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Abstract

This thesis describes the construction, integration, and use of a new 230-GHz ultra-wideband
heterodyne receiver, as well as the development and testing of a new sideband-deconvolution
algorithm, both designed to enable rapid, sensitive molecular-line surveys.

The 230-GHz receiver, known as Z-Rex, is the first of a new generation of wideband
receivers to be installed at the Caltech Submillimeter Observatory (CSO). Intended as a
proof-of-concept device, it boasts an ultra-wide IF output range of ~ 6 - 18 GHz, offering
as much as a twelvefold increase in the spectral coverage that can be achieved with a single
LO setting. A similarly wideband IF system has been designed to couple this receiver to an
array of WASP2 spectrometers, allowing the full bandwidth of the receiver to be observed
at low resolution, ideal for extra-galactic redshift surveys. A separate IF system feeds a
high-resolution 4-GHz AQOS array frequently used for performing unbiased line surveys
of galactic objects, particularly star-forming regions. The design and construction of the
wideband IF system are presented, as is the work done to integrate the receiver and the
high-resolution spectrometers into a working system. The receiver is currently installed at
the CSO where it is available for astronomers’ use.

In addition to demonstrating wideband design principles, the receiver also serves as
a testbed for a synthesizer-driven, active LO chain that is under consideration for future
receiver designs. Several lessons have been learned, including the importance of driving
the final amplifier of the LO chain into saturation and the absolute necessity of including
a high-Q filter to remove spurious signals from the synthesizer output. The on-telescope
performance of the synthesizer-driven LO chain is compared to that of the Gunn-oscillator
units currently in use at the CSO. Although the frequency agility of the synthesized LO
chain gives it a significant advantage for unbiased line surveys, the cleaner signal and

broader tuning range of the Gunn continue to make it the preferred choice.
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The receiver and high-resolution spectrometer system were brought into a fully opera-
tional state late in 2007, when they were used to perform unbiased molecular-line surveys
of several galactic sources, including the Orion KL hot core and a position in the L1157
outflow. In order to analyze these data, a new data pipeline was needed to deconvolve the
double-sideband signals from the receiver and to model the molecular spectra. A highly
automated sideband-deconvolution system has been created, and spectral-analysis tools
are currently being developed.

The sideband deconvolution relies on chi-square minimization to determine the op-
timal single-sideband spectrum in the presence of unknown sideband-gain imbalances
and spectral baselines. Analytic results are presented for several different methods of ap-
proaching the problem, including direct optimization, nonlinear root finding, and a hybrid
approach that utilizes a two-stage process to separate out the relatively weak nonlineari-
ties so that the majority of the parameters can be found with a fast linear solver. Analytic
derivations of the Jacobian matrices for all three cases are presented, along with a new
Mathematica utility that enables the calculation of arbitrary gradients.

The direct-optimization method has been incorporated into software, along with a
spectral simulation engine that allows different deconvolution scenarios to be tested. The
software has been validated through the deconvolution of simulated data sets, and initial
results from L1157 and Orion are presented.

Both surveys demonstrate the power of the wideband receivers and improved data
pipeline to enable exciting scientific studies. The L1157 survey was completed in only 20
hours of telescope time and offers moderate sensitivity over a > 50-GHz range, from 220
GHz to approximately 270 or 280 GHz. The speed with which this survey was completed
implies that the new systems will permit unbiased line surveys to become a standard ob-
servational tool. The Orion survey is expected to offer ~ 30 mK sensitivity over a similar
frequency range, improving previous results by an order of magnitude. The new receiver’s
ability to cover such broad bandwidths permits very deep surveys to be completed in a
reasonable time, and the sideband-deconvolution algorithm is capable of preserving these
low noise levels. Combined, these tools can provide line spectra with the sensitivity re-

quired for constraining astrochemical models and investigating prebiotic molecules.
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Chapter 1

Introduction

1.1 Star Formation

Throughout most of the interstellar medium, atomic species dominate. The density is
so low that interactions between atoms are rare, and any molecules that do form are de-
stroyed almost immediately by stellar radiation. Within this harsh environment, however,
there are oases in the form of molecular clouds. These clouds consist of dense collections
of dust and gas in which the outer layers of dust grains protect the interiors of the clouds
from stellar radiation. The higher density provides more opportunities for atoms to inter-
act and form molecules while the gentler environment allows those molecules to survive.

Current theories of stellar formation hold that stars are born in the depths of these
clouds. In particular, low-mass stars (~ 1 Mg,,) are believed to follow a life cycle similar
to the one shown in Figure 1.1 [e.g., Andre et al., 2000, Lada, 1987, Shu et al., 1993, Boogert,
1999]. Deep in the cloud, dust and gas form pockets of higher-density material. Over
time, these dense cores become gravitationally unstable, initiating an inside-out collapse
to create a protostar at the center. Following the nomenclature of Andre et al. [1993], an
object in this stage of low-mass stellar evolution is usually referred to as a Class 0 protostar.

As can be seen in the artist’s conception in Figure 1.2, Class 0 protostars are still deeply
enshrouded in the dust and gas that gave birth to them. Material continues to fall onto
the central source, creating an ever-expanding bubble in the molecular cloud around the
protostar. The infalling matter carries angular momentum with it; in order for it to form a
compact protostar, some mechanism is needed to shed the excess angular momentum. As

discussed in Shu et al. [1993, 2000], disk-mediated mass transfer provides one method of
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Figure 1.1: Overview of low-mass star formation.

allowing matter to accrete onto the central source. In this model, excess angular momen-

tum is carried off by magnetically driven jets emanating from both poles of the protostar.

Most of the gas inside a molecular cloud is relatively cold, with temperatures on the
order of T ~ 10 - 20 K [Gueth et al., 1997, Shu et al., 1993]. At this stage of stellar de-
velopment, the protostar is not massive enough to support internal burning. However,
the gravitational potential energy given up by material falling into the central protostar
releases a significant amount of energy, which is eventually converted into heat in the sur-
rounding gas.! This increased thermal energy allows the relatively simple molecules of
the molecular cloud to interact with one another, driving a surprisingly rich chemistry.

As the protostar evolves into a so-called Class I object, the amount of matter falling

onto the central source decreases. The angular extent of the bipolar jets expands, gradu-

ally clearing the remains of the dense core. The protostar continues to evolve into a Class I

In high-mass protostars, some of the richest chemistry occurs in the hot core, the warm region near the
protostar. It is unclear whether low-mass protostars support miniature hot cores, although there is evidence
favoring their existence (e.g., Schoier et al., 2002).



Figure 1.2: Artist’s conception of a heavily enshrouded protostar. (Image courtesy of
NASA /JPL-Caltech/R. Hurt, SSC.)

object, characterized by a fully exposed central source surrounded by a dusty, protoplane-
tary disk, and finally a Class III object, in which disk-clearing has condensed much of the

diffuse material of the disk into planets.

1.2 Studying Molecular Clouds

Molecular clouds exist because dust grains shield the interiors from intense optical and
ultraviolet stellar radiation; however, this also makes them difficult to study at many of the
traditional wavelengths. In particular, the same dust grains that keep light from entering
also prevent it from escaping, making it impossible to study the interiors of molecular
clouds with optical observations.

The physical process behind the dust grain’s extinction of light is Rayleigh scattering,
which intensifies as a strong function of frequency; radiation with short wavelengths is
scattered much more strongly than that of longer wavelengths. Using lower frequencies

allows observers to peer deeper into molecular clouds.
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As an example, consider the images of the Carina Nebula in Figure 1.3. The top image
shows a dust pillar in the visible spectrum while the bottom shows the same image in
infrared. Because of their longer wavelengths, the infrared photons are not scattered as
heavily by the dust. They escape from the depths of the molecular cloud, making the
dust virtually invisible and clearly revealing an embedded protostar (and its associated
outflows) at the tip of the dust column.

The situation improves further when even longer wavelengths are used, as shown in
Figure 1.4, comparing visible and submillimeter images of the Antennae Galaxies.> The
interactions between these colliding galaxies has stirred the dust and gas, triggering star
formation. This fact is not obvious in the visible image, but appears clearly in the submil-
limeter, where the bright red regions show dense dust that has been warmed by obscured
star formation.

Submillimeter observations benefit not only from an improved ability to penetrate
through dust, but also because they are directly sensitive to emissions from the gas and
dust in the star-forming regions. At the temperatures typical of these objects, thermal
emission from the dust peaks at frequencies of a few to tens of THz, generating a signif-
icant amount of flux at the upper end of the submillimeter range [Kraus, 1986, esp. Fig
3.16]. Because the peak of the emission occurs to the short side of the submillimeter range,
submillimeter imaging arrays (such as SHARC II, which generated the data shown in Fig-
ure 1.4) are ideal for searching for distant star-forming regions in which the spectrum has
been redshifted.

Not surprisingly, molecular clouds also generate a significant amount of flux in molec-
ular emission lines. In particular, the temperatures are just right to excite the low-lying ro-
tational (and sometimes vibrational) quantum levels of small molecules, and the resulting
rovibrational emission spectral lines lie squarely in the submillimeter range. For instance,
CO, one of the most common interstellar molecules, has strong emission lines spaced at 115

GHz, and the lines at 230 GHz and 345 GHz are particularly useful tracers of molecular
gas.

2Submillimeter and millimeter wavelengths fall between microwave and far-infrared. The submillimeter
image shown here was taken by the SHARC II camera, operating at 350 ym (= 850 GHz). The term “sub-
millimeter astronomy” refers to observations in the range ~ 300 GHz to a few THz (corresponding to wave-
lengths of ~ 1 mm to ~ 0.1 mm, respectively). The Caltech Submillimeter Observatory, the telescope used for
the observations in this thesis, has instruments covering frequencies from approximately 180 GHz to 1 THz.
The term “submillimeter” will be used throughout this work to refer to observations in those frequencies,
although the low-frequency end of the range might be more properly termed “millimeter astronomy.”
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Figure 1.3: Hubble images of dust pillar in the Carina Nebula in visible (top) and infrared
(bottom). The longer wavelength of the infrared photons allows them to escape from the
molecular cloud, revealing a protostar that is hidden by dust in the visible spectrum. (Im-
age credit: NASA, ESA, and the Hubble SM4 ERO Team.)
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Figure 1.4: Visible and submillimeter images of the Antennae Galaxies. (Visible image
credits: NASA, ESA, and the Hubble Heritage Team (STScI/ AURA)-ESA /Hubble Collab-
oration, with acknowledgment to B. Whitmore (STScI). SHARC II image credit: Darren

Dowell.)
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1.3 Interplay between Physics and Chemistry

As Groesbeck et al. [1994] demonstrated, the integrated flux in the molecular lines may
represent a significant fraction of, or even the majority of, the energy emitted from star-
forming regions in the submillimeter range. This means that instruments sensitive to that
emission make great tools for studying such regions, but it also implies something impor-
tant about the physics of star formation. As stated earlier, the gas and dust falling onto
the central core of a protostar give up a considerable amount of gravitational potential en-
ergy that eventually is converted into heat. In order to continue to collapse, the gas in and
around the protostar must have some way of dissipating this heat. While thermal emission
from dust plays a key role, cooling via molecular-line emission is also critical to the pro-
cess. Thus, in order to fully describe star formation, one must understand the line emission
from the region, which in turn, requires a knowledge of the molecular constituents.

Understanding the astrochemistry of star formation is also important for establishing
the physical state of material surrounding a protostar. Throughout much of a molecular
cloud, a significant portion of the molecular gas is believed to be frozen into ices that coat
the surfaces of dust grains [Boogert, 1999]. The warmth generated by stellar formation
causes these ices to sublimate, increasing the density of the gas-phase material near the
protostar. In order to calculate the details of this density profile, it is necessary to under-
stand the constituents of the molecular ices.

Similarly, the physics of star formation has a strong effect on the associated astrochem-
istry. Without the thermal energy generated by the infalling matter, most of the molecules
would remain frozen on dust grains, constraining the types of reactions they could un-
dergo. The gas-phase density has direct consequences for the likelihood of collisions be-
tween molecules while the physical size of a star-forming region sets a distance scale over
which one molecule must encounter another if it is to react before drifting out into the
colder reaches of the molecular cloud. In addition, the powerful outflows from a protostar
create their own chemistry, both within the ejected material and at the shock front that
results from the outflow plowing into the quiescent envelope.

From these examples, it can be seen that detailed modeling of star formation requires a
genuinely interdisciplinary approach; in order to understand how a dense core condenses

into a protostar, it is necessary to simultaneously address the chemistry and the physics.
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Figure 1.5: 795 - 903 GHz survey of Orion by Comito et al. [2005]. The atmospheric trans-
mission typical of the observing conditions for the survey (shown in gray in the back-
ground of the plot) testifies to the difficulty of this work.

1.4 Submillimeter Line Surveys

One particularly powerful way to study star-forming regions is through the use of unbi-
ased submillimeter line surveys, in which molecular lines are observed over a broad range
of frequencies. Figure 1.5 shows a survey of the Orion molecular cloud from 795 - 903 GHz
[Comito et al., 2005], showing a wealth of lines, even at these relatively high frequencies.

In contrast to targeted line studies, which seek to confirm or refute the existence of a
particular molecular line, an unbiased survey seeks to inventory all of the lines within the
observing window. This information can be used to build up a “chemical catalog” for the
star-forming region, placing important constraints on models and helping to distinguish
between competing descriptions of astrochemical networks.

Closer to home, these molecules represent progenitors of the circumstellar disk, which
in turn forms the planets, comets, and asteroids. Whether these molecules survive in their
initial form to become part of the solar system, or whether they are destroyed in some of
the intervening steps, remains an open question. However, there is evidence that biolog-
ically relevant molecules can be found in the hot cores surrounding high-mass protostars
[Widicus Weaver, 2005]. This raises the tantalizing possibility that astrochemistry could
play an important role in understanding the origin of life, providing a viable mechanism

for the introduction of biological molecules to Earth.
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Figure 1.6: Decomposition of spectral line in OMC-1 survey. From Blake et al. [1987, Fig.
2].

By directly probing the molecular gas, a line survey provides a wealth of information
about chemical and physical conditions within the star-forming region. Line frequencies
can be used to identify molecular species while the line profiles give important information
about source dynamics. Amplitudes of lines can be used to estimate physical conditions in
the source, such as temperature, pressure, and density, particularly when many molecules,
each with multiple lines, are observed.

As an example, consider the peak shown in Figure 1.6, taken from a survey of the Orion
molecular cloud (OMC-1). As described in Blake et al. [1987], the observed spectral line,
shown at the top, can be decomposed into contributions from several physically distinct
regions based on the line profile, as shown in the remaining three traces in the figure. The
bottom line (labeled “Hot Core”) corresponds to gas warmed by the central source while
the narrow “Ridge” line represents quiescent gas unaffected by the protostar’s creation in
its midst. The very broad tails of the “Plateau” line tie it to the powerful outflows driven
by the protostar. Such analysis not only helps to identify the dynamics of the source, but
also allows the chemistry of each region to be analyzed separately, even when the lines are
blended together.

Despite the wealth of scientific information that can be derived from an unbiased line
survey, only a handful of these surveys have been performed. The primary reason is that

such surveys are difficult to perform, requiring a significant amount of telescope time that
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often spans multiple observing runs, sometimes extending across several years. Not only
does this represent a significant allocation of resources, but changes in the telescope or
receiver configuration can make it difficult to stitch the different data sets together into a
single spectrum.

One of the first major surveys of a star-forming region was completed by Blake and
Sutton, who studied the Orion molecular cloud from 215 - 263 GHz [Blake et al., 1986,
Sutton et al., 1985]. That survey consisted of more than 100 independent observations
over 28 nights spread across two adjacent winters. The 795 - 903 GHz survey of the same
source, shown in Figure 1.5, required a total of 300 independent observations spread over
an approximately five-year period [Comito et al., 2005]. Just the upper half of the spectrum
(from 845 - 903 GHz) required 30 nights of observing time, largely due to the challenge of
observing at near-THz frequencies from a ground-based telescope.

In Schilke et al. [1997], the authors point out that completing the observations and
assembling them into a coherent spectrum is just the beginning and that the truly time-
consuming part is the spectral analysis and interpretation. Thus, while line surveys pro-

vide a wealth of data, the information is hard-won.

1.5 Instrumentation for Line Surveys

Submillimeter line surveys of star-forming regions are nearly always performed using het-
erodyne spectroscopy, with an instrumental configuration similar to that shown in Figure
1.7. Photons collected by the telescope are focused onto a mixer, where they are combined
with a reference signal generated by a local oscillator (LO). The mixer consists of a device
with a nonlinear relationship between current and voltage (a nonlinear I-V curve), which
results in the multiplication of the two input signals. The output consists of two signals,
one at a frequency equal to the sum of the two input frequencies, and one equal to the
difference between them. Only the difference signal is needed for this application, so the
sum frequency is removed using a filter. From there, the signal is amplified and passed to
a spectrometer, which generates the desired spectrum.

From a practical point of view, heterodyne downconversion provides several important

advantages. The mixer brings the signal down from hundreds of GHz to a few GHz, where
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Figure 1.7: Basic instrumentation needed for heterodyne spectroscopy.

commercial, off-the-shelf amplifiers, filters, and connectors are readily available, making
it vastly easier and cheaper to work with the signal. This configuration also provides
modularity that allows the front-end mixers to be designed separately from the back-end
spectrometers. For instance, at the CSO, there are multiple receivers, covering frequencies
from 180 GHz up to 900 GHz. They are configured to convert the sky radiation to a com-
mon frequency on the output, allowing a single set of spectrometers to be used for all of

them.

Scientifically, heterodyne spectroscopy is desirable because it offers extremely high fre-
quency resolution, which is critical for studying molecular-line spectra of star-forming
regions. A sample spectrum from the Orion survey is shown in Figure 1.8, demonstrating
the fine details that must be preserved. The narrower peaks are only a few MHz wide and
the CH30H and HNCO lines near the center of the spectrum have frequencies of 241.767

GHz and 241.774 GHz, corresponding to a 7-MHz separation.

Preserving these kinds of details requires an instrument capable of separating ~ 1 MHz
differences at frequencies of ~ 300 GHz, corresponding to resolving power of R ~ 3 x 10°.
Fortunately, a heterodyne receiver can easily meet this challenge. In fact, the actual resolu-
tion is typically set by the channel spacing in the spectrometer rather than the underlying

resolving power of the receiver.
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Figure 1.8: A sample molecular-line spectrum from 241.5 - 242 GHz [Sutton et al., 1985].
1.6 Sideband Ambiguity

Heterodyne spectroscopy is well suited to the study of submillimeter molecular lines, but
there is one difficulty that it introduces. The goal of a line survey is to produce frequency-
calibrated spectra like the one shown in Figure 1.8, in which each channel of the spectrum
can be concretely identified with a single frequency. However, at most telescopes (includ-
ing the CSO), each channel in a heterodyne spectrum actually corresponds to two frequen-
cies; it can only be reduced to the form shown above with a significant amount of data
processing.

More detail is given in Chapter 4, but the basic problem can be demonstrated by re-
considering the simple system shown in Figure 1.7. In Figure 1.9, we show the same
system with the addition of frequency labels. Start by considering the general variables
shown in the boxes attached to each of the black arrows. The telescope collects pho-
tons with frequency frr while the LO generates a signal at frequency fio. In the mixer,
these are multiplied to produce the sum and difference frequencies, fsym = fro + frr and
foirr = |fro — frr|, respectively. The filter removes the sum frequency, leaving only the
difference frequency, fprrr, at the input to the spectrometer.

As a concrete example, consider what happens when the telescope observes 235-GHz
photons while the LO is set to a frequency of 240 GHz. The mixer produces sum and
difference frequencies at 5 GHz and 475 GHz, respectively. After the filter removes the

sum frequency, the spectrometer is presented with a 5-GHz signal. However, the same



17

Telescope Mixer Filter Spectrometer(s)
W1 () Heree [
235 GHz, 245 GHz 5 GHz + 475 GHz 5GHz, 5 GHz —
5 GHz + 485 GHz —
,r e
3
fL0
(:::) __________J 2 245
240 GHz
LO Source 1
0 4
4.75 5 5.25
IF Frequency (GHz)

Figure 1.9: Frequency conversions in a simple double-sideband receiver, showing the ori-
gin of the sideband ambiguity.

result can be achieved by considering a 245-GHz input to the telescope. The difference
frequency will still be 5 GHz, so the input to the spectrometer will be identical in both

cases.

Given the knowledge that the spectrometer observed a 5-GHz peak while using a 240-
GHz LO setting, we can only say that the input must have contained some combination of
235-GHz and 245-GHz signals. This uncertainty is known as the sideband ambiguity, and
it is inherent to the single-mixer receiver design outlined above. It is possible to remove
this ambiguity during the data-analysis stage via a process known as sideband deconvo-

lution, which will be covered extensively in Chapter 4.

