASA, ESA, and the Hubble SM4 ERO Team.)
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Figure 1.4: Visible and submillimeter images of the Antennae Galaxies. (Visible image
credits: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collab-
oration, with acknowledgment to B. Whitmore (STScI). SHARC II image credit: Darren
Dowell.)
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1.3 Interplay between Physics and Chemistry

As Groesbeck et al. [1994] demonstrated, the integrated flux in the molecular lines may

represent a significant fraction of, or even the majority of, the energy emitted from star-

forming regions in the submillimeter range. This means that instruments sensitive to that

emission make great tools for studying such regions, but it also implies something impor-

tant about the physics of star formation. As stated earlier, the gas and dust falling onto

the central core of a protostar give up a considerable amount of gravitational potential en-

ergy that eventually is converted into heat. In order to continue to collapse, the gas in and

around the protostar must have some way of dissipating this heat. While thermal emission

from dust plays a key role, cooling via molecular-line emission is also critical to the pro-

cess. Thus, in order to fully describe star formation, one must understand the line emission

from the region, which in turn, requires a knowledge of the molecular constituents.

Understanding the astrochemistry of star formation is also important for establishing

the physical state of material surrounding a protostar. Throughout much of a molecular

cloud, a significant portion of the molecular gas is believed to be frozen into ices that coat

the surfaces of dust grains [Boogert, 1999]. The warmth generated by stellar formation

causes these ices to sublimate, increasing the density of the gas-phase material near the

protostar. In order to calculate the details of this density profile, it is necessary to under-

stand the constituents of the molecular ices.

Similarly, the physics of star formation has a strong effect on the associated astrochem-

istry. Without the thermal energy generated by the infalling matter, most of the molecules

would remain frozen on dust grains, constraining the types of reactions they could un-

dergo. The gas-phase density has direct consequences for the likelihood of collisions be-

tween molecules while the physical size of a star-forming region sets a distance scale over

which one molecule must encounter another if it is to react before drifting out into the

colder reaches of the molecular cloud. In addition, the powerful outflows from a protostar

create their own chemistry, both within the ejected material and at the shock front that

results from the outflow plowing into the quiescent envelope.

From these examples, it can be seen that detailed modeling of star formation requires a

genuinely interdisciplinary approach; in order to understand how a dense core condenses

into a protostar, it is necessary to simultaneously address the chemistry and the physics.
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Figure 1.5: 795 - 903 GHz survey of Orion by Comito et al. [2005]. The atmospheric trans-
mission typical of the observing conditions for the survey (shown in gray in the back-
ground of the plot) testifies to the difficulty of this work.

1.4 Submillimeter Line Surveys

One particularly powerful way to study star-forming regions is through the use of unbi-

ased submillimeter line surveys, in which molecular lines are observed over a broad range

of frequencies. Figure 1.5 shows a survey of the Orion molecular cloud from 795 - 903 GHz

[Comito et al., 2005], showing a wealth of lines, even at these relatively high frequencies.

In contrast to targeted line studies, which seek to confirm or refute the existence of a

particular molecular line, an unbiased survey seeks to inventory all of the lines within the

observing window. This information can be used to build up a “chemical catalog” for the

star-forming region, placing important constraints on models and helping to distinguish

between competing descriptions of astrochemical networks.

Closer to home, these molecules represent progenitors of the circumstellar disk, which

in turn forms the planets, comets, and asteroids. Whether these molecules survive in their

initial form to become part of the solar system, or whether they are destroyed in some of

the intervening steps, remains an open question. However, there is evidence that biolog-

ically relevant molecules can be found in the hot cores surrounding high-mass protostars

[Widicus Weaver, 2005]. This raises the tantalizing possibility that astrochemistry could

play an important role in understanding the origin of life, providing a viable mechanism

for the introduction of biological molecules to Earth.
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Figure 1.6: Decomposition of spectral line in OMC-1 survey. From Blake et al. [1987, Fig.
2].

By directly probing the molecular gas, a line survey provides a wealth of information

about chemical and physical conditions within the star-forming region. Line frequencies

can be used to identify molecular species while the line profiles give important information

about source dynamics. Amplitudes of lines can be used to estimate physical conditions in

the source, such as temperature, pressure, and density, particularly when many molecules,

each with multiple lines, are observed.

As an example, consider the peak shown in Figure 1.6, taken from a survey of the Orion

molecular cloud (OMC-1). As described in Blake et al. [1987], the observed spectral line,

shown at the top, can be decomposed into contributions from several physically distinct

regions based on the line profile, as shown in the remaining three traces in the figure. The

bottom line (labeled “Hot Core”) corresponds to gas warmed by the central source while

the narrow “Ridge” line represents quiescent gas unaffected by the protostar’s creation in

its midst. The very broad tails of the “Plateau” line tie it to the powerful outflows driven

by the protostar. Such analysis not only helps to identify the dynamics of the source, but

also allows the chemistry of each region to be analyzed separately, even when the lines are

blended together.

Despite the wealth of scientific information that can be derived from an unbiased line

survey, only a handful of these surveys have been performed. The primary reason is that

such surveys are difficult to perform, requiring a significant amount of telescope time that
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often spans multiple observing runs, sometimes extending across several years. Not only

does this represent a significant allocation of resources, but changes in the telescope or

receiver configuration can make it difficult to stitch the different data sets together into a

single spectrum.

One of the first major surveys of a star-forming region was completed by Blake and

Sutton, who studied the Orion molecular cloud from 215 - 263 GHz [Blake et al., 1986,

Sutton et al., 1985]. That survey consisted of more than 100 independent observations

over 28 nights spread across two adjacent winters. The 795 - 903 GHz survey of the same

source, shown in Figure 1.5, required a total of 300 independent observations spread over

an approximately five-year period [Comito et al., 2005]. Just the upper half of the spectrum

(from 845 - 903 GHz) required 30 nights of observing time, largely due to the challenge of

observing at near-THz frequencies from a ground-based telescope.

In Schilke et al. [1997], the authors point out that completing the observations and

assembling them into a coherent spectrum is just the beginning and that the truly time-

consuming part is the spectral analysis and interpretation. Thus, while line surveys pro-

vide a wealth of data, the information is hard-won.

1.5 Instrumentation for Line Surveys

Submillimeter line surveys of star-forming regions are nearly always performed using het-

erodyne spectroscopy, with an instrumental configuration similar to that shown in Figure

1.7. Photons collected by the telescope are focused onto a mixer, where they are combined

with a reference signal generated by a local oscillator (LO). The mixer consists of a device

with a nonlinear relationship between current and voltage (a nonlinear I-V curve), which

results in the multiplication of the two input signals. The output consists of two signals,

one at a frequency equal to the sum of the two input frequencies, and one equal to the

difference between them. Only the difference signal is needed for this application, so the

sum frequency is removed using a filter. From there, the signal is amplified and passed to

a spectrometer, which generates the desired spectrum.

From a practical point of view, heterodyne downconversion provides several important

advantages. The mixer brings the signal down from hundreds of GHz to a few GHz, where
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Figure 1.7: Basic instrumentation needed for heterodyne spectroscopy.

commercial, off-the-shelf amplifiers, filters, and connectors are readily available, making

it vastly easier and cheaper to work with the signal. This configuration also provides

modularity that allows the front-end mixers to be designed separately from the back-end

spectrometers. For instance, at the CSO, there are multiple receivers, covering frequencies

from 180 GHz up to 900 GHz. They are configured to convert the sky radiation to a com-

mon frequency on the output, allowing a single set of spectrometers to be used for all of

them.

Scientifically, heterodyne spectroscopy is desirable because it offers extremely high fre-

quency resolution, which is critical for studying molecular-line spectra of star-forming

regions. A sample spectrum from the Orion survey is shown in Figure 1.8, demonstrating

the fine details that must be preserved. The narrower peaks are only a few MHz wide and

the CH3OH and HNCO lines near the center of the spectrum have frequencies of 241.767

GHz and 241.774 GHz, corresponding to a 7-MHz separation.

Preserving these kinds of details requires an instrument capable of separating∼ 1 MHz

differences at frequencies of∼ 300 GHz, corresponding to resolving power of R ∼ 3× 105.

Fortunately, a heterodyne receiver can easily meet this challenge. In fact, the actual resolu-

tion is typically set by the channel spacing in the spectrometer rather than the underlying

resolving power of the receiver.
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Figure 1.8: A sample molecular-line spectrum from 241.5 - 242 GHz [Sutton et al., 1985].

1.6 Sideband Ambiguity

Heterodyne spectroscopy is well suited to the study of submillimeter molecular lines, but

there is one difficulty that it introduces. The goal of a line survey is to produce frequency-

calibrated spectra like the one shown in Figure 1.8, in which each channel of the spectrum

can be concretely identified with a single frequency. However, at most telescopes (includ-

ing the CSO), each channel in a heterodyne spectrum actually corresponds to two frequen-

cies; it can only be reduced to the form shown above with a significant amount of data

processing.

More detail is given in Chapter 4, but the basic problem can be demonstrated by re-

considering the simple system shown in Figure 1.7. In Figure 1.9, we show the same

system with the addition of frequency labels. Start by considering the general variables

shown in the boxes attached to each of the black arrows. The telescope collects pho-

tons with frequency fRF while the LO generates a signal at frequency fLO. In the mixer,

these are multiplied to produce the sum and difference frequencies, fSUM = fLO + fRF and

fDIFF = | fLO − fRF|, respectively. The filter removes the sum frequency, leaving only the

difference frequency, fDIFF, at the input to the spectrometer.

As a concrete example, consider what happens when the telescope observes 235-GHz

photons while the LO is set to a frequency of 240 GHz. The mixer produces sum and

difference frequencies at 5 GHz and 475 GHz, respectively. After the filter removes the

sum frequency, the spectrometer is presented with a 5-GHz signal. However, the same
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Figure 1.9: Frequency conversions in a simple double-sideband receiver, showing the ori-
gin of the sideband ambiguity.

result can be achieved by considering a 245-GHz input to the telescope. The difference

frequency will still be 5 GHz, so the input to the spectrometer will be identical in both

cases.

Given the knowledge that the spectrometer observed a 5-GHz peak while using a 240-

GHz LO setting, we can only say that the input must have contained some combination of

235-GHz and 245-GHz signals. This uncertainty is known as the sideband ambiguity, and

it is inherent to the single-mixer receiver design outlined above. It is possible to remove

this ambiguity during the data-analysis stage via a process known as sideband deconvo-

lution, which will be covered extensively in Chapter 4.

Frequencies greater than fLO are said to come from the upper sideband while those

less than fLO come from the lower sideband. Because this receiver design is sensitive

to both sidebands, it is known as a double-sideband receiver. By adding an additional

mixer to the receiver, making it a two-mixer design, it is possible to develop a receiver

that eliminates this ambiguity. Traditionally, this design has not been used, partly due

to the added complexity and partly because double-sideband receivers are actually more

efficient for certain types of observations.
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1.7 Goals of This Work

This thesis describes an effort to enable rapid, unbiased molecular-line surveys at sub-

millimeter frequencies with the goal of allowing such surveys to be performed more fre-

quently and to achieve higher sensitivities.

Because of the difficulties of performing such work, only a few sources have been sur-

veyed to date, and significant pieces of our understanding of star formation have been

extrapolated from these objects. Making it easier to complete a line survey would allow

astronomers to study many more objects, eventually building up a statistical sample of

sources that could help to elucidate the different mechanisms at play.

One particularly intriguing line of inquiry is the search for “chemical clocks,” molecu-

lar tracers that would help to identify the ages of different sources. Currently, estimating

the age of a protostar requires subtle inference from a variety of observations; finding a

molecular tracer that could serve as a proxy for the protostar’s age would greatly sim-

plify the process. While efforts have been made to find such tracers through targeted line

observations, a broad sample of unbiased line surveys would make the task significantly

easier.

Improved survey methods would also offer the ability to take more sensitive line sur-

veys. As models of astrochemistry improve, more sensitive observations are needed to

distinguish between them, usually to look for peaks from complex molecules that are pre-

dicted by the models but are lost in the noise of prior surveys. Likewise, unambiguously

identifying prebiotic molecules requires sufficient sensitivity to dig multiple molecular

lines out of the noise.

Accomplishing these goals has required the development of new hardware and soft-

ware. Improvements in computer models, chip fabrication, and micromachining capabil-

ities have allowed our group to design a new generation of ultra-wideband heterodyne

receivers. In a single observation, these receivers can produce several times as much data

as previous receivers, allowing a line survey to be completed with many fewer indepen-

dent observations.

Improving the ability to generate data is not sufficient unless we also improve our

ability to process that data. Traditionally, line surveys have been analyzed by cleaning
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individual observations by hand, using a computer to perform the sideband deconvolution

and assemble the observations into a single spectrum, and then manually fitting each peak

in the resulting spectrum.

We have streamlined the analysis process by developing deconvolution algorithms that

dramatically reduce the amount of manual processing required for each observation while

still preserving the high sensitivity needed to search for complex and/or prebiotic mod-

ules. Susanna Widicus Weaver’s group at Emory University is addressing the final part of

the problem by developing spectral-fitting software that not only fits all of the lines of a

given molecule simultaneously, but also fits several molecules at once.

Subsequent chapters will discuss the first two stages of this work, briefly describing the

hardware improvements that have enabled the underlying observations to be completed

more quickly and taking a detailed look at the new deconvolution algorithms that have

been developed.
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Chapter 2

Submillimeter Observations

Before describing the construction of heterodyne receivers, we include a quick discussion

of how submillimeter spectra are actually measured. Most of the signal for a submillimeter

heterodyne receiver consists of thermal noise. The primary source of background is ther-

mal emission by molecules in the atmosphere (especially water). The astronomical source

adds a small bit of power on top of this, and the challenge is to separate out that small

signal against the much larger background. This is the primary reason submillimeter tele-

scopes are typically located at high elevations. The amount of water in the atmosphere

falls off rapidly as a function of elevation; by observing at higher locations, astronomers

can reduce the total amount of water between the telescope and the astronomical source.

As a concrete example, consider observations made under typical conditions at the

Caltech Submillimeter Observatory (CSO), located at an elevation of 13,350 feet, near the

summit of Mauna Kea (Figure 2.1). The 225-GHz opacity at zenith is usually τ225 ∼ 0.1,

and observations are performed at moderate zenith angles, corresponding to an airmass

of A ∼ 1.5. The signal from an astronomical source at 225 GHz would therefore be atten-

uated by a factor of e−A τ225 ≈ 0.86. In addition to attenuating the signal, the atmosphere

introduces noise equal to Tsky = (1− e−A τ225) Tatm, where Tatm is the temperature of the at-

mosphere, usually assumed to be roughly the same as the ambient temperature at ground

level (Tatm ∼ 300 K.1 Thus, the atmosphere contributes a signal of ∼ 28 K of noise per

1This assumption is justified by the fact that atmospheric pressure follows an exponential drop-off as a
function of elevation. The majority of molecules are close to the telescope, and therefore close to the telescope’s
ambient temperature. This is particularly true for water molecules, which represent the most significant at-
mospheric absorber. The partial pressure of water is such that it follows a steeper exponential decline, causing
it to be concentrated even closer to the ground. When looking at atmospheric-absorption plots (such as Fig-
ure 3.1), water lines can be identified by their large width (due to pressure broadening). Other atmospheric
contaminants extend to lower-pressure regions of the atmosphere, resulting in sharper absorption lines.
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Figure 2.1: Caltech Submillimeter Observatory at night.
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sideband, or ∼ 56 K total. This is quite large in comparison to the desired spectral lines,

which typically have peaks of amplitude ∼ 0.1 - 10 K, or the continuum radiation, which

is usually a few Kelvins.

To detect these small signals against the larger background, the CSO uses chopping

subtraction, in which the source is observed for several seconds, and then an off-source

position is observed for the same amount of time. As long as the length of each observation

is much smaller than the timescale on which the atmospheric opacity changes, the average

sky noise can be subtracted off, and the difference between these two signals represents

the desired spectrum.

While the emission from the sky is viewed as “noise,” and the source’s emission is

viewed as “signal,” it is important to emphasize that both arise from thermal emission.

Therefore, the difference between them is also a random quantity, and it is this randomness

that determines the sensitivity of the observation. The RMS noise in the signal after the

subtraction is described by the Dicke radiometer equation,

TSSB
RMS =

2Tsys√
∆ f ton

, (2.1)

where ∆ f represents the bandwidth of the observation (e.g., one spectral channel), Tsys

represents the system noise temperature and ton represents the on-source integration time.2

2Actually, a few intermediate steps are needed to arrive at the results shown in Equation 2.1. The Dicke
radiometer equation describes the best possible performance that could be achieved by a device that takes
an input signal, limits its frequency range to ∆ f (e.g., with a bandpass filter), measures the power with a
square-law detector, and then averages that result over a time ton. If we convert the measured power into an
equivalent temperature, the uncertainty in that value must be at least

σT =
Tsys√
∆ f ton

(2.2)

[Rohlfs and Wilson, 2003]. A spectrometer channel receiving input from a DSB receiver sums the input from
two sidebands, increasing the noise by a factor of

√
2. The desired signal represents the difference of two such

measurements taken in on-source and off-source positions: Tsource = Ton − To f f . If we observe the “on” and
“off” positions for equal time, each has an uncertainty equal to

σTon = σTo f f =

√
2Tsys√
∆ f ton

. (2.3)

Standard propagation-of-error techniques can be used to determine the uncertainty in Tsource:

σTsource =
√

2 σTon =
2Tsys√
∆ f ton

. (2.4)

This is the result shown in Equation 2.1.



24

2.1 Calibration at the CSO

Submillimeter spectra are calibrated in a fashion that allows the underlying source spec-

trum to be determined, independent of atmospheric conditions. Conceptually, the cali-

brated data can be viewed as the spectrum that would be seen by an ideal telescope placed

above Earth’s atmosphere, except with an additional amount of noise.

The CSO uses the chopper-wheel calibration method, as discussed in Kutner and Ulich

[1981], Ulich and Haas [1976], and Peng [2002, Appendix A]. Before taking a spectrum,

a calibration scan is calculated by comparing the spectrum of a hot load to that of a cold

load. The loads are presumed to be perfect blackbodies over the frequencies of interest,

so they can be characterized by a single, frequency-independent temperature. The hot

load consists of an ambient-temperature absorber inserted into the beam of the receiver

between the receiver and secondary mirror while the cold load is simply an empty patch

of sky close to the astronomical source. As described in the following discussion, these

observations can be used to determine two unknowns: the system’s gain and the end-to-

end noise level.

A perfect receiver would be equally sensitive to signals in the upper and lower side-

bands. In reality, the receiver often has slightly different sensitivity at the two frequencies.

We can model this difference by letting G ( f ) represent the receiver’s gain as a function of

frequency. The gain represents the conversion factor between the spectrometer output and

an astrophysically meaningful brightness temperature, T∗A.3

Consider the output of a single channel of the spectrometer, represented as V.4 When

presented with the hot load at temperature Thot, the spectrometer’s response is

Vhot = GLSB
(

Thot + TLSB
Rx

)
+ GUSB

(
Thot + TUSB

Rx

)
, (2.5)

3There are a variety of temperature scales used for submillimeter spectra. T∗A is a common scale, as it can
be derived directly from the chopper-wheel calibration. Values of T∗A have been corrected for atmospheric
losses, ohmic losses in the telescope, and rear (warm) spillover. They have not been corrected for forward
(cold) spillover or the coupling between the telescope’s beam pattern and the source. See Kutner and Ulich
[1981] for additional details.

4The quantity V is traditionally considered as a voltage, but it could represent other forms of spectrometer
output, such as digital signals from an ADC, counts on a CCD, etc., as long as they are proportional to the
spectral power at that frequency.
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where the gains

GLSB = G ( fLSB) and

GUSB = G ( fUSB)

represent the LSB and USB gains at frequencies

fLSB = fLO − f IF and

fUSB = fLO + f IF.

The two terms GLSB Thot and GUSB Thot simply represent the receiver’s downconversion of

power in the lower and upper sidebands. The receiver noise temperature TRx represents

the noise added by the receiver during the downconversion. Conceptually, the receiver

can be viewed as a perfect receiver, adding no noise to the signal, plus a noise source at the

input with temperature TRx. The receiver noise temperature is not necessarily frequency-

independent, so the equation includes different values for the upper and lower sidebands.

The response when looking at a blank patch of sky is a bit more complicated. While

the majority of the signal comes from the primary beam, there are also contributions from

spillover, scattering, and diffraction. Some of these effects produce rays that terminate on

the sky, but not on the intended observation point while others result in rays that terminate

on warm objects, such as the ground or the telescope structure. To model these effects, we

introduce the warm and cold efficiencies, ηwarm and ηcold. These quantities are defined

such that the fraction of the beam that terminates on a warm load is (1− ηwarm) while

the fraction reaching the sky is ηwarm. Of that, ηcold forms the primary beam while the

remaining (1− ηcold) ends up on other sections of the sky.

The sky signal includes the following contributions for each side band:

(1− ηwarm) Thot︸ ︷︷ ︸
Scattered into warm load

+ ηwarm (1− ηcold) Tsky︸ ︷︷ ︸
On sky but outside main beam

+ ηwarmηcoldTsky︸ ︷︷ ︸
Main beam

+ TRx︸︷︷︸
Receiver noise

.

The spectrometer signal from the sky is therefore
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Vsky = GLSB
[
(1− ηwarm)Thot + ηwarm (1− ηcold) TLSB

sky + ηwarmηcoldTLSB
sky + TLSB

Rx

]
+ GUSB

[
(1− ηwarm)Thot + ηwarm (1− ηcold) TUSB

sky + ηwarmηcoldTUSB
sky + TUSB

Rx

]
,

which can be rearranged to

Vsky = GLSB
[
(1− ηwarm)Thot + ηwarmTLSB

sky + TLSB
Rx

]
+ GUSB

[
(1− ηwarm)Thot + ηwarmTUSB

sky + TUSB
Rx

]
. (2.6)

The sky temperature, Tsky, represents the effective temperature of the sky at the input

to the receiver. The sky introduces noise into the spectrum with a brightness temperature

of

Tsky =
(

1− e−A τ
)

Tatm +
(

e−A τ
)

Tspace,

where τ represents the optical depth at the given frequency. A small amount of radi-

ation can be traced to even an “empty” patch of sky, primarily due to the cosmic mi-

crowave background. However, the contribution is sufficiently small that it can be ne-

glected: Tspace ≈ 0. As discussed in Footnote 1, the atmospheric temperature is usually

approximated as the ambient temperature on the ground, Tatm ≈ Thot [Peng, 2002]. The

sky opacity can be significantly different for the USB and LSB, particularly if one sideband

is near a strong absorption line from atmospheric molecules. Therefore, while Thot may be

treated as a constant in the equation for Vhot, Tsky must be defined separately for each side-

band. The sky attenuation in the lower sideband is given by e−A τLSB for the lower sideband

and e−A τUSB for the upper sideband. We can define τ̄ and δτ such that τLSB = τ̄ − δτ and

τUSB = τ̄ + δτ. Then the attenuation factors become e−A(τ̄−δτ) and e−A(τ̄+δτ) for the LSB

and USB, respectively. To further simplify the notation, we let η̄sky = e−A τ̄, ηLSB
sky =+A δτ,

and ηUSB
sky =−A δτ, giving

TLSB
sky =

(
1− η̄skyηLSB

sky

)
Thot and

TUSB
sky =

(
1− η̄skyηUSB

sky

)
Thot.

(2.7)
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These values can be inserted into Equation 2.6 to give

Vsky = GLSB
[
(1− ηwarm)Thot + ηwarm

(
1− η̄skyηLSB

sky

)
Thot + TLSB

Rx

]
+ GUSB

[
(1− ηwarm)Thot + ηwarm

(
1− η̄skyηUSB

sky

)
Thot + TUSB

Rx

]
,

which can be simplified to

Vsky = GLSB
[(

1− ηwarmη̄skyηLSB
sky

)
Thot + TLSB

Rx

]
+ GUSB

[(
1− ηwarmη̄skyηUSB

sky

)
Thot + TUSB

Rx

]
. (2.8)

When the telescope is pointed at an astronomical source, the signal contains all the

components present in Vsky, with an additional signal that can be attributed to the source:

Vsrc = Vsky + ηsrcηwarmηcoldη̄sky

(
GLSBηLSB

sky TLSB
src + GUSBηUSB

sky TUSB
src

)
. (2.9)

The source-coupling efficiency, ηsrc, represents the convolution of the source structure with

the telescope’s main-beam pattern and accounts for effects such as beam dilution while Tsrc

is the effective temperature of the source.5

The spectra created by the CSO are calibrated to the T∗A scale using the following equa-

tion [Peng, 2002, Equation A.3]:

T∗A = 2Thot
Vsrc −Vsky

Vhot −Vsky
. (2.10)

5The efficiencies defined here are comparable to those defined by other authors:

This work Peng [2002] Kutner and Ulich [1981]
ηwarm α η f ss
ηcold β ηrss
ηsrc γ ηc

For a more detailed discussion of the physical interpretation of these efficiencies, see Kutner and Ulich [1981,
Equations 5 and 9]. Also note that the efficiencies defined here are not precisely equal to those in Kutner and
Ulich [1981], which include an additional efficiency, ηr, that represents losses due to resistive heating of the
telescope. However, based on the results in their Table I, this efficiency appears to have a minimal impact with
typical values ηr ≈ 1. A thorough definition of Tsrc can be found in Ulich and Haas [1976, Equations 8 and 9],
which implicitly defines the conceptually similar quantity TE.
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From Equation 2.9, it is easy to see that the numerator is equal to

Vsrc −Vsky = ηsrcηwarmηcoldη̄sky

(
GLSBηLSB

sky TLSB
src + GUSBηUSB

sky TUSB
src

)
.

The denominator can be found using Equations 2.5 and 2.8:

Vhot −Vsky = GLSB
[

Thot + TLSB
Rx −

(
1− ηwarmη̄skyηLSB

sky

)
Thot − TLSB

Rx

]
+ GUSB

[
Thot + TUSB

Rx −
(

1− ηwarmη̄skyηUSB
sky

)
Thot − TUSB

Rx

]
,

which simplifies to

Vhot −Vsky = ηwarmη̄sky

(
ηLSB

sky GLSB + ηUSB
sky GUSB

)
Thot.

Using these intermediate results, we find that

T∗A = 2Thot

ηsrcηwarmηcoldη̄sky

(
GLSBηLSB

sky TLSB
src + GUSBηUSB

sky TUSB
src

)
ηwarmη̄sky

(
ηLSB

sky GLSB + ηUSB
sky GUSB

)
Thot

.

Cancelling like factors gives the rather simple result

T∗A =
2ηsrcηcold

(
GLSBηLSB

sky TLSB
src + GUSBηUSB

sky TUSB
src

)
(

ηLSB
sky GLSB + ηUSB

sky GUSB
) .

This can be further simplified by renormalizing the gains G,

ḠLSB =
2GLSBηLSB

sky

ηLSB
sky GLSB + ηUSB

sky GUSB
and

ḠUSB =
2GUSBηUSB

sky

ηLSB
sky GLSB + ηUSB

sky GUSB
,

(2.11)

allowing us to write

T∗A = ηsrcηcold

(
ḠLSBTLSB

src + ḠUSBTUSB
src

)
.

The calibration process imposes an important constraint on these gains, namely
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ḠLSB + ḠUSB = 2, (2.12)

as can be seen by inspection from Equation 2.11. While this might seem an insignificant

result, it allows an important simplification of the problem. If we define γ such that

ḠLSB = 1− γ, (2.13a)

we immediately find that

ḠUSB = 1 + γ. (2.13b)

Thus, the constraint from Equation 2.12 allows us to model the effect of sideband imbal-

ances using only a single parameter, γ:

T∗A = ηsrcηcold

[
(1− γ) TLSB

src + (1 + γ) TUSB
src

]
. (2.14)

In this equation, all of the sideband-dependent effects
(

GLSB, GUSB, ηLSB
sky , and ηUSB

sky

)
have

been rolled into γ.

2.2 Measuring System Temperature

The calibration represented by Equation 2.10 produces a value of T∗A that is independent

of the flat portion of the sky attenuation
(
η̄sky

)
, the warm scattering and spillover (ηwarm),

and the receiver noise
(
TLSB

Rx and TUSB
Rx

)
, leaving only the effects of cold scattering and

spillover (ηcold) and the coupling efficiency between the telescope and the source (ηsrc). In

principle, ηcold can be determined to yield T∗R [Kutner and Ulich, 1981], but ηsrc cannot be

determined without knowing detailed information about the source’s structure.

While the calibration removes the average flux introduced by each of the background

sources, it cannot remove the randomness introduced by their presence. Both the signal

and background sources are created by thermal noise; therefore, T∗A is also a random quan-

tity with RMS noise levels given by Equation 2.1. In order to calculate TRMS, we need to

know Tsys, the temperature of a noise source that would add an equivalent amount of noise

to an ideal receiving system. In this case, the “receiving system” consists not only of the
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receiver and the telescope, but also the atmosphere. A perfect telescope (no spillover or

scattering) used with a noiseless receiver and placed above the Earth’s atmosphere, but ex-

posed to a noise source of temperature Tsys, would be equivalent to our real-world system.

Considering such an idealized telescope provides an easy way to estimate the value of

Tsys. Imagine making a Y-factor measurement, in which VH is measured by filling the tele-

scope’s beam with a perfect absorber at temperature TH and comparing it to the receiver’s

response when looking at a blank patch of sky, Vspace. Taking the ratio of those two values

gives the Y factor:

Ysky =
VH

Vspace

=

(
GLSBTLSB

H + GUSBTUSB
H

)
+
(

GLSBTLSB
sys + GUSBTUSB

sys

)
(

GLSBTLSB
space + GUSBTUSB

space

)
+
(

GLSBTLSB
sys + GUSBTUSB

sys

)
=

(
GLSBTLSB

H + GUSBTUSB
H

)
+
(

GLSBTLSB
sys + GUSBTUSB

sys

)
(

GLSBTLSB
sys + GUSBTUSB

sys

) ,

where we have again approximated Tspace ≈ 0.

At this point, we introduce several other approximations. First, we assume that the

sideband gains of the entire system are equal so that GLSB ≈ GUSB.6 Likewise, we assume

that the system temperature is roughly equal for the two sidebands so that TLSB
sys ≈ TUSB

sys ,

which allows us to replace either of the sideband-specific values with the quantity TDSB
sys ,

representing the system noise injected from a single sideband. Finally, we assume that the

IF bandwidth is small compared to the RF observing frequency so that TLSB
hot ≈ TUSB

hot . We

can then write the previous equation as

Ysky ≈
2GTH + 2GTDSB

sys

2GTDSB
sys

=
TH + TDSB

sys

TDSB
sys

.

6Ignoring the distinction between the sidebands does not work near atmospheric absorption lines, but
should be a reasonable approximation elsewhere.
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This equation can easily be solved for TDSB
sys to give

TDSB
sys =

TH

Y− 1
. (2.15)

Since moving the entire telescope above the atmosphere is not a convenient option,

we could achieve the same effect by finding a calibration source that has temperature TH,

completely fills the telescope’s beam, and is above the atmosphere. By selecting TH ap-

propriately, we can make this measurement even easier. If the absorber were above the

atmosphere, the atmosphere would attenuate its signal by a factor of e−Aτ, but it would

also inject noise at the temperature Tatm into the signal:

VH = G
[
e−AτTH +

(
1− e−Aτ

)
Tatm

]
. (2.16)

If we choose TH = Tatm, then it doesn’t matter whether the absorber is above the atmo-

sphere or below it, allowing us to perform the calibration by inserting an absorber into the

beam at the observatory. Therefore, calibration at the CSO is performed rather simply by

inserting an absorber into the beam between the receiver and the secondary to measure

VH, which can be compared to Vsky, obtained by moving the telescope slightly off-source

and performing a short integration.

For later use, it is also worth mentioning that each spectrum taken at the CSO also has

an associated calibration scan consisting of

C =
Vhot −Vsky

Vsky
= Ysky − 1 (2.17)

[Peng, 2002]. The calibration scan can be used to form the denominator of Equation 2.10.

The scan also provides a channel-by-channel method of determining the system tempera-

ture, which can be quite useful in evaluating end-to-end performance.
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Chapter 3

Ultra-Wideband Submillimeter
Receivers

3.1 CSO Facility Receivers

Ground-based submillimeter observing is complicated by the fact that Earth’s atmospheric

is only partially transparent at submillimeter frequencies. Figure 3.1 shows the atmosphere

transmission as a function of frequency for the CSO; the individual lines correspond to

different weather conditions, as parameterized by the amount of precipitable water vapor

(PWV) in the atmosphere.

The effects of the atmosphere are twofold. Since the atmosphere is not 100% transmis-

sive, the desired astrophysical signal is attenuated on its way to the telescope. In addition,

the sky emits its own thermal noise at submillimeter frequencies, in effect creating a “glow-

ing” haze between the telescope and the source. As the opacity worsens, the amount of

thermal noise attributable to the sky increases.

Atmospheric interference is particularly strong at frequencies that correspond to ab-

sorption lines of atmospheric molecules, particularly water. These lines eliminate our

ability to see through the atmosphere at certain frequencies, leaving several “windows”

of moderate transparency in between that can be used for ground-based astronomy. Not

surprisingly, heterodyne receivers for ground-based telescopes are typically designed to

operate within these windows of semi-transparency.

The bottom of Figure 3.1 shows the coverage bands of five new receivers that have

been designed to replace the current facility receivers at the CSO. Although the suite of
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Figure 3.1: Atmospheric transmission at the summit of Mauna Kea. The lines corre-
spond to different amounts of precipitable water vapor (PWV) in the air, and the colored
boxes along the bottom show the frequency bands covered by the planned suite of ultra-
wideband receivers.
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new receivers is still under construction, a 345-GHz prototype using the new mixer design

has been installed at the CSO [Kooi et al., 2007]. The receiver used for the observations

in this thesis is another prototype instrument, known as Z-Rex, that operates in the 230-

GHz atmospheric window [Rice et al., 2003]. (See Figure 3.2.) All of these receivers benefit

from new design methods and technologies that allow them to complete line surveys in

significantly less time than previous receivers.

3.2 Optimizing Heterodyne Receivers for Line Surveys

As discussed in Chapter 1, submillimeter heterodyne receivers are ideal for performing

molecular-line surveys of star-forming regions; however, because such surveys require so

much observing time, there is strong incentive to improve the receiver hardware to make

surveys more efficient.

3.2.1 IF Bandwidth

The area in which we have made the most significant gains is the instantaneous bandwidth

of the receivers. The instantaneous bandwidth can be viewed as the width of the bandpass

filter shown between the mixer and the spectrometer in Figure 1.7. It represents the size of

the spectrum that can be captured in a single observation, so that doubling this bandwidth

halves the number of observations needed to cover a given frequency range. Because this

figure represents the bandwidth of the signal at the intermediate-frequency (IF) port of the

mixer, it is typically referred to as the receiver’s IF bandwidth.

The heterodyne systems used for the original survey of Orion [Sutton et al., 1985, Blake

et al., 1986] had an IF bandwidth of approximately 500 MHz, and the facility receivers

currently installed at the CSO offer an IF bandwidth of 1 GHz. The new generation of

receivers that our group has designed offer IF bandwidths of at least 4GHz, and the proto-

type receiver used for much of the work in this thesis has an IF bandwidth of 12 GHz.

Consider a hypothetical survey covering the frequency range from 220 - 268 GHz. Fig-

ure 3.3 demonstrates the dramatic improvement in surveying speed that would be possi-

ble with a broader IF bandwidth. The left axis gives the value of the LO frequency while
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Figure 3.2: Prototype wideband receivers mounted on the telescope at the CSO. The re-
ceiver mounted on the left port is Z-Rex, the 230-GHz prototype while the receiver on the
right is the 345-GHz prototype. The synthesized LO, described in Section 3.6, can be seen
at the bottom of Z-Rex (underneath an aluminum cryogen shield), and a more traditional
Gunn-based LO can be seen on the front side of the 345-GHz prototype.
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Figure 3.3: Increasing the IF bandwidth of the receiver dramatically reduces the number
of observations required to survey a given frequency range. Red lines correspond to a
double-sideband receiver with a 4-GHz IF bandwidth while the blue lines correspond to a
1-GHz IF bandwidth.

the bottom axis indicates the RF frequencies that would be observed at each LO setting.

The red lines show the frequencies that would be covered by a double-sideband receiver

with a 4-GHz IF bandwidth while the blue lines correspond to a 1-GHz IF bandwidth.

There are two lines for each LO frequency to represent the upper and lower sidebands.

With the larger bandwidth, the entire range could be covered with 6 LO settings while the

narrower-band receiver would require 24 individual observations. Assuming the receivers

had the same noise temperatures, the integration time per observation would be the same

in both cases; therefore, increasing the IF bandwidth from 1 GHz to 4 GHz would lead to

an immediate 75% reduction in observing time.

The receiver design can be pushed to even broader bandwidths. We have success-

fully used a prototype receiver with a 12-GHz IF bandwidth, which could cover the entire

frequency range of Figure 3.3 in only two LO settings. At the moment, however, the ex-

tra bandwidth cannot be used for the type of surveys discussed here, as the CSO’s high-

resolution spectrometer is limited to 4 GHz.
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3.2.2 Receiver Sensitivity

Another way to increase survey efficiency is to improve the sensitivity of the receiver by

lowering its noise temperature. However, the receivers are approaching a quantum limit

that defines the minimum noise levels,1 and the majority of the noise for ground-based

receivers comes from the atmosphere; therefore, this is a path of diminishing returns. In-

stead, the goal for the new generation of receivers has been to maintain sensitivities similar

to previous, narrower-band receivers. As long as we can achieve the broader bandwidths

without sacrificing sensitivity, we can realize the impressive gains previously described.

3.2.3 Frequency Agility

Another way to increase survey efficiency is to improve the frequency agility of the re-

ceivers. Every time the LO frequency is adjusted, the receivers must be manually tuned to

optimize their performance. Minimizing the amount of tuning can significantly decrease

the overhead associated with performing a line survey. Successful sideband deconvolution

requires multiple observations of each frequency; in our surveys, we typically observe each

frequency at ∼ 6 - 10 different LO settings. If 6 LO settings are needed to cover the entire

band, ∼ 50 settings are needed to generate enough data for successful sideband deconvo-

lution. Thus, minimizing the tuning time at each setting becomes even more important.

We have improved the tuning efficiency with two different methods. Advanced mod-

eling techniques have allowed us to make a tunerless mixer block. This significantly de-

creases the number of adjustments that need to be made at each tuning, leaving the SIS bias

voltage and the magnetic-field current as the only mixer-related settings to be optimized.

Moreover, our experience during observing runs has indicated that these settings can be

tuned easily. It is often possible to proceed through several adjacent LO settings with only

minimal adjustment, and when retuning is is necessary, it can usually be achieved quite

quickly.

We have also experimented with using a more agile LO source. Previous receivers have

relied on Gunn oscillators to generate signals in the range ∼ 70 - 110 GHz, which are then

1Quantum mechanics imposes a minimum noise temperature of Tmin ∼ hν/k on any device that preserves
phase information, including SIS mixers [Phillips and Woody, 1982]. For further discussion, see Caves [1982]
and Clerk et al. [2010].
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fed to a passive multiplier to generate the desired frequency. The Gunn oscillator requires

its own manual tuning, which can be quite time consuming. In an attempt to resolve

this problem, we have investigated active multiplier chains, which rely on a commercial

microwave synthesizer to generate input frequencies in the range ∼ 13 - 18 GHz. When

using an active multiplier chain, changing the LO frequency is as easy as setting the mi-

crowave synthesizer to a new frequency, which can even be done remotely over a network.

As discussed later in this chapter, however, the active multiplier chain introduces its own

complications, and during observing runs, we often resorted to using the Gunn, despite

its slower tuning speed.

3.3 Z-Rex

The receiver used for the line surveys in this thesis is the ultra-wideband, 230-GHz proto-

type known as Z-Rex [Rice et al., 2003]. An overview of the end-to-end system is shown

in Figure 3.4. Photons arriving at the telescope are focused through a beam splitter and

into a cryostat. The beam splitter is almost entirely transmissive, with just enough reflec-

tivity to couple in a small fraction of the power from an LO source. Using a beam splitter

to combine the astronomical beam and the local oscillator allows both signals to be sent

through the same window into the cryostat. The beam splitter does couple a small amount

of excess noise into the system, but the resulting simplification of the overall design was

considered worthwhile, particularly for a prototype receiver.

Inside the cryostat, the beam is focused through cooled transmissive optics into a cir-

cular waveguide horn attached to the mixer block, as shown in Figure 3.5. After a short

length of waveguide, the signal is picked up by a specially designed wideband probe and

fed into a superconducting junction diode, which mixes the astronomical signal with the

LO and outputs the downconverted signal at its IF port. From there, the signal under-

goes initial amplification within the cryostat before being passed to additional warm IF

amplifiers.

Outside the cryostat, the signal is routed to an IF processor and an array of spectrome-

ters. Because of the very large IF bandwidth of 12 GHz offered by this receiver, it is neces-

sary to combine several spectrometers in parallel to use as much of the spectral bandwidth
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Figure 3.4: Overview of Z-Rex.

as possible. The IF processor is responsible for breaking up the output of the receiver into

smaller bands, each at the correct frequency and power level for the individual spectrom-

eters.

The individual components of Z-Rex are discussed in detail in the following sections.

3.3.1 Mixer Chip and Waveguide Block

The heart of the receiver is the mixer chip, shown in Figure 3.6. The actual mixing is per-

formed by a superconducting tunnel diode, constructed from an superconductor-insulator-

superconductor (SIS) junction.

The first element of the mixer chip is the broadband radial-stub probe, which couples

the RF signal from the waveguide into the mixer chip. (See Figure 3.8.) Extensive simu-

lation and scale-model testing were used to ensure that the probe would work effectively

across the relatively broad RF bandwidth of the receiver (180 - 300 GHz).2

2Although designed to operate from 180 - 300 GHz, the prototype receiver currently covers a somewhat
smaller range. Instead of constructing a new waveguide horn, we used an existing horn. At the low end, the
design of that horn limits useful observations to &225 GHz while the range of the LO often sets the upper
frequency limit.
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Figure 3.5: Mixer-block assembly (top) and 4-K cold plate inside the cryostat (bottom).
(Images courtesy of Frank Rice.)
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Figure 3.6: Layout of 230-GHz wideband mixer chip for Z-Rex. Adapted from Rice et al.
[2003].

Figure 3.7: CAD rendering of top half of mixer block. Adapted from Rice et al. [2003].

An RF matching network transforms impedances appropriately so that the RF signal

from the waveguide probe can be efficiently delivered to the SIS junction, where it is down-

converted to the IF frequency. An IF matching network then transforms the impedance of

the junction so that it matches well with the following low-noise amplifier. The IF matching

network also serves as an RF choke to keep RF power from leaking away from the junction,

which increases the receiver’s sensitivity.

The mixer chip sits in a waveguide block on the 4-K stage of the cryostat. The front

side of the mixer block was designed to interface with an existing horn; a transformer at

the input to the mixer block matches the circular horn to the rectangular waveguide used

within the block. The RF signal (including both sky and LO signals) travels down a short

length of waveguide, past a small tuning step machined into the block, and into the probe
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of the mixer chip, as shown in Figure 3.8. Two soft-iron pole pieces concentrate magnetic

fields on the SIS junction to minimize Josephson currents [Wengler, 1992]. A glass bead,

part of the interface to a 2.9-mm coaxial connector, sits immediately next to the IF output

pad of the mixer chip. A small area behind the mixer chip is reserved for the DC bias board,

as shown in Figure 3.7. To ensure that slight unevenness in the mating surfaces of the block

would not interfere with the tight fit of the waveguide walls, a shallow depression was cut

into the top half the block, as can be seen in Figure 3.10.

A significant amount of simulation went into designing and optimizing the chip and

mixer block. Much of the circuit modeling was done in SuperMix, a custom-built software

library designed for the simulation and optimization of superconducting submillimeter

receivers [Ward et al., 1999]. SuperMix was particularly important for modeling the be-

havior of the SIS junction and determining the circuit parameters that would optimize the

receiver’s overall performance [Rice et al., 2003]. The Ansoft HFSS 3-D electromagnetic

simulator was used extensively to model aspects of the mixer chip circuitry; the results

could then be integrated into the SuperMix model.

HFSS also played a key role in optimizing the design of the waveguide probe and test-

ing the expected performance of the probe within the context of the mixer block. Simula-

tions included real-world effects, such as the machining fillets at the end of the waveguide

and on either side of the tuning step, and calculations were performed to ensure that the

proposed design could tolerate typical machining errors in the final block. Because these

effects were all considered in the simulation, we were able to design a high-performance

mixer without requiring any movable tuning elements within the waveguide.

As shown in Figure 3.5, the mixer block was designed so that the coaxial connector on

its top could be mated directly to the low-noise amplifier (LNA). The coaxial connector

includes the glass bead mentioned above, and the tight connection provides a controlled

path between the mixer chip and the amplifier. By using a well-understood IF path, the

input impedance of the LNA could be included in simulations of the chip’s performance

and the on-chip matching network could be designed to maximize the IF bandwidth of the

receiver.
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Figure 3.8: Probe and mixer chip inserted into the waveguide block. Adapted from Rice
et al. [2003].

Figure 3.9: Microscope image showing the input transformer (left), the proximity of the
pole pieces to the mixer chip (center), and the channel for the mixer chip (right). (The
rectangle that can be seen near the center of some photos is an imaging artifact.)
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Figure 3.10: Split block (top) and mixer block assembled with horn and coaxial connector
for LNA (bottom). The “spiral” pattern in the top half of the block (shown at the left of the
top photo) corresponds to a shallow depression that was cut to ensure that critical surfaces
along the edges of the waveguide could mate tightly.
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3.4 Full-Bandwidth Spectroscopy

Originally, Z-Rex was intended to be a “z-machine,” designed to allow rapid redshift de-

terminations of the ultra-luminous galaxies that had been discovered using submillimeter

imaging arrays (e.g., Blain et al., 2002). Because of the relatively large positional error bars

produced by the imaging arrays, and because the sources were highly obscured by dust,

determining the redshift of these objects using follow-up observations at other frequencies

proved to be difficult. In contrast, searching for molecular emission lines in the submil-

limeter, using some of the same telescopes responsible for the original discoveries, looked

much more promising. Since the redshift of these sources was unknown, broad swaths of

frequency would need to be searched; however, the limited IF bandwidth of existing re-

ceivers meant that such a search would be highly time-consuming, particularly since each

individual observation would require a long integration time to detect the faint lines. The

large IF bandwidth of Z-Rex was intended to solve this problem by offering 12 GHz of

frequency coverage per sideband, for a total instantaneous bandwidth of 24 GHz. Using

such a receiver, the molecular lines from a given source could be found using only a few

different LO settings.

Because the distant galaxies are not resolved by the CSO beam, linewidths are expected

to be ∼ 300 km/s [Blain et al., 2002]. At 300 GHz, a velocity of 1 km/s corresponds to

a Doppler shift of 1 MHz; thus, Z-Rex, operating in the 230-GHz atmospheric window,

would see line widths & 300 MHz. Given the inherently broad linewidths, a relatively low-

resolution spectrometer would be well suited to this task. Consequently, the CSO installed

four of the WASP2 analog autocorrelation spectrometers developed by Andy Harris at the

University of Maryland [Harris and Zmuidzinas, 2001]. Each WASP2 unit delivers 3.5 GHz

of spectral coverage over 128 channels, offering a frequency resolution of approximately

33 MHz per channel. By running four units in parallel, we cover the entire 12-GHz IF

bandwidth of Z-Rex. To distribute the signal to the four units, an IF processor divides the

Z-Rex output signal into four bands, downconverting and amplifying each band to deliver

the appropriate frequency range and power level to the WASP2 unit.
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3.4.1 Wideband IF Processor

The IF processor (see Figure 3.15) accomplishes three basic functions: separation into four

bands, downconversion to the WASP2 input frequencies, and amplification. Each of the

functions is relatively straightforward in principle, but the large bandwidth creates special

design concerns. Each WASP2 unit accepts a 3.5-GHz wide input, centered on 6 GHz. The

total bandwidth available from the four WASP2 units is 14 GHz, which slightly exceeds the

intended IF bandwidth of the receiver. Z-Rex was designed to provide a 12-GHz output

from 6 - 18 GHz; however, rather than waste some of the WASP2 bandwidth, we chose

to design a downconverter to accept a slightly broader input, thereby providing an easy

mechanism for taking advantage of any extra output range from the receiver. The input

spectrum is thus divided into four slightly overlapping bands: 5.75 - 9.75 GHz, 9.25 - 13.25

GHz, 12.75 - 16.75 GHz, and 16.25 - 20.25 GHz. Each band is downconverted to a 4 - 8 GHz

output. If the WASP2 spectrometers have exactly the quoted 3.5-GHz bandwidth, these

ranges will precisely tile the range from 6 - 20 GHz. Any extra input bandwidth offered

by the WASP2s allows the spectra to overlap lightly. The four branches are summarized in

Table 3.2.

The downconversion also requires appropriate component selection. The choice to ex-

tend the frequency coverage to 20 GHz (rather than 18 GHz) requires high-performance

components. The 5.75 - 9.75 GHz band provides additional challenges, as the RF input

overlaps the desired IF output. Discussions with vendors indicated that a triple-balanced

mixer would be appropriate for that branch, as such mixers are particularly good at mini-

mizing RF-to-IF leakage. Further investigation revealed that triple-balanced mixers would

be needed for all four bands, as the 4 - 8 GHz output is beyond the range of double-

balanced mixers designed for similar RF frequencies.

The LO sources we selected are free-running DROs (dielectric resonator oscillators),

which are affordable and easy to use. The free-running DROs do not possess the same

frequency stability as phase-locked models, but because the IF processor is driving a rel-

atively low-resolution spectrometer, the free-running performance is more than adequate.

Each DRO is specified to deliver at least +13 dBm of power, which is consistent with the

mixers’ requirements.



48

Figure 3.11: Experimental set up for measuring port-to-port mixer isolation. The DRO
(left) was connected to the LO port of the mixer via a 3-dB attenuator. To measure LO-to-
RF isolation, the IF port was loaded with a 50-Ω terminator, and the RF port was connected
to a spectrum analyzer via a short (∼ 12”) cable with a 10-dB attenuator at the end (blue
labels). LO-to-IF isolation was measured by terminating the RF port and connecting the IF
port to the spectrum analyzer (red labels). Reference measurements were taken by remov-
ing the mixer and measuring the output of the DRO through the remaining elements.

Triple-balanced mixers are readily available commercially, but they typically have worse

port-to-port isolation than their double-balanced counterparts. Since our design includes

LO sources within the input band, isolation is also an important criterion for us. To de-

termine whether the mixers would work for our needs, we directly tested the isolation

using the experimental setup shown in Figure 3.11. We paired each mixer with all four

LO sources to determine its LO-to-RF and LO-to-IF isolation at the frequencies of interest,

generating the results given in Table 3.1.

To measure LO-to-RF isolation, we connected the DRO to the LO port of the mixer via a

3-dB attenuator to address potential impedance mismatch. We then terminated the IF port

with a broadband terminator and measured the LO leakage using a spectrum analyzer

connected to the RF port. Similarly, we measured the LO-to-IF isolation by terminating the

RF port and connecting the IF port to the spectrum analyzer. The results show significant

variations between different units of the same mixer model. These tests also indicated that

it was particularly important to drive certain mixers at their optimum pumping levels to

ensure optimal isolation.
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LO-to-RF Isolation (dB) LO-to-IF Isolation (dB)

DRO Frequency (GHz) DRO Frequency (GHz)
Mixer 8.75 12.25 13.75 17.25 8.75 12.25 13.75 17.25

M3006L 0247A 26.5 18.8 22.9 35.6 23.8 27.3 23.1 30.1
M3006L 0247B 29.2 20.6 25.0 37.0 27.4 21.2 21.3 37.5
M3006L 0247C 22.5 29.0 23.2 28.1 27.5 16.6 15.6 32.8
M3006L 0247D 26.7 21.6 25.6 32.4 31.0 26.9 35.1 30.6
M3006L 0247E 25.3 22.4 27.4 32.5 38.8 20.9 28.2 42.7
M2H-0220LA 27.7 45.1 44.7 30.1 22.3 32.0 29.1 27.3

Table 3.1: Mixer isolation, measured using the setup shown in Figure 3.11. The M3006L
0247X lines represent different units from Advanced Microwave while the final line corre-
sponds to Marki Microwave M2H-0220LA.

3.4.1.1 Prototype and Spur Analysis

To determine whether the in-band LO sources would generate spurious spikes in the out-

put signal, a two-branch prototype of the IF processor was built, as shown in Figure 3.12. In

the prototype, the input signal, shown by the green arrow, was amplified, passed through

a coupler, and then split by a four-way power divider. Two of the outputs from the divider

were terminated, while the other two outputs fed into 4-GHz-wide bandpass filters. Each

of these bands was then downconverted into the 4 - 8 GHz band and amplified. All parts

were the same as the ones described in the final IF processor design in Section 3.4.1.3.

These two branches were chosen because they offered particularly strong tests of the

mixers’ isolation; the RF input for the 5.75 - 9.75 GHz branch overlapped with the IF out-

put, and the 8.75-GHz LO of the other branch fell near the edge of the input bandwidth

for the final 4 - 8 GHz amplifier. The best mixers were picked for each branch based on

the results found in Table 3.1. The 5.75 - 9.75 GHz branch also allowed us to study the

high-frequency behavior of the bandpass filters, which was also a source of concern.

As shown in Figure 3.13, the filters had low loss in the desired passband and strong

losses on either side. However, the the high-frequency rejection did not extend as far as

expected. The filters tended to admit signals at frequencies about an octave above the

lower edge of the bandpass. Some had spikes of higher-frequency transmission, with loss

elsewhere while others admitted the majority of signals above a certain frequency. The
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Figure 3.12: Simple two-branch prototype of the IF processor. X’s indicate 3-dB attenua-
tors.

5.75 - 9.75 GHz branch demonstrated the latter behavior, providing a good test of whether

this high-frequency leakage would allow unintended interactions between bands.

The entire range of the spectrum analyzer, from 0 - 26.5 GHz, was searched for peaks;

particular attention was given to 5 GHz and 22.5 GHz since mixing between the fundamen-

tal frequencies of the LO sources would be expected to yield peaks at those frequencies.

Since the LOs themselves were the sources of interest, the input to the broadband amplifier

was terminated, as was the output of whichever line was not connected to the spectrum

analyzer.

For the 5.75 - 9.75 GHz line, peaks were found at 3.75 GHz and 13.75 GHz; no peaks

were found at 5 or 22.5 GHz. The 13.75-GHz peak’s power and frequency were consistent

with the LO leaking through to the IF. The 3.75-GHz peak could best be explained by the

second harmonic of the 8.75-GHz LO mixing with the fundamental of the 13.75-GHz LO

(2× 8.75− 13.75 = 3.75 GHz).

For the 12.75 - 16.75 GHz branch, peaks were seen at 5, 8.75, 17.50, and 26.25 GHz,

but not at 22.5 GHz. The peak at 5 GHz represented the anticipated interaction between
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Figure 3.13: Measured responses of bandpass filters.
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the fundamentals of the LO sources, and the 8.75-GHz peak was consistent with LO-to-IF

leakage. The 17.50- and 26.25-GHz lines represented the second and third harmonics of the

LO frequency; presumably, they were due to frequency multiplication in the mixer and/or

amplifier. To determine which element was causing the multiplication, the amplifier was

removed, and the spectrum analyzer was connected to the 3-dB attenuator on the IF port

of the mixer. The 17.50-GHz peak dropped by only a few dB, implying that the mixer was

at least partially responsible for the frequency doubling. In contrast, the 26.25-GHz peak

dropped by ∼ 20 dB, indicating that it was most likely caused by frequency multiplica-

tion within the amplifier. This can happen when a particularly strong line saturates the

amplifier, forcing it into a nonlinear regime.

Further tests were done to try to rule out other sources of interaction (such as LO fre-

quencies leaking through the ground plane or DC wiring), but all tests were consistent

with the interpretations given above. In the case of the 3.75-GHz peak, it was possible to

trace the hypothesized 17.5-GHz line through much of the system. It was found at the RF

port of the mixer on the 12.75 - 16.75 GHz branch, supporting the idea that it was caused

by LO-to-RF leakage. The same line could be found at the output of the power splitter

sending signals into the 5.75 - 9.75 GHz branch. From there, the signal disappeared below

the noise floor of the spectrum analyzer.

Experiments with the prototype system yielded several important insights for moving

forward on the final design. It demonstrated that interactions between LOs could generate

spurs and that higher-order interactions would need to be considered as well. These in-

teractions were not symmetric; the 5-GHz peak could be detected in the 12.75 - 16.75 GHz

branch, but not in the 5.75 - 9.75 GHz branch, presumably because the two LO signals

encountered different losses in the bandpass filters as they worked through the system. Fi-

nally, the frequency multiplication of the 8.75-GHz LO indicated that the output amplifiers

could be saturated by strong out-of-band spurs; adding a broadband 4 - 8 GHz bandpass

filter would resolve this problem.

To better understand the nature of the interactions between the LO sources, we devel-

oped a Mathematica program to calculate the expected mixing products. It considers all

pairwise combinations of fundamental LO frequencies and harmonics (up to a specified
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order), and calculates the sum and difference frequencies generated by the two signals.

In addition, it calculates the attenuation encountered by each signal as it works its way

upstream in one branch and then back down through a different branch using laboratory

measurements of the bandpass filters’ performance taken with a 40-GHz network ana-

lyzer. Whenever a mixing product is found that falls within the output band of the IF

processor, the program reports the frequency of the spur and the expected attenuation of

the underlying signal.

The program accurately predicts the spurs that were observed with the prototype, and

predicts that the 3.75-GHz spur should be significantly stronger in the 5.75 - 9.75 GHz line,

as was seen. It also finds other potential spurs that were not identified with the prototype,

but attaches higher attenuation values to them.

In addition to modeling the existing filters, the program also allowed us to study the

effects of adding new filters. We investigated whether the high-frequency leakage of the

bandpass filters was contributing to the observed spurs. The program demonstrated that

adding low-pass filters to several of the lines would solve the problems seen with the pro-

totype. By ordering additional low-pass filters that matched those used in the Mathematica

program, we were able to eliminate the spurs.

3.4.1.2 Prototype Linearity

The linearity of the prototype system was also tested by connecting the input to a signal

generator and driving the system at different power levels. At the time, the only signal

generator available was limited to signals in the 10 - 18 GHz range, so only the 12.75 -

16.75 GHz branch was tested. As shown in Figure 3.14, the prototype system offered a

conversion gain of ∼ 48 - 51 dB for input powers . 45 dBm, corresponding to output

powers of approximately +3 dBm. This is sufficient to drive the WASP2 spectrometers,

which have a nominal input power of −10 dBm, and even leave some overhead to allow

for cable losses between the IF processor and the spectrometers.
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Figure 3.14: Conversion gain of prototype IF processor.

Spectral Range (GHz) LO Frequency (GHz) Sideband

5.75− 9.75 13.75 Lower
9.25− 13.25 17.25 Lower
12.75− 16.75 8.75 Upper
16.25− 20.25 12.25 Upper

Table 3.2: Key properties of the IF downconverter.



55

Figure 3.15: Schematic of IF downconverter; attenuators indicated by X’s.
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3.4.1.3 Final Design

The basic design for the IF downconverter is relatively simple, as shown in Figure 3.15.

The wideband 6 - 20 GHz IF signal from Z-Rex is immediately boosted by a broadband

amplifier. A small fraction of the signal is picked off by a 10-dB coupler to create a full-

bandwidth test signal while the rest is split into one of four branches by a power divider.

A bandpass filter selects a 4-GHz chunk of the spectrum, which is then downconverted

to the appropriate input frequency for the WASP2 spectrometers. A final bandpass filter

limits the output to 4 - 8 GHz, and another amplifier boosts the signal once more before

it is returned to the front panel, where it can be connected to the WASP2 input. The extra

low-pass filters needed to prevent crosstalk between branches are located on the output of

the power divider.

Attenuators (typically 3 dB) are located between components expected to have a poor

input match to help minimize reflections. Where possible, components are connected di-

rectly together or via SMA adapters. Cables are only used at the inputs and outputs of

the box and to make one “fold” in each branch to conserve space; in these locations, hand-

formable cables are used. To provide good thermal and mechanical stability, the entire

assembly is mounted to an aluminum plate. The completed IF processor is shown in Fig-

ure 3.16, and a parts list is provided in Table C.1.

The IF processor has been modified since its construction by converting one of the lines

into a straight-through 4 - 8 GHz branch. No downconversion occurs in that line, but it

does provide the filters and amplifiers needed to produce an appropriate signal at the

output. The modified version of the downconverter is shown in Figure 3.17. The excised

parts are available, and the IF processor can easily be restored to its previous state when

needed.

3.5 High-Resolution Spectroscopy

Despite its original intent, Z-Rex has rarely been used for redshift determinations. By the

time it was fully deployed at the CSO, a large sample of redshifts had been determined

using other means by Chapman et al. [2003]. Moreover, newly available millimeter-wave
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Figure 3.16: IF downconverter, as built. Hand-formable cables with SMA connectors are
used when needed; otherwise, short SMA adapters are used. DC power at +12 V is pro-
vided via the yellow wires, using the purple wires for return current, and +15 V DC power
is provided through the orange wires, using the blue wires for return current.
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Figure 3.17: IF downconverter (current version, with direct 4 - 8 GHz line).
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grating spectrometers, such as Z-spec [Naylor, 2008], permitted even faster low-resolution

searches than Z-Rex could offer. Equally relevant was the fact that Z-Rex had been en-

thusiastically embraced by several groups interested in performing molecular-line sur-

veys of nearby objects (such as star-forming regions). The surveys required much higher-

resolution spectra, and ongoing development efforts for Z-Rex focused on bringing these

capabilities online.

Due to the source’s proximity, emission lines from galactic objects tend to be much

narrower. For instance, lines from star-forming regions are often only a few km/s wide,

so a higher-resolution spectrometer is needed than would be required for extra-galactic

redshift follow-up. To enable these observations, the CSO uses a 4× 1-GHz array acousto-

optical spectrometer (AOS) from the University of Köln [Horn et al., 1999]. As with the

WASP2 spectrometers, an IF processor is needed to divide the signal into four bands at

the correct frequency and power level for the AOS. The requirements for this IF processor

are considerably more stringent than for the one discussed in Section 3.4.1; therefore, it

was designed and constructed by CSO staff and maintained at the telescope as a facility

instrument.

3.5.1 High-Resolution IF Processor

A great deal of effort has been put into determining and providing the optimal signal

characteristics at the interface between Z-Rex and the high-resolution IF processor. In par-

ticular, the IF processor can actively adjust the output power it provides to the AOS via

computer-controlled attenuators; however, it has no means to control the input power pro-

vided to it by the receiver. Therefore, it is critically important to insure that the right power

levels are provided at the interface by manually inserting attenuators. Before determining

the ideal power levels, we experienced frustrating observing attempts in which brightness

temperatures (and hence line strengths) were unreliable, apparently due to saturation in

the IF processor. (See Figures 3.18 and 3.19.)

Based on measurements like those shown in Figure 3.19, it was determined that the IF

processor works best when the input attenuation is ∼ 25 dB. To further test the IF proces-

sor’s performance, measurements were taken of its end-to-end conversion gain at different
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Figure 3.18: Spectra taken on Jupiter using incorrect IF attenuation (10 dB, top) and im-
proved IF attenuation (28 dB) with equalizer (bottom). The vertical axis corresponds to
brightness temperature, T∗A, in K. Note the significantly expanded scale in the top plot.
Scan numbers (across the bottom) correspond to AOS bands 1 through 4, respectively.
Since these data were taken during two different runs (May 2007 and November 2007,
respectively), the IF processor also might have had some internal optimization.
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Figure 3.19: Effects of increasing IF attenuation in the absence of an equalizer. The vertical
axis of each plot indicates the value of the telescope’s calibration scan, which corresponds
to (Ysky − 1) = Phot

Psky
. The four scans (indicated by the legend at the bottom of the plot)

correspond to IF frequencies of 4 - 5, 5 - 6, 6 - 7, and 7 - 8 GHz, respectively. At 0 dB of IF
attenuation (upper left), all bands suffer from gain compression, yielding poor Y factors.
When the attenuation is increased to 12 dB (upper right), the Y factors spread out, as some
bands receive appropriate power while others do not. At 20 dB (lower left), the four bands
offer similar Y factors, but the bands corresponding to larger IF frequencies, and hence
greater attenuation in the IF cable, begin to show increased noise levels. At 25 dB (lower
right), the Y factors are still similar, but the noise level in band 4 continues to degrade, and
band 3 shows some increased noise. All scans have Ysky ≈ 2.4, measured at the 4 - 8 GHz
output of the receiver’s warm IF amplifiers and were taken during the May 2007 run.
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input attenuation levels. Based on measurements taken in August 2007 (Figure 3.5.1), the

IF processor was found to have good linearity for inputs from −39 dBm to its nominal

power level of −45 dBm.3 We also determined that an equalizer is required to correct the

frequency slope introduced by the cable from the receiver to the IF processor. Otherwise,

when the low-frequency band is properly powered, the high-frequency band is badly un-

derpowered, greatly increasing the noise levels seen in that band.

As discussed in Section 3.4.1 (and shown in Figure 3.17), the IF processor designed for

use with the WASP2 spectrometers has been modified to provide one branch that amplifies

a 4 - 8 GHz signal without doing a downconversion. This modified branch has been serv-

ing as a warm IF amplifier to boost the signal before it travels through the long cable from

the receiver to the high-resolution IF processor. While this arrangement is sufficient, it is

not ideal, as the WASP2 IF processor contains several other strong LO sources that should

not be coupled into the IF path unnecessarily. Therefore, the development of a dedicated

4 - 8 GHz warm IF amplifier box for Z-Rex is recommended.

3.5.2 Acousto-Optical Spectrometer (AOS)

Much like the array of WASP2 units, the high-resolution spectrometer provides 4 GHz of

bandwidth by running four 1-GHz AOSs in parallel. Within each AOS, the RF signal is

coupled to a crystal via a piezoelectric transducer, creating modulations in the index of

refraction of the crystal that act like a diffraction grating. The crystal is illuminated by

a laser beam, casting the diffraction pattern onto a linear CCD. The intensity of the light

on each pixel of the CCD corresponds to the input power of the RF signal at that pixel’s

characteristic frequency. Spectra are calibrated by injecting a known frequency comb into

the AOS and studying the resulting peaks. The calibration allows CCD positions to be

converted into the corresponding frequencies and reveals the frequency resolution of the

system.

3When measuring the output power of the IF processor, readings were corrected for internal attenuation
using the nominal settings of the computer-controlled variable attenuators, as displayed by the control soft-
ware. For instance, if the computer indicated it was using 3 dB of attenuation, the readings were increased by
3 dB. There could be small discrepancies between the nominal and actual values of the attenuation that could
lead to minor inaccuracies in that data. If present, such errors would only occur in the two highest-frequency
points for AOS 1 and the highest-frequency point for AOS 2, as all other measurements correspond to 0 dB of
internal attenuation.
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Figure 3.20: Output power (top) and conversion gain (bottom) of the IF processor, mea-
sured in August 2007. The IF processor has an optimal input power level of−45 dBm, with
a 6-dB margin below that, and it can be seen to offer excellent linearity across that range.
These results indicate that ≈ 29 dB of input attenuation is appropriate for the IF processor,
consistent with Figures 3.18 and 3.19. The power levels coming into the IF processor were
−15 dBm, so 29 dB of input attenuation corresponds almost exactly to its nominal −45
dBm input power. (Also see Footnote 3.)



64

Figure 3.21: Z-Rex synthesized LO from Virginia Diodes.

The array AOS at the CSO generates four spectra, each containing 2048 channels and

covering 1 GHz of spectral bandwidth. By design, some channels at either end of each

spectrum are under illuminated, so spectra usually have ∼ 1700 valid channels. Although

it varies with time, the resolution of the system is typically 1.2 MHz or slightly better,

which means that peaks with linewidths of a few km/s still span several channels, allow-

ing an accurate determination of peak shape.

3.6 Synthesized LO

In recent years, synthesizer-driven LO sources have become readily available at submil-

limeter frequencies. They are commercially available from companies such as Virginia

Diodes,4 who constructed the unit shown in Figure 3.21 for Z-Rex. At the left of Figure

3.21 is a coaxial connector that attaches to a standard microwave generator to provide an

input signal with frequencies of ∼ 13 - 19 GHz at power levels of ∼ −5 dBm.

The synthesized LO chain consists of an amplifier followed by a frequency tripler. The

signal is again amplified and sent through an isolator, before going into the final quintupler

and the output horn. Overall, the LO chain multiplies the input frequency by a factor of 15

to create output frequencies of∼ 200 - 285 GHz at power levels of∼ 60 - 250 µW, providing

ample power to the SIS junction.

4Virginia Diodes, Inc., Charlottesville, VA; www.virginiadiodes.com
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The other type of commonly used LO is the Gunn-based LO chain, an example of which

is shown in Figure 3.22. In this LO chain, the fundamental frequency of ∼ 70 - 90 GHz

is produced by a Gunn diode in a resonant waveguide cavity (top of Figure 3.22). The

frequency of the oscillations is set by the tuning knob on the left, and the knob on the top

can be used to optimize the output power. The signal then travels through an isolator,

a harmonic mixer, and a waveguide attenuator before going through a waveguide bend,

into the final tripler and out the horn.

The tuning control provided by the micrometer on the Gunn is not sufficient to main-

tain the stability needed for high-resolution spectra. Instead, coarse frequency adjustments

are made using a calibration table to generate approximate settings for the tuning and

power knobs. Precise frequency control relies on a lock frequency generated by a mi-

crowave synthesizer; a phase-locked loop (PLL) uses a harmonic mixer to compare a mul-

tiple of this lock frequency to the current frequency of the Gunn. By modulating the DC

bias provided to the Gunn, the PLL can stabilize the LO frequency to the needed accuracy.

While the signal from the Gunn diode is relatively clean, the PLL can introduce significant

spurs into the spectrum. However, as long as the cause of these spurs is recognized, they

can easily be eliminated by adjusting the PLL parameters.5

Although accurate, a PLL-controlled Gunn can be finicky; at times, it can be very dif-

ficult to get the PLL to lock onto the desired frequency, requiring careful adjustments of

the tuning knob, experimentation with different power levels for the signal carrying the

lock frequency, and a good dose of patience. There have been nights at the CSO when we

have literally spent hours trying to get a Gunn and PLL locked to a needed frequency; on

other occasions, the Gunn has locked to the incorrect frequency, generating invalid spectra.

Clearly these types of problems can impact any observing project, not just line surveys.

Much of the interest in synthesized LOs is driven by the higher level of convenience

they offer relative to Gunn-based LOs. The tunerless design means that changing frequen-

cies is as simple as setting the frequency (and perhaps power) on a microwave synthesizer.

In concert with the tunerless mixer design of Z-Rex, this gives the overall receiver system

5In particular, the multiple of the lock frequency being used by the PLL should be changed to move the
lock signal out of the 4 - 8 GHz IF band of the receiver. At the CSO, this can be accomplished with the UIP
command LO /LOOP=N, with a suitable choice for N. For most LO frequencies, N = 9 works well.
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Figure 3.22: 230-GHz Gunn-based LO chain.
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Figure 3.23: Close-up of synthesized LO mounted on Z-Rex (left) and Gunn-based LO
chain mounted on Z-Rex (right). The plate containing electronics for the phase-locked
loop (PLL) can be seen in the background of the right-hand figure.

impressive frequency agility, making an important difference in the time required for an

unbiased line survey, which might include hundreds of LO settings.

In addition to fast tuning, a synthesized LO can build on all of the other technologies

that go into a commercial microwave synthesizer. For instance, by connecting the syn-

thesizer to the telescope’s computer network via GPIB, we were easily able to implement

automatic tuning; in contrast, installing a computer interface board for a Gunn oscillator

would have required significant effort. Similarly, we have been able to build on existing

software libraries to construct automated calibration and testing routines for the synthe-

sized LO by making use of a GPIB-connected synthesizer and power meter.

Finally, the synthesized LO offers better robustness under realistic usage scenarios in

an operational telescope. The simplified user interface makes error less likely, and the

fact that observers do not need to tune the sensitive RF components greatly decreases the

likelihood of damage by electrostatic discharge (ESD). When placed under appropriately

designed computer control, the dangers of inadvertently damaging the multiplier chain
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are nearly eliminated. When using a Gunn diode, observers must work carefully to avoid

ruining a component with ESD or overpowering the final multiplier.

Despite these benefits, the synthesized LO has some significant disadvantages. Perhaps

the most important is the introduction of spurious signals (“spurs”) into the spectrum. Af-

ter observing large spurs in our astrophysical data, we began tracing signals back through

the system, and eventually found the source of the spurs hiding in the output from the

microwave synthesizer. The LO chain was dutifully multiplying these by a factor of 15,

producing errant lines in the spectra. In principle, the on-source/off-source differencing

inherent in submillimeter observations could remove such signals. However, they were

sufficiently strong that even tiny fractional fluctuations translated into large lines in the

spectra.

Figure 3.24 shows an example of the spurs introduced into the telescope’s calibration

scans (blue lines). The figure includes two different models of synthesizers, but even the

cleaner synthesizer still introduces significant noise spurs into the spectrum. To eliminate

the spurs, we use a YIG tracking filter, inserted between the synthesizer and the multiplier

chain. The YIG filter is a very high-Q filter with an approximately 50-MHz bandpass that

can be electrically tuned to any frequency from 2 - 18 GHz. By setting the frequency of

the filter to match that of the synthesizer, we eliminate most of the undesired signals,

significantly improving the observed spectra (red lines in Figure 3.24). The YIG filter is

digitally tuned, making it amenable to computer control; Z-Rex uses a dedicated control

computer for the YIG filter, but that functionality could be incorporated into the telescope’s

control system relatively easily.

In general, the YIG filter has worked extremely well, except that it sometimes spon-

taneously detunes, causing the LO signal to shut off in the middle of an observation. No

definitive cause has been determined, although there are hints that the problem might stem

from minute amounts of ESD. Based on these experiences, designs for the next generation

of synthesized LO chains at the CSO call for real-time monitoring of LO output power. If

LO power drops suddenly, receiver electronics will flip a status bit that instructs the spec-

trometers to pause the integration until the problem is resolved, much like the “PLL Lock”

bit does for the Gunn-based LO on the current facility receivers.
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Figure 3.24: CSO calibration scans taken using the synthesized LO chain with an HP
83620B synthesizer (top) and an Anritsu MG3694A synthesizer (bottom). The blue scan
shows the spurs that occur using the unfiltered synthesizer output; the red scan demon-
strates that inserting a tracking YIG filter between the synthesizer and LO chain removes
many of the spurs. Room-temperature and liquid-nitrogen-dipped Eccosorb paddles were
used as sources for the calibration scan.
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Another significant issue with the synthesized LO is that it can introduce excess noise

into the spectrum. Our initial tests of Z-Rex using the synthesized LO produced unaccept-

ably high system noise temperatures. After some experimentation, we determined that

the noise could be greatly reduced if we decreased the bias voltage to the final amplifier

in the LO chain, thereby forcing it into saturation. We concluded that the LO signal going

into the receiver was carrying a significant amount of noise in the form of high-frequency

amplitude variations; by clipping the signal in the final amplifier, we could compress that

noise to a manageable level.

Figure 3.25 shows a comparison of on-telescope receiver performance when using ei-

ther the synthesized LO chain or a Gunn oscillator. Y-factor measurements were made

using room-temperature and liquid-nitrogen-cooled absorbers that filled the beam of the

receiver. For LO frequencies above 245 GHz, both systems behave roughly equivalently;

however, at lower frequencies the synthesized LO appears to inject excess noise.

One of the challenges in designing a submillimeter receiver is coupling enough LO

power to the junction at low frequencies. With both LO sources, the junction current,

ISIS, which measures the degree of LO pumping, was less than its optimal value at lower

frequencies. The Gunn provided almost no power at 210 GHz and too little power at

215 GHz, but worked fine for higher frequencies. With the synthesized LO, the junction

appeared to be LO-starved for frequencies of 210 - 225 GHz; to boost LO power, we had to

increase the bias applied to the final amplifier of the LO chain, allowing more amplitude

noise to leak through. Thus, the increased receiver noise with the synthesized LO can

probably be explained by a combination of insufficient LO power and increased noise on

the LO signal.

The cause of the decreased LO power at low frequencies is somewhat uncertain. The

obvious explanation would be that the LO sources are running out of power. This is prob-

ably true for the Gunn, as the device used on Z-Rex for these measurements has a low-

frequency limit of ∼ 70 GHz, corresponding to an LO frequency of 210 GHz. It is less clear

how to interpret the results with the synthesized LO. While low output power could be

one explanation, there is a compounding factor. Rather than building a new horn for the

Z-Rex mixer block, we used an existing horn. Unfortunately, the response of the recycled
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Scan
fLO

(GHz)
f IF

(GHz)
Sideband

AOS
Band

Amplitude
(K)

Peak Area
(K chan)

1532 238 7.5 Lower 4 3.1 112
1538 236 5.5 Lower 2 2.9 108
1546 225 5.5 Upper 2 3.0 118
1556 223 7.5 Upper 4 3.9 141

1493 235 4.5 Lower 1 0.63 21.5
1502 236 5.5 Lower 2 0.67 19.7
1511 237 6.5 Lower 3 0.78 21.6
1520 238 7.5 Lower 4 0.73 21.0

Table 3.3: Scan parameters and peak-fitting results for the spectra shown in Figure 3.26,
including the LO frequency, fLO, the IF frequency at which the CO line appears, f IF, and
the results of Gaussian fits to the various peaks.

horn falls off at low frequencies (. 220 GHz), limiting the receiver’s RF bandwidth. This

effect undoubtedly contributes to the difficulty in coupling LO power to the junction at

low frequencies. To test this hypothesis, we attempted to make a rough measurement of

the receiver’s performance at low frequencies. As shown in the top plot in Figure 3.26,

we measured the CO line of CRL2668 in both the upper and lower sidebands. The larger

peak strength in scan 1556 most likely derives from the sideband imbalance of the receiver,

caused by the lack of sensitivity of the horn at lower frequencies. The bottom plot shows

similar data for CRL2155, except that all scans are in the lower sideband. Without the

low-frequency sideband imbalance, all peaks are approximately the same strength.

Overall, the synthesized LO chain is very convenient, although the extra components

required by the YIG filter decrease that convenience. The excess noise represents a prob-

lem, particularly at lower frequencies, and we continue to be concerned that the LO chain

might be introducing spurs to the spectrum. The disadvantages might be worthwhile in

some circumstances, such as an observing project in which frequency agility is critical;

however, for the line surveys discussed in this thesis, we chose to use the Gunn, despite

the inconvenience of tuning.
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Figure 3.25: On-telescope performance of Z-Rex with synthesized LO and Gunn LO.
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Figure 3.26: Estimating sideband imbalance. All scans were taken at an IF attenuation of
29 dB with no equalizer. Scan parameters and peak-fitting results are listed in Table 3.3.
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Chapter 4

Deconvolving Double-Sideband Data

4.1 Introduction

The basics of heterodyne detection can be understood by considering a simple model in

which the mixer multiplies two sinusoidal signals with frequencies fRF and fLO. The for-

mer represents the signal to be analyzed (such as the submillimeter photons collected by

the telescope) while the latter represents the frequency of the local oscillator (LO), a refer-

ence signal generated by the receiver electronics. When these signals are multiplied by the

mixer, the output contains two new frequencies, as can be demonstrated using trigono-

metric identities:1

sin (ωRF)× sin (ωLO) =
1
2
[cos (ωRF −ωLO)− cos (ωRF + ωLO)] .

This equation contains the sum and difference frequencies, describing upconversion and

downconversion, respectively.2 For a heterodyne receiver, downconversion is desired, so

the sum frequency is removed with a low-pass filter, leaving the difference frequency, often

referred to as the intermediate frequency (IF) and represented by f IF.

For molecular-line surveys, the IF signal is fed to a spectrometer, which generates a

power spectrum of the data, P( f ). The power spectrum depends on the amplitude, but

1For compactness, we have used ω = 2π f in this equation.
2In terrestrial applications (such as AM radio), upconversion and downconversion represent a comple-

mentary pair. A low-frequency signal (e.g., music) is encoded onto a high-frequency carrier signal at the
transmitter. The original low-frequency signal can then be recovered using downconversion at the receiv-
ing end. For an astronomical receiver, there is no upconversion process; the signal is generated directly by
the source at fRF. Thus, there is no low-frequency original signal to be recovered; instead, downconversion
allows the signal to be processed at lower frequencies, which is significantly easier.
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not the phase, of the input signal. Since a “negative” frequency is equivalent to a phase

shift of π, the spectrometer cannot discriminate between power from a signal at f and one

at (− f ). Therefore, a single value of f IF = | fRF − fLO| in the power spectrum actually

contains contributions from two RF frequencies:

PIF ( f IF) = PRF ( fLO − f IF) + PRF ( fLO + f IF) . (4.1)

For a given f IF, these two frequencies are called the lower sideband (LSB) and the upper

sideband (USB):

fLSB = fLO − f IF

fUSB = fLO + f IF.
(4.2)

Since the resulting power spectrum combines data from both sidebands, it is referred to as

the double-sideband (DSB) spectrum.

The sideband ambiguity in the power spectrum can make it difficult to concretely iden-

tify molecular lines, particularly in crowded spectra. Therefore, some method of discrimi-

nating between the sidebands is needed. The sideband identification can be done in hard-

ware, via a sideband-separating receiver or a sideband-rejecting receiver, or it can be im-

plemented in software during the data-analysis phase. Including sideband rejection or

separation capabilities in the receiver provides a more direct method of observation, but

the receiver designs are more complex than the single-mixer construction used for Z-Rex.

One of the key advantages of Z-Rex over previous generations of receivers is its very

large instantaneous bandwidth, which significantly exceeds the bandwidth of the spec-

trometers available to analyze the signal. In its broadest configuration, the IF bandwidth

of the receiver is∼ 12 GHz, but the CSO high-resolution spectrometers, at present, can only

accept 4 GHz of data. Since the spectrometers represent the bottleneck, it is important to

choose a receiver design that can use them as efficiently as possible.

In this scenario, a DSB receiver offers an advantage in observing efficiency, at the ex-

pense of its inherent sideband ambiguity. Because it can observe both sidebands simul-

taneously, a double-sideband receiver effectively doubles the amount of data that can be

extracted from the spectrometers. A single observation captures 8 GHz worth of spectral

data using the spectrometers’ 4-GHz bandwidth.
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In contrast, a sideband-separating or sideband-rejecting receiver achieves only a one-

to-one mapping between spectrometer bandwidth and the range of observed sky frequen-

cies. Therefore, either receiver would require twice as many LO settings. For an unbiased

survey, LO tuning represents a significant fraction of the overall observing time; doubling

the number of tunings would adversely impact the overall survey efficiency. Moreover,

even sideband-separating or sideband-rejecting receivers have some amount of sideband

leakage, making it desirable to perform further sideband deconvolution during the data-

analysis phase.

Fortunately, it is possible to do sideband deconvolution after the fact, as can be seen

with a simple example.3 Consider a molecular line that appears at an IF frequency of

f IF = 5.0 GHz with an LO frequency of fLO = 242 GHz, indicating that the line’s RF

frequency could be either fLSB = 237 GHz or fUSB = 247 GHz. If the LO frequency is

then changed to fLO = 242.1 GHz, the line’s IF frequency will change. A line in the upper

sideband would move to a lower IF frequency of f IF = 4.9 GHz while a line in the lower

sideband would move in the opposite direction to f IF = 5.1 GHz.

At an intuitive level, at least, this example demonstrates that the sideband ambiguity

can be removed by observing each line at multiple LO frequencies. In practice, the process

described in the previous paragraph can be used to manually deconvolve relatively simple

spectra. For complicated spectra, an automated process is needed, but it relies on the same

principles.

4.2 Overview

The goal of sideband deconvolution is to take a series of double-sideband spectra and

undo the effects of the spectral “folding” that occurs during RF downconversion, separat-

ing the power in the lower sideband from that in the upper sideband. This produces a

single-sideband spectrum in which the frequency ambiguity has been removed and every

channel can be assigned a unique frequency.

3Also see Figure 1.9.
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One frequently used method of deconvolving data involves a forward-folding process

in which a parameter-dependent model is used to simulate the observed spectrum. A

computer algorithm can then generate a trial set of model parameters and produce a sim-

ulated data set corresponding to those parameters. By comparing the predicted data set to

the actual data, the algorithm can iteratively improve the values of the model parameters.

Typically, this process relies on minimizing some quantitative measure of the difference

between actual and modeled data, such as χ2.

In this work, we describe such a method for recovering the single-sideband spectrum

by minimizing a χ2-like quantity. However, this is not the only approach that can be used

to perform the sideband deconvolution. For example, an early survey of Orion KL used a

technique similar to the CLEAN algorithm common in aperture-synthesis imaging [Sutton

et al., 1985]. This method is relatively straightforward, but it requires the relative sideband

gains to be specified at the outset. Sutton et al. [1985] find that the deconvolution leaves

false peaks as strong as 0.5 K in their single-sideband spectrum, which they attribute to

a sideband-rejection ratio for the algorithm of roughly 15 - 20 dB. They conclude that the

SSB results are trustworthy down to ∼ 0.3 K across the spectrum.

Later researchers have used a maximum-entropy method (MEM), another technique

common in radio aperture-synthesis imaging. This method has the advantage that it in-

herently emphasizes smoothness in the final image. As described in Sutton et al. [1995],

the MEM deconvolution algorithm is based on χ2, with an additional term that represents

the deviations from a model spectrum:

χ2
MEM =

1
NDOF

∑
k

(
do

k − dk
σk

)2

− λMEM ∑
i

si
ss

log
(

si/ss

mi/ms

)
,

where do
k and dk represent the channel-by-channel spectral values in the measured and

predicted DSB spectra, respectively, and σk represents the uncertainty in the kth channel

of the observed DSB spectrum. NDOF represents the number of degrees of freedom. si

and mi represent the ithvalue of the SSB data and the SSB model spectrum, respectively,

with ss = ∑i si and ms = ∑i mi. In this equation, the first term represents χ2
ν, the reduced

chi-square, which emphasizes fidelity to the measured data. The second term represents
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the entropy, a measure of the structure present in the spectrum, relative to the model spec-

trum; increasing entropy corresponds to an increasingly featureless (smooth) spectrum.

The multiplier λMEM allows the strength of the entropy term to be adjusted; Sutton et al.

[1995] found a value of λMEM ∼ 0.1 - 0.2 worked well. As discussed in Comito and Schilke

[2002], a MEM approach to sideband deconvolution has been included in the XCLASS

data-analysis software, an extended version of the commonly used GILDAS CLASS pack-

age.

One key advantage of MEM is that it allows the sideband gains to be determined as

part of the deconvolution, rather than requiring that they be specified in advance, as with

the CLEAN-type deconvolution. As Schilke et al. [2001] point out, the MEM approach

described here still requires the baselines to be determined manually, which can be difficult

in a crowded spectrum.

It is worth noting that the logarithmic function in the entropy term requires that all the

data points in the SSB spectrum be greater than zero. This constraint poses no problem

for aperture-synthesis imaging, as it is assumed that each point in the sky must produce

some amount of positive radio flux; however, the same cannot be said for the chopped

observing mode used for this work. (See Chapter 2.) In our observations, it is not unusual

for the single-sideband spectrum to have negative values, either from absorption lines in

intervening material, or from random noise around a nearly zero baseline. One can work

around this limitation by adding a constant offset to the DSB data, and removing that

offset from the final spectrum, but this extra step is indicative of the fact that this statistical

method is not a natural fit to the underlying problem.

In this work, we take a χ2-based approach; extra terms are added to χ2 to represent

additional information we believe to be true about the spectrum. One of the new features

provided by our methodology is the ability to fit baselines during the deconvolution, al-

lowing the algorithm to determine the set of baselines that best optimizes overall spectral

fit. We have also invested significant effort in modeling the sensitivity with which the

deconvolution algorithm can recover the single-sideband spectrum, allowing us to make

concrete statements about the quality of the results.
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We do not feel that one of these methods is necessarily superior to the others; rather,

we believe it is inherently useful to have a variety of tools available, particularly given

the high-sensitivity surveys currently being performed. In this way, single-sideband spec-

tra can be generated using entirely independent methodologies, thereby providing more

insight into the reliability of weak lines detected in the data.

4.2.1 Implementation Overview

The overall process for accomplishing the deconvolution is sketched out in Figure 4.1. It

assumes that we have a series of Nobs DSB spectra representing a set of molecular-line

observations. The individual spectra can represent any combination of different LO fre-

quencies and can include data from different spectrometers with differing channel sizes.

We wish to recover the underlying single-sideband spectrum as it would appear on a set

of defined spectral channels.

Figure 4.1 shows a high-level sketch of the optimization method used in this work. We

break the process into two steps, partly for the sake of conceptual simplicity, and partly to

minimize the computation needed in the innermost iteration loop. In the first step, the DSB

spectra and the SSB spectrum are resampled onto a set of frequency-aligned channels. The

DSB resampling only needs to be done once during analysis; however, the SSB spectrum

must be resampled during each iteration. This can be achieved efficiently by creating a re-

sampling matrix that is passed to the iterative loop. The matrix only needs to be calculated

once, greatly speeding the program.