Frequencies greater than f;o are said to come from the upper sideband while those
less than frp come from the lower sideband. Because this receiver design is sensitive
to both sidebands, it is known as a double-sideband receiver. By adding an additional
mixer to the receiver, making it a two-mixer design, it is possible to develop a receiver
that eliminates this ambiguity. Traditionally, this design has not been used, partly due
to the added complexity and partly because double-sideband receivers are actually more

efficient for certain types of observations.
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1.7 Goals of This Work

This thesis describes an effort to enable rapid, unbiased molecular-line surveys at sub-
millimeter frequencies with the goal of allowing such surveys to be performed more fre-
quently and to achieve higher sensitivities.

Because of the difficulties of performing such work, only a few sources have been sur-
veyed to date, and significant pieces of our understanding of star formation have been
extrapolated from these objects. Making it easier to complete a line survey would allow
astronomers to study many more objects, eventually building up a statistical sample of
sources that could help to elucidate the different mechanisms at play.

One particularly intriguing line of inquiry is the search for “chemical clocks,” molecu-
lar tracers that would help to identify the ages of different sources. Currently, estimating
the age of a protostar requires subtle inference from a variety of observations; finding a
molecular tracer that could serve as a proxy for the protostar’s age would greatly sim-
plify the process. While efforts have been made to find such tracers through targeted line
observations, a broad sample of unbiased line surveys would make the task significantly
easier.

Improved survey methods would also offer the ability to take more sensitive line sur-
veys. As models of astrochemistry improve, more sensitive observations are needed to
distinguish between them, usually to look for peaks from complex molecules that are pre-
dicted by the models but are lost in the noise of prior surveys. Likewise, unambiguously
identifying prebiotic molecules requires sufficient sensitivity to dig multiple molecular
lines out of the noise.

Accomplishing these goals has required the development of new hardware and soft-
ware. Improvements in computer models, chip fabrication, and micromachining capabil-
ities have allowed our group to design a new generation of ultra-wideband heterodyne
receivers. In a single observation, these receivers can produce several times as much data
as previous receivers, allowing a line survey to be completed with many fewer indepen-
dent observations.

Improving the ability to generate data is not sufficient unless we also improve our

ability to process that data. Traditionally, line surveys have been analyzed by cleaning
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individual observations by hand, using a computer to perform the sideband deconvolution
and assemble the observations into a single spectrum, and then manually fitting each peak
in the resulting spectrum.

We have streamlined the analysis process by developing deconvolution algorithms that
dramatically reduce the amount of manual processing required for each observation while
still preserving the high sensitivity needed to search for complex and/or prebiotic mod-
ules. Susanna Widicus Weaver’s group at Emory University is addressing the final part of
the problem by developing spectral-fitting software that not only fits all of the lines of a
given molecule simultaneously, but also fits several molecules at once.

Subsequent chapters will discuss the first two stages of this work, briefly describing the
hardware improvements that have enabled the underlying observations to be completed
more quickly and taking a detailed look at the new deconvolution algorithms that have

been developed.
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Chapter 2

Submillimeter Observations

Before describing the construction of heterodyne receivers, we include a quick discussion
of how submillimeter spectra are actually measured. Most of the signal for a submillimeter
heterodyne receiver consists of thermal noise. The primary source of background is ther-
mal emission by molecules in the atmosphere (especially water). The astronomical source
adds a small bit of power on top of this, and the challenge is to separate out that small
signal against the much larger background. This is the primary reason submillimeter tele-
scopes are typically located at high elevations. The amount of water in the atmosphere
falls off rapidly as a function of elevation; by observing at higher locations, astronomers
can reduce the total amount of water between the telescope and the astronomical source.
As a concrete example, consider observations made under typical conditions at the
Caltech Submillimeter Observatory (CSO), located at an elevation of 13,350 feet, near the
summit of Mauna Kea (Figure 2.1). The 225-GHz opacity at zenith is usually 25 ~ 0.1,
and observations are performed at moderate zenith angles, corresponding to an airmass
of A ~ 1.5. The signal from an astronomical source at 225 GHz would therefore be atten-
uated by a factor of e=4 > = 0.86. In addition to attenuating the signal, the atmosphere
introduces noise equal to Ty = (1— e 4 7225) Typm, where Ty is the temperature of the at-
mosphere, usually assumed to be roughly the same as the ambient temperature at ground

level (T ~ 300 K.! Thus, the atmosphere contributes a signal of ~ 28 K of noise per

I This assumption is justified by the fact that atmospheric pressure follows an exponential drop-off as a
function of elevation. The majority of molecules are close to the telescope, and therefore close to the telescope’s
ambient temperature. This is particularly true for water molecules, which represent the most significant at-
mospheric absorber. The partial pressure of water is such that it follows a steeper exponential decline, causing
it to be concentrated even closer to the ground. When looking at atmospheric-absorption plots (such as Fig-
ure 3.1), water lines can be identified by their large width (due to pressure broadening). Other atmospheric
contaminants extend to lower-pressure regions of the atmosphere, resulting in sharper absorption lines.
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Figure 2.1: Caltech Submillimeter Observatory at night.
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sideband, or ~ 56 K total. This is quite large in comparison to the desired spectral lines,
which typically have peaks of amplitude ~ 0.1 - 10 K, or the continuum radiation, which
is usually a few Kelvins.

To detect these small signals against the larger background, the CSO uses chopping
subtraction, in which the source is observed for several seconds, and then an off-source
position is observed for the same amount of time. As long as the length of each observation
is much smaller than the timescale on which the atmospheric opacity changes, the average
sky noise can be subtracted off, and the difference between these two signals represents
the desired spectrum.

7

While the emission from the sky is viewed as “noise,” and the source’s emission is
viewed as “signal,” it is important to emphasize that both arise from thermal emission.
Therefore, the difference between them is also a random quantity, and it is this randomness
that determines the sensitivity of the observation. The RMS noise in the signal after the

subtraction is described by the Dicke radiometer equation,

TSSB _ 2Tsy5

s b

where Af represents the bandwidth of the observation (e.g., one spectral channel), Tsys

2.1)

represents the system noise temperature and t,, represents the on-source integration time.?

2Ac’cually, a few intermediate steps are needed to arrive at the results shown in Equation 2.1. The Dicke
radiometer equation describes the best possible performance that could be achieved by a device that takes
an input signal, limits its frequency range to Af (e.g., with a bandpass filter), measures the power with a
square-law detector, and then averages that result over a time f,,. If we convert the measured power into an
equivalent temperature, the uncertainty in that value must be at least

TSyS
VAf ton
[Rohlfs and Wilson, 2003]. A spectrometer channel receiving input from a DSB receiver sums the input from
two sidebands, increasing the noise by a factor of /2. The desired signal represents the difference of two such

measurements taken in on-source and off-source positions: Tsource = Ton — T, ff- If we observe the “on” and
“off” positions for equal time, each has an uncertainty equal to

\ﬁTsys

or = (22)

O'TM = UTOff = \/m (23)
Standard propagation-of-error techniques can be used to determine the uncertainty in Tsoyrce:
2Tsys
oT. = \leTT = —. (2.4)
source on \/m

This is the result shown in Equation 2.1.
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2.1 Calibration at the CSO

Submillimeter spectra are calibrated in a fashion that allows the underlying source spec-
trum to be determined, independent of atmospheric conditions. Conceptually, the cali-
brated data can be viewed as the spectrum that would be seen by an ideal telescope placed
above Earth’s atmosphere, except with an additional amount of noise.

The CSO uses the chopper-wheel calibration method, as discussed in Kutner and Ulich
[1981], Ulich and Haas [1976], and Peng [2002, Appendix A]. Before taking a spectrum,
a calibration scan is calculated by comparing the spectrum of a hot load to that of a cold
load. The loads are presumed to be perfect blackbodies over the frequencies of interest,
so they can be characterized by a single, frequency-independent temperature. The hot
load consists of an ambient-temperature absorber inserted into the beam of the receiver
between the receiver and secondary mirror while the cold load is simply an empty patch
of sky close to the astronomical source. As described in the following discussion, these
observations can be used to determine two unknowns: the system’s gain and the end-to-
end noise level.

A perfect receiver would be equally sensitive to signals in the upper and lower side-
bands. In reality, the receiver often has slightly different sensitivity at the two frequencies.
We can model this difference by letting G (f) represent the receiver’s gain as a function of
frequency. The gain represents the conversion factor between the spectrometer output and
an astrophysically meaningful brightness temperature, T} .

Consider the output of a single channel of the spectrometer, represented as V.* When

presented with the hot load at temperature T}, the spectrometer’s response is

Vi = GLSB (Thot n TléﬁB) + GUSB (Thot + Ty,fB) ) 2.5)

3There are a variety of temperature scales used for submillimeter spectra. T} is a common scale, as it can
be derived directly from the chopper-wheel calibration. Values of T have been corrected for atmospheric
losses, ohmic losses in the telescope, and rear (warm) spillover. They have not been corrected for forward
(cold) spillover or the coupling between the telescope’s beam pattern and the source. See Kutner and Ulich
[1981] for additional details.

“The quantity V is traditionally considered as a voltage, but it could represent other forms of spectrometer
output, such as digital signals from an ADC, counts on a CCD, etc., as long as they are proportional to the
spectral power at that frequency.
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where the gains

GEB = G (frsp) and

GUSB =G (fUSB)

represent the LSB and USB gains at frequencies

frse = fro — fir and

fuss = fro + fir.

The two terms G'°8 Tj,,; and GY%8 Tj,,, simply represent the receiver’s downconversion of
power in the lower and upper sidebands. The receiver noise temperature Tr, represents
the noise added by the receiver during the downconversion. Conceptually, the receiver
can be viewed as a perfect receiver, adding no noise to the signal, plus a noise source at the
input with temperature Tg,. The receiver noise temperature is not necessarily frequency-
independent, so the equation includes different values for the upper and lower sidebands.

The response when looking at a blank patch of sky is a bit more complicated. While
the majority of the signal comes from the primary beam, there are also contributions from
spillover, scattering, and diffraction. Some of these effects produce rays that terminate on
the sky, but not on the intended observation point while others result in rays that terminate
on warm objects, such as the ground or the telescope structure. To model these effects, we
introduce the warm and cold efficiencies, #yum and 7.4. These quantities are defined
such that the fraction of the beam that terminates on a warm load is (1 — #warm) While
the fraction reaching the sky is #yarm. Of that, 1.4 forms the primary beam while the
remaining (1 — #.,4) ends up on other sections of the sky.

The sky signal includes the following contributions for each side band:

(1 - Uwarm) Thot + Nwarm (1 - Ucold) Tsky + Uwarmﬂcoldeky + TRx

Scattered into warm load  On sky but outside main beam Main beam Receiver noise

The spectrometer signal from the sky is therefore
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Vsky = GLSB |:(1 - ﬂwarm)Thot + Nwarm (1 - Ucold) TstjSVB + ﬂwarmﬂcoldTgs;;B + T]%iB:|
+ GUSB |:(1 - Uwarm)Thot + Nwarm (1 - ﬂcold) TsLlij + ﬂwarmﬂcaldel;cljB =+ T[%IXSB] ’

which can be rearranged to

Vsky = GLSB [(1 - 77warm)Thoif + ﬂwarstLk]SyB + T]%gS;B}

o+ GYB [ (1= fwarm) Thot + roarm THS? + THEE| . (2.6)

The sky temperature, Ty, represents the effective temperature of the sky at the input
to the receiver. The sky introduces noise into the spectrum with a brightness temperature
of

Tory = (1 —e 4 T) Tatm + (67’4 T) Tspace,

where T represents the optical depth at the given frequency. A small amount of radi-
ation can be traced to even an “empty” patch of sky, primarily due to the cosmic mi-
crowave background. However, the contribution is sufficiently small that it can be ne-
glected: Tspsee =~ 0. As discussed in Footnote 1, the atmospheric temperature is usually
approximated as the ambient temperature on the ground, Ty, = Tjor [Peng, 2002]. The
sky opacity can be significantly different for the USB and LSB, particularly if one sideband
is near a strong absorption line from atmospheric molecules. Therefore, while Tj,; may be
treated as a constant in the equation for Vj,t, Tsr, must be defined separately for each side-
band. The sky attenuation in the lower sideband is given by e~4 ™s5 for the lower sideband

LSB _

and e~ Wss for the upper sideband. We can define 7 and 67 such that T T — 0T and

TUSB — % 4 §7. Then the attenuation factors become e~4(7=97) and ¢=A(T+97) for the LSB

—AT ,LSB _+Adt

and USB, respectively. To further simplify the notation, we let Msky = € + ey ,
and 7]SL,$B =-497 giving
TstiB = (1 — ﬁskngksyB) Thor and o7

UsB = UusB
Tsky = (1 — MskyMsky ) Thot-
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These values can be inserted into Equation 2.6 to give

Vsky = GLSB [(1 - ﬂwarm)Thot + Ywarm (1 - ﬁskyﬂstSyB> Thot -+ T]%;;B]

+ GUSB [(1 - ﬂwarm)Thot + Hwarm (1 - ﬁskyﬂsL]I(;B> Thot + T[%IxSB] 7

which can be simplified to

Vay = G | (1= aarmllsg 15 ) Thot + THS® |

+ G [(1 - ﬂwarmﬁskyﬂ&l{;lg) Thor + TI%CSB] . (2.8)

When the telescope is pointed at an astronomical source, the signal contains all the

components present in V,, with an additional signal that can be attributed to the source:

Vsre = Vsky + Usrc’?warm’?coldﬁsky (GLSBr/stSyB Tsl;‘gB + GUSBWSLIIcsB TerIcSB) . (2-9)

The source-coupling efficiency, #s,, represents the convolution of the source structure with

the telescope’s main-beam pattern and accounts for effects such as beam dilution while T,

is the effective temperature of the source.”

The spectra created by the CSO are calibrated to the T}, scale using the following equa-

tion [Peng, 2002, Equation A.3]:

Vare — Vsky

T% = 2T eV
A o Viot — Vsky

(2.10)

5The efficiencies defined here are comparable to those defined by other authors:

This work  Peng [2002] Kutner and Ulich [1981]

TTwarm & Mfss
Heold ,B Nrss
Nsrc Y N¢

For a more detailed discussion of the physical interpretation of these efficiencies, see Kutner and Ulich [1981,
Equations 5 and 9]. Also note that the efficiencies defined here are not precisely equal to those in Kutner and
Ulich [1981], which include an additional efficiency, #,, that represents losses due to resistive heating of the
telescope. However, based on the results in their Table I, this efficiency appears to have a minimal impact with
typical values 77, = 1. A thorough definition of Ts,. can be found in Ulich and Haas [1976, Equations 8 and 9],
which implicitly defines the conceptually similar quantity Tg.
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From Equation 2.9, it is easy to see that the numerator is equal to

GLSB, LSBTLSB | GUSBUSL]I(SBTUSB)'

Vsre = Vaky = HsrelwarmMcold sky ( Nsky Lsrc y Lsrc

The denominator can be found using Equations 2.5 and 2.8:

Vot — Vsky = GLSB Thot + T]%iB - (1 - ﬂwarmﬁskyﬂék?f) Thot — T]%JEB:|

+ GUSB [Thot + Tl%[xSB - (1 - WwarmﬁskyﬂsLlIc;B) Thor — TI%IxSB] ’
which simplifies to
Vhot - Vsky = Uwarmﬁsky (Usti/BGLSB + Usl]lciBGUSB> Thot~

Using these intermediate results, we find that

GLSB LSBTLSB+GUSB USBTUSB)

ﬂsrc’?warmﬂcoldﬁsky( ﬂsky src Wsky src

Tj:l = 2T}t
Uwurmﬁsky <775LkiBGLSB + UsukiBGUSB> Thot

Cancelling like factors gives the rather simple result

LSB,,LSBTLSB UsB,,USBTUSB
2775rc77cold (G Wsky Tsrc +G ﬁsky Tsrc )

This can be further simplified by renormalizing the gains G,

GLSB _ ZGLSBWSLkSyB d
o ULSBGLSB + pUSBGUSB an
sky nsky 211
B 2GUSBWL£SB ( ’ )
GUSB — Sky

~ ,LSBLSB USB~USB’
nsky G +ﬂsky G

allowing us to write

Th = srclcold (GLSBTSLYSB + GUSBTS%SB) .

The calibration process imposes an important constraint on these gains, namely
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GLSB 4 GUSB =2, (2.12)

as can be seen by inspection from Equation 2.11. While this might seem an insignificant

result, it allows an important simplification of the problem. If we define y such that
GHFB =1—+, (2.13a)

we immediately find that

GUSB =1 +4. (2.13b)

Thus, the constraint from Equation 2.12 allows us to model the effect of sideband imbal-

ances using only a single parameter, 7
Tz = HsrcHcold [(1 - 7) TerEB + (1 + ’)’) Ter{cSB] : (2.14)

In this equation, all of the sideband-dependent effects (GLSB , GUSB 5 stiB ,and n;“£53> have

been rolled into 7.

2.2 Measuring System Temperature

The calibration represented by Equation 2.10 produces a value of T} that is independent
of the flat portion of the sky attenuation (ﬁsky) , the warm scattering and spillover (#warm),
and the receiver noise (T§SP and T{PP), leaving only the effects of cold scattering and
spillover (7.,4) and the coupling efficiency between the telescope and the source (#s). In
principle, 7,14 can be determined to yield Ty [Kutner and Ulich, 1981], but #s,. cannot be
determined without knowing detailed information about the source’s structure.

While the calibration removes the average flux introduced by each of the background
sources, it cannot remove the randomness introduced by their presence. Both the signal
and background sources are created by thermal noise; therefore, T’ is also a random quan-
tity with RMS noise levels given by Equation 2.1. In order to calculate Trps, we need to
know Tyys, the temperature of a noise source that would add an equivalent amount of noise

to an ideal receiving system. In this case, the “receiving system” consists not only of the
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receiver and the telescope, but also the atmosphere. A perfect telescope (no spillover or
scattering) used with a noiseless receiver and placed above the Earth’s atmosphere, but ex-

posed to a noise source of temperature Ts, would be equivalent to our real-world system.

Considering such an idealized telescope provides an easy way to estimate the value of
Tsys- Imagine making a Y-factor measurement, in which Vj is measured by filling the tele-
scope’s beam with a perfect absorber at temperature Ty and comparing it to the receiver’s
response when looking at a blank patch of sky, Vsp,c.. Taking the ratio of those two values

gives the Y factor:

VH
Vspace

(GrsTHB + GuspTHSB) + (GLSBTsLyiB + Guss TsLyIsSB>
(GLSBTstSa]ge + GUSBTSI}IJEEE) + (GLSBTsLySsB + Gusp TS B)
(GLseTH® + GussTH®®?) + (GLSBTsLySsB + GUSBTsLyI§B>

(GLSB T5P + GuspTyS B)

Ysky =

where we have again approximated Tspace = 0.

At this point, we introduce several other approximations. First, we assume that the

sideband gains of the entire system are equal so that G;sp ~ Gysp.® Likewise, we assume

that the system temperature is roughly equal for the two sidebands so that T;2? ~ TP,

which allows us to replace either of the sideband-specific values with the quantity TSBSSB ,

representing the system noise injected from a single sideband. Finally, we assume that the

IF bandwidth is small compared to the RF observing frequency so that TSP ~ THE. We

can then write the previous equation as

2GTy +2GTDLsB

Yory ~ 2GTDSB =
sys
Ty + THS®

®Ignoring the distinction between the sidebands does not work near atmospheric absorption lines, but
should be a reasonable approximation elsewhere.



31

This equation can easily be solved for ngfB to give
T
Dsp _ _1H
T = Y1 (2.15)

Since moving the entire telescope above the atmosphere is not a convenient option,
we could achieve the same effect by finding a calibration source that has temperature T,
completely fills the telescope’s beam, and is above the atmosphere. By selecting Ty ap-
propriately, we can make this measurement even easier. If the absorber were above the
atmosphere, the atmosphere would attenuate its signal by a factor of e~47, but it would

also inject noise at the temperature Ty, into the signal:
Vi =G [e*ATTH + (1 - e*AT) Tatm} . (2.16)

If we choose Ty = T, then it doesn’t matter whether the absorber is above the atmo-
sphere or below it, allowing us to perform the calibration by inserting an absorber into the
beam at the observatory. Therefore, calibration at the CSO is performed rather simply by
inserting an absorber into the beam between the receiver and the secondary to measure
Vh, which can be compared to Vi, obtained by moving the telescope slightly off-source
and performing a short integration.

For later use, it is also worth mentioning that each spectrum taken at the CSO also has

an associated calibration scan consisting of

. Vot — Vsky .

C = Yy — 1 (2.17)

Vsky

[Peng, 2002]. The calibration scan can be used to form the denominator of Equation 2.10.
The scan also provides a channel-by-channel method of determining the system tempera-

ture, which can be quite useful in evaluating end-to-end performance.
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Chapter 3

Ultra-Wideband Submillimeter
Receivers

3.1 CSO Facility Receivers

Ground-based submillimeter observing is complicated by the fact that Earth’s atmospheric
is only partially transparent at submillimeter frequencies. Figure 3.1 shows the atmosphere
transmission as a function of frequency for the CSO; the individual lines correspond to
different weather conditions, as parameterized by the amount of precipitable water vapor
(PWYV) in the atmosphere.