The second step of the model represents the sideband mixing that occurs during RF

downconversion. The majority of the information about this process can be contained in

two convolution matrices that describe how the SSB and DSB channels couple to one an-

other. The coupling depends only on the channel frequencies and the LO settings used

for the observations. Since these are known at the outset, these matrices can also be calcu-

lated once during the setup phase and then simply passed to the iterative loop. Both the

resampling and sideband-convolution matrices are extremely sparse, containing relatively

few non-zero entries; performing the deconvolution in a programming environment that
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supports sparse-matrix calculations greatly reduces memory requirements and increases

execution speed.

During the setup phase, a series of matrices representing the effects of the convolution

model are created. The DSB data produced by the telescope are contained in a series of

Nobs spectra, which are assembled into a single long vector by stacking them end to end.

The desired SSB spectrum is represented by a set of frequency bins corresponding to the

channels that should be used for the recovered spectrum.

After the setup phase is complete, the deconvolution proceeds as an iterative optimiza-

tion process. A model is used to generate a comparison set of DSB spectra based on a set

of model parameters, including the brightness temperature of the SSB spectrum in each

of the supplied channels, the receiver sideband-gain imbalance as a function of frequency,

and the baselines underlying each of the DSB spectra.

The model can be represented by a large system of equations containing one equation

for each channel in the set of observed DSB spectra. Generally, the number of independent

DSB channels exceeds the number of free parameters by a factor of ∼ 10, indicating that

the system is highly overconstrained. Since the measured values are statistical quantities

that include random noise, it is nonsensical to look for a solution that exactly satisfies

all of the equations; instead, we use a χ2-like figure of merit that reflects the difference

between the DSB spectra predicted by the model and those measured at the telescope. The

“optimal” (most probable) set of parameters, corresponds to the minimum value of the

figure of merit.

As long as our figure of merit does not deviate significantly from true χ2, we can also

use the final set of parameters in a goodness-of-fit test to determine whether the model is

consistent with the observed data.

4.3 Simple Model of Convolution

The optimization routine described in the previous section requires an accurate model of

the heterodyne detection process. In the following sections, the model is developed piece
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Figure 4.1: Deconvolution Overview
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by piece in order to make it as intuitive as possible. We start by considering a simple ex-

ample that ignores instrumental effects, such as uneven sideband responses and imperfect

spectral baselines.

Let do represent a vector containing all of the raw DSB spectra stacked end to end, and

let s represent the (unknown) SSB spectrum that we would like to find. The mixing of side-

bands can be represented by a matrix M in which each row corresponds to one channel in

the set of DSB spectra and each column represents a channel of the SSB spectrum. Further

assume that the DSB channels are frequency-aligned with the SSB channels so that every

channel in do corresponds exactly to one USB channel and one LSB channel in s and that

the DSB and SSB channel widths are the same. (See Figure 4.2 and Section 4.4.3.) Under

these assumptions, the convolution matrix has a simple form

Mij =


1 if fSSB(j) = fLSB(i) or fSSB(j) = fUSB(i)

0 otherwise
, (4.3)

where fSSB(j) represents the center frequency of the jth SSB channel, and fLSB(i) and fUSB(i)

represent the LSB and USB frequencies corresponding to the ith DSB channel.

In this simplified scenario, we can model the convolution process using the equa-

tion

d = M · s, (4.4)

where · represents matrix multiplication, and d represents the model’s prediction for the

DSB data, to be compared to do.

4.4 Incorporating Non-Aligned Spectra

The assumptions underlying Equation 4.3 constrain the selection of LO frequencies.4 In

particular, LO frequencies must be set so that they fall on either the center frequency or

an edge of an SSB channel. From a logistical perspective, this is an unwelcome limitation.

It would require an observer to establish the desired SSB channel limits before taking any

4See Section 4.4.3 for a full discussion.
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observations. In addition, receiver control systems might not offer this degree of control

over the LO frequency.5

Beyond these practical objections, there is a deeper scientific reason not to choose such

LO spacing. As demonstrated in Comito and Schilke [2002, Fig. 4], successful deconvo-

lution requires some randomness in the LO spacings. If spacings are perfectly regular,

ripples can be introduced into the deconvolved spectrum. The positive lobe of the ripple

in one part of the spectrum can be exactly canceled by a negative lobe in another section

when those channels are added during the convolution. Including randomness in the LO

spacings ensures that this precise cancellation cannot occur.

Thus, it is neither practical nor desirable to design observations such that the DSB

channels align exactly with the SSB channels. Instead, the deconvolution algorithm must

be capable of properly handling spectra generated with essentially random LO settings. In

this case, not only are the DSB and SSB channels mismatched, but channels from different

DSB spectra are not aligned with each other.

4.4.1 Resampling Spectra

To handle arbitrary LO settings, both the DSB and SSB spectra must be resampled. In ad-

dition to resolving the issues outlined above, this provides a natural method for including

DSB spectra with differing channel sizes.

Consider an arbitrary, N-channel spectrum with channel centers f , channel widths

∆ f , and channel limits c, such that the ith channel covers the frequency range ci to ci+1.

Let the spectrum be represented by a set of temperatures, T . We can resample this data

to produce a new NR-channel spectrum, characterized by frequency vectors f R, ∆ f R, and

cR, and brightness temperatures TR. For concreteness, assume that the channel centers

are sorted in ascending order
(

fi < fi+1 and f R
i < f R

i+1

)
and that the frequency limits of

the resampled spectrum fall entirely within the frequency range of the original spectrum(
c1 ≤ cR

1 and cN+1 ≥ cR
NR+1

)
.

5For instance, at the CSO, the antenna computer automatically calculates Doppler corrections and other
fine shifts to the LO frequency that are much larger than a typical spectrometer channel width.
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We can express both the original and resampled spectra as continuous functions of

frequency, f , by introducing a set of “boxcar” functions that represent the frequency re-

sponses of the individual channels:6

ui ( f ) =


1 if ci ≤ f < ci+1

0 otherwise

uR
j ( f ) =


1 if cR

j ≤ f < cR
j+1

0 otherwise
.

(4.5)

The inner product between the boxcar vectors can be defined in the usual fashion:

〈v1|v2〉 ≡
ˆ ∞

−∞
v1( f )v2( f )d f , (4.6)

where each of the functions v1 and v2 can be any one of the {ui ( f )} and/or {uR
j ( f )}

functions. Also note that the inner product is symmetric, so that

〈v1|v2〉 = 〈v2|v1〉 . (4.7)

Each boxcar function is orthogonal to other members of its set, so that

〈ua|ub〉 = ∆ faδab and〈
uR

c

∣∣∣uR
d

〉
= ∆ f R

c δcd,
(4.8)

where δij is the Kronecker delta function:

δij =


1 if i = j and

0 otherwise.

The inner product can also be used to calculate the overlap between the two sets of func-

tions:

6To avoid confusion between variables, note that the set of channel centers is represented by the vector f
while the center of an individual channel is represented by a component of that vector, fi. The continuous
variable representing frequency is written simply as f .
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ui

∣∣∣uR
j

〉
= ∆ f (i,j)overlap, (4.9)

where

∆ f (i,j)overlap = max
(

0, f (i,j)hi − f (i,j)lo

)
. (4.10)

If the two boxcar functions overlap,

f (i,j)lo = max
(

ci, cR
j

)
and

f (i,j)hi = min
(

ci+1, cR
j+1

)

represent the edges of the overlap region, and ∆ f (i,j)overlap represents its size.

These definitions allow us to write the spectra as continuous functions of frequency:

T( f ) =
N

∑
i=1

Ti ui ( f ) and (4.11)

TR( f ) =
NR

∑
j=1

TR
j uR

j ( f ) . (4.12)

To generate the resampled spectrum (Equation 4.12), we must find the appropriate val-

ues of TR. There are several methods that could be used to find the resampled spectrum;

we choose to do it by minimizing the mean-square deviation, A, between the resampled

spectrum and the original one:

A =

ˆ cR
NR+1

cR
1

[
T ( f )− TR ( f )

]2
d f (4.13)

=

ˆ cR
NR+1

cR
1

 N

∑
i=1

Tiui ( f )−
NR

∑
j=1

TR
j uR

j ( f )

2

d f , (4.14)

where we have inserted Equations 4.11 and 4.12.

By taking the derivative of Equation 4.14 with respect to TR
k and setting the result equal

to zero, we can find the value of TR that minimizes A:
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0 =
∂A
∂TR

k

=

ˆ cR
NR+1

cR
1

2

 N

∑
i=1

Ti ui ( f )−
NR

∑
j=1

TR
j uR

j ( f )

 ∂

∂TR
k

 N

∑
m=1

Tm um ( f )−
NR

∑
n=1

TR
n uR

n ( f )

 d f ,

(4.15)

where Equation 4.15 simply represents a “chain-rule” expansion of the derivative. This

result can be simplified by noting that ∂
∂TR

k
Ti = 0, eliminating the first term in brackets

altogether, and that ∂
∂TR

k
TR

n = δnk, reducing the final sum to a single term uR
k ( f ). Since the

equation is being set equal to zero, the initial factor of two can be dropped as well:

0 =

ˆ cR
NR+1

cR
1

 N

∑
i=1

Tiui ( f )−
NR

∑
j=1

TR
j uR

j ( f )

 uR
k ( f ) d f

=
N

∑
i=1

Ti

ˆ cR
NR+1

cR
1

ui ( f ) uR
k ( f ) d f −

NR

∑
j=1

TR
j

ˆ cR
NR+1

cR
1

uR
j ( f ) uR

k ( f ) d f

=
N

∑
i

Ti

〈
ui

∣∣∣uR
k

〉
−

NR

∑
j=1

TR
j

〈
uR

j

∣∣∣uR
k

〉

=
N

∑
i

TiFik −
NR

∑
j=1

TR
j δjk∆ f R

j

=
N

∑
i

TiFik − TR
k ∆ f R

k .

Solving for TR
k gives

TR
k =

1
∆ f R

k
[F · T ]k , (4.16)

where the overlap matrix F is defined as

Fij =
〈

ui

∣∣∣uR
j

〉
= ∆ f (i,j)overlap, (4.17)

and we have used the fact that F T = F (by Equation 4.7). The brackets in the final result

indicate that ∑N
i TiFik is just the kth component of the matrix multiplication F · T .

In terms of the individual channel limits, ∆ f (i,j)overlap can be expressed as
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∆ f (i,j)overlap = max
[
0, min

(
ci+1, cR

j+1

)
−max

(
ci, cR

j

)]
(4.18)

in accordance with Equation 4.9. Since Fij = Fji, only the upper-diagonal or lower-diagonal

entries need to be calculated.

Finally, we define the frequency-normalization matrix A∆ f R
to be a diagonal matrix

with 1
∆ f R

i
along the diagonal:

A
∆ f R

ij =
δij

∆ f R
i

.

Since Equation 4.16 is true for all values of k, it can be expressed as a vector equation:

TR = A∆ f R
· F · T . (4.19)

Typically, the observed spectrum has an experimental uncertainty associated with it

(such as the radiometer noise from Equation 2.1). The uncertainty in the resampled spec-

trum can be determined using standard propagation-of-error techniques [see, e.g., Squires,

1985]. In general, multiplying a random variable by a constant simply scales the uncer-

tainty by the same constant:

x′ = cx =⇒ σx′ = cσx (where cis a constant).

When adding random variables, the resulting uncertainty is the quadrature sum of the

individual uncertainties:

x′ = ∑
i

xi =⇒ σx′ =
√

∑
i

σ2
xi

.

These relations can be combined to give

x′ = c′∑
i

cixi =⇒ σx′ = c′
√

∑
i
(ciσxi)

2.

Comparing this result to Equation 4.16 demonstrates that the uncertainty of the kth channel

of the resampled spectrum is

σR
k =

1
∆ f R

k

√
∑

i

(
Fki

)2 (
σi

)2. (4.20)



89

4.4.2 Spectral Definitions

We can now apply the results of Section 4.4.1 to resample the spectra used for the de-

convolution. The following discussion assumes that we have a set of DSB data, do,W , the

corresponding USB and LSB frequencies for each of these channels, and the frequency bins

corresponding to the desired SSB spectrum.

To fully define each of these spectra, we require a set of frequencies representing the

channel centers, f , and another set representing the width of each channel, ∆ f . The

SSB, USB, and LSB spectral channels can then be represented by the vectors f SSB, ∆ f SSB,

f USB,W , ∆ f USB,W , f LSB,W , and ∆ f LSB,W .

For each individual spectrum in do,W , assume that the USB channel centers are sorted

in ascending order while the LSB channel centers are sorted in descending order such that

f LSB,W
i > f LSB,W

i+1 . The individual sets of frequencies are stacked together end to end in

the same manner as do,W to form f USB,W and f LSB,W . Likewise, assume the SSB channel

centers are sorted in ascending order. The USB and LSB channels for each spectrum are

not independent; both correspond to an underlying set of IF channel spacings used in the

spectrometer (Equation 4.2). Therefore, we must have ∆ f LSB,W
i = ∆ f USB,W

i .

From these vectors, we can easily calculate several vectors corresponding to the edges

of each channel, such that the ith channel covers the frequency range ci to ci+1:

cSSB
i =


f SSB
1 − 1

2 ∆ f SSB
1 for i = 1

f SSB
i + 1

2 ∆ f SSB
i−1 for i > 1

cUSB,W
i =


f USB,W
1 − 1

2 ∆ f USB,W
1 for i = 1

f USB,W
i + 1

2 ∆ f USB,W
i−1 for i > 1

cLSB,W
i =


f LSB,W
1 + 1

2 ∆ f LSB,W
1 for i = 1

f LSB,W
i − 1

2 ∆ f LSB,W
i−1 for i > 1.

(4.21)

As with the frequency vectors, the USB and SSB channel-edge vectors are stored in ascend-

ing order while the LSB vector is sorted in descending order such that cLSB,W
i > cLSB,W

i+1

within each spectrum. If there are N channels in a particular spectrum, there will be

(N + 1) values in the channel-edge vector.
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4.4.3 Aligned SSB and DSB Spectra

Using the notation of Section 4.4.2, we can now define the concept of “frequency-aligned”

spectra from Section 4.3 more precisely. In order to use Equation 4.3 for the convolution

matrix, the edges of each DSB channel must match the edges of two channels in the SSB

spectrum, one for the upper sideband, and one for the lower sideband. Figure 4.3 gives an

overview of how we can resample the spectra to make this happen. The top plot shows the

spectrum as measured in the spectrometer; a particular channel (green) is measured at an

absolute IF frequency of fo. When converted to a DSB spectrum (second diagram), there is

ambiguity about the actual frequency of the observed channel. One way to represent this

observation is to plot the spectrum with two frequency axes. The LSB axis, shown at the

top of the plot, increases to the left while the USB axis, bottom, increases to the right. The

green channel appears at a frequency offset of fo relative to the LO frequency, fLO, shown

at the left edge of the plot. When deconvolving the spectrum, the power in the green

channel could be assigned to the lower sideband, to the upper sideband, or split between

the two, as shown by the light green channels in the two SSB spectra at the bottom of

the figure. The bottom diagram corresponds to the SSB spectrum sampled on the desired

output channels, and the third plot shows that same spectrum, resampled onto channels

that are aligned with the DSB spectrum. Note that the LO frequency falls on the boundary

of a channel in the resampled SSB spectrum, as required by Equation 4.24. For simplicity,

the step of resampling the DSB spectra to match the SSB channel width is not shown; if

needed, it would represent an additional step between the first and second plots.

Converting these concepts into equations, we can say that LSB channel i aligns with

SSB channel j if

cLSB
i = cSSB

j+1 and (4.22a)

cLSB
i+1 = cSSB

j , (4.22b)

and that USB channel i aligns with SSB channel k if

cUSB
i = cSSB

k and (4.22c)

cUSB
i+1 = cSSB

k+1. (4.22d)
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Figure 4.2: Generating frequency-aligned spectra.
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Figure 4.3: Spectral definitions. The top plot shows a DSB spectrum, with two frequency
axes corresponding to the possible frequencies of the observed channel. The LSB axis, top,
increases to the left while the USB axis, bottom, increases to the right. In order to be aligned
with the DSB spectrum, the SSB spectrum (bottom plot) must have channels with edges
that match either the LSB channel limits or the USB channel limits in the DSB spectrum.

We define the DSB and SSB spectra as frequency-aligned if values of j and k can be found

to satisfy these equations for every value of i.

From Equations 4.2, we know that

f IF = fLO − fLSB = fUSB − fLO,

so that for any frequency in the DSB spectrum, the corresponding LSB and USB frequencies

are related by the equation

fLSB = 2 fLO − fUSB.

In particular, this equation can be applied to Equation 4.22a to give
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cLSB
i = 2 fLO − cUSB

i = cSSB
j+1 .

Substituting Equation 4.22c for cUSB
i gives

2 fLO − cSSB
k = cSSB

j+1 . (4.23)

In order to simplify this result further, assume that the channel size is constant across

the SSB spectrum
(
∆ f SSB

i = ∆ f SSB
o
)
. In that case, any two channel boundaries in the SSB

spectrum must be separated by an integral number of frequency steps

cSSB
k − cSSB

j+1 = N∆ f SSB
o ,

where N is an integer. Combining this with equation 4.23 yields the important result

2 fLO − cSSB
k = cSSB

k − N∆ f SSB
o so that

cSSB
k = fLO +

N
2

∆ f SSB
o . (4.24)

In other words, in order for the SSB and DSB spectra to be frequency aligned, the LO

frequency must either fall on a channel boundary or in the center of a channel in the SSB

spectrum, as shown in the third plot in Figure 4.2.

One way of understanding this constraint is shown in Figure 4.4. RF downconver-

sion essentially “folds” the spectrum around the LO. The two sidebands are then added

together and integrated over discrete channels to form the resulting double-sideband spec-

trum. Deconvolution attempts to “unfold” this process to recover the original spectrum,

albeit in a channelized form. Intuitively, the DSB and SSB channels can only be frequency

aligned if the SSB channels are set up so that the LO frequency (the folding line) occurs at

the edge or the center of a channel.

For a single observation, it is always possible to find a set of SSB channels that meets

this requirement. In fact, given that N in Equation 4.24 is a free parameter, there are in

principle an infinite number of sets of SSB channels that would satisfy this requirement,

each with slightly different channel width. However, this freedom disappears when the
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Figure 4.4: Convolution as spectral folding. The top diagram shows a notional SSB spec-
trum containing four peaks. If we consider an LO frequency of 226 GHZ (dashed green
line), then two of the peaks are in the LSB (blue), and two are in the USB (orange). Side-
band convolution can be viewed as a “folding” of the spectrum about the LO frequency
such that a mirrored version of the LSB is superimposed on the USB. The spectrum taken
at the IF output of a double-sideband receiver (such as Z-Rex) can be represented by the
black line in the bottom plot. At each IF frequency, the power from the LSB is added to
that of the USB, and the contribution of each sideband cannot be determined from a single
observation. (See Figure 4.6 for an example of how this ambiguity can be resolved.)
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remaining constraints (Equations 4.22b and 4.22d) are incorporated. Equations 4.22a and

4.22b can be rewritten

cLSB
i = cSSB

j+1 = cSSB
j + ∆ f SSB

o and

cSSB
j = cLSB

i+1 = cLSB
i − ∆ f LSB

i .

The second equation can be substituted for cSSB
j in the first, giving

cLSB
i = cLSB

i − ∆ f LSB
i + ∆ f SSB

o and

∆ f LSB
i = ∆ f SSB

o . (4.25a)

Likewise, equations 4.22d can be written as

cUSB
i + ∆ f USB

i = cSSB
k + ∆ f SSB

o ,

which can be simplified using Equation 4.22c to produce a similar results for the USB

channel sizes:

∆ f USB
i = ∆ f SSB

o . (4.25b)

Equations 4.25 require that the DSB and SSB channel sizes be the same width, removing

the flexibility introduced by the value of N in Equation 4.24. Nonetheless, for a given DSB

spectrum and LO setting, there is always a set of SSB channel spacings satisfying these

requirements, allowing the simple model presented in Section 4.3 to be applied.

However, while this approach works for a single DSB spectrum, in general no set of SSB

channel spacings can be found that would satisfy these constraints for multiple DSB spec-

tra. The only way to achieve this goal would be to choose LO settings that were multiples

of ∆ f SSB
0 /2. Not only would this significantly complicate the observing process, but such

a choice would adversely impact the quality of the deconvolved spectrum, as discussed at

the beginning of Section 4.4.

Therefore, is necessary to add an extra step to the deconvolution. Equation 4.4 proposes

a model in which the SSB and DSB spectra are linked by a simple convolution matrix M,
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comprised of ones and zeros. This simple form of M can be maintained if s is resampled

onto frequency-aligned channels; however, there must be Nobs resampled SSB spectra, one

for each DSB spectrum. Let the nth such spectrum be represented by

s(n),R = S(n) · s, (4.26)

where S(n) is a matrix that resamples s according to the method represented by Equation

4.19. Note that sR only needs to include frequencies that are part of either the upper or

lower sidebands of the corresponding DSB spectrum.

Under this formulation, sR must have channel spacings equal to those in the nth DSB

spectrum. However, it does not make sense to use channel spacings considerably smaller

than the underlying “master spectrum,” s. The resampling calculations are not meaningful

for that case, plus it increases computing time without producing any improvements in the

final spectrum. Therefore, we resample the DSB data to give it channel widths similar to

those in s. In an analogous fashion to Equation 4.26, this can be represented as

do(n),R = D(n) · do(n),W , (4.27)

where D(n) resamples the DSB data according to Equation 4.19.

Each of the resampling equations can be simplified by stacking the spectra end to end

to give vectors sR and do,R, containing all of the individual resampled SSB spectra and re-

sampled DSB spectra, respectively. The individual resampling matrices, S(n) and D(n), can

likewise be assembled into matrices, S and D. (See Figure 4.5.) The resampling equations

can be summarized as
sR = S · s and

do,R = D · do,W .
(4.28)

4.4.4 Convolution Model with Non-Aligned Spectra

With these changes, the model of Section 4.3 becomes

dR = MR · sR, (4.31)
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NR
SSB

elements





↑
sR1

↓
↑

sR2

↓

...

↑
sRNobs

↓



=



S1

S2

...

SNobs



·

 ↑
s
↓

  NSSB
elements

(4.29)

NR
DSB

elements





↑
do,R,1

↓
↑

do,R,2

↓

...

↑
do,R,Nobs

↓



=



D1 0 0 0

0 D2 0 0

. . .

0 0 0 DNobs


·



↑
do,W ,1

↓
↑

do,W ,2

↓

...

↑
do,W ,Nobs

↓





NDSB
elements

(4.30)

Figure 4.5: Assembling resampled s(n),R (top) and do(n),R (bottom) into single vectors,
along with the associated resampling equations.
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where MR keeps the simple zero-or-one form described in Equation 4.3, and markers have

been added as a reminder that dR should be compared to do,R, not do,W .

4.5 Incorporating Unequal Sideband Gains

In deriving the simple models of the previous sections, several important effects were ex-

cluded. Now that the basic aspects of the model have been described, it is time to incorpo-

rate those modifications, starting with the receiver’s sideband gains. The results of Section

2.1 demonstrate that the signals from the two sidebands need to be treated separately in

the presence of unequal sideband gains. We can rewrite Equation 2.14 as

T∗A = (1− γ) T∗(LSB)
A + (1 + γ) T∗(USB)

A , (4.32)

where ηsrc and ηcold have been incorporated into each term by defining T∗(LSB)
A = ηsrcηcoldTLSB

src

and T∗(USB)
A = ηsrcηcoldTUSB

src .

The derivation in Section 2.1 considers only the output of a single spectrometer chan-

nel. It is relatively easy to generalize the results to cover multi-channel spectra taken at a

variety of LO frequencies, but it will require some additional bookkeeping. In particular, γ

cannot be represented as a single, fixed scalar. Instead, the sideband-gain imbalance must

be treated as a frequency-dependent function, γ ( fLO, f IF). Experience with these receivers

indicates that γ changes relatively slowly with frequency, allowing us to approximate it as

a series of flat gains represented as the components of a vector, γ.

The formalism developed for previous models (e.g., Equation 4.4) can be applied by

noting that spectra at the CSO are recorded using the T∗A scale [Peng, 2002]. Therefore,

we can associate Equation 4.32 with a single channel in the modeled DSB data, dR while

T∗(LSB)
A and T∗(USB)

A are just the appropriate channels of sR:

d(a),R
i = [1− γ ( fLO, f IF)] s(a),R

j + [1 + γ ( fLO, f IF)] s(a),R
j , (4.33)

Assume that channel i falls in the ath DSB spectrum and that γ changes sufficiently slowly

that all of the ath DSB spectrum can be modeled using a single value of the sideband gain,

γa. Then, as before, we can use a convolution matrix to generate a set of predicted data:
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Figure 4.6: As shown in Figure 4.4, a single DSB observation cannot determine which
sideband produced a given peak; however, that ambiguity can be resolved by performing
additional observations at other LO frequencies. Here, the top plot shows the true SSB
spectrum, and the green line (marked “LO 1”) corresponds to the LO used in Figure 4.4.
The black dashed line in the lower left plot corresponds to the spectrum that would be seen
using that LO. By shifting the LO to a slightly higher frequency (“LO 2”), we can resolve
the sideband ambiguity. As shown by the orange arrow, peaks in the USB will move to
lower IF frequencies while LSB peaks will move to higher IF frequencies. The spectrum
that would be generated using the higher LO setting is represented by the black line in
the lower right plot. Due to peak blending, the original sideband for each peak cannot be
determined by simple inspection, but the algorithms described in this work can be used to
estimate the original SSB spectrum.
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d(a),R
i = ∑

j

[
(1− γa) MLSB(a),R

ij + (1 + γa) MUSB(a),R
ij

]
s(a),R

j . (4.34)

This result also includes the appropriate resampling to ensure that the SSB and DSB chan-

nels are frequency-aligned (Section 4.4.1).

To accommodate the unequal sideband gains, the convolution matrix has been divided

into two parts, corresponding to the downconversion from the different sidebands. Con-

version from the upper sideband is represented by MUSB,R, where

MUSB,R
ij =


1 if f USB,R

i = f SSB,R
j

0 otherwise
. (4.35a)

Likewise, lower-sideband conversion is represented by MLSB,R, where

MLSB,R
ij =


1 if f LSB,R

i = f SSB,R
j

0 otherwise
. (4.35b)

Comparing these definitions to Equation 4.3 demonstrates that these matrices are just the

single-sideband versions of the previous double-sideband deconvolution matrix.

Rearranging Equation 4.34 and converting to matrix form gives the slightly simpler

result

d(a),R =
(

MΣ(a),R + γa M∆(a),R
)
· s(a),R, (4.36)

where we have defined
MΣ,R = MUSB,R + MLSB,R and

M∆,R = MUSB,R −MLSB,R.
(4.37)

To generalize this to the full set of DSB data, we can define a sideband-gain matrix, ΓR,

with the individual sideband-gain parameters arranged along the diagonal as shown in

Figure 4.7.

Equation 4.36 can then be seen to be the ath component of the more general equation

dR =
(

MΣ,R + ΓR ·M∆,R) · sR, (4.39)
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ΓR =



γ1 0 0

0 γ1 0
. . .

0 0 γ1

0 0 0

0

γ2 0 0

0 γ2 0
. . .

0 0 γ2

0 0

. . .

0 0 0

γNγ 0 0

0 γNγ 0

. . .

0 0 γNγ



. (4.38)

Figure 4.7: Sideband-gain matrix, ΓR.
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which can be further simplified to

dR = MΓ,R · sR (4.40)

by using the definition

MΓ,R = MΣ,R + ΓR ·M∆,R. (4.41)

In subsequent sections, we derive methods for finding the best-fit values of the sideband-

gain parameters for a given set of DSB data. In the calculation, it is important to have a

compact way of representing the unique elements of ΓR (namely, the Na components of γ).

To assist in that calculation, we define the set of truncated identity functions, 1a,R, which

are NR
DSB × NR

DSB matrices with ones along a section of the diagonal and zeros elsewhere.

The ath matrix, 1a,R, has ones along the diagonal in the positions corresponding to the

channels in dR that are modeled using the ath sideband gain, γa. (See Figure 4.8.)

Thus, the series of matrices looks like

11,R =


1 0 0

0 0 0

. . .
0 0 0

 , 12,R =


0 0 0

0 1 0

. . .
0 0 0

 ,

· · · , 1Nγ,R =


0 0 0

0 0 0

. . .
0 0 1

 . (4.43)

For later calculations, it is useful to note that

1a,R · 1b,R = 1a,Rδab. (4.44)

This definition allows us to write the sideband-gain matrix as

ΓR =
Nγ

∑
a=1

γa1a,R. (4.45)
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1a,R =



0 0 0
0 0 0

. . .
0 0 0

· · · 0 0 0 · · · 0

...
. . .

...

0 0

0 0 0
0 0 0

. . .
0 0 0

0 0 0

0 0 0

1 0 0
0 1 0

. . .
0 0 1

0 0

0 0 0 0

0 0 0
0 0 0

. . .
0 0 0

0

...
. . .

...

0 0 0 0 0 0

0 0 0
0 0 0

. . .
0 0 0



.

(4.42)

Figure 4.8: Sample truncated-identity matrix
(
1a,R). All elements are zero except for a few

ones along the diagonal (shown in red). These positions correspond to the elements of dR

that are affected by the value of the ath sideband gain, γa.



104

For simplicity, our implementation of this model uses a separate sideband gain pa-

rameter for each DSB spectrum
(

Nγ = Nobs

)
. However, it is easy to use fewer or more

sideband-gain parameters by modifying the 1a,R matrices accordingly. This might be par-

ticularly useful if one of the sidebands contains strong atmospheric lines, which can sig-

nificantly alter the atmospheric opacity over a small frequency range. The impact of such

lines on the final deconvolved spectrum could be minimized by assigning additional side-

band gains to cover the affected frequencies.

4.6 Spectral Baselines

DSB spectra often have baselines that must be removed before further analysis. These can

be caused by instrumental artifacts in the spectrometer, imperfect subtraction in the off-

position, and standing waves in the optics or IF processing equipment. These are usually

assumed to be well represented by low-order polynomials, although the third effect in

particular can add a sinusoidal ripple to the baseline.

Previous line surveys usually removed these baselines by fitting low-order polynomi-

als to the individual DSB spectra and then performing the deconvolution. However, it

is often difficult to separate artificial baselines from actual emission, particularly in line-

confused spectra. If we instead include the baseline fit as part of the deconvolution, we

can take advantage of all available information to try to produce the most accurate decon-

volved spectrum. Therefore, in addition to the convolution introduced by the downcon-

version, we now add a baseline component to the model:

dR = MΓ,R · sR + ηBβR, (4.46)

where βR represents the set of baselines, sampled onto the same channels as dR. The

factor of ηB should be set to either 0 or 1 and merely provides an easy way of removing the

baseline term from the model if desired.

Our model allows the baseline to include arbitrary functions of the channel number (or

equivalently the channel frequency), but it must be linear in those functions. The baseline
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for the ith channel of the ath DSB spectrum can therefore be represented as

βR,a
i = ∑

n
ba

nCR,a
n (i)

where CR,a
n (i) is a channel- or frequency-dependent function, and the optimization process

is used to generate the coefficients ba
n. With an eye toward maintaining reasonable com-

putation times, the model does not allow CR,a
n (i) to contain any adjustable parameters to

be fit. In particular, sinusoidal components with an adjustable period cannot be included,

which seems consistent with the approach taken in previous surveys. Our deconvolution

software uses only a low-order polynomial for the baseline; however, in principle, any

fixed function of spectrometer channel frequencies could be used.

The baseline terms can be easily incorporated into the previous model by defining a

matrix, CR,a, that contains the result of evaluating each of the CR,a
n (i) over all of the chan-

nels of an individual DSB spectrum:

CR,a
ij =


CR,a

1 (1) CR,a
2 (1) · · ·

CR,a
1 (2) CR,a

2 (2) · · ·
...

...
. . .

 . (4.47)

As a simplistic example, consider representing the baseline as a second-order polynomial

using the following functions of the channel number, i:7

CR,a
1 (i) = i0,

CR,a
2 (i) = i1, and

CR,a
3 (i) = i2.

(4.48)

Then the the baseline for the ath DSB spectrum will be equal to

7These functions are chosen for illustrative clarity; however, these are not actually the appropriate functions
to use for a second-order fit. To enable faster convergence and more accurate fits, the baseline functions should
be orthogonal to each other. (See Section 4.6.1.)
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βR,a =



10 11 12

20 21 22

30 31 32

...(
NR,a

DSB

)0 (
NR,a

DSB

)1 (
NR,a

DSB

)2




ba

1

ba
2

ba
3

 =



1 1 1

1 2 4

1 3 9
...

1 NR,a
DSB

(
NR,a

DSB

)2




ba

1

ba
2

ba
3

 ,

where ba
1 represents the magnitude of the zeroth-order term, and so forth. The full set of

baselines can be generated as a single vector with the same length as dR by joining all of

the baseline coefficients into one vector, and creating a block-diagonal matrix of the CR,a

to give



↑
βR,1

↓

↑
βR,2

↓

...



=



CR,1 0 0

0 CR,2 0

0 0
. . .


·



↑
b for spectrum 1

↓

↑
b for spectrum 2

↓

...


, (4.49)

which can be expressed in compact form as

βR = CR · b. (4.50)

4.6.1 Orthogonal Baseline Functions

We use second-order polynomials as the highest-order function for our baseline fits, as

those are sufficient for most of the spectra from the CSO 4-GHz AOS, as long as obser-

vations are taken under reasonable conditions. While the simple set of baseline functions

presented in Equation 4.48 includes polynomials up through second order, that formula-

tion creates difficulties for the optimization routine. For instance, the mean value of each

of the three functions is non-zero; therefore, the optimizer could represent a constant offset
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in a spectrum using any of the three functions, or some combination thereof. This equiva-

lence makes it difficult for the optimizer to find the best set of parameters, forcing it to put

considerable effort into searching through different combinations of baseline functions.

This problem can be eliminated by choosing baseline functions that are orthogonal to

each other. For convenience, the equations can also be chosen to have unity normalization,

resulting in a set of orthonormal baseline functions. If the spectrum under consideration

spans a channel range from i = {imin, . . . , imax}, the orthonormality requirement can be

represented by the equation
imax

∑
i=imin

f (j)
i f (k)i = δjk, (4.51)

where f (0)i , f (1)i , and f (2)i represent the constant, linear, and quadratic baseline functions,

respectively, evaluated at the ith channel. These three functions can be represented in the

most general terms as

f (0)i = c0

f (1)i = l1

(
i− io

no

)
+ l0

f (2)i = q2

(
i− io

no

)2

+ q1

(
i− io

no

)
+ q0,

(4.52)

where io and no represent a reference channel and normalization constant, respectively,

that can be chosen to keep the factors in parentheses from getting too large. The coeffi-

cients (c0, l1, l0, q2, q1, and q0) can be set by requiring that Equation 4.51 be satisfied for any

combination of f (0)i , f (1)i , and f (2)i . This represents a system of six nonlinear equations with

six unknowns. There are several self-consistent sets of coefficients that satisfy these con-

straints; we arbitrarily choose the set in which all of the leading coefficients (c0, l1, and q2)

are positive, yielding a unique solution (for arbitrary io and no):
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c0 =
1√

∆i + 1

l1 =
2
√

3no√
∆i (∆i + 1) (∆i + 2)

l0 = −
√

3(imax + imin − 2io)√
∆i (∆i + 1) (∆i + 2)

q2 =
6
√

5n2
o√

(∆i− 1)∆i (1 + ∆i) (∆i + 2) (∆i + 3)

q1 = − 6
√

5(imax + imin − 2io)no√
(∆i− 1)∆i (∆i + 1) (∆i + 2) (∆i + 3)

q0 =

√
5
(
−imax + i2

max + imin + 4imaximin + i2
min − 6(imax + imin)io + 6i2

o
)√

(∆i− 1)∆i (∆i + 1) (∆i + 2) (∆i + 3)
,

where ∆i = imax − imin. These equations can be (somewhat) simplified by an appropriate

choice for io. To satisfy the orthogonality requirements, the linear and quadratic terms

must have zero means across the spectrum, implying

imax

∑
i=imin

f (1)i =
imax

∑
i=imin

f (2)i = 0.

For the linear term, this can be easily satisfied by setting io to be the midpoint of the spec-

trum, io =
1
2 (imax + imin). Using no =

1
2 ∆i helps to keep the coefficients of reasonable order

even for larger spectra. With these substitutions, the coefficients for the polynomials are

c0 =
1√

∆i + 1

l1 =

√
3∆i√

∆i (∆i + 1) (∆i + 2)

l0 = 0

q2 =
3
√

5(∆i)2

2
√
(∆i− 1)∆i (∆i + 1) (∆i + 2) (∆i + 3)

q1 = 0

q0 = −
√

5∆i (∆i + 2)
2
√
(∆i− 1) (∆i + 1) (∆i + 2) (∆i + 3)

= − (∆i + 2)
3∆i

q2.

(4.53)

The set of orthonormal baselines represented by Equations 4.53 are used in the current

implementation of the deconvolution algorithm.
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4.7 Normalization of Spectra

In the following sections, it is convenient to normalize the predicted and measured DSB

data sets by their uncertainties such that

dNR
i =

dR
i

σR
i

and

do,NR
i =

do,R
i

σR
i

,

(4.54)

where σR
i represents the uncertainty in the ith channel of the resampled DSB spectrum

(Equation 4.20). To simplify these equations, we define a normalization matrix, Aσ,R, con-

sisting of 1
σR

i
along its diagonal,

Aσ,R =



1
σR

1
0 0 0

0 1
σR

2

0 0

0 0
. . . 0

0 0 0 1
σR

NDSB


, (4.55)

in which case dNR and do,NR can be written as

dNR = Aσ,R · dR and

do,NR = Aσ,R · do,R.
(4.56)

Similarly, we can also normalize the baselines:

βNR = Aσ,R · βR. (4.57)

4.8 Full Convolution Model

Rather than explicitly including the normalization and SSB-resampling matrices in every

equation, we define normalized convolution matrices that incorporate Aσ,R and S:
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MΓ,NR = Aσ,R ·MΓ,R · S,

MΣ,NR = Aσ,R ·MΣ,R · S, and

M∆,NR = Aσ,R ·M∆,R · S.

(4.58)

Because ΓR and Aσ,R are both diagonal matrices that can be safely interchanged during

multiplication, MΓ,NR may be written in terms of MΣ,NR and M∆,NR:

MΓ,NR = MΣ,NR + ΓR ·M∆,NR. (4.59)

To simplify equations, the normalization matrix can also be pulled into CR to give

CNR = Aσ,R · CR,

so that

βNR = CNR · b (4.60)

The full convolution model can be written as

dR = MΓ,R · sR + ηBCR · b, and

dNR = MΓ,NR · s + ηBCNR · b.
(4.61)

For later reference, it is useful to expand dNR in terms of the unknown parameters:

dNR =

[
MΣ,NR +

(
∑

a
γa1a,R

)
·M∆,NR

]
· s + ηBCNR · b. (4.62)

The adjustable parameters that can be used to optimize the value of dNR are γ, s, and b.

The remaining quantities are fixed matrices that can be calculated once during the setup

phase of the deconvolution and do not need to be adjusted during each iteration.
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4.9 Figure of Merit

As outlined in Section 4.2.1, the sideband deconvolution can be performed using an opti-

mization routine that seeks to minimize an error function by adjusting the values of γ, s,

and b in Equation 4.62. We define our figure of merit to be a slightly modified version of

χ2:

χ2
mod = λχ ∑

i

(
dR

i − do,R
i

)2

(
σR

i

)2 + λSsT · s + ηBλB ∑
i

(
βR

i
)2(

σR
i

)2 + λGγT · γ, (4.63)

where the first term represents the typical definition of χ2, and the superscripted T indi-

cates the matrix transpose. We can further simplify this equation by absorbing σR
i into the

numerators of the first and third terms. By defining the normalized DSB spectra (Equa-

tion 4.56) and the normalized baselines (Equation 4.57), we can rewrite Equation 4.63

as

χ2
mod = λχ

(
dNRT − do,NRT

)
·
(

dNR − do,NR
)
+ λSsT · s + ηBλBβNRT · βNR + λGγT · γ.

(4.64)

The final three terms can be used to adjust the solution found by the optimization routine

while the various λ factors control the strength of each of these effects.

If λS > 0, the second term, λSsT · s, encourages the optimizer to minimize the norm

of s unless the data require otherwise. In order to increase the magnitude of a given si,

the optimizer must determine that the corresponding decrease in the first term overcomes

the penalty represented by the second term. In particular, this term forces si to zero if

that frequency is not included in any of the DSB spectra; otherwise, such channels are

unconstrained and can cause the optimization to become unstable.

Similarly, the third term in Equation 4.63, ηBλBβNRT · βNR, forces the routine to min-

imize the norm of the baseline. Using the normalized baselines, βNR, prevents the algo-

rithm from working too hard to fine-tune the baseline of an inherently poor spectrum. In

principle, balancing the value of λB with respect to λS should encourage the algorithm to

preferentially attribute flux to the single-sideband spectrum if possible. In practice, how-

ever, we have not found this necessary and usually set λB = 0. As discussed previously

(see Equation 4.46), the ηB factor can be used to turn off the baseline term. The final term,
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λGγT · γ, pulls the sideband gains as close to to unity as possible, although we often use

λG = 0 as well.

To simplify calculations, we use the following equations to indicate the individual

terms of Equation 4.64:

χ2
o,i = λχ

(
dNR

i − do,NR
i

)2
, (4.65a)

χ2
S,j = λS

(
sj

)2
, (4.65b)

χ2
β,k = ηBλB

(
βNR

k

)2
, and (4.65c)

χ2
γ,m = λG (γm)2 . (4.65d)

Equation 4.64 can then be written

χ2
mod =

NR
DSB

∑
i=1

χ2
o,i +

NSSB

∑
j=1

χ2
S,j +

NR
DSB

∑
k=1

χ2
β,k +

Nγ

∑
m=1

χ2
γ,m. (4.66)

For use in later sections, we write each of these quantities in terms of the model parameters.

Equations 4.65b and 4.65d are already expressed in that form while Equation 4.65c can be

easily expanded via Equation 4.50. Using Equation 4.61, we can write Equation 4.65a as

χ2
o,i = λχ

[(
MΣ,NR

ik +
Nγ

∑
a=1

γa1a,R
ij M∆,NR

jk

)
sk + ηBCNR

ij bj − do,NR
i

]2

,

where repeated indices on matrices and vectors represent implicit sums. Since the a index

on γa and 1a is non-standard, that sum is represented explicitly.

4.9.1 Continuation Solution

In early tests of the deconvolution algorithm, we found that the optimizer sometimes got

stuck on a clearly incorrect solution. It appeared to be trapped in a local minimum, with

no way to explore the rest of the χ2
mod space to find an improved solution. To help guide

the optimizer to a reasonable set of parameters, we have implemented a “continuation

solution” method. The first term of χ2
mod contains a multiplicative factor, λχ, that can be
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used to implement the continuation solution. Initially, λχ is set to some small value so that

the other terms dominate χ2
mod. The optimizer generates a solution for that small value of

λχ; then λχ is increased and the previous solution is used as the starting point for the new

optimization. The process is repeated until λχ = 1.

The value of the optimization parameters at the end of the first iteration is determined

by the λS, λB, and λG terms, presumably causing the parameters to go to zero (or at least to

a well-understood value) at a point representing the global minimum of the χ2
mod surface.

If λχ is increased slowly enough, the position of the global minimum in the parameter

space will move only slightly for the next iteration. The optimizer will start near this

location, which should help it to find the new global minimum rather than wandering off

to a different local minimum. We have found that adjusting λχin logarithmic steps

λχ = {λmin
χ , 10∆Lλmin

χ , 102∆Lλmin
χ , . . . , λmax

χ } with ∆L =
log10 λmax

χ − log10 λmin
χ

Nsteps − 1

works better than linear steps

λχ = {λmin
χ , λmin

χ + ∆λχ, λmin
χ + 2∆λχ, . . . , λmax

χ } with ∆λχ =
λmax

χ − λmin
χ

Nsteps − 1
.

In general, λmax
χ should be equal to 1; setting λmin

χ = 10−6 with Nsteps = 12 logarithmic

steps worked well in our testing.

4.10 Optimizing χ2
mod

When selecting an optimization method to minimize χ2
mod, there are several general fea-

tures of the model to keep in mind. First, the spectral values in the single-sideband spec-

trum are multiplied by the sideband-gain parameters (Equation 4.61), making the prob-

lem nonlinear in its independent parameters. Because the problem is nonlinear, there is

no guarantee that the minimum identified by the algorithm represents a global minimum,

rather than a local minimum. Second, the problem is typically over constrained, as most

line surveys have considerably more constraints (represented by the number of elements
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in do,W ) than independent parameters. This is a desirable situation that improves the de-

convolution routine’s ability to recover the full spectrum. Finally, when fitting such a large

number of parameters, it is easy for the optimization algorithms to wander off in entirely

the wrong direction.8

The most direct approach to minimizing χ2
mod is to use an algorithm capable of finding

the minimum (or maximum) value of an arbitrary multi-dimensional function. Usually

this is known simply as parameter optimization, but we will refer to it as “direct optimiza-

tion” to distinguish from the other optimization methods discussed below. Not surpris-

ingly, nonlinear parameter estimation is commonly encountered in scientific computing,

and there are a variety of algorithms designed for this purpose [see, for example, Press

et al., 1992, Chap. 10].

Another method is to take the derivative of χ2
mod with respect to each of the inde-

pendent parameters and set the results equal to zero. This generates a set of equations
∂χ2

mod
∂xi

= 0, where xi represents the set of independent parameters. Solving for the xi yields

a set of parameters corresponding to a local minimum or maximum. As with direct opti-

mization, nonlinear root finding also represents a major branch of numerical computing,

and there are many algorithms devoted to this purpose [e.g., Press et al., 1992, Chap. 9].

Finally, we have investigated the viability of a hybrid model, using a mix of direct-

optimization and root-finding algorithms. As seen in Equation 4.61, the equations under-

lying this model come tantalizingly close to being linear. If the sideband-gain parameters

could somehow be known a priori, the remaining parameters would be related in a lin-

ear fashion. We capitalize on this fact by using a direct-optimization routine in an “outer

loop” to find the values of the sideband gains. Inside that loop, we treat these parameters

as fixed, allowing us to apply linear root-finding techniques. These have the advantage

of being very fast; in addition, for a given set of sideband gains, the linear problem has a

unique solution corresponding to the global minimum of the χ2
mod surface.9

8If one were to imagine the chi-square surface in terms of its geographical analog, the algorithms have a
particularly hard time dealing with broad, flat “plains” instead of deep, well-defined “bowls.” The algorithm
dutifully explores this plain, eventually finding its lowest point, rather than crossing the nearby ridge to find
the even deeper valley beyond.

9Ultimately, however, this is still a local minimum, as the values of the sideband-gain parameters are de-
termined by a nonlinear optimizer.
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In principle, any of these methods should produce the correct answer; however, as is

often the case with scientific computing, stability and efficiency are important issues. In

practice, we have had the best results using the direct optimization and hybrid approaches,

although the root-finding method works exceptionally well if the sideband gains are in

fact known. In both the direct optimization and the hybrid method, the tendency of the

direct-optimization algorithm to wander off from the desired solution can be mitigated by

selecting small steps for λχ.

In the following sections, we discuss each of these approaches in more detail and de-

scribe the implementation of each that we have developed using MATLAB,10 which pro-

vides libraries of general-purpose functions for optimization and root finding.

Usually, the algorithms require a set of parameters to use as the starting point for the

first iteration. Setting all of the parameters to zero has a certain aesthetic appeal, as it rep-

resents an unbiased method of initiating the algorithm. However, we have found some

instances in which the algorithms have difficulty moving off of zero. Therefore, we typi-

cally use a set of small random numbers for the first iteration.

Several of the MATLAB functions need information about the relevant derivatives, ex-

pressed in the form of a Jacobian matrix, to update the parameter values from one iteration

to the next. MATLAB can either estimate the Jacobian numerically, or the user can provide

a function capable of calculating the Jacobian. As demonstrated in the following examples,

calculating an analytic Jacobian can be tedious; however, it dramatically reduces execution

time. Otherwise, MATLAB is forced to generate a discrete approximation to the Jacobian.

On current computing hardware, numerically estimating the Jacobian is not feasible for

realistically sized data sets. However, MATLAB’s ability to numerically estimate the Jaco-

bian provides a valuable method of validating the analytic results.

10While this discussion focuses on MATLAB, most numerical-analysis packages contain similar capabilities,
or routines can be built from scratch using the advice of references such as Press et al. [1992].
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4.11 Direct Optimization of χ2
mod

From an implementation perspective, directly minimizing χ2
mod is simple. While MAT-

LAB offers several general-purpose optimization routines, we have found the lsqnonlin()

function to be particularly useful. It is part of the MATLAB Optimization Toolbox, and it

is specifically designed for least-squares problems of this form.

The lsqnonlin() function assumes the user seeks to minimize a multivariable function

F, which can be represented as the sum of the squares of a set of functions, { fi}:

Find x that minimizes F (x) = ∑
i
| fi (x)|2 .

By comparison to Equations 4.65 and 4.66, χ2
mod can be cast in the form required by lsq-

nonlin() if we make the following identifications:

fo,i (s, b, γ) =
√

λχ

(
dNR

i − do,NR
i

)
, (4.67a)

fS,j (s) =
√

λS

(
sj

)
, (4.67b)

fβ,k (b) =
√

ηBλB

(
βNR

k

)
, (4.67c)

and fγ,m (γ) =
√

λG (γm) . (4.67d)

In that case, χ2
mod is equal to the function F used by lsqnonlin():

χ2
mod = F (s, b, γ) =

NR
DSB

∑
i=1

f 2
o,i +

NSSB

∑
j=1

f 2
S,j +

NR
DSB

∑
k=1

f 2
β,k +

Nγ

∑
m=1

f 2
γ,m.

One interesting feature of lsqnonlin()is that it optimizes x by analyzing the full vector

of values comprised of { fi (x)}, rather than just the scalar quantity F (x); therefore, the

vector of values that should be returned to it is

(
fo,1 · · · fo,NR

DSB
fS,1 · · · fS,NSSB

fβ,1 · · · fβ,NR
DSB

fγ,1 · · · fγ,Nγ

)
. (4.68)
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For this problem, the Jacobian is defined as

Jopt
ij =

∂ fχ,i

∂xj
, (4.69)

where fχ,i represents fo,i, fS,i, fβ,i, or fγ,i, and xj represents the unknown parameters

x =

(
s1 · · · sNSSB

b1 · · · bNcoe f f
γ1 · · · γNγ

)
. (4.70)

If the unknowns are sorted in the order shown in Equation 4.70, then the full Jacobian can

be written as a block matrix:

Jopt =



∂ fo

∂s
∂ fo

∂b
∂ fo

∂γ

∂ fS

∂s
∂ fS

∂b
∂ fS

∂γ

∂ fβ

∂s
∂ fβ

∂b
∂ fβ

∂γ

∂ fγ

∂s
∂ fγ

∂b
∂ fγ

∂γ



, (4.71)

where each of the entries represents a matrix in its own right. For instance, ∂ fo
∂s is a matrix

in which component
[

∂ fo
∂s

]
ij
=

∂ fo,i
∂sj

.

In the direct-optimization case, the Jacobian matrix is easy to calculate as all of the pa-

rameters (s, b, and γ) are assumed to be independent from one another. From Equations

4.67 it is clear that many of the sub-matrices in the Jacobian are simply equal to 0 since they

do not have any dependence on the differentiation variable:

∂ fS
∂b = 0
∂ fβ

∂s = 0
∂ fγ

∂s = 0

∂ fS
∂γ = 0
∂ fβ

∂γ = 0
∂ fγ

∂b = 0

. (4.72)

The first of the remaining elements, ∂ fo
∂s , can be calculated from Equations 4.67a, 4.61,

and 4.28:
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∂ fo

∂s

]
ij
=
√

λχ
∂

∂sj

(
dNR

i − do,NR
i

)
=
√

λχ
∂

∂sj

[
MΓ,NR · s

]
i

=
√

λχ
∂

∂sj
∑

k
MΓ,NR

ik sk

=
√

λχ ∑
k

MΓ,NR
ik

∂sk
∂sj

=
√

λχ ∑
k

MΓ,NR
ik δjk

=
√

λχ MΓ,NR
ij .

To avoid repeating similar steps for each calculation, common derivatives have been cal-

culated in Sections A.1 and A.2 and tallied in Tables A.1 and A.2. The previous result can

be determined directly from Equation A.13.

The expanded form of dN from Equation 4.62 can be used to determine ∂ fo
∂γ :

[
∂ fo

∂γ

]
ij
=
√

λχ
∂

∂γj

(
dNR

i − do,NR
i

)
=
√

λχ

[
1j,R ·M∆,NR · s

]
i

(by Eq. A.22),

where
[
1j,R ·M∆,NR · s

]
i represents the ith component of the matrix multiplication 1j,R ·

M∆,NR · s.

From Equation 4.46, combined with Equation 4.50, it can be seen that dNR has a simple

dependence on b: [
∂ fo

∂b

]
ij
=
√

λχ
∂

∂bj

(
dNR

i − do,NR
i

)
= ηB

√
λχCN

ij (by Eq. A.14).

The derivatives for the remaining terms be calculated quite easily. Equation 4.67b gives

[
∂ fS

∂s

]
ij
=

∂ fS,i

∂sj

=
√

λS
∂si
∂sj

=
√

λSδij

=
√

λS1ij.

(4.73)
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Similarly, Equation 4.67d allows us to calculate

[
∂ fγ

∂γ

]
ij
=

∂ fγ,i

∂γj

=
√

λG
∂γi

∂γj

=
√

λG1ij.

. (4.74)

Equations 4.50 and 4.67c can be combined to give

[
∂ fβ

∂b

]
ij
=

∂ fβ,i

∂bj

=
√

ηBλB
∂

∂bj

(
∑

k
CNR

ik bk

)

=
√

ηBλBCNR
ij (by Eq. A.2).

(4.75)

Combining all of these results yields the full Jacobian for direct optimization of χ2
mod:

Jopt =



√
λχ MΓ,NR ηB

√
λχCNR Jopt(γ)

√
λS1 0 0

0
√

ηBλBCNR 0

0 0
√

λG1


, (4.76)

where

Jopt(γ)
ij =

√
λχ

[
1j,R ·M∆,NR · s

]
i
. (4.77)

4.12 Optimization of χ2
mod via Nonlinear Root Finding

4.12.1 Nonlinear Equations

An alternative approach to minimizing χ2
mod is to take the derivative of χ2

mod with respect

to each of the independent parameters and to set the result equal to zero. This generates

a set of coupled, nonlinear equations; if a set of parameters (s, b, and γ) can be found
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that simultaneously satisfies these equations, the solution represents a critical point (local

minimum, local maximum, or saddle point) in the χ2
mod surface.

Taking the partial derivatives of χ2
mod with respect to sn and setting the result equal to

zero generates a set of equations that can be used to determine the values of the decon-

volved spectrum:
∂χ2

mod
∂sn

= ∑
i

∂χ2
o,i

∂sn
+ ∑

j

∂χ2
S,j

∂sn
= 0. (4.78)

Similarly, the coefficients of the baseline terms can be found by taking derivatives with

respect to bn and setting the result equal to zero:

∂χ2
mod

∂bn
= ∑

i

∂χ2
o,i

∂bn
+ ∑

k

∂χ2
β,k

∂bn
= 0. (4.79)

Finally, the set of sideband gains can be found by taking the derivative of χ2
mod with respect

to γn and setting the result equal to zero:

∂χ2
mod

∂γn = ∑
i

∂χ2
o,i

∂γn + ∑
m

∂χ2
γ,m

∂γn = 0. (4.80)

The details of these calculations are reserved for Appendix A.3. The three conditions

shown above generate a set of nonlinear equations, which can be copied from Equations

A.23, A.24, and A.25:

λχ MΓ,NRT ·
(

dNR − do,NR
)
+ λSs = 0, (4.81a)

ηBCNRT ·
[
λχ

(
dNR − do,NR

)
+ λBβNR

]
= 0, and (4.81b)

λχ

(
dNR − do,NR

)T
· 1n,R ·M∆,NR · s + λGγn = 0. (4.81c)

Note that the first line represents a vector equation corresponding to NSSB components

while the second represents Ncoe f f components, and the third represents Nγ equations(
n = 1...Nγ

)
.



121

4.12.2 Jacobian

As in Section 4.11, the Jacobian is relatively easy to calculate since all of the parameters are

assumed to be independent from one another. If the unknown parameters are sorted in the

order shown in Equation 4.70, the full Jacobian can then be written in the following form:

Jnonlin =



∂L1

∂sn

∂L1

∂bp

∂L1

∂γq

∂L2

∂sn

∂L2

∂bp

∂L2

∂γq

∂L3

∂sn

∂L3

∂bp

∂L3

∂γq


, (4.82)

where L1,i, L2,i, and L3,i represent the ith components of the left-hand sides of the first,

second, and third lines in Equations 4.81, respectively. (Also see Equations A.27.) The

Jacobian is derived in Appendix A.4.1, with the result contained in Equations A.27 and

A.28:

Jnlin =


λχ MΓ,NRT ·MΓ,NR + λS1 λχηB MΓ,NRT · CNR Jnlin(L1,γ)

ηBλχCNRT ·MΓ,NR ηB (ηBλχ + λB)CNRT · CNR Jnlin(L2,γ)

Jnlin(L3,s) Jnlin(L3,b) Jnlin(L3,γ)

 ,

where:

Jnlin(L1,γ)
ij = λχ

[(
MΣ,NRT

+ 2γj M∆,NRT
)
· 1j,R ·M∆,NR · s

]
i
+

λχ

[
M∆,NRT · 1j,R ·

(
MΣ,NR · s + ηBCNR · b − do,NR

)]
i

Jnlin(L2,γ)
ij = ηBλχ

[
CNRT · 1j,R ·M∆,NR · s

]
i

Jnlin(L3,s)
ij = λχ

[(
MΓ,NRT · 1i,R ·M∆,NR + M∆,NRT · 1i,R ·MΓ,NR

)
· s
]

j

Jnlin(L3,b)
ij = ηBλχ

[
CNRT · 1i,R ·M∆,NR · s

]
j

Jnlin(L3,γ)
ij =

(
λχsT ·M∆,NRT · 1i,R ·M∆,NR · s + λG

)
δij.
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Figure 4.9: The pseudo-linear optimization uses a hybrid approach, in which a fast, linear
solver determines the single-sideband spectrum and baseline parameters associated with
a given set of sideband-gain values. A slower, nonlinear loop iterates the values of the
small number of sideband-gain parameters to optimize the solution.

4.13 Pseudo-Linear Optimization of χ2
mod

Equation 4.61 represents a nearly linear system linking the modeled DSB spectrum
(

dW
)

with the desired unknown quantity, the SSB spectrum s (via Equations 4.28). The inclusion

of the unknown sideband gains (in ΓR) prevents the equations from being truly linear.

However, if the gains were known, then the system of equations would be linear, making

it much easier (and faster) to solve.

Unfortunately, the sideband gains for a given receiver are not usually known. The de-

convolved spectrum that these algorithms produce is extremely sensitive to the precise

value of the sideband gains, making it unlikely that they could be determined to sufficient

precision via simulation or laboratory measurements.11 However, this observation sug-

gests a hybrid approach to the convolution in which the sideband-gain values are set by

an “outer” loop using the direct-optimization approach of Section 4.11. Each iteration of

the outer loop generates a trial set of sideband gains, γtrial , which can then be fed to a

linear “inner” loop as constants. (See Figure 4.9.)

The advantage of this approach is that from the perspective of the outer loop, χ2
mod

is only a function of γ, greatly reducing the dimensionality of the parameter space that

11There is a small chance that a receiver might be stable enough for the gains derived in one deconvolution
to be used in subsequent deconvolution attempts. Given that the gains must be known to high accuracy, this
seems unlikely; however, since the linear method represents a radical improvement in deconvolution time,
it would be worthwhile to study this possibility. This is particularly true for the Herschel mission’s HIFI
instrument, since it could reasonably be expected to have a high degree of stability.
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must be searched by the nonlinear optimizer. In general, a survey contains tens, or at most

hundreds, of individual observations, so that the outer loop would only need to deal with

∼ 102 - 103 free parameters in γ. In contrast, the requested SSB spectrum typically contains

∼ 105 channels, each representing an independent parameter in the direct-optimization

method. Thus, a hybrid approach reduces the dimensionality of the parameter space of the

relatively slower non-linear optimizer by two or three orders of magnitude, presumably

with a corresponding increase in execution speed.

Unfortunately, this approach does increase the complexity of the analytic calculations

needed for the algorithms. In particular, the parameters returned by the inner loop are

entirely defined by the value of γtrial set by the outer loop; therefore, the remaining pa-

rameters need to be viewed as functions of γ: s = s (γ) and b = b (γ). The Jacobian for

the outer loop will not only include terms representing
∂χ2

mod,i
∂γj , but also terms of the form

∂χ2
mod,i

∂sk

∂sk
∂γj and

∂χ2
mod,i

∂bk

∂bk
∂γj . Since the functions s (γ) and b (γ) cannot be found explicitly, a new

approach to deriving the Jacobian is required.

4.13.1 Inner Loop (Linear)

For fixed γ, the convolution model represented by Equation 4.61 is a linear system in the

unknown parameters (s and b). The inner loop minimizes χ2 by taking derivatives with

respect to each of the the free parameters and setting those derivatives equal to zero (an

approach similar to Section 4.12).

Since the inner loop has no control over the values of γ, we drop the χ2
γ term from χ2

mod

to generate the figure of merit used for this calculation:

χ2
lin =

NR
DSB

∑
i=1

χ2
o,i +

NSSB

∑
j=1

χ2
S,j +

NR
DSB

∑
k=1

χ2
β,k, (4.83)

where χ2
o , χ2

S, and χ2
β have the definitions shown in Equations 4.65. As in Section 4.12,

the spectral value of each channel in the deconvolved spectrum can be found by taking the

derivative of χ2
lin with respect to s and setting the result equal to zero (compare to Equation

4.78):
∂χ2

lin
∂sn

= ∑
i

∂χ2
o,i

∂sn
+ ∑

j

∂χ2
S,j

∂sn
= 0.
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The details of the calculation are shown in Section A.8.1.2, with the results contained in

Equations A.47:

λχ MΓ,NRT ·
(

MΓ,NR · s + ηBCNR · b − do,NR
)
+ λSs = 0 (A.47a)

ηBCNRT ·
(

λχ

(
MΓ,NR · s + ηBCNR · b − do,NR

)
+ λBCNR · b

)
= 0. (A.47b)

These equations can be regrouped to gather like terms

(
λχ MΓ,NRT ·MΓ,NR + λS1

)
· s + ηBλχ MΓ,NRT · CNR · b = λχ MΓ,NRT · do,NR (4.85a)

ηBλχCNRT · MΓ,NR · s + ηB (λχ + λB)CNRT · CNR · b = ηBλχCNRT · do,NR, (4.85b)

allowing them to be represented in a more convenient block-matrix form:


λχ MΓ,NRT ·MΓ,NR + λS1 ηBλχ MΓ,NRT · CNR

ηBλχCNRT ·MΓ,NR ηB (λχ + λB)CNRT · CNR





↑
s
↓

↑
b
↓



=


λχ MΓ,NRT · do,NR

ηBλχCNRT · do,NR


. (4.86)

Solving this system of equations for s and b provides the optimal deconvolved spectrum

for the given values of γtrial .

4.13.2 Outer Loop

The outer loop seeks to minimize χ2
mod as given in Equation 4.64; however, rather than

being independent variables, s and b are viewed as functions of γ by the outer loop. Since



125

it uses lsqnonlin() to find the optimal values of γ, the outer loop returns data in the

structure indicated by Equations 4.67 and 4.68. The form of the Jacobian is still given by

Equation 4.69, but now the only independent parameters are the components of γ. We can

rewrite the four functions defined in Equations 4.67 to clearly show their dependence on

γ:

fo,i (s (γ) , b (γ) , γ) =
√

λχ

(
dNR

i − do,NR
i

)
, (4.87a)

fS,j (s (γ)) =
√

λS

(
sj

)
, (4.87b)

fβ,k (b (γ)) =
√

ηBλB

(
βNR

k

)
, and (4.87c)

and fγ,m (γ) =
√

λG (γm) . (4.87d)

We can use a generalized form of the “chain rule” to find the elements of the Jacobian:

Jouter,o
ij =

∂ fo,i

∂γj + ∑
k

∂ fo,i

∂sk

∂sk
∂γj + ∑

k

∂ fo,i

∂bk

∂bk
∂γj ,

Jouter,S
ij = ∑

k

∂ fS,i

∂sk

∂sk
∂γj ,

Jouter,β
ij = ∑

k

∂ fβ,i

∂bk

∂bk
∂γj , and

Jouter,γ
ij =

∂ fγ,i

∂γj .

The overall Jacobian for the outer loop has the form

Jouter =



Jouter,o

Jouter,S

Jouter,β

Jouter,γ



. (4.88)



126

The functions s (γ) and b (γ) cannot be found explicitly, but they are defined implicitly

via Equations 4.85. These equations also contain the information needed for the Jacobian

of the outer loop, which can be extracted using a first-order perturbation analysis. If we let

γo, so, and bo represent a solution to Equations 4.85, we can then approximate the deriva-

tive by calculating the changes in s and b that would be generated by a small deviation

from γo. Mathematically, we represent this by rewriting Equations 4.85 with the following

substitutions:
γ → γo + δγ

s → so + δs

b → bo + δb.

(4.89)

As described in Appendix A.5, we can then simplify the results by gathering the coeffi-

cients of like powers of δγ, δs, and δb. The zeroth order terms (with no dependence on

δγ, δs, or δb) can be set to zero since they represent a solution to Equations 4.85. Since

we are looking for the first-order change in δs and δb, we can ignore any terms that have

second-order or higher dependence on the variations. This leaves a linear set of equations

that can be solved to find the changes in s and b that would result from small change in γ

around γo. The calculation is carried out in Section A.5, with the results given in Equation

A.36. If we convert those equations into a block-matrix format, we find

 λχ MΓ,NR
o

T ·MΓ,NR
o + λS1 ηBλχ MΓ,NR

o
T · CNR

ηBλχCNRT ·MΓ,NR
o ηB (λχ + λB)CNRT · CNR

 ·( δs
δb

)

=

 r1

−ηBλχCNRT · δΓR ·M∆,NR · so

 , (4.90)

where

r1 = −λχ M∆,NRT ·δΓR ·
(

MΓ,NR
o · so + ηBCNR · bo− do,NR

)
−λχ MΓ,NR

o
T ·δΓR ·M∆,NR · so.

While this result does represent the information needed to estimate the Jacobian, it

is not equivalent to having an analytic Jacobian since the system of equations must be
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solved again any time a new value of δΓR is provided. Fortunately, MATLAB provides a

mechanism for cases in which an analytic Jacobian is not available. The JacobMult option

of lsqnonlin can be used in lieu of an analytic Jacobian; it allows the user to provide a

function that can return J · y, J T · y, and J T · J · y, where J is the Jacobian at the current

solution point, and y is an arbitrary vector of appropriate dimension.

By solving Equation 4.90, we can generate values for δs (δγ) and δb (δγ) representing

the change from so and bo caused by changing ΓR by δΓR. As the size of the variation

becomes smaller
(
δΓR → 0

)
, we expect

lim
δΓR→0

δsi (δγ) = ∑
j

∂si
∂γj δγj and

lim
δΓR→0

δbi (δγ) = ∑
j

∂bi
∂γj δγj.

(4.91)

We can use this approximation to estimate the value of J · Y . Letting fχ,i represent one of

the functions from Equation 4.87
(

fo,i, fS,i, fβ,i, or fγ,i
)

gives

[J · y]i = ∑
j

Jijyj

= ∑
j

(
∂ fχ,i

∂γj + ∑
k

∂ fχ,i

∂sk

∂sk
∂γj + ∑

k

∂ fχ,i

∂bk

∂bk
∂γj

)
yj

= ∑
j

f (γ)χ,ij yj + ∑
k

f (s)χ,ik

(
∑

j

∂sk
∂γj yj

)
+ ∑

k
f (b)χ,ik

(
∑

j

∂bk
∂γj yj

)

= ∑
j

f (γ)χ,ij yj + ∑
k

f (s)χ,ik δsk (y) + ∑
k

f (b)χ,ik δbk (y) .

The final step relies on Equation 4.91 to yield the values of ∑j
∂sk
∂γj yj and ∑j

∂bk
∂γj yj, which can

be found by letting δΓR = y and solving for δsi (y) and δbi (y). We have also defined the

matrices

f (γ)χ,ij =
∂ fχ,i

∂γj ,

f (s)χ,ik =
∂ fχ,i

∂sk
, and

f (b)χ,ik =
∂ fχ,i

∂bk
,
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which can be calculated directly from Equation 4.87. Since this result is true for each of the

components of [J · y]i, it can be written as a simple matrix multiplication:

J · y = f (γ)
χ · y + f (s)

χ · δs (y) + f (b)
χ · δb (y) . (4.92)

The algorithm representing the outer loop must also be able to calculate J T · y, where

y is another arbitrary vector of appropriate length. However, we cannot follow the same

approach used for Equation 4.92:

[
J T · y

]
i
= ∑

j
Jij

Tyj

= ∑
j

Jjiyj

= ∑
j

(
∂χ2

mod,j

∂γi + ∑
k

∂χ2
mod,j

∂sk

∂sk
∂γi + ∑

k

∂χ2
mod,j

∂bk

∂bk
∂γi

)
yj

= ∑
j

yj f (γ)χ,ji + ∑
j,k

yj f (s)χ,jk
∂sk
∂γi + ∑

j,k
yj f (b)χ,jk

∂bk
∂γi .

In this case, the two unknown derivatives
(

∂sk
∂γi and ∂bk

∂γi

)
have a free index (i), whereas

Equation 4.91 sums over both of the derivatives’ indices. In order to use Equation 4.91, we

would have to be able to pull individual terms out of those sums.

Instead, we can use Equation 4.92 to find individual components of
[

J T · y
]

i. We start

by defining a set of unit vectors,

θa
i = δai, (4.93)

such that there are Nγ vectors, each with Nγ components, and θa has a one in the ath

component, with zeros elsewhere. We can then use these unit vectors to pull out individual

columns of the Jacobian:

[J · θa]i = ∑
j

Jijθ
a
j

= ∑
j

Jijδaj

= Jia.
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We can substitute this into our earlier equation for
[

J T · y
]

i to find

[
J T · y

]
i
= ∑

j
Jij

Tyj

= ∑
j

Jjiyj

= ∑
j

[
J · θi

]
j
yj

= J · θi · y. (4.94)

Thus, by applying Equation 4.92 once for each of the unit vectors θa, we can build up the

value of J T · y, one component at a time.

Implementing this calculation in MATLAB can be done relatively easily. MATLAB

provides the mldivide function, represented in calculations by a backslash, \, for solving

linear equations of the form A · x = b. If matrix A and vector b are known, the unknown

vector x can be found using the command x = A\b.

Conceptually, A\b is analogous to A−1 · b, except that it is implemented in a more

numerically stable fashion. In addition, mldivide can be used to solve A · X = B, in

which B (and hence X ) are both matrices. The latter capability allows us to solve for all of

the δs (θa) and δb (θa) in one step.

Let ra represent the right-hand side of Equation 4.90, evaluated for δγ = θa. In that

case, we have δΓ = 1a,R, giving

ra =

(
ra

1

−ηBλχCNRT · 1a,R ·M∆,NR · so

)
, (4.95)

where

ra
1 = −λχ M∆,NRT · 1a,R ·

(
MΓ,NR

o · so + ηBCNR · bo− do,NR
)
−

λχ MΓ,NR
o

T · 1a,R ·M∆,NR · so. (4.96)

We define matrix R to consist of columns consisting of the individual ra,
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R =

 ↑
r1

↓

↑
r2

↓
· · ·

↑
rNγ

↓

 , (4.97)

so that Ria = ra
i . If we let matrix L represent the left-hand side of Equation 4.90,

L =

 λχ MΓ,NR
o

T ·MΓ,NR
o + λS1 ηBλχ MΓ,NR

o
T · CNR

ηBλχCNRT ·MΓ,NR
o ηB (λχ + λB)CNRT · CNR

 , (4.98)

then we can use mldivide to solve the matrix equation

L · X = R (4.99)

for X , which contains the values of δs (θa) and δb (θa) for all of the θa vectors:



↑
δs
(
θ1)
↓

↑
δs
(
θ2)
↓

· · ·
↑

δs
(
θNγ
)

↓

↑
δb
(
θ1)
↓

↑
δb
(
θ2)
↓

· · ·
↑

δb
(
θNγ
)

↓


. (4.100)

Each of the δs and δb can then can be used in Equation 4.92 to produce the values of the

corresponding J · θa. These can be used in turn in Equation 4.94 to produce the desired

result of J T · y.

The remaining multiplication, J T · J · y can be generated by calling the algorithms for

J · y and J T · y in sequence to give J T · (J · y).

4.14 Optimization of χ2
mod via Iterative Linear Root Finding

Although not studied to a significant degree in this work, another potential approach

would be to break the problem into two coupled sets of linear equations, as shown in

Figure 4.10. To start, a reasonable value for γ is chosen (e.g., γ = 0). The linear equations
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Figure 4.10: Iterative linear root finding. In the top part of the cycle, γ is treated as a fixed
quantity, and a linear solver is used to find s and b. These values are then used in another
linear optimizer that finds γ, assuming the provided values of s and b are fixed. Iteration
stops if a self-consistent solution is found.

∂χ2
mod

∂sn
= 0 and

∂χ2
mod

∂bn
= 0

are solved, treating γ as constant, to produce values of s and b. Next, a new value for γ is

determined by solving the linear equations

∂χ2
mod

∂γn = 0,

in which s and b are treated as constants with the values found in the first step. The cycle

can then be repeated, using the new value of γ. With a bit of luck, the iterative process

might converge to a self-consistent set of s, b, and γ.
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Chapter 5

Testing the Deconvolution Algorithm

One of the primary goals of the work presented in this thesis is to develop data-analysis

software that can rapidly deconvolve the spectra produced by the broad-bandwidth re-

ceivers. As discussed in Section 6.2, by making line surveys more efficient, the new re-

ceivers also permit more sensitive surveys to be done in a realistic amount of observing

time. Therefore, the deconvolution software must also be capable of preserving the high

sensitivity of the observations, some of which are expected to push noise levels down by

an order of magnitude relative to previous results.

When pursuing such a goal, the software cannot operate as a “black box.” It must

contain facilities for validating both the final results and the intervening steps. From its

inception, the deconvolution software has included a powerful simulation engine to pro-

vide synthetic spectra for testing. In this way, the final results can be tested by comparing

them to the “true” values used in simulation, both validating the algorithm’s performance

and quantifying the amount of error introduced by the process. In addition, analysis and

display routines have been developed to probe the internal quantities used by the routine.

For instance, the resampling algorithms presented in Section 4.4.1 have been validated

extensively by comparing resampled SSB and DSB spectra to the original values.

To minimize “crosstalk,” the code base that creates the simulated spectrum is entirely

separate from the deconvolution portion of the code,1 and there are multiple safeguards in

1An important exception to this statement is that the function responsible for converting a set of baseline
coefficients, b, into the corresponding baseline, β, is used by both portions of the code. This code primar-
ily implements Equations 4.52 and 4.53. Ideally, baseline calculation should follow an approach similar to
the one used for DSB and SSB spectra, in which an entirely independent method of calculating the baselines
is used. Initially the code was designed this way; however, baseline fitting has proven somewhat problem-
atic, so we decided to use the same method on the simulation and deconvolution sides of the code to make
troubleshooting easier.
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place to ensure that the deconvolution algorithms do not have access to the “true” param-

eters from the simulation. Whenever possible, different methods of calculating equivalent

quantities are used to check for internal consistency. For instance, the simulation side of

the code does not use any type of convolution matrix, M ; instead, it creates a list of peaks,

defining their center frequencies, amplitudes, and widths. When creating DSB data, it

searches through all the peaks to find any that could contribute to either the lower side-

band or upper sideband and integrates those peaks over the specified channels. Similarly,

to produce the true SSB spectrum, it uses the same process, accepting a set of frequency

channels over which it integrates the known peaks.

Another advantage of incorporating simulation is that it provides opportunities to gain

an intuitive understanding of how the deconvolution algorithms work.

5.1 Status of Software

Chapter 4 presents multiple ways of approaching the optimization problem. The pseudo-

linear method described in Section 4.13 seems particularly promising, as it separates out

the nonlinear elements of the problem, leaving the majority of the parameters to be found

through fast and reliable linear methods. However, this is expected to be the hardest ap-

proach to implement. From a practical point of view, it requires three separate critical func-

tions: the outer, nonlinear optimizer, the inner, linear solver, and a second, linear solver to

estimate the Jacobian. The results are very sensitive to the values of the sideband-gain

factors, so significant infrastructure for troubleshooting and debugging is needed to de-

velop this approach. In contrast, the direct optimization (Section 4.11) and nonlinear root

finding (Section 4.12) techniques should be easier to implement since they rely on only a

single-stage approach in which all parameters are found simultaneously.2

Early prototypes of the deconvolution software included all three approaches to allow

for comparison of results and execution time. However, as the code expanded, adding

2One of the concerns with the single-stage approach is that the parameters have significantly different
scales. Whereas a relative error of 10−3 might be sufficient for the parameters describing the single-sideband
spectrum, the baseline parameters and sideband-gain values are likely to require higher precision. The MAT-
LAB routines perform quite well, even with this difference in scaling, but it could be advantageous to consider
reparameterizing the problem so that all parameters share a similar scale.
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the integrated baseline fitting and the resampling of non-aligned spectra, supporting the

three branches of simultaneous development became too complex. Therefore, we decided

to focus on one of the three methods and develop it to a fully functional state, both as a

proof of concept and to provide immediate capabilities for analyzing existing data sets.

The other branches can be added when, and if, they are needed. This has proven to be an

important decision, as it allowed us to develop debugging utilities and perform significant

troubleshooting on the existing branch of the code.

In choosing which of the three methods to fully implement, we felt the direct opti-

mization approach offered the most immediate promise. The Jacobians are simple to cal-

culate, minimizing opportunities for error. Since the code works directly with χ2
mod ,trou-

bleshooting and debugging are easier. The current code therefore only offers the direct-

optimization algorithm, and the results to be discussed in this chapter and Chapter 6 are

based on that approach. However, the code has been designed with the intention of adding

the other methods, so the necessary control structures and interfaces are in place to imple-

ment them.

5.2 Simulations

5.2.1 Deconvolution Without Baselines

The simplest case for the deconvolution routine should be one in which the data are simu-

lated without any baselines, and the deconvolution is performed without fitting baselines

(ηB = 0). Under those circumstances, the deconvolution algorithm performs extremely

well.

A series of DSB spectra were simulated using the same LO-selection scheme used for

the CSO line survey of L1157 (described in Section 6.1.1). The simulated survey covered

frequencies from 210 to 280 GHz, and Gaussian noise was added to each DSB spectrum to

simulate TRMS ≈ 35 mK. A set of sideband-gain factors was randomly chosen in the range

−0.15 < γa < 0.15, and 1400 Gaussian-shaped peaks with randomly selected frequency,

amplitude, and width were added to the spectrum. DSB spectra were simulated using

spectrometer characteristics similar to CSO’s AOS. No baseline was added to the DSB data,
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Figure 5.1: The top panel shows the recovered SSB spectrum compared to the true SSB
spectrum from the baseline-free simulation (Section 5.2.1), with a difference plot below.
The bottom plot indicates the number of times each channel in the SSB spectrum was
included in a DSB spectrum.
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Figure 5.2: Enlarged view of the results generated by the baseline-free simulation. The top
plot shows the deconvolved spectrum (blue) compared to the true SSB spectrum (red) for
a single observation, with a difference plot at the bottom.
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Figure 5.3: Sideband-gain factors, γ, recovered during the baseline-free deconvolution
(blue) compared to the true values (red), with a difference plot at the bottom.

Figure 5.4: Additional results from the baseline-free simulation showing the difference
between the simulated DSB data and the DSB spectra predicted by the model using the
recovered parameters. The error has an RMS value of 37 mK, which compares will with
the 35 mK of noise added to the simulated data.
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so this simulation only tested the deconvolution routine’s ability to recover the correct SSB

spectrum and gain factors. A reference version of the SSB spectrum was calculated by

integrating the Gaussian peaks onto the SSB channels used for the deconvolution.

Because this was such a simple case, the deconvolution ran in a single step with λχ = 1,

rather than using the multi-step continuation approach described in Section 4.9.1. The

constraint terms were set to λS = 0.085 and λG = 10, 304 to encourage the optimizer to

minimize the values of s and γ, respectively.3 The optimizer found a solution offering the

following goodness-of-fit characteristics (for 289,194 degrees of freedom): χ2
o = 507, 644,

χ2
S = 23, 616, χ2

γ = 17, 036, and χ2
mod = 548, 295.4 The value of χ2

o corresponds to a reduced

chi-square of χ2
ν = 1.76. Since the usual rule-of-thumb value for an acceptable fit is χ2

ν ∼ 1,

this implies that the results are not actually a good fit to the data. The probability of getting

a value of χ2
o this large for the given number of degrees of freedom is near zero, formally

confirming the conclusion that this is a poor fit, statistically speaking.

For comparison, the true values of the parameters produce χ2
o = 788, 492 (correspond-

ing to χ2
ν = 2.73) and χ2

mod = 829, 037. The fact that the true values used for the simulation

produce a higher χ2
o than the parameters found by the optimization is not, in its own right,

alarming. Nothing in the χ2 formalism guarantees that the best-fit values will actually be

the correct values. To the contrary, fit parameters from a χ2 optimization have uncertain-

ties associated with them, since they are also random variables. However, the true values

should be a good enough fit that the χ2 results do not rule them out as being inconsistent

with the data.

In the current case, the high value of χ2
o produced by the true values indicates that

those values, when used in the specified model, cannot reproduce the “observed” data.

3The deconvolution code does not provide a mechanism for directly setting λS and λG, as the actual value
of those parameters have little meaning. The relevant quantities are the relative magnitudes of the various
terms that go into χ2

mod. To provide an estimate of the effect of different λ values, the user provides values
that are intended to represent the constraint term’s likely size with respect to χ2

o . For λS, λG, and λB, these are
named lambda_s_fraction, lambda_g_fraction, and lambda_b_fraction. This is not a precise conversion,
and it depends strongly on the exact nature of the spectra being studied, but it does typically offer an order-
of-magnitude estimate. For a particular deconvolution, it is usually necessary to fine-tune these parameters
to produce the desired result. The values shown above for λS and λG correspond to lambda_s_fraction =
0.01 and lambda_g_fraction = 0.01. The disadvantage of this formulation is that the actual values of λS,
λG, and λB are produced by the code, rather than being set by the user.

4In this case, χ2
S and χ2

γ were approximately 4.6% and 3.4% of χ2
o , indicating that lambda_s_fraction =

0.01 and lambda_g_fraction = 0.01 are appropriate for providing order-of-magnitude control over λS and
λG.
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Most likely, this is a problem with the model, more than the particular values. The fact

that the simulation data are produced using independent methodology provides a good

check on the deconvolution method. In this example, the model appears to have failed the

test; it does not capture all of the features produced by the simulation engine. The source

of these discrepancies is an interesting question deserving of further study.

There is a different way to look at these results, however. We can instead think of the

chi-square optimization as producing the best results that can be obtained by this model.

In this view, the goodness-of-fit tests are not relevant, as we already know that the model

does not accurately explain the simulated data, but we can see whether the recovered data

is sufficiently good for our needs.

From this pragmatic perspective, the news is good. The recovered SSB spectrum matches

the true spectrum quite well, with an RMS error of only 28.7 mK. The sideband-gain fac-

tors are also recovered accurately, with RMS error of 1.8× 10−3. The deconvolution results

are shown in Figures 5.1, 5.2, 5.3, and 5.4. It can be seen that the distribution of peak

amplitudes used in the test data is not representative of astrophysical spectra; however,

this makes no difference to the final results. The deconvolution algorithm operates on

a channel-by-channel basis, without any knowledge of whether that channel is part of a

peak. These results show that the algorithm can reconstruct the channels of the SSB spec-

trum to an accuracy of ∼ 29 mK, and that would be true regardless of the contents of the

spectrum. It could consist of large peaks, small peaks, no peaks, or randomly selected

values.

5.2.2 Deconvolution with Baseline Fitting on Baseline-Free Data

The example in Section 5.1 is a simple case, as the simulated data had been created without

a baseline, and the baseline-fitting aspect of the deconvolution algorithm was turned off.

To see what the deconvolution algorithm would do without this extra knowledge, the

same data were reanalyzed in a single-step deconvolution with baseline fitting enabled

(ηB = 1) and λB = 0.5 If the baseline-fitting portion of the code is working reliably, it

5As discussed in Section 5.3.1, non-zero values of λB cannot be simulated on large data sets at this time.
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Figure 5.5: Difference plots for the recovered SSB spectrum (top, the scale of x-axis is same
as the SSB difference plot in Figure 5.1), sideband-gain factors (middle), and DSB spec-
tra (bottom) for the simulation in which the deconvolution algorithm was allowed to fit
baselines to baseline-free data (Section 5.2.2).
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Figure 5.6: A sample DSB scan from the simulation in which the deconvolution algorithm
was allowed to fit baselines to baseline-free data. The simulated data is shown in red while
the DSB spectrum predicted by the model is shown in blue. Near the bottom, dashed
lines can be seen corresponding to the model’s baseline fit (blue) and the actual baseline
contained in the data (red), which in this case is equal to zero. The fit baseline is nearly
zero, but as the difference plot shows, baseline fitting introduces errors into the model’s
predicted data.
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Figure 5.7: Portion of the deconvolved SSB spectrum from the simulation in which the
deconvolution algorithm was allowed to fit baselines to baseline-free data (Section 5.2.2).
Since each channel in the SSB spectrum draws from many DSB spectra, the baseline cur-
vature seen in Figure 5.6 is reduced.
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should produce near-zero baselines for this data set. All other aspects of the deconvolution

remain the same.

The optimizer converged to a solution with χ2
o = 737, 704 (corresponding to χ2

ν = 2.6),

χ2
S = 23, 617, χ2

γ = 17, 044, and χ2
mod = 778, 365 for 288,498 degrees of freedom. As before,

the true parameters generate χ2
o = 788, 492 (χ2

ν = 2.73) and χ2
mod = 829, 037. This time, the

solution identified by the optimizer and the true parameters produce values of χ2
o that are

much closer than before; however, both are still statistically poor fits. Adding the baselines

slightly degraded the quality of the resulting fit, with the recovered SSB spectrum possess-

ing RMS errors of 32 mK and the sideband-gain factors having RMS error of 2.2× 10−3

with respect to the true values used for the simulation. While these values are somewhat

worse than before, they demonstrate that the deconvolution algorithm is capable of pro-

ducing high-sensitivity results, even without the a priori knowledge that the data set does

not contain a baseline. The RMS error between the simulated and modeled DSB spectra

shows some of the difficulties encountered by the optimizer, however; it jumped from 37

mK in the previous simulation to 44 mK in the current one.

The difference plots from the current result are shown in Figure 5.5. A sample DSB

spectrum is shown in Figure 5.6, where it can be seen the deconvolution algorithm fit a

baseline that was nearly, but not quite, zero. This indicates that the algorithm did keep

control of the baseline fitting to produce reasonable results; however, it also suggests that

baseline fitting introduces some error into the predicted DSB spectra. The effects of this are

mitigated somewhat in the SSB spectrum, since each of its channels depends on multiple

DSB spectra, as seen in Figure 5.7.

5.2.3 Deconvolution with Baselines

Finally, the full capabilities of the deconvolution algorithm were tested by simulating data

with nonzero baselines and performing the deconvolution with baseline fitting enabled.

The simulation parameters were identical to those described in Section 5.2.1, except that

a random, second-order baseline was added to each DSB spectrum. The single-step de-

convolution used the same settings as described in Section 5.2.2. In this simulation, the

optimizer settled into a minimum that was far from ideal with χ2
o = 4, 054, 340

(
χ2

ν = 14
)
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Figure 5.8: Recovered baselines from the deconvolution described in Section 5.2.3, in which
the simulated data include baselines, and the baseline-fitting capabilities of the algorithm
are enabled. The simulated baselines are shown in red while the baselines generated by
the deconvolution algorithm are shown in blue. Clearly, the fit baselines are systematically
underestimated. Although the scale used in this plot makes the baselines appear spiky, the
individual baselines (both fit and simulated) are smooth functions, as shown in Figure 5.6.
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Figure 5.9: A sample DSB spectrum from the simulation with baselines. The red spectrum
corresponds to the simulated DSB data, and the red dotted line corresponds to the baseline
added during simulation. Blue lines represent the DSB spectrum and baseline predicted
by the model. The model baseline underestimates the actual baseline, leading to the strong
curvature seen in the difference plot.
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Figure 5.10: The full SSB spectrum from the simulation with baselines. The poorly fit
baselines in individual DSB spectra contribute to considerable ripple in the deconvolved
spectrum, producing RMS errors twice as large as the previous two deconvolution tests.
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Figure 5.11: An expanded version of the SSB spectrum from the simulation with base-
lines. The baseline fitting mostly introduces low-frequency ripple into the SSB spectrum.
Thus the peaks in the spectrum could be fit reasonable well, although the peak amplitudes
would not be quite right.
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and χ2
mod = 4, 098, 211 for 294,679 degrees of freedom. The true parameters offered a sub-

stantially better solution of χ2
o = 796, 507

(
χ2

ν = 2.7
)

and χ2
mod = 839, 789, but the opti-

mizer was unable to locate a parameter set of similar quality. Unlike previous runs, the

SSB spectrum recovered from this deconvolution is also poor. The RMS error in the SSB

spectrum is 64 mK, twice the previous results while the gain parameters have RMS error

of 5.2× 10−3, worse by more than a factor of two.