The effects of the atmosphere are twofold. Since the atmosphere is not 100% transmis-
sive, the desired astrophysical signal is attenuated on its way to the telescope. In addition,
the sky emits its own thermal noise at submillimeter frequencies, in effect creating a “glow-
ing” haze between the telescope and the source. As the opacity worsens, the amount of
thermal noise attributable to the sky increases.

Atmospheric interference is particularly strong at frequencies that correspond to ab-
sorption lines of atmospheric molecules, particularly water. These lines eliminate our
ability to see through the atmosphere at certain frequencies, leaving several “windows”
of moderate transparency in between that can be used for ground-based astronomy. Not
surprisingly, heterodyne receivers for ground-based telescopes are typically designed to
operate within these windows of semi-transparency.

The bottom of Figure 3.1 shows the coverage bands of five new receivers that have

been designed to replace the current facility receivers at the CSO. Although the suite of
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Figure 3.1: Atmospheric transmission at the summit of Mauna Kea. The lines corre-
spond to different amounts of precipitable water vapor (PWV) in the air, and the colored
boxes along the bottom show the frequency bands covered by the planned suite of ultra-
wideband receivers.
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new receivers is still under construction, a 345-GHz prototype using the new mixer design
has been installed at the CSO [Kooi et al., 2007]. The receiver used for the observations
in this thesis is another prototype instrument, known as Z-Rex, that operates in the 230-
GHz atmospheric window [Rice et al., 2003]. (See Figure 3.2.) All of these receivers benefit
from new design methods and technologies that allow them to complete line surveys in

significantly less time than previous receivers.

3.2 Optimizing Heterodyne Receivers for Line Surveys

As discussed in Chapter 1, submillimeter heterodyne receivers are ideal for performing
molecular-line surveys of star-forming regions; however, because such surveys require so
much observing time, there is strong incentive to improve the receiver hardware to make

surveys more efficient.

3.2.1 IF Bandwidth

The area in which we have made the most significant gains is the instantaneous bandwidth
of the receivers. The instantaneous bandwidth can be viewed as the width of the bandpass
tilter shown between the mixer and the spectrometer in Figure 1.7. It represents the size of
the spectrum that can be captured in a single observation, so that doubling this bandwidth
halves the number of observations needed to cover a given frequency range. Because this
figure represents the bandwidth of the signal at the intermediate-frequency (IF) port of the
mixer, it is typically referred to as the receiver’s IF bandwidth.

The heterodyne systems used for the original survey of Orion [Sutton et al., 1985, Blake
et al., 1986] had an IF bandwidth of approximately 500 MHz, and the facility receivers
currently installed at the CSO offer an IF bandwidth of 1 GHz. The new generation of
receivers that our group has designed offer IF bandwidths of at least 4GHz, and the proto-
type receiver used for much of the work in this thesis has an IF bandwidth of 12 GHz.

Consider a hypothetical survey covering the frequency range from 220 - 268 GHz. Fig-
ure 3.3 demonstrates the dramatic improvement in surveying speed that would be possi-

ble with a broader IF bandwidth. The left axis gives the value of the LO frequency while
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Figure 3.2: Prototype wideband receivers mounted on the telescope at the CSO. The re-
ceiver mounted on the left port is Z-Rex, the 230-GHz prototype while the receiver on the
right is the 345-GHz prototype. The synthesized LO, described in Section 3.6, can be seen
at the bottom of Z-Rex (underneath an aluminum cryogen shield), and a more traditional
Gunn-based LO can be seen on the front side of the 345-GHz prototype.
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Figure 3.3: Increasing the IF bandwidth of the receiver dramatically reduces the number
of observations required to survey a given frequency range. Red lines correspond to a
double-sideband receiver with a 4-GHz IF bandwidth while the blue lines correspond to a
1-GHz IF bandwidth.

the bottom axis indicates the RF frequencies that would be observed at each LO setting.
The red lines show the frequencies that would be covered by a double-sideband receiver
with a 4-GHz IF bandwidth while the blue lines correspond to a 1-GHz IF bandwidth.
There are two lines for each LO frequency to represent the upper and lower sidebands.
With the larger bandwidth, the entire range could be covered with 6 LO settings while the
narrower-band receiver would require 24 individual observations. Assuming the receivers
had the same noise temperatures, the integration time per observation would be the same
in both cases; therefore, increasing the IF bandwidth from 1 GHz to 4 GHz would lead to
an immediate 75% reduction in observing time.

The receiver design can be pushed to even broader bandwidths. We have success-
fully used a prototype receiver with a 12-GHz IF bandwidth, which could cover the entire
frequency range of Figure 3.3 in only two LO settings. At the moment, however, the ex-
tra bandwidth cannot be used for the type of surveys discussed here, as the CSO’s high-

resolution spectrometer is limited to 4 GHz.
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3.2.2 Receiver Sensitivity

Another way to increase survey efficiency is to improve the sensitivity of the receiver by
lowering its noise temperature. However, the receivers are approaching a quantum limit
that defines the minimum noise levels,! and the majority of the noise for ground-based
receivers comes from the atmosphere; therefore, this is a path of diminishing returns. In-
stead, the goal for the new generation of receivers has been to maintain sensitivities similar
to previous, narrower-band receivers. As long as we can achieve the broader bandwidths

without sacrificing sensitivity, we can realize the impressive gains previously described.

3.2.3 Frequency Agility

Another way to increase survey efficiency is to improve the frequency agility of the re-
ceivers. Every time the LO frequency is adjusted, the receivers must be manually tuned to
optimize their performance. Minimizing the amount of tuning can significantly decrease
the overhead associated with performing a line survey. Successful sideband deconvolution
requires multiple observations of each frequency; in our surveys, we typically observe each
frequency at ~ 6 - 10 different LO settings. If 6 LO settings are needed to cover the entire
band, ~ 50 settings are needed to generate enough data for successful sideband deconvo-
lution. Thus, minimizing the tuning time at each setting becomes even more important.

We have improved the tuning efficiency with two different methods. Advanced mod-
eling techniques have allowed us to make a tunerless mixer block. This significantly de-
creases the number of adjustments that need to be made at each tuning, leaving the SIS bias
voltage and the magnetic-field current as the only mixer-related settings to be optimized.
Moreover, our experience during observing runs has indicated that these settings can be
tuned easily. It is often possible to proceed through several adjacent LO settings with only
minimal adjustment, and when retuning is is necessary, it can usually be achieved quite
quickly.

We have also experimented with using a more agile LO source. Previous receivers have

relied on Gunn oscillators to generate signals in the range ~ 70 - 110 GHz, which are then

!Quantum mechanics imposes a minimum noise temperature of T,,;, ~ hv/k on any device that preserves
phase information, including SIS mixers [Phillips and Woody, 1982]. For further discussion, see Caves [1982]
and Clerk et al. [2010].
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fed to a passive multiplier to generate the desired frequency. The Gunn oscillator requires
its own manual tuning, which can be quite time consuming. In an attempt to resolve
this problem, we have investigated active multiplier chains, which rely on a commercial
microwave synthesizer to generate input frequencies in the range ~ 13 - 18 GHz. When
using an active multiplier chain, changing the LO frequency is as easy as setting the mi-
crowave synthesizer to a new frequency, which can even be done remotely over a network.
As discussed later in this chapter, however, the active multiplier chain introduces its own
complications, and during observing runs, we often resorted to using the Gunn, despite

its slower tuning speed.

3.3 Z-Rex

The receiver used for the line surveys in this thesis is the ultra-wideband, 230-GHz proto-
type known as Z-Rex [Rice et al., 2003]. An overview of the end-to-end system is shown
in Figure 3.4. Photons arriving at the telescope are focused through a beam splitter and
into a cryostat. The beam splitter is almost entirely transmissive, with just enough reflec-
tivity to couple in a small fraction of the power from an LO source. Using a beam splitter
to combine the astronomical beam and the local oscillator allows both signals to be sent
through the same window into the cryostat. The beam splitter does couple a small amount
of excess noise into the system, but the resulting simplification of the overall design was
considered worthwhile, particularly for a prototype receiver.

Inside the cryostat, the beam is focused through cooled transmissive optics into a cir-
cular waveguide horn attached to the mixer block, as shown in Figure 3.5. After a short
length of waveguide, the signal is picked up by a specially designed wideband probe and
fed into a superconducting junction diode, which mixes the astronomical signal with the
LO and outputs the downconverted signal at its IF port. From there, the signal under-
goes initial amplification within the cryostat before being passed to additional warm IF
amplifiers.

Outside the cryostat, the signal is routed to an IF processor and an array of spectrome-
ters. Because of the very large IF bandwidth of 12 GHz offered by this receiver, it is neces-

sary to combine several spectrometers in parallel to use as much of the spectral bandwidth
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Figure 3.4: Overview of Z-Rex.

as possible. The IF processor is responsible for breaking up the output of the receiver into
smaller bands, each at the correct frequency and power level for the individual spectrom-
eters.

The individual components of Z-Rex are discussed in detail in the following sections.

3.3.1 Mixer Chip and Waveguide Block

The heart of the receiver is the mixer chip, shown in Figure 3.6. The actual mixing is per-
formed by a superconducting tunnel diode, constructed from an superconductor-insulator-
superconductor (SIS) junction.

The first element of the mixer chip is the broadband radial-stub probe, which couples
the RF signal from the waveguide into the mixer chip. (See Figure 3.8.) Extensive simu-
lation and scale-model testing were used to ensure that the probe would work effectively

across the relatively broad RF bandwidth of the receiver (180 - 300 GHz).

2 Although designed to operate from 180 - 300 GHz, the prototype receiver currently covers a somewhat
smaller range. Instead of constructing a new waveguide horn, we used an existing horn. At the low end, the
design of that horn limits useful observations to 2225 GHz while the range of the LO often sets the upper
frequency limit.
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Figure 3.5: Mixer-block assembly (top) and 4-K cold plate inside the cryostat (bottom).
(Images courtesy of Frank Rice.)
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Figure 3.6: Layout of 230-GHz wideband mixer chip for Z-Rex. Adapted from Rice et al.
[2003].
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Figure 3.7: CAD rendering of top half of mixer block. Adapted from Rice et al. [2003].

An RF matching network transforms impedances appropriately so that the RF signal
from the waveguide probe can be efficiently delivered to the SIS junction, where it is down-
converted to the IF frequency. An IF matching network then transforms the impedance of
the junction so that it matches well with the following low-noise amplifier. The IF matching
network also serves as an RF choke to keep RF power from leaking away from the junction,
which increases the receiver’s sensitivity.

The mixer chip sits in a waveguide block on the 4-K stage of the cryostat. The front
side of the mixer block was designed to interface with an existing horn; a transformer at
the input to the mixer block matches the circular horn to the rectangular waveguide used
within the block. The RF signal (including both sky and LO signals) travels down a short

length of waveguide, past a small tuning step machined into the block, and into the probe
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of the mixer chip, as shown in Figure 3.8. Two soft-iron pole pieces concentrate magnetic
fields on the SIS junction to minimize Josephson currents [Wengler, 1992]. A glass bead,
part of the interface to a 2.9-mm coaxial connector, sits immediately next to the IF output
pad of the mixer chip. A small area behind the mixer chip is reserved for the DC bias board,
as shown in Figure 3.7. To ensure that slight unevenness in the mating surfaces of the block
would not interfere with the tight fit of the waveguide walls, a shallow depression was cut
into the top half the block, as can be seen in Figure 3.10.

A significant amount of simulation went into designing and optimizing the chip and
mixer block. Much of the circuit modeling was done in SuperMix, a custom-built software
library designed for the simulation and optimization of superconducting submillimeter
receivers [Ward et al., 1999]. SuperMix was particularly important for modeling the be-
havior of the SIS junction and determining the circuit parameters that would optimize the
receiver’s overall performance [Rice et al., 2003]. The Ansoft HFSS 3-D electromagnetic
simulator was used extensively to model aspects of the mixer chip circuitry; the results
could then be integrated into the SuperMix model.

HFSS also played a key role in optimizing the design of the waveguide probe and test-
ing the expected performance of the probe within the context of the mixer block. Simula-
tions included real-world effects, such as the machining fillets at the end of the waveguide
and on either side of the tuning step, and calculations were performed to ensure that the
proposed design could tolerate typical machining errors in the final block. Because these
effects were all considered in the simulation, we were able to design a high-performance
mixer without requiring any movable tuning elements within the waveguide.

As shown in Figure 3.5, the mixer block was designed so that the coaxial connector on
its top could be mated directly to the low-noise amplifier (LNA). The coaxial connector
includes the glass bead mentioned above, and the tight connection provides a controlled
path between the mixer chip and the amplifier. By using a well-understood IF path, the
input impedance of the LNA could be included in simulations of the chip’s performance
and the on-chip matching network could be designed to maximize the IF bandwidth of the

receiver.
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Waveguide Tuning Step

Figure 3.8: Probe and mixer chip inserted into the waveguide block. Adapted from Rice
et al. [2003].

Figure 3.9: Microscope image showing the input transformer (left), the proximity of the
pole pieces to the mixer chip (center), and the channel for the mixer chip (right). (The
rectangle that can be seen near the center of some photos is an imaging artifact.)
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Figure 3.10: Split block (top) and mixer block assembled with horn and coaxial connector
for LNA (bottom). The “spiral” pattern in the top half of the block (shown at the left of the
top photo) corresponds to a shallow depression that was cut to ensure that critical surfaces
along the edges of the waveguide could mate tightly.
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3.4 Full-Bandwidth Spectroscopy

Originally, Z-Rex was intended to be a “z-machine,” designed to allow rapid redshift de-
terminations of the ultra-luminous galaxies that had been discovered using submillimeter
imaging arrays (e.g., Blain et al., 2002). Because of the relatively large positional error bars
produced by the imaging arrays, and because the sources were highly obscured by dust,
determining the redshift of these objects using follow-up observations at other frequencies
proved to be difficult. In contrast, searching for molecular emission lines in the submil-
limeter, using some of the same telescopes responsible for the original discoveries, looked
much more promising. Since the redshift of these sources was unknown, broad swaths of
frequency would need to be searched; however, the limited IF bandwidth of existing re-
ceivers meant that such a search would be highly time-consuming, particularly since each
individual observation would require a long integration time to detect the faint lines. The
large IF bandwidth of Z-Rex was intended to solve this problem by offering 12 GHz of
frequency coverage per sideband, for a total instantaneous bandwidth of 24 GHz. Using
such a receiver, the molecular lines from a given source could be found using only a few

different LO settings.

Because the distant galaxies are not resolved by the CSO beam, linewidths are expected
to be ~ 300 km/s [Blain et al., 2002]. At 300 GHz, a velocity of 1 km/s corresponds to
a Doppler shift of 1 MHz; thus, Z-Rex, operating in the 230-GHz atmospheric window,
would see line widths 2 300 MHz. Given the inherently broad linewidths, a relatively low-
resolution spectrometer would be well suited to this task. Consequently, the CSO installed
four of the WASP2 analog autocorrelation spectrometers developed by Andy Harris at the
University of Maryland [Harris and Zmuidzinas, 2001]. Each WASP2 unit delivers 3.5 GHz
of spectral coverage over 128 channels, offering a frequency resolution of approximately
33 MHz per channel. By running four units in parallel, we cover the entire 12-GHz IF
bandwidth of Z-Rex. To distribute the signal to the four units, an IF processor divides the
Z-Rex output signal into four bands, downconverting and amplifying each band to deliver

the appropriate frequency range and power level to the WASP2 unit.
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3.4.1 Wideband IF Processor

The IF processor (see Figure 3.15) accomplishes three basic functions: separation into four
bands, downconversion to the WASP2 input frequencies, and amplification. Each of the
functions is relatively straightforward in principle, but the large bandwidth creates special
design concerns. Each WASP2 unit accepts a 3.5-GHz wide input, centered on 6 GHz. The
total bandwidth available from the four WASP2 units is 14 GHz, which slightly exceeds the
intended IF bandwidth of the receiver. Z-Rex was designed to provide a 12-GHz output
from 6 - 18 GHz; however, rather than waste some of the WASP2 bandwidth, we chose
to design a downconverter to accept a slightly broader input, thereby providing an easy
mechanism for taking advantage of any extra output range from the receiver. The input
spectrum is thus divided into four slightly overlapping bands: 5.75 - 9.75 GHz, 9.25 - 13.25
GHz, 12.75-16.75 GHz, and 16.25 - 20.25 GHz. Each band is downconverted to a4 - 8 GHz
output. If the WASP2 spectrometers have exactly the quoted 3.5-GHz bandwidth, these
ranges will precisely tile the range from 6 - 20 GHz. Any extra input bandwidth offered
by the WASP2s allows the spectra to overlap lightly. The four branches are summarized in
Table 3.2.

The downconversion also requires appropriate component selection. The choice to ex-
tend the frequency coverage to 20 GHz (rather than 18 GHz) requires high-performance
components. The 5.75 - 9.75 GHz band provides additional challenges, as the RF input
overlaps the desired IF output. Discussions with vendors indicated that a triple-balanced
mixer would be appropriate for that branch, as such mixers are particularly good at mini-
mizing RF-to-IF leakage. Further investigation revealed that triple-balanced mixers would
be needed for all four bands, as the 4 - 8 GHz output is beyond the range of double-
balanced mixers designed for similar RF frequencies.

The LO sources we selected are free-running DROs (dielectric resonator oscillators),
which are affordable and easy to use. The free-running DROs do not possess the same
frequency stability as phase-locked models, but because the IF processor is driving a rel-
atively low-resolution spectrometer, the free-running performance is more than adequate.
Each DRO is specified to deliver at least +13 dBm of power, which is consistent with the

mixers’ requirements.



48

DRO Mixer

3dB RF (IF) 10dB
W o
LO
IF (RF)
50 Q

Figure 3.11: Experimental set up for measuring port-to-port mixer isolation. The DRO
(left) was connected to the LO port of the mixer via a 3-dB attenuator. To measure LO-to-
RF isolation, the IF port was loaded with a 50-() terminator, and the RF port was connected
to a spectrum analyzer via a short (~ 12”) cable with a 10-dB attenuator at the end (blue
labels). LO-to-IF isolation was measured by terminating the RF port and connecting the IF
port to the spectrum analyzer (red labels). Reference measurements were taken by remov-
ing the mixer and measuring the output of the DRO through the remaining elements.

OO

Triple-balanced mixers are readily available commercially, but they typically have worse
port-to-port isolation than their double-balanced counterparts. Since our design includes
LO sources within the input band, isolation is also an important criterion for us. To de-
termine whether the mixers would work for our needs, we directly tested the isolation
using the experimental setup shown in Figure 3.11. We paired each mixer with all four
LO sources to determine its LO-to-RF and LO-to-IF isolation at the frequencies of interest,

generating the results given in Table 3.1.

To measure LO-to-RF isolation, we connected the DRO to the LO port of the mixer via a
3-dB attenuator to address potential impedance mismatch. We then terminated the IF port
with a broadband terminator and measured the LO leakage using a spectrum analyzer
connected to the RF port. Similarly, we measured the LO-to-IF isolation by terminating the
RF port and connecting the IF port to the spectrum analyzer. The results show significant
variations between different units of the same mixer model. These tests also indicated that
it was particularly important to drive certain mixers at their optimum pumping levels to

ensure optimal isolation.
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LO-to-RF Isolation (dB) LO-to-IF Isolation (dB)
DRO Frequency (GHz) DRO Frequency (GHz)
Mixer 875 1225 13.75 17.25 875 1225 13.75 17.25

M3006L 0247 A 265 188 229 356 23.8 273 231 301
M3006L 0247B 292 206 250 370 274 212 213 375
M3006L 0247C 225 290 232 281 275 166 156 328
M3006L 0247D 267 216 256 324 310 269 351 306
M3006L 0247E 253 224 274 325 388 209 282 427
M2H-0220LA 27.7 451 447 30.1 223 320 291 273

Table 3.1: Mixer isolation, measured using the setup shown in Figure 3.11. The M3006L
0247X lines represent different units from Advanced Microwave while the final line corre-
sponds to Marki Microwave M2H-0220LA.

3.4.1.1 Prototype and Spur Analysis

To determine whether the in-band LO sources would generate spurious spikes in the out-
put signal, a two-branch prototype of the IF processor was built, as shown in Figure 3.12. In
the prototype, the input signal, shown by the green arrow, was amplified, passed through
a coupler, and then split by a four-way power divider. Two of the outputs from the divider
were terminated, while the other two outputs fed into 4-GHz-wide bandpass filters. Each
of these bands was then downconverted into the 4 - 8 GHz band and amplified. All parts
were the same as the ones described in the final IF processor design in Section 3.4.1.3.

These two branches were chosen because they offered particularly strong tests of the
mixers’ isolation; the RF input for the 5.75 - 9.75 GHz branch overlapped with the IF out-
put, and the 8.75-GHz LO of the other branch fell near the edge of the input bandwidth
for the final 4 - 8 GHz amplifier. The best mixers were picked for each branch based on
the results found in Table 3.1. The 5.75 - 9.75 GHz branch also allowed us to study the
high-frequency behavior of the bandpass filters, which was also a source of concern.