The problem in this deconvolution can be seen clearly in Figure 5.8, which shows that

the baselines are systematically underestimated across the entire set of DSB spectra. A

sample DSB spectrum is shown in Figure 5.9, where the fit baseline is well below the true

baseline added in the simulations. The poorly fit baselines feed through into the SSB spec-

trum (Figure 5.10), which suffers from significant ripple. It is worth noting that most of

the error in the deconvolved spectrum takes the form of low-frequency ripples. As shown

in Figure 5.11, it is still possible to fit narrower spectral peaks built on top of that ripple,

although the situation is less than ideal.

5.3 Future Upgrades

5.3.1 Modification of χ2
β

Deconvolving realistically sized simulations challenges the capabilities of cutting-edge

computer hardware. The results shown in this thesis were computed using an eight-core

CPU with 48 GB of memory. Successful deconvolution of a large data set typically takes

∼ 10 hours, which is longer than desired, and some scenarios cannot be tested at all be-

cause they exceed available memory. In particular, we have not been able to complete

tests in which baseline fitting is performed using λB 6= 0 for a simulated data set with

a size comparable to the CSO surveys. Given the current rate of advances in computing

power, neither of these should be viewed as a fundamental limitation. In addition, the

commercial availability of servers-for-hire provides an economical way to access powerful

computing resources.6 However, rather than relying solely on brute-force techniques, such

6As an example, the Amazon Elastic Compute Cloud (EC2) currently offers a 64-bit virtual platform with
the equivalent of an eight-core CPU and 68 GB of memory that can be rented on an on-demand basis for
approximately $2.00 per hour. See http://aws.amazon.com/ec2/.
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as increased computing power, to solve these problems, we would also like to examine the

algorithm to see whether its efficiency could be improved. Not only would that allow us

to complete the tests that currently run out of memory, but it would also prepare the soft-

ware to address larger data sets, like those that could be generated by the CSO’s new FFT

spectrometers, which offer higher resolution than the current AOS.

From this perspective, the choice of χ2
β in Equation 4.65c is unfortunate, particularly

for the direct-optimization case. As discussed in Section 4.11, lsqnonlin(), the MATLAB

function chosen to perform the optimization, is designed to operate on each of the terms

of χ2
mod individually. Therefore, it expects to receive a vector of data containing terms of

the form shown in Equation 4.67. With the current definition of χ2
β, it expects to receive

channel-by-channel values of the baseline. Since the ∼ 2, 000 channels of baseline data

for each AOS scan depend on only a few underlying parameters, it should be possible to

significantly reduce the number of values returned to lsqnonlin(). Since the purpose of

including the χ2
β term is to minimize the area under the baselines, it would make more

sense to provide the area incorporated by each of the polynomials in Equation 4.52. More-

over, since these are orthonormal functions, it should be quite easy to do so.

Reformulating χ2
β in this way would significantly reduce the dimensionality of the re-

sults vector and the Jacobian provided to lsqnonlin(), presumably with a corresponding

improvements in the dimensionality of its internal operations. With this change, it is likely

that the λB 6= 0 simulations could be completed using current computing hardware.

5.3.2 Validating Jacobian Matrices

Providing accurate Jacobians remains one of the most vexatious aspects of adding new

functionality to the deconvolution code. The Mathematica notebook described in Section

A.6 greatly simplifies the process by allowing automatic calculation of analytic Jacobians

for new forms of χ2
mod. However, implementing those in MATLAB provides ample oppor-

tunity for error, and ultimately, a reliable method is needed for validating the Jacobian that

is created.

Several MATLAB functions include an option to verify the Jacobian using discrete ap-

proximations. This functionality has been extremely useful, but it has largely served in
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a binary sense; either the Jacobian passes the comparison, or it does not. When a dis-

crepancy is found, the differences between the discrete and analytic Jacobians are simply

printed to the screen. Given the dimensionality of the matrices involved, it is difficult to

interpret these results. It would be quite useful to have a set of debugging functions that

would allow the user to form discrete approximations of the Jacobian, compare them to

the analytic form, and interpret the results. By designing the functions to be sensitive to

the structure of the current problem, it would be possible to probe individual pieces of

the Jacobian, making it much easier to track down the individual errors. More meaning-

ful outputs, such as plots of the RMS error as a function of discrete step size, would also

make it easier to diagnose whether a problem actually exists. Such functionality will be

particularly important when trying to implement the pseudo-linear mode.

Currently, baseline fitting is not performing as expected, particularly for tests in which

λB = 0. There have been some hints that these problems might be caused by an error in the

Jacobian that leads the optimizer to search in the wrong direction, but we have not been

able to investigate this possibility adequately due to the lack of appropriate diagnostic

tools. This is particularly unfortunate in light of the difficulties described in Section 5.3.1

with running simulations on cases with λB 6= 0, as it means that we have not been able to

fully validate any form of baseline fitting on simulated data sets with sizes similar to those

of the CSO surveys.7

5.3.3 Identifying and Preventing Ghosts

One of the challenges of interpreting a deconvolved spectrum is to determine whether par-

ticular spectral features are real, or whether they represent artifacts of the deconvolution

process. It can be difficult for the deconvolution algorithm to reconstruct the SSB spectrum

for channels in which the DSB data include a particularly strong line from the other side-

band. One way of combating this problem is to simply remove any channels with strong

7An obvious solution to this is to validate the baseline-fitting methods on smaller data sets, but that pro-
duces its own problems. For undetermined reasons, very small data sets cause the optimizer to run off to
undesirable portions of parameter space. The optimizer is much more stable on large data sets. Therefore, the
challenge is to find a data set large enough to allow stability in the optimizer, but still small enough to fit in
memory.
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lines from the DSB data and rely on the redundancy of the observations to fill in the miss-

ing data in the deconvolved spectrum. The deconvolution code does not currently contain

this capability, but it would be worthwhile, and relatively simple, to add it to the future.

This is particularly important for recovering high-sensitivity spectra in which the small

peaks are of greater importance than the large ones. 8

It is equally important to be able to identify any such ghosts that remain in the decon-

volved spectrum. One way to do this is by looking at each of the underlying DSB spectra

for a given SSB channel to see if it contains strong lines that could contribute to a ghost.

To simplify this process, we would like to add a special plotting mode that would show

the SSB spectrum at the top of each page with the contributing DSB spectra underneath.

While not difficult in principle, developing the software to support such informative dis-

plays can be time-consuming, so it has not been implemented in the initial version of the

deconvolution software.

5.4 Summary

The results of these simulations imply that the deconvolution algorithm works quite well,

as long as there are no baselines in the DSB data. The algorithm successfully recovered

deconvolved spectra with sensitivities of ∼ 30 mK in the two examples in which the un-

derlying data were simulated without baselines.

At present, the deconvolution software does a poorer job of recovering spectra with

baselines. The data set with baselines had the same underlying radiometric noise as the

previous simulations, but the resulting SSB spectrum had twice the RMS error compared

to the true SSB spectrum. This implies that the deconvolution algorithm was unable to

preserve the high quality of input data. Even so, the baseline-fitting problems are unlikely

to significantly affect parameters derived from peak fits for narrow-line sources.

All of the simulations had improbably high values of χ2
o , even when the true parame-

ters used for the simulation were inserted into the model. This most likely indicates that

8As an intermediate measure, an experimental feature has been included in the code to increase the uncer-
tainty on large peaks by setting the uncertainty in each channel to the greater of its radiometric uncertainty
(Equation 2.1) or a fraction of its brightness temperature. We have not developed enough experience with this
method to determine its usefulness.
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the model does not accurately reproduce all the features of the simulation; however, this

does not necessarily imply that anything is wrong with the model. Rather, it indicates

that the simulation engine and deconvolution model produce different, inconsistent re-

sults. Since the derivation of the deconvolution model appears sound (Chapter 4), it is

reasonable to continue using it as the basis for analyzing astronomical data. Given the low

RMS errors in the SSB spectra, it appears that the deconvolution algorithm can accurately

recover the single sideband spectrum, even when χ2
o is high. Unfortunately, this situation

does prevent us from using χ2
o as a goodness-of-fit test.
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Chapter 6

Molecular-Line Surveys

In September and November of 2007, two observing runs were completed using Z-Rex

with the high-resolution IF processor and 4-GHz AOS array described in Section 3.5. Orion

KL and Sgr B2, two frequently studied high-mass star-forming regions, were observed, as

was the low-mass Class-0 protostar L1157. The Orion survey achieved good coverage

from ∼ 220 - 276 GHz, with expected post-deconvolution sensitivity of ∼ 10 - 15 mK. The

L1157 survey covered a similar frequency range, although the integrations were not quite

as deep, with expected sensitivity of ∼ 20 - 30 mK. Sgr B2 was only observable during the

September run, leading to narrower coverage of∼ 220 - 250 GHz with expected sensitivity

of ∼ 15 - 20 mK. The sensitivity of each survey tends to be best near the middle of the

frequency range, which is heavily oversampled, and drops off towards the ends.

6.1 L1157 Survey

L1157 consists of a dark cloud containing an isolated Class-0 protostellar core about 440

pc from Earth. L1157 is particularly well known for its powerful bipolar outflows, which

propagate along an axis that is nearly perpendicular to the line of sight. Such favorable

orientation in an isolated core makes this an ideal location to study outflow-driven shock

chemistry. The geometry can be inferred from the fact that there is very little overlap be-

tween the redshifted (northern) lobe and the blueshifted (southern) lobe of the outflow.

The redshifted lobe has been found to move at higher velocity and have a larger size while
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the blueshifted lobe generates stronger molecular emission; these facts are usually inter-

preted as signs that the southern lobe is pushing into denser material than the northern

one [Umemoto et al., 1992, Bachiller et al., 2001].

The central source, L1157-mm (IRAS 20386+6751), has been studied using the Plateau

de Bure interferometer by Gueth et al. [1997], who find that it meets all of the attributes

of a Class-0 protostar as defined by Andre et al. [1993]. Their observations reveal a com-

pact source ∼ 1” (∼ 500 AU) in diameter at the center of the outflow. They fit a simple

three-part model to their observations and find that the core consists of ∼ 0.2 Msun of ma-

terial at a temperature of 36 K. The model also indicates that the surrounding envelope

has a temperature . 20 K, a radius ∼ 5,000 AU, and contains at least 3 Msun of material.

The tightly collimated outflows and the fact that the envelope mass is much greater than

the mass in the central core imply that this is a relatively young protostar that is actively

accreting material.

The geometry of L1157 makes it ideal for studying shock-driven chemistry. For in-

stance, Bachiller and Gutierrez [1997] identify many molecules with strong enhancements

in the outflows, particularly SiO and CH3OH. This is consistent with a model in which the

shock fronts sublimate ice mantles off dust grains and even drive some of the Si and/or SiO

from the grains themselves into the gas phase. Conversely, they also identify molecules

that are not detected in the outflows and therefore represent good tracers of the quiescent

envelope, including C3H2, N2H+, H13CO+, and DCO+.

Bachiller et al. [1993] map the L1157 outflow in ammonia, NH3, which can be used as a

particularly sensitive indicator of kinetic temperature. They find a cool, quiescent disk of

gas that sits perpendicular to the outflows with a temperature of 13 K. They also observe

broad-line emission from hotter NH3 (T ∼ 50 - 100 K) that traces the regions in which

SiO abundance is highly enhanced. These results are consistent with Bachiller et al. [2001],

who use a large-velocity-gradient (LVG) model to estimate temperatures of T ≈ 13 K in

the envelope and T ≈ 40 - 100 K in the outflow. Density estimates vary by an order of

magnitude across different studies, but typically suggest that assigning the quiescent gas

a density of n (H2) ∼ 106 cm−3 and the shocked regions a density of n (H2) ∼ 105 cm−3

would not be unreasonable.
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Figure 6.1: Spitzer image of L1157. (Image courtesy of NASA/JPL-Caltech/UIUC, Cal-
tech/SSC. Also see Looney et al. [2007].)
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A point in the southern lobe of the outflow, offset from L1157 by (20′′, −60′′), is fre-

quently studied. Bachiller and Gutierrez [1997] identify it as location B1, one of three

points in L1157 at which they search for a variety of molecular lines. It is very close to the

location of peak CO emission identified by Umemoto et al. [1992], as well as the peak of

the SiO emission found by Mikami et al. [1992], corresponding to point B in their study.

Avery and Chiao [1996] observe many lines of CH3OH, SiO, SO, and SO2 at that point;

based on an LVG analysis, their results imply a temperature of T ≈ 100 - 140 K and density

of n (H2) ∼ 1.0× 105 cm−3 at B1. This is reasonably consistent with the ammonia mea-

surement of T ≈ 84 K made by Bachiller et al. [1993] at B1. Point B1 is also included in

the extensive molecular-line maps of Bachiller et al. [2001], in which it is identified as one

of three “clumps” corresponding to periods of increased outflow activity. They estimate

that the clump at B1 has a dynamical age of ∼ 7,000 years, compared to ∼ 15,000 years

for the outer reaches of the outflow. Although not terribly precise, dynamical estimates of

age provide an interesting method of testing the predictions of time-dependent chemical

models.

Based on previous work, we identified point B1 as an interesting source for a line sur-

vey. A significant amount of study has already been performed on that location, offering

a good deal of background for interpreting the results. In addition, strong molecular-line

emission should be assured since it is at or near the peaks of the CO, SiO, and CH3OH

emission distributions. Line profiles are likely to be unusual in this region; Avery and

Chiao [1996] find that some lines, such as CO, are strongly asymmetric, with long blueshifted

wings while others, such as SiO, consist of a narrow central peak and a broad, blueshifted

wing.

6.1.1 Observations

Observations of the B1 point in the L1157 outflow were made in September and Novem-

ber of 2007 using the Caltech Submillimeter Observatory (CSO). The coordinates used

for L1157 were 20h39m06s.19 and 68◦02′15′′.9 (J2000), matching the position of the compact

source found Gueth et al. [1997] and the position used by Bachiller et al. [2001]. Point B1

corresponds to an offset of (∆RA = 20′′, ∆dec = −60′′) from L1157. Following Bachiller
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et al. [2001], we assume vLSR = 2.7 km/s, which appears to be the most commonly used

value in the literature, although the interferometric studies of Gueth et al. [1997] find a

slightly lower value of vLSR = 2.6± 0.5 km/s. Based on molecular maps of the outflow

from Bachiller et al. [2001], we chose a chopping throw of 300”, sufficient to clear all of the

molecular emission from the protostar and the outflows, even in the worst-case orientation

in which the off position is in the direction of the redshifted lobe. Chopping frequency was

1.012 Hz, representing a trade-off between integration efficiency and sky stability. A few

initial scans were taken at a different chopping throw (240” instead of 300”); after compar-

ing them to scans at the same frequencies taken with the larger throw, it was determined

that they could be safely included in the data set.

Pointing was checked every 2 - 3 hours using planets and CO line sources. Results

were generally consistent, although there were occasions on which pointing corrections

appeared to shift by∼ 6 - 8 ′′ during a set of integrations. Additionally, in order to complete

the observations, it was necessary to do some observations at large zenith angles (ZA ∼

60◦ - 70◦), which can lead to pointing drift. Given that the outflow is a large, diffuse source,

such shifts are unlikely to significantly affect the observations; however, pointing error is

likely to represent the dominant source of uncertainty in determining line strengths. As

an example, scans taken at high zenith angle under moderate skies (τ ≈ 0.15) indicate that

some line flux was lost (∼ 10 - 20 %) compared to reference scans taken previously at the

same frequencies.

A set of LO frequencies was chosen to optimize deconvolution accuracy. LO settings

were selected so that every frequency would be observed at least four times in each side-

band, for a total of eight samples, except at the band edges, in which case extra mea-

surements would be taken within the single available sideband.1 The LO frequency was

changed in alternating steps of 2 GHz and 100 MHz, for example, 234 GHz, 234.1 GHz, 236

1Comito and Schilke [2002] study how redundancy affects the quality of the deconvolved spectrum. For
a perfect receiver, they find that observing every frequency once in each sideband (two samples total) is suf-
ficient. However, once pointing errors and sideband imbalances are introduced, higher redundancy (at least
four samples per frequency) improves the quality of the reconstructed spectrum and reduces the number of
“ghost” lines. The optimal solution that minimizes noise in the final deconvolved spectrum depends on the
amount of overhead involved in each retuning and therefore varies with telescope and receiver configuration.
Since ground-based observations often produce uneven baselines for the spectra, we chose a relatively high
value of eight samples per frequency.
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GHz, 236.1 GHz, . . . . To avoid producing “ripple” artifacts in the deconvolved spectrum

[Comito and Schilke, 2002, Fig. 4], a small, random offset of −50 MHz ≤ ∆ f ≤ +50 MHz

was added to each LO frequency. The lowest edge of the band was chosen to provide suf-

ficient LO power and avoid the sideband imbalance shown in Figure 3.26. The upper limit

was 270 GHz, corresponding to the range of the Gunn-oscillator LO. Unfortunately, due

to time constraints, we were not able to observe all of the planned LO frequencies, and

coverage was somewhat limited at higher frequencies. (See Figure 6.3.)

Observations of L1157 occurred on five different nights, requiring about 20 hours of

observatory (clock) time. Night-to-night compatibility of data was checked by comparing

reference scans at the same frequency across multiple nights. Three nights offered τ ≈ 0.08

- 0.1, with single-sideband system temperatures Tsys ∼ 400 - 500 K. One night was slightly

wetter, producing τ ∼ 0.15 and Tsys ∼ 500 - 750 K, with the higher values corresponding to

larger zenith angles. The worst of the five nights had τ ∼ 0.25, generating Tsys ∼ 900 - 1000

K. Reference scans on that night showed a noticeable, but acceptable, loss in line intensity

at large zenith angles. Integration times were chosen according to Equation 2.1 to provide

consistent TRMS ∼ 70 mK across the survey for each DSB scan, equivalent to a DSB scan

with TRMS ∼ 25 mK once the eightfold sampling is taken into account.

Calibration relied on measurements of Phot and Psky using a chopper wheel, as de-

scribed in Section 2.1, generating spectra calibrated according to the T∗A scale. Unless oth-

erwise noted, spectra in this thesis can be assumed to be measured on that scale. The 4

- 8 GHz IF processor and 4-GHz AOS array described in Section 3.4.1 were used for the

backend, and a phase-locked Gunn oscillator was used as the LO source.

To determine data quality, data and calibration scans were reviewed to look for anoma-

lies. Sharp spikes (spurs) were found in many scans; usually, they occurred at fixed chan-

nel numbers, indicating that they were leaking into the IF signal (rather than the RF signal).

Spurs could be identified most easily in the calibration scans. A few spurs could be iden-

tified with corresponding defects in the data scan, although most of them appeared to be

harmless. Any channels corresponding to a spur in the calibration scan were marked as

invalid in the data scan.
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Figure 6.2: The spectral defect around channel 600 was caused by interference from the
CSO’s microwave oven.

In the September run, we noticed intermittent interference in band 4 (Figure 6.2); even-

tually, we traced it to the microwave oven in the CSO kitchen. It was difficult to make the

interference occur on demand, but it was clearly correlated with microwave use and likely

related to the large zenith angle used for the observations of L1157. While reviewing the

data, any scans that contained interference from the microwave were flagged. By compar-

ing those data to other scans taken at the same frequency, we determined that bands 1 - 3

were unaffected by the microwave interference, so only the data from band 4 were thrown

out.

The vast majority of scans had excellent baselines; there were only a few with a ∼ 0.5

K offset. Given the relative sparsity of lines from the source, those lines could easily be fit

and removed by hand using second-order baselines in GILDAS CLASS.

6.1.2 Deconvolution

The L1157 data set was deconvolved using the algorithm described in Chapter 4, as imple-

mented in MATLAB. Removing baselines in the deconvolution software slows the process

considerably and adds additional uncertainty to the results; given the overall excellent

condition of the baselines in these scans, the baseline-fitting elements of the code were dis-
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abled (by setting ηB = 0). A continuation solution (as described in Section 4.9.1) was used

and constraints were set to λS = 0.11 and λG = 1.3× 104.2

Using an 11-step continuation method, the deconvolution algorithm converged to a

reasonable solution in a little over 7 hours, with the following goodness-of-fit measures

(for 362,193 degrees of freedom):

χ2
o = 114, 313

χ2
S = 46.5

χ2
γ = 983

χ2
mod = 115, 343.

The χ2
o value corresponds to a reduced chi-square of χ2

ν ≈ 0.316, which is improbably low.

Presumably, this indicates that the uncertainties assigned to the DSB data were too large,

although it is not clear why that should be the case since they are based on Equation 2.1.

The deconvolved spectrum, however, looks reasonable, as do the comparisons between the

predicted and observed DSB spectra (do,R and dR). An overview of the single-sideband

spectrum is shown in Figure 6.3, with detailed plots in Appendix D. An overview of

the comparison between DSB observations and predictions is shown in Figure 6.4 and

indicates good agreement, with an RMS error of ∼ 37 mK, averaged across the spectrum.

Finally, the sideband-gain factors, γ, are shown in Figure 6.5; the relatively small values

found by the optimizer are reassuring.

6.2 Orion KL

While much of this work has focused on low-mass star formation, the birth of massive

stars is also an area of active research. Low-mass star formation has the advantage of be-

ing better understood theoretically; high-mass star formation, in contrast, provides a rich

laboratory for studying astrochemistry. The increased temperatures and larger volumes

2These values correspond to lambda_s_fraction = 0.01 and lambda_g_fraction = 0.01. (See Foot-
note 3 in Chapter 5.)
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Figure 6.3: Overview of deconvolved spectrum for L1157 at position B1 in the outflow. The
vertical scale has been expanded to show detail, truncating several peaks. The full extent
of those peaks can be seen in Appendix D. The bottom plot shows how often each channel
in the deconvolved spectrum was observed.

Figure 6.4: Overview of comparison between observed DSB data (red) and predicted DSB
spectra (blue) for the L1157 spectra. This plot represents a vector of all DSB data, with
individual observations stacked end to end. To emphasize details, the vertical scale has
been expanded, truncating larger peaks.



164

Figure 6.5: Sideband-gain factors found by the deconvolution algorithm for the L1157 ob-
servations. A single gain value was used for each AOS scan.

involved in the formation of a massive protostar provide more opportunities for chemical

interaction and create a richer, more easily observable line source. The work covered by

this thesis includes a collaboration with Susanna Widicus Weaver from Emory University

to perform a deep, unbiased line survey of the Orion KL region at 230 GHz. In addition to

enabling rapid line surveys, such as the L1157 study, the broad bandwidth of Z-Rex makes

it feasible to spend longer integration times on each frequency, permitting a very sensitive

survey to be completed in a reasonable amount of time.

Because of its proximity, strong millimeter and submillimeter emission, and relatively

narrow line widths, the Orion KL region has been extensively studied and has been the

subject of several unbiased line surveys, including one of the first surveys to be completed

in the 230-GHz window [Sutton et al., 1985, Blake et al., 1986, 1987], as well as more recent

work that extends spectral coverage to 900 GHz [Comito et al., 2005], with several other

surveys in between. Very recently, a broad and highly sensitive survey of Orion KL has

been completed by Tercero et al. [2010], with further analysis in Tercero et al. [2011]. These

surveys use the IRAM 30-m telescope, along with sideband-rejecting receivers, to achieve

a detection limit of ∼ 20 mK.3

3The Tercero et al. [2010] survey was published in July 2010, late in the writing of this thesis. Consequently,
the results are not discussed further in this work.
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Orion KL remains one of the richest molecular-line sources and has become the proto-

type upon which much of our understanding of high-mass star formation, and astrochem-

istry in general, has been built. An excellent overview of the source’s geometry and prior

studies can be found in Comito et al. [2005], and Genzel and Stutzki [1989] offers a very

detailed, albeit slightly older, review.

The strong molecular lines in protostellar surveys have largely been identified, so re-

cent laboratory spectroscopy has been focused on measuring the lines of complex organic

molecules [e.g., Widicus Weaver, 2005], including some with biological significance. Paral-

lel efforts have been made via submillimeter observations to find these lines in protostellar

cores. From a theoretical perspective, constraining abundances of these molecules is im-

portant to further development of astrochemistry models. In addition, finding evidence

of prebiotic molecules in the primeval components of star formation could offer important

clues to determining how the seeds of life were planted on Earth during our solar system’s

development.

Because these molecules are expected to occur in relatively lower abundance, the richer,

brighter spectra of high-mass protostars represent an obvious target. Even so, deep obser-

vations are required to find evidence of the molecules’ existence. A positive identification

requires a simultaneous detection of multiple lines, which requires the observations to en-

compass a moderate bandwidth and can be quite difficult in the presence of a crowded

spectrum and heavily blended spectral peaks. Rather than continuing to search for these

molecules individually as new lines are discovered, we have decided to assemble very

broad, unbiased line surveys of several massive star-forming regions. This allows the exis-

tence of previously undetected molecules to be determined quite rapidly once the spectra

are known from laboratory studies. The large bandwidth of our line survey permits many

more lines to be detected, and also provides the context for developing robust deconvolu-

tion and line-identification tools.

The sensitivity of the prior 230-GHz Orion KL survey was estimated to be ∼ 300 mK

[Sutton et al., 1985, Blake et al., 1986]. We aim to improve this sensitivity by at least an

order of magnitude, to ∼ 15 mK. This provides a particular challenge to our deconvolu-

tion algorithms, as they must be capable of preserving the high sensitivity achieved in the

observations. Much of the effort in developing and testing the deconvolution software has

been focused on positively demonstrating that the software can recover spectra down to

this level.
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6.2.1 Observations

Observations of Orion KL took place during the same observing runs (and often on the

same nights) as the L1157 observations described in Section 6.1.1, incorporating scans from

six different nights. The observations, including pointing checks, required approximately

25 hours of observatory (clock) time. Four of the nights offered τ ∼ 0.07 - 0.1, resulting

in system noise temperatures of Tsys ∼ 350 - 400 K. One night had τ ∼ 0.14 and Tsys ∼

450 - 500 K while the worst night produced τ ∼ 0.2 - 0.25 and Tsys ∼ 550 - 700 K. Pointing

was checked every 2 - 3 hours and corrected as needed. Observations were taken at co-

ordinates of 5h32m47s.19 and −5◦24′21′′ (J1950), matching those of Sutton et al. [1985] and

Blake et al. [1986]. Off-position subtraction was performed using the chopping secondary

with a throw of 70” at a frequency of 1.121 Hz, producing good integration efficiency. The

receiver configuration was identical to that used for L1157. LO frequencies were chosen

using similar principles to those described for L1157 so that each frequency would be ob-

served eight times. A slightly different spacing strategy was chosen so that LO steps were

∼ 1 GHz apart, but a small, random offset was still included in each setting. Integration

times were chosen so that each DSB scan would have TRMS ∼ 45 mK according to Equation

2.1, equivalent to TRMS ∼ 15 mK (before deconvolution) for this LO scheme.

6.2.2 Deconvolution

The DSB data was deconvolved to produce a single-sideband spectrum using the tech-

niques described in Chapter 4. Deconvolution was done both with and without baseline

fitting, and found to produce better results when second-order baselines were included.

A multi-step continuation approach was used with constraint values of λS = 0.018, λG =

2160, and λB = 0.018.4 Major spurs were removed, but the spectra were not reviewed as

thoroughly as the L1157 data. Until that review can be completed, these should be consid-

ered preliminary results.

An overview of the deconvolved spectrum is shown in Figure 6.6, and several ex-

panded spectra are displayed in the discussion that follows. The deconvolution required

4These correspond to lambda_s_fraction, lambda_g_fraction, and lambda_b_fraction each being set to
0.01. (See Footnote 3 in Chapter 5.)
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just under 30 minutes to run and produced the following goodness-of-fit values (for 60,551

degrees of freedom):

χ2
o = 425, 318

χ2
S = 2, 834

χ2
γ = 256

χ2
β = 3, 406

χ2
mod = 431, 815.

The χ2
o value corresponds to a reduced chi-square of χ2

o,ν ≈ 7, which is exceedingly high.

This is indicative of the fact that the predicted and observed DSB spectra showed dif-

ferences with RMS error ∼ 80 mK. The results for the sideband-gain factors were quite

reasonable, with −0.1 . γa . +0.1. As shown in Figure 6.7, the baseline fits also appear

to be quite reasonable.

This is a preliminary deconvolution using raw spectra that have had very little pro-

cessing performed on them. Doing the same type of manual review of calibration scans

and spectra that was applied to the L1157 data should considerably improve these results.

Additionally, adjusting some of the constraints or the solution method might allow the

optimizer to find a better solution more easily, and it is reassuring to see that the gains

and baselines are qualitatively reasonable, indicating that the optimizer did not locate an

undesirable portion of parameter space. These results are also encouraging in that they

demonstrate the capability of the software to be used during an observing run to guide

the remaining observations. A deconvolution launched at the end of a night of observing

would likely be completed by the beginning of the next night. Since the software can pro-

duce results like these on minimally processed data, this represents a realistic scenario for

harried observers.

Finally, these results are exciting because they show the benefits of including the base-

line fitting as part of the deconvolution. For comparison, the same data set was decon-

volved using identical methodology except that baseline fitting was turned off. Although
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Figure 6.6: Deconvolved spectrum from part of the Orion KL line survey. The full survey
offers similar sensitivity up from ∼ 220 - 270 GHz. The bottom plot shows the number of
times each channel in the deconvolved spectrum was observed while the inset shows the
full extent of the CO line.

the resulting deconvolved spectrum looks very similar to the eye, the deconvolution re-

sulted in χ2
o = 573, 382 for 60, 797 degrees of freedom, corresponding to reduced chi-square

of χ2
o,ν ≈ 9.5, an increase of more than 35%. Given that many of our spectra reached the

line-confusion limit, at which nearly every channel appears to be part of a line, determin-

ing what portion of the flux should be attributed to a baseline offset is nontrivial. Perform-

ing the baseline fit as part of the deconvolution allows the algorithm to take advantage of

all the information it has about the spectrum in making this determination. We hope that

this not only makes it more convenient for observers, but also improves the reliability of

baseline fits.

6.2.3 Comparison to Prior Surveys

Figure 6.8 shows a comparison between the previous 230-GHz line survey of Orion [Sut-

ton et al., 1985] and the current results. The overall similarity of peak shapes and relative

strengths is striking, and gives us further confidence in our deconvolution results. It re-

mains unclear why the current survey measured stronger line intensities, but the SSB re-

sults are consistent with the underlying DSB spectra. The negative peak near 239.45 GHz

is presumably a ghost caused by over aggressive subtraction of a strong line in the other

sideband.
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Figure 6.7: Sample DSB-comparison plot from Orion KL deconvolution. The blue line rep-
resents the predicted DSB spectrum while the red line shows the resampled DSB data. In
general, agreement is good, although glitches can be seen (e.g., near the center of the plot).
The gray line in the background represents the raw (non-resampled) DSB data, indicating
that the resampling process preserved the data accurately. The dotted blue line shows the
baseline fit by the deconvolution algorithm; although quite small, it is non-zero. The bot-
tom panel shows the difference between the resampled DSB data and the predicted DSB
spectrum; this particular scan has RMS error of 61.6 mK and a mean offset of 81.7 µK. The
worst error across the band is 632 mK.
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The smoother spectrum in the current work is indicative of the improved sensitiv-

ity, which greatly clarifies spectral analysis. The small bumps that persist are believed

to be spectral peaks, not statistical fluctuations. For instance, the lowest-frequency peak

of CH3CCH shown in the top figure is barely visible above the noise in the prior survey,

but shows up clearly in the current one. Conversely, the possible peak just to the right

of 239.3 GHz disappears in the current survey. The left-hand side of the SO2 peak shows

three small bumps of approximately equal intensity in the prior survey, but the current

results imply that two of these are noise artifacts while the third (lowest-frequency) bump

could represent a blended peak. There are several peaks in the current survey, such as the

set of three blended peaks near 239.33 GHz and the lone peak near 241.74 GHz, that hint

at additional lines to be identified, although further analysis is needed to ensure they are

not deconvolution ghosts or noise artifacts. It is intriguing that each of these corresponds

to a similar structure in the prior survey that is marginally lost in the noise.

The fact that barely visible peaks in the previous results can now be seen clearly is a

testament both to the benefits offered by improved sensitivity and to the effort that was

put into the previous work to retrieve small lines from the noise. The science to be done

with the new spectrum will require equally careful analysis, as the most interesting results

will be found near its noise threshold. As shown in Figure 6.9, once we expand the scale

on the new survey, the discrimination between peaks and noise is no longer so simple.

6.2.4 Comparison to XCLASS

Peter Schilke and Claudia Comito, both of the Max-Planck-Institut für Radioastronomie in

Bonn, Germany, have also put significant work into developing reliable deconvolution

techniques for double-sideband spectra [Comito and Schilke, 2002]. They have devel-

oped a tool called XCLASS that adds deconvolution capabilities onto the popular GILDAS

CLASS spectral-analysis package and have used it successfully for deconvolving large data

sets, such as the 850-GHz Orion survey described in Comito et al. [2005].

To compare the different deconvolution techniques, Darek Lis, who is familiar with us-

ing XCLASS, ran its deconvolution facility on the Orion data set used here. He cut off noise

at the band edges, removed major spurs, and fit zeroth-order baselines to the individual
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Figure 6.8: Comparison between previous 230-GHz survey of Orion (top panels, Sutton
et al., 1985) and preliminary deconvolution of current results (bottom panels). The prior
survey has a sensitivity of ∼ 300 mK while we expect the current survey to have a sensi-
tivity of ∼ 15 mK.
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Figure 6.9: An expanded view of the deconvolved Orion spectrum, showing both the peril
and the promise that awaits as we attempt to identify the small peaks revealed by our
higher-sensitivity results.

spectra before running the deconvolution. The XCLASS deconvolution shown here used a

chi-square minimization, rather than the maximum-entropy method described in Comito

and Schilke [2002]. It is important to emphasize that these represent preliminary decon-

volution attempts and that neither deconvolution algorithm was necessarily achieving its

optimal performance. The MATLAB implementation discussed in this thesis is sufficiently

new that we are still exploring the parameter space and learning how to improve its per-

formance. Likewise, more experience with XCLASS would likely allow us to improve the

results it produces.

Comparisons between the XCLASS deconvolution and the MATLAB deconvolution

are shown in in Figures 6.10 and 6.11. The results demonstrate both the advantage of

having multiple deconvolution methods available, as well as the challenges that arise as

we push line surveys to higher sensitivities. It is quite reassuring that both deconvolution

methods achieve very similar results for the major spectral features, giving us confidence

in the results. Interestingly, some of the defects that might have been attributed to a glitch

in the convolution algorithm appear in both results, indicating that they are probably real

and related to some feature of the data.

The top plot in Figure 6.10 shows a portion of the single-sideband spectrum in which

the two methods agree quite well. Overall line shapes and peak intensities are nearly iden-

tical. It is also interesting to note that both algorithms reproduce the negative artifact near

239.45 GHz. This type of close agreement is typical across the SSB spectrum. The bottom
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panel shows a case in which the two algorithms produce noticeably different results. Of

particular interest is the qualitative difference near 233.7 GHz; one algorithm identifies

a moderate-sized peak while the other finds nothing. The degree of difference observed

across this entire example is unusually large; however, it is not uncommon to identify

points in the spectrum where one algorithm found a peak that is significantly larger than

the peak found by the second algorithm. The significance of these differences cannot be

determined until both SSB spectra are examined for “ghost” lines from the deconvolution.

At the same time, the small-scale peaks demonstrate the effort that remains. While the

differences between the two deconvolved spectra seem negligible on the scale of the plot,

some are significant at our level of sensitivity. Before we can confidently declare that we

have produced deconvolved spectra with ∼ 15-mK sensitivity, we will need to reconcile,

or at least understand, why the two algorithms produce different results. Rather than

insisting that all channels of the two deconvolved spectra match to within their statistical

errors, it might be more productive to focus on whether the derived peak parameters (e.g.,

amplitude and width) are consistent, since those are the values that drive the scientific

analysis.

This comparison should be repeated after properly cleaning the Orion data and iden-

tifying likely ghosts. We will need to try different configurations of both algorithms to

see how we can optimize the recovery of small spectral features, and it would be prudent

for us to seek feedback from the authors of XCLASS to guide this work. Allowing both

algorithms to work on the same set of simulated data would also be quite interesting.

6.3 Spectral Analysis

Conceptually, characterizing the spectral lines in a single-sideband spectrum is separate

from the process of deconvolution. Practically, however, there is a feedback loop in which

the spectral interpretation informs the deconvolution. Tuning the deconvolution algorithm

requires subjective decisions, and the spectral analysis provides an opportunity to deter-

mine whether the resulting spectrum is self consistent. Developing software to perform

automated line analysis is key in this process, as it allows us to understand whether the

small features are actual spectral lines, residual noise, or artifacts of the deconvolution.
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Figure 6.10: Comparison between deconvolved results using XCLASS (red) and the
MATLAB-based deconvolution algorithm (blue). The XCLASS spectrum has been ver-
tically offset to align baselines. The extra channels of red spectrum at the edges of the
spectrum are caused by the plotting method and do not represent real differences between
spectra.
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Figure 6.11: Comparison between deconvolved results using XCLASS (red) and the
MATLAB-based deconvolution method (blue). In the second and fourth plots, the ver-
tical scale has been expanded to show how the two algorithms differ for the peaks that are
likely to represent lines relevant to current science. Compare to Figure 6.9. (The XCLASS
spectrum has been vertically offset to align baselines.)
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6.3.1 Line-Analysis Software

As discussed in Section 1.7, the increased data rate of the new receivers requires similar

advances in software to deconvolve and analyze the spectra. This must occur in a largely

automated pipeline; otherwise, manually analyzing the spectra becomes a bottleneck. The

deconvolution software we have developed requires little user intervention; the most time-

consuming task is examining the raw spectra, and that could easily be accomplished in real

time while observing.

Traditionally, spectral analysis for large line surveys has involved manually fitting each

peak individually, or at best, trying to fit all of the lines from a single molecule simulta-

neously. Ideally, this process should be automated, and Susanna Widicus Weaver’s group

is currently developing such software. It accepts a set of initial estimates for a molecule’s

velocity, linewidth, and temperature; using a least-squares analysis, it then optimizes these

parameters based on the observed spectrum. The software first analyzes a single molecule,

then iteratively adds additional molecules to the mix, reoptimizing all of the molecules’ pa-

rameters each time. This provides more robust way of dealing with strongly blended lines

and provides hope for identifying lines that are nearly lost in the confusion. User inter-

vention is required to develop the initial values of the parameters, which are estimated

by performing a “by-eye” optimization of the parameter values. The software has not yet

been completed, but it is under active development.

6.3.2 Baselines and Spectral Confusion

Modeling all of the lines in a spectrum simultaneously is critical to our understanding of

how to fit a baseline beneath a spectral peak. Typically, the peaks are assumed to be built

upon continuum emission that creates an underlying offset (as can be seen in the Orion

spectrum in Figure 6.7). Presumably, the “continuum” actually consists of a combination of

truly broadband emission from sources such as dust and a set of hopelessly blended small

spectral lines. Treating all of this as continuum emission and using the top of that as the

baseline for fitting large peaks is probably acceptable. The relative error in the integrated

intensity is likely to be small compared to other errors, such as calibration, and it makes
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sense to remove the contribution of smaller lines to the larger line’s flux. For small peaks,

however, this could represent a significant source of systematic error. Fitting the visible

peak to the top of the “continuum” might be the equivalent of fitting the tip of the iceberg;

the majority of the line’s flux could be hidden below the presumed baseline.

By generating simulated spectra that include all of the emission lines from known

molecules, we should be able to quantitatively estimate the offset caused by confused

spectral lines. Moreover, even if we cannot recover some of the lines buried beneath the

confusion limit, we can at least test whether the observed spectrum is consistent with their

presence.

This knowledge feeds back through the entire system. If it is important to include the

offset due to confused spectral lines in the single-sideband spectrum, this has important

implications for observing and deconvolution techniques. In particular, it implies that

fitting baselines to individual spectra is not reliable in the presence of line confusion.

6.4 Analysis of L1157 Spectrum

Although spectral-identification software is not yet complete (Section 6.3), we have ana-

lyzed the single-sideband spectrum of L1157 by hand. Consistent with the results of Avery

and Chiao [1996], we find that the peaks cannot be fit by a simple Gaussian function [e.g.,

Weisstein, 2010]; however, an “asymmetric Gaussian” of the form

T ( f ) =


Toe
−
(

f− fo√
2 σL

)2

for f < fo

Toe
−
(

f− fo√
2 σR

)2

for f ≥ fo

(6.1)

gives good fits for all peaks except CO, which often has a complex peak shape. The asym-

metric Gaussian function is normalized to a maximum amplitude of 1 so that To gives the

peak intensity of the line. The peak-fitting results are shown in Figures D.1 through D.9

of Appendix D and summarized in Table 6.1. All peaks were fit using the asymmetric

Gaussian function, and when necessary, multiple peaks were fit simultaneously.

As indicated by Equation 6.1, fo is the frequency at which the peak reaches its maxi-

mum amplitude, To is the maximum amplitude of the peak (on the T∗A scale), and σL and
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σR represent the low-frequency (“left”) and high-frequency (“right”) widths of the Gaus-

sian, respectively. The column labeled “Baseline RMS” gives the root-mean-square of the

deviations for channels outside the peak-fitting region while “Peak RMS” lists the similar

quantity for the channels included in the peak fit. Each letter in the “Blend” column indi-

cates a set of peaks that were fit simultaneously due to line blending. Spectral lines were

matched to likely molecular species by comparing the center frequencies of the peak fits to

the line identifications in other works, particularly the spectral-line tables of Lovas [2004].

Peak frequencies were also compared to previous surveys of point B1 in L1157 [Avery and

Chiao, 1996, Bachiller and Gutierrez, 1997], the surveys of IRAS 16293-2422, another Class-

0 source, by Blake et al. [1994] and van Dishoeck et al. [1995], and the surveys of Orion

KL [Blake et al., 1986, Sutton et al., 1985], a high-mass hot core. Dashes (–) in the line-

identification column indicate that no likely match was found. These assignments should

be considered tentative until futher analysis can be performed using the spectral-analysis

software described above.

The columns labeled “B&G,” “A&C,” “16293,” and “Orion” show an “X” if the line is

detected in the Bachiller and Gutierrez [1997] survey of point B1 in L1157, the Avery and

Chiao [1996] survey of that same location in L1157, the Blake et al. [1994] and van Dishoeck

et al. [1995] survey of IRAS 16293-2422, and the Sutton et al. [1985] and Blake et al. [1986]

surveys of Orion KL, respectively. Because the Orion KL study includes an unbiased sur-

vey similar to the one presented here, additional comparisons could be made between the

results for L1157 and those of Orion KL. An “O” in the “Orion” column indicates the fre-

quency was included in the Orion survey, but no line was observed while dashes indicate

frequencies that were not covered in that survey. Table 6.2 summarizes the number of lines

observed for each molecular species, based on the tentative line identifications in Table 6.1.
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Table 6.1: Peak-fitting results for the deconvolved (SSB) spectrum of

L1157. (See text for full description.)

fo

(GHz)
To (K)

σL

(MHz)

σR

(MHz)

Baseline

RMS

(mK)

Peak

RMS

(mK)

Blend
Tentative

ID B&
G

A
&

C

16
29

3

O
ri

on

217.1068 0.185 1.56 3.58 40.3 22.6 SiO X X X X

218.2231 0.792 0.93 2.46 20.6 12.0 H2CO X X

218.4417 0.210 1.21 2.15 18.5 11.9 a CH3OH X X

218.4770 0.218 1.15 2.13 – – a H2CO X X

218.7616 0.244 1.39 1.95 18.8 13.5 H2CO X

219.5595 0.078 0.01 2.54 14.4 18.8 C18O X X X

219.9503 0.368 0.80 3.01 15.6 13.1 SO X X X X

220.3989 0.596 0.65 1.38 13.7 45.4 13CO X X

221.9666 0.048 1.49 4.18 16.3 9.3 SO2 X X X

225.6989 1.043 1.15 2.61 15.1 13.1 H2CO X X X

226.1749 0.042 2.04 2.87 11.4 9.9 b – O

226.2134 0.043 1.22 1.03 – – b – O

226.6337 0.024 11.88 7.97 14.0 11.9 c CN X

226.6611 0.111 1.20 3.91 – – c CN X X

226.6823 0.046 5.97 1.48 – – c CN X

226.8759 0.276 1.25 2.85 15.1 11.4 CN X X X

229.7603 0.365 1.23 2.35 13.6 11.8 CH3OH X X X

230.5390 10.514 0.71 2.82 46.0 705.8 CO X X X X

239.7480 0.197 1.30 2.68 13.4 12.1 CH3OH X X X

241.0190 0.068 2.06 1.69 12.1 6.1 C34S X X X

241.6155 0.082 0.02 2.42 13.6 40.5 SO2 X X X

241.7019 0.525 1.30 2.42 11.5 9.0 CH3OH X X X

241.7687 1.794 1.28 2.74 14.3 19.1 d CH3OH X X X

241.7928 2.227 1.26 2.71 – – d CH3OH X X X X

241.8810 0.183 1.38 2.54 13.2 9.2 e CH3OH X X X

241.9063 0.303 1.43 2.58 – – e CH3OH X X X

(table continued on next page)
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Table 6.1 – Continued

fo

(GHz)
To (K)

σL

(MHz)

σR

(MHz)

Baseline

RMS

(mK)

Peak

RMS

(mK)

Blend
Tentative

ID B&
G

A
&

C

16
29

3

O
ri

on

243.9177 0.336 1.25 2.44 13.2 14.2 CH3OH X X

244.9377 1.038 1.62 2.72 14.2 29.2 CS X X X

250.5087 0.094 1.64 2.30 16.0 12.2 CH3OH X

251.8279 0.185 1.71 2.95 17.6 15.9 SO X –

254.0170 0.269 1.33 2.85 15.8 13.2 CH3OH X –

258.2582 0.158 1.81 2.74 17.0 15.8 SO X X

259.0146 0.079 1.92 2.30 19.2 8.8 H13CN X X

260.5208 0.378 1.94 3.18 16.5 10.4 f SiO X X X

260.5289 0.109 1.94 4.23 – – f SiO wing

261.8073 0.206 1.46 2.48 18.0 14.0 g CH3OH X X X

261.8453 0.399 1.25 3.26 – – g SO X X X

261.9144 0.032 1.39 3.32 – – h – O

262.0075 0.130 2.12 3.27 19.8 12.2 h CCH X

262.0693 0.100 2.21 1.12 – – h CCH X

265.8887 1.440 2.37 4.31 17.8 20.5 i HCN –

265.8992 0.078 5.59 4.35 – – i – –

266.8393 0.414 0.89 3.12 21.8 16.1 CH3OH –

267.5585 0.689 1.39 2.22 22.4 18.6 HCO+ –

271.9819 0.186 1.24 2.28 22.2 14.1 HNC –

274.0590 -0.062 0.79 2.50 22.9 11.9 j – –

274.0779 -0.102 4.57 2.25 – – j – –

274.2269 -0.176 4.37 1.95 23.4 21.0 – –

Table 6.3 shows the differences between line centers found in this work and those from

other works, based on the tentative identifications shown in 6.1. The value of fo repre-

sents the center frequency used in each study while ∆ f represents the difference between

the center frequency used in that study with respect to the center frequency found in this

work. For the Lovas [2004] catalog values, the frequency error is also used to calculate

a corresponding line-of-sight velocity for the region of the source emitting the line (∆v).
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Species
Number
of Lines

CH3OH 13
CN 4

H2CO 4
SO 4

SiO and
SiO wing

3

CCH 2
SO2 2
CO 1

13CO 1
C18O 1

CS 1
C34S 1
HCN 1

H13CN 1
HCO+ 1
HNC 1

– 7

TOTAL 48

Table 6.2: Number of lines found for each chemical species, based on tentative identifica-
tions from Table 6.1.

The columns labelled “Lovas” correspond to the Lovas [2004] catalog while the other cap-

tion headings use the abbreviations defined for Table 6.1. As before, dashes (–) in the

line-identification column indicate that no likely match was found. Parentheses around a

value of fo in the “Lovas” column indicate that the center frequency shown is the closest

frequency match that could be identified in Lovas [2004]. These frequencies differed signif-

icantly from the results of the line fits, producing a large value of ∆ f . No line assignments

were made for such cases.

Table 6.1 shows that several lines observed in this work were not reported in either

of the previous surveys of point B1 in L1157, and a few lines were not observed in either

of those papers or in the survey of 16293. However, we have reasonable confidence that

the lines with tentative identifications represent real spectral lines, and not artifacts from

the receiver or the data analysis, as all such lines were also observed in the Orion survey.

This fact suggests it is reasonable to expect that the corresponding species could be created

in a prestellar core and that the observed lines could be excited in such an environment.
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However, it should be noted that the physical environment, and hence the chemistry, of

large, hot cores, such as Orion KL, are usually believed to be qualitatively different than

those of smaller cores, such as L1157, so caution must be taken when applying the line

identifications from Orion KL to the lines observed in L1157.
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Chapter 7

Summary and Conclusions

Our understanding of the early stages of star formation has advanced greatly over the past

few decades, largely through improvements in submillimeter astronomy combined with

new theoretical models. Submillimeter observations provide an exciting window into re-

gions of the universe inaccessible at other wavelengths and are particularly well suited

to peering through the cold, dusty gas of molecular clouds. As with other wavelength

regimes, submillimeter astronomy relies on two types of complementary observing, imag-

ing and spectroscopy. The resolving power of a single-dish telescope like the CSO is not

sufficient for imaging a protostar, but it offers excellent capabilities for spectroscopic stud-

ies. Spectral lines at these frequencies can be used to study source dynamics and determine

physical conditions, in addition to identifying the molecular source.

An unbiased line survey, covering a broad range of frequencies, provides a particu-

larly powerful way of applying spectroscopy to a given source. While each of the individ-

ual lines is informative, the line survey can tell a story greater than the sum of its parts.

Understanding that story requires an interdisciplinary approach, combining physics, as-

tronomy, and chemistry. The results are impressive and include information needed to

understand the physics, chemistry, and geometry of the source.

Traditionally, line surveys have required a significant investment of observing time

that often spans several observing seasons, followed by an equally intense data-analysis

effort. Consequently, few sources have been fully surveyed, and much of our understand-

ing of star formation has been built upon a few prototypical sources that are particularly

amenable to observing. This thesis describes our efforts to enable rapid, sensitive line sur-

veys by taking advantage of recent advances in submillimeter heterodyne receivers and by
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developing new software tools to minimize the amount of manual effort required during

the data analysis.

7.1 Receivers

The graduate work leading to this thesis includes the installation of two instruments at

the CSO, progenitors of a new generation of high-bandwidth receivers. In both cases, the

SIS mixer at the heart of the receiver has been an unqualified success. New modeling

and fabrication tools have permitted the design of SIS mixers with unprecedented perfor-

mance goals, and the resulting devices have not disappointed. The new receivers offer

vastly greater instantaneous bandwidths, high sensitivity, and easy, stable tuning. While

the mixers themselves have been a joy to use, there has been a learning curve associated

with moving to a broader IF bandwidth, going up as high as 20 GHz from the previous

2 GHz. The extra bandwidth requires additional caution in designing IF systems and ex-

poses sources of interference that never caused problems before.

Synthesizer-driven LO chains seem to offer substantial promise, but the results have

been mixed. The improved frequency agility simplifies the task of observing and substan-

tially reduces the overhead associated with tuning the receiver to a new frequency. How-

ever, it is difficult to generate a sufficiently clean signal from the LO chain. That situation

has been largely remedied through the use of a YIG filter to clean the synthesizer signal,

but the added components increase the complexity of the device, with a corresponding

decrease in the reliability of the LO system. Further, this approach does not remove all of

the spurious signals from the output of the LO chain, leading us to choose the traditional

Gunn-based LO for our observing efforts. Nonetheless, work with the prototype demon-

strates that the synthesized LO can offer similar performance to the Gunn under the right

conditions and provides several insights that have gone into designing the next series of

facility receivers.
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7.2 Data Analysis

The new receivers fulfilled their promise to substantially increase the speed at which line

surveys could be completed, thereby revealing the need for equally fast data analysis. To

this end, we have created new sideband-deconvolution software and are currently devel-

oping spectral-analysis software. The data pipeline has been designed with an eye toward

minimizing the amount of manual intervention required from the user, although some

features, such as integrated baseline fitting, need further work.

A thorough analytic analysis of the sideband-deconvolution problem has been com-

pleted, including the derivation of Jacobian matrices needed for numerical algorithms.

The deconvolution technique is built upon the minimization off a χ2-like error function.

Several methods of finding the optimal solution have been considered, including direct

optimization of the model parameters, nonlinear root finding, and a hybrid pseudo-linear

approach. The third concept is the most intriguing, as it isolates the nonlinearities inherent

in the problem, leaving the majority of parameters accessible to linear solution. However,

it also looks to be the most complicated to implement. In order to confirm the results of

the analytic derivations and to facilitate future expansions to technique, a utility has been

created to allow the calculation of arbitrary gradients within Mathematica.

7.3 Line Surveys

To demonstrate the capabilities of the new wideband systems, several unbiased line sur-

veys were completed, and more are being undertaken by our collaborators. The first of

these surveys focused on a position in the outflow of L1157, a low-mass protostar with

geometry that makes it ideal for studying shock chemistry in the outflow. This particular

position has been heavily studied by other researchers, both through targeted line searches

and interferometric observations, providing a significant foundation of background infor-

mation. The DSB spectra resulting from these observations had excellent baselines, and

the deconvolution software performed well. The entire single-sideband spectrum, cover-

ing more than 50 GHz of spectral range, is included in this thesis.
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The Orion KL hot core, arguably one of the most studied submillimeter sources in the

galaxy, was first surveyed in the 230-GHz band about 25 years ago. With the new advances

in receiver technology, we have repeated that survey, driving the noise levels down by

an additional order of magnitude. The new survey should provide sufficient sensitivity

to identify complex organic molecules in the spectrum, if they are present in the source.

These molecules are important for understanding the chemistry that occurs around hot

cores, and some have implications for origin-of-life theories. A partial deconvolution of the

Orion data is presented here to demonstrate that the data-analysis routines can preserve

the quality of such high-sensitivity observations.

7.4 Prospects for Future Work

The L1157 and Orion KL surveys show the potential of the new systems. The broadband

receivers greatly simplify and speed the observing process, and the data-analysis soft-

ware has demonstrated that it can rapidly deconvolve large data sets while preserving the

quality of high-sensitivity observations. These initial successes are rewarding, but there

remains much work to be done.

A suite of new facility receivers has been designed for the CSO and is currently under

construction. This represents a substantial undertaking that has not only necessitated new

mixer and receiver designs, but has also required new bias-control electronics, new IF sys-

tems, and new methods of computer control. In addition to offering broad instantaneous

bandwidths at a variety of observing frequencies, these receivers are also configured in

a balanced configuration, making them ideal for use with synthesizer-driven LO chains.

However, while much has been learned about active LO chains from their use on Z-Rex,

open questions remain. As these receivers are tested and installed on the telescope, it will

be particularly important to look for signs of spurious signals or excess noise in the result-

ing spectra. As more heterodyne instruments move toward a 4 - 8 GHz IF output, it will be

necessary to identify and eliminate sources of RF interference that fall in the new IF band,

ranging from the microwave in the CSO galley to the lock signal of the LO’s phase-locked

loop. Ensuring that these receivers present the correct power levels at their interface to the

IF electronics will also be critical.
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The analytic derivations underlying the deconvolution software appear to be quite

reliable, having converged on the same solutions through calculations by hand and in

Mathematica, and the deconvolution software has proven the value of this methodology.

However, the MATLAB implementation of the deconvolution algorithm does have some

unexplained behavior, particularly when fitting data with baselines. New display and de-

bugging tools are needed to determine whether there are errors in the current code and to

support the creation of additional solution modes, such as non-linear root finding or the

hybrid pseudo-linear approach. In the near term, medium-sized simulations are needed

to validate the deconvolution techniques for λB 6= 0. On longer timescales, reformulating

χ2
mod to use memory more efficiently should allow larger simulations and line surveys to

be deconvolved with λB 6= 0, if desired.

Finally, significant work remains on the spectral-analysis tools being developed by col-

laborators at Emory University. This software will greatly expanded our ability to model

molecular-line spectra, particularly in line-confused spectra. This analysis is critical for

reaching sensitivities needed to further constrain astrochemical models and to search for

prebiotic molecules in star-forming regions.

Once completed, the hardware and software systems described here should make it

possible for submillimeter line surveys to become routine observational tools. As demon-

strated with L1157, sources can be surveyed to moderate sensitivity in only a few nights

of observing time. Even sensitive studies, such as the Orion hot-core survey, can be com-

pleted in a single run, improving the quality of the data calibration and minimizing the

likelihood of ending up with a half-completed survey.
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Appendix A

Calculating Gradients and Jacobians

A.1 General Derivations

The results in Chapter 4 rely heavily on taking derivatives of equations containing matrices

and vectors. The basic approach for such calculations is to expand a matrix operation

into the underlying components, which can be treated as ordinary numbers. To avoid

recalculating similar quantities for each derivation, we start by considering some general

cases in which x and y are arbitrary vectors and A is an arbitrary matrix. Throughout this

appendix, sums are shown explicitly; there are no implied summations. The results of this

section are summarized in Table A.1 for easy reference.

We begin with the simplest calculation:

∂xi
∂xj

= δij

= 1ij. (A.1)

We can then consider cases in which x is multiplied by a matrix from the left,

∂

∂xj
[A · x]i =

∂

∂xj
∑

k
Aikxk

= ∑
k

Aik
∂xk
∂xj

= ∑
k

Aikδkj

= Aij, (A.2)
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and from the right:

∂

∂xj

[
xT · A

]
i
=

∂

∂xj
∑

k
xk Aki

= ∑
k

∂xk
∂xj

Aki

= ∑
k

δkj Aki

= Aji. (A.3)

Now we add another vector into the mix:

∂

∂xj

(
yT · A · x

)
=

∂

∂xj
∑
k,m

yk Akmxm

= ∑
k,m

yk Akm
∂xm
∂xj

= ∑
k,m

yk Akmδmj

= ∑
k

yk Akj

=
[
yT · A

]
j
. (A.4)

This result could be expressed equivalently as
[
AT · y

]
j , since the component representa-

tions of both forms are identical. If x multiplies from the left, we find the following result:

∂

∂xj

(
xT · A · y

)
=

∂

∂xj
∑
k,m

xk Akmym

= ∑
k,m

∂xk
∂xj

Akmym

= ∑
k,m

δkj Akmym

= ∑
m

Ajmym

= [A · y]j . (A.5)
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As a special case, we can consider

∂

∂xj

(
yT · x

)
= yj, (A.6)

which can trivially be derived from Equation A.4 by setting A → 1.1 Similarly, we find

∂

∂xj

(
xT · y

)
= yj (A.7)

from Equation A.5.

Next, we calculate ∂
∂xj

(
xT · A · x

)
:

∂

∂xj

(
xT · A · x

)
=

∂

∂xj
∑
k,m

xk Akmxm

= ∑
k,m

∂xk
∂xj

Akmxm + ∑
k,m

xk Akm
∂xm
∂xj

= ∑
k,m

δkj Akmxm + ∑
k,m

xk Akmδmj

= ∑
m

Ajmxm + ∑
k

xk Akj

=
[

A · x
]

j
+
[

xT · A
]

j
. (A.8)

If preferred, this result can also be written as
[(

A + AT) · x]j . This result can be used to

calculate two other general cases that appear frequently when taking derivatives of χ2
mod.

By setting A → 1, we find

∂

∂xj

(
xT · x

)
= 2xj. (A.9)

Another, case that appears commonly is ∂
∂xj

(
zT · z

)
, in which z = A · x. As shown below,

this can be addressed easily using Equation A.8 with A → AT · A :

1It would be equally valid to consider Equation A.4 as a special case of Equation A.6 since yT · A simply
represents another vector that could be used in the latter equation to generate the former.
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∂

∂xj

(
zT · z

)
=

∂

∂xj

(
xT · AT · A · x

)
=

[(
AT · A +

(
AT · A

)T
)
· x
]

j
(by Eq. A.8)

= 2
[

AT · A · x
]

j

= 2
[

AT · z
]

j
. (A.10)

The specific implementation of the deconvolution algorithm in MATLAB also requires

that we calculate derivatives of the form ∂
∂xj

(xi)
2 and ∂

∂xj
(zi)

2, where z is again defined

as z = A · x. It is important to emphasize that these quantities are not implicit sums;

rather, they represent single terms of x · x and z · z, respectively. The first derivative can

be calculated quite simply:

∂

∂xj
(xi)

2 = 2xi
∂xi
∂xj

= 2xiδij. (A.11)

Despite the repeated index, there is no summation over i, so this result represents a diago-

nal matrix with the elements of 2xi along the diagonal. Similarly, we find

∂

∂xj
(zi)

2 = 2zi
∂

∂xj
(zi)

= 2zi
∂

∂xj

(
∑

k
Aikxk

)

= 2zi

(
∑

k
Aikδjk

)

= 2zi Aij. (A.12)

Again, there is no summation over i, so this result represents the matrix A, in which the ith

row has been multiplied by 2zi.
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Derivative Result Equation

∂xi
∂xj

δij

or 1ij
A.1

∂

∂xj
[A · x]i Aij A.2

∂

∂xj

[
xT · A

]
i

Aji A.3

∂

∂xj

(
yT · A · x

) [
yT · A

]
j

or
[

AT · y
]

j

A.4

∂

∂xj

(
xT · A · y

)
[A · y]j A.5

∂

∂xj

(
yT · x

)
yj A.6

∂

∂xj

(
xT · y

)
yj A.7

∂

∂xj

(
xT · A · x

) [
A · x

]
j
+
[

xT · A
]

j

or
[(

A + AT
)
· x
]

j

A.8

∂

∂xj

(
xT · x

)
2xj A.9

∂

∂xj

(
zT · z

)
2
[
AT · z

]
j A.10

∂

∂xj
(xi)

2 2xiδij A.11

∂

∂xj
(zi)

2 2zi Aij A.12

Table A.1: General results for differentiation of matrix and vector quantities. A represents
an arbitrary matrix while x and y are arbitrary vectors, all of appropriate dimension. It is
assumed that z = A · x. Equivalent forms are listed for some results. Note that there is no
sum over the index i in Equations A.11 and A.12.
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A.2 Common Derivatives

Armed with these general results for arbitrary A, x, and y, we can quickly calculate some

important derivatives. In particular, it is useful to differentiate many of the quantities

defined in Chapter 4 with respect to their underlying independent parameters. We start

by taking derivatives of the modeled DSB data, dNR, as expressed in Equation 4.61, which

gives

∂dNR
i

∂sj
=

∂

∂sj

[
MΓ,NR · s + ηBCNR · b

]
i

=
∂

∂sj

[
MΓ,NR · s

]
i

= MΓ,NR
ij (by Eq. A.2) (A.13)

and

∂dNR
i

∂bj
=

∂

∂sj

[
MΓ,NR · s + ηB

∂

∂sn
CNR · b

]
i

= ηB
∂

∂bj

[
CNR · b

]
i

= ηBCNR
ij (by Eq. A.2). (A.14)

The derivative with respect to γj is discussed in Section A.2.1,where we consider some

general properties of such calculations.

Similarly, we calculate derivatives of βNR with respect each of the independent param-

eters. From Equation 4.60, it is evident that ∂βNR
i

∂sj
= 0 and ∂βNR

i
∂γj = 0, so we only need to

calculate one derivative:

∂βNR
i

∂bj
=

∂

∂bj

[
CNR · b

]
i

= CNR
ij (by Eq. A.2). (A.15)

Finally, the following identity is useful when simplifying some of the elements of the

Jacobian matrices and relies on the fact that 1j,R · 1a,R = δaj1
a,R (Equation 4.44):
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1j,R ·MΓ,NR = 1j,R ·
[

MΣ,NR +

(
∑

a
γa1a,R

)
·M∆,NR

]

= 1j,R ·MΣ,NR +

(
∑

a
γa1j,R · 1a,R

)
·M∆,NR

= 1j,R ·MΣ,NR +

(
∑

a
γaδaj1

j,R

)
·M∆,NR

= 1j,R ·MΣ,NR + γj1j,R ·M∆,NR. (A.16)

A.2.1 Derivatives with respect to γ

Derivatives with respect to the sideband-gain factors deserve special consideration. Al-

though γ can be considered a vector, it exists in a different space than the other matrices

and vectors discussed in previous sections of this appendix. In particular, the index a on γa

pairs with the “third” index on 1a,R
ij . To avoid confusion, we have consistently described

operations involving γ in terms of explicit sums over its components.2 Therefore, we can

apply the techniques of the previous section to the components of γ without needing to

expand the dot products into matrix and vector components first. For instance, consider

taking the derivative of Ψ1 · MΓ,NR · Ψ2, where Ψ1
T and Ψ2 represent arbitrary matrices,

vectors, or one of each.3 Since the vector and matrix multiplication commute with multi-

plication by a scalar, taking the derivative turns out to be quite easy:

∂

∂γj

(
Ψ1

T ·MΓ,NR ·Ψ2

)
=

∂

∂γj

[
Ψ1

T ·
(

MΣ,NR + ΓR ·M∆,NR) ·Ψ2

]
by Equation 4.59

=
∂

∂γj

[
Ψ1

T ·
(

∑
a

γa1a,R

)
·M∆,NR ·Ψ2

]
by Equation 4.45

=
∂

∂γj ∑
a

γaΨ1
T · 1a,R ·M∆,NR ·Ψ2

= ∑
a

∂γa

∂γj Ψ1
T · 1a,R ·M∆,NR ·Ψ2

= ∑
a

δajΨ1
T · 1a,R ·M∆,NR ·Ψ2

= Ψ1
T · 1j,R ·M∆,NR ·Ψ2. (A.17)

2For instance, we use ∑
a

γa1a,R, rather than attempting a calculation akin to a “third-index dot product.”

3By letting Ψ1 and/or Ψ2 be a multiple of the identity matrix (1), we can also incorporate multiplication
by scalars.
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We have been able to arrive at this result without specifying the nature of Ψ1; the only

requirement is that the multiplication operator allows us to pull out the γa from between

between Ψ1 and 1a,R (i.e., the multiplication must be distributive over addition and com-

mutative with respect to scalar multiplication). Since multiplication by matrices, multi-

plication by vectors, and multiplication by scalars meet these constraints, we can treat

Equation A.17 as a general result.

Taking the derivative of the transpose is equally easy:

∂

∂γj

(
Ψ2

T ·MΓ,NRT ·Ψ1

)
=

∂

∂γj

[
Ψ2

T ·
(

MΣ,NRT
+ M∆,NRT · ΓRT

)
·Ψ1

]
=

∂

∂γj

[
Ψ2

T ·M∆,NRT ·
(

∑
a

γa1a,R

)
·Ψ1

]

= ∑
a

∂γa

∂γj Ψ2
T ·M∆,NRT · 1a,R ·Ψ1

= Ψ2
T ·M∆,NRT · 1j,R ·Ψ1

T. (A.18)

Another useful derivative is

∂

∂γj

(
Ψ1

T ·MΓ,NRT ·MΓ,NR ·Ψ2

)
=

∂

∂γj

(
Ψ1

T ·
[

MΣ,NRT
+ M∆,NRT · ΓRT

]
·

[
MΣ,NR + ΓR ·M∆,NR] ·Ψ2

)
=

∂

∂γj

[
Ψ1

T ·MΣ,NRT ·MΣ,NR ·Ψ2

]
+

∂

∂γj

[
Ψ1

T ·MΣ,NRT · ΓR ·M∆,NR ·Ψ2

]
+

∂

∂γj

[
Ψ1

T ·M∆,NRT · ΓRT ·MΣ,NR ·Ψ2

]
+

∂

∂γj

[
Ψ1

T ·M∆,NRT · ΓRT · ΓR ·M∆,NR ·Ψ2

]
.

(A.19)

The first term of this equation is clearly zero since it has no dependence on the sideband-

gain factors. Comparing the next term to some of the intermediate steps in Equation A.17

shows that the second term is equal to Ψ1
T ·MΣ,NRT · 1j,R ·M∆,NR ·Ψ2. Similarly, by com-

paring to Equation A.18, it can be seen that the third term is equal to Ψ1
T ·M∆,NRT · 1j,R ·
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MΣ,NR ·Ψ2. The fourth term can be simplified as follows:

(Term 4) =
∂

∂γj

[
Ψ1

T ·M∆,NRT · ΓRT · ΓR ·M∆,NR ·Ψ2

]
=

∂

∂γj

[
Ψ1

T ·M∆,NRT ·
(

∑
a

γa1a,R

)
·
(

∑
b

γb1b,R

)
·M∆,NR ·Ψ2

]

=
∂

∂γj

[
∑
a,b

γaγbΨ1
T ·M∆,NRT · 1a,R · 1b,R ·M∆,NR ·Ψ2

]

=
∂

∂γj

[
∑
a,b

γaγbδabΨ1
T ·M∆,NRT · 1a,R ·M∆,NR ·Ψ2

]
by Equation 4.44

=
∂

∂γj

[
∑

a
(γa)2

Ψ1
T ·M∆,NRT · 1a,R ·M∆,NR ·Ψ2

]

= ∑
a

∂ (γa)2

∂γj Ψ1
T ·M∆,NRT · 1a,R ·M∆,NR ·Ψ2

= ∑
a

2γaδajΨ1
T ·M∆,NRT · 1a,R ·M∆,NR ·Ψ2

= 2γjΨ1
T ·M∆,NRT · 1j,R ·M∆,NR ·Ψ2.

(A.20)

Combining these terms generates the desired formula:

∂

∂γj

(
Ψ1

T ·MΓ,NRT ·MΓ,NR ·Ψ2

)
= Ψ1

T ·MΣ,NRT · 1j,R ·M∆,NR ·Ψ2

+ Ψ1
T ·M∆,NRT · 1j,R ·MΣ,NR ·Ψ2

+ 2γjΨ1
T ·M∆,NRT · 1j,R ·M∆,NR ·Ψ2

= Ψ1
T ·
(

MΣ,NRT · 1j,R ·M∆,NR

+ M∆,NRT · 1j,R ·MΣ,NR

+ 2γj M∆,NRT · 1j,R ·M∆,NR
)
·Ψ2.

(A.21)

We can easily calculate the derivative of dNR using these results:4

4The fact that we are differentiating the ith component of dNR does not prevent us from using the general
result, a fact that can be demonstrated as follows. Let ı̂ represent a basis vector with all components equal to
0, except the ith, which is equal to 1. Then we can write

∂dNR
i

∂γj =
∂

∂γj ı̂ · dNR,

which allows us to apply Equation A.17 by including ı̂ in Ψ1.
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Quantity Value Equation

∂dNR
i

∂sj
MΓ,NR

ij A.13

∂dNR
i

∂bj
ηBCNR

ij A.14

∂βNR
i

∂bj
CNR

ij A.15

∂dNR
i

∂γj

[
1j,R ·M∆,NR · s

]
i

A.22

1j,R · 1a,R δaj1
a,R 4.44

1j,R ·MΓ,NR 1j,R ·MΣ,NR + γj1j,R ·M∆,NR A.16

Table A.2: Results often needed during the discussion of different deconvolution routines.

∂dNR
i

∂γj =
∂

∂γj

[
MΓ,NR · s + ηBCNR · b

]
i

=
[
1j,R ·M∆,NR · s

]
i
. (A.22)

A.3 Derivation of Nonlinear Optimization Equations

As discussed in Section 4.12, the minimum of the χ2
mod surface can be found by solving the

set of coupled, nonlinear equations that result from calculating ∂χ2
mod

∂xi
= 0, where xi is used

to symbolically represent each of the independent parameters (s, b, and γ). Before diving

into these calculations, we explicitly note how the pieces of χ2
mod depend on each of the

parameters (Equation 4.65):

χ2
o,i = χ2

o,i (s, b, γ) ,

χ2
S,j = χ2

S,j (s) ,

χ2
β,k = χ2

β,k (b) , and

χ2
γ,m = χ2

γ,m (γ) .

(4.65)
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Taking the partial derivatives of χ2
mod with respect to sn and setting the results equal to

zero generates a set of equations that can be used to determine the values of the decon-

volved spectrum:
∂χ2

mod
∂sn

= ∑
i

∂χ2
o,i

∂sn
+ ∑

j

∂χ2
S,j

∂sn
= 0. (4.78)

Calculating each of these terms gives

0 = ∑
i

∂χ2
o,i

∂sn
+ ∑

j

∂χ2
S,j

∂sn

= λχ ∑
i

∂

∂sn

[(
dNR

i − do,NR
i

)2
]
+ λS ∑

j

∂

∂sn

(
sj

)2

= 2λχ ∑
i

(
dNR

i − do,NR
i

) ∂dNR
i

∂sn
+ 2λS ∑

j
sjδjn by Equation A.11

= 2λχ ∑
i

(
dNR

i − do,NR
i

)
MΓ,NR

in + 2λS ∑
j

sjδjn by Equation A.13

= λχ ∑
i

MΓ,NR
ni

T (
dNR

i − do,NR
i

)
+ λSsn

= λχ

[
MΓ,NRT ·

(
dNR − do,NR

)]
n
+ λSsn.

This equation represents the nth element of an NSSB-component vector; if each component

is equal to 0, then the entire vector must be equal to 0, allowing all NSSB equations to be

written as a single vector equation:

λχ MΓ,NRT ·
(

dNR − do,NR
)
+ λSs = 0. (A.23)

Similarly, the coefficients of the baseline terms can be found by taking derivatives with

respect to the bn and setting the result equal to 0:

∂χ2
mod

∂bn
= ∑

i

∂χ2
o,i

∂bn
+ ∑

k

∂χ2
β,k

∂bn
= 0. (4.79)

We can expand this equation to find
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0 = ∑
i

∂χ2
o,i

∂bn
+ ∑

k

∂χ2
β,k

∂bn

= λχ ∑
i

∂

∂bn

[(
dNR

i − do,NR
i

)2
]
+ ηBλB ∑

k

∂

∂bn

(
βNR

k

)2

= 2λχ ∑
i

(
dNR

i − do,NR
i

) ∂dNR
i

∂bn
+ 2ηBλB ∑

k
βNR

k
∂

∂bn

(
βNR

k

)
= 2λχηB ∑

i
CNR

ni
T
(

dNR
i − do,NR

i

)
+ 2ηBλB ∑

k
CNR

nk
T

βNR
k by Equations A.14 and A.15

= ηB

[
λχ

[
CNRT ·

(
dNR − do,NR

)]
n
+ λB

[
CNRT · βNR

]
n

]
.

As before, this represents the nth component of a vector, and we can write the full set of

equations as

ηBCNRT ·
[
λχ

(
dNR − do,NR

)
+ λBβNR

]
= 0. (A.24)

Finally, the set of sideband gains can be found by taking the derivative of χ2
mod with

respect to γn and setting the result equal to zero:

∂χ2
mod

∂γn = ∑
i

∂χ2
o,i

∂γn + ∑
m

∂χ2
γ,m

∂γn = 0. (4.80)

Calculating the derivatives yields

0 = ∑
i

∂χ2
o,i

∂γn + ∑
m

∂χ2
γ,m

∂γn

= ∑
i

∂

∂γn

[(
dNR

i − do,NR
i

)2
]
+ λG ∑

m

∂

∂γn (γm)2

= 2λχ ∑
i

(
dNR

i − do,NR
i

) ∂dNR
i

∂γn + 2λG ∑
m

γmδmn by Equation A.11

= 2λχ ∑
i

(
dNR

i − do,NR
i

) [
1n,R ·M∆,NR · s

]
i + 2λGγn by EquationA.22

= λχ

(
dNR − do,NR

)T
· 1n,R ·M∆,NR · s + λGγn. (A.25)

Setting each of the three sets of derivatives from Equations 4.78, 4.79, and 4.80 equal

to zero produces a set of nonlinear equations that can be used to solve for the individual

parameters:
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∂χ2
mod

∂sn
= 0 =⇒ λχ MΓ,NRT ·

(
dNR − do,NR

)
+ λSs = 0,

∂χ2
mod

∂bn
= 0 =⇒ ηBCNRT ·

[
λχ

(
dNR − do,NR

)
+ λBβNR

]
= 0, and

∂χ2
mod

∂γn = 0 =⇒ λχ

(
dNR − do,NR

)T
· 1n,R ·M∆,NR · s + λGγn = 0.

A.4 Jacobian for Nonlinear Root Finding

A.4.1 Calculating Individual Components

Section 4.12.2 uses the Jacobian, defined as (Equation 4.82)

Jnonlin =



∂L1

∂sn

∂L1

∂bp

∂L1

∂γq

∂L2

∂sn

∂L2

∂bp

∂L2

∂γq

∂L3

∂sn

∂L3

∂bp

∂L3

∂γq


, (A.26)

where L1,i, L2,i, and L3,i represent the ith components of the left-hand sides of the first,

second, and third lines in Equations 4.81, respectively, expanded using Equations 4.60 and

4.61:

L1,i = λχ

[
MΓ,NRT ·

(
MΓ,NR · s + ηBCNR · b − do,NR

)]
i
+ λSsi, (A.27a)

L2,i = ηB

[
CNRT ·

(
λχdNR + λBCNR · b − λχdo,NR

)]
i

and (A.27b)

L3,i = λχ

(
dNR − do,NRT

)
· 1i,R ·M∆,NR · s + λGγi. (A.27c)

The first component of the Jacobian is equal to

∂L1,i

∂sn
= λχ

∂

∂sn

[
MΓ,NRT ·MΓ,NR · s

]
i
+ λS

∂si
∂sn

= λχ

[
MΓ,NRT ·MΓ,NR

]
in
+ λS1in by Equations A.2 and A.1.

The second component can be similarly calculated:
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∂L1,i

∂bp
= λχηB

∂

∂bp

([
MΓ,NRT · CNR · b

]
i

)
= λχηB

[
MΓ,NRT · CNR

]
ip

by Equation A.2.

The third element can be calculated using Equations A.18 and A.21:

∂L1,i

∂γq = λχ
∂

∂γq

[
MΓ,NRT ·MΓ,NR · s

]
i
+ λχηB

∂

∂γq

[
MΓ,NRT · CNR · b

]
i

− λχ
∂

∂γq

[
MΓ,NRT · do,NR

]
i

= λχ

[
MΣ,NRT · 1q,R ·M∆,NR · s

]
i
+ λχ

[
M∆,NRT · 1q,R ·MΣ,NR · s

]
i

+ 2λχγq
[

M∆,NRT · 1q,R ·M∆,NR · s
]

i

+ λχηB

[
M∆,NRT · 1q,R · CNR · b

]
i
− λχ

[
M∆,NRT · 1q,R · do,NR

]
i

= λχ

[(
MΣ,NRT

+ 2γq M∆,NRT
)
· 1q,R ·M∆,NR · s

]
i
+

λχ

[
M∆,NRT · 1q,R ·

(
MΣ,NR · s + ηBCNR · b − do,NR

)]
i

We can now begin working on the matrix elements from the second row:

∂L2,i

∂sn
=

∂

∂sn

(
ηBλχ

[
CNRT · dNR

]
i

)
= ηBλχ

∂

∂sn

[
CNRT ·

(
MΓ,NR · s + ηBCNR · b

)]
i

= ηBλχ

[
CNRT ·MΓ,NR

]
in

by Equation A.2.

The next element contains two terms:

∂L2,i

∂bp
= ηB

∂

∂bp

[
CNRT ·

(
λχdNR + λBCNR · b

)]
i

= ηB
∂

∂bp

[
CNRT ·

(
λχηBCNR · b + λBCNR · b

)]
i

= ηB (λχηB + λB)
∂

∂bp

[
CNRT · CNR · b

]
i

= ηB (ηBλχ + λB)
[
CNRT · CNR

]
ip

by Equation A.2.

Equation A.17 allows us to quickly calculate the final element of the second row:
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∂L2,i

∂γq = ηBλχ
∂

∂γq

[
CNRT · dNR

]
i

= ηBλχ
∂

∂γq

[
CNRT ·

(
MΓ,NR · s + ηBCNR · b

)]
i

= ηBλχ

[
CNRT · 1q,R ·M∆,NR · s

]
i
.

Moving on to the first element of the third row gives

∂L3,i

∂sn
= λχ

∂

∂sn

(
dNRT · 1i,R ·M∆,NR · s

)
= λχ

∂

∂sn

[(
sT ·MΓ,NRT

+ ηBbT · CNRT
)
· 1i,R ·M∆,NR · s

]
= λχ

∂

∂sn

[
sT ·MΓ,NRT · 1i,R ·M∆,NR · s

]
= λχ

[(
MΓ,NRT · 1i,R ·M∆,NR + M∆,NRT · 1i,R ·MΓ,NR

)
· s
]

n
.

The next element can be calculated easily using Equation A.7:

∂L3,i

∂bp
= λχ

∂

∂bp

(
dNRT · 1i,R ·M∆,NR · s

)
= ηBλχ

∂

∂bp

(
bT · CNRT · 1i,R ·M∆,NR · s

)
= ηBλχ

[
CNRT · 1i,R ·M∆,NR · s

]
p

.

The final element of the Jacobian can be calculated using Equations A.1 and A.18:

∂L3,i

∂γq = λχ
∂

∂γq

(
dNRT · 1i,R ·M∆,NR · s + λGγi

)
= λχ

∂

∂γq

(
sT ·MΓ,NRT · 1i,R ·M∆,NR · s + λGγi

)
= λχsT ·M∆,NRT · 1q,R · 1i,R ·M∆,NR · s + λGδiq

=
(

λχsT ·M∆,NRT · 1i,R ·M∆,NR · s + λG

)
δiq by Equation 4.44.

A.4.2 Full Jacobian

Putting all of these together generates the full Jacobian:
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Jnlin =


λχ MΓ,NRT ·MΓ,NR + λS1 λχηB MΓ,NRT · CNR Jnlin(L1,γ)

ηBλχCNRT ·MΓ,NR ηB (ηBλχ + λB)CNRT · CNR Jnlin(L2,γ)

Jnlin(L3,s) Jnlin(L3,b) Jnlin(L3,γ)

 , (A.27)

where:

Jnlin(L1,γ)
ij = λχ

[(
MΣ,NRT

+ 2γq M∆,NRT
)
· 1j,R ·M∆,NR · s

]
i
+

λχ

[
M∆,NRT · 1j,R ·

(
MΣ,NR · s + ηBCNR · b − do,NR

)]
i
, (A.28a)

Jnlin(L2,γ)
ij = ηBλχ

[
CNRT · 1j,R ·M∆,NR · s

]
i
, (A.28b)

Jnlin(L3,s)
ij = λχ

[(
MΓ,NRT · 1i,R ·M∆,NR + M∆,NRT · 1i,R ·MΓ,NR

)
· s
]

j
, (A.28c)

Jnlin(L3,b)
ij = ηBλχ

[
CNRT · 1i,R ·M∆,NR · s

]
j
, and (A.28d)

Jnlin(L3,γ)
ij =

(
λχsT ·M∆,NRT · 1i,R ·M∆,NR · s + λG

)
δij. (A.28e)

A.5 Perturbation Method for Pseudo-Linear Optimization

Section 4.13 uses a first-order perturbation analysis to estimate the changes that would

occur in s and b as a result of a given change in γ. The results are summarized in that

section while the detailed calculations are shown below.

Let γo, so, and bo represent a solution to Equations 4.85, so that

(
λχ MΓ,NR

o
T ·MΓ,NR

o + λS1
)
· so + ηBλχ MΓ,NR

o
T · CNR · bo = λχ MΓ,NR

o
T · do,NR (A.29a)

ηBλχCNRT ·MΓ,NR
o · so + ηB (λχ + λB)CNRT · CNR · bo = ηBλχCNRT · do,NR, (A.29b)

where MΓ,NR
o represents the convolution matrix formed using the components of γo ac-

cording to Equation 4.41.

We can approximate the derivative by calculating the changes in s and b that would

be generated by a small deviation from γo. Mathematically, we represent this by rewriting

Equations 4.85 with the following substitutions:



209

γ → γo + δγ

s → so + δs

b → bo + δb,

(A.30)

where δγ is specified and we wish to find the resulting δs and δb. It is worth noting that

the variation in γ can be expressed as a similar variation in ΓR. Equation 4.45 demonstrates

that ΓR is linear with respect to the elements of γ, so when the variation is applied,

ΓR →∑
a
(γa

o + δγa)1a,R

= ∑
a

γa
o1

a,R + ∑
a

δγa1a,R

= ΓR
o + δΓR,

and we can identify δΓR = ∑a δγa1a,R as the corresponding change in Γ . This allows us

to write the effects of the variation on the convolution matrix as:

MΓ,N → MΣ,NR +
(

ΓR
o + δΓR)M∆,NR

= MΓ,NR
o + δΓR ·M∆,NR.

We start by applying the variation to Equation A.29a:

[
λχ

(
MΓ,NR

o
T
+ M∆,NRT · δΓRT

)
·
(

MΓ,NR
o + δΓR ·M∆,NR)+ λS1

]
· (so + δs)

+ ηBλχ

(
MΓ,NR

o
T
+ M∆,NRT · δΓRT

)
· CNR · (bo + δb)

= λχ

(
MΓ,NR

o
T
+ M∆,NRT · δΓRT

)
· do,NR. (A.31)

Distributing the multiplication and noting that δΓRT
= δΓR gives

λχ

MΓ,NR
o

T ·MΓ,NR
o + MΓ,NR

o
T · δΓR ·M∆,NR + M∆,NRT · δΓR ·MΓ,NR

o

+ M∆,NRT · δΓR · δΓR ·M∆,NR︸ ︷︷ ︸
δΓR·δΓR→0

+ λS1

 · so
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+

λχ

MΓ,NR
o

T ·MΓ,NR
o + MΓ,NR

o
T · δΓR ·M∆,NR︸ ︷︷ ︸
δΓR·δs→0

+ M∆,NRT · δΓR ·MΓ,NR
o︸ ︷︷ ︸

δΓR·δs→0

+ M∆,NRT · δΓR · δΓR ·M∆,NR︸ ︷︷ ︸
δΓR·δΓR·δs→0

+ λS1

 · δs

+ ηBλχ

MΓ,NR
o

T · CNR · bo + M∆,NRT · δΓR · CNR · bo

+ MΓ,NR
o

T · CNR · δb + M∆,NRT
δΓR · CNR · δb︸ ︷︷ ︸

δΓR·δb→0


= λχ MΓ,NR

o
T · do,NR + λχ M∆,NRT · δΓR · do,NR. (A.32)

Since we want to approximate the Jacobian, which represents a first derivative, we can

ignore terms that are second-order and higher in the variation, as indicated by the braces

in this equation. If we then group the coefficients of the variational quantities, we find

λχ MΓ,NR
o

T ·
(

MΓ,NR
o · so + ηBCNR · bo− do,NR

)
+ λS · so︸ ︷︷ ︸

zeroth-order terms→ 0

+
(

λχ MΓ,NR
o

T ·MΓ,NR
o + λS1

)
· δs + ηBλχ MΓ,NR

o
T · CNR · δb

= λχ M∆,NRT · δΓR ·
(

do,NR −MΓ,NR
o · so− ηBCNR · bo

)
− λχ MΓ,NR

o
T · δΓR ·M∆,NR · so. (A.33)

The terms in the first line sum to zero based on Equation A.47a, leaving relatively simple

coefficients for δs and δb.

We repeat the process by applying the variation to Equation A.29b:

ηBλχCNRT ·
(

MΓ,NR
o + δΓR ·M∆,NR) · (so + δs) +

ηB (λχ + λB)CNRT · CNR · (bo + δb) = ηBλχCNRT · do,NR. (A.34)

The only higher-order term in this equation is ηBλχCNRT · δΓR · M∆,NR · δs, which we

again set to zero, leaving
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ηBCNRT ·
[
λχ

(
MΓ,NR

o · λχso− do,NR + CNR · bo

)
+ λBCNR · bo

]
︸ ︷︷ ︸

zeroth-order terms→0

+ ηBλχCNRT ·MΓ,NR
o · δs + ηB (λχ + λB)CNRT · CNR · δb

= −ηBλχCNRT · δΓR ·M∆,NR · so, (A.35)

where the terms on the first line can be set to zero by Equation A.29b.

Combining these results gives a set of equations describing the δs and δb that result

from a small deviation about the solution point, denoted by δγ:

(
λχ MΓ,NR

o
T ·MΓ,NR

o + λS1
)
· δs + ηBλχ MΓ,NR

o
T · CNR · δb

= λχ M∆,NRT · δΓR ·
(

do,NR −MΓ,NR
o · so− ηBCNR · bo

)
−

λχ MΓ,NR
o

T · δΓR ·M∆,NR · so (A.36a)

ηBλχCNRT ·MΓ,NR
o · δs + ηB (λχ + λB)CNRT · CNR · δb

= −ηBλχCNRT · δΓR ·M∆,NR · so. (A.36b)

A.6 Mathematica Utility

To improve accuracy and decrease the barrier to testing new strategies, we have developed

software capable of analytically calculating these derivatives.5 By considering the previous

calculations, we can abstract a general algorithm for taking the needed derivatives:

1. Rewrite quantities in terms of the underlying parameters (s, b, and γ).

2. Expand matrix and vector multiplication in terms of the individual components, us-

ing either explicit or implicit summation.

5We found it necessary to develop custom routines, as the vector calculus package in Mathematica appears
to be focused on three-dimensional analysis, rather than the many-dimensional methodology discussed here.
Extensions to higher-dimensionality geometries exist (such as those for general relativity), but they also as-
sumed a fixed, finite dimensionality. Moreover, the use of a third matrix index (the a index on 1a

ij and γa)
requires a custom approach.
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3. Differentiate the component equations. Since the individual components are simply

numbers, the usual rules of differentiation apply, thus avoiding any problems with

the non-commutative multiplication of matrices.