As shown in Figure 3.13, the filters had low loss in the desired passband and strong
losses on either side. However, the the high-frequency rejection did not extend as far as
expected. The filters tended to admit signals at frequencies about an octave above the
lower edge of the bandpass. Some had spikes of higher-frequency transmission, with loss

elsewhere while others admitted the majority of signals above a certain frequency. The
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Figure 3.12: Simple two-branch prototype of the IF processor. X’s indicate 3-dB attenua-
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5.75 - 9.75 GHz branch demonstrated the latter behavior, providing a good test of whether
this high-frequency leakage would allow unintended interactions between bands.

The entire range of the spectrum analyzer, from 0 - 26.5 GHz, was searched for peaks;
particular attention was given to 5 GHz and 22.5 GHz since mixing between the fundamen-
tal frequencies of the LO sources would be expected to yield peaks at those frequencies.
Since the LOs themselves were the sources of interest, the input to the broadband amplifier
was terminated, as was the output of whichever line was not connected to the spectrum
analyzer.

For the 5.75 - 9.75 GHz line, peaks were found at 3.75 GHz and 13.75 GHz; no peaks
were found at 5 or 22.5 GHz. The 13.75-GHz peak’s power and frequency were consistent
with the LO leaking through to the IF. The 3.75-GHz peak could best be explained by the
second harmonic of the 8.75-GHz LO mixing with the fundamental of the 13.75-GHz LO
(2 x 8.75 —13.75 = 3.75 GHz).

For the 12.75 - 16.75 GHz branch, peaks were seen at 5, 8.75, 17.50, and 26.25 GHz,

but not at 22.5 GHz. The peak at 5 GHz represented the anticipated interaction between
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Figure 3.13: Measured responses of bandpass filters.
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the fundamentals of the LO sources, and the 8.75-GHz peak was consistent with LO-to-IF
leakage. The 17.50- and 26.25-GHz lines represented the second and third harmonics of the
LO frequency; presumably, they were due to frequency multiplication in the mixer and/or
amplifier. To determine which element was causing the multiplication, the amplifier was
removed, and the spectrum analyzer was connected to the 3-dB attenuator on the IF port
of the mixer. The 17.50-GHz peak dropped by only a few dB, implying that the mixer was
at least partially responsible for the frequency doubling. In contrast, the 26.25-GHz peak
dropped by ~ 20 dB, indicating that it was most likely caused by frequency multiplica-
tion within the amplifier. This can happen when a particularly strong line saturates the
amplifier, forcing it into a nonlinear regime.

Further tests were done to try to rule out other sources of interaction (such as LO fre-
quencies leaking through the ground plane or DC wiring), but all tests were consistent
with the interpretations given above. In the case of the 3.75-GHz peak, it was possible to
trace the hypothesized 17.5-GHz line through much of the system. It was found at the RF
port of the mixer on the 12.75 - 16.75 GHz branch, supporting the idea that it was caused
by LO-to-RF leakage. The same line could be found at the output of the power splitter
sending signals into the 5.75 - 9.75 GHz branch. From there, the signal disappeared below
the noise floor of the spectrum analyzer.

Experiments with the prototype system yielded several important insights for moving
forward on the final design. It demonstrated that interactions between LOs could generate
spurs and that higher-order interactions would need to be considered as well. These in-
teractions were not symmetric; the 5-GHz peak could be detected in the 12.75 - 16.75 GHz
branch, but not in the 5.75 - 9.75 GHz branch, presumably because the two LO signals
encountered different losses in the bandpass filters as they worked through the system. Fi-
nally, the frequency multiplication of the 8.75-GHz LO indicated that the output amplifiers
could be saturated by strong out-of-band spurs; adding a broadband 4 - 8 GHz bandpass
tilter would resolve this problem.

To better understand the nature of the interactions between the LO sources, we devel-
oped a Mathematica program to calculate the expected mixing products. It considers all

pairwise combinations of fundamental LO frequencies and harmonics (up to a specified
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order), and calculates the sum and difference frequencies generated by the two signals.
In addition, it calculates the attenuation encountered by each signal as it works its way
upstream in one branch and then back down through a different branch using laboratory
measurements of the bandpass filters” performance taken with a 40-GHz network ana-
lyzer. Whenever a mixing product is found that falls within the output band of the IF
processor, the program reports the frequency of the spur and the expected attenuation of

the underlying signal.

The program accurately predicts the spurs that were observed with the prototype, and
predicts that the 3.75-GHz spur should be significantly stronger in the 5.75 - 9.75 GHz line,
as was seen. It also finds other potential spurs that were not identified with the prototype,

but attaches higher attenuation values to them.

In addition to modeling the existing filters, the program also allowed us to study the
effects of adding new filters. We investigated whether the high-frequency leakage of the
bandpass filters was contributing to the observed spurs. The program demonstrated that
adding low-pass filters to several of the lines would solve the problems seen with the pro-
totype. By ordering additional low-pass filters that matched those used in the Mathematica

program, we were able to eliminate the spurs.

3.4.1.2 Prototype Linearity

The linearity of the prototype system was also tested by connecting the input to a signal
generator and driving the system at different power levels. At the time, the only signal
generator available was limited to signals in the 10 - 18 GHz range, so only the 12.75 -
16.75 GHz branch was tested. As shown in Figure 3.14, the prototype system offered a
conversion gain of ~ 48 - 51 dB for input powers < 45 dBm, corresponding to output
powers of approximately +3 dBm. This is sufficient to drive the WASP2 spectrometers,
which have a nominal input power of —10 dBm, and even leave some overhead to allow

for cable losses between the IF processor and the spectrometers.
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Figure 3.14: Conversion gain of prototype IF processor.

Spectral Range (GHz) LO Frequency (GHz) Sideband

5.75—-9.75 13.75 Lower
9.25 —13.25 17.25 Lower
12.75 - 16.75 8.75 Upper
16.25 — 20.25 12.25 Upper

Table 3.2: Key properties of the IF downconverter.
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3.4.1.3 Final Design

The basic design for the IF downconverter is relatively simple, as shown in Figure 3.15.
The wideband 6 - 20 GHz IF signal from Z-Rex is immediately boosted by a broadband
amplifier. A small fraction of the signal is picked off by a 10-dB coupler to create a full-
bandwidth test signal while the rest is split into one of four branches by a power divider.
A bandpass filter selects a 4-GHz chunk of the spectrum, which is then downconverted
to the appropriate input frequency for the WASP2 spectrometers. A final bandpass filter
limits the output to 4 - 8 GHz, and another amplifier boosts the signal once more before
it is returned to the front panel, where it can be connected to the WASP2 input. The extra
low-pass filters needed to prevent crosstalk between branches are located on the output of
the power divider.

Attenuators (typically 3 dB) are located between components expected to have a poor
input match to help minimize reflections. Where possible, components are connected di-
rectly together or via SMA adapters. Cables are only used at the inputs and outputs of
the box and to make one “fold” in each branch to conserve space; in these locations, hand-
formable cables are used. To provide good thermal and mechanical stability, the entire
assembly is mounted to an aluminum plate. The completed IF processor is shown in Fig-
ure 3.16, and a parts list is provided in Table C.1.

The IF processor has been modified since its construction by converting one of the lines
into a straight-through 4 - 8 GHz branch. No downconversion occurs in that line, but it
does provide the filters and amplifiers needed to produce an appropriate signal at the
output. The modified version of the downconverter is shown in Figure 3.17. The excised
parts are available, and the IF processor can easily be restored to its previous state when

needed.

3.5 High-Resolution Spectroscopy

Despite its original intent, Z-Rex has rarely been used for redshift determinations. By the
time it was fully deployed at the CSO, a large sample of redshifts had been determined

using other means by Chapman et al. [2003]. Moreover, newly available millimeter-wave
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Figure 3.16: IF downconverter, as built. Hand-formable cables with SMA connectors are
used when needed; otherwise, short SMA adapters are used. DC power at +12 V is pro-
vided via the yellow wires, using the purple wires for return current, and +15 V DC power
is provided through the orange wires, using the blue wires for return current.
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Figure 3.17: IF downconverter (current version, with direct 4 - 8 GHz line).
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grating spectrometers, such as Z-spec [Naylor, 2008], permitted even faster low-resolution
searches than Z-Rex could offer. Equally relevant was the fact that Z-Rex had been en-
thusiastically embraced by several groups interested in performing molecular-line sur-
veys of nearby objects (such as star-forming regions). The surveys required much higher-
resolution spectra, and ongoing development efforts for Z-Rex focused on bringing these
capabilities online.

Due to the source’s proximity, emission lines from galactic objects tend to be much
narrower. For instance, lines from star-forming regions are often only a few km/s wide,
so a higher-resolution spectrometer is needed than would be required for extra-galactic
redshift follow-up. To enable these observations, the CSO uses a 4 x 1-GHz array acousto-
optical spectrometer (AOS) from the University of Koln [Horn et al., 1999]. As with the
WASP2 spectrometers, an IF processor is needed to divide the signal into four bands at
the correct frequency and power level for the AOS. The requirements for this IF processor
are considerably more stringent than for the one discussed in Section 3.4.1; therefore, it
was designed and constructed by CSO staff and maintained at the telescope as a facility

instrument.

3.5.1 High-Resolution IF Processor

A great deal of effort has been put into determining and providing the optimal signal
characteristics at the interface between Z-Rex and the high-resolution IF processor. In par-
ticular, the IF processor can actively adjust the output power it provides to the AOS via
computer-controlled attenuators; however, it has no means to control the input power pro-
vided to it by the receiver. Therefore, it is critically important to insure that the right power
levels are provided at the interface by manually inserting attenuators. Before determining
the ideal power levels, we experienced frustrating observing attempts in which brightness
temperatures (and hence line strengths) were unreliable, apparently due to saturation in
the IF processor. (See Figures 3.18 and 3.19.)

Based on measurements like those shown in Figure 3.19, it was determined that the IF
processor works best when the input attenuation is ~ 25 dB. To further test the IF proces-

sor’s performance, measurements were taken of its end-to-end conversion gain at different
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Figure 3.18: Spectra taken on Jupiter using incorrect IF attenuation (10 dB, top) and im-
proved IF attenuation (28 dB) with equalizer (bottom). The vertical axis corresponds to
brightness temperature, T}, in K. Note the significantly expanded scale in the top plot.
Scan numbers (across the bottom) correspond to AOS bands 1 through 4, respectively.
Since these data were taken during two different runs (May 2007 and November 2007,
respectively), the IF processor also might have had some internal optimization.
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Figure 3.19: Effects of increasing IF attenuation in the absence of an equalizer. The vertical
axis of each plot indicates the value of the telescope’s calibration scan, which corresponds
Phot

to (Ysky -1) = Py’ The four scans (indicated by the legend at the bottom of the plot)

correspond to IF frequencies of 4-5,5-6, 6 -7, and 7 - 8 GHz, respectively. At 0 dB of IF
attenuation (upper left), all bands suffer from gain compression, yielding poor Y factors.
When the attenuation is increased to 12 dB (upper right), the Y factors spread out, as some
bands receive appropriate power while others do not. At 20 dB (lower left), the four bands
offer similar Y factors, but the bands corresponding to larger IF frequencies, and hence
greater attenuation in the IF cable, begin to show increased noise levels. At 25 dB (lower
right), the Y factors are still similar, but the noise level in band 4 continues to degrade, and
band 3 shows some increased noise. All scans have Yy, ~ 2.4, measured at the 4 - 8 GHz
output of the receiver’s warm IF amplifiers and were taken during the May 2007 run.
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input attenuation levels. Based on measurements taken in August 2007 (Figure 3.5.1), the
IF processor was found to have good linearity for inputs from —39 dBm to its nominal
power level of —45 dBm.> We also determined that an equalizer is required to correct the
frequency slope introduced by the cable from the receiver to the IF processor. Otherwise,
when the low-frequency band is properly powered, the high-frequency band is badly un-
derpowered, greatly increasing the noise levels seen in that band.

As discussed in Section 3.4.1 (and shown in Figure 3.17), the IF processor designed for
use with the WASP2 spectrometers has been modified to provide one branch that amplifies
a 4 - 8 GHz signal without doing a downconversion. This modified branch has been serv-
ing as a warm IF amplifier to boost the signal before it travels through the long cable from
the receiver to the high-resolution IF processor. While this arrangement is sufficient, it is
not ideal, as the WASP2 IF processor contains several other strong LO sources that should
not be coupled into the IF path unnecessarily. Therefore, the development of a dedicated

4 - 8 GHz warm IF amplifier box for Z-Rex is recommended.

3.5.2 Acousto-Optical Spectrometer (AOS)

Much like the array of WASP2 units, the high-resolution spectrometer provides 4 GHz of
bandwidth by running four 1-GHz AQOSs in parallel. Within each AOS, the RF signal is
coupled to a crystal via a piezoelectric transducer, creating modulations in the index of
refraction of the crystal that act like a diffraction grating. The crystal is illuminated by
a laser beam, casting the diffraction pattern onto a linear CCD. The intensity of the light
on each pixel of the CCD corresponds to the input power of the RF signal at that pixel’s
characteristic frequency. Spectra are calibrated by injecting a known frequency comb into
the AOS and studying the resulting peaks. The calibration allows CCD positions to be
converted into the corresponding frequencies and reveals the frequency resolution of the

system.

3When measuring the output power of the IF processor, readings were corrected for internal attenuation
using the nominal settings of the computer-controlled variable attenuators, as displayed by the control soft-
ware. For instance, if the computer indicated it was using 3 dB of attenuation, the readings were increased by
3 dB. There could be small discrepancies between the nominal and actual values of the attenuation that could
lead to minor inaccuracies in that data. If present, such errors would only occur in the two highest-frequency
points for AOS 1 and the highest-frequency point for AOS 2, as all other measurements correspond to 0 dB of
internal attenuation.
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Figure 3.20: Output power (top) and conversion gain (bottom) of the IF processor, mea-
sured in August 2007. The IF processor has an optimal input power level of —45 dBm, with
a 6-dB margin below that, and it can be seen to offer excellent linearity across that range.
These results indicate that ~ 29 dB of input attenuation is appropriate for the IF processor,
consistent with Figures 3.18 and 3.19. The power levels coming into the IF processor were
—15 dBm, so 29 dB of input attenuation corresponds almost exactly to its nominal —45

dBm input power. (Also see Footnote 3.)
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Figure 3.21: Z-Rex synthesized LO from Virginia Diodes.

The array AOS at the CSO generates four spectra, each containing 2048 channels and
covering 1 GHz of spectral bandwidth. By design, some channels at either end of each
spectrum are under illuminated, so spectra usually have ~ 1700 valid channels. Although
it varies with time, the resolution of the system is typically 1.2 MHz or slightly better,
which means that peaks with linewidths of a few km/s still span several channels, allow-

ing an accurate determination of peak shape.

3.6 Synthesized LO

In recent years, synthesizer-driven LO sources have become readily available at submil-
limeter frequencies. They are commercially available from companies such as Virginia
Diodes,* who constructed the unit shown in Figure 3.21 for Z-Rex. At the left of Figure
3.21 is a coaxial connector that attaches to a standard microwave generator to provide an
input signal with frequencies of ~ 13 - 19 GHz at power levels of ~ —5 dBm.

The synthesized LO chain consists of an amplifier followed by a frequency tripler. The
signal is again amplified and sent through an isolator, before going into the final quintupler
and the output horn. Overall, the LO chain multiplies the input frequency by a factor of 15
to create output frequencies of ~ 200 - 285 GHz at power levels of ~ 60 - 250 uW, providing

ample power to the SIS junction.

4Virginia Diodes, Inc., Charlottesville, VA; www.virginiadiodes.com



65

The other type of commonly used LO is the Gunn-based LO chain, an example of which
is shown in Figure 3.22. In this LO chain, the fundamental frequency of ~ 70 - 90 GHz
is produced by a Gunn diode in a resonant waveguide cavity (top of Figure 3.22). The
frequency of the oscillations is set by the tuning knob on the left, and the knob on the top
can be used to optimize the output power. The signal then travels through an isolator,
a harmonic mixer, and a waveguide attenuator before going through a waveguide bend,
into the final tripler and out the horn.

The tuning control provided by the micrometer on the Gunn is not sufficient to main-
tain the stability needed for high-resolution spectra. Instead, coarse frequency adjustments
are made using a calibration table to generate approximate settings for the tuning and
power knobs. Precise frequency control relies on a lock frequency generated by a mi-
crowave synthesizer; a phase-locked loop (PLL) uses a harmonic mixer to compare a mul-
tiple of this lock frequency to the current frequency of the Gunn. By modulating the DC
bias provided to the Gunn, the PLL can stabilize the LO frequency to the needed accuracy.
While the signal from the Gunn diode is relatively clean, the PLL can introduce significant
spurs into the spectrum. However, as long as the cause of these spurs is recognized, they
can easily be eliminated by adjusting the PLL parameters.’

Although accurate, a PLL-controlled Gunn can be finicky; at times, it can be very dif-
ficult to get the PLL to lock onto the desired frequency, requiring careful adjustments of
the tuning knob, experimentation with different power levels for the signal carrying the
lock frequency, and a good dose of patience. There have been nights at the CSO when we
have literally spent hours trying to get a Gunn and PLL locked to a needed frequency; on
other occasions, the Gunn has locked to the incorrect frequency, generating invalid spectra.
Clearly these types of problems can impact any observing project, not just line surveys.

Much of the interest in synthesized LOs is driven by the higher level of convenience
they offer relative to Gunn-based LOs. The tunerless design means that changing frequen-
cies is as simple as setting the frequency (and perhaps power) on a microwave synthesizer.

In concert with the tunerless mixer design of Z-Rex, this gives the overall receiver system

5In particular, the multiple of the lock frequency being used by the PLL should be changed to move the
lock signal out of the 4 - 8 GHz IF band of the receiver. At the CSO, this can be accomplished with the UIP
command LO /LOOP=N, with a suitable choice for N. For most LO frequencies, N = 9 works well.
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Figure 3.22: 230-GHz Gunn-based LO chain.



Figure 3.23: Close-up of synthesized LO mounted on Z-Rex (left) and Gunn-based LO
chain mounted on Z-Rex (right). The plate containing electronics for the phase-locked
loop (PLL) can be seen in the background of the right-hand figure.

impressive frequency agility, making an important difference in the time required for an
unbiased line survey, which might include hundreds of LO settings.

In addition to fast tuning, a synthesized LO can build on all of the other technologies
that go into a commercial microwave synthesizer. For instance, by connecting the syn-
thesizer to the telescope’s computer network via GPIB, we were easily able to implement
automatic tuning; in contrast, installing a computer interface board for a Gunn oscillator
would have required significant effort. Similarly, we have been able to build on existing
software libraries to construct automated calibration and testing routines for the synthe-
sized LO by making use of a GPIB-connected synthesizer and power meter.

Finally, the synthesized LO offers better robustness under realistic usage scenarios in
an operational telescope. The simplified user interface makes error less likely, and the
fact that observers do not need to tune the sensitive RF components greatly decreases the
likelihood of damage by electrostatic discharge (ESD). When placed under appropriately

designed computer control, the dangers of inadvertently damaging the multiplier chain
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are nearly eliminated. When using a Gunn diode, observers must work carefully to avoid
ruining a component with ESD or overpowering the final multiplier.

Despite these benefits, the synthesized LO has some significant disadvantages. Perhaps
the most important is the introduction of spurious signals (“spurs”) into the spectrum. Af-
ter observing large spurs in our astrophysical data, we began tracing signals back through
the system, and eventually found the source of the spurs hiding in the output from the
microwave synthesizer. The LO chain was dutifully multiplying these by a factor of 15,
producing errant lines in the spectra. In principle, the on-source/off-source differencing
inherent in submillimeter observations could remove such signals. However, they were
sufficiently strong that even tiny fractional fluctuations translated into large lines in the
spectra.

Figure 3.24 shows an example of the spurs introduced into the telescope’s calibration
scans (blue lines). The figure includes two different models of synthesizers, but even the
cleaner synthesizer still introduces significant noise spurs into the spectrum. To eliminate
the spurs, we use a YIG tracking filter, inserted between the synthesizer and the multiplier
chain. The YIG filter is a very high-Q filter with an approximately 50-MHz bandpass that
can be electrically tuned to any frequency from 2 - 18 GHz. By setting the frequency of
the filter to match that of the synthesizer, we eliminate most of the undesired signals,
significantly improving the observed spectra (red lines in Figure 3.24). The YIG filter is
digitally tuned, making it amenable to computer control; Z-Rex uses a dedicated control
computer for the YIG filter, but that functionality could be incorporated into the telescope’s
control system relatively easily.