4. Arrange the remaining components so that the right index of one component matches

the left index of the next, with the free indices at the leftmost and rightmost positions.

If two components have matched left or right indices
(

e.g., AjkBji

)
, taking the trans-

pose of one results in the desired ordering
(

Bji →
(

BT)
ij

)
.

5. Once all of the components have been paired off in this fashion, the component equa-

tion can be converted back into a matrix multiplication.

6. If desired, regroup fundamental parameters in terms of more compact quantities to

undo the substitutions from Step 1.

The powerful symbol-manipulation abilities of Mathematica allow us to automate this pro-

cess. We have developed a Mathematica utility that converts formulas written out in a ma-

trix form into the underlying component-based formulas, takes the derivative, and then

converts the results back into a matrix form. Additional routines address the issue of hav-

ing a third index, a, for use on the sideband gains, γa, and the truncated identity functions,

1a,R. The utility can also apply the variational calculus needed for Section A.5.6

The above discussion indicates how individual steps of matrix multiplication and dif-

ferentiation can be translated into the corresponding Mathematica functions. For conve-

nience, we have also designed several functions that can display results and convert them

into publication-friendly formats. Throughout the remainder of this section, there are sev-

eral examples showing how to combine these functions to perform complete calculations

using the Mathematica utility.

As the hand calculations in previous sections show, the calculations are relatively straight-

forward, but the sheer number of terms generates opportunities for error. The Mathematica

gradient utility has been very useful in helping to generate reliable results for this ap-

pendix. Since this utility appears to add previously unavailable functionality to Mathemat-

ica, it is included in Appendix B.

6The routines handle the third index on 1a
ij, as well as the index of γa, making them sufficient for this work.

However, these exceptions are hard-coded into the routines so that only a few specially defined variables
receive special handling. Expanding these capabilities to handle such an index on arbitrarily named variables
would require significant modification of the code, although it is relatively easy to add individual exceptions
(such as δγ and δΓ for Section A.7.3).
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A.7 Validation of the Mathematica Utility

To ensure the validity of the software, the hand-derived results of Sections 4.11, A.3 and

A.4.1 were recalculated in Mathematica.

A.7.1 Verification of the Direct Optimization Results

All of the results of Section 4.11 can be derived quickly using the Mathematica routines.7

The terms of χ2
mod are defined with the following commands

fChi[i_]: =
√

λChi[ ] convertToComponents[d[i,•] -

do[i,•]//.expandTerms];

fS[i_]: =
√

λS[ ] convertToComponents[s[i,•]//.expandTerms];

fC[i_]: =
√

λG[ ] convertToComponents[gamma[i]//.expandTerms];

fB[i_]: =
√

λB[ ]
√

ηB[ ] convertToComponents[β[i,•]//.expandTerms];

and the calculation can be run and displayed using these commands

{resultA, resultAcomp} = calculateJacobian[{fChi[i], fS[i], fB[i],

fC[i]}, {s[j], b[j], gamma[j]}, "jacobian"];

printElements[resultA]

The results are returned both as individual components and as a block matrix, the latter of

which is shown below:



m[i,j]
√

λChi[ ] c[i,j]ηB[ ]
√

λChi[ ] ones[j][i,•] · mDelta[•,•] · s[•]
√

λChi[ ]

delta[i,j]
√

λS[ ] 0 0

0 c[i,j]
√

ηB[ ]
√

λB[ ] 0

0 0 delta[i,j]
√

λG[ ]


.

(A.37)

7The representation of vectors in the Mathematica utility varies for input and output. On input, a vector
must be given two indices; x[i, •] is used to represent a column vector while x[•, i] is used to represent the row
vector. On output, these are represented as x[i] and x[i]†, respectively. When converting Mathematica results
into the equations shown here, the distinction between x and xT was generally ignored.
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The Mathematica results use a simplified form of implied summation. Indices repre-

sented by a circle, •, are part of the matrix multiplication indicated by the center-dot oper-

ator, so the formula F1[i, •] · F2[•, •] · x[•] should be read as the ithcomponent of the matrix

multiplication F1 · F2 · x, which is denoted [F1 · F2 · x]i in this thesis. A quick comparison to

Equation 4.76 shows that further translation is necessary to make the Mathematica results

match those presented here. In particular, the conversions shown in Table A.3 need to be

incorporated, yielding a result, that exactly reproduces Equation 4.76:8

Jopt =



√
λχ MΓ,NR

ij ηB

√
λχCNR

ij

√
λχ

[
1j,R ·M∆,NR · s

]
i√

λS1ij 0 0

0
√

ηBλBCNR
ij 0

0 0
√

λG1ij


.

(A.38)

A.7.2 Verification of Nonlinear Root-Finding Results

The equations for optimization via nonlinear root finding presented earlier in this

Appendix, as well as the corresponding Jacobian, are easy to calculate in Mathematica. We

start by defining χ2
mod :

chisq = convertToComponents[

λChi[ ](d[•,k]-do[•,k])·(d[k,•]-do[k,•]) + λS[ ]s[•,k]·s[k,•] +

λB[ ]ηB[ ]β[•,k]·β[k,• ] + λG[ ]gainsSquared[ ] //.expandTerms];

The nonlinear equations can be calculated and displayed

8When comparing this Jopt to Equation 4.76, it is important to remember the shorthand used in both cases.
Equation 4.76 represents a block matrix in which each block is filled with the specified sub-matrix. The 0
elements are assumed to be matrices of the appropriate dimension filled with zeros. The matrix shown above
is also assumed to be a block matrix in which i and j are measured within each block. Thus, the first element
could equivalently be replaced with

√
λχ MΓ,NR.



215

Description This Work Mathematica
Model DSB spectrum (with baselines) dNR

i d[i, •]
Model DSB spectrum (without baselines) dNR

i − ηBβNR
i d[i, •]− ηB[ ]β[i, •]

SSB spectrum si s[i, •]
Observed DSB spectrum do,NR

i do[i, •]
Baselines βNR

i β[i, •]
Sideband gain factors γa gamma[a]

Sideband gain matrix ΓR
ij deltaG[i, j]

Truncated identity matrix 1a,R
ij ones[a][i, j]

Norm of gain-factors vector ∑a γaγa gainsSquared[ ]

Full convolution matrix MΓ,NR
ij m[i, j]

Sum convolution matrix MΣ,NR
ij mSigma[i, j]

Difference convolution matrix M∆,NR
ij mDelta[i, j]

Baseline coefficients bi b[i, •]
Baseline functions matrix CNR

ij c[i, j]

Baseline “switch” ηB ηB[ ]

Variation in s δsi δs[i]

Variation in b δbi δb[i]

Variation in γ δγa δgamma[ia]

Variation in ΓR δΓR
ij δdeltaG[i, j]

Lagrange multiplier for χ2
o λχ λChi[ ]

Lagrange multiplier for χ2
S λS λS[ ]

Lagrange multiplier for χ2
β λB λB[ ]

Lagrange multiplier for χ2
γ λG λG[ ]

Kronecker delta δij δ[i, j]
Matrix transpose T †

Matrix multiplication · ·

Table A.3: Conversion between notation used in this work and that of the Mathematica
gradient-calculation package. Most quantities either translate directly or correspond to
their normalized equivalents (as described in Section 4.8).
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{eqns, eqnsComp} = calculateJacobian[{chisq/2}, {s[i], b[i],

gamma[i]}];

eqnsOut = Transpose[printElements[eqns]][[2]];

to give the following results:9

λχ MΓ,NRT ·
(

MΓ,NR · s + ηBCNR · b − do,NR
)
+ λSs = 0 (A.39a)

ηBCNRT ·
(

λχ

(
dNR − do,NR

)
+ λBCNR · b

)
= 0 (A.39b)

λχsT ·M∆,NRT · 1i,R ·
(

MΓ,NR · s + ηBCNR · b − do,NR
)
+ λGγi = 0 (A.39c)

The Jacobian can be calculated as

{jacobian,jComp} = calculateJacobian[{eqnsComp[[1,1]],

eqnsComp[[1,2]], eqnsComp[[1,3]]}, {s[j],b[j],gamma[j]},

"jacobian"];

jacobianOut = printElements[jacobian];

9Actually, the Mathematica output needs to undergo some simplification by hand to match the previous
results. The output generated for the second equation is

ηBCNRT ·
(

λχ

(
MΓ,NR · s − do,NR

)
+ (λB + ηBλχ)CNR · b

)
= 0.

The form shown above can be derived by inserting the ηBλχCNR · b term into the first set of parentheses and
using Equation 4.61 to simplify the result.

Likewise, Mathematica returns the third equation in the following form:

λχsT ·M∆,N T · 1i,R ·
(
−do,NR + 1

2 MΣ,NR · s + γi M∆,NR · s + ηBCNR · b
)

+ 1
2 λχsT ·MΣ,NRT · 1i,R ·M∆,NR · s + λGγi = 0.

Since
(

1
2 λχsT ·MΣ,NRT · 1i ·M∆,NR · s

)
is just a scalar quantity, it can be transposed and combined with

the 1
2 MΣ,NR · s term in the first set of parentheses to give

λχsT ·M∆,NRT · 1i,R ·
(
−do,NR + MΣ,NR · s + γi M∆,NR · s + ηBCNR · b

)
+ λGγi = 0,

which can be simplified using Equation A.16 to yield the form shown above.
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to give10

Jnlin =


Jnlin(L1,s) Jnlin(L1,b) Jnlin(L1,γ)

Jnlin(L2,s) Jnlin(L2,b) Jnlin(L2,γ)

Jnlin(L3,s) Jnlin(L3,b) Jnlin(L3,γ)

 , (A.40)

where

Jnlin(L1,s) = λχ MΓ,NRT ·MΓ,NR + λS1,

Jnlin(L1,b) = ηBλχ MΓ,NRT · CNR,

Jnlin(L1,γ)
ij =

[
λχ M∆,NRT · 1j ·

(
MΓ,NR · s + ηBCNR · b − do,NR

)]
i

+
[

MΓ,N T · 1j ·M∆,N · s
]

i
,

Jnlin(L2,s)
ij = ηBλχCNRT ·MΓ,NR,

Jnlin(L2,b)
ij = ηB (ηBλχ + λB)CNRT · CNR,

Jnlin(L2,γ)
ij = ηBλχ

[
CNRT · 1j,R ·M∆,NR · s

]
i
,

Jnlin(L3,s)
ij = λχ M∆,NRT · 1i,R ·

(
MΓ,NR · s + ηBCNR · b − do,NR

)
+ λχ

[
MΓ,NRT · 1i,R ·M∆,NR · s

]
j
,

= Jnlin(L1,γ)
ji ,

10As with Equations A.39, the raw results from Mathematica need to be simplified somewhat. Jnlin(L1,γ)
ij starts

out as

Jnlin(L1,γ)
ij = λχ

([
M∆,NRT · 1j,R ·

(
MΣ,NR · s + ηBCNR · b − do,NR

)]
i
+
[

MΣ,NRT · 1j,R ·M∆,NR · s
]

i

+ 2γj
[

M∆,NRT · 1j,R ·M∆,NR · s
]

i

)
,

which can be rearranged to give

= λχ

([
M∆,NRT · 1j,R ·

((
MΣ,NR + γj M∆,NR

)
· s + ηBCNR · b − do,NR

)]
i
+[(

γj M∆,NRT
+ MΣ,NRT) · 1j,R ·M∆,NR · s

]
i

)
.

Equation A.16 can then be used to produce the results shown above. Likewise, the raw result for Jnlin(L3,s) is

Jnlin(L3,s) = λχ

(
−
[

M∆,NRT · 1i,R · do,NR
]

j
+
[

M∆,NRT · 1i,R ·MΣ,NR · s
]

j

+
[

MΣ,NRT · 1i,R ·M∆,NR · s
]

j
+ 2

[
M∆,NRT · 1i,R ·M∆,NR · s

]
j
γi

+
[

M∆,NRT · 1i,R · CNR · b
]

j
ηB

)
,

which is identical to the result for Jnlin(L1,γ)
ij with i and j switched.
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Jnlin(L3,b)
ij = ηBλχ

[
CNRT · 1i,R ·M∆,NR · s

]
j
,

= Jnlin(L2,γ)
ji , and

Jnlin(L3,γ)
ij =

(
λχsT ·M∆,NRT · 1i,R ·M∆,NR · s + λG

)
δij.

In practice, calculating these quantities can be simplified by noting that Jnlin(L3,s) = Jnlin(L1,γ)T

and Jnlin(L3,b) = Jnlin(L2,γ)T
, as shown.11

A.7.3 Verification of Variational Results for Pseudo-Linear Jacobian

In Section 4.13, variational calculus is used to calculate the Jacobian for the outer loop of

the pseudo-linear optimization routine. Since this calculation was completed both by hand

and by computer, it provides another opportunity to verify the accuracy of the Mathematica

utility.

The Mathematica utility is capable of handling arbitrary matrices and vectors, so adding

the variational quantities δs and δb was trivial; however, it was necessary to modify the

code to ensure that δγ would be handled like γ instead of a normal vector. (See Footnote

6.)

The parts of χ2
mod (as in Equation 4.65) can be defined using the following commands:

chisqData := convertToComponents[(d[•,i] - do[•,i])·(d[i,•] -

do[i,•]) //.expandTerms];

chisqS := convertToComponents[s[•,j]·s[j,•] //.expandTerms];

chisqB := convertToComponents[β[•,i]·β[i,•] //.expandTerms];

chisqMod := λChi[ ]chisqData + λS[ ]chisqS + ηB[ ]2 λB[ ]chisqB;

We start by taking the derivative ∂χ2
mod

∂sj
and setting the result equal to zero, generating an

equation for the jth component of s,

11When implementing the deconvolution algorithm (e.g., in MATLAB), computational speed will likely be
improved by calculating entire row or column vectors of each sub-matrix instead of calculating individual

components one by one. For instance,
(

ηBλχCNRT · 1j,R ·M∆,NR · s
)

represents the jth column of Jnlin(L2,γ).
Unfortunately, it is necessary to treat each column separately, as the column number corresponds to the index
on the truncated identity matrix

(
1a,R).
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mD[chisqMod, s[j]];

addIndex[%, left,j];

convertToMatrix[%];

dChidS = removeIndices[%];

collapseTerms[%]

which can then be generalized to the vector equation:

λχ

(
−MΓ,NRT · do,NR + MΓ,NRT ·MΓ,NR · s + MΓ,NRT · CNR · bηB

)
+ λSs = 0. (A.41)

Generating the equations for b follows an identical process, except that the first line of

Mathematica commands needs to be changed to take a derivative with respect to bj, and

the results in the fourth line should be saved to a different variable:

mD[chisqMod, b[j]];
...

dChidB = removeIndices[%];
...

The Mathematica output represents an equation for the jth component of b, which can be

trivially converted to the corresponding vector equation:

ηB

[
λχ

(
−CNR

j
T · do,NR + CNRT ·MΓ,NR · s

)
+ ηB(λB + λχ)CNRT · CNR · b

]
= 0. (A.42)

As described in Section A.5, variational calculus can be used to estimate the derivative

around the solution point. We start by defining one replacement rule to implement the

variations shown in Equation A.30:12

variations = {gamma[a_]→ gamma[a] + δ[gamma[a]], s[i_]→ s[i] +

δ[s[i]], b[j_]→ b[j] + δ[b[j]]};

12In contrast to Footnote 7, the variations (δs, δb, and δγ) do not require a • in unused index positions.
The variations are introduced at a later step in the algorithm, at which time the • is no longer used. Therefore,
the variations can be defined as δs[i], etc.
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and another to eliminate any terms that are second-order or higher in the variations:

firstOrder = {δ[a_] δ[b_]→ 0};

A third rule converts the functional δ[_] notation used in the prior rules into the δ_

notation used in Section A.5:

fixDeltas = {δ[gamma[a_]]→ δgamma[a], δ[s[i_]]→ δs[i], δ[b[j_]]→

δb[j]};

Finally, we prepare the inputs for the zeroTest function, which identifies combinations of

terms that are equal zero according to Equations A.47a and A.47b:

dChidS = FactorTermsList[Expand[dChidS]][[2]];

dChidB = FactorTermsList[Expand[dChidB]][[2]];

dChidSterms = Sort[removeCoefficients[termList[dChidS]]];

dChidBterms = Sort[removeCoefficients[termList[dChidB]]];

allEqns = {dChidS, dChidB};

allTerms = Union[dChidSterms, dChidBterms];

We can generate the first set of equations by taking the ∂χ2
mod

∂sj
= 0 results, applying the

variations, removing higher-order terms, and eliminating terms that sum to zero:

mD[chisqMod, s[j]];

addIndex[%, left,j];

%/.variations;

%//.firstOrder;

%//.fixDeltas;

convertToMatrix[%];

removeIndices[%];

zeroTest[Expand[%], allEqns, allTerms];

collapseTerms[%]
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This results in the equation

λχ

(
MΓ,NRT ·MΓ,NR · δs −M∆,NRT · δΓRT · do,NR

+ MΓ,NRT · δΓR ·M∆,NR · s + M∆,NRT · δΓRT ·MΓ,NR · s

+ ηB

(
+MΓ,NRT · CNR · δb + M∆,NRT · δΓRT · CNR · b

))
+ λSδs = 0 (A.43)

We can then repeat the process for ∂χ2
mod

∂bj
= 0, which follows identical steps to those

shown above, except that the first line is replaced with

mD[chisqMod, b[j]];

This result represents a second set of equations,

2ηB

[
λχ

(
+CNRT ·MΓ,NR · δs + CNRT · δΓR ·M∆,NR · s

)
+ ηB (λB + λχ)CNRT · CNR · δb

]
= 0. (A.44)

These results are equivalent to the hand-derived results shown in Equations A.36.

A.8 Other Cases

A few simple models are also worth calculating, particularly since some are relevant for

the linear case in which the sideband-gain parameters are known a priori.

A.8.1 Root Finding

A.8.1.1 Simple χ2

As the simplest case, we start by defining the basic equation for χ2. We exclude the

constraint terms, and we subtract off the baseline terms from dNR:

chisq = convertToComponents[(d[•,k] - ηB[ ] β[•,k] -

do[•,k])·(d[k,•] - (ηB[ ] β[k,•] - do[k,•])) //.expandTerms];
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If we assume that the values in γ are fixed, the only variables are the si. The linear

optimization equations can be calculated by taking the derivatives with respect to si and

setting the results equal to zero:

{eqns, eqnsComp} = calculateJacobian[{chisq/2}, {s[i]}]; eqnsOut =

Transpose[printElements[eqns]][[2]];

Mathematica calculates the derivative, which can be translated into the variables used in

this thesis to give the set of linear equations:

MΓ,NRT ·MΓ,NR · s = 0 (A.45)

The Jacobian can be calculated by taking derivatives of the equations with respect to sj :

{jacobian, jComp} = calculateJacobian[{eqnsComp[[1,1]]}, {s[j]},

"jacobian"]; jacobianOut = printElements[jacobian];

Simplifying the Mathematica output gives the Jacobian, although it is unlikely that the lin-

ear solver would need it:

J = MΓ,NRT ·MΓ,NR (A.46)

A.8.1.2 Linear

We now consider another linear case that includes all of the terms affecting s and b

(including the constraint terms), but assume the sideband gains are fixed. We define a

simplified version of χ2
mod:

chisq = convertToComponents[λChi[ ](d[•,k] - do[•,k])·(d[k,•] -

do[k,•]) + λS[ ]s[•,k]·s[k,•] + λB[ ]ηB[ ] β[•,k]·β[k,•]

//.expandTerms];

Taking a derivative with respect to s and b

{eqns, eqnsComp} = calculateJacobian[{chisq/2}, {s[i], b[i]}];

eqnsOut = Transpose[printElements[eqns]][[2]];
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and setting the results equal to zero generates a set of linear, coupled equations:

λχ MΓ,NRT ·
(

MΓ,NR · s + ηBCNR · b − do,NR
)
+ λSs = 0 (A.47a)

ηBCNRT ·
(

λχ

(
MΓ,NR · s + ηBCNR · b − do,NR

)
+ λBCNR · b

)
= 0 (A.47b)

The Jacobian, if needed, can be calculated by taking the derivative of each equation with

respect to s and b

{jacobian, jComp} = calculateJacobian[{eqnsComp[[1,1]],

eqnsComp[[1,2]]}, {s[j], b[j]}, "jacobian"]; jacobianOut =

printElements[jacobian];

to generate a 2× 2 block matrix of the form

J =

λχ MΓ,NRT ·MΓ,NR + λS1 ηBλχ MΓ,NRT · CNR

ηBλχCNRT ·MΓ,NR ηB (λB + ηBλχ)CNRT · CNR

 . (A.48a)
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Appendix B

Listing of Mathematica Utility

The following pages contain a listing of a Mathematica utility for calculating gradients and

Jacobian matrices, as described in Section A.6.



Setup for Gradient Calculator
Must be run before other "Gradient calculator..." 
notebooks.

Translation to thesis variables

Setup
ClearAllgradientCalculatorSetupComplete;

ü Run all self tests

doTests  False;

Printed by Mathematica for Students
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ü Helper functions

ü Description

uniqueFromRoot[x]
Creates a unique variable, using the "root" from x by using Unique[ ] to add a unique $nnn suffix.  If x already contains the $nnn

suffix, it will be stripped off first.
Examples:

i1 Ø i1$14

i1$142 Ø i1$447

independentListQ[list1, list2]
If all elements of list1 and list2 are distinct, this function will return True.

replaceWithUnique[x]
Creates rule to replace x with unique variables of the same root.  x can be either a list or a single value.

Example, replaceWithUniquei1, i2 will return i1 Ø i1$1017, i2 Ø i2$1018

convertToRoots[x]
Takes a list of indices and produces the corresponding roots by removing the $nnn index (if present)

allAtomQ[x]
True if x a list containing only atomic elements.  x should be

provided as a list, even if just a single value

onesAtomQ[x]
True if x a list containing only the following elements

atomic expressions
ones[_] matrices

x should be sent as a list, even if just a single value

nullQ[x]
True if x is Null

validMatrixQ[matrix]
True if matrix appears to be a valid matrix for the purposes of this workbook.  Function tests for the following criteria:

onesAtomQ[{matrix}] = True (matrix is either an atomic expression or ones[_])
matrix is not mSum, Plus, Times, Power, or CenterDot

singleEntryQ[list, x]
True if xis atomic and appears once, and only once, in list

allSingleEntryQ[list]
True if each element in the list is atomic and appears once, and only once, in the list.

allFreeQ[x, list]
True if x is free of each element in list (applies FreeQ[x, ... ] to each list element)
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extractSign[x]
Returns any explicit sign attached to x, based on Mathematica documentation, which indicates that -x = Minusx is saved as

Times-1, x internally.

x Ø +1

0 Ø 0

-x Ø -1

termList[x]
Returns a list of all the terms in x with leading negative signs removed.  Expandx is run on the input to expand all factors.  If

needed, those signs could be returned in a separate array (note yet implemented).

removeCoefficients[list]
Removes numeric coefficients (inlcuding leading negative signs) from each term in list.  Pure numbers are removed from list.

removeEntry[list, x]
Removes x from list.  Only works on the highest level of the list, so variables in array notation (e.g. xi )are treated as distinct

from the same variable without the added brackets.
Examples:

removeEntryx, xi, i, i = x, xi
removeEntryx, xi, i, x = xi, i
removeEntryx, xi, i, xi = x, i

nullComponent 
Defines a symbol to represent an empty index position.  Vectors should be represented as either x[i,  <nullComponent>] or
x[<nullComponent>, i], which allows row and column vectors to be distinguished when they are being placed into mSum[ ]
functions.

The variable can be referenced by saying "null component" and is currently set , which can be entered using {Esc}gci{Esc} or
"gray circle".  This should not be changed unless absolutely necessary, as  is probably hard-coded into lots of equations and
comments.

indexToSum[i1a, i1b, i2a, i2b]
Accepts two pairs of indices from two matrices.  The first pair represents the left and right indices from matrix 1, while the
second pair represents the indices of matrix 2.  The function checks to see if one of the indices from matrix 1 matches one from
matrix 2.  If so, it returns a value of iSum, match1, match2, where iSum lists the index that matches and match1, match2 give

the position of iSum in each pair.  (Note that match1 and match2 will have values of either 1 or 2.)  Indices equal to nullCompo-
nent are ignored.  The function returns unevaluated if there are no matching indices or more than one matching index.
Examples:

indexToSum[a, b, b, c] = {b, {2, 1}} b matches, occupying position 2 in matrix 1 and position 1 in matrix
2

indexToSum[ , b, a, b] = {b, {2, 2}} b matches, occupying position 2 in matrix 1 and position 2 in matrix 2
indexToSum[ , b, a, ] = indexToSum[ , b, a, ] Although the 's match, they are ignored since they match the value

of nullComponent
indexToSum[a, b, c, d] = indexToSum[a, b, c, d] No matches
indexToSum[a, b, b, a] = indexToSum[a, b, b, a] More than one match
indexToSum[a, b, a, a] = indexToSum[a, b, a, a] Multiple matches
indexToSum[a, a, c, d] = indexToSum[a, a, c, d] Matching indices are on the same matrix
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indexToSumTestQ[iSum, iA, iB]
Helper function for indexToSum[ ].  iSum is the matching index on two matrices, with iA and iB representing the other two
indices.  This function checks to make sure that the following conditions are met

iSum is not null component
iA and iB are either distinct or equal to nullComponent
iA and iB are distinct from iSum

outputIndices[matrix, i1, i2]
Returns matrix with the appropriate indices:

i1 = nullComponent or Null fl matrix[i2]
i2 = nullComponent or Null  fl matrix[i1]
i1 and i2 ∫ nullComponent or Null fl matrix[i1, i2]

matchingIndexQ[i1, i2, i3, i4]
Returns True if indexToSum[ ] finds that there is a valid set of indices that can be summed on the two matrices; False otherwise.

error[message]
Prints message and generates an Abort[ ] command

releaseHoldAll[x]
Repeatedly applies ReleaseHold[ ] until all Hold[ ]'s have been cleared.

validDerivativeQ[f, x, summedIndices]
Determines whether differentiating f  wrt x meets certain validity tests (see discussion in notes for mD[ ] function)

ü Function Definitions

ClearAlluniqueFromRoot, independentListQ, replaceWithUnique, convertToRoots, allAtomQ,

onesAtomQ, nullQ, validMatrixQ, singleEntryQ, allSingleEntryQ, allFreeQ, extractSign,

termList, removeCoefficients, removeEntry, nullComponent, indexToSum, indexToSumTestQ,

matchingIndexQ, outputIndices, error, releaseHoldAll, validDerivativeQ;
uniqueFromRootx : UniqueSymbolPartStringSplitToStringx, "$", 1;
independentListQlist1, list2 : ApplyAnd, MapFunctionFreeQlist1, 1, list2 ;
replaceWithUniquex : MapFunction1  uniqueFromRoot1, Flattenx;
convertToRootsx :

MapFunctionSymbolPartStringSplitToString1, "$", 1, x ; ListQx;
allAtomQx : ApplyAnd, MapFunctionAtomQ1, x ; ListQx;
onesAtomQx : ApplyAnd, MapFunction MatchQ1, ones  AtomQ1, x ; ListQx;
nullQx : SameQx, Null;
validMatrixQmatrix :
onesAtomQmatrix && allFreeQmatrix, Plus, Times, Power, mSum, CenterDot;

singleEntryQlist, x : TrueQAtomQx && LengthFlattenPositionlist, x  1;
allFreeQx, list : ApplyAnd, MapFunctionFreeQx, 1, list ; ListQlist;
allSingleEntryQlist : ApplyAnd, MapFunctionsingleEntryQlist, 1, list ;
removeEntrylist, x : Droplist, FlattenPositionlist, x, 1;
nullComponent  ;

extractSignTimesy,  : Signy ; NumberQy;
extractSigny : Signy ; NumberQy;
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indexToSumiSum, iA, iSum, iB : iSum, 1, 1 ; indexToSumTestQiSum, iA, iB;
indexToSumiSum, iA, iB, iSum : iSum, 1, 2 ; indexToSumTestQiSum, iA, iB;
indexToSumiA, iSum, iSum, iB : iSum, 2, 1 ; indexToSumTestQiSum, iA, iB;
indexToSumiA, iSum, iB, iSum : iSum, 2, 2 ; indexToSumTestQiSum, iA, iB;
indexToSumTestQiSum, iA, iB : NotiSum  Null  iSum  nullComponent &&

NotSameQiA, iB  iA  Null  iA  nullComponent &&
NotiSum  iA && NotiSum  iB;

matchingIndexQi1, i2, i3, i4 : MatchQindexToSumi1, i2, i3, i4, , , ;

termListx : Module
i, terms  , xLength, xFull,
xFull  Expandx;
IfHeadxFull  Plus,
  Has multiple terms 
xLength  LengthxFull;
Fori  1, i  xLength, i, AppendToterms, xFulli;
,
  Just one term 
terms  x;
;

Returnterms;
;

removeCoefficientsx : Module
i, output  , xLength  Lengthx,
If ListQx, error"removeCoefficients: Input must be list.";
Fori  1, i  xLength, i, AppendTooutput, PartFactorTermsListxi, 2;
Returnoutput;
;

outputIndicesmatrix, i1, i2 : Module
output,
Ifi1  nullComponent  i1  Null && i2  nullComponent  i2  Null,
error"Matrix cannot have two null indices.";

Ifi1  nullComponent  i1  Null,
output  matrixi2,

Ifi2  nullComponent  i2  Null,
output  matrixi1,
output  matrixi1, i2
;

;
Returnoutput;
;

errormessage : Module
,
Printmessage;
Abort;

;

releaseHoldAllx : x ; FreeQx, Hold;
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releaseHoldAllx : releaseHoldAllReleaseHoldx ;  FreeQx, Hold;

validDerivativeQf, x, indices : Module
result, summedIndices, xRoot, xTest, currentIndex, j, k, y,

summedIndices  indices1;

result  True;

result  result && FreeQindices, x;
IfMatchQx, ,

result  result &&  MatchQx, ;
xRoot  PartCasesx, xRoot  xRoot, 1;
currentIndex  PartCasesx, k  k, 1;
result  result && FreeQsummedIndices, currentIndex;
result  result && FreeQf . xRoot  1, xRoot;


;
result  result && FreeQx, SuperDagger;
result  result && FreeQf, SuperDagger;
result  result && FreeQf, x;
Returnresult;
;

ü Define · (matrix multiplication) and convertToComponents[ ]

ü Description

Matrix multiplication should be written using a center dot:
Ai, j ÿ B j, k ÿ xk, 

where A and x can be either matrices (two indices) or vectors (one index).  Within a given line (function call), the indices must

line up appropriately so that the right index of one matrix matches the left index of the next, and each index is only used once
(free) or twice (summed).  

To differentiate between column and row vectors, a vector should have a single index in the first or second place, respectively,
with the blank spot filled with  ({Esc}gci{Esc} or \ [GrayCircle]).  Symbol can be changed in all function definitions using the
nullComponent variable.  The  will be used to determine whether the mSum should have free indices on the left or right, and
will then be discarded.  Vector components inside the mSum will NOT contain the .

Enter the ones   matrix as onesai, j,  where a  indicates which matrix is being used (matching the terminology in the lab

notebook), and i, j represent the row and column (also see notes below).  

These can then be converted to a sum over multiplied components using the convertToComponents[ ] function: 
convertToComponents[Ai, j ÿ B j, k ÿ xk,   ]  fl


j, k

Ai j B j k xk  

which is represented as mSumAi, j B j, k xk,  j, k, i,  , 
convertToComponentsAi, j ÿ onesa j, k ÿ gammab ÿ onesbk, m  fl
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
b, j, k

Ai j  a
j k  gb b

k m 

which is represented as mSumAi, j onesa j, k gammab onesbk, m, b, j, k, i, m, a
The function works right-to-left, so an error to the right will prevent all leftward matrices from being evaluated.  

The results are expressed using the matrix sum function (mSum[ ]) as follows:
mSum[components, { {summedIndices}, {leftFreeIndices}, {rightFreeIndices}, {onesFreeIndices} }]

Free indices will match the values used in the initial function call, while summed indices will be replaced with unique variable
names.  For clarity, the unique names are based on the value specified by the user (e.g. if the user label an index i1, the unique
replacement will be i1$nnn).  The function automatically renames some indices as needed, so one equation can be substituted into
another without problem.  When substituting one equation using mSum[ ] into another, the free indices must be carefully consid-
ered, as free indices will be automatically summed whenever a right and left free index match

Notes:
- The only sum allowed over the a index of onesai, j is gammaa onesai, j.  If other combinations are needed,

additional functions will need to be added.
- If two different mSum functions are combined, they must have a single matching right and left free index.
- The function is not perfect, so the following rules must be observed:

- When defining a variable (e.g. m1 = Ai, j B j, k), it should be defined as 

m1i_, k_ := Module j, convertToComponentsAi, j B j, k 
The Module[ ] command is necessary to make sure that the j variable won't conflict with the values of i, k.

(Without it, mi, j would generate an error.)

- If indices match properly, matrices can be multiplied, even if the multiplication is not ordered correctly.  For instance,
both x† ÿ x and x ÿ x† will produce the same (scalar) value.

Entering functions:
Mathematica represents this function as CenterDot[ ], and the symbol can be entered with the voice command "matrix multiply"
or using {Esc}.{Esc}.  The mSum[ ] function can be enetered using voice command "matrix sum" or "M. sum".

ü Function Definition

ClearAllCenterDot, convertToComponents, mSum, delta;

 Seed  place each matrix in an mSum  function and let

combining rules for the mSum 's complete the multiplication. 
 Need to pull mSum out of CenterDot to avoid infinite recursion 
 For unknown reasons,

this pattern only works if other:1 is used rather than other 
 Errors in this definition have identifier convertToComponents1 
convertToComponentsCenterDototherLeft : Null, matrix1i1, i2 other:1 : Module

leftFreeIndices, rightFreeIndices, onesFreeIndices, newIndices,
If allAtomQi1, i2,
error"Nonatomic index in convertToComponents1: \n\tmatrix1 ",

matrix1, "\n\ti1  ", i1, "\n\ti2  ", i2;
If onesAtomQmatrix1, error"Invalid matrix in convertToComponents1: ",

matrix1;
newIndices  ;
Ifi1  nullComponent,
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leftFreeIndices  ,
leftFreeIndices  i1
;
Ifi2  nullComponent,
rightFreeIndices  ,
rightFreeIndices  i2
;
onesFreeIndices  Casesmatrix1, onesa  a;
If allSingleEntryQFlattenleftFreeIndices, rightFreeIndices, onesFreeIndices,
error"Unexpected repeated entry in index components in convertToComponents1: ",

leftFreeIndices, rightFreeIndices, onesFreeIndices;
convertToComponentsCenterDototherLeftmSumoutputIndicesmatrix1, i1, i2,

 , leftFreeIndices, rightFreeIndices, onesFreeIndices other
 ; validMatrixQmatrix1;

 Also need a rule for isolated matrices not part of a CenterDot  
 Errors in this definition have identifier convertToComponents1a 
convertToComponentsmatrix1i1, i2 : Module

leftFreeIndices, rightFreeIndices, onesFreeIndices,
If allAtomQi1, i2,
error"Nonatomic index in convertToComponents1a: \n\tmatrix1  ",

matrix1, "\n\ti1  ", i1, "\n\ti2  ", i2;
If onesAtomQmatrix1, error"Invalid matrix in convertToComponents1a: ",

matrix1;
Ifi1  nullComponent,
leftFreeIndices  ,
leftFreeIndices  i1
;
Ifi2  nullComponent,
rightFreeIndices  ,
rightFreeIndices  i2
;
onesFreeIndices  Casesmatrix1, onesa  a;
If allSingleEntryQFlattenleftFreeIndices, rightFreeIndices, onesFreeIndices,
error"Unexpected repeated entry in index components in convertToComponents1a: ",

leftFreeIndices, rightFreeIndices, onesFreeIndices;
convertToComponentsmSumoutputIndicesmatrix1, i1, i2,
 , leftFreeIndices, rightFreeIndices, onesFreeIndices 

 ; validMatrixQmatrix1 && FreeQmatrix1, i1, i2, mSum;

 Convert isolated gamma's not part of a CenterDot  
 Errors in this definition have identifier convertToComponents1b 
convertToComponentsgammaa : Module

,
If allAtomQa,
error"Nonatomic index in convertToComponents1b: \n\tgamma\n\ta  ", a;
convertToComponentsmSumgammaa,  , , , a 

 ; FreeQa, mSum;

 Need to specifically address gammaa
since it does not have matrix or vector indices 

 Errors in this definition have identifier convertToComponents2 
convertToComponentsCenterDototherLeft : Null, gammaa, otherRight : Null
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mSumonesai1, i2 mSumOther:1, indicesother:1 : Module
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices, aSum,
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices  indices;

If AtomQa, error"Nonatomic index in convertToComponents2: ", a;
If MemberQonesFreeIndices, a,
error"Index not included in onesFreeIndices in convertToComponents2: ", a;

IfMemberQsummedIndices, a  MemberQleftFreeIndices, a  MemberQrightFreeIndices, a,
error"Repeated index in convertToComponents2: ", a;

If FreeQotherLeft, otherRight, mSumOther, other, a  a,   , a,
error"Unexpected repetition of index ", a,

" in other variables in convertToComponents2: ",

"\n otherLeft: ", otherLeft, "\notherRight: ", otherRight,

"\nmSumOther: ", mSumOther, "\nother: ", other;
onesFreeIndices  removeEntryonesFreeIndices, a;
aSum  uniqueFromRoota;
AppendTosummedIndices, aSum;
convertToComponents
CenterDototherLeft, otherRightmSumgammaaSumonesaSumi1, i2 mSumOther,
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices other

;

 Merge mSum's when they have appropriate matching

free indices. In order to have a valid multiplication, 
 the matching index MUST appear in rightFreeIndices for the first mSum and

leftFreeIndices for the second mSum.  The individual matrix components

can have any combination of placements due to transpose operations, 
 but the free indices in the mSum's must align as described. Moroever,

there should never be a situation in which 
 there is more than one leftFreeIndices or rightFreeIndices 
 Errors in this definition have identifier convertToComponents3 
convertToComponents

mSummatrix1i1, i2:Nullother1:1, summedIndices1, leftFreeIndices1,

iSum, onesFreeIndices1mSummatrix2i3, i4:Nullother2:1 ,
summedIndices2, iSum, rightFreeIndices2, onesFreeIndices2other:1 : Module
iOut1, iOut2, iOut3, iOut4, summedIndicesOut, leftFreeIndicesOut, rightFreeIndicesOut,

onesFreeIndicesOut, matchResults, newIndices, iSumRules, iSumPosition1, iSumPosition2,

matchResults  indexToSumi1, i2, i3, i4;
If iSum  PartmatchResults, 1,
error"Invalid iSum in convertToComponents3: ", iSum;
iSumPosition1  PartmatchResults, 2, 1;
iSumPosition2  PartmatchResults, 2, 2;
iSumRules  replaceWithUniqueiSum;

IfParti1, i2, i3, i4, 1, iSumPosition1  iSum 
Parti1, i2, i3, i4, 2, iSumPosition2  iSum,

error"iSum does not appear correct matrix indices in convertToComponents3: ", iSum
;
IfParti1, i2, i3, i4, 1, 3  iSumPosition1  iSum 
Parti1, i2, i3, i4, 2, 3  iSumPosition2  iSum,

error"iSum appears in additional matrix indices in convertToComponents3: ", iSum
;
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 iSum should not appear in any of the other index lists or in any other variables 
If FreeQsummedIndices1, leftFreeIndices1, onesFreeIndices1,

summedIndices2, rightFreeIndices2, onesFreeIndices2, iSum,
error"iSum appears in unexpected places in index lists in convertToComponents3: ",

iSum
;
If
 FreeQother, other1, other2, matrix1, matrix2, iSum  iSum,   , iSum, error
"iSum appears in unexpected places in other variables in convertToComponents3: ",

iSum
;

 Make sure there are no other free indices that match 
If singleEntryQ

JoinleftFreeIndices1, onesFreeIndices1, rightFreeIndices2, onesFreeIndices2,
error"Free index lists are not independent in convertToComponents3."
;

 If any of the summedIndices match, need to replace them 
If independentListQsummedIndices1, summedIndices2,
summedIndicesOut  JoinsummedIndices1, ReplaceAllsummedIndices2,

replaceWithUniqueIntersectionsummedIndices1, summedIndices2,
summedIndicesOut  JoinsummedIndices1, summedIndices2
;
AppendTosummedIndicesOut, iSum . iSumRules;
iOut1,iOut2,iOut3,iOut4i1,i2,i3,i4.iSumRules;
leftFreeIndicesOut  leftFreeIndices1;

rightFreeIndicesOut  rightFreeIndices2;

onesFreeIndicesOut  SortJoinonesFreeIndices1, onesFreeIndices2;
convertToComponentsother mSumReplaceAll

other1 outputIndicesmatrix1, i1, i2 outputIndicesmatrix2, i3, i4 other2, iSumRules,
summedIndicesOut, leftFreeIndicesOut, rightFreeIndicesOut, onesFreeIndicesOut

 end module  ; matchingIndexQi1, i2, i3, i4 && iSum 

PartindexToSumi1, i2, i3, i4, 1 && validMatrixQmatrix1 && validMatrixQmatrix2;

 Remove mSum from convertToComponents once

all factors have been combined into a single sum. 
convertToComponents

mSumx, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices
other:1 : other mSumx, SortsummedIndices, SortleftFreeIndices,
SortrightFreeIndices, SortonesFreeIndices ; NumericQother;

 Remove mSum's from CenterDot 
convertToComponentsCenterDototherLeft:Null, mSumx, otherRight:Nullother:1 :
convertToComponentsCenterDototherLeft, otherRightmSumxother;

 Pull numeric quantities out of convertToComponents 
convertToComponentsother matrices:1 : other convertToComponentsmatrices ;

NumericQother && FreeQother, CenterDot && FreeQother, mSum;

 Modified to only work inside convertToComponents
so that similar terms could be gathered together. 

 Make CenterDot associative, distributive, etc. 
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 As discussed below, do NOT use SetAttributesCenterDot,Flat to accomplish this. 

CenterDotx:Null,CenterDoty,z:Null:CenterDotx,y,z;
CenterDota:Null,xy,b:Null:CenterDota,x,bCenterDota,y,b;
CenterDota:Null,x,b:Null:CenterDota,x,b;
CenterDota:Null,n b:Null:n CenterDota,b;

NumericQn&&FreeQn,CenterDot&&FreeQn,mSum&&MatchQn,&&MatchQn,,;


 Make CenterDot associative, distributive, etc,

but allow some operations only inside convertToComponents 
 As discussed below, do NOT use SetAttributesCenterDot,Flat to accomplish this. 
CenterDotx:Null, CenterDoty, z:Null : CenterDotx, y, z;
CenterDota:Null, x, b:Null : CenterDota, x, b;
CenterDota:Null, n b:Null : n CenterDota, b ; NumericQn &&

FreeQn, CenterDot && FreeQn, mSum &&  MatchQn,  &&  MatchQn, , ;
CenterDota:Null, n, b:Null : n CenterDota, b ; NumericQn &&

FreeQn, CenterDot && FreeQn, mSum &&  MatchQn,  &&  MatchQn, , ;
CenterDota:Null, x  y, b:Null : CenterDota, x, b  CenterDota, y, b;

 Allow convertToComponents to move inside certain functions 
convertToComponentsx  y : convertToComponentsx  convertToComponentsy;
convertToComponents x  : convertToComponentsx ;

convertToComponents x

y
 : convertToComponentsx

convertToComponentsy
;

 Allow transpose to work when it surrounds the entire CenterDot  
convertToComponentsSuperDaggerx : SuperDaggerconvertToComponentsx;

 Allow transpose to work when it is within the CenterDot  
convertToComponentsCenterDototherLeft:Null, SuperDaggermatrix, otherRight:Null

other:1 : convertToComponents
CenterDototherLeft, SuperDaggerconvertToComponentsmatrix, otherRight other;

 Need to eliminate Null arguments from

CenterDot so that optional arguments don't cause problems 
 This approach fails if SetAttributesCenterDot,Flat is used. 
CenterDot : 1;

CenterDotNull : 1;
CenterDotx, Null : CenterDotx;
CenterDotNull, y : CenterDoty;
CenterDotx, Null, y : CenterDotx, y;

 Rules for mSum 
mSum0, indices : 0;
mSumx  y, indices : mSumx, indices  mSumy, indices;
mSumx:1 z1  z2y:1, indices : mSumx z1 y, indices  mSumx z2 y, indices;
mSumn x, indices : n mSumx, indices ; NumericQn;

 Rules for delta . Since delta  is orderless,

we only need to define a rule for i1. 
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 This function DOES NOT fix the free indices after

substituting for a summed index. See notes with mD . 
SetAttributesdelta, Orderless;
deltai, i : 1;
mSum deltai1, i2 other:1,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
mSumother . i1  i2, removeEntrysummedIndices, i1, leftFreeIndices,

rightFreeIndices, onesFreeIndices ; MemberQsummedIndices, i1 &&
FreeQleftFreeIndices, rightFreeIndices, onesFreeIndices, i2 &&
FreeQleftFreeIndices, rightFreeIndices, onesFreeIndices, i1;

 Rules for ones matrices 
 Bad idea to include them here; ruins ability to put deltaG matrices back together 
 mSumonesai1,iSumonesbiSum,i2other:1

onesai1,iSumonesbi2,iSum other:1
onesaiSum,i1onesbiSum,i2 other:1 ,

summedIndices,leftFreeIndices,rightFreeIndices,onesFreeIndices:
mSumdeltaa,bonesai1,i2 other,removeEntrysummedIndices,iSum,leftFreeIndices,

rightFreeIndices,onesFreeIndices;MemberQsummedIndices,iSum; 

ü Tests
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ü Define † (Transpose)

ü Description

SuperDagger[ ] = Ctrl+6 {Esc}dg{Esc} or Ctrl+6 \ [Dagger]

Must be put AFTER index specification: Ai, j†, which represents the i, j component of A†.  Thus, the correct way to write a

matrix multiplication including a transpose is

A j, k ÿ Bk, m † ÿ Cm, p (i.e. the left-hand index on the transposed matrix should line up with the right-hand index on

the matrix to the left, etc.)

Equivalently, Bk, m† has leftFreeIndices = k and rightFreeIndices = m

convertToComponents[ ] deduces left and rght free indices based on the position of the index in the matrix.  Thus, for Ai, j, i is
assumed to be the left index and j the right one, and they can only be summed against matching indices on the right and left,

respectively.  This approach will fail unless the transpose operator waits to act until the matrices have been assigned indices
within the mSum[ ] function.

Consider how the transpose operator works on a matrix:
Let M = A ÿ B ÿ C so that Mi j = Ai k  Bk l  Cl j

We know that M †
i j

= M j iso we can just use the formula shown above to determine M †
i j

= A j k  Bk l  Cl i. (Just swap the

two free indices on components.)

However, we also know that M † = A ÿ B ÿ C† = C† ÿ B† ÿ A†, giving us M †
i j

= C†
i k  B†

k l  A†
l j = A j l  Bl k  Ck i.  

Since the summed indices are just dummy variables, these two methods are consistent.

Note, however, that the following approach does NOT work: Mi j†
= Ai k  Bk l  Cl j†

∫ C†
l j B†

k l A†
i k = Ak i Bl k  C j l

Also note that this is the matrix component for M †
i j

, so it should be multiplied from the left by i, even though i is a

right-hand index on the individual components.
Thus, to form the transpose of a matrix element, the two free indices should be swapped on the components, but leftFreeIn-

dices and rightFreeIndices stay the same.
Now consider operation on a vector:

Let y = A ÿ B ÿ x so that yi = yi = Ai k  Bk l  xl

The transpose operator just changes y  from a column to a row vector, but the value of each component is the same:

y†
i

= yi.

This can be confirmed using the alternate identity y† = A ÿ B ÿ x† = x† ÿ B† ÿ A† 

We can expand this to find y†
i

= x j ÿ B†
j k ÿ A†

k i = Ai k  Bk j x j

As one would expect, the values of y i and y†
i
 are exactly the same (no change in matrix components), but they multiply

to the right and left respectively.
Thus, taking the transpose of a vector is merely a bookkeeping operation that swaps leftFreeIndices ¨ rightFreeIndices

without changing the components.
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ü Function Definition

ClearAllSuperDagger;

SuperDaggermSumcomponents, summedIndices, left, right, onesFreeIndices :
mSumcomponents . left  right, right  left,
summedIndices, left, right, onesFreeIndices ; AtomQleft && AtomQright &&
Countcomponents, left, Infinity  1 && Countcomponents, right, Infinity  1;

SuperDaggermSumcomponents , summedIndices, left, , onesFreeIndices :
mSumcomponents, summedIndices, , left, onesFreeIndices ;
AtomQleft && Countcomponents, left, Infinity  1;

SuperDaggermSumcomponents, summedIndices, , right, onesFreeIndices :
mSumcomponents, summedIndices, right, , onesFreeIndices ;
AtomQright && Countcomponents, right, Infinity  1;

SuperDaggerx y:1 : x SuperDaggery ; NumericQx;
SuperDaggerx : x ; NumericQx;
SuperDaggerx  y : SuperDaggerx  SuperDaggery;

ü Tests

ü Define convertToMatrix[ ]

ü Description

Comverts components in mSum[ ] notation back to matrices in CenterDot[ ] notation.

Cases:
two matrices match indices -> add dot and remove from summedIndices
gamma's - handle them last; treat dgamma's equivalently

Internally uses superscripted T† (T dagger) to represent a transpose.
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ü Function Definition

ClearAllconvertToMatrix;

convertToMatrixn : n ; NumericQn;
convertToMatrixn x : n convertToMatrixx ; NumericQn;
convertToMatrixx  y : convertToMatrixx  convertToMatrixy;
convertToMatrix x

y
 : convertToMatrixx

convertToMatrixy
;

convertToMatrix x  : convertToMatrixx ;

  INITIALIZATION  
 Put one of the end matrices into CenterDot 
structure by matching against left and right free indices. 

 If there are no free indices, than expression must include 2 vectors at either end,

so start with one of those. 
 Express in CenterDot notation such that

leftmost and rightmost indices are the free indices 

 Seed statements;

the FreeQ, CenterDot's ensure that only one condition will be used. 
 Find a matrix with one index matching the corresponding

left or right free index and put it in CenterDot . 
convertToMatrixmSummatrixi1, i2 other:Null,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
convertToMatrixmSumCenterDotmatrixi1, i2If nullQother, other, 1,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
validMatrixQmatrix && FreeQother, CenterDot &&
MemberQleftFreeIndices, i1  MemberQrightFreeIndices, i2;

 Find a matrix such that the transpose has one index

matching the left or right free index and put it in CenterDot . 
convertToMatrixmSummatrixi1, i2 other:Null,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
convertToMatrixmSumCenterDotmatrixi2, i1T†If nullQother, other, 1,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
validMatrixQmatrix && FreeQother, CenterDot &&
MemberQleftFreeIndices, i2  MemberQrightFreeIndices, i1;

 Find a vector with an index matching the left free index and put it in CenterDot . 
convertToMatrixmSumvectori1 other:Null,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
convertToMatrixmSumCenterDotvectori1If nullQother, other, 1,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
validMatrixQvector && FreeQother, CenterDot && MemberQleftFreeIndices, i1 &&
 vector  gamma &&  vector  gamma;

 Find a vector with an index matching the

right free index and put its transpose in CenterDot . 
convertToMatrixmSumvectori1 other:Null,
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summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
convertToMatrixmSumCenterDotvectori1T†If nullQother, other, 1,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
validMatrixQvector && FreeQother, CenterDot && MemberQrightFreeIndices, i1 &&
 vector  gamma &&  vector  gamma;

 Find a matrix with an index matching one

of the ones free indices and put it in CenterDot . 
 This should only happen with an isolated delta matrix. In principle,

there could be multiple such 
 delta matrices,

but that is unlikely for current calculations. Therefore remove other:Null 
 argument so that previous methods are favored. 
convertToMatrixmSummatrixi1, i2,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
convertToMatrixmSumCenterDotmatrixi1, i2,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
matrix  delta && MemberQonesFreeIndices, i1  MemberQonesFreeIndices, i2;

 If none of the previous conditions holds,

then the mSum must be a dot product between two vectors. 
 Find one of those vectors and put it into

a CenterDot. This will become the righthand vector. 
convertToMatrixmSumvectori1 other:Null,

summedIndices, , , onesFreeIndices :
convertToMatrixmSumCenterDotvectori1If nullQother, other, 1,

summedIndices, , , onesFreeIndices ; validMatrixQvector &&
FreeQother, CenterDot &&  vector  gamma &&  vector  gamma;

  END INITIALIZATION  

  MERGE TERMS  
 Merge matrix components into CenterDot,

transposing is necessary to keep free indices on left and right. 
 Combine CenterDot..., Ai,j with Bj,k or xj 
convertToMatrix

mSumCenterDototherLeft:Null, matrix1i1, iSump1:1 matrix2iSum, i2:Null
other:Null, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :

convertToMatrixmSumCenterDototherLeft, matrix1i1, iSump1,
outputIndicesmatrix2, iSum, i2If nullQother, other, 1, removeEntry
summedIndices, iSum, leftFreeIndices, rightFreeIndices, onesFreeIndices ;

validMatrixQmatrix1 && validMatrixQmatrix2 && MemberQsummedIndices, iSum;

 Combine CenterDot..., Ai,j with Bk,j 
convertToMatrixmSum

CenterDototherLeft:Null, matrix1i1, iSump1:1 matrix2i2, iSumother:Null,
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :

convertToMatrixmSumCenterDototherLeft, matrix1i1, iSump1, matrix2iSum, i2T†
If nullQother, other, 1, removeEntrysummedIndices, iSum,
leftFreeIndices, rightFreeIndices, onesFreeIndices ;

validMatrixQmatrix1 && validMatrixQmatrix2 && MemberQsummedIndices, iSum;
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 Combine Bk,i with CenterDotAi,j, ... or CenterDotxi, ... 
convertToMatrix

mSummatrix2i2, iSumCenterDotmatrix1iSum, i1:Nullp1:1, otherRight:Null
other:Null, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :

convertToMatrixmSumCenterDotmatrix2i2, iSum, outputIndicesmatrix1, iSum, i1p1 ,
otherRightIf nullQother, other, 1, removeEntrysummedIndices, iSum,
leftFreeIndices, rightFreeIndices, onesFreeIndices ;

validMatrixQmatrix1 && validMatrixQmatrix2 && MemberQsummedIndices, iSum;

 Combine Bi,k with CenterDotAi,j, ... or CenterDotxi, ... 
convertToMatrixmSummatrix2iSum, i2:Null

CenterDotmatrix1iSum, i1:Nullp1:1, otherRight:Null other:Null,
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :

convertToMatrixmSumCenterDotoutputIndicesmatrix2, i2, iSumT†,
outputIndicesmatrix1, iSum, i1p1 , otherRightIf nullQother, other, 1,

removeEntrysummedIndices, iSum, leftFreeIndices,

rightFreeIndices, onesFreeIndices ;
validMatrixQmatrix1 && validMatrixQmatrix2 && MemberQsummedIndices, iSum;

 Convert a matching gammaa and onesai,j into a deltaGi,j 
 Likewise for deltaG 
convertToMatrix

mSumgammaaCenterDototherLeft:Null, onesai1, i2p1:1, otherRight:Null
other:Null, summedIndices, leftFreeIndices,

rightFreeIndices, onesFreeIndices : convertToMatrix
mSumCenterDototherLeft, deltaGi1, i2p1, otherRightIf nullQother, other, 1,
removeEntrysummedIndices, a, leftFreeIndices, rightFreeIndices, onesFreeIndices ;

MemberQsummedIndices, a && FreeQleftFreeIndices, a &&
FreeQrightFreeIndices, a  && FreeQonesFreeIndices, a;

convertToMatrixmSumgammaaCenterDototherLeft:Null,
onesai1, i2p1:1, otherRight:Null other:Null, summedIndices,

leftFreeIndices, rightFreeIndices, onesFreeIndices : convertToMatrix
mSumCenterDototherLeft, deltaGi1, i2p1, otherRightIf nullQother, other, 1,
removeEntrysummedIndices, a, leftFreeIndices, rightFreeIndices, onesFreeIndices ;

MemberQsummedIndices, a && FreeQleftFreeIndices, a &&
FreeQrightFreeIndices, a  && FreeQonesFreeIndices, a;

  END MERGE TERMS  

  TERMINATION CONDITIONS  
 Pull out an isolated gammaa. If the a is not summed,

it is NOT included in CenterDot 
convertToMatrixmSumgammaaother,

summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices :
gammaaconvertToMatrixmSumother, summedIndices, leftFreeIndices, rightFreeIndices,

onesFreeIndices ; FreeQsummedIndices, a && FreeQother, onesa;
convertToMatrixmSumgammaaother, summedIndices, leftFreeIndices,

rightFreeIndices, onesFreeIndices : gammaaconvertToMatrix
mSumother, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices ;
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FreeQsummedIndices, a && FreeQother, onesa;

 If mSum only contains a gamma,

terminate as long as there are no summed or leftright free indices. 
 Likewise for gamma 
convertToMatrixmSumgammaa, , , , onesFreeIndices :
gammaa ; onesFreeIndices  a;

convertToMatrixmSumgammaa, , , , onesFreeIndices :
gammaa ; onesFreeIndices  a;

 Terminate if all summed indices have been

exhausted and CenterDot  is outermost function. 
 Doublecheck that indices on components match the

ordering of leftFreeIndices and rightFreeIndices. 
 Check that onesFreeIndices only appear once per term and on ones matrices 
 Errors called from this section will be labeled convertToMatrix1 
convertToMatrixmSumCenterDotmatrices,

, left:Null, right:Null, onesFreeIndices : Module
x, i, currentIndex, numIndices, output,

If left  Null,


 Counts the number of times that left free index

appears as a matrix index in either the left or right position 
IfCountmatrices, left,  : Null  , left, Infinity  1,
error"convertToMatrix1: Left free index ", left,

" appears too many or too few times in matrix components: ", matrices;

 Makes sure left free index is in the correct position 
IfCountCenterDotmatrices,

CenterDotleft,  : Null:1,   CenterDotgammaonesleft, :1,   1,
error"convertToMatrix1: Left free index ", left,

" appears in wrong position: ", matrices;
IfCountCenterDotmatrices, CenterDotleft,  : Null:1,  

CenterDotgammaonesleft, :1,   1,
error"convertToMatrix1: Left free index ", left,

" appears in wrong position: ", matrices;
;

If right  Null,


 Counts the number of times that right free index

appears as a matrix index in either the left or right position 
IfCountmatrices, right,  : Null  , right, Infinity  1,
error"convertToMatrix1: Right free index ", right,

" appears too many or too few times in matrix components: ", matrices;

 Makes sure right free index is in the correct position 
IfCountCenterDotmatrices, CenterDot,  : Null, right:1  1,

error"convertToMatrix1: Right free index ",
right, " appears in wrong position: ", matrices;
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;

If onesFreeIndices  Null,

numIndices  LengthonesFreeIndices;
Fori  1, i  numIndices, i,

currentIndex  onesFreeIndicesi;

 Counts the number of times that each onesFreeIndices

appears as a matrix index in either the left or right position on a non

ones matrix. Subtracts number of occurrences in delta
functions, since those are OK. 

IfCountmatrices, currentIndex,  : Null  , currentIndex, Infinity  Count
matrices, deltacurrentIndex,  : Null  delta, currentIndex, Infinity  0 ,

error"convertToMatrix1: Ones free index ", currentIndex,

" appears in leftright matrix index: ", matrices;

 Makes sure each onesFreeIndices only appears once, in either ones or delta 

IfCountmatrices, onescurrentIndex, , Infinity  Countmatrices,
deltacurrentIndex,  : Null  delta, currentIndex, Infinity  1 ,

error"convertToMatrix1: Ones free index ", currentIndex,

" appears too many times: ", matrices;

;

IfMatchQmatrices, x ; validMatrixQx 
MatchQmatrices, Powerx, T† ; validMatrixQx,

output  matrices,

output  CenterDotmatrices
;
Returnoutput . Powerx, T†  SuperDaggerx . SuperDaggeronesai1, i2 

onesai1, i2, SuperDaggerdeltaGj1, j2  deltaGj1, j2;
;

ü Tests
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ü Define mD[ ] = matrix derivative

ü Description

mD[f ,x]
Takes the partial derivative of f  with respect to x.  Unlike Mathematica's D[]command, this function is capable of taking the

derivative  with  respect  to  a  vector  component  so  that  where  mDxi, x j = deltai, j = di j.   The  mSum[ ]  function will

properly drop summed indices if the deltai, j demands it.

Important notes:
- x can be a scalar or a vector component xi , but it cannot be a matrix component Ai, j
- This function relies on D  to do the actual differentiation.

- Differentiation with respect to a vector adds a dimension to f , so that mD f , xi is a vector if f  is a scalar and a matrix if f  is

a vector.  However, this function does not fix the the values of leftFreeIndices and rightFreeIndices to reflect that fact.  If the
result will be used in additional matrix multiplications, use the functions addIndex[ ] and dropIndex[ ] to manually manage
indices. (See comments for definition of delta[ ] above.)

Needs to deal with the following cases:
1. f  wrt x, where x is simple (not indexed)

validDerivativeQ[ ] ensures that there are no indexed forms of x in f

fl pass to D f , x
2. f  wrt x where x is indexed (xi)

validDerivativeQ[ ] ensures that there are no non-indexed forms of x in f

If there are no instances of x j  in f , then the derivatives is just 0

Otherwise, 
make a list of all the  x j
call D f , x j  for each one

insert a delta[i, j] into each result and sum
Sum where components of x in f do not have summation index - just swap sum and d[]
Sum where components of x in f do have summation index - forms delta(i,j) - will remain unevaluated if other terms of

sum also have x[j]

Should never allow differentiation of f  wrt x in the following cases:

- x is an index (e.g. i or i$nnn) fl FreeQ[summedIndices,x]*

- x = xi$nnn, where i$nnn is a summation index 

fl FreeQ[summedIndices, Part[Cases[{x}, _[k_] ß k], 1]]*

- x is an unindexed version of a variable that is indexed in f  since this probably represents a typo (e.g. x = gamma but f

contains gammaa) 
fl FreeQ[f,x[_]] *

- x is an indexed version of a variable that is not indexed in f  since this probably represents a typo (e.g. x = gammaa but

f  contains gamma)

fl FreeQ[f, Head[x]] *

- x has more than one set of indices ( xab )
fl Cases[{x}, xRoot_[_] ß xRoot)]== Head[x] *

- f  or x includes a transpose operation fl FreeQ[x,SuperDagger]* and FreeQ[f, SuperDagger]*
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* indicates these rules are contained in the validDerivativeQ[ ] function.

Useful rules: 
FreeQ[f /.x[_]1, x] (removes indexed forms of x and just checks for x)

FreeQ f , Exceptx j, x_ 

Notes about D[ ] and FreeQ[ ]
FreeQ[x[j],x] = False

 FreeQ[x, x[_]] = True

 D[x[j], x] = D[x, x[j]] = 0

 D[x[i], x[j]] = 0

Voice commands: "matrix derivative" or "M. D." 

ü Function Definition

ClearAllmD;

mDf1  f2, x : mDf1, x  mDf2, x;
mD f1 , x : 1

2


1

f1
mDf1, x;

mDn1 f1, x : n1 mDf1, x ; NumericQn1;

 Case 1 
mDmSumf, indices, x : mSumDf, x, indices ;

FreeQx,  && validDerivativeQf, x, indices;

 Case 2 
mDmSumf, indices, x : Module

xList, xRoot, inputRoot, inputIndex, answer, k,

IfMatchQx, , error"Invalid indexing on x in mD2: ", x;

inputRoot  PartCasesx, xRoot  xRoot, 1;
inputIndex  PartCasesx, inputRootk  k, 1;
xList  Casesf, inputRoot, Infinity;
IfLengthxList  0,

answer  ApplyPlus,
MapFunctionDf, 1 deltainputIndex, PartCases1, k  k, 1, xList,

answer  0;

;
mSumanswer, indices

 ; MatchQx,  && validDerivativeQf, x, indices;

ü Tests

ü Define index manipulation tools

whichIndex = "left"," right", ones, or summed
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addIndex[mSum[...], whichIndex, newIndex]

ClearAlladdIndex;

addIndexmSumx, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices,
whichIndex, newIndex : Module
summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew,

If FreeQsummedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices, newIndex,
error"addIndex: Index ", newIndex, " already in use.",

"\n\tsummedIndices: ", summedIndices, "\n\tleftFreeIndices: ", leftFreeIndices,

"\n\trightFreeIndices: ", rightFreeIndices, "\n\tonesFreeIndices: ", onesFreeIndices
;
summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew 
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices;

SwitchwhichIndex,
"summed", 
AppendTosummedIndicesNew, newIndex;

,
"left", 
IfLengthleftFreeIndices  0,
error"addIndex: Left index already exists: ", leftFreeIndices;
AppendToleftFreeIndicesNew, newIndex;

,
"right", 
IfLengthrightFreeIndices  0,
error"addIndex: Right index already exists: ", rightFreeIndices;
AppendTorightFreeIndicesNew, newIndex;

,
"ones", 
AppendToonesFreeIndicesNew, newIndex;

,
, error"Invalid whichIndex provided to addIndex: ", whichIndex

;
ReturnmSumx,
summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew;

;
addIndexf1  f2, whichIndex, newIndex :
addIndexf1, whichIndex, newIndex  addIndexf2, whichIndex, newIndex;

addIndex f1

f2

, whichIndex, newIndex : addIndexf1, whichIndex, newIndex
addIndexf2, whichIndex, newIndex

;

addIndex f1 , whichIndex, newIndex : addIndexf1, whichIndex, newIndex ;

addIndexn1 f1, whichIndex, newIndex :
n1 addIndexf1, whichIndex, newIndex ; NumericQn1;

addIndexn1, whichIndex, newIndex : n1 ; NumericQn1;
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ü dropIndex[mSum[...], whichIndex, dropIndex]

ClearAlldropIndex;

dropIndexmSumx, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices,
whichIndex, dropIndex : Module
summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew,

summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew 
summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndices;

SwitchwhichIndex,
"summed", 
If MemberQsummedIndices, dropIndex, error"dropIndex: index ",
dropIndex, " not present in summedIndices: ", summedIndices;

summedIndicesNew  removeEntrysummedIndicesNew, dropIndex;
,
"left", 
If MemberQleftFreeIndices, dropIndex, error"dropIndex: index ",
dropIndex, " not present in leftFreeIndices: ", leftFreeIndices;

leftFreeIndicesNew  removeEntryleftFreeIndicesNew, dropIndex;
,
"right", 
If MemberQrightFreeIndices, dropIndex, error"dropIndex: index ",
dropIndex, " not present in rightFreeIndices: ", rightFreeIndices;

rightFreeIndicesNew  removeEntryrightFreeIndicesNew, dropIndex;
,
"ones", 
If MemberQonesFreeIndices, dropIndex, error"dropIndex: index ",
dropIndex, " not present in onesFreeIndices: ", onesFreeIndices;

onesFreeIndicesNew  removeEntryonesFreeIndicesNew, dropIndex;
,
, error"Invalid whichIndex provided to dropIndex: ", whichIndex

;
ReturnmSumx,
summedIndicesNew, leftFreeIndicesNew, rightFreeIndicesNew, onesFreeIndicesNew;

;
dropIndexf1  f2, whichIndex, newIndex :
dropIndexf1, whichIndex, newIndex  dropIndexf2, whichIndex, newIndex;

dropIndex f1

f2

, whichIndex, newIndex : dropIndexf1, whichIndex, newIndex
dropIndexf2, whichIndex, newIndex

;

dropIndex f1 , whichIndex, newIndex : dropIndexf1, whichIndex, newIndex ;

dropIndexn1 f1, whichIndex, newIndex :
n1 dropIndexf1, whichIndex, newIndex ; NumericQn1;

dropIndexn1, whichIndex, newIndex : n1 ; NumericQn1;
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ü Define getIndexList[ ]

ü Description

Returns the free indices from the matrix or vector x, which must be represented by one or more mSum[...] functions. (If indices
are not consistent among terms, will return error.)  Returned in the form

{ {leftFreeIndices}, {rightFreeIndices}, {onesFreeIndices} }

ü Function Definition

ClearAllgetIndexList;
getIndexListx : Module

i, terms, currentIndexList, indexList, onesFreeIndices,

leftFreeIndices, rightFreeIndices, summedIndices, numTerms,,
indexList  ;
terms  termListx;
numTerms  Lengthterms;
Fori  1, i  numTerms, i,

currentIndexList  Casestermsi,
mSum, summedIndices, leftFreeIndices, rightFreeIndices, onesFreeIndicesother:

1 ; NumericQother  leftFreeIndices, rightFreeIndices, onesFreeIndices;
IfcurrentIndexList    LengthcurrentIndexList  1,
Print"getIndexList Unexpected format: ", currentIndexList;
Abort;

;
currentIndexList  currentIndexList1;
Ifi  1,
indexList  currentIndexList,

If indexList  currentIndexList,
Print"getIndexList Unmatched indices: ", indexList, " vs. ", currentIndexList;
Abort;

;
;

;
ReturncurrentIndexList;
;

ü Define simplifying rules (run in order shown)

ü Expand to fundamental expressions using //.expandTerms BEFORE running 
convertToComponents[ ]

MUST use delayed rule (:>) for these definitions; otherwise, all definitions of deltaG get same a1, etc.
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ClearAllexpandTerms;

expandTerms  
deltaGi1, i2  Modulea1, gammaa1 onesa1i1, i2,
gainsSquared  Modulea2, gamma , a2 gammaa2, ,
di1,   Modulej1, mi1, j1 sj1,   Bi1, ,
d , i1  Modulej2, s , j2 mj2, i1†  B , i1,
i1,   Modulej1, ci1, j1 bj1, ,
 , i1  Modulej2, b , j2 cj2, i1†,
mi1, i2  Modulej3, mSigmai1, i2  deltaGi1, j3  mDeltaj3, i2

;

ü Simplify by removing dummy (summation) indices with removeIndices[ ]

Free indices will be left on the first and last matrix, but all other indices will be replaced with  as long as they match properly.
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ClearAllremoveIndices;

removeIndicesresults : Module
rules, resultsModified,

 Convert SuperDaggerx notation to Powerx,T† 
resultsModified  results . SuperDaggerx  xT†;

 Replacement rules for removing summed indices 
 Since this is a replacement rule,

outputIndices seems to be called BEFORE i2 is set. 
 Thus, outputIndices cannot be used to weed out cases

in which i2:Null has been set to Null. 
 Instead, make a separate case for matrices and vectors. 
rules  
CenterDototherLeft:Null,

matrix1i1, iSump1:1, matrix2iSum, i2p2:1, otherRight:Null
;  iSum  nullComponent && validMatrixQmatrix1 && validMatrixQmatrix2
 CenterDototherLeft,
matrix1i1, nullComponentp1, matrix2nullComponent, i2p2, otherRight,

CenterDototherLeft:Null,
matrix1i1, iSump1:1, matrix2iSump2:1, otherRight:Null

;  iSum  nullComponent && validMatrixQmatrix1 && validMatrixQmatrix2
 CenterDototherLeft,
matrix1i1, nullComponentp1, matrix2nullComponentp2, otherRight,

CenterDototherLeft:Null,
matrix1iSump1:1, matrix2iSum, i2p2:1, otherRight:Null

;  iSum  nullComponent && validMatrixQmatrix1 && validMatrixQmatrix2
 CenterDototherLeft,
matrix1nullComponentp1, matrix2nullComponent, i2p2, otherRight,

CenterDototherLeft:Null,
matrix1iSump1:1, matrix2iSump2:1, otherRight:Null

;  iSum  nullComponent && validMatrixQmatrix1 && validMatrixQmatrix2
 CenterDototherLeft, matrix1nullComponentp1, matrix2nullComponentp2, otherRight

;
resultsModified  resultsModified . rules;
ReturnresultsModified . Powerx, T†  SuperDaggerx;

;

ü Collapse to higher-level expressions using collapseTerms[ ]

collapseTerms must be used AFTER calling convertToMatrix[ ] and removeIndices[ ]
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ClearAllcollapseTerms, collapse1, collapse2, collapse3;
collapse1 : 

CenterDotxi  xi ; validMatrixQx,
CenterDototherLeft:Null, deltaGi1, iSum, onesaiSum, i2,
otherRight:Null  gammaaCenterDototherLeft, onesai1, i2, otherRight,

CenterDototherLeft:Null, onesai1, iSum, deltaGiSum, i2, otherRight:Null 
gammaaCenterDototherLeft, onesai1, i2, otherRight,

CenterDototherLeft:Null, onesai1, iSum, onesbiSum, i2, otherRight:

Null  deltaa, bCenterDototherLeft, onesPartSorta, b, 1i1, i2, otherRight
 , convertToMatrixmSumdeltai,j,,,,deltai,j
;

collapse2 : 
CenterDototherLeft:Null, mSigmai1, i2, otherRight:Nullother:1 

CenterDototherLeft:Null,
deltaGi1, iSum, mDeltaiSum, i2 , otherRight:Nullother:1

 other CenterDototherLeft, mi1, i2, otherRight,
mSigmai1, i2other:1 

CenterDotdeltaGi1, iSum, mDeltaiSum, i2other:1  other mi1, i2,
CenterDototherLeft:Null, mSigmai1, i2†, otherRight:Nullother:1 

CenterDototherLeft:Null,
mDeltai1, iSum †, deltaGiSum, i2 , otherRight:Nullother:1

 other CenterDototherLeft, mi1, i2†, otherRight,
mSigmai1, i2†other:1  CenterDotmDeltai1, iSum †, deltaGiSum, i2other:1 

other CenterDotmi1, i2† ,
 Take out \beta replacements so that equations are

kept in terms of unknown parameters 
CenterDototherLeft:Null,ci1,iSum,biSum, otherRight:Null
CenterDototherLeft,i1,otherRight,

CenterDototherLeft:Null,biSum†,ciSum,i1†, otherRight:Null
CenterDototherLeft,i1†,otherRight 

;
collapse3  

CenterDotLongesta, xcoeff1:1  CenterDota, ycoeff2:1  other2:0 
CenterDota, CenterDotxcoeff1  CenterDotycoeff2  other2,

CenterDotx, Longestacoeff1:1  CenterDoty, acoeff2:1  other2:0 
CenterDotCenterDotxcoeff1  CenterDotycoeff2, a  other2,

CenterDotxi  xi
;

collapseTermsx : ReplaceRepeated
FullSimplifyReplaceRepeatedReplaceRepeatedx, collapse1, collapse2, collapse3;
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ü Break into smaller matrices using matrixSimplify[ ]

Starts with the expressions in the deepest level of x (the leaves), then works its way upward looking for "CenterDot" (or "Plus")

headers.  Whenever it finds a CenterDot[] it takes the contents and assigns them to a new matrix, and substitutes that matrix into x

wherever possible.  After making a substitution, it re-examines all of the other expressions in the current level to make sure none
of them have changed.  It returns a simplified form for x, plus a list of replacement rules that can be used to convert xSimple back

into x.  Before exiting, it doublechecks to make sure those substitution rules exactly reproduce x.

The second (optional) argument specifies whether CenterDot or Plus headers should be used
CenterDot - makes each set of multiplied matrices into a new matrix (smaller pieces, but more of them)
Plus - makes each set of added matrices into a new matrix (fewer pieces, but each is larger)

Can print results nicely like this:
r = matrixSimplify[m];
MatrixForm[r1 ]
Column[r2 ]

ClearAllmatrixSimplify;
matrixSimplifyx, searchMethod:Plus : Module
xSimple, currentLevel, currentValue, uniqueMatrix,

uniqueCounter, replacementList  , i, j, startOver, isUnique,

If searchMethod  CenterDot &&  searchMethod  Plus,
Print"WARNING: Invalid setting for searchMethod ",
searchMethod, ". Changing to Plus.";
searchMethod  Plus;

;
xSimple  x;

replacementList  ;
uniqueCounter  1;

startOver  False;

Fori  DepthxSimple, i  1, IfstartOver, startOver  False, i,
currentLevel  LevelxSimple, i;
Forj  1, j  LengthcurrentLevel && NotstartOver,
j,  Print"", i, ", ", j, "";
currentValue  currentLevelj;
 Could also use Plus instead of CenterDot  works about the same 
IfHeadcurrentValue  searchMethod,

uniqueMatrix  Unique"m";
AppendToreplacementList, uniqueMatrix  currentValue;
xSimple  xSimple . currentValue  uniqueMatrix;
startOver  True;

;
;

;
IfNotxSimple . replacementList  x,
error"Replacement rules do not reproduce input.";

;
ReturnxSimple, replacementList;
;
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ü Define functions to calculate Jacobian and display results

ü calculateJacobian[functions, variables]

Calculates all of the elements of the Jacobian matrix:
∑Fi
∑x j

where  Fi  is  the  ith  function  provided  in  the  < functions >  list  and

xj is the jth variable provided in the < variables > list.

Returns two formats:
first output = human-readable form
second output = components form (for further calculations)

mode (optional) = "gradient" for gradient (default), "jacobian" for Jacobian
Index position:

When calculating a gradient...
...with respect to s or b, it adds a left index (to make a vector).
...with respect to gamma, it adds an entry to the ones index.

  When calculating a Jacobian...
  ...of a normal vector (free left index) with respect to s or b, it adds a right index.
  ...of a "ones vector" (free ones index) with respect to s or b, it adds a left index.
...with respect to gamma, it adds an entry to the ones index.

The left index on a "ones vector" is necessary to avoid creating the transpose of the desired quantity. 

Variables MUST be standard vectors of the form name[index].

ClearAllcalculateJacobian;
calculateJacobianfunctions, variables, mode:"gradient" : Module

r, c, derivativeIndex, resultsMatrix, numRows, numColumns, currentFunction,

currentVariable, currentValue, componentsMatrix, i, indexPosn, currentIndexList,
IfUnsameQmode, "gradient" && UnsameQmode, "jacobian",
Print"Invalid mode: ", mode; Abort;

numRows  Lengthfunctions;
numColumns  Lengthvariables;
resultsMatrix  ConstantArrayNull, numRows, numColumns;
componentsMatrix  ConstantArrayNull, numRows, numColumns;
Forr  1, r  numRows, r,

Forc  1, c  numColumns, c,

currentFunction  functionsr;
currentVariable  variablesc;
derivativeIndex  currentVariable . i  i;

currentValue  mDcurrentFunction, currentVariable;
IfMatchQcurrentVariable, gamma,
indexPosn  "ones",

Ifmode  "gradient",

indexPosn  "left"

,
  Jacobian 
Ifmode  "jacobian", Print"Unexpected mode: ", mode;
currentIndexList  getIndexListcurrentFunction;
IfcurrentIndexList3  ,
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  Expect a free left index and no right index 
IfLengthcurrentIndexList1  1  currentIndexList2  ,
Print"calculateJacobian: unexpected index list: ", currentIndexList;
Abort;

;
indexPosn  "right";

,
 Expect no left or right indices 
IfcurrentIndexList1    currentIndexList2  ,
Print"calculateJacobian: unexpected index list: ", currentIndexList;
Abort;

;
indexPosn  "left";






;
Print"Adding index: ",derivativeIndex," ",indexPosn,"";
currentValue  addIndexNumeratorcurrentValue,

indexPosn, derivativeIndex DenominatorcurrentValue;
componentsMatrixr, c  currentValue;
currentValue  collapseTermsremoveIndicesconvertToMatrixcurrentValue;
resultsMatrixr, c  currentValue;

;
;
ReturnresultsMatrix, componentsMatrix;
;

ü matrixCompare[m1, m2, show]

Compares two Jacobian matrices and prints a results matrix showing True in positions that match and False in positions that
disagree.  It then prints each matrix's contents at the positions that disagree (optional).  

m1, m2 = name of functions containing matrices to be compared
show = if True, prints the values of the differing elements

Useful for determining which elements need to be recalculated when using different methods.

30  Gradient calculator - Setup - 3.4.nb

Printed by Mathematica for Students

255



ClearAllmatrixCompare;
matrixComparem1, m2, show : Module

resultsMatrix, r, c, numRows, numColumns,
IfDimensionsm1  Dimensionsm2,
Print"Inconsistent array sizes in matrixCheck.";
Abort;

;
numRows, numColumns  Dimensionsm1;

resultsMatrix  ConstantArrayNull, numRows, numColumns;
Forr  1, r  numRows, r,

Forc  1, c  numColumns, c,

resultsMatrixr, c  m1r, c  m2r, c;
;

;
PrintMatrixFormresultsMatrix;
Ifshow,
Forr  1, r  numRows, r,

Forc  1, c  numColumns, c,

If resultsMatrixr, c,
Print"Row ", r, ", Column ", c, ":";
Print"\tMatrix 1: ", m1r, c;
Print"\tMatrix 2: ", m2r, c;
;

;
;

;
;

ü printElements[m]

Returns a table consisting of {"(r,c):", value} entries that can be displayed with Table[...] command (will not word-wrap prop-
erly)
If doIndex = False, supresses index values when printing (default = True)
If doPrint = True (default), also prints table using word-wrapping format.
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ClearAllprintElements;
printElementsm, doIndex:True, doPrint:True : Module

r, c, numRows, numColumns, tableOut, position,

tableOut  ;
numRows, numColumns  Dimensionsm;
Forr  1, r  numRows, r,

Forc  1, c  numColumns, c,

position  ""  ToStringr  ","  ToStringc  ":";
AppendTotableOut, position, mr, c;
IfdoPrint,
IfdoIndex,
Printposition, " ", mr, c,
Printmr, c

;

;
;
ReturntableOut;
;

ü Variational calculus

ü zeroTest[ ]

zeroTest[x, zeroEqns, zeroTerms]
Uses "zeroth-order" equations to set matching terms to 0.

x = polynomial to be simplified
zeroEqns = polynomial(s) that should be replaced with 0
zeroTerms = list of all terms in zeroEqns

Not entierly reliable, but if it does produce answer, appears to be correct.  Has problems in following cases:
x = dChidS + 7.2 dChidS (problem with non-integer coefficients?)

x = dChidS + 7.2 dChidB (unable to sort terms well enough to handle both eqns together?)

ClearAllzeroTest;
zeroTestx,zeroEqns,zeroTerms :0;xzeroEqns1;
zeroTestx,zeroEqns,zeroTerms :0;xzeroEqns2;
zeroTestx, zeroEqns, zeroTerms  : 0 ; ApplyOr, MapFunctionx  1, zeroEqns;
zeroTesta, zeroEqns, zeroTerms  : a ; allFreeQa, zeroTerms;
zeroTesta  x, zeroEqns, zeroTerms  :

a  zeroTestPlusx, zeroEqns, zeroTerms ; allFreeQa, zeroTerms;
zeroTesta x, zeroEqns, zeroTerms  :
a zeroTestTimesx, zeroEqns, zeroTerms ; NumericQa;

zeroTestx, zeroEqns, zeroTerms  : Moduley,
y  FactorTermsListx;
Returny1zeroTesty2, zeroEqns, zeroTerms;

 ; PartFactorTermsListx, 1  1;

32  Gradient calculator - Setup - 3.4.nb
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Define Lagrange multipliers
Use SetAttributes to tell Mathematica that the l's are numeric. However, since SetAttributes only controls functions, need to use

lChi, etc.  That will satisfy the NumericQ test (but not the NumberQ test).

ClearAllG, S, Chi, B, B;

SetAttributesG, NumericFunction;
SetAttributesS, NumericFunction;
SetAttributesChi, NumericFunction;
SetAttributesB, NumericFunction;
SetAttributesB, NumericFunction;

Track setup status
Define a function to see whether the specified variable has been set to True; if not abort calculation.
x = name of setup confirmation variable AS STRING

ClearAllconfirmSetup;
confirmSetupx : Module,

IfSymbolNameSymbolx  x   Symbolx  True,

MessageDialog"Must run setup notebook first for "  x;
PrintStyle"Must run setup notebook for "  ToStringx  " first", Red;
EmitSoundSoundSoundNote"B3", "C3", "G3", 0.5;
Abort;

,

Printx, " OK.";


;
ReturnTrue;
;

Setup complete (gradientCalculatorSetupComplete)
gradientCalculatorSetupComplete  True;

Gradient calculator - Setup - 3.4.nb  33
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Appendix C

IF Processor Parts List

This appendix contains the parts list and vendor information for the wideband IF proces-

sor described in Section 3.4.1.

Table C.1: As-designed parts list for wideband IF processor.

Description Manufacturer Model # Vendor

Amplifiers

4 - 8 GHz amplifiers AML AML 48L4002 AML

2 - 20 GHz amplifier AML AML 220L3401 AML

DROs

8.75 GHz (+13 dBm) Nexyn
NXOS-1375-

01044
Nexyn

12.25 GHz (+13 dBm) Nexyn
NXOS-1725-

01044
Nexyn

13.75 GHz (+13 dBm) Nexyn
NXOS-0875-

01044
Nexyn

17.25 GHz (+13 dBm) Nexyn
NXOS-1225-

01044
Nexyn

Filters

5.75 - 9.75 GHz
bandpass filter

Reactel
4CX11-7750-

X4000S11
Reactel

9.25 - 13.25 GHz
bandpass filter

Reactel
4C11-11250-

X4000S11
Reactel

(table continued on next page)
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Table C.1: As-designed parts list for wideband IF processor.

Description Manufacturer Model # Vendor

12.75 - 16.75 GHz
bandpass filter

Reactel
5C11-14750-

X4000S11
Reactel

16.25 - 20.25 GHz
bandpass filter

Reactel
5C11-18250-

X4000S11
Reactel

Low-pass filter
12.5 - 16.5 GHz passband

Reactel 10L0-X16.5GS11 Reactel

Low-pass filter
9.25 - 13.5 GHz passband

Reactel 10L0-X13.5GS11 Reactel

Low-pass filter
DC - 10 GHz passband

Reactel 9LO-X10GS11 Reactel

4 - 8 GHz bandpass filter Reactel
9CX11-6G-

X4GS11
Reactel

Mixers

Triple-balanced mixer Marki Microwave M2H-0220LA Marki Microwave

Triple-balanced mixer
Advanced
Microwave

M3006L Hytech

DC Power Supplies

12 V, 0.7 A Acopian 12EB70 Acopian

15 V, 2.0 A Acopian A15NT200 Acopian

5 V, 1.0 A Acopian 5EB100 Acopian

Attenuators

1-dB attenuator
(SMA, 23 GHz)

Inmet 23AH-01 Hytech

3-dB attenuator
(SMA, 23 GHz)

Inmet 23AH-03 Hytech

6-dB attenuator
(SMA, 23 GHz)

Inmet 23AH-06 Hytech

10-dB attenuator
(SMA, 23 GHz)

Inmet 23AH-10 Hytech

20-dB attenuator
(SMA, 23 GHz)

Inmet 23AH-20 Hytech

3-dB attenuator
(2.9 mm, 26 GHz)

Inmet 26AH-3 Hytech

(table continued on next page)
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Table C.1: As-designed parts list for wideband IF processor.

Description Manufacturer Model # Vendor

Cables and Interconnects

Super SMA
F - F adapter (27 GHz)

Southwest
Microwave

232-02SF Hytech

Super SMA
M - M adapter (27 GHz)

Southwest
Microwave

231-02SF Hytech

Right-angle SMA M - M
(DC - 27 GHz)

Hasco SMAP-SMAP-RA Hytech

Flange-mount SMA F - F
(for 4 - 8 GHz outputs)

Inmet 5313 Hytech

Flange-mount 2.9 mm F - F
(for input and test port)

S.G. McGeary 111-35-35-000 C.W. Swift

Hand-formable cable
(SMA connectors)

United
Microwave

Microform 139
United

Microwave

Flexible coaxial cable
(SMA connectors)

United
Microwave

Microflex 165
United

Microwave

Low-loss coaxial cable
(SMA connectors)

United
Microwave

Micropore 190
United

Microwave

Misc

Four-way power splitter MAC Technology P8248-4 MAC Technology

10-dB coupler MAC Technology C4258-10 MAC Technology

50-ohm terminator
(SMA, DC - 26.5 GHz)

Inmet TS260MC Hytech

Chassis
Proline Metal

Fabricators
(PMF)

10-007S, 67-019,
65-003

PMF
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Vendor Location Website

Acopian Technical
Company

Easton, PA www.acopian.com

AML
Communications

Camarillo, CA www.amlj.com

C.W. Swift and
Associates

Van Nuys, CA www.cwswift.com

Hytech Associates Westlake Village, CA www.hytechassociatesinc.com

MAC Technology Klamath Falls, OR www.mactechnology.com

Marki Microwave Morgan Hill, CA www.markimicrowave.com

Nexyn Corporation Sunnyvale, CA www.nexyn.com

Proline Metal
Fabricators

Fremont, CA www.gotopmf.com

Reactel Gaithersburg, MD www.reactel.com

United Microwave
Products

Torrance, CA www.unitedmicrowave.com

Table C.2: Contact information for vendors listed in Table C.1.
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Appendix D

L1157 Deconvolution Results

This appendix contains the deconvolved, single-sideband spectrum of position B1 in the

outflow of L1157 (Section 6.1). Brightness temperatures are calibrated to the T∗A scale, as

described in Equation 2.10. The peak fits used for the analysis in Section 6.4 are shown in

Figures D.1 through D.9.
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Figure D.1: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.2: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.3: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.4: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.5: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.6: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)



286

Figure D.7: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.8: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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Figure D.9: Peak fits used for L1157 analysis in Section 6.4. (See Figures D.1 through D.9.)
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