In general, the YIG filter has worked extremely well, except that it sometimes spon-
taneously detunes, causing the LO signal to shut off in the middle of an observation. No
definitive cause has been determined, although there are hints that the problem might stem
from minute amounts of ESD. Based on these experiences, designs for the next generation
of synthesized LO chains at the CSO call for real-time monitoring of LO output power. If
LO power drops suddenly, receiver electronics will flip a status bit that instructs the spec-
trometers to pause the integration until the problem is resolved, much like the “PLL Lock”

bit does for the Gunn-based LO on the current facility receivers.
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Figure 3.24: CSO calibration scans taken using the synthesized LO chain with an HP
83620B synthesizer (top) and an Anritsu MG3694A synthesizer (bottom). The blue scan
shows the spurs that occur using the unfiltered synthesizer output; the red scan demon-
strates that inserting a tracking YIG filter between the synthesizer and LO chain removes
many of the spurs. Room-temperature and liquid-nitrogen-dipped Eccosorb paddles were
used as sources for the calibration scan.
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Another significant issue with the synthesized LO is that it can introduce excess noise
into the spectrum. Our initial tests of Z-Rex using the synthesized LO produced unaccept-
ably high system noise temperatures. After some experimentation, we determined that
the noise could be greatly reduced if we decreased the bias voltage to the final amplifier
in the LO chain, thereby forcing it into saturation. We concluded that the LO signal going
into the receiver was carrying a significant amount of noise in the form of high-frequency
amplitude variations; by clipping the signal in the final amplifier, we could compress that
noise to a manageable level.

Figure 3.25 shows a comparison of on-telescope receiver performance when using ei-
ther the synthesized LO chain or a Gunn oscillator. Y-factor measurements were made
using room-temperature and liquid-nitrogen-cooled absorbers that filled the beam of the
receiver. For LO frequencies above 245 GHz, both systems behave roughly equivalently;
however, at lower frequencies the synthesized LO appears to inject excess noise.

One of the challenges in designing a submillimeter receiver is coupling enough LO
power to the junction at low frequencies. With both LO sources, the junction current,
Is1s, which measures the degree of LO pumping, was less than its optimal value at lower
frequencies. The Gunn provided almost no power at 210 GHz and too little power at
215 GHz, but worked fine for higher frequencies. With the synthesized LO, the junction
appeared to be LO-starved for frequencies of 210 - 225 GHz; to boost LO power, we had to
increase the bias applied to the final amplifier of the LO chain, allowing more amplitude
noise to leak through. Thus, the increased receiver noise with the synthesized LO can
probably be explained by a combination of insufficient LO power and increased noise on
the LO signal.

The cause of the decreased LO power at low frequencies is somewhat uncertain. The
obvious explanation would be that the LO sources are running out of power. This is prob-
ably true for the Gunn, as the device used on Z-Rex for these measurements has a low-
frequency limit of ~ 70 GHz, corresponding to an LO frequency of 210 GHz. It is less clear
how to interpret the results with the synthesized LO. While low output power could be
one explanation, there is a compounding factor. Rather than building a new horn for the

Z-Rex mixer block, we used an existing horn. Unfortunately, the response of the recycled
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fro fir ) AQOS Amplitude Peak Area
Scan (GHz) (GHz) Sideband Band (K) (K chan)
1532 238 7.5 Lower 4 3.1 112
1538 236 5.5 Lower 2 2.9 108
1546 225 55 Upper 2 3.0 118
1556 223 7.5 Upper 4 3.9 141
1493 235 45 Lower 1 0.63 21.5
1502 236 5.5 Lower 2 0.67 19.7
1511 237 6.5 Lower 3 0.78 21.6
1520 238 7.5 Lower 4 0.73 21.0

Table 3.3: Scan parameters and peak-fitting results for the spectra shown in Figure 3.26,
including the LO frequency, f;o, the IF frequency at which the CO line appears, fir, and
the results of Gaussian fits to the various peaks.

horn falls off at low frequencies (< 220 GHz), limiting the receiver’s RF bandwidth. This
effect undoubtedly contributes to the difficulty in coupling LO power to the junction at
low frequencies. To test this hypothesis, we attempted to make a rough measurement of
the receiver’s performance at low frequencies. As shown in the top plot in Figure 3.26,
we measured the CO line of CRL2668 in both the upper and lower sidebands. The larger
peak strength in scan 1556 most likely derives from the sideband imbalance of the receiver,
caused by the lack of sensitivity of the horn at lower frequencies. The bottom plot shows
similar data for CRL2155, except that all scans are in the lower sideband. Without the
low-frequency sideband imbalance, all peaks are approximately the same strength.
Overall, the synthesized LO chain is very convenient, although the extra components
required by the YIG filter decrease that convenience. The excess noise represents a prob-
lem, particularly at lower frequencies, and we continue to be concerned that the LO chain
might be introducing spurs to the spectrum. The disadvantages might be worthwhile in
some circumstances, such as an observing project in which frequency agility is critical;
however, for the line surveys discussed in this thesis, we chose to use the Gunn, despite

the inconvenience of tuning.
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On-Telescope Performance of Synthesized and Gunn LO Systems
Z-Rex, August 2007
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Figure 3.25: On-telescope performance of Z-Rex with synthesized LO and Gunn LO.
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Figure 3.26: Estimating sideband imbalance. All scans were taken at an IF attenuation of
29 dB with no equalizer. Scan parameters and peak-fitting results are listed in Table 3.3.
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Chapter 4

Deconvolving Double-Sideband Data

4.1 Introduction

The basics of heterodyne detection can be understood by considering a simple model in
which the mixer multiplies two sinusoidal signals with frequencies frr and f;o. The for-
mer represents the signal to be analyzed (such as the submillimeter photons collected by
the telescope) while the latter represents the frequency of the local oscillator (LO), a refer-
ence signal generated by the receiver electronics. When these signals are multiplied by the
mixer, the output contains two new frequencies, as can be demonstrated using trigono-

metric identities:!

. . 1
sin (CURF) X sin (wLo) = E [COS (CURF — wLo) — COS (CURF + wLo)] .

This equation contains the sum and difference frequencies, describing upconversion and
downconversion, respectively.2 For a heterodyne receiver, downconversion is desired, so
the sum frequency is removed with a low-pass filter, leaving the difference frequency, often
referred to as the intermediate frequency (IF) and represented by fir.

For molecular-line surveys, the IF signal is fed to a spectrometer, which generates a

power spectrum of the data, P(f). The power spectrum depends on the amplitude, but

1For compactness, we have used w = 27f in this equation.

%In terrestrial applications (such as AM radio), upconversion and downconversion represent a comple-
mentary pair. A low-frequency signal (e.g., music) is encoded onto a high-frequency carrier signal at the
transmitter. The original low-frequency signal can then be recovered using downconversion at the receiv-
ing end. For an astronomical receiver, there is no upconversion process; the signal is generated directly by
the source at frr. Thus, there is no low-frequency original signal to be recovered; instead, downconversion
allows the signal to be processed at lower frequencies, which is significantly easier.
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not the phase, of the input signal. Since a “negative” frequency is equivalent to a phase
shift of 77, the spectrometer cannot discriminate between power from a signal at f and one
at (—f). Therefore, a single value of fir = |frr — fLo| in the power spectrum actually

contains contributions from two RF frequencies:

Prr (fir) = Prr (fro — fir) + Pre (fro + fir) - (4.1)

For a given fir, these two frequencies are called the lower sideband (LSB) and the upper
sideband (USB):
fLse = fro — fir

fuss = fro + fir.

(4.2)

Since the resulting power spectrum combines data from both sidebands, it is referred to as
the double-sideband (DSB) spectrum.

The sideband ambiguity in the power spectrum can make it difficult to concretely iden-
tify molecular lines, particularly in crowded spectra. Therefore, some method of discrimi-
nating between the sidebands is needed. The sideband identification can be done in hard-
ware, via a sideband-separating receiver or a sideband-rejecting receiver, or it can be im-
plemented in software during the data-analysis phase. Including sideband rejection or
separation capabilities in the receiver provides a more direct method of observation, but
the receiver designs are more complex than the single-mixer construction used for Z-Rex.

One of the key advantages of Z-Rex over previous generations of receivers is its very
large instantaneous bandwidth, which significantly exceeds the bandwidth of the spec-
trometers available to analyze the signal. In its broadest configuration, the IF bandwidth
of the receiver is ~ 12 GHz, but the CSO high-resolution spectrometers, at present, can only
accept 4 GHz of data. Since the spectrometers represent the bottleneck, it is important to
choose a receiver design that can use them as efficiently as possible.

In this scenario, a DSB receiver offers an advantage in observing efficiency, at the ex-
pense of its inherent sideband ambiguity. Because it can observe both sidebands simul-
taneously, a double-sideband receiver effectively doubles the amount of data that can be
extracted from the spectrometers. A single observation captures 8 GHz worth of spectral

data using the spectrometers” 4-GHz bandwidth.
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In contrast, a sideband-separating or sideband-rejecting receiver achieves only a one-
to-one mapping between spectrometer bandwidth and the range of observed sky frequen-
cies. Therefore, either receiver would require twice as many LO settings. For an unbiased
survey, LO tuning represents a significant fraction of the overall observing time; doubling
the number of tunings would adversely impact the overall survey efficiency. Moreover,
even sideband-separating or sideband-rejecting receivers have some amount of sideband
leakage, making it desirable to perform further sideband deconvolution during the data-
analysis phase.

Fortunately, it is possible to do sideband deconvolution after the fact, as can be seen
with a simple example.> Consider a molecular line that appears at an IF frequency of
fir = 5.0 GHz with an LO frequency of fipo = 242 GHz, indicating that the line’s RF
frequency could be either f;sp = 237 GHz or fysg = 247 GHz. If the LO frequency is
then changed to frp = 242.1 GHz, the line’s IF frequency will change. A line in the upper
sideband would move to a lower IF frequency of fir = 4.9 GHz while a line in the lower
sideband would move in the opposite direction to f;r = 5.1 GHz.

At an intuitive level, at least, this example demonstrates that the sideband ambiguity
can be removed by observing each line at multiple LO frequencies. In practice, the process
described in the previous paragraph can be used to manually deconvolve relatively simple
spectra. For complicated spectra, an automated process is needed, but it relies on the same

principles.

4.2 Overview

The goal of sideband deconvolution is to take a series of double-sideband spectra and
undo the effects of the spectral “folding” that occurs during RF downconversion, separat-
ing the power in the lower sideband from that in the upper sideband. This produces a
single-sideband spectrum in which the frequency ambiguity has been removed and every

channel can be assigned a unique frequency.

3 Also see Figure 1.9.
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One frequently used method of deconvolving data involves a forward-folding process
in which a parameter-dependent model is used to simulate the observed spectrum. A
computer algorithm can then generate a trial set of model parameters and produce a sim-
ulated data set corresponding to those parameters. By comparing the predicted data set to
the actual data, the algorithm can iteratively improve the values of the model parameters.
Typically, this process relies on minimizing some quantitative measure of the difference
between actual and modeled data, such as 7(2.

In this work, we describe such a method for recovering the single-sideband spectrum
by minimizing a x?-like quantity. However, this is not the only approach that can be used
to perform the sideband deconvolution. For example, an early survey of Orion KL used a
technique similar to the CLEAN algorithm common in aperture-synthesis imaging [Sutton
etal.,, 1985]. This method is relatively straightforward, but it requires the relative sideband
gains to be specified at the outset. Sutton et al. [1985] find that the deconvolution leaves
false peaks as strong as 0.5 K in their single-sideband spectrum, which they attribute to
a sideband-rejection ratio for the algorithm of roughly 15 - 20 dB. They conclude that the
SSB results are trustworthy down to ~ 0.3 K across the spectrum.

Later researchers have used a maximum-entropy method (MEM), another technique
common in radio aperture-synthesis imaging. This method has the advantage that it in-
herently emphasizes smoothness in the final image. As described in Sutton et al. [1995],
the MEM deconvolution algorithm is based on x?, with an additional term that represents
the deviations from a model spectrum:

1 do —d \? S, s./s

2 k k i i’ s

M M——iz - — AMm ME ‘Llo — ],
X E NDOF X < Ok > E 7 SS g (ﬂli/ﬂls>

where d} and d, represent the channel-by-channel spectral values in the measured and
predicted DSB spectra, respectively, and o, represents the uncertainty in the k" channel
of the observed DSB spectrum. Npor represents the number of degrees of freedom. s,
and m;, represent the ivalue of the SSB data and the SSB model spectrum, respectively,
with s, = Y ;s; and m, = Y_; m.. In this equation, the first term represents x2, the reduced

chi-square, which emphasizes fidelity to the measured data. The second term represents
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the entropy, a measure of the structure present in the spectrum, relative to the model spec-
trum; increasing entropy corresponds to an increasingly featureless (smooth) spectrum.
The multiplier Apep allows the strength of the entropy term to be adjusted; Sutton et al.
[1995] found a value of Apip ~ 0.1 - 0.2 worked well. As discussed in Comito and Schilke
[2002], a MEM approach to sideband deconvolution has been included in the XCLASS
data-analysis software, an extended version of the commonly used GILDAS CLASS pack-
age.

One key advantage of MEM is that it allows the sideband gains to be determined as
part of the deconvolution, rather than requiring that they be specified in advance, as with
the CLEAN-type deconvolution. As Schilke et al. [2001] point out, the MEM approach
described here still requires the baselines to be determined manually, which can be difficult
in a crowded spectrum.

It is worth noting that the logarithmic function in the entropy term requires that all the
data points in the SSB spectrum be greater than zero. This constraint poses no problem
for aperture-synthesis imaging, as it is assumed that each point in the sky must produce
some amount of positive radio flux; however, the same cannot be said for the chopped
observing mode used for this work. (See Chapter 2.) In our observations, it is not unusual
for the single-sideband spectrum to have negative values, either from absorption lines in
intervening material, or from random noise around a nearly zero baseline. One can work
around this limitation by adding a constant offset to the DSB data, and removing that
offset from the final spectrum, but this extra step is indicative of the fact that this statistical
method is not a natural fit to the underlying problem.

In this work, we take a x2-based approach; extra terms are added to x? to represent
additional information we believe to be true about the spectrum. One of the new features
provided by our methodology is the ability to fit baselines during the deconvolution, al-
lowing the algorithm to determine the set of baselines that best optimizes overall spectral
fit. We have also invested significant effort in modeling the sensitivity with which the
deconvolution algorithm can recover the single-sideband spectrum, allowing us to make

concrete statements about the quality of the results.
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We do not feel that one of these methods is necessarily superior to the others; rather,
we believe it is inherently useful to have a variety of tools available, particularly given
the high-sensitivity surveys currently being performed. In this way, single-sideband spec-
tra can be generated using entirely independent methodologies, thereby providing more

insight into the reliability of weak lines detected in the data.

4.2.1 Implementation Overview

The overall process for accomplishing the deconvolution is sketched out in Figure 4.1. It
assumes that we have a series of N,,; DSB spectra representing a set of molecular-line
observations. The individual spectra can represent any combination of different LO fre-
quencies and can include data from different spectrometers with differing channel sizes.
We wish to recover the underlying single-sideband spectrum as it would appear on a set
of defined spectral channels.

Figure 4.1 shows a high-level sketch of the optimization method used in this work. We
break the process into two steps, partly for the sake of conceptual simplicity, and partly to
minimize the computation needed in the innermost iteration loop. In the first step, the DSB
spectra and the SSB spectrum are resampled onto a set of frequency-aligned channels. The
DSB resampling only needs to be done once during analysis; however, the SSB spectrum
must be resampled during each iteration. This can be achieved efficiently by creating a re-
sampling matrix that is passed to the iterative loop. The matrix only needs to be calculated
once, greatly speeding the program.

The second step of the model represents the sideband mixing that occurs during RF
downconversion. The majority of the information about this process can be contained in
two convolution matrices that describe how the SSB and DSB channels couple to one an-
other. The coupling depends only on the channel frequencies and the LO settings used
for the observations. Since these are known at the outset, these matrices can also be calcu-
lated once during the setup phase and then simply passed to the iterative loop. Both the
resampling and sideband-convolution matrices are extremely sparse, containing relatively

few non-zero entries; performing the deconvolution in a programming environment that
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supports sparse-matrix calculations greatly reduces memory requirements and increases
execution speed.

During the setup phase, a series of matrices representing the effects of the convolution
model are created. The DSB data produced by the telescope are contained in a series of
N,ps spectra, which are assembled into a single long vector by stacking them end to end.
The desired SSB spectrum is represented by a set of frequency bins corresponding to the
channels that should be used for the recovered spectrum.

After the setup phase is complete, the deconvolution proceeds as an iterative optimiza-
tion process. A model is used to generate a comparison set of DSB spectra based on a set
of model parameters, including the brightness temperature of the SSB spectrum in each
of the supplied channels, the receiver sideband-gain imbalance as a function of frequency,
and the baselines underlying each of the DSB spectra.

The model can be represented by a large system of equations containing one equation
for each channel in the set of observed DSB spectra. Generally, the number of independent
DSB channels exceeds the number of free parameters by a factor of ~ 10, indicating that
the system is highly overconstrained. Since the measured values are statistical quantities
that include random noise, it is nonsensical to look for a solution that exactly satisfies
all of the equations; instead, we use a x2-like figure of merit that reflects the difference
between the DSB spectra predicted by the model and those measured at the telescope. The
“optimal” (most probable) set of parameters, corresponds to the minimum value of the
figure of merit.

As long as our figure of merit does not deviate significantly from true x?, we can also
use the final set of parameters in a goodness-of-fit test to determine whether the model is

consistent with the observed data.

4.3 Simple Model of Convolution

The optimization routine described in the previous section requires an accurate model of

the heterodyne detection process. In the following sections, the model is developed piece



82

SSB spectra resampled
to align with DSB

Updated parameters

Model

Figure 4.1: Deconvolution Overview

Data
7 N N
—> dold) do(1)NR
\ 2 b
::: . doi?) Normalize by (1/c) doR@INR
-,\ Resample to Afggg
do(N) do(N)LNR
Set of DSB spectra, possibly I\ g /
from different spectrometers
= 7 N
Y sR(1) v v d(1:NR
S Mix Add
2),NR
s sidebands baselines d
: A
b GRIN) d(NLNR
J S _




83
by piece in order to make it as intuitive as possible. We start by considering a simple ex-
ample that ignores instrumental effects, such as uneven sideband responses and imperfect
spectral baselines.

Let d° represent a vector containing all of the raw DSB spectra stacked end to end, and
let s represent the (unknown) SSB spectrum that we would like to find. The mixing of side-
bands can be represented by a matrix M in which each row corresponds to one channel in
the set of DSB spectra and each column represents a channel of the SSB spectrum. Further
assume that the DSB channels are frequency-aligned with the SSB channels so that every
channel in d° corresponds exactly to one USB channel and one LSB channel in s and that
the DSB and SSB channel widths are the same. (See Figure 4.2 and Section 4.4.3.) Under

these assumptions, the convolution matrix has a simple form

1 if fSSB(j) = fLSB(z') or fSSB(j) = fUSB(z')

M;; = , (4.3)

0 otherwise
where fssp(j) represents the center frequency of the j" SSB channel, and f; B(i) and fusa(i)
represent the LSB and USB frequencies corresponding to the i DSB channel.
In this simplified scenario, we can model the convolution process using the equa-
tion

d=M:-s, (4.4)

where - represents matrix multiplication, and d represents the model’s prediction for the

DSB data, to be compared to d°.

4.4 Incorporating Non-Aligned Spectra

4 In

The assumptions underlying Equation 4.3 constrain the selection of LO frequencies.
particular, LO frequencies must be set so that they fall on either the center frequency or
an edge of an SSB channel. From a logistical perspective, this is an unwelcome limitation.

It would require an observer to establish the desired SSB channel limits before taking any

4Gee Section 4.4.3 for a full discussion.
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observations. In addition, receiver control systems might not offer this degree of control
over the LO frequency.”

Beyond these practical objections, there is a deeper scientific reason not to choose such
LO spacing. As demonstrated in Comito and Schilke [2002, Fig. 4], successful deconvo-
lution requires some randomness in the LO spacings. If spacings are perfectly regular,
ripples can be introduced into the deconvolved spectrum. The positive lobe of the ripple
in one part of the spectrum can be exactly canceled by a negative lobe in another section
when those channels are added during the convolution. Including randomness in the LO
spacings ensures that this precise cancellation cannot occur.

Thus, it is neither practical nor desirable to design observations such that the DSB
channels align exactly with the SSB channels. Instead, the deconvolution algorithm must
be capable of properly handling spectra generated with essentially random LO settings. In
this case, not only are the DSB and SSB channels mismatched, but channels from different

DSB spectra are not aligned with each other.

4.4.1 Resampling Spectra

To handle arbitrary LO settings, both the DSB and SSB spectra must be resampled. In ad-
dition to resolving the issues outlined above, this provides a natural method for including
DSB spectra with differing channel sizes.

Consider an arbitrary, N-channel spectrum with channel centers f, channel widths
Af, and channel limits ¢, such that the i channel covers the frequency range c; to c; INE
Let the spectrum be represented by a set of temperatures, T. We can resample this data
to produce a new NR-channel spectrum, characterized by frequency vectors fX, AfX, and
c® and brightness temperatures TR. For concreteness, assume that the channel centers
are sorted in ascending order (f; < f;,; and ff < fR,)and that the frequency limits of

the resampled spectrum fall entirely within the frequency range of the original spectrum

R R
(c1 <crandcy,, > CNR+1> .

SFor instance, at the CSO, the antenna computer automatically calculates Doppler corrections and other
fine shifts to the LO frequency that are much larger than a typical spectrometer channel width.
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We can express both the original and resampled spectra as continuous functions of
frequency, f, by introducing a set of “boxcar” functions that represent the frequency re-

sponses of the individual channels:®

1 ifc. <f<yg “
u; (f) = l l
0 otherwise
4.5)

£ oR R
1 ifef < f <cjy

ujt (f) =

0 otherwise

The inner product between the boxcar vectors can be defined in the usual fashion:

@iles) = [ or(f)ead, 46

—00

where each of the functions v; and v, can be any one of the {u, (f)} and/or {u]R ()}

functions. Also note that the inner product is symmetric, so that

(v1]v2) = (vav1) - (4.7)
Each boxcar function is orthogonal to other members of its set, so that

(1y|uy) = Afy0a, and

(uf|uf) = AfEoca,

where §;; is the Kronecker delta function:

(4.8)

1 ifi=jand
(51‘]‘ =
0 otherwise.

The inner product can also be used to calculate the overlap between the two sets of func-

tions:

®To avoid confusion between variables, note that the set of channel centers is represented by the vector f
while the center of an individual channel is represented by a component of that vector, f;. The continuous
variable representing frequency is written simply as f.
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M}Q> = Afo(zz),glap’ (49)

(w

where

Ay = max (0, 7 = £57). (4.10)

overlap lo

If the two boxcar functions overlap,

(i) _ max (Ci/ CJR) and

) s R
B oun <Ci+1/ Cj+1>

represent the edges of the overlap region, and Af, 0(222 lap TEPTESENtS its size.

These definitions allow us to write the spectra as continuous functions of frequency:

N
T(f) =) T u;(f) and (4.11)
i=1
NR
TR(f) = Y TR uf (f). (4.12)
j=1

To generate the resampled spectrum (Equation 4.12), we must find the appropriate val-
ues of TR. There are several methods that could be used to find the resampled spectrum;
we choose to do it by minimizing the mean-square deviation, A, between the resampled

spectrum and the original one:

4= /I:NRH T -T" (f)rdf (4.13)
CQRH N NE 2
= /R Y T (f) = Y Truf (f)| df, (4.14)
=1 i=1 =1

where we have inserted Equations 4.11 and 4.12.

By taking the derivative of Equation 4.14 with respect to T,f{ and setting the result equal

to zero, we can find the value of TR that minimizes A:
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JdA
0 - W
;RH N d N N
— [ | nu () - LRl ()| sr | L Twun ()= L TR ul ()| df,
cf i=1 j=1 T | /=1 n=1

(4.15)

where Equation 4.15 simply represents a “chain-rule” expansion of the derivative. This

result can be simplified by noting that %Ti = 0, eliminating the first term in brackets
d

altogether, and that WT;} = ,x, reducing the final sum to a single term uX (f). Since the
k

equation is being set equal to zero, the initial factor of two can be dropped as well:

1

CIIEIR-H N M
0= [ ML T () = L TRE () | uf () af
cf i=1 j=1

N C§R+1 NE C]ISIR+1
=y [ w -tk [ ko) af
i c j=1 c

i=1 1 1
N NR
= LT, (et ) = LT )
i j=1
NR
=Y T,F - ) T].R(s]kA f]R
j=1

Solving for T,f gives

1
Y = [F-T],, (4.16)
A
where the overlap matrix F is defined as
— R\ _ A (i)
Fy = (u|ul) = M, (4.17)

and we have used the fact that FT = F (by Equation 4.7). The brackets in the final result

indicate that "N T.F,, is just the k'™ component of the matrix multiplication F - T.

In terms of the individual channel limits, Af O(;Ql ap CAN be expressed as
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Af(f;’glup = max [O, min (ciH,cﬁl) — max (ci, cf)} (4.18)

in accordance with Equation 4.9. Since F;; = F;;, only the upper-diagonal or lower-diagonal

jir
entries need to be calculated.

Finally, we define the frequency-normalization matrix A%/ “ to be a diagonal matrix

with Aif,-R along the diagonal:

AfR _ Ojj
LN

Since Equation 4.16 is true for all values of k, it can be expressed as a vector equation:
TR — A F.T. (4.19)

Typically, the observed spectrum has an experimental uncertainty associated with it
(such as the radiometer noise from Equation 2.1). The uncertainty in the resampled spec-
trum can be determined using standard propagation-of-error techniques [see, e.g., Squires,
1985]. In general, multiplying a random variable by a constant simply scales the uncer-

tainty by the same constant:
X =cx = 0y = coyx (Where cis a constant).

When adding random variables, the resulting uncertainty is the quadrature sum of the

=Y x = ov=_[) 0%
i i

These relations can be combined to give

individual uncertainties:

x' = C,ZCZ'X,' - Oy = c Z (Cl'O'xi)z.
i

i

Comparing this result to Equation 4.16 demonstrates that the uncertainty of the k" channel

of the resampled spectrum is

% = AfR Y- (Fy) (o)™ (4.20)
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4.4.2 Spectral Definitions

We can now apply the results of Section 4.4.1 to resample the spectra used for the de-
convolution. The following discussion assumes that we have a set of DSB data, d>", the
corresponding USB and LSB frequencies for each of these channels, and the frequency bins
corresponding to the desired SSB spectrum.

To fully define each of these spectra, we require a set of frequencies representing the
channel centers, f, and another set representing the width of each channel, Af. The
SSB, USB, and LSB spectral channels can then be represented by the vectors £, Af5%5,
FUSBW A (USBW (LSBW g A FLSBW,

For each individual spectrum in d”’w, assume that the USB channel centers are sorted
in ascending order while the LSB channel centers are sorted in descending order such that
f; LB flLSB W The individual sets of frequencies are stacked together end to end in
the same manner as d*" to form fY5BW and fLSBW Likewise, assume the SSB channel
centers are sorted in ascending order. The USB and LSB channels for each spectrum are
not independent; both correspond to an underlying set of IF channel spacings used in the
spectrometer (Equation 4.2). Therefore, we must have Af; LSBIW — A fl.USB W,

From these vectors, we can easily calculate several vectors corresponding to the edges

of each channel, such that the ith channel covers the frequency range c; to ¢, ;:

SSB _ 1A £SSB -
ssp A — A f; fori=1

fP5B4+ 3AfF fori>1
USBW _ 1 A gUSBW
FAf fori=1
cUSBW — (4.21)
FBW L IAFHSEW fori > 1
LSBW | 1 ¢(LSBW L
assw _ )1 +5Af; fori =1

fLSBW 1AfLSBW fori > 1.

\

As with the frequency vectors, the USB and SSB channel-edge vectors are stored in ascend-
ing order while the LSB vector is sorted in descending order such that CLSB Vs ciLff W
within each spectrum. If there are N channels in a particular spectrum, there will be

(N + 1) values in the channel-edge vector.
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4.4.3 Aligned SSB and DSB Spectra

Using the notation of Section 4.4.2, we can now define the concept of “frequency-aligned”
spectra from Section 4.3 more precisely. In order to use Equation 4.3 for the convolution
matrix, the edges of each DSB channel must match the edges of two channels in the SSB
spectrum, one for the upper sideband, and one for the lower sideband. Figure 4.3 gives an
overview of how we can resample the spectra to make this happen. The top plot shows the
spectrum as measured in the spectrometer; a particular channel (green) is measured at an
absolute IF frequency of f,. When converted to a DSB spectrum (second diagram), there is
ambiguity about the actual frequency of the observed channel. One way to represent this
observation is to plot the spectrum with two frequency axes. The LSB axis, shown at the
top of the plot, increases to the left while the USB axis, bottom, increases to the right. The
green channel appears at a frequency offset of f, relative to the LO frequency, fro, shown
at the left edge of the plot. When deconvolving the spectrum, the power in the green
channel could be assigned to the lower sideband, to the upper sideband, or split between
the two, as shown by the light green channels in the two SSB spectra at the bottom of
the figure. The bottom diagram corresponds to the SSB spectrum sampled on the desired
output channels, and the third plot shows that same spectrum, resampled onto channels
that are aligned with the DSB spectrum. Note that the LO frequency falls on the boundary
of a channel in the resampled SSB spectrum, as required by Equation 4.24. For simplicity,
the step of resampling the DSB spectra to match the SSB channel width is not shown; if
needed, it would represent an additional step between the first and second plots.
Converting these concepts into equations, we can say that LSB channel i aligns with

SSB channel j if

ciLSB = cfﬁ} and (4.22a)
i = c°F, (4.22b)

and that USB channel i aligns with SSB channel k if

cl-USB = c,‘fSB and (4.22¢)

cHSP = 2. (4.22d)
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Figure 4.2: Generating frequency-aligned spectra.
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Figure 4.3: Spectral definitions. The top plot shows a DSB spectrum, with two frequency
axes corresponding to the possible frequencies of the observed channel. The LSB axis, top,
increases to the left while the USB axis, bottom, increases to the right. In order to be aligned
with the DSB spectrum, the SSB spectrum (bottom plot) must have channels with edges
that match either the LSB channel limits or the USB channel limits in the DSB spectrum.

We define the DSB and SSB spectra as frequency-aligned if values of j and k can be found
to satisfy these equations for every value of i.

From Equations 4.2, we know that

fir = fro — frss = fuss — fro,

so that for any frequency in the DSB spectrum, the corresponding LSB and USB frequencies
are related by the equation

frsB = 2fro — fuss-

In particular, this equation can be applied to Equation 4.22a to give
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LSB _ USB _ _SSB
¢;7" =2fro—¢ 7 =¢jq-

Substituting Equation 4.22c for ¢ gives
2fro0 — ci”% = ¢ (4.23)

In order to simplify this result further, assume that the channel size is constant across
the SSB spectrum (Af?°B = Af$5). In that case, any two channel boundaries in the SSB

spectrum must be separated by an integral number of frequency steps

SSB SSB _ SSB
G —Cn = NAf;””,

where N is an integer. Combining this with equation 4.23 yields the important result

2f10 — 3B — 3B _ NAFSP 5o that

N
3B = fro+ EA £558, (4.24)

In other words, in order for the SSB and DSB spectra to be frequency aligned, the LO
frequency must either fall on a channel boundary or in the center of a channel in the SSB
spectrum, as shown in the third plot in Figure 4.2.

One way of understanding this constraint is shown in Figure 4.4. RF downconver-
sion essentially “folds” the spectrum around the LO. The two sidebands are then added
together and integrated over discrete channels to form the resulting double-sideband spec-
trum. Deconvolution attempts to “unfold” this process to recover the original spectrum,
albeit in a channelized form. Intuitively, the DSB and SSB channels can only be frequency
aligned if the SSB channels are set up so that the LO frequency (the folding line) occurs at
the edge or the center of a channel.

For a single observation, it is always possible to find a set of SSB channels that meets
this requirement. In fact, given that N in Equation 4.24 is a free parameter, there are in
principle an infinite number of sets of SSB channels that would satisfy this requirement,

each with slightly different channel width. However, this freedom disappears when the
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Figure 4.4: Convolution as spectral folding. The top diagram shows a notional SSB spec-
trum containing four peaks. If we consider an LO frequency of 226 GHZ (dashed green
line), then two of the peaks are in the LSB (blue), and two are in the USB (orange). Side-
band convolution can be viewed as a “folding” of the spectrum about the LO frequency
such that a mirrored version of the LSB is superimposed on the USB. The spectrum taken
at the IF output of a double-sideband receiver (such as Z-Rex) can be represented by the
black line in the bottom plot. At each IF frequency, the power from the LSB is added to
that of the USB, and the contribution of each sideband cannot be determined from a single
observation. (See Figure 4.6 for an example of how this ambiguity can be resolved.)
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remaining constraints (Equations 4.22b and 4.22d) are incorporated. Equations 4.22a and

4.22b can be rewritten

CLSB SSB _ SSB+AfSSB

1 C]+

oSSB _ (LSB _ .LSB LSB
;7= =6 EAY e

The second equation can be substituted for C}ss B in the first, giving

LSB _ LSB LSB SSB ,
;7" =77 = AT 4 Af

1

AfESB = Af35B, (4.25a)
Likewise, equations 4.22d can be written as
cUSB 4 AfFUSB — (SSB | A fSSB,

which can be simplified using Equation 4.22¢ to produce a similar results for the USB
channel sizes:

fLISB AfSSB (425b)

Equations 4.25 require that the DSB and SSB channel sizes be the same width, removing
the flexibility introduced by the value of N in Equation 4.24. Nonetheless, for a given DSB
spectrum and LO setting, there is always a set of SSB channel spacings satisfying these
requirements, allowing the simple model presented in Section 4.3 to be applied.

However, while this approach works for a single DSB spectrum, in general no set of SSB
channel spacings can be found that would satisfy these constraints for multiple DSB spec-
tra. The only way to achieve this goal would be to choose LO settings that were multiples
of Af§58 /2. Not only would this significantly complicate the observing process, but such
a choice would adversely impact the quality of the deconvolved spectrum, as discussed at
the beginning of Section 4.4.

Therefore, is necessary to add an extra step to the deconvolution. Equation 4.4 proposes

a model in which the SSB and DSB spectra are linked by a simple convolution matrix M,
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comprised of ones and zeros. This simple form of M can be maintained if s is resampled
onto frequency-aligned channels; however, there must be N,,; resampled SSB spectra, one

for each DSB spectrum. Let the n'" such spectrum be represented by
sMR — g . g (4.26)

where S is a matrix that resamples s according to the method represented by Equation
4.19. Note that s® only needs to include frequencies that are part of either the upper or
lower sidebands of the corresponding DSB spectrum.

R must have channel spacings equal to those in the nth DSB

Under this formulation, s
spectrum. However, it does not make sense to use channel spacings considerably smaller
than the underlying “master spectrum,” s. The resampling calculations are not meaningful
for that case, plus it increases computing time without producing any improvements in the

final spectrum. Therefore, we resample the DSB data to give it channel widths similar to

those in s. In an analogous fashion to Equation 4.26, this can be represented as
d°mR _ p() . go(m) W (4.27)

where D) resamples the DSB data according to Equation 4.19.

Each of the resampling equations can be simplified by stacking the spectra end to end
to give vectors sk and d%, containing all of the individual resampled SSB spectra and re-
sampled DSB spectra, respectively. The individual resampling matrices, $) and D, can
likewise be assembled into matrices, S and D. (See Figure 4.5.) The resampling equations

can be summarized as

sR=§.sand
(4.28)
dO'R - D. dO,W.

4.4.4 Convolution Model with Non-Aligned Spectra

With these changes, the model of Section 4.3 becomes

dR = MR . R, (4.31)
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Figure 4.5: Assembling resampled s(")'R (top) and d°R (bottom) into single vectors,
along with the associated resampling equations.
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where MR keeps the simple zero-or-one form described in Equation 4.3, and markers have

been added as a reminder that dR should be compared to d°R not d*W.

4.5 Incorporating Unequal Sideband Gains

In deriving the simple models of the previous sections, several important effects were ex-
cluded. Now that the basic aspects of the model have been described, it is time to incorpo-
rate those modifications, starting with the receiver’s sideband gains. The results of Section
2.1 demonstrate that the signals from the two sidebands need to be treated separately in

the presence of unequal sideband gains. We can rewrite Equation 2.14 as

Ty = (1—7) T35 4 (14 9) TP, (4.32)

(LSB) _ LSB
= Usrc’?colderc

where 75, and 77,14 have been incorporated into each term by defining Tj;
and TZ(USB) = NsreNeotd THSE.

The derivation in Section 2.1 considers only the output of a single spectrometer chan-
nel. It is relatively easy to generalize the results to cover multi-channel spectra taken at a
variety of LO frequencies, but it will require some additional bookkeeping. In particular, vy
cannot be represented as a single, fixed scalar. Instead, the sideband-gain imbalance must
be treated as a frequency-dependent function, 7 (fro, fir). Experience with these receivers
indicates that 7y changes relatively slowly with frequency, allowing us to approximate it as
a series of flat gains represented as the components of a vector, 7.

The formalism developed for previous models (e.g., Equation 4.4) can be applied by
noting that spectra at the CSO are recorded using the T’} scale [Peng, 2002]. Therefore,
we can associate Equation 4.32 with a single channel in the modeled DSB data, d® while

#(LSB) USB)

T, and Tz( are just the appropriate channels of s&:

dE”)’R = [1 =7 (fro. fir)] S](”)’R + [1+ (fro. fir)] Sjga)'Rr (4.33)

Assume that channel i falls in the a'" DSB spectrum and that « changes sufficiently slowly
that all of the a'" DSB spectrum can be modeled using a single value of the sideband gain,

7*. Then, as before, we can use a convolution matrix to generate a set of predicted data:
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Figure 4.6: As shown in Figure 4.4, a single DSB observation cannot determine which
sideband produced a given peak; however, that ambiguity can be resolved by performing
additional observations at other LO frequencies. Here, the top plot shows the true SSB
spectrum, and the green line (marked “LO 1”) corresponds to the LO used in Figure 4.4.
The black dashed line in the lower left plot corresponds to the spectrum that would be seen
using that LO. By shifting the LO to a slightly higher frequency (“LO 2”), we can resolve
the sideband ambiguity. As shown by the orange arrow, peaks in the USB will move to
lower IF frequencies while LSB peaks will move to higher IF frequencies. The spectrum
that would be generated using the higher LO setting is represented by the black line in
the lower right plot. Due to peak blending, the original sideband for each peak cannot be
determined by simple inspection, but the algorithms described in this work can be used to
estimate the original SSB spectrum.
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a0 = ¥ [ =) MO 4 (14 97) MYEOR] SOF, (4.34)
j

This result also includes the appropriate resampling to ensure that the SSB and DSB chan-
nels are frequency-aligned (Section 4.4.1).

To accommodate the unequal sideband gains, the convolution matrix has been divided
into two parts, corresponding to the downconversion from the different sidebands. Con-

MUSB,R

version from the upper sideband is represented by , where

1 if fiUSB,R — f:SSB,R

MoPR = e (4.35a)

0 otherwise

Likewise, lower-sideband conversion is represented by M LSBR \here

1 iffiLSB’R — f.SSB’R

MZ.LJ.SBfR = I (4.35b)

0 otherwise

Comparing these definitions to Equation 4.3 demonstrates that these matrices are just the
single-sideband versions of the previous double-sideband deconvolution matrix.
Rearranging Equation 4.34 and converting to matrix form gives the slightly simpler

result

J@OR _ <M2(a),R 4 a4 MA(a),R> (@R (4.36)

where we have defined
MER — MUSBR | pfLSBR 514
(4.37)
MAR — pUSBR _ pfLSBR.
To generalize this to the full set of DSB data, we can define a sideband-gain matrix, I R
with the individual sideband-gain parameters arranged along the diagonal as shown in

Figure 4.7.

Equation 4.36 can then be seen to be the ' component of the more general equation

dR = (M*R + R . MAR) . $R, (4.39)
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(4.38)

Ik =

Figure 4.7: Sideband-gain matrix, I'X.
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which can be further simplified to
dR = MR . gR (4.40)

by using the definition

MR = MER TR MAR (4.41)

In subsequent sections, we derive methods for finding the best-fit values of the sideband-
gain parameters for a given set of DSB data. In the calculation, it is important to have a
compact way of representing the unique elements of I'® (namely, the N, components of 7).
To assist in that calculation, we define the set of truncated identity functions, 12R which
are NB . x NE , matrices with ones along a section of the diagonal and zeros elsewhere.
The a'" matrix, 1R, has ones along the diagonal in the positions corresponding to the
channels in d® that are modeled using the a' sideband gain, 7". (See Figure 4.8.)

Thus, the series of matrices looks like

'110 0 1010 0
Lo Lo oo
JUR _ 019 0 2R _ Ol_]i_} 0
0 0 10| 0 0 10|
L — L —
1010 0
L — _
. 001 o
o, INeR = L_1 . (4.43)
0 0 11
L —
For later calculations, it is useful to note that
1R . 1bR — qaRs (4.44)

This definition allows us to write the sideband-gain matrix as

Y
R=Y ym1ok (4.45)
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00 0
| |
:0 0_ 0: 0 0 0 0
00 0]
00 0
| |
0 0 :00_ 0} 0 0 0
i o
00 _ 0y ____
TLl 0 0
| |
1%R — 0 0 0 }Ol_ 0: 0 0
| . |
00 1y
JFo 0 0]
| |
0 0 0 0 Io 0‘ 0{ 0
00 0]
o0 o]
| |
0 0 0 0 0 0 :0 0_ OI
00 0

Figure 4.8: Sample truncated-identity matrix (1%%). All elements are zero except for a few
ones along the diagonal (shown in red). These positions correspond to the elements of dX
that are affected by the value of the a'* sideband gain, ".
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For simplicity, our implementation of this model uses a separate sideband gain pa-

rameter for each DSB spectrum (N, = N,, ). However, it is easy to use fewer or more

Y obs
sideband-gain parameters by modifying the 1#® matrices accordingly. This might be par-
ticularly useful if one of the sidebands contains strong atmospheric lines, which can sig-
nificantly alter the atmospheric opacity over a small frequency range. The impact of such

lines on the final deconvolved spectrum could be minimized by assigning additional side-

band gains to cover the affected frequencies.

4.6 Spectral Baselines

DSB spectra often have baselines that must be removed before further analysis. These can
be caused by instrumental artifacts in the spectrometer, imperfect subtraction in the off-
position, and standing waves in the optics or IF processing equipment. These are usually
assumed to be well represented by low-order polynomials, although the third effect in
particular can add a sinusoidal ripple to the baseline.

Previous line surveys usually removed these baselines by fitting low-order polynomi-
als to the individual DSB spectra and then performing the deconvolution. However, it
is often difficult to separate artificial baselines from actual emission, particularly in line-
confused spectra. If we instead include the baseline fit as part of the deconvolution, we
can take advantage of all available information to try to produce the most accurate decon-
volved spectrum. Therefore, in addition to the convolution introduced by the downcon-

version, we now add a baseline component to the model:
d® = MUR . sR 4 ypBR, (4.46)

where BR represents the set of baselines, sampled onto the same channels as dX. The
factor of 173 should be set to either 0 or 1 and merely provides an easy way of removing the
baseline term from the model if desired.

Our model allows the baseline to include arbitrary functions of the channel number (or

equivalently the channel frequency), but it must be linear in those functions. The baseline
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for the i*" channel of the a'" DSB spectrum can therefore be represented as

B =2 bnCi (i)

where CR* (i) is a channel- or frequency-dependent function, and the optimization process
is used to generate the coefficients bj;. With an eye toward maintaining reasonable com-
putation times, the model does not allow CX*(i) to contain any adjustable parameters to
be fit. In particular, sinusoidal components with an adjustable period cannot be included,
which seems consistent with the approach taken in previous surveys. Our deconvolution
software uses only a low-order polynomial for the baseline; however, in principle, any

fixed function of spectrometer channel frequencies could be used.

The baseline terms can be easily incorporated into the previous model by defining a
matrix, C®*, that contains the result of evaluating each of the C,If’” (i) over all of the chan-

nels of an individual DSB spectrum:

(1) 6 (1)
cl?]?f“: cRe) ckap) ... (4.47)

As a simplistic example, consider representing the baseline as a second-order polynomial

using the following functions of the channel number, i:”

Cf,ll (l) — Z’O/
CY (i) = it, and (4.48)

Ci (i) =i~

Then the the baseline for the a'" DSB spectrum will be equal to

These functions are chosen for illustrative clarity; however, these are not actually the appropriate functions
to use for a second-order fit. To enable faster convergence and more accurate fits, the baseline functions should
be orthogonal to each other. (See Section 4.6.1.)
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10 1! 12 1 1 1
20 2! 22 b 1 2 4 b
grr=1 30 3l 32 pl=11 3 9 b |
: bs : be
(N5&) (NS (NBg) 1N (NEG)

where b{ represents the magnitude of the zeroth-order term, and so forth. The full set of
baselines can be generated as a single vector with the same length as dX by joining all of
the baseline coefficients into one vector, and creating a block-diagonal matrix of the CcRa

to give

/[\
‘BRIl : : T
CR1 I o I 0 b for spectrum 1
(N I L o 0
gr2 | = 0o i cR2 i 9 - | b forspectrum?2 |, (4.49)
I T T L
o i 0
which can be expressed in compact form as
R = CR.b. (4.50)

4.6.1 Orthogonal Baseline Functions

We use second-order polynomials as the highest-order function for our baseline fits, as
those are sufficient for most of the spectra from the CSO 4-GHz AQS, as long as obser-
vations are taken under reasonable conditions. While the simple set of baseline functions
presented in Equation 4.48 includes polynomials up through second order, that formula-
tion creates difficulties for the optimization routine. For instance, the mean value of each

of the three functions is non-zero; therefore, the optimizer could represent a constant offset



107

in a spectrum using any of the three functions, or some combination thereof. This equiva-
lence makes it difficult for the optimizer to find the best set of parameters, forcing it to put

considerable effort into searching through different combinations of baseline functions.

This problem can be eliminated by choosing baseline functions that are orthogonal to
each other. For convenience, the equations can also be chosen to have unity normalization,
resulting in a set of orthonormal baseline functions. If the spectrum under consideration
spans a channel range from i = {imin, - - - imax }, the orthonormality requirement can be
represented by the equation

Lmax

Y A =6, (4.51)

i=ipin
where fi(o), fi(l), and fi(z) represent the constant, linear, and quadratic baseline functions,
respectively, evaluated at the i channel. These three functions can be represented in the

most general terms as

fz’(O) — ¢

i—i
V=1 < - o) +1o (4.52)

0

.. N2 ..
1—1 1— 1
fi(z) = qZ < n ) 111 < n ) ‘JO/

where i, and n, represent a reference channel and normalization constant, respectively,

that can be chosen to keep the factors in parentheses from getting too large. The coeffi-
cients (co, I1, lo, 42, 91, and qo) can be set by requiring that Equation 4.51 be satisfied for any
combination of fi(o), fl.(l), and fi(z). This represents a system of six nonlinear equations with
six unknowns. There are several self-consistent sets of coefficients that satisfy these con-
straints; we arbitrarily choose the set in which all of the leading coefficients (co, I1, and 42)

are positive, yielding a unique solution (for arbitrary i, and n,):
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1
VA1
_ 2\@710
/DA 1) (A +2)
_ \/§<imax + imin - Ziﬂ)
VAL (AT +1) (A +2)
B 6+/5n>
2 A D) M1+ A (B 1 2) (A1 3)
6\@(imax + Iyin — 2i0) 1,
V(A —1)Ai (Ai+1) (AP +2) (AP +3)
V5 (—imax + ax + imin + 4imaximin + 12 — 6 (imax + imin)io + 6i2)
V(A= 1) Ai (Ai+1) (Ai +2) (Ai +3)

co =

h

lo

f=—

qo =

7

where Ai = i4x — iin. These equations can be (somewhat) simplified by an appropriate
choice for i,. To satisfy the orthogonality requirements, the linear and quadratic terms

must have zero means across the spectrum, implying

Lmax Umax

Z fi(l) - Z fi(Z) =0.

1=lmin 1=lmin

For the linear term, this can be easily satisfied by setting i, to be the midpoint of the spec-
trum, i, = % (imax + imin)- Using n, = %Ai helps to keep the coefficients of reasonable order

even for larger spectra. With these substitutions, the coefficients for the polynomials are

1
R/
L V3Ai
/BBt D) (A1 2)
I =0
) 3B (4.53)
T /i DA+ 1) (B 1 2) (A +3)
71 =0
_ V5AI (Ai +2) _ (Ai+2)
O /- Bt (dit2) (Bits) 3 ™

The set of orthonormal baselines represented by Equations 4.53 are used in the current

implementation of the deconvolution algorithm.



109

4.7 Normalization of Spectra

In the following sections, it is convenient to normalize the predicted and measured DSB

data sets by their uncertainties such that

dR
dNR = —z and
o
o (4.54)
JONR _ d;’
i - R’

i
where o} represents the uncertainty in the i channel of the resampled DSB spectrum

(Equation 4.20). To simplify these equations, we define a normalization matrix, AR con-

sisting of ULR along its diagonal,

1
oF 0 O 0
0 = 0 0
AR — 2 , (4.55)
0 0 0
0 0 0 =
UZ]S]DSB
in which case dV® and d”MR can be written as
dVR = AR . gR and
(4.56)
d*NR = ATR . gk,
Similarly, we can also normalize the baselines:
pNE = ATR . R, (4.57)

4.8 Full Convolution Model

Rather than explicitly including the normalization and SSB-resampling matrices in every

equation, we define normalized convolution matrices that incorporate AR and S:
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MENR — goR MIR g
MENR _ A0R pAfER S, and (4.58)

MA,NR — A‘T’R . MA,R .S.
Because I'® and AR are both diagonal matrices that can be safely interchanged during

multiplication, M LNR may be written in terms of M ENR and MANR.

MUNR _ pfENR | PR AANR (4.59)

To simplify equations, the normalization matrix can also be pulled into CX to give

CNR — AU’R . CR

so that

pNR = CNR . p (4.60)

The full convolution model can be written as

d® = M"R . sR 4 5pCR . b, and

(4.61)
dNR — Mr,NR s+ WBCNR . b
For later reference, it is useful to expand d™® in terms of the unknown parameters:
dNR — [ME'NR + <27“]1“'R> -MANR| s 4+ ypCNR LB, (4.62)
a

The adjustable parameters that can be used to optimize the value of d"¥ are v, s, and b.
The remaining quantities are fixed matrices that can be calculated once during the setup

phase of the deconvolution and do not need to be adjusted during each iteration.
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4.9 Figure of Merit

As outlined in Section 4.2.1, the sideband deconvolution can be performed using an opti-
mization routine that seeks to minimize an error function by adjusting the values of v, s,

and b in Equation 4.62. We define our figure of merit to be a slightly modified version of

(ar %) (B
XKoot = M o~y +AssT s FpAp Y s HAcy -y, (463)
T () (o)

e

i
where the first term represents the typical definition of x?, and the superscripted T indi-
cates the matrix transpose. We can further simplify this equation by absorbing o} into the
numerators of the first and third terms. By defining the normalized DSB spectra (Equa-
tion 4.56) and the normalized baselines (Equation 4.57), we can rewrite Equation 4.63

as

ot = Ay (dNRT _ do,NRT> . (dNR _ do,NR) T AgsT s+ WBABﬁNRT BVR £ Ay T .
(4.64)
The final three terms can be used to adjust the solution found by the optimization routine
while the various A factors control the strength of each of these effects.

If Ag > 0, the second term, Ags” - s, encourages the optimizer to minimize the norm
of s unless the data require otherwise. In order to increase the magnitude of a given s;,
the optimizer must determine that the corresponding decrease in the first term overcomes
the penalty represented by the second term. In particular, this term forces s; to zero if
that frequency is not included in any of the DSB spectra; otherwise, such channels are
unconstrained and can cause the optimization to become unstable.

Similarly, the third term in Equation 4.63, 7zApBY RT. BN, forces the routine to min-
imize the norm of the baseline. Using the normalized baselines, ™%, prevents the algo-
rithm from working too hard to fine-tune the baseline of an inherently poor spectrum. In
principle, balancing the value of A with respect to Ag should encourage the algorithm to
preferentially attribute flux to the single-sideband spectrum if possible. In practice, how-
ever, we have not found this necessary and usually set Ag = 0. As discussed previously

(see Equation 4.46), the g factor can be used to turn off the baseline term. The final term,
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Acy! - 7, pulls the sideband gains as close to to unity as possible, although we often use
Ag = 0 as well.
To simplify calculations, we use the following equations to indicate the individual

terms of Equation 4.64:

1= Ay (aMR - d?’NR)Z, (4.65a)
X5 = As (sj)Z, (4.65b)
Xé,k = 1B\B ( kNR)Z, and (4.65¢)
X =Ac (1) (4.65d)

Equation 4.64 can then be written

NDSB NSSB NDSB

Xmod ZX01+ ZXS]+ ZXﬁk+ZX'ym (466)

For use in later sections, we write each of these quantities in terms of the model parameters.
Equations 4.65b and 4.65d are already expressed in that form while Equation 4.65¢ can be

easily expanded via Equation 4.50. Using Equation 4.61, we can write Equation 4.65a as

2
X = Ay [(M?kaR + Z YL My NR) sp+npChRb; — dPNR |

where repeated indices on matrices and vectors represent implicit sums. Since the 2 index

on 7* and 17 is non-standard, that sum is represented explicitly.

4.9.1 Continuation Solution

In early tests of the deconvolution algorithm, we found that the optimizer sometimes got
stuck on a clearly incorrect solution. It appeared to be trapped in a local minimum, with
no way to explore the rest of the x2 . space to find an improved solution. To help guide
the optimizer to a reasonable set of parameters, we have implemented a “continuation

solution” method. The first term of sz »4 contains a multiplicative factor, Ay, that can be
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used to implement the continuation solution. Initially, A, is set to some small value so that
the other terms dominate x? ;. The optimizer generates a solution for that small value of
Ay; then A, is increased and the previous solution is used as the starting point for the new
optimization. The process is repeated until A, = 1.

The value of the optimization parameters at the end of the first iteration is determined
by the Ag, Ag, and A terms, presumably causing the parameters to go to zero (or at least to
a well-understood value) at a point representing the global minimum of the x2, , surface.
If Ay is increased slowly enough, the position of the global minimum in the parameter
space will move only slightly for the next iteration. The optimizer will start near this
location, which should help it to find the new global minimum rather than wandering off
to a different local minimum. We have found that adjusting A,in logarithmic steps

log,, A?“" —log, )\;’gi”
N -1

steps

Ay = {AF™, 100 10PAF A L, AR} with AL =

works better than linear steps

max __ Amin
X

Ay = LA AT AL, AR 2AA Y, L AP with ALy = ﬁ

steps

In general, AY"* should be equal to 1; setting A?gi” = 107 with N;,,, = 12 logarithmic

teps

steps worked well in our testing.

410 Optimizing x? .

When selecting an optimization method to minimize x2, ,, there are several general fea-
tures of the model to keep in mind. First, the spectral values in the single-sideband spec-
trum are multiplied by the sideband-gain parameters (Equation 4.61), making the prob-
lem nonlinear in its independent parameters. Because the problem is nonlinear, there is
no guarantee that the minimum identified by the algorithm represents a global minimum,
rather than a local minimum. Second, the problem is typically over constrained, as most

line surveys have considerably more constraints (represented by the number of elements
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in d”") than independent parameters. This is a desirable situation that improves the de-
convolution routine’s ability to recover the full spectrum. Finally, when fitting such a large
number of parameters, it is easy for the optimization algorithms to wander off in entirely
the wrong direction.®

The most direct approach to minimizing x2, , is to use an algorithm capable of finding
the minimum (or maximum) value of an arbitrary multi-dimensional function. Usually
this is known simply as parameter optimization, but we will refer to it as “direct optimiza-
tion” to distinguish from the other optimization methods discussed below. Not surpris-
ingly, nonlinear parameter estimation is commonly encountered in scientific computing,
and there are a variety of algorithms designed for this purpose [see, for example, Press
et al., 1992, Chap. 10].

Another method is to take the derivative of x2 , with respect to each of the inde-
pendent parameters and set the results equal to zero. This generates a set of equations
a%_”d = 0, where x; represents the set of independent parameters. Solving for the x; yields
a set of parameters corresponding to a local minimum or maximum. As with direct opti-
mization, nonlinear root finding also represents a major branch of numerical computing,
and there are many algorithms devoted to this purpose [e.g., Press et al., 1992, Chap. 9].

Finally, we have investigated the viability of a hybrid model, using a mix of direct-
optimization and root-finding algorithms. As seen in Equation 4.61, the equations under-
lying this model come tantalizingly close to being linear. If the sideband-gain parameters
could somehow be known a priori, the remaining parameters would be related in a lin-
ear fashion. We capitalize on this fact by using a direct-optimization routine in an “outer
loop” to find the values of the sideband gains. Inside that loop, we treat these parameters
as fixed, allowing us to apply linear root-finding techniques. These have the advantage
of being very fast; in addition, for a given set of sideband gains, the linear problem has a

unique solution corresponding to the global minimum of the x2, , surface.’

81f one were to imagine the chi-square surface in terms of its geographical analog, the algorithms have a
particularly hard time dealing with broad, flat “plains” instead of deep, well-defined “bowls.” The algorithm
dutifully explores this plain, eventually finding its lowest point, rather than crossing the nearby ridge to find
the even deeper valley beyond.

9Ultimate1y, however, this is still a local minimum, as the values of the sideband-gain parameters are de-
termined by a nonlinear optimizer.
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In principle, any of these methods should produce the correct answer; however, as is
often the case with scientific computing, stability and efficiency are important issues. In
practice, we have had the best results using the direct optimization and hybrid approaches,
although the root-finding method works exceptionally well if the sideband gains are in
fact known. In both the direct optimization and the hybrid method, the tendency of the
direct-optimization algorithm to wander off from the desired solution can be mitigated by

selecting small steps for A,.

In the following sections, we discuss each of these approaches in more detail and de-
scribe the implementation of each that we have developed using MATLAB,!° which pro-

vides libraries of general-purpose functions for optimization and root finding.

Usually, the algorithms require a set of parameters to use as the starting point for the
tirst iteration. Setting all of the parameters to zero has a certain aesthetic appeal, as it rep-
resents an unbiased method of initiating the algorithm. However, we have found some
instances in which the algorithms have difficulty moving off of zero. Therefore, we typi-

cally use a set of small random numbers for the first iteration.

Several of the MATLAB functions need information about the relevant derivatives, ex-
pressed in the form of a Jacobian matrix, to update the parameter values from one iteration
to the next. MATLAB can either estimate the Jacobian numerically, or the user can provide
a function capable of calculating the Jacobian. As demonstrated in the following examples,
calculating an analytic Jacobian can be tedious; however, it dramatically reduces execution
time. Otherwise, MATLAB is forced to generate a discrete approximation to the Jacobian.
On current computing hardware, numerically estimating the Jacobian is not feasible for
realistically sized data sets. However, MATLAB’s ability to numerically estimate the Jaco-

bian provides a valuable method of validating the analytic results.

10While this discussion focuses on MATLAB, most numerical-analysis packages contain similar capabilities,
or routines can be built from scratch using the advice of references such as Press et al. [1992].
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411 Direct Optimization of )(iwd

From an implementation perspective, directly minimizing x? , is simple. While MAT-
LAB offers several general-purpose optimization routines, we have found the 1sqnonlin()
function to be particularly useful. It is part of the MATLAB Optimization Toolbox, and it

is specifically designed for least-squares problems of this form.

The 1sqnonlin() function assumes the user seeks to minimize a multivariable function

F, which can be represented as the sum of the squares of a set of functions, {f; }:

Find x that minimizes F (x) = ) _[f; (x) .
i

By comparison to Equations 4.65 and 4.66, x?, ; can be cast in the form required by 1sq-

nonlin() if we make the following identifications:

foi(s,b,y) = \//\7 (leR — d?'NR) , (4.67a)
fsi(s) =/As (Sj) , (4.67b)
fox (b) = \/17373( fR), (4.67¢)
and o (v) = VA6 (v"). (4.67d)

In that case, x2,; is equal to the function F used by 1sqnonlin():

NDSB NSSB NDSB

Xnoa = F(s,b,7) = Zf01+ Zfs]+ Zfﬁk+2f7m

One interesting feature of 1sqnonlin()is that it optimizes x by analyzing the full vector
of values comprised of {f; (x)}, rather than just the scalar quantity F (x); therefore, the
vector of values that should be returned to it is

fsa o foNg, fer oo fenr, ifur o fan, ) . (4.68)

DSB : DSB :

(o o
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For this problem, the Jacobian is defined as

opt _ af)(,i

= (469)

where f, ; represents f, i, fs,i, fpi, Or fy,, and x; represents the unknown parameters
x:<51 SNSSBEbl chueff,)/ ’)’7> (470)

If the unknowns are sorted in the order shown in Equation 4.70, then the full Jacobian can

be written as a block matrix:

oo A o
ds : ob : 9y
ds : db : 9y
JOPE = | P o , 4.71)

Fs b oy

: o : , o .
where each of the entries represents a matrix in its own right. For instance, a{f’ is a matrix

— afo,i
- 85/. :

in which component [%} -
ol

In the direct-optimization case, the Jacobian matrix is easy to calculate as all of the pa-
rameters (s, b, and v ) are assumed to be independent from one another. From Equations

4.67 it is clear that many of the sub-matrices in the Jacobian are simply equal to 0 since they

do not have any dependence on the differentiation variable:

%: %:0
Y
g ofp _
s _ 9. 4.72)
ofy _ ofy _
3~ 3
o,

The first of the remaining elements, 35, can be calculated from Equations 4.67a, 4.61,

and 4.28:
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[afo] \/785 ( dONR>
= \//T"as] [MPNER 5],
:@(;ZM};NRS,(
_\/>ZMFNRaSk
_\/>ZMFNR5
_\/7M1"NR‘

To avoid repeating similar steps for each calculation, common derivatives have been cal-
culated in Sections A.1 and A.2 and tallied in Tables A.1 and A.2. The previous result can
be determined directly from Equation A.13.

The expanded form of d~ from Equation 4.62 can be used to determine %—;:

_ \/;TX [nirR . MONR s]i (by Eq. A.22),

where [1/R . MANR . 5] represents the i’ component of the matrix multiplication 1/-R

MANR g

From Equation 4.46, combined with Equation 4.50, it can be seen that d¥® has a simple

[afo} \/>3b (dNR & NR>

=115,/ AxCl)  (by Eq. A.14).

The derivatives for the remaining terms be calculated quite easily. Equation 4.67b gives

dependence on b:

ofs| _ 9fsi
ds 0s.
]
i
'c)s (4.73)

= V/Asdij
= V/Asl;.
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Similarly, Equation 4.67d allows us to calculate

ofy] _ 9fui
oy 97/
—0v' 474
Ga")/]

Equations 4.50 and 4.67c can be combined to give

] _
ob |~ ob,

-2 (5am)

= /1sAsCR  (by Eq. A.2).

Combining all of these results yields the full Jacobian for direct optimization of x2, .:

Jort _ Vst 0

SO SO URRRPE SR , (4.76)
0 S /meAsCNR 0
0 0 Acl
where
opt(y) _ iR afANR
JP = A [UR M sL. (4.77)

4.12 Optimization of 2, , via Nonlinear Root Finding

4.12.1 Nonlinear Equations

An alternative approach to minimizing x?2,, is to take the derivative of x2,_, with respect
to each of the independent parameters and to set the result equal to zero. This generates

a set of coupled, nonlinear equations; if a set of parameters (s, b, and ) can be found
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that simultaneously satisfies these equations, the solution represents a critical point (local

minimum, local maximum, or saddle point) in the an o4 Surface.

Taking the partial derivatives of x2, , with respect to s, and setting the result equal to
zero generates a set of equations that can be used to determine the values of the decon-

volved spectrum:

aXmod aXO i aX%J
Z s, Z = 0. (4.78)
] n

Similarly, the coefficients of the baseline terms can be found by taking derivatives with

respect to b,, and setting the result equal to zero:

0 aX ; asz
vad IRy abi —0. (4.79)

Finally, the set of sideband gains can be found by taking the derivative of x? _, with respect

to 7" and setting the result equal to zero:

d
aXmod 2 X‘” 2 aX'ym = (4.80)

The details of these calculations are reserved for Appendix A.3. The three conditions

shown above generate a set of nonlinear equations, which can be copied from Equations

A.23, A24, and A.25:
AR MINRT (GNR — goNR) 4 pgs = 0 481
X : ss =U, ( . a)
ysCNR" [AX (dNR - d"'NR> + AB;;NR} — 0, and (4.81b)
T
Ay (dNR _ d"'NR) RMANR g )t =, (4.81¢)

Note that the first line represents a vector equation corresponding to Nggz components
while the second represents N, coeff COmMponents, and the third represents N, equations

(n=1.N,).



121

4.12.2 Jacobian

As in Section 4.11, the Jacobian is relatively easy to calculate since all of the parameters are
assumed to be independent from one another. If the unknown parameters are sorted in the

order shown in Equation 4.70, the full Jacobian can then be written in the following form:

where Ly, Ly;, and L3, represent the ith components of the left-hand sides of the first,

second, and third lines in Equations 4.81, respectively. (Also see Equations A.27.) The

Jacobian

A28:

where:

0ds,, p
]nonlin _ aLZ % %
- s, ab, i 971 !
s, ob, : 971

is derived in Appendix A.4.1, with the result contained in Equations A.27 and

Inlin(L3,s) ]nlin(Lg,b) ]nlin(L3,’y)

]'n_lin(Llﬂ) = Ay KMLNRT + 2,),]'MA,NRT> iR . pIANR s] 4

l 1
Ay [MA,NRT QIR (MZ,NR AL do,NR)]

]?lin(Lz,W) — TIBAX |:CNRT . ]lj’R X MA,NR . S:| '

1

1

]ii;lin(Ls,s) = A KMF,NRT ER . pfANR 4 pgANRT giR MF,NR) ‘S} '
j
]i@lin(L3,b) — 773/\)( [CNRT . ]li’R . MA,NR . s:|].

1

]‘n'lin(Lg,,y) _ (AXST . MANRT iR AfANR o + Ac) 5.
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Nonlinear Optimizer (few parameters)

Linear Solver (fast)

2 2
Solves %:O and %:0
s ob

n n

Updated y m Predicted DSB data

Figure 4.9: The pseudo-linear optimization uses a hybrid approach, in which a fast, linear
solver determines the single-sideband spectrum and baseline parameters associated with
a given set of sideband-gain values. A slower, nonlinear loop iterates the values of the
small number of sideband-gain parameters to optimize the solution.

4.13 Pseudo-Linear Optimization of x? .

Equation 4.61 represents a nearly linear system linking the modeled DSB spectrum (dw)
with the desired unknown quantity, the SSB spectrum s (via Equations 4.28). The inclusion
of the unknown sideband gains (in I'R) prevents the equations from being truly linear.
However, if the gains were known, then the system of equations would be linear, making
it much easier (and faster) to solve.

Unfortunately, the sideband gains for a given receiver are not usually known. The de-
convolved spectrum that these algorithms produce is extremely sensitive to the precise
value of the sideband gains, making it unlikely that they could be determined to sufficient
precision via simulation or laboratory measurements.!! However, this observation sug-
gests a hybrid approach to the convolution in which the sideband-gain values are set by
an “outer” loop using the direct-optimization approach of Section 4.11. Each iteration of
the outer loop generates a trial set of sideband gains, v,,;.;, which can then be fed to a
linear “inner” loop as constants. (See Figure 4.9.)

The advantage of this approach is that from the perspective of the outer loop, x2,.,

is only a function of v, greatly reducing the dimensionality of the parameter space that

HThere is a small chance that a receiver might be stable enough for the gains derived in one deconvolution
to be used in subsequent deconvolution attempts. Given that the gains must be known to high accuracy, this
seems unlikely; however, since the linear method represents a radical improvement in deconvolution time,
it would be worthwhile to study this possibility. This is particularly true for the Herschel mission’s HIFI
instrument, since it could reasonably be expected to have a high degree of stability.
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must be searched by the nonlinear optimizer. In general, a survey contains tens, or at most
hundreds, of individual observations, so that the outer loop would only need to deal with
~ 10? - 10 free parameters in 7. In contrast, the requested SSB spectrum typically contains
~ 10° channels, each representing an independent parameter in the direct-optimization
method. Thus, a hybrid approach reduces the dimensionality of the parameter space of the
relatively slower non-linear optimizer by two or three orders of magnitude, presumably
with a corresponding increase in execution speed.

Unfortunately, this approach does increase the complexity of the analytic calculations
needed for the algorithms. In particular, the parameters returned by the inner loop are
entirely defined by the value of v, ;. ; set by the outer loop; therefore, the remaining pa-

rameters need to be viewed as functions of 4: s = s () and b = b (y). The Jacobian for

axiznud,i
oyl 7

the outer loop will not only include terms representing but also terms of the form

X0 O OXoni by . .
g’gzd" a%’} d Xa’gi‘“ ﬁ. Since the functions s () and b (vy) cannot be found explicitly, a new

approach to deriving the Jacobian is required.

4.13.1 Inner Loop (Linear)

For fixed v, the convolution model represented by Equation 4.61 is a linear system in the
unknown parameters (s and b). The inner loop minimizes x? by taking derivatives with
respect to each of the the free parameters and setting those derivatives equal to zero (an
approach similar to Section 4.12).

Since the inner loop has no control over the values of ¢, we drop the X% term from x2,

to generate the figure of merit used for this calculation:
’ NSSB 2 NSSB 2 NSSB >
Xim = 2 Xoit D Xa;+ Y Xipr (4.83)
i=1 j=1 k=1

where x2, X%, and X% have the definitions shown in Equations 4.65. As in Section 4.12,
the spectral value of each channel in the deconvolved spectrum can be found by taking the
derivative of x7, with respect to s and setting the result equal to zero (compare to Equation

4.78):

N _ = 0Xai | X,
ds,, _Zl.: ds,, +Z s, =0.
j
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The details of the calculation are shown in Section A.8.1.2, with the results contained in

Equations A.47:

/\XMF,NRT. (Mr,NR s+ ypCNR . p — do,NR) 1+ Ass =0 (A.47a)

npCNRT . (AX (MF'NR s+ ypCNR . — d"'NR) + ApCNR. b) —0. (A.47b)
These equations can be regrouped to gather like terms

(ARMINRE . MINR £ 261) -5 4 pA MENRD . CNR b = A MENRD . qoNR - (4.850)

A CVRT U MINR g 4 (A + Ag) CNRT . CNR = A, CNRT . goNR (4 85D)
B Ax 1B (Ax B Ax

allowing them to be represented in a more convenient block-matrix form:

t
AXMF,NR MINR 7\5115 nBA MENRT | ONR s
5 {

/I\

ﬂBAXCNRT MENR - ()‘x +Agp) CNRT CNR b

{

N . (4.86)

Solving this system of equations for s and b provides the optimal deconvolved spectrum

for the given values of v,,; ;-

4.13.2 Outer Loop

The outer loop seeks to minimize x2 , as given in Equation 4.64; however, rather than

being independent variables, s and b are viewed as functions of < by the outer loop. Since
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it uses 1sgnonlin() to find the optimal values of v, the outer loop returns data in the
structure indicated by Equations 4.67 and 4.68. The form of the Jacobian is still given by
Equation 4.69, but now the only independent parameters are the components of . We can

rewrite the four functions defined in Equations 4.67 to clearly show their dependence on

v:

dANR _ d‘.’fNR) ) (4.87a)

fsi(s (7)) =VAs s]-), (4.87b)
fex (b (7)) = /11BAB ( kNR) , and (4.87¢)
and fom (v) = VAc (7). (4.87d)

We can use a generalized form of the “chain rule” to find the elements of the Jacobian:

]outero_afol Zafﬂ,i%_i_zafﬂ,i%

i ds, o) | &= 9b, 9y’
outer S Z afS,z %
s, oy’
outer B Z afﬂz ab
db, aw
]outer Y af Vi
1 a')/]
The overall Jacobian for the outer loop has the form
]outer,o
]outer,S
gouter — | o . (4.88)
Inuter,ﬁ
Iouter,’y
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The functions s () and b (y) cannot be found explicitly, but they are defined implicitly
via Equations 4.85. These equations also contain the information needed for the Jacobian
of the outer loop, which can be extracted using a first-order perturbation analysis. If we let
Yo Sor and b, represent a solution to Equations 4.85, we can then approximate the deriva-
tive by calculating the changes in s and b that would be generated by a small deviation
from v ,. Mathematically, we represent this by rewriting Equations 4.85 with the following
substitutions:
Y= Yot 0V
s — S, + Js (4.89)
b —b,+6b.

As described in Appendix A.5, we can then simplify the results by gathering the coeffi-
cients of like powers of d7, Js, and 6b. The zeroth order terms (with no dependence on
d7, ds, or db) can be set to zero since they represent a solution to Equations 4.85. Since
we are looking for the first-order change in s and db, we can ignore any terms that have
second-order or higher dependence on the variations. This leaves a linear set of equations
that can be solved to find the changes in s and b that would result from small change in v
around 7 ,. The calculation is carried out in Section A.5, with the results given in Equation

A.36. If we convert those equations into a block-matrix format, we find

AYMENRT MENR 42610 ppA, MENRT . CNR ( 5s >
WB)\XCNR MENR 78 (A + Ap) CNRT | ONR ob
5}

where

r = —AMANEL TR (MINR s, 4 ypCVR b, — dONR) — A MENRT . STR . MANR s

0

While this result does represent the information needed to estimate the Jacobian, it

is not equivalent to having an analytic Jacobian since the system of equations must be
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solved again any time a new value of TR is provided. Fortunately, MATLAB provides a
mechanism for cases in which an analytic Jacobian is not available. The JacobMult option
of 1sqnonlin can be used in lieu of an analytic Jacobian; it allows the user to provide a
function that can return J -y, J T. y, and JT-7- y, where J is the Jacobian at the current
solution point, and y is an arbitrary vector of appropriate dimension.

By solving Equation 4.90, we can generate values for ds (d+) and db (v ) representing
the change from s, and b, caused by changing I'® by §TR. As the size of the variation

becomes smaller (6T R _, 0), we expect

Js. .
lim Js; (0y) = Za,syzjé'y] and

STR—0 ] @91
lim 6b; (6y) = Z ob; Loy |
STR50 v oyl v

We can use this approximation to estimate the value of J - Y. Letting f, ; represent one of

the functions from Equation 4.87 (fo, fs,i, fgi, Or f,,) gives
i = Z]z’jyj
]
_Z Ifyi Zafx,i 95y Zanlab
oyl S 95, 9y ob, 07/
_ v ) () v 95 by
— ]Zf)(,ijyj—’_;fx,ik <Z a,)/] ]) +folk (; a,y]y])

b
=Y A+ Y £ 85 (v) + Y £ 0by (y)
j k k

The final step relies on Equation 4.91 to yield the values of }; g%’}y]- and ), g%’;yj, which can
be found by letting ST® = y and solving for ds. (y) and 6b; (y). We have also defined the

matrices

(v _ afx,i

fol =
() _ Ofyi

fX ik — a k and
(b) _ Ofyi

=2,
xik = b,
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which can be calculated directly from Equation 4.87. Since this result is true for each of the

components of [] - y|,, it can be written as a simple matrix multiplication:
y = y+ 08 (y)+ £ b (y). (4.92)

The algorithm representing the outer loop must also be able to calculate JT - y, where
y is another arbitrary vector of appropriate length. However, we cannot follow the same

approach used for Equation 4.92:

I = 2Ty
]
= Z]jiyj
]
aXmod] Xmod] aSk aXmod] ab
N Z ( Z ds, 0 Z ob, Yi

% a’Y

() (s) 95k (v) 9By
it L Rk

In this case, the two unknown derivatives (gi" and > have a free index (i), whereas
Equation 4.91 sums over both of the derivatives” indices. In order to use Equation 4.91, we
would have to be able to pull individual terms out of those sums.

Instead, we can use Equation 4.92 to find individual components of [J . y].. We start
by defining a set of unit vectors,

07 =

1

Oais (4.93)

such that there are N, vectors, each with N, components, and 6” has a one in the a”
component, with zeros elsewhere. We can then use these unit vectors to pull out individual

columns of the Jacobian:

[J - 0] ZL]
:Z]jj5aj
]

= Jia-
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We can substitute this into our earlier equation for [J T. y|. to find

[]T : !/L = ;]ijTyj
:;]]‘iyj
:Z[I'ei}j%‘

j

=J-0-y. (4.94)

Thus, by applying Equation 4.92 once for each of the unit vectors 6%, we can build up the

value of | r. y, one component at a time.

Implementing this calculation in MATLAB can be done relatively easily. MATLAB
provides the mldivide function, represented in calculations by a backslash, \, for solving
linear equations of the form A - x = b. If matrix A and vector b are known, the unknown

vector x can be found using the command x = A\b.

Conceptually, A\b is analogous to A~! - b, except that it is implemented in a more
numerically stable fashion. In addition, mldivide can be used to solve A - X = B, in
which B (and hence X) are both matrices. The latter capability allows us to solve for all of
the 0s (6”) and 0b (6”) in one step.

Let r* represent the right-hand side of Equation 4.90, evaluated for dy = 6?. In that

case, we have 6T = 1%k, giving

"
7 -
= <—UB7\XCNRT .14R . pfANR ) ¢ (4.95)

where

o _/\XMA,NRT QR (M(l:,NR 54+ WBCNR b, — do,NR) .

/\XME’NRT 1R pfANR Sp- (4.96)

We define matrix R to consist of columns consisting of the individual »*,
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R = r1§1,2 va , (4.97)
Vil !

A Mr,NRT CMENR ) q A MENRT | ONR
L= A0 T..“. ............. 5 ...... B x Vol e (4.98)
A CNET - MENR iy (A + Ap) CNRT - CNR
then we can use mldivide to solve the matrix equation
L-X=R (4.99)
for X, which contains the values of Js (6”) and ob (6?) for all of the 68” vectors:
T T T
s (6) i &5 (6%) s (6N7)
oo b o
-------------------- O S N — (4.100)
tor 1
5b (6) : b (67) 5b (6M7)
i + \

Each of the s and b can then can be used in Equation 4.92 to produce the values of the
corresponding J - 8”. These can be used in turn in Equation 4.94 to produce the desired

result of JT - .

The remaining multiplication, JT - J - y can be generated by calling the algorithms for

J -y and ]T-y in sequence to give ]T (J-vy).

4.14 Optimization of x? , via Iterative Linear Root Finding

Although not studied to a significant degree in this work, another potential approach
would be to break the problem into two coupled sets of linear equations, as shown in

Figure 4.10. To start, a reasonable value for v is chosen (e.g., ¥ = 0). The linear equations
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Linear Solver (fast)

2 2
Solves Wmoa =0 and Wmos =0
Os ob

n n

Linear Solver (fast)

a/l’riod — 0
0y,

Solves

Figure 4.10: Iterative linear root finding. In the top part of the cycle, v is treated as a fixed
quantity, and a linear solver is used to find s and b. These values are then used in another
linear optimizer that finds v, assuming the provided values of s and b are fixed. Iteration
stops if a self-consistent solution is found.

ax—%w‘i =0and
0s,,

axsrlod -0
ab,,

are solved, treating -y as constant, to produce values of s and b. Next, a new value for vy is

determined by solving the linear equations

2
aXmod —
Iy ’
in which s and b are treated as constants with the values found in the first step. The cycle
can then be repeated, using the new value of . With a bit of luck, the iterative process

might converge to a self-consistent set of s, b, and +.
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Chapter 5

Testing the Deconvolution Algorithm

One of the primary goals of the work presented in this thesis is to develop data-analysis
software that can rapidly deconvolve the spectra produced by the broad-bandwidth re-
ceivers. As discussed in Section 6.2, by making line surveys more efficient, the new re-
ceivers also permit more sensitive surveys to be done in a realistic amount of observing
time. Therefore, the deconvolution software must also be capable of preserving the high
sensitivity of the observations, some of which are expected to push noise levels down by
an order of magnitude relative to previous results.

When pursuing such a goal, the software cannot operate as a “black box.” It must
contain facilities for validating both the final results and the intervening steps. From its
inception, the deconvolution software has included a powerful simulation engine to pro-
vide synthetic spectra for testing. In this way, the final results can be tested by comparing
them to the “true” values used in simulation, both validating the algorithm’s performance
and quantifying the amount of error introduced by the process. In addition, analysis and
display routines have been developed to probe the internal quantities used by the routine.
For instance, the resampling algorithms presented in Section 4.4.1 have been validated
extensively by comparing resampled SSB and DSB spectra to the original values.

To minimize “crosstalk,” the code base that creates the simulated spectrum is entirely

separate from the deconvolution portion of the code,! and there are multiple safeguards in

1 An important exception to this statement is that the function responsible for converting a set of baseline
coefficients, b, into the corresponding baseline, 8, is used by both portions of the code. This code primar-
ily implements Equations 4.52 and 4.53. Ideally, baseline calculation should follow an approach similar to
the one used for DSB and SSB spectra, in which an entirely independent method of calculating the baselines
is used. Initially the code was designed this way; however, baseline fitting has proven somewhat problem-
atic, so we decided to use the same method on the simulation and deconvolution sides of the code to make
troubleshooting easier.
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place to ensure that the deconvolution algorithms do not have access to the “true” param-
eters from the simulation. Whenever possible, different methods of calculating equivalent
quantities are used to check for internal consistency. For instance, the simulation side of
the code does not use any type of convolution matrix, M; instead, it creates a list of peaks,
defining their center frequencies, amplitudes, and widths. When creating DSB data, it
searches through all the peaks to find any that could contribute to either the lower side-
band or upper sideband and integrates those peaks over the specified channels. Similarly,
to produce the true SSB spectrum, it uses the same process, accepting a set of frequency
channels over which it integrates the known peaks.

Another advantage of incorporating simulation is that it provides opportunities to gain

an intuitive understanding of how the deconvolution algorithms work.

5.1 Status of Software

Chapter 4 presents multiple ways of approaching the optimization problem. The pseudo-
linear method described in Section 4.13 seems particularly promising, as it separates out
the nonlinear elements of the problem, leaving the majority of the parameters to be found
through fast and reliable linear methods. However, this is expected to be the hardest ap-
proach to implement. From a practical point of view, it requires three separate critical func-
tions: the outer, nonlinear optimizer, the inner, linear solver, and a second, linear solver to
estimate the Jacobian. The results are very sensitive to the values of the sideband-gain
factors, so significant infrastructure for troubleshooting and debugging is needed to de-
velop this approach. In contrast, the direct optimization (Section 4.11) and nonlinear root
finding (Section 4.12) techniques should be easier to implement since they rely on only a
single-stage approach in which all parameters are found simultaneously.

Early prototypes of the deconvolution software included all three approaches to allow

for comparison of results and execution time. However, as the code expanded, adding

20ne of the concerns with the single-stage approach is that the parameters have significantly different
scales. Whereas a relative error of 107> might be sufficient for the parameters describing the single-sideband
spectrum, the baseline parameters and sideband-gain values are likely to require higher precision. The MAT-
LAB routines perform quite well, even with this difference in scaling, but it could be advantageous to consider
reparameterizing the problem so that all parameters share a similar scale.
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the integrated baseline fitting and the resampling of non-aligned spectra, supporting the
three branches of simultaneous development became too complex. Therefore, we decided
to focus on one of the three methods and develop it to a fully functional state, both as a
proof of concept and to provide immediate capabilities for analyzing existing data sets.
The other branches can be added when, an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>